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-------- 

ABSTRACT 

-------- 

 

Thermally-transferred optically stimulated luminescence (TT-

OSL) is a form of optically stimulated luminescence that 

saturates at much higher doses than conventional OSL (Wang et 

al, 2006b). Luminescence sediment dating is a technique 

whereby the natural radiation dose given to a sample is 

measured. This is divided by the environmental radiation rate 

of the sample site to give the sample's age. As TT-OSL is 

able to measure higher doses than conventional OSL, it has 

been considered a candidate for long range luminescence 

sediment dating, beyond one million years. In this thesis, 

TT-OSL single-aliquot sediment dating protocols were tested 

on selected samples from the south-east of South Australia 

(SESA) stranded dune sequence, a sequence of ancient dunes 

ranging from 0 to 900 thousand years of age that have 

previously been independently dated using luminescence and 

non-luminescence dating methods. A young sample with a high 

natural dose from Baldina Creek, Burra, South Australia was 

also dated. Measurements of the thermal depletion of the TT-

OSL signal were also made. 

 

It was found that, for the SESA samples, TT-OSL dating 

results do not agree with previous independent measurements 

above 200 ka. The results for the young Baldina Creek sample 

were within the expected range.  
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--------------- 

01-INTRODUCTION 

--------------- 

 

Thermally transferred optically stimulated luminescence (TT-

OSL) is a relatively new quartz luminescence dating technique 

which has the potential to date sediments exposed to higher 

doses than can be dated by optically stimulated luminescence 

(OSL) (Wang et al, 2006a). OSL is the standard luminescence 

dating method for buried sediments of late Quaternary age, 

but cannot date quartz that has been exposed to a greater 

dose of ionising radiation than around 150 Gy. This 

translates to an upper limit for using optical dating of 

around half a million years. TT-OSL has the potential to be 

useful for dating older sediments, and sediments in areas 

with high environmental radiation dose rates. 

 

In their review of TT-OSL, Duller and Wintle (2011) noted 

that TT-OSL needs to be tested with an independently dated 

control sequence in order to review its usefulness for 

dating. The stranded dunes of the south-east of South 

Australia (SESA) provide such a sequence, suitable for 

testing quartz and other luminescence dating protocols 

(Huntley et al, 1985). It provides samples with ages from 0 

to 950,000 years. While the sequence does not provide 

environmental doses at the limit of what TT-OSL has been 

shown to be able to measure (thousands of Gy), it does 

provide samples that are unable to be dated using OSL due to 

their large natural doses. 

 

In this thesis the published research is assimilated into a 

general single-aliquot dating protocol for TT-OSL, which is 

applied to selected SESA samples. The results are discussed, 

and further research has been undertaken to attempt to 

resolve some of the issues found in the protocol. An improved 

protocol for the SESA samples was devised and tested. Kinetic 

measurements were done to assess the thermal stability of the 

TT-OSL signal, and simple models were made to try to explain 

the behaviour of the SESA TT-OSL results. 

 

From these results I hope to obtain the answers to a number 

of questions, namely: 

 

-Is TT-OSL suitable for dating buried sediments at natural 

doses where optical dating fails? 
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-Is TT-OSL suitable for dating buried sediments older than 

can be dated using conventional OSL (more than half a million 

years)? 

 

-Is TT-OSL more suitable for dating older sediments than 

other luminescence methods, such as thermoluminescence (TL)? 

 

-How precise are TT-OSL measurements, and how much time and 

sample is needed to obtain a result? 

 

A summary of my findings is found in the conclusions section. 
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------------- 

02-BACKGROUND 

------------- 

 

PROJECT AIM 

 

Thermally transferred optically stimulated luminescence (TT-

OSL) is a new luminescence dating technique first proposed in 

2006 (Wang et al, 2006b). Optically stimulated luminescence 

(OSL), currently the most common luminescence dating 

technique for buried sediment layers, can typically only date 

samples with an accumulated dose of around 150 Gy or less, 

leading to an age limit of dateable samples between 200 and 

500 ka. In contrast, TT-OSL signal-to-dose relationships have 

been shown not to saturate after thousands of Grays of 

laboratory dose (Burbidge et al, 2009). This means that TT-

OSL techniques could potentially be used to date older 

sediment layers than can be currently dated with conventional 

optical dating techniques. 

 

Previous tests of the TT-OSL luminescence dating technique 

have either looked at the TT-OSL dose response to laboratory-

given doses, or compared TT-OSL results to those of other 

luminescence methods or newer dating techniques (see p. 41 

for a review on current literature). This does not give 

information about TT-OSL's reliability at measuring large 

natural doses, which are deposited in sediments over a long 

period of time. It also does not give information about the 

reliability of TT-OSL dating when other luminescence dating 

methods fail. In their review of TT-OSL protocols, Duller and 

Wintle stated that TT-OSL "still needs to be demonstrated by 

analysis of samples with good independent age control" 

(Duller and Wintle, 2012). 

 

The south-east of South Australia (SESA) stranded dune 

sequence is a series of stranded dunes (beach ridges) 

situated in approximately parallel lines inland from the 

coast from Robe to Naracoorte, South Australia. They were 

caused by a combination of sea level fluctuations and land 

which is slowly rising. Previous doses measured using 

thermoluminescence (TL) in this sequence range from 

approximately 0 to 500 Gy. Sample ages range from 0 to 900 
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thousand years (ka). The dunes have been dated via TL, 

modelling, and oxygen-isotope analysis. Younger dunes have 

also been dated using optical dating, and the dunes at 

Naracoorte have been dated via palaeomagnetic reversal.  

 

Due to its independent age controls and varied sample ages, 

the south-east of South Australia stranded dune sequence 

provides a low-to-medium natural dose-rate quartz test 

sequence for luminescence protocols (Huntley et al, 1985). In 

this thesis I will use TT-OSL to calculate ages for selected 

well-dated dunes of this sequence, and compare these to 

independent, and OSL and TL ages. 

 

After its proposal in 2006, much research has been done on 

developing a single-aliquot dating protocol using TT-OSL. In 

this thesis I have assimilated the published research into a 

general dating protocol which has been applied to the well-

dated SESA samples. The results are discussed, and 

improvements suggested and tested to attempt to resolve some 

of the issues found in acquiring ages for the samples. In 

addition, experiments to find information on the kinetic 

properties of the TT-OSL signal were also undertaken in order 

to determine the trapping lifetime of the TT-OSL under 

ambient conditions, and the protocol was tested on a young 

sample with a high dose. 

 

LUMINESCENCE SEDIMENT DATING 

 

-Luminescence, thermoluminescence, and optically stimulated 

luminescence- 

 

Luminescence is the emission of light from a non-metallic 

object at a temperature lower than the corresponding emission 

of that wavelength by incandescence. While luminescence 

behaviour had been studied extensively beforehand, it was 

only in 1888 that an umbrella term for all luminescence 

phenomena was proposed (Wiedemann, 1888). It is caused by the 

excitation of electrons or holes in a material, which when 

returning to a ground state lose energy in the form of 

photons. Luminescence phenomena include fluorescence and 

phosphorescence, among others. 
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While most forms of luminescence occur within a few seconds 

of the initial electron ionisation event, delayed forms of 

luminescence exist, including thermoluminescence (TL). 

Thermoluminescence occurs in regular or amorphous substances 

with a similar unexcited energy level for electrons 

throughout the material. In the energy band theory of solids, 

this is called the ground state of the material (McKeever, 

1985). 

 

When there are breaks in the structure of the material, due 

to irregularities such as crystal defects or ion 

substitution, the unexcited energy level for electrons 

differs at that point. This can form a metastable state (also 

called a trap) within the material, between the ground state 

and the conduction band (McKeever, 1985). While electrons can 

exist in these states, they can spontaneously exit them under 

ambient temperatures, with a frequency much higher than an 

electron in a truly stable state. For a simple, first-order 

material, the average time an electron will spend in a 

particular metastable state (also called the lifetime of the 

trap) is 

 

        
 

    (McKeever, 1985) 

 

Where E is the energy difference between the trap and the 

conduction band, T is the temperature of the material, and k 

is Boltzmann's constant. s is the frequency factor (units of 

time^-1), which represents the amount of chances per unit of 

time the electron has of escaping the trap. Looking at the 

trap as a potential well, the frequency factor, s is equal to 

n*R; where n is the number of times the electron hits the 

wall of the potential well, and R is the wall reflection 

coefficient (Furetta, 2008). At ambient temperatures, the 

lifetime of the trap can range from seconds to millions of 

years, depending on E and s. 

 

As the lifetime is inversely proportional to temperature, 

applying heat to the material greatly decreases the lifetime, 

and the right temperature range for each trap can induce a 

large exodus of electrons from the metastable state to the 

conduction band. From the conduction band these electrons can 

travel to recombination centres, emitting photons in the 

process of recombination (see fig. 2.1). 

 

Thermoluminescence is therefore a two-step process: first 

electrons are excited into the conduction band by an ionising 

force, and some of these electrons subsequently populate a 
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proportion of the metastable states of the material. 

Secondly, after an indeterminate period of time (shorter than 

the time taken for the electron to spontaneously exit the 

trap at ambient temperatures), the material is heated, 

stimulating electrons out of the traps, into the conduction 

band and then into light-emitting recombination centres. 

 

 
Figure 2.1: A band-structure diagram of the simple 

thermoluminescence model. 

1) The ground state of the material 

2) The excited state of the material 

3) A metastable state 

A) An ionising force affects the material 

B) An electron or hole is excited from the ground state of 

the material 

C) An electron or hole falls from the excited state to a 

metastable state 

D) The material is exposed to heat 

E) The electron or hole is excited from the metastable state 

to the excited state 

F) The electron or hole falls from the excited state to a 

recombination centre 

G) The process in (F) releases energy in the form of a 

photon. 

 

[A note on terminology: while the words 'stimulation' and 

'excitation' can be used in both steps of the TL process, to 

prevent confusion in this thesis I will use 'excitation' or 

'ionisation', and 'trapping' for stages in the first process, 
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and 'stimulation' or 'de-trapping', and 'light emission' for 

stages in the second process.] 

 

The link between the two stages of TL production is non-

obvious to an observer. While a series of experiments and 

observations on a diamond with known TL properties was 

conducted by Robert Boyle (1663), it was only in the 1700's 

that the regeneration of TL after heating was discovered (Du 

Fay, 1738). The discovery of X-rays and radioactive elements 

provided experimentalists strong artificial ionisation 

sources to provide the initial population of TL traps, and it 

was only after these discoveries that TL was studied in any 

great detail. 

 

TL measurements are usually done by heating a sample by 

increasing the temperature at a continuous rate, and 

measuring the subsequent light emission via a 

photomultiplier. This linear modulation (LM) of temperature 

creates a distinctive glow curve shape (see fig. 2.2). The 

production of the rising edge is dominated by the 

progressively increasing likelihood of an electron escaping 

its trap, and the production of the falling edge is dominated 

by the decreasing size of the population of occupied traps. 

For first-order kinetics and a LM temperature rise, the shape 

of the light emission is 

 

  ( )   
  

 
   

 

    (McKeever, 1985) 

 

Where I is the number of photons emitted, s'=s/N (N is the 

concentration of available traps), n is the number of filled 

traps, and β is the heating rate. Using this linear 

temperature modulation has a number of advantages. The LM 

effect is easy to create, and produces distinctive curves at 

positions dependent on the trap kinetics and the heating 

rate. This is particularly useful in materials with a number 

of different trap types, as the different s and E values of 

the traps will mean that their glow curves will be positioned 

in different temperature ranges. This allows identification 

and separate analysis of traps with differing properties 

(providing they differ sufficiently and the heating rate is 

slow enough). 

 

Another form of delayed luminescence is optically stimulated 

luminescence (OSL). As its name suggests, OSL is stimulated 

by light rather than (or as well as) heat (Huntley et al, 

1985); otherwise it behaves in much the same way as TL, and 
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is produced by charge released from metastable states that 

can often also be measured using TL. The rate of optical 

depletion of an OSL trap (or the inverse of the lifetime of 

the trap, not taking into account thermal depletion) is  

 

       (Bailey, 2001) 

 

Where θ is the photo-ionisation cross-section (the cross-

section for the movement of electrons from the trap to the 

conduction band), and P is the photon flux of the optical 

stimulation. The photo-ionisation cross-section is 

 

  (   )   
 

 
(
    

  
)       

    

(  )
   (     )

   

(  ) 
 (Lucovsky, 1965) 

 

where n is the refractive index of the material, Eeff/Eo is 

the ratio between the electric field of the stimulating 

photon and the electric field of the material, Ei is the 

observed binding energy, ω is the frequency of the 

stimulating photon, and m* is the effective mass of the 

electron. 

 

While from 1996 OSL has sometimes been measured while using a 

linearly modulated signal (Bulur, 1996), producing peaks 

equivalent in shape to those gained from TL, OSL is often 

stimulated by an unmodulated, or continuous wave (CW) signal 

(see fig. 2.2). This produces (in the case of a material 

containing only one type of optically stimulated trap) an 

exponentially decaying signal (Aitken, 1998), due to the 

population of occupied traps able to be stimulated at a 

particular optical power decreasing over stimulation time. 

CW-OSL has a number of advantages over LM-OSL for simple 

luminescence intensity measurements. It is easier to produce, 

simply by switching on a light source such as a laser or 

light emitting diode. The signal produced also has a sharper 

peak than that gained by LM-OSL, and so gives better counting 

statistics and therefore smaller errors to the integral of 

the light emission. However, using CW stimulation can make it 

difficult to separate signals from different trap types, and 

so for complicated materials with a variety of optically 

stimulated traps, and for kinetic analysis, LM stimulation 

can be preferable. 
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Example one: 

 
Example Two: 

 
Figure 2.2: Examples of linearly modulated and continuous 

wave stimulation. Example 1, for CW-stimulation is of the OSL 

of a quartz sample stimulated with diodes at 90% power. 

Example 2, of LM-stimulation is of the TL of a recently 

irradiated quartz sample from 0 to 150 °C. Peaks from two 

different trap populations are visible. 

 

  

In addition to CW-OSL and LM-OSL, measuring the luminescence 

produced from a pulsed stimulation is also possible. Pulsed 

OSL (POSL) is created by switching a LED on and off in 

pulses. The luminescence produced is usually characterised by 

a build-up of luminescence while the stimulation is on, and a 

decay when it is turned off. POSL is a useful tool for 

analysing the behaviour of traps and recombination centres, 

and charge movement between them. It can be used to reduce 

noise (especially fluorescence) from stimulation light, by 

only recording light from when the stimulation source is 

turned off (Bøtter-Jensen et al, 2003). POSL can also be used 

for separating luminescence components made up of different 

traps (e.g. Denby et al, 2006 and Ankjaergaard et al, 2010), 

which may come from different minerals, in a mixed-mineral 

sample. 
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-TL and OSL Dosimetry- 

 

As the proportion of filled traps in a material is a function 

of the amount of ionising radiation the material has been 

exposed to (providing that the lifetime of the trap is much 

larger than the time between excitation and stimulation), TL 

and OSL materials can be used as radiation dosimeters. The 

proportion of traps filled by ionising radiation depends on 

the flux of the ionising radiation, the energy of the 

radiation, the type of radiation (e.g. UV or gamma photons, 

or α or β particles) and the amount of traps already filled. 

The dose response curve in the simplest case is a saturating 

exponential with the dependence almost linear when the 

proportion of traps already filled is near zero, and creating 

an asymptote when the proportion of traps already filled is 

near 100% (see fig 2.3). In some materials, traps can be 

created by radiation, modifying the trap population as the 

material is dosed, and giving a saturating exponential plus 

linear dose response curve (Aitken, 1998). 
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Figure 2.3: An example of saturating exponential behaviour, 

taken from a Naracoorte East sample's DI-TT-OSL results using 

the TT-OSL response to a test dose for normalisation. The 

saturating exponential fit to the data points (shown as a 

green line) was created using Matlab's Curve Fitting Toolbox. 

 

Finding the dose a material has been given has two stages. 

The first is the measurement of the natural luminescence 

emission of the sample; the second is matching this emission 

to a dose response curve. As the formation of defects 

creating metastable states is a complex and non-uniform 

process, each sample has a unique dose response curve and 

must be calibrated separately. There are a number of 

frequently used calibration protocols: 

 

-MAAD 

 The multiple-aliquot additive dose (MAAD) method 

involves preparing a number of aliquots of a sample, and then 

irradiating a number of them with a series of different known 

doses. Each aliquot then has a dose equal to the unknown 

natural dose (ND) plus a known artificial dose (Di). A graph 

of (ND + Di) vs signal is plotted, and a curve fitted to the 
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plot. It is assumed that there is no residual luminescence, 

so there is no signal at zero dose. The natural dose is then 

extrapolated from the fit (Aitken, 1985). 

 

-MAR 

 In the multiple aliquot regenerated dose (MAR) method a 

number of aliquots are prepared as in the MAAD method, and 

some are bleached by natural or artificial light or heat 

sources. These bleached aliquots are given a range of large 

and small doses. A graph of dose vs signal is plotted, and a 

curve fitted to the plot. The dose corresponding to the 

natural signal is interpolated from this fit (Aitken, 1985). 

 

-Australian Slide 

 The Australian slide method combines both the MAAD and 

MAR methods together. Some aliquots are given an additional 

dose, forming an additive dose curve, while others are 

bleached and then dosed, forming a regenerated dose curve. 

The additive dose curve is interposed onto the regenerated 

dose curve, and shifted until the curve shapes match (scaling 

is possible to correct for sensitivity changes, but is not 

"good practice"), thus finding the relationship between ND+Di 

and Di. In this method the type of fit used does not matter, 

as only the shape of the curves creates the final result 

(Prescott et al, 1993). 

 

-SAR 

 The single-aliquot regenerative dose protocol is mainly 

used in OSL measurements. The natural dose is measured, and 

the stimulation time is chosen so that the luminescence 

signal from the aliquot reaches zero or a residual level by 

its end. The aliquot is then irradiated with a known dose, 

and the subsequent OSL signal is measured. A succession of 

known doses is given to the aliquot. As the sensitivity of a 

material to a known dose changes with repeated dosing and 

bleaching cycles, a small test dose is given to the aliquot 

between each major dose cycle, to monitor the aliquot's 

change of signal output from the same dose (Murray and 

Wintle, 2000). 

 

While TL and OSL dosimetry is a useful tool, not all TL or 

OSL materials are suitable for dosimetry, or useful in all 

scenarios. Whether a TL or OSL material is suitable for 

dosimetry in a particular scenario depends on a number of the 

material's TL and OSL properties, including: 
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-Sensitivity and resolvability 

The material must have a sensitivity to dose suitable for its 

potential purpose. The dose dependence in the dose range to 

be measured must be linear or follow a saturating exponential 

curve. In general, materials with interfering luminescence 

properties (such as phosphorescence or fluorescence) with 

high photon counts, or large residual luminescence signals 

are not suitable for measuring small doses, as an increased 

background luminescence level can overwhelm small signals. 

 

-Saturation points 

The material must saturate at doses much larger than the dose 

range being measured. Doses measured near the saturation 

point of the material can be very imprecise, and doses that 

exceed the saturation point can only be measured to a lower 

limit. 

 

-Lifetimes 

The luminescence signal being measured must have a lifetime 

much longer than the time between the start of dose 

deposition and the measurement. A lifetime shorter than or 

near this dose-to-measurement time will mean that the signal 

will have begun to fade naturally in ambient temperatures, 

and the dose calculated will be an underestimate. In cases 

where artificially stimulating the material to empty the trap 

population is not possible and very short-term dosimetry is 

used, a lifetime around an order of magnitude larger than the 

dose-to-measurement time, but not above is preferable, as 

build of signal due to background radiation will be minimised 

while still ensuring that the signal will not fade. 

 

-Anomalous fading 

Electrons or holes usually escape from metastable states at a 

rate dictated by the metastable state's thermal stability 

(lifetime). In some materials, the electrons escape from the 

metastable state population at a rate faster than would be 

expected, a phenomenon called anomalous fading. Anomalous 

fading has been attributed to quantum tunnelling (Wintle, 

1973; Visocekas et al, 1976), and is found in materials such 

as ZnS, CaF2, and feldspars (McKeever, 1985). If not 

accounted for in a measurement, a material that is subject to 

anomalous fading will give an underestimation of the dose 

received. 

 

-Quenching 

Quenching is a process in which a proportion of the electrons 

or holes stimulated from metastable states travel to the 
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ground state via non-radiative processes. While not usually 

affecting measurements of the dose received, quenching can 

lower the total luminescence measured and so increase 

counting errors. There are three main types of quenching: 

 -Impurity quenching: Impurity quenching occurs when 

impurities in a crystal form non-radiative centres, which 

then compete with radiative centres as pathways for electrons 

moving to the ground state. Heavy metals are especially 

affective at forming non-radiative paths (McKeever, 1985). 

 -Concentration quenching: In some cases, luminescence is 

quenched by an overabundance of luminescence centres. This is 

thought to be due to luminescence centres in close proximity 

reacting to one another to become non-luminescent (Curie, 

1963). This effect can be seen when materials with 

luminescence centres caused by dopants (deliberate 

impurities) are created. Increasing the proportion of the 

dopant in the material for a time results in an increase of 

total luminescence output. After a certain proportion, 

however, the luminescence output of the material begins to 

slowly decline (McKeever, 1985). 

 -Thermal quenching: Thermal quenching is a type of 

quenching wherein the proportion of electrons travelling to 

the ground state by non-radiative processes is dependent on 

temperature. The luminescence efficiency of a material 

subject to thermal quenching is: 

η(T) = (1-K  
 

  )
-1
  (Wintle, 1975) 

Where K is a constant, k is Boltzmann's constant, T is the 

temperature, and W is the energy depth of the non-radiative 

process. Wintle (1975) found that W can be found 

experimentally by subtracting the value of E of the 

metastable state in question gained by the initial rise 

method (which is affected by thermal quenching) from the true 

value of E, found by a procedure not affected by thermal 

quenching (such as peak shift, or Hoogenstraaten's method). 

While thermal quenching does not affect OSL measurements 

taken at a constant temperature, care must be taken when 

doing TL measurements, to ensure that each measurement is 

reading the same proportion of the excited electrons. Samples 

must be of the same thickness, as must their holders, to 

ensure the thermal lag remains the same for all measurements. 

In addition, the temperature the samples are held at must be 

increased at a slow rate, to minimise the effect of 

temperature errors. The quartz 325 °C peak in quartz is 

particularly susceptible to thermal quenching (Wintle, 1974 

and Spooner, 1994). 
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The advantage of using TL or OSL for dosimetry is that the 

thermoluminescence material stores the information on doses 

it receives for a length of time dictated by the material's 

charge trapping lifetime, which could be between milliseconds 

to millions of years. While immediate radiation measurements 

are more useful in some cases, TL and OSL are ideal for 

integrated-over-time dose accumulation measurements. Examples 

of uses of TL and OSL include medium to long-term 

measurements of radiation exposure in medical, research and 

mining environments; forensic dosimetry; and luminescence 

dating. 

 

-TL and optical dating- 

 

TL and OSL can be used to date geological and archaeological 

items such as burnt flints (Valladas, 1985), pottery 

(Fleming, 1972), teeth and shells (Kiyotaka, 1987), and 

buried sediment layers (Huntley et al, 1985). This is done by 

measuring via TL or OSL the dose the archaeological item or 

sediment layer has received. This dose is then divided by the 

background radiation dose rate for the site. This gives a 

value for the amount of time the trap population of the 

measured material has been filling. It should be noted that 

this means TL and optical dating gives a value for the age of 

the resetting event experienced by the dated item, rather 

than a set age. 

 

There are a number of requirements that need to be met before 

an archaeological or geological item can be dated by TL or 

OSL. The first is, as one would expect, the item contains 

thermoluminescent or OSL materials. In addition to the issues 

mentioned for dosimetry measurements above, in order to date 

an item one also needs: 

 

-A zero age to date from: 

While biogenic calcites can be dated from their formation 

(Duller et al, 2009), other minerals were formed well before 

their reworking into the state which is to be dated. These 

materials therefore need to be exposed to a resetting event 

which lowers the number of filled traps in the material to a 

residual level. It is from this event that the material will 

be dated. For burnt flints and pottery, the resetting 

mechanism is the act of firing or burning the object; for 

sediments, it is exposure to sunlight before burial. While 

for pottery one can be confident that the item has been 

heated to a high enough temperature to empty the traps used 

for dating, if a flint has not been heated to a sufficient 
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temperature, or a sediment deposit has not been exposed to 

enough light to fully reset its trap population, an accurate 

age cannot be derived from the object. 

 

-An accurate calculation for the background radiation dose 

per unit time: 

For dating an item using TL or OSL, it is equally important 

to get accurate results for both the total dose absorbed by 

the material over time (called 'equivalent dose') and the 

dose rate the material has been exposed to. Background dose 

can come from a number of sources, including cosmic rays, 

radiation from the surrounding material, and radioactive 

inclusions inside the material itself. Each source has its 

own dependencies and complications, as listed below: 

 -Cosmic rays: the dose from cosmic rays depends on the 

geographic location of the material, its position from sea 

level, and the depth of burial. While depth of burial can 

change over time (due to new layers of deposition, or 

weathering), and some archaeological objects can change 

location (for example a high-value pot being exported to a 

different city), most changes are either very gradual (and so 

a reasonably accurate average can be calculated), or occur at 

short periods at the start of the material's dateable life, 

rendering their effect negligible for sufficiently old 

materials.  

 -Surrounding material: dose from the surrounding 

material is subject to the same location and burial 

dependencies as cosmic rays—an unburied material will have 

much less surrounding material to administer a dose than a 

buried one. For a sediment layer, dose can come from within 

the layer itself. If the layer is sufficiently thin or a 

sample is from near a sediment layer boundary, dose can also 

come from the layers surrounding it. For an archaeological 

object, dose to any one point can come from the surrounding 

sediment and from other parts of the object. Dose from the 

material's surroundings can change due to changes in average 

moisture content, as water is a passive absorber of 

radiation. Some radioactive daughter products are water 

soluble, and in wet environments can be moved out of the 

surrounding sediment. This reduces the total radioactivity of 

the sediment, as it means any radioactive products further 

down in the parent-daughter chain are not present in the 

soil. Average moisture content can change for long stretches 

of time in old material, due to climate changes. If moisture 

contents have changed over time, a study of the radioactive 

elements in the sediment will show a disequilibrium of parent 

to daughter products in the soil from that expected in the 
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modern environment (radon escape increases with increasing 

water content). If sufficient information is known to 

estimate the timeframes of each climate condition, 

calculations can potentially be modified to take this change 

in radioactivity into account (Prescott and Hutton, 1995). 

 -Radioactive inclusions: not all of the parts that make 

up an archaeological material can be dated, due to a lack of 

TL or OSL properties, short lifetimes, or other reasons. 

Usually a material is dated via small grains of TL or OSL 

material within the material's structure (often feldspars or 

quartz). These grains can contain inclusions, some of which 

may be radioactive. Radioactivity inside the grains causes α 

radiation to become a significant part of the total dose. As 

α radiation does not travel far through any material, 

external α radiation only affects a small layer around the 

outside of each grain. This layer is usually stripped from 

the grain during sample preparation, and so dose due to α 

radiation is usually considered negligible. If the radiation 

comes from within the grain, there is a significant α 

radiation component that must be accounted for in dose 

calculations. Grains with inclusions often have much higher 

dose exposure rates than grains without. Even in single grain 

analysis, calculating a separate dose rate for each grain is 

not usually possible. Unless the inclusions themselves are to 

be dated (such as in zircon dating), grains with inclusions 

are usually avoided where possible. 

 

-Sediment dating- 

 

There are two main luminescence minerals commonly found in 

sediment layers: quartz and feldspar. Quartz has a number of 

relatively distinct TL peaks, one of which (peaking at 325 °C 

when increasing the temperature at 5 K/s) is highly 

bleachable by visible and UV light, and is the main source of 

the quartz OSL signal (Smith et al, 1986 and Spooner, 1988). 

This peak has a lifetime of approximately 20 million years at 

20 °C (Spooner and Questiaux, 2000). Its bleachability and 

large lifetime makes it ideal for sediment dating. However, 

this peak saturates at around 150 Gy, translating to an upper 

dateable age limit of approximately half a million years. 

 

Feldspar, another common thermoluminescent mineral, saturates 

at much higher doses than quartz, and so can in principle be 

used to date older samples. However, it is susceptible to 

anomalous fading, a phenomena in which electrons or holes 

exit traps at a rate higher than suggested by the 

kinetically-derived lifetime of the trap (McKeever, 1985). It 
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is thought that this is due to quantum mechanical tunnelling, 

in which an electron in a trap can escape without the energy 

needed to raise it to another energy level. This means that a 

normal feldspar measurement will underestimate the dose 

received, and therefore the age of the sample. Feldspar 

signals can be stimulated by visible, UV and infrared light. 

Methods to obtain accurate results from faded feldspar have 

been developed and tested. 

 

Other luminescence sediment dating methods include zircon 

dating, in which small zircon crystals are dated (Sutton and 

Zimmerman, 1979; Templer, 1985), and dating by inclusions, in 

which zircon, quartz, or feldspar inclusions in larger grains 

are dated (Templer, 1986; Huntley et al, 1993b). Which 

mineral to date is chosen after considering a number of 

factors, including the approximate guessed age of the sample, 

the minerals present in the sediment, the geological history 

of the sediment, and the purpose behind dating the sediment. 

 

The resetting event used in sediment dating is the layer's 

last exposure to sunlight (see fig 2.4). For this reason, OSL 

measurements are preferred over TL, as OSL traps are more 

readily reset by light. Determining whether a sediment layer 

was exposed to enough sunlight for all the sediment measured 

to have had a zero-dose measurement at the time of the 

resetting event is assessed from a number of factors. These 

include the type of mineral used for dating, the method of 

sediment deposition, and laboratory tests. 
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Figure 2.4: A diagram of a sediment layer a) exposed to light 

and being 'reset', and b) being buried, which allows charge 

from dose to remain in metastable states. 

 

The mineral used for sediment dating can be used to estimate 

the likelihood of the sediment deposit being reset before 

burial. Feldspar OSL and infrared stimulated luminescence 

(IRSL) can be reset quickly, in low light conditions or by 

long wavelengths. The 325 °C quartz trap (the quartz OSL 

trap) can be reset by visible and UV light exposure, but not 

long-wavelength light. Other quartz TL traps can only be 

reset quickly by UV light, and cannot be reset by long 

wavelengths. 

 

The history and method of deposition of the sediment 

determines the intensity and spectrum of light it has been 
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exposed to, and the length of time it was exposed. Wind-blown 

sands are exposed to direct sunlight, often for days or more 

before deposition. Glacially deposited sediment may be 

exposed only to dim light, and only for a short period of 

time. Water-borne sediment, even if exposed to sunlight in 

shallow water, will be exposed to a shortened wavelength 

spectrum of light due to the attenuation of UV light in 

water. From these facts, judgements about the likelihood of 

adequate resetting can be made. For instance: aeolian, or 

wind-blown sediment make up the deposits most likely to be 

totally bleached for both quartz OSL and TL trap populations. 

In addition, when exposed to a limited amount of light, OSL 

and IRSL feldspar trap populations are more likely to be 

bleached than OSL quartz trap populations, due to the 

feldspar's broader bleaching spectrum.  

 

Along with estimates of light exposure due to knowledge of 

the sediment's origins, experiments using the TL or OSL 

signal have also been developed to review the likelihood of 

incomplete bleaching at burial. A common experiment for TL is 

the plateau test, used to calculate whether signals have 

thermally decayed over time (Aitken, 1985). Quartz TL is made 

up of a number of peaks, each with different bleaching 

characteristics and lifetimes. Quartz OSL, while dominated by 

one trap population, also includes harder-to-bleach 

components. If the sample has been fully bleached at 

deposition, all trap populations of sufficient lifetime will 

give similar equivalent dose results. If the sample has not 

been fully bleached, harder-to-bleach trap populations will 

give larger equivalent dose results than easily-bleached 

populations. A similar test is used for continuous-wave OSL 

measurements. While one trap is usually dominant in OSL 

measurements of feldspar and quartz, there can be smaller, 

harder-to-bleach components that may become dominant after 

the main OSL signal has been bleached out. Comparing the 

equivalent dose gained from the initial OSL signal (in the 

first second) and the dose measurement gained after the first 

second can give the similar information as a TL plateau test. 

However, as the smaller components of OSL signal are in 

general harder-to-bleach, the traps populations responsible 

may not be at residual levels at the 'zero age'. This, in 

addition to the fact that traps contributing to smaller OSL 

components may have shorter lifetimes than the dominant 

component, mean that the OSL plateau test is not as reliable 

as the TL plateau test. 
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Other concerns in sediment dating are generally to do with 

the unadulterated state of the sediment layer. Bioturbation, 

the turbation of sediment by living creatures such as plants, 

animals, and insects can mix grains from different sediment 

layers together, creating a mixture of grains of two or more 

ages. Solution pipes and other water drainage processes can 

also mix layers together. Weathering and geological movement 

can expose a layer to sunlight, rendering it unsuitable for 

dating. While some laboratory tests can be used to determine 

the suitability of a sample for dating, studying the 

geological history of the sediment layer and the careful 

selection of the sampling site is just as important. 

 

The problems stated above can often lead to each grain in a 

sample having a different proportion of filled traps. In this 

case single grain dating is used. In this method, each 

sediment grain is measured separately. A large number of 

grains are measured, creating a distribution of ages. If the 

sample contains grains from more than one sediment layer, 

peaks will form in the distribution, corresponding to the 

different sediment ages. If some grains were only partially 

bleached before deposition, the sample distribution will have 

a peak at or near the age of the sediment layer, with a large 

tail of higher ages indicating the unbleached or partially 

bleached grains. If weathering or some other phenomenon 

partially exposed some but not all of the grains to light, 

there will be a peak in the distribution at the age of the 

sediment layer, with a large tail of smaller ages indicating 

the partially bleached grains exposed after deposition. 

Single grains can tell one more information about the history 

of the sample, but a lot of grains must be measured in order 

to retrieve this information. There are other disadvantages 

to the single-grain method: not all grains give off 

luminescence, meaning that not all grains measured will give 

a result, and single grains give off comparably little light, 

which means that counting errors will be large. Due to these 

disadvantages, single grain dating is in general only used 

when a sample's history indicates that the acquired dose of 

each grain in the sample may not be homogenous, or if the 

history of the sample is unknown. 

 

When all grains in a sample are thought to have approximately 

the same acquired dose, dating is done using aliquots, a 

number of grains collected together. Assuming the number of 

grains is high enough, aliquots will average out any non-

systematic variation in the acquired dose and in the "micro-

dosimetry" experienced by each grain, and each aliquot dated 
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of a particular sample will give a similar dose. Aliquots 

often contain hundreds or thousands of grains, and give off a 

large amount of light when stimulated, resulting in smaller 

counting errors. Less aliquots are needed, therefore, to 

confirm a result for an age.  

 

QUARTZ SEDIMENT DATING 

 

Quartz grains found in sediment have properties dependent on 

their origin and history. While all natural quartz has shared 

luminescence properties, each quartz grain and grain 

population is distinct, and analysis of its unique properties 

must be made before the sample's suitability for sediment 

dating can be determined. 

 

-Quartz thermoluminescence- 

 

Thermoluminescence emission depends on two types of defects: 

metastable states (traps) and recombination centres. 

Metastable states trap and store electrons before stimulated 

emission, and their properties determine the stability of 

emissions and the intensity of stimulation needed to acquire 

a signal. Heating quartz at a constant temperature rate gives 

rise to a number of peaks, consistent with different trap 

populations. At 5 K/s, the most common peaks in quartz grains 

are situated at 95-110, 150-180, 200-220, 260-280, 305-325, 

and 375 °C (Scholefield, 1994a). These peaks are commonly 

referred to the 110, 180, 220, 280, 325 and 375 °C peaks. In 

addition, higher temperature peaks such as the 480 °C peak 

exist (Spooner, 1987). The position of the peaks may shift a 

little, depending on the origin of the quartz (de Brito 

Farias and Wantanabe, 2012). Unless otherwise stated, 

throughout the rest of this section I will refer to peaks by 

their position when heated at 5 K/s. 

 

Quartz traps at 220 and 325 °C are caused by oxygen 

vacancies, created by heat or radiation (de Brito Farias and 

Wantanabe, 2012). It has been shown in laboratory tests that 

cycles of radiation and heating or exposure to light will 

progressively sensitise traps with peaks below 350 °C 

(Spooner, 1987). This indicates that the history of a sample 

can indicate its propensity for intense emissions: old, 

extensively reworked quartz grains may be in general brighter 

than younger, un-reworked grains recently derived from 

bedrock from a similar origin. 
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After being stimulated from a trap to the conduction band, an 

electron will only emit light if it travels down to a light-

emitting recombination centre. The energy level difference 

between the conduction band and the recombination centre is 

the upper energy limit in determining the wavelength of the 

emitted light. In addition, competition for recombination 

centres can change the shape of TL curves. The 110, 160, 220, 

and 325 degree peaks have been said to use the same 

recombination centres (Scholefield, 1994b and Franklin et al, 

1995). 

 

Quartz thermoluminescence is often divided into red 

thermoluminescence (RTL), blue thermoluminescence (BTL), and 

UV thermoluminescence, so named due to the wavelength of the 

emission. BTL is often found in quartz samples with 

relatively small amounts of impurities (Westaway, 2009). It 

is found in quartz of hydrothermal, slow-cooling plutonic, 

and synthetic origins (Hashimoto et al, 2007). Near-UV 

emissions can be seen for the 110, 160, 220, and 325 °C 

peaks, while lower-wavelength blue emissions can be seen at 

260-280, 375, and above 450 °C (Krbetschek et al, 1997). 

Intense red signals are found in volcanic quartz, as well as 

granitic and pegmatic quartz (Westaway, 2009), and quartz 

extracted from burnt archaeological materials (Hashimoto et 

al, 2007). While red TL may be created by a variety of 

different recombination centres, blue TL is thought to be 

created by aluminium and germanium impurities, and UV TL by 

titanium and lithium impurities, oxygen vacancies, and H3O4 

hole centres (Krbetschek et al, 1997). Hashimoto et al (2007) 

found that while Al
-
H
+
 centres are light-emitting 

recombination centres, Al-OH centres are not, and provide a 

quenching effect. The fact that different aluminium sites 

both promote and quench BTL centres sheds some light on the 

fact that, as Subedi et al (2012) state, most quartz samples 

are affected by thermal quenching. 

 

-Quartz optically stimulated luminescence- 

 

Quartz OSL signals are usually dominated by one source, shown 

to be the 325 °C peak (Smith et al, 1986). This is known as 

the 'fast component' of OSL, as the trap empties very quickly 

under visible light stimulation. Other components have been 

identified under blue stimulation, which appear in different 

strengths and numbers in each sample. Jain et al (2003) 

analysed 12 samples of quartz of various origin, and 

identified seven components of the OSL signal, up to six of 

them present in the same sample. These components included an 
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'ultra fast', a 'medium', and four 'slow' components. These 

do not include the 110 °C peak, which bleaches under visible 

stimulation (Wintle and Murray, 1997). The middle component 

and one slow component appear to correlate with higher 

temperatures, only being completely thermally removed by 

heating above 400 °C. Another slow component appears to 

originate lower than the 325 °C peak (Jain et al, 2003). 

 

The 325 °C peak is ideal for sediment dating, as it bleaches 

very quickly under ambient light conditions, yet in lightless 

conditions has a lifetime at 20 °C of approximately 20 

million years (Spooner and Questiaux, 2000). Other components 

of OSL, however, are not as ideal, due to being less 

thermally stable, and therefore fading over time, or being 

more optically stable, and therefore likely to not be 

completely bleached at burial. A number of techniques exist 

to exclude the effects of less ideal OSL components from the 

overall signal. One is to mathematically isolate the fast 

component by fitting various decaying exponential curves to 

the signal. Another is to only use the first part of the OSL 

curve (usually less than the first second), where the fast 

component is dominant. In conjunction with this, subtracting 

a background signal from near the used integral of the signal 

curve rather than the end can subtract out proportions of the 

slower components. 

 

The most significant thermally unstable trap is the 110 °C 

peak, which is found in almost all quartz samples (Pagonis et 

al, 2002), and has a lifetime of less than two hours at 20 

°C. Other shallow traps include the 160, 180, 220, and 280 

degree peaks, with lifetimes in the order of months, years, 

thousands of years, and hundreds of thousands of years 

respectively (Spooner and Questiaux, 2000). Due to its short 

lifetime, at natural background radiation rates any electrons 

temporarily trapped in the 110 °C peak spontaneously escape 

and return to the ground state or get trapped by more 

thermally stable traps before there is any significant charge 

build-up in the 110 °C peak population. The 110 °C peak's 

properties are so significant that most TL and OSL quartz 

protocols take it into account, by using it to monitor 

sensitivity changes or changing protocols to ensure it does 

not affect results from other peaks. 

 

-Quartz protocols- 

 

Protocols for measuring the TL or OSL of materials must take 

into account the material's properties, including the peaks 



33 
 

most likely to be useful for dosimetry, the emission spectra 

of the peaks, and the potential for interference by other 

peaks. Thus TL and OSL protocols for quartz are more 

specialised than the general protocols stated above for dose 

reconstruction. Details of these modifications can be found 

below. 

 

For quartz TL dating: 

 -Spectra: quartz TL emissions are at a variety of 

wavelengths, and specific peaks can be almost isolated from 

other very close peaks by choosing a suitable filter set. For 

instance, the 325 °C peak, which peaks at 440 nm (Scholefield 

et al, 1994b), and the 375 °C peak, which peaks at 482 nm 

(Scholefield et al, 1994b), are similar in temperature of 

emission, and have wavelengths of emission that overlap. 

However, the 325 °C peak can be almost completely isolated 

from the 375 °C peak by using a Schott UG11 filter (Spooner 

et al, 1988), and vice-versa by a Schott GG-475 filter 

(Prescott and Fox, 1990). 

 -Incandescence: The two main quartz TL peaks used for 

sediment dating, the 325 and the 375 °C peaks (Smith, 1983), 

are found at temperatures at which incandescence begins to 

dominate the observed photon signals. Filters that block low-

wavelength photons can minimise the effect of incandescence 

on the observed signal. However, a background run (reheat) is 

still needed to take into account this effect. After the 

first increase in temperature to read the TL signal, the 

sample is cooled, then heated to the same temperature as 

before, at the same rate. This second run is subtracted from 

the first, to take away incandescence and other background 

effects such as photomultiplier dark count. 

 -Normalisation: in order to compare different aliquots 

to each other, the signals being compared must be normalised. 

This is sometimes done by the weight of each aliquot. 

However, as some quartz grains are much brighter than others, 

in a typical ~10 mg aliquot only a few grains may contribute 

to the majority of the signal. This allows for large 

variability between aliquots, and so the mass normalising 

method is not always useful. Another way to normalise TL 

signals is the 'pre-dose method' (Aitken, 1985) which uses 

the 110 °C peak to normalise the signal of the higher peaks. 

In natural samples, the 110 °C peak is not evident, as it has 

a very short lifetime in ambient temperatures. In this 

method, artificially-dosed aliquots are left for a number of 

hours before use, to ensure that they too do not have charge 

trapped in the 110 °C peak. Immediately before TL 

measurement, a small test dose is given to the measured 



34 
 

aliquot. The 110 °C peak signal from this test dose is used 

to normalise the signal from the higher temperature TL peaks. 

This normalising method depends on the time between the test 

dose and 110 °C TL reading to be constant for all aliquots (a 

reasonable assumption when using automated TL readers), and 

that the 110 °C peak has the same sensitivity proportional to 

higher temperature peaks for all aliquots. 

 -Preheat: the 280 °C trap has a lifetime at 20 °C of 

around 80-100 thousand years, which is unsatisfactory for 

dating Quaternary samples. Due to its proximity to the 325 °C 

peak, measurements of the 325 °C peak without taking into 

account the 280 °C peak will include significant amounts of a 

partially faded signal. In 2001, Huntley and Prescott 

successfully isolated the 325 and 280 °C peaks by preheating 

the samples at 160 °C for 33 hours, and by preheating at 220 

°C for five minutes. 

 

For quartz optical dating: 

 -Spectra: filters are essential when measuring OSL 

signals, as the stimulation intensity (typically in the order 

of mW) is much larger than that of the signal (typically fW). 

The 325 °C peak has a strong UV emission, and so a 7 mm U340 

filter is often used to conveniently and effectively separate 

this signal from blue or green stimulation sources. 

 -Backgrounds: OSL is usually measured using continuous 

wave (CW) modulation, and so the background stays 

approximately the same throughout the entire process. OSL 

stimulation is usually maintained until the signal reaches a 

residual level. A proportion of the residual signal is 

averaged and used as the background signal to subtract from 

the initial OSL. 

 -Normalisation: OSL normalisation is usually done via a 

test dose measurement after each OSL stimulation. This test 

dose is usually very small, especially when using single 

aliquot procedures. In light of this, preheats given to the 

test dose are usually smaller than the one given before 

reading the signal, to minimise the thermal erosion of useful 

signal. However, this means that the proportion of OSL 

components in the initial OSL signal may not be identical to 

the proportion of OSL components in the test signal. It has 

been shown that OSL components do not always sensitise at the 

same rate (Jain et al, 2003). This indicates that not 

treating the initial signal and test signal identically may 

not be suitable for all samples. 

 -Temperature of stimulation: the 110 °C peak population, 

when empty, can trap electrons stimulated in OSL experiments, 
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reducing the OSL signal. OSL measurements are usually done at 

125 °C, to prevent this phenomenon. 

 -Dose deposition: natural background dose deposition is 

at a rate slow enough that the 110 °C peak is virtually 

always empty. Charge trapped in this peak population escapes 

in ambient conditions, and is redistributed into 

recombination centres and other traps. This creates problems 

when comparing natural doses to laboratory doses, which by 

necessity must be deposited at much higher dose rates than 

the natural signal. To try to recreate the right charge 

distribution over the shallow 110 to 325 °C traps, three 

different solutions are used. One is to irradiate samples at 

an elevated temperature, in an attempt to recreate the dose 

rate to kinetic activity ratio of the natural dose. Another 

is to irradiate the samples for small intervals, with pauses 

in between partial doses to allow the 110 peak charges to 

dissipate (called dose fractionation). The third is to give 

the sample a preheat (Smith et al, 1986) (usually at 220 °C 

(Smith et al, 1986), 260 °C (Li et al, 1999), or 280 °C 

(Murray and Roberts, 1998)) after irradiation, to stimulate 

the electron populations of the shallow traps and 

redistribute them to the ground state or to more stable 

traps. Since the first method needs specialised equipment, 

and the second increases the time taken for irradiations 

significantly, the third is the preferred method in most 

protocols. Even when one of the other methods are used, a 

preheat is often still done to ensure the more stable 160, 

180 and 220 °C traps are empty, to allow for elevated 

temperature OSL measurements. 

 

THERMALLY TRANSFERED OPTICALLY STIMULATED LUMINESCENCE 

 

Thermal transfer is a phenomenon in which charge is 

transferred from one trap to another at an elevated 

temperature. This is a disadvantage for the preheat technique 

mentioned above, as the elevated temperature transfers charge 

into the 325 °C trap population, among others. This can be 

shown as after a preheat and illumination to empty all 

shallow traps, a preheat will still transfer charge into the 

principle OSL trap population (see figure 2.5). This extra 

signal is called thermally transferred optically stimulated 

luminescence, or TT-OSL. As the TT-OSL signal is quite small, 

methods of correcting for the signal are usually not carried 

out unless the sample is very young (Wintle and Murray, 

2000). For young samples, various correcting techniques have 

been developed (Rhodes and Bailey, 1997; Li and Li, 2006).  
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Figure 2.5: A) An example of two OSL stimulations of the same 

sample, with a 260 °C preheat in between. B) A closer view of 

the difference between the result before and after the 

preheat. After the preheat more signal is seen than directly 

before. 

 

Wang et al (2006b) found that TT-OSL has a dose dependence, 

and saturates at much higher doses than OSL. TT-OSL was 

therefore suggested as a potential dating signal for use in 

sediments older than can be dated by OSL. 

 

-TT-OSL origins and use for dating- 

 

The thermally-transferred signal can be said to consist of 

two components, a highly dose dependent component (called 

ReOSL), and a less dose dependent signal (called BT-OSL). BT-

OSL was originally thought to be dose independent, but 

subsequent experiments indicated it has a dose dependence 

(Porat et al, 2009 and Kim et al, 2009). 

 

A note on terminology: although the terms "ReOSL" and "BT-

OSL" assume that the signals are caused by the double and 

single transfer mechanisms (see below) respectively, they are 

still used in the literature to refer to the two TT-OSL 

signals despite changes in thought about the signals' origin. 

A more general set of terms for the signals would be "dose 

dependent" (DD) and "dose independent" (DI), and it is these 

I will be using for the remainder of this thesis. ("Less dose 

dependent" may be a more accurate description than "dose 

independent", but I have chosen "dose independent" for the 

sake of brevity.) 

 

 

The dose dependent component of the thermally-transferred 

signal was originally thought to be caused by recuperation of 

the original signal (Wang et al, 2006b). Once stimulated by 
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light, the electrons can either fall back down to the ground 

state, down to a recombination centre, or down to its own or 

another type of trap. Recuperation is a phenomenon in which 

excited electrons fall back into another trap population, and 

are then transferred back into their original metastable 

state by thermal stimulation (Aitken and Smith, 1988). This 

was called the double transfer mechanism, as the charge was 

moved two times: once from the OSL trap population to a 

separate trap population, and then back again. 

 

It was thought that the OSL signal in quartz was not being 

saturated by a lack of metastable electron trapping states, 

but rather by a lack of recombination centres. TT-OSL signals 

are much smaller than the original OSL signals. In the double 

transfer case, this means it is only a small proportion of 

the original OSL trap charge, and due to the smaller amount 

of charge, saturation by lack of recombination centres would 

not take place. 

 

The dose independent signal, by contrast, was thought to come 

from unbleachable traps. As this signal came directly from a 

deeper trap, this process was called the basic transfer or 

single transfer mechanism. 

 

After further study, it was thought that the dose dependent 

signal is also produced by a single transfer mechanism (Li & 

Li, 2006). Experiments and simulations have suggested that 

the DD component and DI component are related to the traps 

that peak at 290 and 325 °C respectively when viewed via TL 

at 0.2 degrees per second (Adamiec et al, 2010). It was 

suggested in 2011 that the highly dose dependent part of the 

TT-OSL signal is produced by both the single and double 

transfer mechanisms, the double transfer mechanism 

("recuperation") making up around 10% of the TT-OSL signal 

(Shen et al, 2011). 

 

The origin of the TT-OSL signal dictates its suitability for 

luminescence dating, and changes in thought about its origin 

must necessitate a re-evaluation of its usefulness for 

dating. In the first case, the dose dependent TT-OSL (DD-TT-

OSL) originated from the same trap as the OSL signal, and 

thus had the same bleachability and stability. New thoughts 

on the origin of the TT-OSL consider that the DD-TT-OSL 

signal may come instead from the less bleachable TL traps, 

thus limiting the cases in which the procedure is applicable 

to dating. This also raises the question as to whether TT-

OSL, if only originating from metastable states easily 
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measured in TL, is any more accurate as a dating technique 

than measuring the TL directly. While TT-OSL measures signals 

sampled from a selection of two, three or more traps, TL is 

able to resolve each trap emission separately, and can select 

the best peak or peaks to use considering the bleaching 

scenario and saturation prospects of each individual sample. 

Whether TT-OSL dating has any advantages over TL for dating 

very old sediments is not immediately clear. This question is 

one I hope to answer in this project. 

 

-Reading TT-OSL signals and comparisons with OSL signals- 

 

As the TT-OSL signal is much smaller than the OSL signal, to 

measure TT-OSL the OSL signal must first be removed, usually 

by the same optical stimulation used for OSL and TT-OSL 

measurements. In some samples this takes a long time; in 

tests using 7 mm aliquots of south-east of South Australia 

quartz, the curve only became approximately linear after 200 

seconds of illumination with blue diodes, and continued to 

bleach after half an hour (see chapter 6). However, after the 

first minute of illumination, the gradient of the exponential 

curve becomes low enough that over the time taken to read the 

TT-OSL signal it is approximately constant, and so the value 

of the light sum at the end of the OSL can be subtracted from 

the TT-OSL signal to get rid of any residual OSL signal. 

 

After the OSL signal has been sufficiently bleached, a 

preheat to stimulate TT-OSL is given to the sample. The TT-

OSL signal is then stimulated in the same way as the usual 

OSL signal. The signal is calibrated by the sample's response 

to a small test dose. After a preheat to 300 ºC in order to 

empty the traps responsible for the DD-TT-OSL signal, the 

dose-independent TT-OSL (DI-TT-OSL) is measured and 

calibrated. Each dose-dependent TT-OSL measurement is 

calculated by the following equation: 

 

             
(                          )

(                                               )
  

   
(                             )

(                                               )
  

 

 

Creating a calibrated DD-TT-OSL dose point requires three to 

four extra measurements than an OSL measurement. This, in 

addition to TT-OSL's small signal strength means that the 

errors in a DD-TT-OSL measurement will in general be larger 

than the errors of an OSL measurement. It is in the range 
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where OSL signals are beginning to saturate and TT-OSL 

signals still have a relatively linear relationship to dose 

that TT-OSL equivalent dose results will begin to have 

smaller errors than their OSL equivalents, even though the 

individual data points will still have larger errors. As 

quartz OSL signals start to saturate at around 150 Gy, 

comparison tests between dose equivalents gained from the two 

procedures will have to include tests on samples with natural 

dose exposures well above this range. 

 

-TT-OSL protocols- 

 

 Basic TT-OSL protocol 

Order Step 

1 Preheat 

2 OSL measurement 

3 Preheat to stimulate TT-OSL 

4 TT-OSL measurement 

5 Test dose 

6 Preheat 

7 OSL measurement of test dose 

8 Preheat to stimulate TT-OSL 

9 TT-OSL measurement of test dose 

10 Annealing (high-temperature 

preheat) 

11 OSL measurement 

12 Preheat to stimulate DI-TT-OSL 

13 DI-TT-OSL measurement 

14 Test dose 

15 Preheat 

16 OSL measurement of test dose 

17 Preheat to stimulate TT-OSL 

18 TT-OSL measurement of test dose 

Table 2.1: The basic protocol used to measure TT-OSL signals 

in quartz. 

 

Protocols for measuring TT-OSL generally start with steps 1-7 

from the table above. While most protocols measure the OSL 

response to the test dose, some protocols (such as the one 

used by Stevens et al, 2009) measure the TT-OSL response to 

the test dose, rather than just the OSL response, including 

steps 8-9 after step seven. The test dose is made to measure 

the sensitivity of the aliquot. Measuring the OSL response to 

the test dose assumes that the sensitivity of all the traps 

the TT-OSL samples are always in the same proportion to the 

OSL trap. Measuring the TT-OSL response to the test dose 
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assumes that steps 1-4 above do not create a sensitivity 

change large enough that the sensitivity in the first cycle 

cannot be recreated from measuring the sensitivity of the 

second cycle. While measuring the sensitivity of a 

measurement by repeating the same type of measurement would 

be the ideal, the low signals of TT-OSL stimulations and the 

small test doses given mean that using the TT-OSL signal for 

the test dose may give less accurate results than the OSL 

signal, which would have much better counting statistics and 

smaller errors. 

 

Many protocols follow the first seven to nine steps with a 

measurement of the dose independent (DI) TT-OSL signal (shown 

in steps 10-18 of Table 1.1), though some simplified 

protocols such as that of Porat et al (2009) leave out this 

part. This part of the protocol assumes that the DI-TT-OSL is 

completely dose independent, and so the test dose in the 

first step does not increase the signal. As stated 

previously, the DI-TT-OSL has been shown to have a small dose 

dependence. Whether this dose dependence and the test dose 

are both large enough to significantly change the DI-TT-OSL 

light sum is uncertain. As the quartz metastable states 

relevant to this procedure may sensitise with dose exposure, 

this uncertainty highlights the need for small test doses. 

 

As the DI-TT-OSL signal is in fact slightly dose dependent 

(Kim et al, 2009), it can also be used to find the natural 

dose of the signal. Jacobs et al (2011) compared DD-TT-OSL 

and DI-TT-OSL equivalent doses, and found that both gave 

similar results in most cases. As it is suggested that the 

DD-TT-OSL signal comes from a trap population with a smaller 

lifetime than DI-TT-OSL, it was suggested that DI-TT-OSL be 

used as a check on the suitability of DD-TT-OSL signals for 

dating. If the DD-TT-OSL and DI-TT-OSL signals give the same 

equivalent dose, it can be assumed that the sample was both 

adequately bleached at deposition, and that the lifetime of 

the DD-TT-OSL trap population is suitable for dating the 

sample. 

 

In 2006, Wang et al found that an annealing temperature of 

300 °C got rid of any dose dependent aspects of the TT-OSL 

signal. This temperature is commonly used in TT-OSL 

protocols, though the annealing temperature required to 

measure DI-TT-OSL may change with each sample. The annealing 

step of the protocol assumes that the dose independent part 

of the signal is much more thermally stable than the dose 

dependent part. This may not be the case if part of the dose 
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dependent signal comes from double transferred OSL as 

suggested by Shen et al (2011). If the hypothesis of Wang et 

al (2006b) that the OSL signal saturates because of a lack of 

recombination centres is wrong, double transferred OSL will 

be dose independent for large doses. If the dose dependent 

TT-OSL signal comes from high-temperature TL peaks, the 325 

°C peak component of the DI-TT-OSL will be less thermally 

stable than the DD-TT-OSL component. 

 

Wang et al (2007) performed some experiments on the 

suitability of different test doses, and for their samples 

were able to most closely reproduce specific doses when using 

a test dose of approximately 10% of the known or estimated 

dose. Shen et al (2011) suggest that around 10% of the TT-OSL 

signal is due to the double-transfer process. If the OSL 

signal is saturated, and the test dose in step five 

contributes to the less-dose-dependent signal measured in 

step 13, the results may be artificially corrected during 

this process. Though the artificial correction would be 

small, it may be possible to see if it occurs by observing 

results from samples with unsaturated and saturated OSL trap 

populations, and observing results from 0-dose (modern) 

samples. In this scenario, results from samples with 

unsaturated OSL trap populations would give overestimates of 

the age, and modern samples would have higher than expected 

results for the dose. Results for samples with trap 

populations saturated in OSL would be more accurate. 

 

During data analysis, the DI-TT-OSL signal is subtracted from 

the full TT-OSL signal, taking into account the sensitivity 

changes between the two results (calculated from the test 

dose measurements).  

 

Preheat steps before OSL, TT-OSL, and DI-TT-OSL measurements 

are usually done at 260 °C (as in the protocols of Wang et al 

(2007), Porat et al (2009), Tsukamoto et al (2008), Pagonis 

et al (2009), and Adamiec et al (2010)); or 280 °C (as in 

Burbidge et al (2011) and Jacobs et al (2011)). Burbidge et 

al (2011) noted that higher preheats gave rise to sharper 

dose dependency curves, and reduced the slower components of 

the signal more than the faster ones. Preheats before test 

doses were generally done at 220 °C. 

 

For multiple-aliquot protocols, which use a separate aliquot 

for each cycle in order to reduce the impact of the quartz 

sensitivity changes after heating, the cycle stops here. For 

single-aliquot protocols, a "hot wash" in order to reset the 
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traps is undertaken as the last step of a cycle. The 

temperature and duration of the hot wash, and whether or not 

optical stimulation is included, varies widely between 

protocols. The temperature varies between 280 °C (Tsukamoto 

et al, 2008) and 350 °C (Adamiec et al, 2010). The duration 

varies between 100 seconds (Tsukamoto et al, 2008; Porat et 

al, 2009) and 400 seconds (Stevens et al, 2009). 

 

 

-Comparing TT-OSL ages to other dating methods- 

 

Ages obtained from sediment layers also dated with other 

techniques have had varied comparative results. The first, by 

Wang et al (2006b) attempted to date a number of different 

Chinese loess samples, whose approximate age was determined 

from the difference in magnetic susceptibility in glacial and 

interglacial samples. Their TT-OSL age overestimated a 

comparison OSL age for the Holocene sample, but for samples 

from the last glacial/interglacial period (15-130 ka) their 

results were in accord. TT-OSL results from the BM boundary 

sample appeared reasonable, but no other numerical ages 

existed for comparison. 

 

Many studies have found TT-OSL compares favourably with other 

dating methods. Nian et al (2009) compared TT-OSL and various 

OSL results from a lakebed sample from Xychang, China. The 

TT-OSL results lay between those of well-tested OSL methods 

and an OSL method whose accuracy was in question. Kim et al 

(2010) compared optical and TT-OSL ages of various stratified 

layers of possible windblown soil and lakebed origins, and 

found that TT-OSL ages were in stratigraphic order, while 

their optical ages were not. In 2011, TT-OSL and optical ages 

were obtained for the sediment of a palaeolake from Oman, and 

agreed with each other within errors (Rosenberg et al, 2011). 

Sun et al (2013) compared TL and TT-OSL ages of a middle 

Pleistocene hominin site in Luonan Basin in Central China, 

and found the ages of both dating methods were in 

stratographic order and agreed with each other. Arnold et al 

(2013) compared TT-OSL and OSL dates for the Hotel California 

middle Paleolithic site in Spain, and found the ages were in 

good agreement, especially using single grain SAR protocols 

for both techniques. Pickering et al (2013) dated sea caves 

of around 1 million years, and found TT-OSL and U-Pb ages to 
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agree. Ryb et al (2013) dated with OSL and TT-OSL methods 

eroded hilltops, and ages compared favourably. 

 

However, not all TT-OSL studies have had such agreeable 

results. Thiel et al (2012) compared TT-OSL ages to OSL ages 

and IRSL ages of raised costal-marine terraces. They gained 

mixed results for the TT-OSL OSL comparisons: two agreed with 

each other, but one TT-OSL age overestimated and one 

underestimated the OSL results. Of the older IRSL dated 

samples, two of three TT-OSL ages agreed with the IRSL ages. 

Athanassas and Zacharias (2010) compared OSL and TT-OSL 

results of marine sediments, and found a negative systematic 

trend when comparing TT-OSL ages to ones gained by OSL. It 

was not known whether the TT-OSL or optical ages were more 

accurate. Schmidt et al (2011) compared OSL, IRSL and TT-OSL 

ages for loess records from the late middle and upper 

Pleistocene. While OSL and IRSL results generally agreed with 

each other, TT-OSL ages overestimated the ages when compared 

with the other two methods. Brown and Forman (2012) studied 

the TT-OSL of loess deposited in the Missouri and Mississippi 

river valleys. Younger samples had TT-OSL ages that matched 

with previously publised IRSL and TL results, but TT-OSL 

underestimated the oldest sample. 

 

The results seem to suggest that TT-OSL ages can be accurate 

in situations where optical dating fails (e.g. Kim et al 

(2010)). The results of Nian et al (2009) and Athanassas and 

Zacharias (2010), however, indicate a potential systematic 

trend away from optical ages. In these cases, whether the 

optical ages or the TT-OSL ages were more accurate is not 

known, as there were no known independent ages calculated for 

these sites. 

 

-The importance of dating samples with an independent age 

control- 

 

Tests of TT-OSL results have generally taken one of two 

forms: testing the protocol's dose recovery on a known 

experimental dose, or comparing it to luminescence ages of 

natural samples. Using experimental doses allows people to 

view any systematic error trend, but does not account for any 

changes or difficulties in comparing a natural dose to a set 

of experimental doses. Using a natural dose more completely 
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shows the behaviour of results from a natural system, but 

when the age of the sample is uncertain, the validity of any 

TT-OSL result is unknown. In their review of TT-OSL, Duller 

and Wintle (2012) indicate that the reliability of TT-OSL 

sediment dating is still undetermined, and could be 

demonstrated by using samples with an independent age 

control. 

 

 

THE SOUTH-EAST OF SOUTH AUSTRALIA STRANDED DUNE SEQUENCE 

 

The south-east of South Australia stranded dune sequence is a 

set of parallel, modern to Pliocene-age stranded dunes many 

kilometres in length, representing changes in the position of 

the coast. The oldest inland ancient coast lies between 

Renmark and Loxton. The dunes were formed by a slow tectonic 

uplift stranding series of former coastal beaches pertaining 

to various sea level stands of the Pleistocene glacial/inter-

glacial cycle (see fig 2.6). The highest uplift from sea 

level was approximately 200 metres (Sprigg, 1979). 

 

The dunes can be grouped into two sub-sequences: the older 

dunes, made of sandstone, free of shelly matter, and 

extensively weathered (Sprigg, 1979); and the younger set, 

from 0-800 ka, positioned between Robe and Naracoorte (see 

fig 2.7) (Twidale and Bourne, 2010). This younger subset 

consists almost entirely of calcium carbonate (50-95 %) and 

quartz (Huntley et al, 1993). After formation, most of these 

dunes developed a calcrete cap, which protected them from 

erosion. This has preserved the dunes until modern times 

(Sprigg, 1979). It is this younger subset of dunes which is 

of interest in this thesis, and from now on mention of the 

sequence will only refer to this subset. 
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A)

B)

C) 

Figure 2.6: A diagram showing how dunes can be sequentially 

stranded and formed by a combination of tectonic uplift and 

oscillating sea levels. The red 'X' shows one point on the 

land (slowly rising due to tectonic uplift), and the red 

dotted line shows the initial sea level. A) shows an initial 

sequence, with the sand dune being formed near the sea. B) 
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shows how rising sea levels reform sand dunes further up the 

beach, and C) shows how rising land and falling sea levels 

strand sand dunes higher than the current forming sand dune. 

 

 

 

 
Figure 2.7: A map of the south-east of South Australia. 

Modern and stranded dunes are coloured black. Map details 

from Drexel and Preiss (1995). 

 

In addition to the rising land, cyclic sea level changes 

created the formation of distinct dune ridges approximately 

10 km apart (Huntley et al 1993). When in development, these 

were large, lagoon-backed wind-blown dunes, similar in form 

to the modern-day Coorong. Although these sea level changes 

mean that some of the dunes were partially reworked and have 

layers of development of differing age, such as the Woakwine 

Range (Sprigg 1979), these layers are relatively distinct, 

and many dunes are of approximately one particular age. 
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The calcium carbonate of the dunes has been formed mostly 

from marine shells, and shelly material is still found in 

many dunes (Blackburn et al, 1965). The quartz of the dunes 

may come from previous sea beds exposed by times of low sea 

level, though the ultimate formation of the dunes is thought 

to be at the high sea level part of the sea level cycle. In 

this scenario, previously formed dunes were reworked or 

destroyed by the raised sea (Blackburn et al, 1965), creating 

the set of distinct ridges seen today. A great deal of the 

sand deposits in the region are carried from inland by the 

Murray River, which is thought to have been more active in 

sediment transportation in the past (Sprigg, 1979). The 

source of this sand is primarily desert dunes. A fraction of 

the quartz of older dunes may have come from streams 

originating in the Mount Gambier region (Blackburn et al, 

1965), providing younger, volcanic quartz. While the origin 

of the quartz for each dune is unknown, it is likely that 

fractions of the quartz in each dune are of varying origin, 

age and history. 

 

The quartz of the dunes is suitable for luminescence dating. 

The OSL of a great deal of the quartz of the dunes is very 

sensitive to small doses, giving counts in the order of tens 

of thousands for doses less than 10 Gy. As the dune sands 

were wind-blown, it is likely that they were exposed to a 

great deal of sunlight, and were therefore adequately reset 

before burial. Due to the formation of a calcrete cap over 

the top of the dunes, weathering and re-exposure are 

unlikely. Bioturbation of the dunes is not very significant. 

A great deal of the dunes have large deposits of the same 

sample age, and before the development of topsoil the dunes 

would not have supported a very large component of burrowing 

life. Although the region has seen the introduction of 

rabbits, large-scale burrowing has been recent enough that 

any turbation of this kind is obvious. Solution pipes can be 

seen in the area, with a maximum depth of seven to eight 

metres (Blackburn et al, 1965). However, these pipes are 

distinct, perpendicular, do not branch, and can easily be 

avoided when collecting samples. 

 

The dunes have been dated a number of times by independent 

dating methods. They have been dated by modelling (Huntley et 

al, 1993a), oxygen-isotopes (Schwebel, 1983 and 1984; 

Belperio and Cann, 1990), TL (Huntley et al, 1985 and 1994; 

Huntley and Prescott, 2001), OSL (Banerjee et al, 2003), OSL 

inclusions (Huntley et al, 1993b), and at Naracoorte by 
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magnetic reversal (Idnurm and Cook, 1980). The ages agree 

with each other within a few ka, though there has been some 

trouble dating the Naracoorte samples. It should be noted 

that the model and oxygen isotope date the dunes from their 

first formation, while TL and OSL methods date from the last 

burial of the sediments. As the dunes were windblown and were 

possibly reworked before the formation of their calcrete 

caps, TL and optical ages are expected to be slightly younger 

than oxygen isotope and model ages. 

 

Due to the extensive, independent dating of the dunes and the 

dunes' distinct ages, the south-east of South Australia 

stranded dune sequence has been proposed as a quartz 

thermoluminescence test sequence (Huntley et al, 1985), and 

by extension a test sequence for other luminescence methods. 

The brightness of the OSL of the grains makes it a useful 

test sequence for TT-OSL, due to the decreased light output 

of this method. While the maximum natural background dose of 

the sequence has been calculated to be approximately 455 Gy, 

much lower than the kGy that TT-OSL is thought to be able to 

date, the sequence provides a test of TT-OSL against TL and 

ages found independently from luminescence techniques, and 

through the range at which OSL begins to become unreliable. 
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----------------- 

03-EQUIPMENT USED 

----------------- 

 

Various machines and equipment were used for the experiments 

in this thesis. Below are listed their specifications, and to 

what purposes they were put. 

 

-Risø TL/OSL DA-20- 

 

This machine is an automated luminescence measuring device, 

with the ability to run series of programmable protocols. It 

has a computer-controlled β irradiator, a heating plate, and 

blue and IR diodes for stimulation. The automation of the 

luminescence protocols means that they can be followed with 

greater precision, and allows long protocols to be run 

continuously. Two of these machines were used, one for 

aliquot measurements, and the other for single grain (or 

small aliquots in single grain disc) measurements (Bøtter-

Jensen, 1997; Bøtter-Jensen et al, 2000). 

 

-Risø TL/OSL DA-8- 

 

An earlier version of the Risø automated TL and OSL reader. 

This machine was only used for initial TT-OSL experiments. It 

uses a green lamp for optical stimulation, which requires a 

warm-up time before each use. In addition, the illumination 

is controlled by an electro-mechanical shutter, and is of 

lower intensity than the DA-20 model.  

 

-Single grain reader- 

 

The single grain reader module is an attachment to the Risø 

TL/OSL DA-20. Grains are placed in depressions on specialised 

discs, and stimulated individually with a green 532 nm laser, 

which has a maximum energy fluence rate at the sample of 50 

W/cm^2. Due to the smaller signals gained and the power of 

the laser, OSL measurements for each grain may only take 

between 1 and 2 seconds before background levels are reached 

(Bøtter-Jensen et al, 2000). 

 

-Filters- 

 

In all experiments with stimulation by a blue diode or a 

green laser, a 7 mm Hoya U-340 filter was used, which 

transmits wavelengths between 250 and 390 nm, with a peak 

transmittance of 79.9 % at 340 nm. In experiments with IR 
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stimulation, a 3 mm Schott BG-39 filter was used, which 

transmits wavelengths between 310 and 810 nm, peaking at a 

97% internal transmittance at 500 nm. A Corning 7-39 filter 

was used for TL measurements, which transmits wavelengths 

from 310 to 420 nm, with a peak transmission of 57 % at 365 

nm. This filter begins to transmit light again at 685 nm, but 

the TL measurements made did not go to high enough 

temperatures that long-wavelength incandescence was a 

problem. 

 

-Photomultiplier tubes (PMTs)- 

 

The photomultiplier type used with both Risø machines is the 

bialkali EMI 9235QB, with a maximum detection efficiency in 

the range between 300 and 400 nm. 

 

The photomultiplier used for aliquot measurements was exposed 

to an LED with increasing current levels (0-35 mA). Tests 

were done with the LED far from the photomultiplier tube and 

a 20 % neutral density filter between the LED and the PMT, 

with the LED near the photomultiplier and the neutral density 

filter in place, and the LED far from the photomultiplier and 

no neutral density filter in place. From these experiments, 

it was found that the PMT response increases linearly from 60 

to 1,960,000 counts (see fig 3.1). 
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Figure 3.1: Photomultiplier response to an LED with 

increasing current. A) shows the response with low counts; B) 

shows the response up to high counts, and C) shows the 

response up to 2 million counts per second. 

 

The dark counts for the photomultiplier tube were then 

measured while increasing the high voltage of the PMT from 

500 to 1500 V. Counts vs high voltage level measurements were 

also done up to 1200 V with an LED far from the 

photomultiplier tube with and without a 20 % neutral density 

filter between the light source and the PMT (see fig 3.2). 

This was to simulate dim and bright signals. For each high 

voltage level, a calculation of (signal-dark noise)/dark 

noise was made, to find the high voltage level that maximised 

the signal to noise ratio of the PMT. For dim light, the 

signal to noise ratio plateaued at 980 V, while the bright 

light sample plateaued at 980 V. Both signal types had the 

signal-to-noise ratio begin to decrease at 1080 V. A high 

voltage level of 1050 V was used for the improved 5 mm SESA 

results (Chapter 11) and the Baldina Creek sample 

measurements (Chapter 13). 
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Figure 3.2: Signal-to-noise ratios for different High Voltage 

levels. A) uses low counts, and B) uses high counts. These 

are using the PMT used for aliquot measurements. 

 

Signal to noise ratio vs high voltage measurements were also 

taken for the photomultiplier used with single grain discs, 

by Daniele Questiaux and Don Creighton (see fig 3.3). The 

signal to noise level plateaued at 1150 V.  

 

 
Figure 3.3: Signal-to-noise ratios for different High Voltage 

levels. This graph was made using the PMT used for small 

aliquot and single grain measurements. 

 

The photomultiplier used with the Fourier Transform 

Spectrometer is a bialkali S20 EMI 9558 QB, which is a red 

sensitive photomultiplier. It has a maximum detection 

efficiency between 200 and 400 nm. 
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The photomultiplier used with the Risø TL/OSL DA-8 is an EMI 

9635 QB. The detection efficiency peaks at 200-450 nm, and 

falls below 10 % at 550 nm. 

 

-OSL stimulation- 

 

Three types of OSL stimulation were used: 

Blue diodes: 470 nm wavelength light with a maximum power of 

80 mW.cm
-2
 

IR diodes: 870 nm wavelength light with a maximum power of 

145 mW.cm
-2
. 

Green laser: 532nm 10 mW ND:YVO4 laser, used for single grain 

measurements. 

 

Note that unless otherwise stated, stimulations were done at 

90% power. 

 

-Fourier Transform Spectrometer- 

 

The Fourier Transform Spectrometer (FTS) is a custom-built 

piece of laboratory equipment initially designed and built by 

J R Prescott and Hans Jensen as part of H Jensen's PhD thesis 

(Jensen, 1982), and modified over the PhD projects of Riaz 

Akber (1986) and Phil Fox (1990). It is situated at the 

University of Adelaide, and is used for "three-dimensional" 

studies of thermoluminescence responses (Prescott et al, 

1988). In essence, the FTS is a thermoluminescence reader 

with an interferometer situated between the sample and the 

photomultiplier. The moveable mirror of the interferometer is 

moved by a piezoelectric stack. The mirror is moved back and 

forth while the sample is heated, creating an interferogram. 

A "three-dimensional" response of light intensity vs photon 

energy vs temperature is created. The FTS has a wavelength 

response range from 250 to 740 nm with a resolution of 20 nm 

at 550 nm. 

 

For further specifications, refer to Jensen H E (1982), Akber 

R A (1986), and Fox P J (1990) in the reference list. 

 

-Notes:- 

 

-Specifications for stimulation power and wavelengths and the 

EMI bialkali 9235QA photomultiplier detection efficiencies 

were gained from the Risø DTU website (Risø DTU 2011). 

-Diode powers stated are maximum power measured from the 

sample position by the Risø laboratory.  
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------------------- 

04-THE SESA SAMPLES 

------------------- 

 

Seven samples from the south-east of South Australia were 

used in experiments documented in this thesis. Six were 

collected previously by D. J. Huntley and J. R. Prescott. 

These samples were stored without processing in light-proof 

galvanised iron paint tins. Processed fractions of these 

samples were used previously for TL measurements of the 

dunes. A table of sample names, and previously-found ages and 

natural doses is shown below. 

 

The eighth sample (LBST(P)) was used as a modern-age 

equivalent to the dunes, and collected from Long Beach, near 

Robe, in late February 2013. Grains were taken by collecting 

sand blown onto emplaced collecting surfaces by the wind. In 

this way, only grains that have been through the wind-blown 

bleaching process were collected. 

 

The TL and OSL ages in the above table were gained using 

quartz grains, rather than other minerals. They are therefore 

a good reference for potential TT-OSL ages. As OSL and TL 

ages may be slightly younger than oxygen isotope and magnetic 

reversal ages gained from the same dunes, in this thesis TT-

OSL ages are generally compared to the OSL and TL ages where 

possible. Although these ages generally match those gained by 

non-luminescence means, they are sometimes slightly younger, 

possibly due to the dunes being reworked before being 

permanently stranded. 

 

-Sample processing- 

 

All samples collected were mostly composed of quartz and 

calcium carbonate. The calcium carbonate in older samples was 

the matrix in which the quartz grains were held. In some 

younger samples calcium carbonate was contained in some 

identifiable shelly matter as well. In the modern-age sample, 

the calcium carbonate was present as shell grit. During 

processing the calcium carbonate was dissolved in HCl acid. 

Any clay-like (fine) material was taken out in suspension 

following dispersion in an ultrasonic bath with sodium 

hydroxide. The amount of such fine material in all samples 

was minimal. 
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Sample Range/ 

place of 

collection 

De (Gy) Age (ka) Source 

LBST(P) Long Beach  0 By definition 

RB1s/2 Robe I/II    

  0.4 ± 0.3 0.8 ± 0.6 Huntley et al 

1993b—quartz 

inclusions 

WK4 Woakwine 1 65 ± 1.9 120 ± 8.7 Banerjee et al 2003 

  69 ± 2 118 ± 4 Huntley et al 1994 

  73 ± 3 132 ± 6 Huntley et al 1993a 

  64 ± 6 114 ± 16 Huntley et al 

1993b—quartz 

inclusions 

  47 ± 7 116 ± 16 Huntley et al 

1993b—quartz 

inclusions 

   120 Belperio and Cann 

1990 

   120 Schwebel 1983 

ED1Sa/1 East Dairy 128 ± 16 292 ± 25 Huntley and 

Prescott 2001 

   309 Schwebel 1983 

   200 Belperio and Cann 

1990 

BA2S/2 Baker 209 ± 16 456 ± 37 Huntley et al 1993a 

  187 ± 16 390 ± 40 Huntley et al 

1993b—quartz 

inclusions 

   500 Belperio and Cann 

1990 

HA3S/2 Harper 282 ± 20 585 ± 44 Huntley et al 1993a 

   650 Belperio and Cann 

1990 

NE4S East 

Naracoorte 

455 ± 44 720 ± 70 Huntley et al 1993a 

   >860 Belperio and Cann 

1990 

   950 Huntley et al 

1994b—oxygen 

isotope 

   >780 Huntley et al 

1994b—Magnetic 

reversal 
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Table 4.1: A table of the samples used (their laboratory 

codes and their place of origin) and a list of ages and 

equivalent doses previously found for them. Note that the 

Robe sample may be from the Robe 1 or Robe 2 range, but the 

specific range was not identified during sampling. 

 

Samples also contained a small but significant proportion of 

feldspars and heavy grains. These were separated from the 

quartz by density separations at 2.58 and 2.67 g/cc. The 

first density separation floats potassium feldspars, while 

quartz sinks. The second density separation floats quartz and 

some feldspars, sinking heavier grains. 

 

After density separation, samples were etched with 40% HF 

acid for forty minutes. This was done for two main reasons: 

to dissolve any remaining feldspar in the sample, and to etch 

away the outer 6-8 μm layer of the quartz grains. This outer 

layer of quartz has been subjected to typically 90 % of the α 

radiation dose received by the grains, and removing this 

layer reduces the complexity of dosimetry measurements and 

calculations. After etching, samples are rinsed in HCl acid 

to remove fluoride components created in the etching process, 

then rinsed in distilled water and dried. 

 

When being readied for measurement for luminescence, samples 

were subdivided into separate aliquots in two different ways. 

One, used for small aliquot or single grain measurements, 

involves placing grains in depressions on an anodised 

aluminium disc. The other is used for larger aliquots, 

between one and seven mm in diameter. Stainless steel discs 

are placed under a mask of the desired aliquot size, and 

sprayed with silicone spray. The discs are then placed on a 

bed of grains, silicone layer-side-down. Loose grains are 

shaken off the disc. The resulting aliquot is a monolayer of 

grains, covering the same diameter as the aperture of the 

mask. 

 

-Quartz TL analysis- 

 

While the TL of many of the samples has been studied 

previously (Huntley et al, 1985; Huntley et al, 1993; Huntley 

et al, 1994; and Huntley and Prescott, 2001), it is 

instructive to undertake a quick comparison of their 

characteristics, and to directly compare TL output from each 

of the samples and the newly collected modern sample (Long 

Beach). The thermoluminescence characteristics of the etched 

quartz grains were studied from 0 to 450 °C (see fig 4.1). 
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Six 5 mm aliquots of 212-250 µm diameter grains were created 

for the Long Beach, Robe, Woakwine, East Dairy, Baker, 

Harper, and Naracoorte East samples. Three aliquots from each 

sample were given a dose close to the expected natural dose, 

while the others were untouched. The thermoluminescence of 

the aliquots was measured using a Risø TL/OSL DA-20 with a 7-

59 filter, at 5 K/s. After the initial run, the background 

was taken; then each of the aliquots given a natural dose 

near the expected value for that sample, and the TL of the 

sample was measured again. Values were analysed by 

subtracting the background measurement from the natural or 

irradiated measurement, and dividing by the weight of the 

aliquot to obtain a value for counts per milligram. 

 

 
Figure 4.1: Natural thermoluminescence of the SESA samples. 

 

The natural signals appear to increase with age, and the 

average total counts over the three aliquots for each sample 

increase with increasing age. The modern sample, LBST(P), had 

an average total photon count of around 130,000 per mg. The 

peak in which these counts come from is quite deep, peaking 

at around 365 °C for two aliquots, and 400 °C for another. 
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With most younger samples, it is obvious that the photon 

counts gained are from the addition of two or more peaks, the 

maximum counts between 300 and 400 °C. The Naracoorte East 

sample counts peak earlier than the rest, at around 325 °C. 

 

 
Figure 4.2: A) Long Beach and B) Naracoorte East 

thermoluminescence using samples that were irradiated after 

measuring the natural TL. Note that the irradiation given to 

the Long Beach sample was much smaller than that given to the 

Naracoorte East sample. 

 

The Long Beach aliquots that were irradiated after the 

natural had been measured differed very significantly in 

photon counts for each aliquot (see fig 4.2), especially for 

the shallow peaks. While the shallow peaks thermally fade 

quickly due to their short lifetimes (fading to background 

(undetected) levels in the order of hours or days), the 

aliquots were irradiated and measured as part of an automated 

sequence, and the delay between the irradiation and 

measurement was approximately the same for each aliquot. Two 

had large peaks at approximately 120 °C; the other had a 

smaller peak at approximately 125 °C. 

 

Other samples had initial photon counts varying in peak 

position. Most initial peaks were at 110, 112, 118, 120, 126, 

and 130 °C. Other distinguishable peaks were at 240 and 315 

°C. There is a significant peak near the initial, large peak 

that is located between 150 and 180 °C. 

 

The mass of the stainless steel discs used to place each 

aliquot on can affect the results gained. The Risø TL/OSL DA-

20 measures temperature with respect to the heating plate, 

and different thicknesses of discs cause different lag times 

between the temperature of the heating plate and the 

temperature of the aliquot. Stray material on the heating 

plate or disc position can also cause temperature lags. 
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Although discs were chosen so that aliquots of the same 

sample were on discs with similar masses, and care was taken 

to clean the disc positions in the Risø machine before the 

placement of discs, this survey cannot be used to make 

specific analysis of the peak positions of the SESA samples' 

thermoluminescence structure. We can, however, make the 

following generalisations: 

 

1) The natural thermoluminescence of the SESA sample is on 

average positively dependent on the age of the sample. 

 

2) The modern (zero-age) sample has the smallest amount of 

thermoluminescence present. The peak of this 

thermoluminescence appears to be at a higher temperature than 

all the other samples. 

 

3) Irradiation of the samples causes low-temperature peaks to 

appear in all samples. 

 

The cause of number one is reasonably clear: the samples 

contain deep traps that do not saturate during the age 

sequence of samples observed. Thus the older the sample (and 

in general the greater the natural dose), the more 

thermoluminescence traps in the population are filled. Number 

three, too, can be easily explained: the low temperature 

peaks belong to shallow traps which do not have a 

sufficiently long lifetime to appear when samples are given 

natural doses at very low rates over thousands of years. 

 

As the modern sample has been extensively bleached, traps 

that would still be filled in very old samples due to their 

long lifetimes will have been depopulated, and only extremely 

hard-to-bleach trap electron populations would remain. This 

is the most likely cause for the second point. Another, less 

likely explanation is that this sample has an abundance of a 

different type of quartz, with a smaller percentage of the 

lower temperature traps. 

 

-Quartz Fourier Transform Spectrometer analysis- 

 

The emission spectra of etched and unetched quartz fractions 

for the Robe, East Dairy, Baker, Harper, and Naracoorte East 

samples were measured by the Fourier Transform Spectrometer 

(FTS), giving a thermoluminescence reading of temperature vs 

photon energy vs photon count (Prescott et al, 1988) (see fig 

4.3). Each measurement was taken from 0 to 425 °C at 5 K/s in 
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flowing nitrogen gas. Two aliquots of each fraction were 

made—one to examine the natural signal, and one to measure 

the natural signal plus a β dose of approximately 41 Gy. The 

irradiations were done the day before the measurements, so 

the shallow 110 °C peak was not present. Each aliquot had 

identifiable quartz peaks, with no extra peaks present. 

Unetched quartz samples were measured to compare with 

feldspar and etched quartz samples and to check for feldspar 

contamination. No feldspar signals were seen in either set of 

quartz samples. 

 

 

 
Figure 4.3: Fourier Transform Spectrometer results for 

natural etched quartz Naracoorte East aliquots. Results for 

other SESA samples can be found in the appendix. 

 

-Feldspar survey- 

 

Like quartz, feldspar grains, especially high-potassium 

feldspars (K-feldspars), can be used for sediment dating. 

They have some advantages over quartz, including higher 

saturation levels and brighter signals (Li and Li, 2011). 

However, feldspar signals suffer from anomalous fading, a 

phenomenon in which electrons are released from metastable 

states at a rate higher than that suggested by kinetics 

lifetime equations. It is thought that this phenomenon is due 

to quantum mechanical tunnelling effects (Wintle, 1973; 

Visocekas et al, 1976). While there are protocols such as 

post-infrared infrared stimulation (pIRIRSL) that are claimed 

to negate anomalous fading (Li and Li, 2011), the presence of 

feldspars in sediment used for quartz dating, whether as 

individual grains or as inclusions in quartz, may give 

anomalous signals or misleading results. Due to the possible 

usefulness of feldspars in long-range dating, and the 

possibility that sediment used in quartz dating may still 
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contain feldspars, a survey of feldspar presence in seven 

samples of varying ages was undertaken. 

 

Fractions of the floated feldspar (density < 2.58 g.cm
-3
), 

unetched quartz, and etched quartz were collected for the 

Robe, Baker, Harper, East Dairy, and Naracoorte East samples. 

Each fraction was observed under a microscope (e.g. figure 

4.4). The feldspar float in each sample appeared to have 

significant amounts of feldspars, the overall colour of 

grains in these samples ranging from red to orange. The 

unetched samples contained a large amount of quartz-like 

clear grains, with some orange to pink grains present as well 

(e.g. fig. 4.4, yellow circle). Many of the clear, quartz-

like grains had pink or orange veins running through them, or 

red to orange coloured inclusions (e.g. fig. 4.4, blue 

square). The etched samples were much cleaner, consisting 

almost entirely of white or clear quartz-like grains. Some of 

these contained dark inclusions. 

 

A) 
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B) 

 
C) 

 
Figure 4.4: Magnified photos of the East Dairy sample. A) 

Feldspar float; B) Unetched quartz; C) Etched quartz. Photos 

of the other samples are shown in the appendix. 

 

Experiments were done on the 15 samples to look for IRSL 

signals. Tests were performed on a Risø OSL/TL DA-20, with a 

3 mm BG39 filter in place. Samples were first exposed to IR 

stimulation at 30 °C for 500 s, in order to view and erase 

any natural IRSL. The samples were then exposed to 92 Gy of β 

radiation. After a preheat to 290 °C, the samples were 

exposed to the same IR stimulation as before (at 30 ºC for 
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500 s), then exposed to a post-IR-IR stimulation at 225 °C 

(see table 4.2). 

 

 

Step Use 

500 s 90 % IR diode 

stimulation at 30°C. 

Viewing natural IR signal 

1000 s β dose (92 Gy) Repopulating metastable 

states 

Heat to 290 °C at 5 K/s Depopulating shallow traps 

500 s 90 % IR diode 

stimulation at 30°C. 

Viewing IR signal 

500 s 90 % IR diode 

stimulation at 225°C. 

Viewing post-IR IR signal 

Table 4.2: The procedure followed when measuring IR signals 

in this thesis. 

 

The < 2.58 g/cc "K-feldspar" floats had large IR signals, 

indicating the presence of feldspars. All K-feldspar 

fractions showed significant signal, even the youngest sample 

(Robe). The heavy grain fractions (> 2.67 g/cc) had IR 

signals an order of magnitude lower than that of the light 

fractions, and apart from the East Dairy sample, unetched and 

etched samples had roughly the same signal strength. When 

normalised, K-feldspar fractions appeared to have a 

stimulation response positively correlated to age until the 

two oldest samples. The etched and unetched quartz fractions 

appeared to show no IR signal dependence on age. 

 

While there was an IRSL response from the etched quartz 

fraction, this does not necessarily mean that there is a 

thermally transferred IRSL response. Experiments to find out 

the IRSL response of the etched quartz fraction after TT-OSL 

preheats were undertaken on a Risø TL/OSL DA-20 with the same 

filters as above. After a dose of approximately 37 Gy, etched 

quartz aliquots were preheated to 260 °C for 10 s, given a 30 

s IR stimulation, preheated to 260 °C for 10 s, and given a 

20 s IR stimulation. The first stimulation gave significant 

signal, peak photon counts for the first second being between 

two and eight thousand counts for 5 mm diameter aliquots with 

approximately 3.5-5.5 mg of quartz each. After the second 

preheat, no extra signal was found, indicating that there is 

no IR TT-OSL in these aliquots. 

 

K-feldspar fractions were heated to 425 °C at 5 K/s in the 

Fourier Transform Spectrometer at the University of Adelaide 

(Prescott et al, 1988). K-feldspar fractions showed a large 
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peak at 350 °C and about 405 nm, suggesting the presence of 

microcline (see fig 4.5). 

 

 
Figure 4.5: Naracoorte East natural K-feldspar FTS results. 

See the appendix for other FTS results. 

 

It is evident that, although quartz is the predominant 

sediment grain mineral, there is a significant feldspar 

presence in the south-east of South Australian stranded dune 

sequence. The presence of a fraction of high potassium 

feldspar grains indicates that the sequence can be used as a 

test sequence for new feldspar dating protocols, such as 

post-IR IRSL (Buylaert et al, 2009). While unetched grains of 

quartz show significant amounts of feldspar inclusions, a 40 

minute etching in HF leaves clear and for the most part 

inclusion-free grains. However, the presence of an IR signal 
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in the samples of etched grains indicates there may be K-

feldspar still present, either as inclusions or as autonomous 

grains. 

 

-Pulsed OSL measurements to assess feldspar and quartz 

contributions to OSL signals- 

 

The IR tests on etched grains of quartz indicated that there 

is still feldspar present in the sample, most likely in 

inclusions. This feldspar presence is not very large in TL, 

else feldspar peaks would be seen on the FTS measurements, 

but to find out if the feldspar presence is significant in 

OSL from these grains compared to quartz, a sensitive 

comparison technique must be used, such as pulsed-OSL. 

 

Pulsed OSL is a technique in which a light source, usually 

either a laser or a diode, is turned rapidly on and off, in 

the order of micro or milliseconds. It is used to study the 

relaxation times of luminescence materials, to capture OSL 

signals in materials with large fluorescence signals, and can 

also be used to separate luminescence components of a mixed-

material sample (e.g. Denby et al, 2006 and Ankjaergaard et 

al, 2010). 

 

The separation of signals is possible as each luminescence 

mineral has a different initial response to stimulation. 

Quartz has a relatively slow build-up of signal when the 

stimulation light is first turned on, and a slow decay when 

the stimulation light is turned off. Feldspar, on the other 

hand, has fast build-up and decay times (Denby et al, 2006). 

Thus the first few milliseconds of signal after the 

stimulation light has been turned on is a feldspar-dominated 

signal, and the signal after this time contains an increasing 

quartz-OSL component. After the stimulation light has been 

turned off, the signal becomes quartz dominant. 

 

Feldspar and quartz signals have another major difference: 

feldspar traps empty relatively slowly under blue-light 

stimulation, translating to a slow decay curve under 

continuous wave OSL. Quartz OSL traps empty quite fast by 

comparison. 

 

Using these two differences in quartz and feldspar 

luminescence signals, one can devise a technique to find 

feldspar signal in a sample that is quartz-dominated (e.g. 

Denby et al, 2006 and Ankjaergaard et al, 2010). If one uses 

pulsed-OSL for a significant amount of time (several 



66 
 

seconds), the pulse response shape of a mixed quartz-feldspar 

sample will become more feldspar-like in the later pulses 

than the earlier ones, as the quartz component becomes 

depleted. 

 

To test this, samples of the < 2.58 g/cc feldspar float, 

etched quartz, and a mixture of feldspar and etched quartz 

were made into 5 mm diameter aliquots with approximately 3.5-

5.5 mg of grains in each. Aliquots were given a β radiation 

dose of approximately 11 Gy. They were then given a preheat 

to 260 °C for 10 s, and then subjected to 12 s of pulsed OSL 

at 125 °C, with a pulse-on time of 4 ms and a pulse off time 

of 5 ms. 

 

In the first few pulses, the etched quartz sample gave a 

typical quartz pulsed-OSL curve. The feldspar float results 

also looked like a quartz pulse curve in the first few 

pulses, indicating the presence of quartz in the feldspar 

float (see fig 4.6). The feldspar float pulse shapes began to 

look like feldspar curves after approximately 0.7 s. The 

feldspar-quartz mixture had a quartz-like curve in the first 

few pulses, and a feldspar-like curve at approximately three 

seconds. After the twelve seconds, both the feldspar and the 

feldspar-quartz mixtures both had definite feldspar shapes to 

their pulse curves. The etched quartz aliquots still had 

quartz-like curves after twelve seconds, but much lower 

signal intensity (see fig 4.7). 

 

From this experiment we can see that quartz signal dominates 

the blue OSL stimulated output from SESA etched quartz 

samples for at least twelve seconds of pulsed OSL measurement 

(equivalent to 5.3 s of continuous stimulation). As the OSL 

output from the sample after twelve seconds was near residual 

levels, we can say that the total feldspar input to the blue 

OSL signal is not significant. 
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Figure 4.6: Pulsed-OSL results after different lengths of 

stimulation time. Figures in the top row are the results of 

the feldspar float; the middle row the quartz and feldspar 

mix; and the third row the etched quartz. Note that after 12 



68 
 

seconds of stimulation the quartz/feldspar mix peaks before 4 

ms, while the etched quartz peaks at the end of the pulsed 

stimulation at 4 ms, indicating a slower rise in the etched 

quartz sample. 

 

 
Figure 4.7: Pulsed-OSL results averaged from pulses starting 

at 11.87 s to 12 s. Note the shape of the quartz results 

looks the same as the quartz results at zero seconds in 

Figure 2.6. 

 

-Dose rates- 

 

To find the age of the samples, dose rates must be 

calculated. Dose rates for the Woakwine, East Dairy, Baker, 

and Harper samples had been calculated previously (Huntley et 

al, 1993; Huntley et al, 1994; Huntley and Prescott, 2001). 

Dose rates for the Long Beach and Naracoorte East samples 

were calculated for the first time during this thesis. 

 

Dose given to a sample comes from three main sources: from 

cosmic rays, from radioactive material in the surrounding 

material, and from radioactive elements inside the grain 

itself. For quartz samples, the dose from within the grain is 

assumed to be near negligible unless there are inclusions of 

other minerals in the grain. Dose from radioactivity in the 

soil can be calculated using a gamma spectrometer to directly 

measure the radiation and so enable calculation of the 

radioactivity by using dose rate equations based on the 

proportion of uranium, thorium and potassium in the soil; the 

water content (water in the soil can transport away certain 

daughter products and provides a passive absorber medium to 

absorb radiation before it reaches a sample grain); and the 

density of the sample (which changes due to the sample's 
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mineral content and compactness). The calculation of 

radioactivity from the surrounding sediment is affected by 

the HF etching done when processing the sample, as it takes 

away most of the grain volume affected by external α 

radiation. The dose from cosmic rays depends on the location 

of the sample, its altitude, its density, and the mass of 

material on top of it. 

 

The Long Beach samples location was found using Google Maps 

(using the latitude and longitude finding site 

<http://itouchmap.com/latlong.html>). The water content of 

this sample was measured directly. The latitude, longitude 

and altitude of other samples were taken from the 1:50 000 

series of Australian Government topographic maps. Overburden 

measurements and the average water content for the area were 

taken from sample notes provided by J. R. Prescott and D. J. 

Huntley. Unprocessed SESA samples were sent to the company 

"Genalysis Laboratory Services Pty Ltd" 

(www.genalysis.com.au), for the uranium, thorium and 

potassium contents to be measured using XRF analysis. 

 

The cosmic ray dose was calculated using the spreadsheet 

created by J. R. Prescott and J. T. Hutton. The total dose 

was calculated using the DOS program 'AGE99' created by R. 

Grün (Grün, 2009). Variables used are shown in the tables 

below. 

 

Variables used for all 

samples 

Alpha Efficiency 0.05±0.02 

Diameter 168.5±43.5 µm 

Layer Removed 9±2 µm 

Density 1.5 g.cm
-3 

Average Water Content 5±2 % 

Table 4.3: Variables used for all samples 

  

http://itouchmap.com/latlong.html
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Table 4.4: Variables used for individual samples. 

Sample Lat.(S) Long. (E) Altitude 

(m) 

Burial 

depth 

(m) 

U (ppm) Th (ppm) K (%) 

Long Beach 37° 7' 60"  139° 47' 45" 0 0 0.92 ± 

0.07 

0.95 ± 

0.07 

0.16 

±0.007 

Robe 37° 9' 139° 44' 5 2 1.05 

±0.07 

0.82 ± 

0.06 

0.06 ± 

0.003 

Woakwine 37° 2' 139° 47' 20 0 0.92 ± 

0.07  

1.03 ± 

0.07 

0.12 ± 

0.006 

East Dairy 37° 7' 139° 59' 5 1 0.37 ± 

0.04 

0.86 

±0.06 

0.12 ± 

0.006 

Baker 38° 54' 140° 21' 25 8 0.28 ± 

0.03 

1.49 ± 

0.10 

0.19 ± 

0.008 

Harper 36° 51' 140° 32' 40 2 0.51 

0.04 

1.72 ± 

0.11 

0.09 ± 

0.005 

Naracoorte 

East 

37° 8' 140° 51' 90 2 1.4 ± 

0.09 

15.41 ± 

0.89 

0.24 ± 

0.010 



71 
 

 

Results for the samples with previously calculated dose rates 

agreed with the previous dose rates within errors. The 

Naracoorte East sample dose rate was quite large compared to 

the others, and closely matched the previously calculated 

dose rate of the sample site NE3 (calculations from the SESA 

sample notes of D J Huntley), and the sample site NE5b 

(Huntley and Prescott, 2001) which are situated in the same 

unit feature of the sampled Naracoorte East site used in this 

study. 

 

Sample Name Calculated dose 

(Gy/ka) 

Previously calculated 

dose (Gy/ka) 

Long Beach 0.64±0.04  

Robe 0.55±0.03  

Woakwine 0.61±0.04 0.582±0.007 

East Dairy 0.46±0.03 0.44±0.01 

Baker 0.47±0.02 0.450±0.008 

Harper 0.51±0.03 0.481±0.009 

Naracoorte East 1.84±0.09  

Table 4.5: Results from dose rate calculations. 
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----------------------------------- 

05-DATA ANALYSIS AND ERROR ANALYSIS 

----------------------------------- 

 

DATA ANALYSIS 

 

-How to get a dose-dependent TT-OSL data point- 

 

A dose-dependent TT-OSL (DD-TT-OSL) data point used to form 

the TT-OSL SAR growth curve is created by subtracting from 

the full TT-OSL result a measurement of the dose-independent 

TT-OSL (DI-TT-OSL) result: 

 

DD-TT-OSL = TT-OSL ‒ DI-TT-OSL 

 

As each TT-OSL and DI-TT-OSL result come from separate 

measurements, each has their background subtracted from the 

signal, and is normalised by a separate measurement. 

Therefore, the DD-TT-OSL data point calculation is as shown 

below: 

 

            
(             )    (                 )

(                           )
 

  
(                )    (                    )

(                              )
 

 

Every part of the calculation—the signal, the background, and 

the normalisation factor—can be optimised to improve the 

accuracy and precision of the final DD-TT-OSL result. A 

discussion of each part is included below. 

 

-The signal- 

 

The signal gained is in the form photon counts per chosen 

time period, or bin. In this thesis, for aliquots stimulated 

by blue diodes, the time period (or bin width) in question is 

generally 0.1 s, and for single grains or small aliquots 

stimulated by a green laser, 0.02 s. For data collected in 

bins, the bin width is the smallest fraction of time photon 

counts can be resolved to, and so generally the smallest 

useful bin width is chosen. 

 

The optically stimulated signal in quartz does not 

necessarily come from the same type of trap, and fast, 

medium, and slow components have been found that are 

mathematically separable. The slower components are thought 

to be from more optically stable, but less thermally stable 
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traps (see Bailey, 2001, where a comparison of the kinetics 

given for fast and medium OSL components shows that the 

medium component has a slightly larger energy gap between its 

metastable state and the conduction band (E value), and a 

much larger chance-to-escape rate (s value)). This means that 

the slower components are from traps with shorter lifetimes, 

which can interfere with dating measurements. In optical 

dating, generally the first fraction of the signal is used, 

to minimise the fraction of the slower components 

contributing to the result. 

 

At the same time, the precision of a result is affected by 

the amount of signal selected, the counting error of a 

measurement being the square root of the result. Thus a 

balance has to be found between the purity of the signal and 

its strength. 

 

-The background signal- 

 

The background signal is made up of all the components of the 

measurement that are not connected to the desired signal. In 

luminescence measurements, there are various different 

components of the background signal. The first is the signal 

spontaneously emitted from the photomultiplier, called the 

dark count or instrumental background. How high this signal 

is depends on the setup of the photomultiplier including its 

high voltage setting, and the temperature of the room (the 

bialkali photomultiplier tubes used in the OSL measurements 

are uncooled, and so operate at ambient temperature). Usually 

the dark count is of the order of tens of counts per second; 

in some cases up to hundreds of counts per second. 

 

A source of background signal in OSL measurements is the 

small amount of stimulation light that is reflected up to the 

photomultiplier and passes through the filters. Most filter 

setups render this portion of the background minimal, of the 

order of the PMT background or below. 

 

In TL or high temperature measurements, background noise is 

also contributed by incandescence from the sample, its holder 

(a disc or planchet), and the instrumentation. In LM TL, this 

increases as the temperature increases, and so cannot be 

simply subtracted from the signal. In this case, the 

measurement is repeated after the luminescence signal has 

been depleted, which allows one to find the response of the 

system to the measurement environment without the 

luminescence signal. 
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Background signal also originates from the sample itself. 

Slow components of quartz OSL raise the level of light seen 

in a measurement by an order of magnitude. Some OSL and TL 

materials also fluoresce or phosphoresce, raising the 

background levels under stimulation by a significant, though 

usually stable, amount. 

 

Other sources of background signal are the fluorescence or 

phosphorescence of some filters, and ambient light leaking 

into the instrumentation. In most cases these sources can be 

minimised by not exposing fluorescent filters to light before 

a measurement, and taking precautions such as lowering 

ambient light levels to darkroom conditions and covering up 

machinery that is not light-proof. 

 

In luminescence measurements, how the background is 

subtracted differs between continuous-wave (CW) and linearly 

modulated (LM) measurements. In CW measurements, the 

background signal is approximately constant. Background 

measurements are therefore found by continuing to stimulate 

the sample until the signal has depleted, leaving the 

residual background signal. In LM measurements, the 

background signal is not constant, with stimulation light 

leakage increasing in OSL measurements and incandescence 

increasing in TL measurements. The background measurement is 

therefore obtained by repeating the same measurement after 

the luminescence has been depleted. This gives the background 

signal for each point in the measurement. 

 

In TT-OSL measurements, how to measure the background signal 

is not as straightforward. There are three ways to do so: 

 

1) Using the final portion of the conventional OSL shine-down 

(fig 5.1). This background measurement has the advantage of 

subtracting any signal from remaining charge in the OSL 

traps. This background subtraction assumes that the further 

260 °C preheat to stimulate TT-OSL signal does not deplete 

the residual OSL charge, as it has already survived one 

preheat, though this may not be the case. 
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Figure 5.1: Example of where the background would be 

subtracted on a signal using the end-of-OSL background 

subtraction method. In this thesis, the signal whose 

background is being subtracted would be the first 0.1 s to 

0.5 s of signal after preheating (at 120 s in the figure). 

 

2) The TT-OSL signal near the TT-OSL measurement (fig 5.2). 

This uses the TT-OSL signal immediately after the 

measurement, before the TT-OSL signal is fully depleted. This 

can reduce the impact of medium and slow components on the 

signal, but reduces the amount of signal counted, resulting 

in larger counting errors. 
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Figure 5.2: Example of where the background would be 

subtracted on a signal using the near-TT-OSL background 

subtraction method. In this thesis, the signal whose 

background is being subtracted would be the first 0.1 s to 

0.5 s of signal after preheating (at 120 s in the figure). 

 

3) The end of the TT-OSL measurement (fig 5.3). This uses the 

amount of signal when the TT-OSL signal is depleted. It 

maximises the amount of signal used, but may include extra 

signal from medium and slow components, or remaining charge 

in the OSL trap. 
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Figure 5.3: Example of where the background would be 

subtracted using the end-of-TT-OSL background subtraction 

method. In this thesis, the signal whose background is being 

subtracted would be the first 0.1 s to 0.5 s of signal after 

preheating (at 120 s in the figure). 

 

-Normalisation- 

 

Due to differences between aliquots and sensitivity changes 

in quartz grains due to heating and irradiation, each 

measurement in a TL or OSL protocol must be normalised in 

order to be compared with other measurements in the dating 

protocol used. In multiple-aliquot protocols, this can be 

done using the weight of the aliquot (giving a value of 

signal per unit weight), or by using the aliquot's response 

to a test dose (giving a value of signal per arbitrary (test) 

dose). Single aliquot or single grain protocols use a test 

dose to monitor sensitivity changes during cycles in the 

protocol. 

 

Using the weight of a sample has long been practiced in TL 

measurements. It has the disadvantage in that it does not 

take into account varying average sensitivities of different 

aliquots, or of different traps. Normalising by weight is not 

used for OSL measurements, due to the relatively small 

aliquots used. Normalising by weight is only useful when 

using very large aliquots, where each aliquot gives the same 

statistical representation of the sample population (for 

instance, 5 mg of 90-125 μm quartz contains 3000-4000 

grains); even so, the presence of a small population of 
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"bright" grains will cause "disc-to-disc scatter". A small 

population of grains contributing to the majority of 

luminescence in a sample has been found in TL (Huntley and 

Kirkey, 1985), and in OSL (Duller et al, 2000) measurements. 

 

There are two ways of using a test dose to measure the 

sensitivity of a quartz aliquot or grain. One (Type 1) is by 

using the shallow 110 °C peak (Liritzis, 1980), a method that 

can be used for normalising both TL and OSL measurements. In 

this method, a test dose much smaller than the expected value 

is given to the aliquot. The aliquot is then heated to above 

110 °C but stopped before any useful peaks. The TL 

measurement of the 110 °C peak is used for normalisation. 

This method has the advantage in that it measures the 

sensitivity of the aliquot before a measurement is made, 

which itself changes the sensitivity of the aliquot. However, 

this method does not directly measure the sensitivity of the 

trap population that is being measured, which can change in 

sensitivity at a different rate than the 110 °C peak. Using a 

test dose before the natural measurement can also interfere 

with the measurement of very young samples, and so is 

generally only used for normalising old samples. 

 

The other way of normalising using a test dose (Type 2) can 

only be used for OSL measurements, and involves measuring a 

test dose response after the measurement (Strickertsson and 

Murray, 1999). In this method, the measurement is made again 

after a small test dose. This has the advantage that it is 

measuring the same signal for normalisation as the one being 

normalised. However, measuring the sensitivity of the grain 

or aliquot after the measurement neglects to take into 

account any sensitivity changes occurring due to the 

measurement itself. 

 

While test doses in Type 2 normalisation are much smaller 

than expected doses to decrease sensitivity changes, for 

faint samples this can create resolvability issues. Often a 

smaller preheat is used to maximise the amount of signal 

gained. This however means that the normalising signal is not 

the same signal as the one measured, and different optically 

stimulated components with differing rates of change of 

sensitivity may be present in different proportions to the 

signal being normalised. 

 

TT-OSL measurements are generally normalised using the Type 2 

test dose method. However, protocols differ as to whether one 

uses the OSL or TT-OSL response to the test dose for 
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normalisation. The OSL normalisation measurement has the 

advantage in that it provides a much higher photon count than 

the TT-OSL measurement: as the proportion of TT-OSL to OSL 

signal is less than a percent in large aliquots, one can have 

resolvability problems when measuring small test doses with 

TT-OSL. TT-OSL normalisation also uses the whole TT-OSL 

signal, including the DI-TT-OSL signal, which may lead to 

inconsistencies if one is using the DD-TT-OSL signal which 

does not include this extra signal. TT-OSL normalisation also 

uses an extra step to OSL normalisation, including a preheat, 

which can further change the sensitivity of the trap 

populations. Measurements made during this thesis indicate 

that the SESA samples do not change sensitivity very much due 

to preheat temperatures of 280 °C and 300 °C, but do due to 

irradiation (see Figures 5.4 and 5.5). Therefore the TT-OSL 

normalisation signal does not overly change the sensitisation 

of the measured normalisation signal to the signal being 

normalised; however, the test dose must be much larger to 

resolve a TT-OSL signal than an OSL signal, and so in that 

respect the TT-OSL normalisation does cause a larger 

sensitivity change between the initial and normalisation 

measurements. While there are disadvantages to TT-OSL 

normalisation, OSL normalisation, however, only measures the 

sensitivity of the OSL trap populations, and not necessarily 

the sensitivity of the TT-OSL populations. 

 

 
Figure 5.4: OSL response to a test dose after measurements of 

different doses. There appears to be a slight correlation 

between the dose measured and the response to a test dose. 

Note that cycle one was the measurement of the natural 

signal, and so the dose given is unknown and at a different 

dose rate. 
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Figure 5.5: OSL response to a test dose after measurements of 

the same dose. 

 

Note that measuring the DI-TT-OSL signal is done after three 

more preheats than the TT-OSL signal (two at 260 ºC and one 

at 300 ºC), and one test irradiation, which could potentially 

change the sensitivity of the signal. Thus protocols using 

this signal test the sample's response to dose after both the 

TT-OSL and DI-TT-OSL signals, giving them two normalising 

measurements per cycle. 

 

-Fitting measurements to a growth curve- 

 

The series of data points gained by finding the grain or 

aliquot's response to different doses must be fitted to a 

curve in order to gain a result for the equivalent dose that 

would give the same signal as the natural. In some protocols, 

such as the Australian Slide (Prescott et al, 1993), a fit 

does not have to be of any particular function; in most 

protocols, fitting to a set of defined functions is necessary 

to assess the validity of the results. 

 

In this thesis, fitting was done using Matlab's 'fit' 

function, in its curve fitting toolbox. This can produce non-
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linear least squares fits for both provided and inputted 

equations. The start points for fit iterations and their 

upper and lower bounds can be provided. While this limits the 

possible results to the provided fit, it makes the fitting 

function more likely to succeed, as it only goes through the 

non-linear least squares procedure a finite number of times. 

Start and bound values used can be found in the 'list of 

natdose input values' in the appendix of this thesis. 

 

Fits can also be weighted, with weights provided by the user. 

More information about the weighting process can be found in 

the error analysis section of this chapter. 

 

-Types of curves fitted- 

 

A simple one-trap, one recombination centre process provides 

a saturating exponential photon count vs dose curve. In 

reality, other functions are used commonly in fitting curves 

to data points. Three functions were used in this thesis: 

 

1) Linear function 

           (coefficients are a, b) 
 

Linear fits work best when the trap population is far from 

saturation, and the saturating exponential curvature is not 

yet evident. In the Matlab fitting program, this function is 

provided automatically for the user and its simplicity allows 

it to be fitted easily to functions. 

 

2) Saturating exponential 

      (   )      (coefficients are a, b, c) 
 

This is the most commonly fitted function when measuring old 

samples. In these samples, the natural dose can be reasonably 

close to the saturation point, and the photon count vs dose 

data have a decreasing positive curve. In Matlab, this 

equation must be provided by the user, including starting 

points for a larger fitting success rate. 

 

3) Saturating exponential plus linear 

      (   )           (coefficients are a, b, c, d) 
 

This type of fit is needed if the trap population whose 

signal is being measured sensitises during dose deposition, 

adding a linear component to the signal vs dose curve, or if 

signal from two different sources are being measured at the 

same time, one which saturates and one which does not. It is 
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not recommended to use aliquots with this type of growth 

curve unless the natural signal is far from the linear 

component of the curve. This is due to the fact that the 

sensitising due to dose may have a limit, interfering with 

results, or may be dependent on the rate of the dose given, 

which is much smaller for natural doses than artificial lab-

given doses. This equation must be provided by the user of 

the Matlab 'fit' function, and due to the large number of 

coefficients provided, does not tend to give very accurate 

results unless the data points have very small errors or the 

data points are not weighted in the fit. 

 

-Finding the equivalent dose- 

 

To find a result for the natural dose of a sample (also 

called equivalent dose), the best fit is chosen (if no fit is 

sufficiently good, the grain or aliquot is discarded). The 

goodness of a fit is calculated by using a number of 

different variables, including the sum of standard errors 

(SSE) value given automatically by the Matlab function, which 

gives one a rough idea of how close the fit is to the data 

points, and the residuals, which are the differences between 

the fit and the data for each data point. The residuals are 

particularly useful, as they can indicate whether the fit 

follows the data throughout the entirety of the length of the 

data string (in which case the residuals appear to be 

randomly distributed around zero), or whether it deviates 

from the data at points (indicated by trends up or down from 

zero, or strings of data points either above or below the 

zero point). This can help indicate whether data are linear, 

or slightly curved (in which case a saturating exponential 

fit is better than a linear one). 

 

Once a fit has been decided on, one can interpolate what the 

value of the natural dose is by finding the dose value of the 

fit that would give one the value of the natural signal. It 

is this value for the equivalent dose, divided by the 

calculated dose rate of the sample site, that gives one a 

value for the age of the sample. 

 

ERROR ANALYSIS 

 

Each measurement has an associated error, which gives an 

indication of our confidence in the accuracy of the result. 

In OSL measurements, this error comes from a variety of 

sources. The simplest to define is the counting error of the 
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measurement, which follows Poisson statistics. This error is 

due to the statistical fluctuations inherent in any discrete 

counting measurement, and is estimated by the square root of 

the measurement (Bevington and Robinson, 2003). Most other 

random errors are instrumental errors, errors introduced by 

slight inaccuracies in the instrumentation used to heat, 

stimulate, dose, and read output of the sample. These errors 

are different for each machine, and different for each type 

of measurement. Most instrumental errors affect other 

instrumental errors, if more than one comes into play in a 

protocol. As they are not independent, they are difficult to 

assess individually, and it is best to empirically calculate 

a value for the instrumental error as a whole. 

 

Systematic or non-random errors in measurements can come from 

a variety of sources. Light leakage through filters and 

changes in ambient temperature can affect the background of 

the measurement. If the light source is approximately stable, 

and the ambient temperature does not change significantly 

throughout the measurement, these changes do not affect the 

measurement after the background has been subtracted. 

 

A systematic error is also provided by the calibration of the 

beta source used in measurements. Any error in the 

calibration means that an age gained via a dose recovery 

curve will be off by this amount. Calibration is done by 

creating dose recovery curves with quartz that has zero 

initial signal, and comparing it to quartz that has been 

dosed by a highly calibrated source. 

 

Another systematic error—or rather, a difference between the 

instrumental readouts and reality—is due to the thermal lag 

between the heating plate and the sample. As long as the 

heating plate is clean and free of stray grains, this is 

generally defined by the thickness of the stainless steel 

disc used to store and carry the sample. This error can be 

minimised by heating at a slow rate, or by ensuring the 

thickness of the discs used remains relatively constant. Note 

that lack of thermal contact due to deformities in the disc 

shape, or stray grains or other material on the heating 

plate, cause random thermal lag errors rather than systematic 
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ones. These are minimised by ensuring the discs used are of 

good quality, and that the heating plate and the back of the 

disc used are clean. 

 

In this thesis, the TT-OSL protocol used includes a preheat 

to 260 °C at 5 K/s, which is then held for 10 s. This preheat 

does two things: firstly, it empties shallow quartz traps 

that interfere with the dosimetric OSL signals; secondly, it 

transfers the TT-OSL signal into the OSL trap. The small lag 

times of the thin stainless steel discs used and the high 

temperature reached ensure that this preheat does its first 

job. As the lag is different for each aliquot, each aliquot 

will reach a temperature at which thermal transfer occurs at 

a slightly different time in the preheating process, and each 

will be kept at this temperature or higher for a slightly 

different time. This means that every aliquot is measuring a 

slightly different proportion of the TT-OSL signal. As the 

protocols tested in this thesis are single aliquot protocols, 

this difference does not overly affect results. If a multiple 

aliquot protocol was being used, however, this difference 

would add an extra uncertainty to results, and to minimise 

this signals would have to be normalised by the TT-OSL 

response to the test dose, and not the OSL response. 

 

 

Figure 5.6: Diagram of a Risø TL/OSL DA-20. Error sources 

include the statistical nature of the β irradiation (source 

heterogeneity); fluctuations in the temperature of the 
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heating plate; thermal lag due to the thickness of the disc 

the sample is put on; fluctuations in the intensity and 

wavelength of the diode output; and counting and noise-

related errors from the photomultiplier tube. 

 

-Finding the instrumental error- 

 

Each signal used to create a normalised TT-OSL datum uses the 

heating plate, blue LED optical stimulation, the β source, 

and the photomultiplier of the Risø TL/OSL DA-20 (see fig 

5.6). An experiment to find the combined instrumental error 

of this type of measurement was devised, similar to that used 

in Thomsen (2004). Two 5 mm diameter aliquots of 125-180 µm 

diameter grains of crushed Pyrex were used for this 

experiment. Pyrex was chosen as each aliquot would contain 

grains with similar properties to each other, as Pyrex is a 

homogenous glass and the grains came from the same glass 

object. Pyrex has also been seen to be stable under repeated 

thermoluminescence measurements, and so would be unlikely to 

have very wildly changing OSL properties with repeated use. 

This experiment was done on the Risø TL/OSL DA-20 used for 

aliquot measurements of the TT-OSL protocol in this thesis. A 

7 mm U340 UV band-pass filter was used. 

 

Each aliquot underwent 300 iterations of the following cycle: 

1 120 s β dose 

2 Preheat to 75 ºC at 5 K/s 

3 Blue LED stimulation for 30 s 

4 60 s β dose 

5 Preheat to 75 ºC at 5 K/s 

6 Blue LED stimulation for 30 s 

 

Both aliquots underwent sensitivity changes, the response to 

dose increasing with each step in the cycle. When the first 

measurement (step 3) was normalised by the second (step 6), a 

histogram of each aliquot could be estimated by a Gaussian 

(see Figure 5.7). The difference in the mean of each aliquot 

was small, but larger than the 69 % confidence interval of 

each distribution. The difference in the mean could be due to 

variations in the disc thickness, grain distribution, and the 

distribution of grain size of the two aliquots. 



86 
 

 

 

 

 

 

Figure 5.7: The histograms made of each Pyrex aliquot result. 

 

The error of the mean of each of the two distributions can be 

found in two ways. One estimates the error using the 

variation of the points, and the other by using the 

calculated errors of each measured point. 

 

Using the variation in the distribution, the error of the 

mean is: 

 

Standard error = √
 

 (   )
∑(    ̅)  (Moore, D, and McCabe, G., 

2003) 
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Where n is the number of data points. 

 

Using the errors of individual points: 

 Error propagation equation for x(xi), assuming 

independent errors: 

 

σx
2
 = ∑  (

  

   
)   (Bevington, P. and Robinson, D., 2003) 

 

for x=
 

 
Σxi, (n is the number of data points), 

 

σx = √
 

  
∑   

  

 

If the calculated errors are accurate, these two equations 

should give similar results. As expected, the error of the 

mean using the errors of individual points is consistently 

lower than the error via variation in the distribution, if 

the counting error is used as the only error present. We need 

an extra error term, the instrumental error, in order to have 

an error that reflects the true variability of the 

measurements. 

 

The instrumental error is dependent on a number of variables, 

including: 

 -The temperature to which the sample was heated 

 -The heating rate 

 -The time the sample was kept at a constant temperature 

 -The optical stimulation time 

 -The time taken to dose the sample 

 -The reflecting properties of the aliquot and disc. 

 -Drift in the PMT detector efficiency 

 -Drift in PMT dark noise 

 

While some instrumental errors are approximately constant, 

like the error in the time the aliquot is exposed to a 

radiation source (due to shutter speed and timing errors), 

other errors 'average out' with increased time, such as the 

statistical fluctuations in the dose rate of the source. The 

instrumental error in the exposed dose should then be: 
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     (            )         (             )         (      )   

 
           (                       )

√(                  )  

 

  

 

Where (measured unit time)-1 is the number of degrees of 

freedom of the error of the dose rate. 

 

If all sources of error were independent of each other, we 

could write the instrumental error as: 

 

                                  ∑
           (       )

√                   

 
 

 

In reality, all instrumental errors are affected by the 

errors that came before it in the sequence, and so the 

instrumental error equation is more complex. 

 

A first experiment to find the instrumental error for each 

aliquot assumed that the instrumental error could be 

approximated by a constant. An iterative Matlab function (see 

Appendix A) was used to find the instrumental error for each 

aliquot. Errors of the mean gained via the two error 

equations mentioned above were compared. The instrumental 

error was increased until both errors of the mean were the 

same, giving the instrumental error needed to raise the error 

to that indicated by the scatter of the distribution. 

 

The instrumental error result gained by the two aliquots 

differed significantly from each other. The instrumental 

error gained when the number of seconds of signal integrated 

was changed was also different, increasing with bin size 

(each bin was set with a 0.1 s width). One major difference 

between the two aliquots was that one was significantly 

dimmer than the other. This indicated that the instrumental 

error may be proportional to both the signal measured and the 

number of bins used. 

 

The instrumental error term was changed to be: 

 

                                  
         

√(        )
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Where (signal-1) is the number of degrees of freedom of the 

signal. The iterative process was run again, this time with 

two variables. Values for the constants that gave small 

differences in the means for all distributions were 

collected, and the result that gave the smallest total 

difference was used as the instrumental error result. The 

differences were calculated using the following equation: 

 

(          )              (             )
              (             )

    

 

(See Appendix A for a transcript of the Matlab function) 

 

Results were found for values using 0.1, 0.2, 0.3, and 0.4 

seconds of integrated signal for each measurement. For all 

minimum results, constant1 was zero, indicating that all or 

most of the instrumental error is proportional to 
 

√(        )
. 

For all values, the secondmost, thirdmost and fourthmost 

smallest differences were very similar values to the result 

used, indicating that the result is near a true minimum of 

the difference. A plot of the instrumental error vs the 

number of bins used for the signal could be fitted to a 

saturating exponential, giving an instrumental error of: 

 

                      
                

√(        )
 

 

Where b is the number of bins used (with bins of 0.1 s 

width). 

 

Note that the distributions used in this estimation of the 

instrumental error do not have differing dose or 

temperatures, and so any variation in the error due to 

heating times or rates, or time exposed to dose are not 

accounted for in this estimation. This estimation of the 

instrumental error found here is only valid for other 

measurements if the errors due to heating and dose are very 

small, or approximately constant. 
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-Error propagation- 

 

Each DD-TT-OSL signal is comprised of a number of different 

measurements: 

 

-End of OSL measurement (Oe) (or other background subtraction 

measurement) 

-TT-OSL measurement (TT) 

-Test dose measurement (either an OSL test dose (Ot) or a TT-

OSL test dose (TTt-Ote) Note that this includes an additional 

background subtraction element. 

-End of OSL measurement (Oe2) 

-DI-TT-OSL measurement (BT) 

-Test dose measurement (either an OSL test dose (Ot2) or a 

TT-OSL test dose (Btt-OT2e) 

 

Each of these measurements has a different error, which can 

be propagated through calculations by using the error 

propagation formula: 

 

     ( (       ))    (     ( ) (
  

  
)         ( ) (

  

  
)     ) 

 

Assuming that the errors are independent. Specific error 

propagation equations used in finding a DD-TT-OSL measurement 

are given below. 

 

Addition/subtraction: 

      

     ( )         ( )         ( )  

 

Multiplication/division: 

     

     ( )       (
     ( )

 
)    (

     ( )

 
)   

 

Using these equations, we can find the error of each 

measurement: 

 

TT-OSL measurement with OSL test dose: 
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TT-OSL measurement with TT-OSL test dose: 

         (
     )

(       )
 

 

     (      )   

 √  (
(     )

(       )
)    (

√(     (  )         (  ) )

(     )
)    (
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And similarly with the DI-TT-OSL measurement. 

 

To get the error of the DD-TT-OSL measurement: 

                               

 

     (         )    √     (      )         (         )  

 

-Error of natural dose- 

 

The error of each normalised data point given above is used 

to weight each data point used in fitting the dose response 

curve for each aliquot. Weights are calculated by using the 

following equation: 

   
 

    
 

Where w is the weighting and err is the error. Weighting each 

data point is important, as changes in sensitivity throughout 

the cycles of the protocol as well as the dose given for each 

cycle changes the error of each data point. This means that 

data points we have more confidence in are given more weight 

in the fit than those with large errors. Weighting is only 

useful, however, if one is confident in the values for their 

errors. 
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The fit gained has an error (automatically provided for the 

user by the Matlab fit function), and this combined with the 

natural dose point error is used to estimate the y-axis error 

of the equivalent dose. The x-axis error is estimated by 

translating the y-axis points to the x-axis using the fit 

(see fig 5.8). This error can then be combined with any 

applicable dose-related errors to give a total estimated 

error of the equivalent dose. 

 

 

Figure 5.8: Translating errors from the y-axis to the x-axis. 

The x-axis error is estimated to be where the y-axis error 

meets the fitted curve. 

 

Note that in a linear fit, the errors of the equivalent dose 

should be symmetrical. However, in the case of a saturating 

exponential fit, and large errors or a natural result close 

to the saturation point of the growth curve, the errors may 

be significantly asymmetrical, with the larger of the errors 

to the positive side of the result. 
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-Other errors- 

 

The errors calculated above for the natural dose only include 

errors created in measuring the sample. There are other 

errors and uncertainties involved, some of which are listed 

below: 

 

-Systematic errors 

Systematic errors could be introduced to the measurements 

gained in a number of ways. These include: 

 -The normalisation method not taking into account part 

of the sensitivity changes. 

 -The normalisation method not taking into account 

differences in sensitivity changes between the natural 

measurement and the artificial dose measurements. 

 -A change in the deposition of electrons in metastable 

states due to differences in natural and artificial dose 

rates. 

 

-Interference by other OSL components 

While the 325 °C TL peak is the main source of OSL signal, 

other, less bleachable components are also present (Murray, 

1996). These may not be completely bleached after the OSL 

reduction part of the protocol, and may not be completely 

separable from the TT-OSL signal. Certain background 

subtractions may reduce the influence of these components, 

and mathematically separating components can be attempted if 

the interference is high. 

 

-Sample population purity 

Errors may be gained, especially in aliquot results, by 

samples made from more than one population of grains. Grains 

from different ages or different natural equivalent doses can 

be mixed into the population, due to incomplete bleaching of 

all grains of the sample or sediment mixing. The subsequent 

result gained from an aliquot is a mean value of the 

different equivalent doses, weighted by the population's 

prevalence in the aliquot and the sensitivity of individual 

grains. 
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-Sample purity 

The results gained are assumed to be from pure quartz 

samples. Inclusions in grains can skew results, either by 

adding signal to the measurements that are not in proportion 

to the quartz dose response, or, if the inclusions are 

radioactive, increasing the dose rate for individual grains, 

making a bulk dose rate result for the sample, used to find 

the sample's age, inaccurate for that particular grain and 

positively skewing the result for the age. 

 

-Sample history 

While some sediment beds are laid down quickly, others, such 

as the wind and wave formed dune systems of the SESA range, 

were formed over a reasonably long time, being extensively 

reworked before being stranded by the coast rising. This 

means that a precise value for the age of the sediment is 

physically impossible as there is no true single age, and 

adds an extra uncertainty to the final result. 
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------------------------------------------------------------- 

06-INITIAL RESEARCH INTO THE TT-OSL BEHAVIOUR OF SESA SAMPLES 

------------------------------------------------------------- 

 

-Testing for TT-OSL- 

 

Initial tests were done on the WK4 sample, which is from the 

Woakwine 1 dune system. Previous doses obtained for this dune 

have been 65 Gy (Banerjee et al, 2003), 69 Gy (Huntley et al, 

1994), 73 Gy (Huntley et al, 1993a), and 64 and 47 Gy 

(Huntley et al, 1993b). Aliquots of sample were prepared by 

creating a 5 mm diameter monolayer of grains on a stainless 

steel disc. 

 

A first experiment to see whether the sample had TT-OSL 

signals was done on a Risø TL-DA-8, with a 7 mm Hoya U340 

filter, and a green lamp for stimulation. Samples were 

preheated to 260 °C for 10 s, stimulated to deplete the OSL 

trap, then given the same preheat and stimulated to measure 

the TT-OSL signal. To measure the dose-independent TT-OSL 

signal, the aliquot was heated to 300 °C, depleted of OSL 

signal by optical stimulation, preheated to 260 °C for 10 s, 

and then stimulated to measure the dose independent TT-OSL. 

It was found that WK4 had peak DD-TT-OSL (also called ReOSL) 

and DI-TT-OSL (BT-OSL) responses up to five hundred times 

smaller than the OSL measurements. DD-TT-OSL was resolvable 

once the DI-TT-OSL was subtracted in medium-sized doses 

(around 35 Gy), but not in small doses (around 7 Gy). This 

indicates that, if using TT-OSL to normalise, one has a 

minimum resolvable test dose one cannot go under, even though 

Wang et al (2006a) indicate that a test dose of 10 % of the 

expected value is ideal. 

 

A question arises: is the phenomenon seen above actually TT-

OSL? An experiment was done on four previously bleached and 

heated Rb1s 5 mm aliquots on a Risø TL/OSL DA-20. OSL 

stimulation was by blue diodes at 90 % power. Each aliquot 

was given a β dose of around 37 Gy, and given a 260 °C 

preheat, then a blue diode stimulation for 120 s. After this 

each aliquot was subjected to a slightly different protocol 

before another blue diode stimulation at 260 °C, as shown 

below. 
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Protocol 1 Protocol 2 Protocol 3 Protocol 4 Protocol 5 

β dose of 

37 Gy 

β dose of 

37 Gy 

β dose of 

37 Gy 

β dose of 

37 Gy 

β dose of 

37 Gy 

260 ºC 

preheat for 

10 s at 5 

K/s 

260 ºC 

preheat for 

10 s at 5 

K/s 

260 ºC 

preheat for 

10 s at 5 

K/s 

260 ºC 

preheat for 

10 s at 5 

K/s 

260 ºC 

preheat for 

10 s at 5 

K/s 

Blue diode 

stimulation 

for 120 s 

Blue diode 

stimulation 

for 120 s 

Blue diode 

stimulation 

for 120 s 

Blue diode 

stimulation 

for 120 s 

Blue diode 

stimulation 

for 120 s 

 Pause for 

180 s 

Pause for 

600 s 

Pause for 

180 s 

Pause for 

600 s 

260 ºC 

preheat for 

10 s at 5 

K/s 

  260 ºC 

preheat for 

10 s at 5 

K/s 

260 ºC 

preheat for 

10 s at 5 

K/s 

Blue diode 

stimulation 

for 120 s 

Blue diode 

stimulation 

for 120 s 

Blue diode 

stimulation 

for 120 s 

Blue diode 

stimulation 

for 120 s 

Blue diode 

stimulation 

for 120 s 

Table 6.1: the protocols used to find out if the signal found 

is thermally transferred. 

 

Aliquots subjected to a preheat showed a rise in signal from 

the end of the first stimulation to the start of the 

subsequent signal (see fig 6.1). Aliquots that were not given 

a preheat before a subsequent stimulation did not have any 

change in signal. This indicates that the preheat is 

necessary for the creation of the signal shown. 
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Figure 6.1: Results for four aliquots exposed to preheats, pauses, or both. In all four 

aliquots, a preheat was necessary to see an extra signal. 
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-What proportion of TT-OSL is there in a sample?- 

 

Observations were made of the proportion of TT-OSL to OSL, 

and the peak TT-OSL photon count in different-sized aliquots 

of sample. The results are shown below. 

 

Single grains: the natural signal from one hundred 180-250 µm 

grains of the East Naracoorte sample were assessed, using the 

protocol detailed in Table 6.2 below. The grains were 

optically stimulated by a green laser for two seconds. 

Measurements were done in a Risø TL/OSL DA-20 with a single-

grain reader attachment. A 7 mm Hoya U340 filter was used. Of 

the one hundred grains, twenty had both OSL and TT-OSL 

signals, and six had an identifiable dose dependence. Peak 

photon counts for the first 0.02 s of stimulation time ranged 

from tens to thousands of counts. The ratio of TT-OSL peak 

counts to OSL counts in the first 0.02 of measurement ranged 

from 0.51 to 16%. 

 

Protocol for each cycle of TT-OSL SAR measurements. 

Preheat to 260 °C at 5 K/s, holding for 10 s 

Stimulation by green laser for 2 s (at 125 °C) 

Preheat to 260 °C at 5 K/s, holding for 10 s 

Stimulation by green laser for 1 s (at 125 °C) 

~7.5 Gy β dose 

Preheat to 260 °C at 5 K/s, holding for 10 s 

Stimulation by green laser for 1 s (at 125 °C) 

Preheat to 300 °C at 5 K/s, holding for 10 s 

Stimulation by green laser for 2 s (at 125 °C) 

Preheat to 260 °C at 5 K/s, holding for 10 s 

Stimulation by green laser for 1 s (at 125 °C) 

~7.5 Gy β dose 

Preheat to 260 °C at 5 K/s, holding for 10 s 

End-of-cycle TT-OSL depletion at 290 °C with blue diodes at 

90 % power, holding for 400 s 

Table 6.2: The protocol used for single grain measurements. 

 

Small aliquots: grains of 125-180 µm diameter from the 

Woakwine sample were placed in a single grain disc, which 

consists of an array of 10 x 10 cylindrical pits of 300 µm 

diameter and depth. Around eight to twelve grains were in 

each hole, forming a small aliquot. The aliquots were 

measured with a Risø TL/OSL DA-20 with a single-grain 

attachment, and 7mm Hoya U340 filter, and stimulated with a 

green laser. Using the protocol detailed in chapter 8, peak 

TT-OSL photon counts were in the hundreds in the first 0.02 s 

of stimulation. The ratio of TT-OSL peak counts to OSL counts 
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ranged from 0.9 to 13 % when including all 100 aliquots. A 

ratio between 1.1 and 3.8 % was found for the ten aliquots 

whose growth curves met the following criteria: 

 - a linear, saturating exponential or saturating 

exponential + linear curve could be fitted to the regenerated 

dose points 

 - the natural signal was not beyond the saturation point 

of the fit, or below the signal of a 'zero' regenerated dose 

point. 

 - a repeated dose measurement was not more than 50 % 

more or less than the original measurement. 

 

Large Aliquots: aliquots of the Naracoorte East sample were 

made using silicone spray to stick a monolayer of grains onto 

a stainless steel disc. 125-180 µm grains were used. Eight 

aliquots were made each of a diameter of 1, 3, 5, and 7 mm. 

Aliquot TT-OSL response was measured on a Risø TL/OSL DA-20, 

and stimulated with blue diodes. Using the protocol detailed 

in chapter 9, peak TT-OSL photon counts per second ranged 

from thousands for the 1 mm aliquots, to tens of thousands 

for the 7 mm aliquot. The average ratio between the TT-OSL 

and OSL peaks was around 1 % for the 1 mm and 7 mm aliquots, 

and 0.7 % for the 3 mm and 5 mm aliquots. All large aliquots 

had resolvable TT-OSL signals, and signals positively 

dependent to dose. 

 

 

Size of aliquot Ratio of TT-OSL to OSL 

(%) 

single grain 0.51 to 16 

8-12 grains 0.9 to 13 

1 mm diameter 0.8 to 1 

3 mm diameter 0.4 to 1 

5 mm diameter 0.7 to 1 

7 mm diameter 0.7 to 2 

Table 6.3: Summary of the proportion of TT-OSL to OSL for 

various aliquot sizes. Note that the single grain result only 

counts those grains with resolvable TT-OSL signals. 

 

-How long does it take for OSL to deplete?- 

 

The first few steps of a TT-OSL protocol are made to deplete 

the OSL trap or traps, before transferring the TT-OSL signal. 

Six aliquots of WK4 grains were made. The aliquots were made 

quite large, 7 mm in diameter, to provide enough grains that 

each aliquot was representative of the sample as a whole. 

Each sample was given a separate preheat of either 240, 250, 
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260, 270, 280 or 290 °C, then stimulated with blue LEDs for 

half an hour (see fig 6.2). The protocols were done on a Risø 

TL/OSL DA-20, with a U340 filter in place. 

 

Mass normalised responses indicate that low temperature 

preheats of 240 °C and 250 °C have larger residual OSL levels 

after 200 s, and the 290 °C preheat gave smaller residual OSL 

levels. The 260 °C, 270 °C, and 280 °C preheats had similar 

residual levels. When normalised by the first data point 

after stimulation rather than the mass of the aliquots, the 

responses for each preheat had the same decay shape, and 

could be directly compared. 

 

 
Figure 6.2: Mass-normalised stimulations with various 

preheats. Note that the spikes in the 250 °C preheat aliquot 

results are most likely instrumental aberrations caused by RF 

interference or point line "spikes". 

  

All aliquot responses were characterised by a large initial 

signal, quickly depleting until evening out to a slow decay. 

The slow decay did not flatten out completely throughout the 

half hour, though after a minute, one can say that the signal 

is approximately constant over five seconds, and there is no 

visible negative gradient within a five second period after 
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two minutes (see fig 6.3). This indicates that the total OSL 

depletion times must be quite long, despite the fact that 

most of the signal is depleted in the first few seconds. 

Minimum times for OSL depletion (using blue LEDs at 90% 

power) should be one minute, while two minutes or more are 

preferable. 
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Figure 6.3: results for the long stimulation after various preheats, normalised by the 

first data point. A) is from 0-30 s; B) is near one minute; C) is near two minutes; and 

D) is near 30 minutes.
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—What proportion of TT-OSL grains are useful?- 

 

Twelve single grain discs of small aliquots were made of the 

WK4 sample. These were measured using the TT-OSL protocol 

detailed in chapter 8, using a Risø TL/OSL DA-20 with a 

single grain attachment. Stimulation light was from a green 

(532 nm) laser, and light to the EMI 9235QB photomultiplier 

was passed through a 7 mm Hoya U340 filter. After the 1200 

small aliquots were analysed, 80 had saturating exponential 

or linear, unsaturated TT-OSL growth curves. Of these, 62 met 

all selection criteria, which included whether repeated doses 

gave similar results, and whether natural results were within 

the parameters of the growth curve (e.g., were not negative 

or above saturation). For small aliquots of eight to 12 

grains, therefore, just over 5 % of them are useful for this 

sample. 

 

-Is the TT-OSL signal dependent on age?- 

 

A quick test often used on sequences of samples with the same 

sample source is to see whether the natural signals increase 

with age. The natural OSL signals of the Naracoorte East, 

Harper, Baker, East Dairy, Woakwine, and Long Beach samples 

were compared to one another. Results from six 5 mm diameter 

Long Beach aliquots, and eight each of the other samples were 

used. The aliquots were stimulated with blue diodes at 90 % 

power for 120 seconds. A Risø TL/OSL DA-20 with a 7 mm Hoya 

U340 filter was used for measurements. The background of each 

TT-OSL measurement was subtracted using the average of the 

last half a second of the previous OSL measurement. When OSL 

measurements were used for normalisation, the background was 

subtracted using the average of the last half a second of the 

same OSL measurement. Sample results were averaged and then 

compared to each other. 
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Protocol step Reason for step 

Preheat at 260 °C for 10 s To remove the trapped charge 

populations of shallow traps 

Blue diode stimulation at 90% 

power for 120 s 

To deplete the population of 

the OSL traps 

Preheat at 260 °C for 10 s To induce thermal transfer 

Blue diode stimulation at 90% 

power for 120 s 

To measure the thermally 

transferred OSL 

18.4 Gy β dose A test dose 

Preheat at 260 °C for 10 s To remove the populations of 

shallow traps 

Blue diode stimulation at 90% 

power for 120 s 

To measure the aliquot's OSL 

response to the test dose 

Preheat at 260 °C for 10 s To induce thermal transfer 

Blue diode stimulation at 90% 

power for 120 s 

To measure the aliquot's TT-

OSL  response to the test 

dose 

Table 6.4: the protocol used in finding the natural TT-OSL 

signals for each sample. 

 

Results were normalised by both OSL and TT-OSL responses to a 

test dose, and the average signal of each sample compared 

with the average of the others (see fig 6.4). In the OSL 

normalised results, all but the Woakwine and Long Beach 

samples (which were reversed) were in order increasing with 

age. This reversal may be due to an increased background with 

age—the results without background subtraction are all in 

order of age. 

 

TT-OSL normalised results with end-of-OSL background 

subtraction (see Chapter 5 for details) were in order of age 

at the peak result, although the Baker and Harper results 

were very close to each other, and over the course of the 

stimulation time the photon counts per 0.1 s changed order of 

age twice. The graph of the Long Beach result crossed over 

all the other results, at the end of the stimulation time 

ending up with the highest counts. The East Dairy, Baker, and 

Harper results all had very similar counts at the end of the 

stimulation time, while the Woakwine result had much lower 

counts, and the Naracoorte East much higher ones. Without 

background subtraction the results were in order of age along 

the entire length of the signal, apart from the Woakwine 

signal which appeared to have a higher residual background 

than the others. 

 

From these results we can see that there is a general trend 
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of increasing TT-OSL signal with age, when normalised either 

with OSL or TT-OSL responses to a test dose. It also can be 

noted that a residual OSL component can be seen in all but 

the Long Beach sample, indicating both that the residual OSL 

can be bleached almost completely by sunlight (unlike TT-OSL, 

which has a residual amount after bleaching), and that proper 

background subtraction is important in getting an accurate 

TT-OSL measurement. 

 

 

 

 

Figure 6.4: Graphs showing the first ten seconds of the 

averaged natural TT-OSL signals. A) With OSL normalisation 

and without background subtraction; B) with OSL normalisation 

and background subtraction; C) with TT-OSL normalisation and 

without background subtraction; D) with TT-OSL normalisation 

and background subtraction. Samples are listed in order of 

increasing age. 
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-------------------------- 

07-ZERO-AGE SAMPLE RESULTS 

-------------------------- 

 

An important requirement for a dating method is that the 

method gives a value of zero for the age of a modern sample. 

This ensures that the method does not systematically over-

estimate the age of older samples. Previous experiments on 

various samples have had differing results. Wang et al 

(2006b) tested three young samples which gave OSL ages of 

around 1 ka. The DD-TT-OSL results for the same samples were 

higher, up to 5 ka. However, this difference was not 

particularly significant when compared to the measurement of 

samples of tens to hundreds of ka. 

 

Porat et al (2006) also found a near-modern sample to give 

small equivalent doses, as did Tsukamoto et al (2008), 

although one of their modern samples had a high DI-TT-OSL 

result. Hu et al (2010), when searching for thermally 

transferred signals that could interfere with their OSL 

measurements of young samples, did not find any of 

significance. However, Stevens et al found a loess sample 

with an OSL SAR equivalent dose of 1.1 Gy gave 13.3 Gy when 

measured by TT-OSL. Jacobs et al (2011) found significant DD-

TT-OSL signals in zero-age samples. 

 

Experiments on the bleachability of the DD-TT-OSL signal 

generally show a sharp drop in signal followed by a slow 

decay of a significant residual signal. Different samples, 

however, show widely varying bleaching times. For example, 

after half an hour, two quartz samples exposed to a SOL2 

solar simulator by Tsukamoto et al (2008) retained around 60 

% and 50 % of their original signal, while a different quartz 

sample exposed to direct sunlight by Athanassas and Zacharias 

(2010) only retained 13 % of its original signal. Athanassas 

and Zacharias concluded that an hour's exposure to sunlight 

would be sufficient to reduce their sample's DD-TT-OSL signal 

to residual levels, while the samples of Tsukamoto et al 

(2008) retained 18 % and 10 % of their signal after seven 

days continuous exposure. Kim et al (2009) had similar 

results to Tsukamoto et al, having significant residual 

signal left after optical stimulation for seven days. Brown 

and Foreman (2012) found that after stimulation under a 

sunlamp for 95 hours, 20 % to 40 % of the original signal 

remained in their samples. It should be noted that the solar 

simulator may be missing key wavelengths needed for bleaching 

TT-OSL signals, or may expose the sample to a lower intensity 
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of light than natural sunlight. While the results of 

Tsukamoto et al (2008), Kim et al (2009) and Brown and 

Foreman (2012) indicate that the TT-OSL signals of some 

samples may not deplete completely after a full day's worth 

of exposure to light, the results of Athanassas and Zacharias 

(2010) indicate that, after a day's exposure to natural 

sunlight, at least some samples have TT-OSL signals depleted 

to residual levels. 

 

A zero-age sample from the south east of South Australia was 

collected on the 19th of February, 2013, from the Long Beach 

surfing beach, near Robe. Winds were blowing from south to 

north along the beach. The volume of sand moved by the wind 

was sufficient to collect only immediately wind-blown 

samples. The sample was collected by placing a bag in a 

purpose-dug depression and collecting sand blown into it (see 

fig 7.1). Samples were taken in daylight, at approximately 

5:00 PM. As the samples were collected near the middle of 

summer, it was thought that they would have received near the 

maximum amount of exposure to sunlight reasonable to assume 

for any windblown sand. 

 

 
Figure 7.1: The 'sand trap' used to collect the sample. Wind 

was blowing sand from the left to the right of the picture. 
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An experiment to observe both the OSL and TT-OSL signals 

remaining in a zero-age sample was undertaken. Eight 5 mm 

aliquots of 125-180 µm grains were made. Four of the samples 

underwent a 120 s OSL stimulation by blue LEDs at 125 °C. The 

remaining four were heated to 260 °C for 10 s, then the same 

OSL stimulation was administered. Both sets of aliquots were 

normalised by the OSL response to a 1.4 Gy test dose, after a 

10 s preheat to 260 °C. 

 

All but one of the aliquots that was not given a preheat had 

small initial signals, less than 300 counts in the first 

second. One of the aliquots had a large signal of about 

15,500 counts in the first second. The aliquots which had a 

preheat before optical stimulation varied in initial counts 

from 7,800 to 20,000. The test dose response was much higher 

(from 120,000 to 350,000 per second) in all cases than the 

response to the natural dose, indicating that the initial 

natural dose equivalent is less than the given laboratory 

dose of 1.4 Gy. 

 

Six 5mm 125-180 µm aliquots were measured using the Woakwine 

SAR TT-OSL protocol (see Chapter 11). DD-TT-OSL results were 

much higher than expected, the weighted mean of the six 

results ranging from 10 to 76 Gy, using different data 

analysis methods. Results using the end-of-TT-OSL background 

subtraction were in all cases smaller than results using 

other background subtractions, although all results were 

similar for each background subtraction when using a 0.5 s 

integral. Using 0.1 s integral and OSL normalisation, using 

the near-TT-OSL background subtraction gave larger results 

than the other background subtractions. The smallest 

palaeodoses were found using TT-OSL normalisation and the 

initial 0.5 s of signal. The largest results were found using 

OSL normalisation and the initial 0.1 s of signal. Ages 

gained for TT-OSL signals were larger than those of the DD-

TT-OSL signal, and results for the DI-TT-OSL signal were 

larger again (see table 7.1). 

 

 

Data analysis method Average 

(Gy) 

Weighted 

mean* 

(Gy) 

Error 

weighted 

mean 

Age from 

weighted 

mean 

(ka) 

OSL normalisation 

end-of-OSL background 

subtraction 

0.1 s integral 

62 

71 

107 

46.5 

57.4 

83.8 

1.3 

1.1 

3.6 

73 ± 5 

90 ± 6 

131 ± 10 
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OSL normalisation 

end-of-OSL background 

subtraction 

0.5 s integral 

23 

31 

79 

16.4 

23.8 

71.2 

0.63 

0.65 

2.3 

25 ± 2 

38 ± 3 

111 ± 8 

TT-OSL normalisation 

end-of-OSL background 

subtraction 

0.1 s integral 

36 

39 

45 

26.6 

39.5 

31.6 

2.1 

1.5 

2.9 

42 ± 4 

62 ± 5 

50 ± 5 

TT-OSL normalisation 

end-of-OSL background 

subtraction 

0.5 s integral 

12 

19 

43 

10.9 

17.6 

39.1 

0.69 

0.92 

1.6 

17 ± 2 

28 ± 2 

61 ± 5 

OSL normalisation 

near-TT-OSL background 

subtraction 

0.1 s integral 

77 

83 

124 

76.5 

82.0 

108 

2.5 

1.8 

8.3 

118 ± 8 

128 ± 8 

169 ± 17 

OSL normalisation 

near-TT-OSL background 

subtraction 

0.5 s integral 

22 

30 

78 

16.8 

23.7 

78.4 

0.71 

0.71 

2.9 

27 ± 2 

38 ± 3 

122 ± 9 

TT-OSL normalisation 

near-TT-OSL background 

subtraction 

0.1 s integral 

24 

43 

79 

25.1 

42.8 

45.4 

4.0 

2.5 

6.8 

39 ± 7 

67 ± 6 

70 ± 12 

TT-OSL normalisation 

near-TT-OSL background 

subtraction 

0.5 s integral 

12 

18 

44 

10.4 

17.0 

40.2 

0.71 

0.95 

1.8 

16 ± 2 

27 ± 2 

63 ± 5 

OSL normalisation 

end-of-TT-OSL background 

subtraction 

0.1 s integral 

42 

50 

103 

31.7 

42.2 

82.8 

0.82 

0.74 

3.8 

50 ± 3 

66 ± 4 

130 ± 10 

OSL normalisation 

end-of-TT-OSL background 

subtraction 

0.5 s integral 

21  

29 

78 

15.5 

22.6 

71.0 

0.67 

0.67 

2.3 

25 ± 2 

36 ± 2 

111 ± 8 

TT-OSL normalisation 

end-of-TT-OSL background 

subtraction 

0.1 s integral 

20 

28 

55 

16.2 

25.9 

38.7 

1.2 

1.2 

2.4 

25 ± 2 

40 ± 3 

61 ± 5 

TT-OSL normalisation 

end-of-TT-OSL background 

subtraction 

0.5 s integral 

11 

18 

44 

9.96 

16.5 

40.3 

0.63 

0.90 

1.7 

16 ± 1 

26 ± 2 

63 ± 5 

Table 7.1: Results for six aliquots using the SAR TT-OSL 

method and different data analysis methods. Results in each 

cell are for DD-TT-OSL, TT-OSL, and DI-TT-OSL respectively. 
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The dose rate of this sample is 0.64 ± 0.04 Gy/ka (details in 

Chapter 4). 

*Weighted means were calculated using a weight of 
 

   
, where 

se is the total measurement error value calculated for each 

aliquot. 

 

The results gained for the zero-age sample indicate that 

there is residual TT-OSL in a wind-blown sample, indicating 

that this sample more closely follows the findings of 

Tsukamoto et al (2008) and Jacobs et al (2011) that the TT-

OSL signal takes a very long time to bleach. The residual TT-

OSL will artificially increase the dose result in SAR TT-OSL 

signals. Using these results as a guide, we can find the 

approximate overestimation of similar wind-blown sands using 

the SAR TT-OSL protocol. Calculations were made using the 

average of the weighted mean results for different background 

subtractions: Using the DD-TT-OSL signal, TT-OSL 

normalisation and the first 0.5 s of signal, 10.4 Gy; using 

OSL normalisation and the first 0.5 s of signal, 16.2 Gy. As 

the OSL trap population saturates at approximately 150 Gy, at 

the point where TT-OSL protocols begin to become useful TT-

OSL normalisation using the first 0.5 s of signal will give 

approximately a 6.5 % overestimation of the dose, while OSL 

normalisation with 0.5 s of integral will give a 10 % 

overestimation of the dose. The oldest sample used in this 

thesis was the Naracoorte East sample, with an estimated age 

of over 900 ka. Another sample from the Naracoorte East range 

(with lower natural dose rates) gave a TL-calculated natural 

dose of 455 Gy, which with the above residual natural doses 

would have a 2 % and 3 % overestimation of the dose 

respectively. Using the TT-OSL signal rather than the DD-TT-

OSL signal will increase the overestimations to 10 and 13 % 

for 150 Gy, and 4 and 5 % for 455 Gy. Using the first 0.1 s 

of the DD-TT-OSL signal will give an overestimate of 13 and 

25 % for 150 Gy, and 5 and 10 % for 455 Gy. 

 

The 'dose equivalent' age found for the zero-age sample range 

from the tens to the hundreds of ka, nearing in the case of 

some DI-TT-OSL results and some results using the near-TT-OSL 

background subtraction the expected age of the Woakwine 1 

range. From these results alone, one would conclude that TT-

OSL dating could only be accurate when measuring large 

natural doses (or potentially samples bleached further than 

the zero-age sample measured), via the first 0.5 s of DD-TT-

OSL signal, with normalisation by the TT-OSL response to the 

test dose and using either the end-of-OSL or end-of-TT-OSL 
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background subtraction. Whether this "residual" dose 

influences the older samples will be found in Chapter 11. 
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---------------------------------------------- 

08-INITIAL RESULTS FOR WOAKWINE SMALL ALIQUOTS 

---------------------------------------------- 

 

The Woakwine sample was used as a test sample for the TT-OSL 

SAR procedure, as the Woakwine range has been dated 

extensively by TL, OSL, and oxygen isotope methods, which 

give an age of around 120 ka. Small "aliquots" were made by 

putting 125-180 µm grains into the 300 µm diameter 

depressions in single-grain discs, giving approximately 8-12 

grains per aliquot. Small aliquots were chosen as they would 

give an idea of the distribution of the natural equivalent 

doses (though in a less resolvable form than single-grain 

dating) while still giving enough light to detect the very 

small TT-OSL signals. A Risø TL/OSL DA-20 with a single-grain 

reader attachment was used, with a 7 mm thick Hoya U340 

filter interposed between the sample and the photomultiplier. 

Doses were given using a 1.48 GBq Sr
90
/Y

90
 beta source, at a 

dose rate of approximately 0.15 ±0.01 Gy/s. The protocol used 

is shown below (tables 8.1 and 8.2). Note that the "hot wash" 

at the very end of each cycle was done at 290 °C. This was 

because the air inside the machine with the single grain 

attachment could not be pumped out (as this module cannot 

hold vacuum), and continuous higher temperatures would 

oxidise the heating plate in the presence of oxygen. To 

compensate, the temperature was held for 400 s, as in Stevens 

et al (2009). 

 

Protocol for each cycle of TT-OSL SAR measurements. 

Artificial β dose (zero for first cycle) 

Preheat to 260 °C at 5 K/s, holding for 10 s 

Stimulation by green laser for 2 s (at ambient temperature) 

Preheat to 260 °C at 5 K/s, holding for 10 s 

Stimulation by green laser for 1 s (at ambient temperature) 

~7.5 Gy β dose 

Preheat to 260 °C at 5 K/s, holding for 10 s 

Stimulation by green laser for 1 s (at ambient temperature) 

Preheat to 300 °C at 5 K/s, holding for 10 s 

Stimulation by green laser for 2 s (at ambient temperature) 

Preheat to 260 °C at 5 K/s, holding for 10 s 

Stimulation by green laser for 1 s (at ambient temperature) 

~7.5 Gy β dose 

Preheat to 260 °C at 5 K/s, holding for 10 s 

End-of-cycle TT-OSL depletion at 290 °C with blue diodes at 

90 % power, holding for 400 s 

Table 8.1: The protocol used for gaining TT-OSL measurements. 

Note that stimulations were done at ambient temperatures. As 
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the Woakwine sample has a large photon count to dose ratio 

and a small natural dose, the loss of signal and artificial 

saturation effects due to retrapping at shallow traps was not 

deemed significant enough to effect results for this 

experiment. 

 

Cycle β dose administered 

(Gy) 

2 45 

3 90 

4 150 

5 300 

6 450 

7 0 

8 45 

Table 8.2: The dose used in each cycle of the protocol. Note 

that the first cycle does not include an artificial dose, as 

it is measuring the natural signal. 

 

The signals were quite small, and the last portion of the OSL 

trap emptying stimulation measurements were used for 

background subtraction (called the end-of-OSL background 

subtraction in chapter 6), thereby removing OSL signal while 

maximising the signal retained (when compared with background 

subtractions such as the near-TT-OSL background subtraction). 

All of the signal from the start of stimulation until the 

signal reached the background level was used. OSL responses 

to test doses were used for normalisation, as the TT-OSL 

responses were generally too small to be resolved. 

 

A number of selection criteria were chosen, as listed below: 

 

-Positive dose dependence: the normalised signal must 

increase with dose. 

 

-Good fit to equation with physical meaning: the response to 

artificial doses must be able to be fit to either a linear, 

saturating exponential, or saturating exponential plus linear 

function. Results that were too scattered or did not appear 

to have a trend were discarded. 

 

-Natural dose within bounds: the natural dose must not be 

negative, or lie at or beyond the saturation point of the 

growth curve. 

 

-Good recycling ratio: an artificial dose that was repeated 

cannot have a large difference between the two normalised 



114 
 

signals. In this case, 'large differences' were said to be 

repeated signals in which one was 100 % more discrepant from 

the other. 

 

Twelve discs with a total of 1200 aliquots were made and 

measured using the protocol. Results were found using the 

Matlab code "allparts2" (see Appendix A). Of the 1200 small 

aliquots, 69 met the selection criteria (see fig 8.1 for 

example). 

 

 

 

 
Figure 8.1: Examples of dose recovery curves. The last six 

small aliquot results for the first disc are shown. The 
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natural signal's normalised photon count is shown as a black 

line. Regenerative dose points are shown as blue circles. 

Three fits are shown: linear (red), saturating exponential 

(green), and saturating exponential plus linear (blue). Of 

these six, only aliquots 97 and 98 were accepted. 

 

-Results using weighted mean and average- 

 

The weighted mean of the age of the 69 accepted aliquots was 

83 ± 4 ka, while the average value was 150 ka, indicating 

that the errors were in general proportionally smaller for 

smaller values. This may be due in part to the fact that 

instrumental errors for this machine had been previously 

calculated to be 1.7% of the value of the result, and using a 

percentage error means that the instrumental error trends 

towards zero the smaller the result becomes. The instrumental 

errors found experimentally for a different but similar 

machine (see Chapter 5), by contrast, included a constant 

value. If the actual and estimated errors differ in this way, 

it would negatively skew a weighted value for the mean. 

 

-Results using histograms- 

 

Histograms of the results (see fig 8.2) indicate that there 

is a relatively asymmetrical distribution of results. 

Different edge points of the histogram lead to different peak 

values, but in general the distribution peaks between 100 and 

140 ka. There is a long tail of very old ages, which may have 

positively skewed the average value. 
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Figure 8.2: Histograms of aliquot ages, using different bin 

widths. 

 

-Results using 'gradient isolation'- 

 

If all results are sorted from smallest to largest and 

graphed, there appears to be a pattern in the data, wherein 

there is a smooth progression of data points followed by a 

discontinuity (see fig 8.3). The two main discontinuities 

split the population into three parts, with weighted means of 

56 ± 6, 119 ± 10, and 207 ± 17 ka. Average values were the 

same as the weighted means within errors. It is noted that 

the middle value is equal to the expected age of the Woakwine 

range within errors. Whether selecting parts of populations 

in this way is a feasible method is not known. 
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Figure 8.3: Aliquots in order of age. Results ringed in 

different colours indicate those before or after 

discontinuities. Results ringed in red give a weighted mean 

near the expected result for the Woakwine Range based on 

independent dating evidence. 

 

-Results summing aliquot signals- 

 

Another method of acquiring a result from a distribution of 

grains is to combine the normalised signal of all accepted 

results together, and fit a curve to the results. The 

normalised signal of the 69 accepted small aliquots were 

summed, and the dose rate of the β source was taken to be the 

average dose rate over the disc (0.15 Gy/s). This gave a 

saturating exponential curve, with the natural signal far 

from the saturation point (see Fig. 8.4). The natural signal 

had an equivalent dose of 95 ± 12 Gy, which corresponds to an 

age of 155 ± 22 ka, near to the average value of the 

individual small aliquot results. 
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Figure 8.4: Regenerative dose curve using the sum of all 

normalised DD-TT-OSL signals for the 69 accepted small 

aliquots. The fitted curve (in green) was created using 

Matlab's Curve Fitting Toolbox. 

 

-Summary- 

 

The weighted mean of this distribution was skewed away from 

the mean and median values of the distribution. When looking 

at a histogram of the distribution, the peak value of age is 

much higher than the weighted mean, and is generally around 

the expected age of the sample. It is possible that in this 

instance the weighted mean is skewed by non-real instrumental 

error values, and so cannot be used. In addition, the 

distribution appears to be asymmetrical, which would make a 

result for the (non-weighted) mean skewed away from the peak 

value. It appears that the best way to find a value for the 

age of the sample from this distribution is to find the peak 

value from a histogram of the results, although this is not a 

very precise method. Ordering results and finding areas of 

approximately the same gradient to isolate and find the mean 

from also gives results at the expected value, though this 
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process can be subjective, and may introduce bias into the 

results. 

 

Using the gradient isolation method and the histogram method 

give results at the expected value. We can therefore say 

that, for the Woakwine sample, it is possible to find an age 

that matches the expected value using TT-OSL. Other methods, 

however, give ages above and below the expected value, and so 

more experimentation must be done to see whether there is a 

data analysis method that consistently gives the expected 

dose for different samples.  
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------------------------------------ 

09-INITIAL RESULTS FOR 5 mm ALIQUOTS 

------------------------------------ 

 

The Adelaide laboratory (Prescott Environmental Luminescence 

laboratory) holds a large number, almost 150, of samples 

collected from the stranded beach ridges of the SESA region. 

From these, a subset of samples widely spaced in time and 

with independent dating evidence are chosen to review the SAR 

TT-OSL dating protocol. These were the Woakwine, East Dairy, 

Baker, Harper, and Naracoorte East samples. The protocol was 

applied to 5 mm diameter aliquots of 125-180 µm diameter 

grains. The TT-OSL protocol used for initial aliquot results 

is shown in the tables below (9.1 and 9.2). It includes the 

350 °C end-of-cycle "hot wash" for 200 s (as in Adamiec 

(2010)), and 260 °C preheats. The DI-TT-OSL component was 

measured, as was the TT-OSL response to the test doses. A 

Risø TL/OSL DA-20 was used for measurements, with a 7 mm Hoya 

U340 filter interposed between the sample and the 

photomultiplier. Selection criteria used were the same as in 

the previous section. Data analysis was done via Version 5 of 

the 'natdose' Matlab program found in Appendix A of this 

thesis. 

 
Protocol for each cycle 

β dose (0 at natural) 

Preheat to 260°C (5 K/s; held for 10 s) 

OSL stimulation at 125 °C for 60 s with Blue diodes at 90% 

power 

Preheat to 260°C (5 K/s; held for 10 s) 

OSL stimulation at 125 °C for 60 s with Blue diodes at 90% 

power 

Test dose (8.3 Gy β) 

Preheat to 260°C (5 K/s; held for 10 s) 

OSL stimulation at 125 °C for 60 s with Blue diodes at 90% 

power 

Preheat to 260°C (5 K/s; held for 10 s) 

OSL stimulation at 125 °C for 60 s with Blue diodes at 90% 

power 

Preheat to 300°C (5 K/s; held for 10 s) 

OSL stimulation at 125 °C for 60 s with Blue diodes at 90% 

power 

Preheat to 260°C (5 K/s; held for 10 s) 

OSL stimulation at 125 °C for 60 s with Blue diodes at 90% 

power 

Test dose (8.3 Gy β) 

Preheat to 260°C (5 K/s; held for 10 s) 
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Table 9.1: The TT-OSL SAR protocol used for each aliquot. 

 

Cycle Naracoorte 

East 

Harper Baker East 

Dairy 

Woakwine 

2 63 84 42 42 8 

3 188 167 84 84 25 

4 376 251 167 125 50 

5 523 335 251 167 75 

6 1004 502 335 209 151 

7 0 0 0 0 0 

8 376 251 167 84 50 

Table 9.2: The dose (in Gy) used in each cycle of the TT-OSL 

SAR protocol for each sample. The first cycle is to measure 

the natural signal, and so no dose is given to the sample. 

 

Protocols using the TT-OSL signal (e.g., Stevens et al, 2009) 

and the DI-TT-OSL signal (Jacobs et al, 2011) have been used 

in the past. The equivalent dose was therefore found using 

the DD-TT-OSL, TT-OSL, and DI-TT-OSL signals, for comparison. 

The results were computed using various data analysis 

variables, as listed below: 

 

Signal integration: using the first 0.1 s and first 0.5 s of 

signal. 

 

Background subtraction: using the end-of-OSL, end-of-TT-OSL, 

and near-TT-OSL background subtraction methods. 

 

Normalisation: using the OSL and TT-OSL response to a test 

dose for normalisation. 

 

-Individual results- 

 

A list of individual sample results is shown below. OSL 

normalisation and the end-of-OSL background subtraction were 

used in the figures shown. 

  

Woakwine (see Fig 9.1): DD-TT-OSL and TT-OSL results are in 

general lower than the expected age, though five of nine DD-

TT-OSL results fall into the expected age range within 

errors, the rest are lower than the expected age range by 

OSL stimulation at 125 °C for 60 s with Blue diodes at 90% 

power 

Preheat to 260°C (5 K/s; held for 10 s) 

OSL stimulation at 125 °C for 60 s with Blue diodes at 90% 

power 

Heat to 350°C for 200 s 
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more than 20 ka. All but one DI-TT-OSL result falls within 

the expected age range within errors, though this may be due 

to their large errors and not the accuracy of the 

measurements. 

 

East Dairy (see Fig 9.2): DI-TT-OSL results lie within the 

expected age range, though the errors in the results are very 

large. Six of nine DD-TT-OSL results are in the expected 

range within errors, although they are all in the lower half 

of the expected range. 

 

Baker (see Fig 9.3): DD-TT-OSL and TT-OSL results are much 

smaller than the expected age range. DI-TT-OSL results are in 

general around the expected age range, although the scatter 

and errors of the values is large. 

 

Harper (see Fig 9.4): DD-TT-OSL and TT-OSL results are in 

general much smaller than the expected age range. DI-TT-OSL 

results are very scattered, with the expected value lying 

approximately in the middle of the scatter. 

 

Naracoorte East (see Fig 9.5): DD-TT-OSL and TT-OSL results 

are in general much smaller than the expected age range. DI-

TT-OSL results have large error bars, and at best the results 

are near the lower end of the range of previously gained 

ages. 
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Figure 9.1: Results for individual Woakwine 1 aliquots. Previous results are shown: Oxygen 

isotope results in blue (dashed), OSL results in green, and thermoluminescence results in 

red. Circles represent results using 0.5 s of signal, while crosses represent results 

using 0.1 s of signal. A) DD-TT-OSL results; B) TT-OSL results; C) DI-TT-OSL results.
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Figure 9.2: Results for individual East Dairy aliquots. Previous results are shown: Oxygen 

isotope results in blue, and thermoluminescence results in red. Circles represent results 

using 0.5 s of signal, while crosses represent results using 0.1 s of signal. A) DD-TT-OSL 

results; B) TT-OSL results; C) DI-TT-OSL results.
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Figure 9.3: Results for individual Baker aliquots. Previous results are shown: Oxygen 

isotope results in blue, and thermoluminescence results in red. Circles represent results 

using 0.5 s of signal, while crosses represent results using 0.1 s of signal. A) DD-TT-OSL 

results; B) TT-OSL results; C) DI-TT-OSL results.
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Figure 9.4: Results for individual Harper aliquots. Previous results are shown: Oxygen 

isotope results in blue, and thermoluminescence results in red. Circles represent results 

using 0.5 s of signal, while crosses represent results using 0.1 s of signal. A) DD-TT-OSL 

results; B) TT-OSL results; C) DI-TT-OSL results.
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Figure 9.5: Results for individual Naracoorte East aliquots. Previous results are shown: 

Oxygen isotope results in blue, palaeomagnetic data results in green, and 

thermoluminescence results in red. Circles represent results using 0.5 s of signal, while 

crosses represent results using 0.1 s of signal. A) DD-TT-OSL results; B) TT-OSL results; 

C) DI-TT-OSL results.
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-Comparisons of results gained from various data analysis 

variables:- 

 

Results were affected by the signal and data analysis methods 

used, as summarised below: 

 

Signal used: In general, DD-TT-OSL and TT-OSL results 

underestimated the age of the sample. Results were generally 

scattered and had large errors. DI-TT-OSL results were more 

closely aligned with the expected results. However, they had 

very large errors, often more than 50 % of the signal's 

value. 

 

Integral of signal: Use of the 0.1 s of signal for 

calculations in general gave more linear dose recovery curves 

than the 0.5 s of signal calculations. Some of the 0.1 s 

calculations did not have recognisable dose response curves, 

and so a result could not be obtained. Whether or not a 

result could be obtained did not correspond to the signal's 

strength (as determined by the un-normalised natural signal) 

when compared to other 0.1 s calculations, although all were 

much smaller than 0.5 s calculations. There appeared to be no 

trend up or down in the difference between 0.1 s and 0.5 s 

results. The 0.5 s results, however, were less scattered 

(having an average difference from the mean value of 77 ka vs 

127 ka for 0.1 s integral results). In addition, 0.5 s 

results had smaller errors, having an average percentage 

error of 39 % of the value, as opposed to the 99 % of 0.1 s 

results. 

 

Background subtractions:  

The background subtraction used did not appear to influence 

the results gained, although it heavily influenced whether a 

result could be obtained. This appears to be a resolution 

issue, and is seen most clearly when using the first 0.1 s of 

signal. For the Woakwine sample, of the 10 aliquots analysed, 

dose response curves were able to be obtained for eight of 

the OSL-normalised 0.1 s signal aliquots with end-of-TT-OSL 

background subtraction, which maximises the signal used. End-

of-OSL background subtraction, which uses less proportion of 

the signal, gave six viable results from the ten aliquots, 

while near-TT-OSL background subtractions gave only one 

viable result. To contrast, the Naracoorte East sample whose 

protocol uses much higher artificial doses (and had higher 

photon counts overall) had 10, 10, and six out of 10 aliquots 

respectively with viable results. 
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Normalisation: TT-OSL normalisation gave fewer viable 

results, and the dose response curves saturated earlier than 

those created using OSL normalisation. Using the OSL response 

to the test dose gave straighter curves, often behaving 

linearly throughout the doses given. 

 

-Conclusions- 

 

A major problem in obtaining a result from a TT-OSL protocol 

is the lack of TT-OSL signal produced. Small photon counts 

create large errors, and do not allow for a great deal of 

flexibility during the data analysis stage. Using the first 

0.1 s of signal, and using the near-TT-OSL background 

subtraction technique are procedures which are supposed to 

minimise interference in the measured signal by slower OSL 

components. However, as they lower the available signal, in 

these measurements they gave scattered data points with large 

errors. TT-OSL normalisation is also subject to large errors 

and scatter of the data, as it relies on a TT-OSL signal from 

a small dose, hence introduces a second significant source of 

large errors from poor counting statistics. As DI-TT-OSL 

signals are smaller than TT-OSL signals, DD-TT-OSL results 

are also affected by large counting errors. 

 

While DI-TT-OSL results in general appear to give the best 

correlation to known ages of the three proposed TT-OSL dating 

signals, their lack of precision means that their true 

accuracy for dating is unclear. A way to increase the total 

photon counts of a sample must be used in order to determine 

the suitability of these TT-OSL-derived signals for dating. 
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--------------------------------------- 

10-IMPROVEMENTS TO MEASURING TECHNIQUES 

--------------------------------------- 

 

Before further measurements were made, a number of 

improvements were introduced to optimise instrument and hence 

use, and the protocol. These focused on improving signal 

strength, the reliability of results, and enabling a 

flexibility in choosing how to analyse the data. Details of 

these improvements are shown below. 

 

-Instrumentation- 

 

Optimising the instrumentation in general does little other 

than improve the recorded signal strength, which while 

decreasing counting errors can also increase background noise 

levels and may not do anything to increase the reliability of 

results. As seen in the initial results, however, a lack of 

signal strength can prevent the use of certain methods of 

data analysis. To find out whether these methods produce more 

accurate results than those that can be used for dim samples, 

one has to increase the signal output, whether by increasing 

the amount of sample being measured or by increasing the 

amount of signal captured by the instrumentation. A list of 

instrumentation and procedural improvements is listed below. 

 

-Cleaning: It was found that a layer of salt (apparently 

electrostatically attracted to the quartz window) had built 

up on the quartz window situated between the sample and the 

photomultiplier, from independent measurements on that 

material by other researchers. The quartz window is used to 

protect the photomultiplier from damage (as shown necessary 

by the salt build-up). When the salt was removed, signals 

recorded increased by about a factor of ten. 

 

-Photomultiplier HV optimisation: The signal-to-noise ratio 

of the photomultiplier was measured for different high 

voltage levels. This was done with a large signal (with 

millions of counts per second) and a small signal (with 

thousands of counts per second). The HV level with the 

largest signal-to-noise ratio for both high and low signals 

was chosen. More information can be found in Chapter 3. While 

HV optimisation lowers the amount of 'dark' noise measured in 

relation to the signal, it does not account for other 

background noise sources, such as very slow OSL components or 

phosphorescence. Dark noise in this case has two 

contributors: spontaneous signal from the photomultiplier 
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itself, and low-level light leakage (in general this is 

zero). 

 

-Warming up the machine: It was noted that the first 

measurement in any protocol was much smaller than the others, 

often causing the first aliquot in a sequence of aliquot 

measurements to be discarded due to having natural TT-OSL 

counts smaller than the counts after no dose. After this was 

noted, before every sequence was run, as a practical step, 

the photomultiplier, heating plate, nitrogen, and stimulation 

diodes were used in order to ensure that all parts of the 

machine were working and warmed up. This prevented further 

'negative dose' measurements being recorded. 

 

-Changes to the protocol- 

 

The protocol used for the initial study was chosen to 

represent current best-practice, being a combination of the 

most commonly used and most recent innovations of the general 

TT-OSL SAR protocol. However, other versions of the protocol 

may be more suitable for the SESA samples. 

 

An experiment to test the reproducibility of a measurement 

using various SAR protocols was devised. Woakwine, Naracoorte 

East, and Robe samples were used. 5 mm aliquots were bleached 

in the sun for approximately four hours on a day with a top 

temperature of 33 °C, the aliquots were given approximately 

73 Gy of β radiation dose, then run through a TT-OSL cycle. 

This was repeated 12 times, then a cycle with no dose was 

done. The protocol remained the same as for the 5 mm aliquot 

results in the previous section, but with changes to the 

preheat temperature and the end-of-cycle wash to bleach out 

any remaining TT-OSL signal (see table below). The changes 

were: 

 -Preheat temperature of 260 °C or 280 °C 

 -End-of-cycle wash for 200 s, using blue diodes at 90 % 

power at 290 °C, blue diodes at 90 % power at 350 °C, and no 

optical stimulation at 350 °C. 
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Protocol Step  Alternate protocol step Purpose of step 

73 Gy β dose or 0 β dose (for cycle 13)  

Preheat to 260°C 

(5 K/s; held for 10 s) 

or Preheat to 280°C 

(5 K/s; held for 10 s) 

Preheat to empty shallow 

traps 

OSL stimulation 60 s 

Blue diodes at 90% power 

  OSL stimulation to deplete 

OSL trap 

Preheat to 260°C 

(5 K/s; held for 10 s) 

or Preheat to 280°C 

(5 K/s; held for 10 s) 

Preheat to stimulate thermal 

transfer 

OSL stimulation 60 s 

Blue diodes at 90% power 

  OSL stimulation to measure 

TT-OSL 

Test dose (8.3 Gy β)   Test dose for normalisation 

Preheat to 260°C 

(5 K/s; held for 10 s) 

or Preheat to 280°C 

(5 K/s; held for 10 s) 

Preheat to empty shallow 

traps 

OSL stimulation 60 s 

Blue diodes at 90% power 

  OSL stimulation to deplete 

OSL trap 

Preheat to 260°C 

(5 K/s; held for 10 s) 

or Preheat to 280°C 

(5 K/s; held for 10 s) 

Preheat to stimulate thermal 

transfer 

OSL stimulation 60 s 

Blue diodes at 90% power 

  OSL stimulation to measure 

TT-OSL 

Preheat to 300°C 

(5 K/s; held for 10 s) 

  High temperature preheat to 

deplete DD-TT-OSL 

OSL stimulation 60 s 

Blue diodes at 90% power 

  OSL stimulation to deplete 

OSL trap 

Preheat to 260°C 

(5 K/s; held for 10 s) 

or Preheat to 280°C 

(5 K/s; held for 10 s) 

Preheat to stimulate thermal 

transfer 

OSL stimulation 60 s 

Blue diodes at 90% power 

  OSL stimulation to measure 

DI-TT-OSL 

Test dose (8.3 Gy β)   Test dose for normalisation 

Preheat to 260°C 

(5 K/s; held for 10 s) 

or Preheat to 280°C 

(5 K/s; held for 10 s) 

Preheat to empty shallow 

traps 
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OSL stimulation 60 s 

Blue diodes at 90% power 

  OSL stimulation to deplete 

OSL trap 

Preheat to 260°C 

(5 K/s; held for 10 s) 

or Preheat to 280°C 

(5 K/s; held for 10 s) 

Preheat to stimulate thermal 

transfer 

OSL stimulation 60 s 

Blue diodes at 90% power 

  OSL stimulation to measure 

TT-OSL 

Heat to 350°C for 200 s 

with or without 

Blue diodes at 90% power 

or Heat to 290°C for 200 s 

with 

Blue diodes at 90% power 

High temperature heat to 

deplete all TT-OSL signal 

Table 10.1: TT-OSL SAR protocols with alternative steps. 
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Each preheat was used with each end-of-cycle wash, making six 

protocol variants tested in all. Four aliquots were used for 

each protocol, one from the Woakwine range, two from the Robe 

range, and one from Naracoorte East. Each set of results was 

calculated using all three background subtractions (end-of-

OSL, near-to-signal TT-OSL, and end-of-TT-OSL), using both 

the TT-OSL and OSL responses to test doses for normalisation, 

and using the first 0.1 s and 0.5 s of signal. 

 

For all results using OSL normalisation, the first data point 

is much higher than subsequent results, indicating that 

either four hours of sun exposure is not enough to fully 

bleach the TT-OSL signal, or that the normalisation method 

used is not sufficient to normalise the first cycle with 

subsequent ones. Results were put into two categories, 'good' 

and 'bad'. 'Bad' results had positive or negative gradients 

in the results of cycles two to 12, had scattered results, or 

the dosed results could not be resolved as distinct from the 

zero-dose result (cycle 13). 'Good' results had results from 

cycles two to 12 in a straight line with a gradient of zero, 

which was distinct from the zero result. Positive gradients 

were found in DD-TT-OSL and TT-OSL results, and negative 

gradients were found only in TT-OSL results (see fig 10.1). 

Only one protocol variant had 'good' results for all four 

aliquots: the protocol with the 260 °C preheat to stimulate 

TT-OSL and the end-of-cycle "hot wash" using 200 s blue diode 

stimulation at 350 °C. The data analysis methods which gave 

'good' results for the protocol above used TT-OSL and OSL 

normalisation with end-of-OSL background subtraction, and OSL 

normalisation with near-to-signal TT-OSL background 

subtraction, using the first 0.1 s of TT-OSL signal. 
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Figure 10.1: Examples of A) 'good' results; B) scattered results; C) results with a 

positive trend; and D) results with a negative trend. A, B, and C are from DD-TT-OSL 

results, while D is from TT-OSL results.
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Following the observations above, the protocol was changed to 

include blue diode stimulation with the 350 ºC end-of-cycle 

trap resetting. Three further changes to the protocol were 

also made: 

 -OSL and TT-OSL stimulation for two minutes: previous 

protocols had OSL and TT-OSL stimulation times of one minute. 

Two minutes gives end-of-stimulation readings closer to a 

zero-gradient straight line, and so gives more accurate 

background subtractions for longer integrals, such as the 0.5 

s TT-OSL integral. 

 -Randomising doses: the previous 5 mm aliquot results 

were done with doses in order of increasing size. This can 

give artificial dose dependence to growth curves if the 

normalising method does not work. The modified protocol uses 

a non-progressive dose for each cycle, and has the repeated 

dose just before the zero-dose cycle, to ensure that any un-

normalised changes to the dose dependence during successive 

cycles is easily visible. 

 -Larger test doses: TT-OSL responses to test doses 

previously did not give good normalisation results, most 

likely due to the signals being too small to be resolved 

properly. The test dose was increased from around 8 Gy to 

around 18 Gy of β dose, to ensure the resolvability of the 

signal. This will mean that the sensitivity change in the 

sample due to the test dose will be larger, but that more 

accurate TT-OSL normalisation will be gained. 

 

A comparison of the old protocol and the new one is shown in 

table 10.2. 
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Table 10.2: The old protocol and revised protocol. Pertinent 

changes are in bold. 

  

Old Protocol Step New Protocol Step 

β dose (0 at natural) β dose (0 at natural) 

Preheat to 260°C 

(5 K/s; held for 10 s) 

Preheat to 260°C 

(5 K/s; held for 10 s) 

OSL stimulation 60 s 

Blue diodes at 90% power 

OSL stimulation 120 s 

Blue diodes at 90% power 

Preheat to 260°C 

(5 K/s; held for 10 s) 

Preheat to 260°C 

(5 K/s; held for 10 s) 

OSL stimulation 60 s 

Blue diodes at 90% power 

OSL stimulation 120 s 

Blue diodes at 90% power 

Test dose (8.3 Gy β) Test dose (18.4 Gy β) 

Preheat to 260°C 

(5 K/s; held for 10 s) 

Preheat to 260°C 

(5 K/s; held for 10 s) 

OSL stimulation 60 s 

Blue diodes at 90% power 

OSL stimulation 120 s 

Blue diodes at 90% power 

Preheat to 260°C 

(5 K/s; held for 10 s) 

Preheat to 260°C 

(5 K/s; held for 10 s) 

OSL stimulation 60 s 

Blue diodes at 90% power 

OSL stimulation 120 s 

Blue diodes at 90% power 

Preheat to 300°C 

(5 K/s; held for 10 s) 

Preheat to 300°C 

(5 K/s; held for 10 s) 

OSL stimulation 60 s 

Blue diodes at 90% power 

OSL stimulation 120 s 

Blue diodes at 90% power 

Preheat to 260°C 

(5 K/s; held for 10 s) 

Preheat to 260°C 

(5 K/s; held for 10 s) 

OSL stimulation 60 s 

Blue diodes at 90% power 

OSL stimulation 120 s 

Blue diodes at 90% power 

Test dose (8.3 Gy β) Test dose (18.4 Gy β) 

Preheat to 260°C 

(5 K/s; held for 10 s) 

Preheat to 260°C 

(5 K/s; held for 10 s) 

OSL stimulation 60 s 

Blue diodes at 90% power 

OSL stimulation 120 s 

Blue diodes at 90% power 

Preheat to 260°C 

(5 K/s; held for 10 s) 

Preheat to 260°C 

(5 K/s; held for 10 s) 

OSL stimulation 60 s 

Blue diodes at 90% power 

OSL stimulation 120 s 

Blue diodes at 90% power 

Heat to 350°C for 200 s Heat to 350°C for 200 s 

with Blue diodes at 90% power 
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------------------- 

11-IMPROVED RESULTS 

------------------- 

 

After improving the protocol, eight 125-180 µm grain diameter 

5mm aliquots each of the Naracoorte East, Harper, Baker, East 

Dairy and Woakwine samples were made, and run through the 

improved protocol presented at the end of Chapter 10 (table 

10.2) with the dose per cycle given in table 11.1. 

Measurements were done on a Risø TL/OSL DA-20 with an 

evacuated chamber filled with nitrogen. A 7.5 mm HOYA U340 

filter was interposed between the sample and the 

photomultiplier. An EMI 9235QB PMT was used for photon 

counting, and a Sr
90
/Y

90
 β irradiation source with an 

approximate strength of 1.48 GBq (a dose rate for quartz of 

approximately 0.092 Gy/s) was used to irradiate samples. Much 

larger signals were seen than before, and near-TT-OSL 

background subtracted results and TT-OSL normalised results 

were able to be analysed. Analysis sets (of particular 

normalisation, background subtraction, and integral of signal 

used) were deemed successful if at least half of the aliquots 

gave a result. Results were found by taking the weighted mean 

of successful aliquots. 

 

Cycle Naracoorte 

East 

Harper Baker East 

Dairy 

Woakwine 

2 376 84 167 84 75 

3 63 167 42 42 50 

4 1004 502 251 251 8 

5 188 251 84 167 25 

6 376 167 167 84 50 

7 0 0 0 0 0 

8 524 3095 335 125 276 

Table 11.1: The dose (in Gy) used in each cycle of the TT-OSL 

SAR protocol for each sample. The first cycle is to measure 

the natural signal, and so no dose is given to the sample. 

 

-Results- 

 

TT-OSL normalisation appeared to give reasonable results, 

though for DD-TT-OSL and TT-OSL results they saturated very 

quickly (see Fig 11.1 for an example). Results were found for 

the Woakwine and East Dairy samples, but for other samples 

natural signals were at the saturation point of the signal-

to-dose curve. TT-OSL normalisation gave DI-TT-OSL results 

for all samples but the Naracoorte East sample, which did not 
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have any successful DI-TT-OSL results for either 

normalisation method. 

 

 
Figure 11.1: Examples of the growth curves of an aliquot 

using OSL and TT-OSL signals for normalisation. The aliquot 

results shown are from the Woakwine sample, and use 0.1 s of 

signal and end-of-TT-OSL background subtraction. 

 

Near-TT-OSL background subtractions still did not have many 

successful aliquots when using the first 0.1 s of the signal. 

It was successful using DD-TT-OSL with the Woakwine and 

Naracoorte East samples, but not the others. In general, all 

results were less scattered than those from the initial 

results chapter (see Fig 11.2), and more data analysis 

methods were successful. 
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Figure 11.2: Example of the scatter of results. Shown are the 

DD-TT-OSL results of the Woakwine sample, using OSL 

normalisation and a) end-of-OSL; b) near-TT-OSL; and c) end-

of-TT-OSL background subtraction. Blue data points are with 

0.1 s of signal, and black data points are with 0.5 s of 

signal. Previously gained results are shown: in red, TL 

results; in green, OSL results; in blue, oxygen isotope 

results. 

  



142 
 

 

DD-TT-OSL 

  end-of-OSL 

background 

subtractio

n 

near-TT-OSL 

background 

subtraction 

end-of-TT-

OSL 

background 

subtraction 

Expected 

range 

(ka) 

Naracoorte 

East 
OSL 

normalisation 
   >780 

 0.1 s 240±7 78±11 243±7  

 0.5 s 211±7 219±8 209±7  

Harper OSL 

normalisation 
   580-

650 

 0.1 s 251±10  292±12  

 0.5 s 229±11 257±12 233±12  

Baker OSL 

normalisation 
   450-

500 

 0.1 s 237±7  230±6  

 0.2 s 195±6 209±7 198±6  

East 

Dairy 

OSL 

normalisation 
   200-

300 

 0.1 241±9  243±8  

 0.5 174±7 190±7 173±6  

 TT-OSL 

normalisation 
    

 0.1 s 77±8    

Woakwine OSL 

normalisation 
   118-

130 

 0.1 s 138±6 220±46 115±4  

 0.5 s 72±3 76±4 71±3  

 TT-OSL 

normalisation 
    

 0.1 s 89±9  42±3  

 0.5 s 26±1 27±2 26±1  

Table 11.2: Results for DD-TT-OSL signals using various data 

analysis methods. All results are in ka. 

 

DD-TT-OSL results, as seen in the table above, did not give 

accurate results for most samples, in the case of the 

Naracoorte East sample underestimating the minimum sample age 

by an average of 580 ka. For the East Dairy and Woakwine 

samples, OSL normalisation with 0.1 s of signal using end-of-

OSL and end-of-TT-OSL background subtractions were in the 

range of previous results. However using OSL normalisation 

and 0.5 s of signal gave results that underestimated both 

sample ages by around 30 ka. 
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TT-OSL 

  end-of-OSL 

background 

subtraction 

near-TT-OSL 

background 

subtraction 

end-of-TT-

OSL 

background 

subtraction 

Expected 

range 

(ka) 

Naracoorte 

East 
OSL 

normalisation 
   >780 

 0.1 s 288±8  277±8  

 0.5 s 248±8 254±9 245±8  

Harper OSL 

normalisation 
   580-650 

 0.1 s 347±12  358±13  

 0.5 s 298±13 323±14 299±13  

Baker OSL 

normalisation 
   450-500 

 0.1 s 280±6  274±7  

 0.5 s 223±7 238±7 226±7  

East 

Dairy 

OSL 

normalisation 
   200-300 

 0.1 s 282±6  274±7  

 0.5 s 214±5 228±5 226±7  

Woakwine OSL 

normalisation 
   118-130 

 0.1 s 161±6  137±4  

 0.5 s 91±4 93±4 88±4  

 TT-OSL 

normalisation 
    

 0.1 s 100±6  72±4  

 0.5 s 50±3 50±3 48  

Table 11.3: Results for TT-OSL signals using various data 

analysis methods. All results are in ka. 

 

TT-OSL results are on average around 20 % larger than their 

DD-TT-OSL counterparts; however the Naracoorte East, Harper, 

and Baker results still underestimate the results by hundreds 

of ka. All East Dairy results lie within the expected range, 

though that range is broad (see table 11.3). Woakwine results 

either lie under or over the expected range. Two results come 

close to the expected range: Using OSL normalisation, end-of-

TT-OSL background subtraction, and 0.1 s of signal; and using 

TT-OSL normalisation, end-of-OSL background subtraction, and 

0.1 s of signal. 
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DI-TT-

OSL 

  end-of-OSL 

background 

subtraction 

near-TT-OSL 

background 

subtraction 

end-of-TT-

OSL 

background 

subtraction 

Expected 

range 

(ka) 

Harper OSL 

normalisation 
   580-

650 

 0.1 s 582±22  562±23  

 0.5 s 488±19 506±20 490±19  

 TT-OSL 

normalisation 
    

 0.5 s 298±13 296±16   

Baker OSL 

normalisation 
   450-

500 

 0.1 s 158±9  355±9  

 0.5 s 306±7 315±8 306±7  

 TT-OSL 

normalisation 
    

 0.1 s 321±20    

 0.5 s 359±14  369±14  

East 

Dairy 

OSL 

normalisation 
   200-

300 

 0.1 s 396±9  393±10  

 0.5 s 319±7 340±7 322±7  

 TT-OSL 

normalisation 
    

 0.1 s 283±13  320±13  

 0.5 s 267±6 279±8 273±6  

Woakwine OSL 

normalisation 
   118-

130 

 0.1 s 192±7 309±40 192±7  

 0.5 s 166±6 170±6 166±6  

 TT-OSL 

normalisation 
    

 0.1 s 95±12  142±8  

 0.5 s 138±5 147±6 143±5  

Table 11.4: Results for DI-TT-OSL signals using various data 

analysis methods. All results are in ka. 

 

Compared with TT-OSL and DD-TT-OSL results, TT-OSL 

normalisation was more sucessful for DI-TT-OSL results (see 

table 11.4), with results gained up to the Harper sample. 

Woakwine and East Dairy results using TT-OSL normalisation 

and end-of-OSL background subtractions were within the 

expected age ranges, but were overestimated using OSL 
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normalisation by 96 and 19 ka for East Dairy, and 62 and 36 

ka for Woakwine, for 0.1 s and 0.5 s results respectively. 

 

In contrast, most Baker and Harper results underestimated the 

age, albeit by 300 ka less than DD-TT-OSL results for Harper, 

and 100 ka less for the Baker sample. Two data analysis 

combinations (OSL normalisation, end-of-OSL and end-of-TT-OSL 

background subtractions, 0.1 s of signal) gave ages within 

errors in the expected range for the Harper sample, though as 

no other sample gave equally good results for these data 

analysis combinations, the result cannot be said to be useful 

or indicative of a trend. No results for the Naracoorte East 

sample were gained, due to the saturation of the dose 

response curve. 

 

-Conclusions- 

 

For younger samples, DD-TT-OSL signals appear to give the 

best approximation for the age, when using 0.1 s of signal 

and a background subtraction that maximises the amount of 

signal used. Results for older samples appear to remain 

between 200 and 300 ka, though the samples are much older. 

For the same data analysis methods TT-OSL signals give 

slightly higher results, in general around 30 ka higher. DI-

TT-OSL results are much more scattered, but ages increase 

beyond the apparent limits of DD-TT-OSL and TT-OSL. DI-TT-OSL 

results, however, in general do not match previously gained 

results for the age of the samples. 

 

Of the three signals used (DD-TT-OSL, TT-OSL, and DI-TT-OSL), 

DD-TT-OSL signals gave results that most closely matched 

previously calculated ages for the younger samples. The fact 

that older samples give the same age results—i.e., that the 

method appears to "plateau" at approximately 200-250 ka, 

suggest that DD-TT-OSL signals may not be able to be used for 

"long-range" dating. The asymptotic effect could be age-

related rather than related to the trap population 

saturating, as the three oldest samples have different 

background radiation dose rates. From the results it is 

unclear whether the East Dairy sample, which has an expected 

age at the range the others asymptote at, gives good results 
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due to chance or not. These results, therefore, only indicate 

that one can acquire DD-TT-OSL results in the expected range 

for samples not above 120 ka. DD-TT-OSL signals, however, 

still saturate at much larger doses than does OSL (note the 

linear nature of the OSL normalised dose recovery curve in 

Figure 11.1, up to 300 Gy). TT-OSL dating may, therefore, be 

useful for dating young sites with very high natural dose 

rates, and so, while not very old, the quartz in the sample 

has already reached saturation. This probability was 

investigated in later chapters in two ways: (1) dating of a 

palaeontological (megafaunal) site where conventional OSL 

signals were saturated, and (2) A kinetic analysis of the TT-

OSL signal. It should be noted that as the SESA samples all 

have the same general history and origin, the TT-OSL 

behaviour of these samples may not necessarily be general 

quartz TT-OSL behaviour, and other samples may behave 

differently. 
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---------------- 

12-Baldina Creek 

---------------- 

 

While most sites with saturated natural OSL signals are quite 

old, others saturate due to high natural dose rates. Baldina 

Creek is one such site, with a natural dose rate of 

approximately 2.5 Gy/ka. One sediment layer is thought to be 

within 40-100 ka old, due to the presence of remains of 

certain megafauna. Electron-spin resonance (ESR) dating has 

previously dated diprotodon teeth in the area to around 50-70 

ka in age (Grün et al, 2008). Due to its high dose rate and 

low age, this layer is useful for testing TT-OSL's usefulness 

in dating young samples that display saturated OSL signals. 

 

The Baldina Creek megafaunal layer was sampled in late 2012. 

The layer is defined by fine red silt and clay containing 

megafaunal remains. The sample was taken to the right of a 

washout revealing "Diprotodon opatum" remains in situ (see 

fig 12.1). Gamma spectrometry measurements were taken for one 

hour using a portable NaI gamma-ray spectrometer. The average 

depth of the sample site is thought to be two metres. 

 

 

 
Figure 12.1: The Baldina Creek sampling site. To the right of 

the tools is the sample in the process of being collected; to 

the left is a washout exposing megafaunal remains. 
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The sample was prepared as described for the SESA samples in 

the 'Sample' chapter of this thesis. Thirty seven 5 mm 

aliquots of 125-180 µm grains were prepared and tested using 

the protocol shown in the 'Improved results' chapter, with 

the doses given in table 12.1. Doses given each cycle are 

shown in the table below. 

 

Cycle Dose (Gy) 

1 Natural 

(0) 

2 167 

3 251 

4 502 

5 335 

6 167 

7 0 

8 84 

Table 12.1: Doses given to each aliquot in each cycle of the 

TT-OSL SAR protocol. 

 

-Dosimetry- 

 

The dose rate for the Baldina Creek sample was calculated in 

the same way as the SESA samples. Uranium, thorium, and 

potassium levels were found using a one-hour in situ gamma 

spectrometry measurement, subsequently analysed by "Minty 

Geophysics", and by XRF soil analysis by "Genalysis Pty Ltd". 

While the two methods roughly agreed with each other, they 

did not agree within errors (see 12.2), and so each were used 

to create a separate result for the dose rate. The dose rate 

was calculated using the J. R. Prescott and J. T. Hutton 

Cosmic Ray spreadsheet, and by the AGE program by R Grün. The 

dose rate using the gamma spectrometry measurements was 2.94 

± 0.11 Gy/ka, while the dose rate using the Genalysis soil 

analysis was 3.48 ± 0.14 Gy/ka. This difference in dose rate 

using different methods may be due to a disequilibrium of 

parent to daughter isotopes, due to a wet period of the 

sample's life allowing soluble daughter isotopes to be 

removed from the surrounding sediment. A way to allow for 

this difference in soil analysis is to use the gamma 

spectrometry measurements for the gamma radiation part of the 

dose rate calculation, and the soil analysis measurements for 

the alpha and beta part of the dose rate calculation. This 

gives a dose rate of 3.29 ± 0.084 Gy/ka. 
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 Uranium (ppm) Thorium (ppm) Potassium (%) 

Gamma 

Spectrometry 

1.77±0.06 10.18±0.14 1.90±0.01 

Genalysis soil 

analysis 

(ICPMS) 

2.24±0.14 12.77±0.74 2.37±0.09 

Table 12.2: Uranium, Thorium and Potassium results from gamma 

spectrometry measurements and soil analysis. 

 

-Results- 

 

All results using TT-OSL normalisation were saturated. 

Initial results were found using three different methods of 

data analysis, previously found to give expected results for 

a sample of similar age: 

 

1) DD-TT-OSL results with end-of-OSL background subtractions 

using the first 0.1 s of signal, 

 

2) DD-TT-OSL results with end-of-TT-OSL background 

subtractions using the first 0.1 s of signal, 

 

3) TT-OSL results with end-of-TT-OSL background subtractions 

using the first 0.1 s of signal. 

 

These data analysis methods were chosen as they gave 

reasonable results for the Woakwine SESA sample, the closest 

well-dated SESA sample in age to the expected age of the 

Baldina Creek sample. This would mean that age-related 

discrepancies in Baldina Creek results would probably be 

similar to those of the Woakwine sample. Other problems 

associated with TT-OSL are saturation and resolvability 

issues. Both the Woakwine and Baldina Creek samples have 

bright signals, and so the signals can be resolved from the 

backgrounds in both cases. The Baldina Creek samples appear 

saturated when using TT-OSL normalisation, whereas the 

Woakwine sample does not in all cases. Other discrepancies 

that are sample specific cannot be compared between SESA and 

Baldina Creek samples, due to their different history, 

origins and locations. 

 

Aliquot results were ordered and graphed for all three data 

analysis methods. Results in order looked for the most part 

like a straight line, with curved drops at the start and end. 

A straight line was drawn from the median point, and weighted 

means were found using all data points that fell on the 
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straight line section within errors, unless there was a 

discontinuity in the line of data points. 

 

The weighted means of the three data analysis methods were 

289 ± 4 Gy, 268 ± 3 Gy, and 272 ± 3 Gy respectively. Graphs 

of the aliquot results and the results used are shown in 

figure 12.2 below. 
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Figure 12.2: the results for each aliquot using A) DD-TT-OSL results with end-of-OSL 

background subtractions; B) DD-TT-OSL results with end-of-TT-OSL background subtractions; 

and C) TT-OSL results with end-of-TT-OSL background subtractions. All three used OSL 

normalisation and the first 0.1 s of signal. Results used in weighted mean calculations 

are highlighted in red.



152 
 

 

 

Histograms were made of all DD-TT-OSL and TT-OSL results 

using OSL normalisation, and the peak values recorded. The 

main peak appeared around 250 Gy. In some results, there 

appears to be two or three peaks, but this may be due to the 

small amount of aliquots appearing in each bin. When only 

five bins are used, the histogram results approximate a 

Gaussian (see fig 12.3). Using weighted fitting (where the 

weights are the reciprocal of the number of aliquots in the 

bin), the 5-bin results for the three methods of data 

analysis used in the above section were fitted to a Gaussian 

using the Matlab curve fitting toolbox. The peak of the 

Gaussians gave the following results: 268 Gy (for DD-TT-OSL 

results using end-of-OSL background subtraction); 264 Gy (for 

DD-TT-OSL results using end-of-TT-OSL background 

subtraction); and 275.2 Gy (for TT-OSL results using end-of-

TT-OSL background subtraction). 
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Figure 12.3: Histograms of the three data analysis methods as 

described on page 145. Yellow histograms divide the data into 

15 bins, the first bin at the lowest result and the last bin 

at the highest. Blue histograms divide the data into five 
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bins. The red dashed line shows a Gaussian fitted to the 5-

bin results. 

 

As the Baldina Creek samples were done on a machine that had 

its instrumental error calculated (see Chapter 5, section 2), 

unlike for the Woakwine small aliquots in chapter eight, it 

is appropriate to use analysis that depends heavily on the 

calculated error. The R. Galbraith program "cdose-prf.s" was 

used. This program uses the "central age model" (Galbraith et 

al, 1999), which calculates the central peak in a 

distribution of discrete results, taking into account their 

errors. A dispersion value of 5 % (how far the peaks are off 

a Gaussian distribution) was used. Results are shown below in 

table 12.3. 

 

Data Analysis methods Peak value (Gy) Error (Gy) 

DD-TT-OSL 

0.1 s signal 

end-of-OSL bg subtraction 

265 75 

DD-TT-OSL 

0.1 s signal 

end-of-TT-OSL bg subtraction 

262 68 

TT-OSL 

0.1 s signal 

end-of-TT-OSL bg subtraction 

275 62 

Table 12.3: Peak values gained using the "cdose-prf.s" 

program by R. Galbraith. 

 

To test whether there was more than one peak in the 

distribution of results, the R. Galbraith "fmix.s" program 

was used. This program uses a "finite mixture model" 

(Galbraith and Laslett, 1993), and identifies and calculates 

where a given number of peaks is likely to occur in a 

distribution, for a given dispersion value. The program also 

gives a relative likelihood of the number of peaks chosen 

being accurate for the distribution. For a dispersion value 

of 5 %, four peaks was the most likely result. For a 

dispersion of 15 %, the two DD-TT-OSL data analysis methods 

gave 2 peaks as the most likely result, while the TT-OSL data 

analysis method gave a likely result of 3 peaks. A dispersion 

of 25-30 % gave the most likely result as one peak. This 

indicates that the 37 aliquots used do not give a sharp peak, 

and a greater number of aliquots would be needed to give a 

highly defined result. While 5 % dispersion rates give a 

result of four peaks, each peak would have an average of 9 

aliquots attributed to it, which is not enough to discount 
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counting errors as the source of variability in the 

distribution. 

 

As seen for the Woakwine results, the DD-TT-OSL results using 

end-of-TT-OSL background subtraction gives the smallest of 

the three results for Baldina Creek, and as this data 

analysis method also gave the closest result to the expected 

age in the Woakwine results, it was chosen for the Baldina 

Creek result, giving 262 ± 68 Gy for the equivalent dose. 

Using the combined gamma spectrometry and soil analysis dose 

rate results, this gives an age of 80 ± 21 ka for the 

sediment unit in which the Diprotodon Opatum was discovered. 

This result is considered by the palaeontologists to be in 

very good accord with expectation, which spanned 

approximately 40-110 ka, and agrees within errors with the 

ESR dating ages by Grün et al (2006). 
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-------------------------------- 

13-KINETICS OF THE TT-OSL SIGNAL 

-------------------------------- 

 

KINETIC MEASUREMENTS OF THE TT-OSL SIGNAL 

 

Obtaining kinetic measurements for TT-OSL signals can be 

difficult, as the signal is only measured indirectly. A 

number of different methods have been previously used. Li and 

Li (2006) used isothermal studies and pulsed annealing tests 

to study the kinetics of different thermally transferred 

signals. They identified one signal thermally transferred at 

temperatures between 260 and 320 °C, and another thermally 

transferred at temperatures higher than 500 °C. The signal 

transferred at lower temperatures was found to have an E 

value of 1.14 ± 0.05 eV, and an s value of 1.6 ± 2.4 *10
6 
s
-1
, 

giving a lifetime of 0.76 Ma at 20 °C. This would indicate 

that this signal will underestimate old samples. It should be 

noted that s values for quartz tend to be between 10
12
 to 10

13
 

s
-1
 (McKeever, 1985), and so an s value of the order of 10

6
 is 

physically unlikely. Similarly, 1.14 eV is an unusually 

shallow trap to require 260 °C for thermal drainage. 

 

Adamiec et al (2008) studied the kinetics of the thermally 

transferred signal used in TT-OSL dating protocols (the 

signal transferred from heating to 260 °C for 10 s). This was 

done by comparing TT-OSL and TL depletion and growth curves. 

Adamiec et al concluded that the TT-OSL signal is transferred 

from a trap not related to the 325 °C peak, but that had a 

similar thermal stability. 

 

Adamiec et al (2010) studied the kinetics of the thermally 

transferred signal from a 260 °C preheat for 10 s by looking 

at the depletion of TL signals after successive TT-OSL 

measurements. Kinetic measurements were made of the depleted 

TL signal by measuring the TL signals at different heating 

rates and using Hoogenstraaten's method. The lifetime at 10 

°C gained for the DD-TT-OSL signal was 4.5 Ma, and the 

lifetime of the DI-TT-OSL signal 48000 Ma. This would mean 

that for older samples, the TT-OSL signal would give an 

underestimation of the age, but the DI-TT-OSL signal would 

not (although it may have disadvantages for dating of its 

own, including slow optical decay rates, hence doubt about 

effective resetting by sunlight). 

 

An experiment to observe the depletion of TT-OSL signal 

gained from a 260 °C preheat was devised. A 26-cycle SAR 
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protocol was used, with an approximately 73.6 Gy β dose 

administered each cycle (see table 13.1). The preheat before 

the OSL depletion stimulation was varied from 150 to 400 °C 

(see table 13.2). Results were analysed using the end-of-TT-

OSL background subtraction. Results for TT-OSL and OSL 

normalisation, and 0.1 s and 0.5 s initial integrals were 

determined. Three 5 mm aliquots of 180-212 µm grains were 

used, one each of the Robe, Woakwine, and Naracoorte samples. 

 

Protocol Steps 

73.6 Gy β dose 

Preheat to varying temperatures at 5 K/s for 

10 s. 

OSL stimulation at 125 °C: blue diodes at 90% 

for 120 s 

Preheat to 260 °C, 5 K/s, 10 s 

OSL stimulation at 125 °C: blue diodes at 90% 

for 120 s 

Test dose (approx. 13.8 Gy β dose) 

Preheat to 260 °C, 5 K/s, 10 s 

OSL stimulation at 125 °C: blue diodes at 90% 

for 120 s 

Preheat to 260 °C, 5 K/s, 10 s 

OSL stimulation at 125 °C: blue diodes at 90% 

for 120 s 

Preheat to 300 °C, 5 K/s, 10 s 

OSL stimulation at 125 °C: blue diodes at 90% 

for 120 s 

Preheat to 260 °C, 5 K/s, 10 s 

OSL stimulation at 125 °C: blue diodes at 90% 

for 120 s 

Test dose (approx. 13.8 Gy β dose) 

Preheat to 260 °C, 5 K/s, 10 s 

OSL stimulation at 125 °C: blue diodes at 90% 

for 120 s 

Preheat to 260 °C, 5 K/s, 10 s 

OSL stimulation at 125 °C: blue diodes at 90% 

for 120 s 

Heat to 350 °C for 200 s with blue diodes at 

90% power 

Table 13.1: Protocol used for kinetics testing 
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OSL 

Preheats 

(in °C) 

150 

175 

200 

225 

250 

275 

300 

325 

350 

375 

400 

250 

275 

200 

210 

220 

230 

240 

250 

260 

270 

280 

290 

300 

310 

320 

Table 13.2: Preheats used in above protocol, in order of use. 
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Figure 13.1: Decay vs OSL preheat results for the Robe aliquot, using OSL normalisation 

and various background subtractions. Black data points: DD-TT-OSL; blue data points: TT-

OSL; green data points: DI-TT-OSL. 
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Figure 13.2: Decay vs OSL preheat results for the Woakwine aliquot, using OSL 

normalisation and various background subtractions. Black data points: DD-TT-OSL; blue 

data points: TT-OSL; green data points: DI-TT-OSL. 
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Figure 13.3: Decay vs OSL preheat results for the Naracoorte East aliquot, using OSL 

normalisation and various background subtractions. Black data points: DD-TT-OSL; blue 

data points: TT-OSL; green data points: DI-TT-OSL.
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-Results- 

 

Using OSL normalisation, the TT-OSL and DD-TT-OSL results are 

distinguished by measurements that are flat or slowly rising 

until 200 °C, then a sharp rise to a plateau at 225 °C, and a 

decay at 260 °C. Results reach a zero value between 350 and 

375 °C. DI-TT-OSL results do not reach zero, but have a rise 

to a plateau at 225 °C and a fall to initial levels from 300 

°C (see figs 13.1-13.3). 

 

One cannot use end-of-OSL background subtractions in this 

method of kinetic study before the OSL preheat and TT-OSL 

preheat reach the same temperature, as there will be shallow 

traps present in the OSL signal as slow components, which 

will increase the OSL background. As expected, for OSL 

normalisation the end-of-OSL background subtraction creates 

an increasing result with temperature to 260 °C. After 260 

°C, the result drops with respect to temperature, reaching a 

zero level at 350 °C while using the first 0.1 s of signal, 

and 375 °C using the first 0.5 s. Using the near-TT-OSL 

background subtraction using OSL normalisation gives results 

wherein a negative gradient is formed at 250-260 °C, with a 

zero value at 350-375 °C. Results using the end-of-TT-OSL 

background subtraction rise at around 220 °C, and fall to 

zero between 350 °C and 375 °C. 

 

The Woakwine aliquot did not initially have the rise-and-fall 

TT-OSL and DD-TT-OSL characteristics between 225 and 260 °C, 

but this phenomenon was gained during repeat measurements 

further in the cycle. This could be an unexplained 

experimental artefact. However, if it is an effect from the 

sample and not the instrumentation, it indicates that what 

causes this rise-and-fall is not necessarily present in all 

aliquots of a sample, and can be caused by repeated 

measurements, indicating it is a sensitivity effect. 
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Figure 13.4: Decay vs OSL preheat results for the Robe aliquot, using TT-OSL 

normalisation and various background subtractions. Black data points: DD-TT-OSL; blue 

data points: TT-OSL; green data points: DI-TT-OSL. 
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Figure 13.5: Decay vs OSL preheat results for the Woakwine aliquot, using TT-OSL 

normalisation and various background subtractions. Black data points: DD-TT-OSL; blue 

data points: TT-OSL; green data points: DI-TT-OSL. 
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Figure 13.6: Decay vs OSL preheat results for the Naracoorte East aliquot, using TT-OSL 

normalisation and various background subtractions. Black data points: DD-TT-OSL; blue 

data points: TT-OSL; green data points: DI-TT-OSL.
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Using TT-OSL normalisation, the DD-TT-OSL and TT-OSL results 

for the Robe and Woakwine aliquots have the signal decreasing 

with OSL preheat temperature, with the signal decreasing at a 

faster rate between 270 and 300 °C (see figs 13.4-13.6). The 

Naracoorte East aliquot has results that are approximately 

flat until 270 °C, after which they decrease until they reach 

zero signal at 375 °C. DI-TT-OSL results behaved the same as 

those with OSL normalisation. 

 

Using the first 0.1 s of signal creates a result that drops 

with temperature around 320-325 °C for the first two 

aliquots, and 260 for the third with a discontinuity in the 

gradient at 300 °C. Using a 0.5 s integral, one finds an 

initial drop in gradient between 260 and 275 °C, with a 

discontinuity between 290 and 300 °C. The normalised photon 

count drops to zero at 375 °C. 

 

Using TT-OSL normalisation gives results that are a little 

scattered due to low counting statistics for 0.1 s results, 

but general features are still visible: the normalised photon 

count vs OSL preheat temperature graph remains steady or 

slowly declining until 300-310 °C, after which there is a 

sharper decline until one reaches the zero value at 375 °C. 

For the Robe aliquot, the general features remain the same 

when using the 0.5 s integral, although the 0.1 s results 

from 150 to 310 °C are flat, while the 0.5 s integral results 

are slowly declining. For the Woakwine and Naracoorte East 

aliquots, the change to a sharper negative gradient occurs at 

270 °C. The results reach zero at 270 °C. 

 

-Modelling- 

 

In order to discover the thermal depletion properties of 

different metastable states, a model for thermal depletion 

was constructed, using the simple model for lifetime: 

       (
 

  
)
 

And the depletion equation: 

 L =  

  

    

 
   

Where t is the lifetime of the trap, s is the frequency 

factor (in s
-1
), E is the energy difference between the 

metastable state and the conduction band (in eV), k is 

Boltzmann's constant, T is the ambient temperature (in K), L 

is the proportion of charge left in a trap population, and t' 

is the time spent at a particular temperature. The 
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probability of an electron remaining in the trap for ten 

seconds with a beginning ramp of 5 K/s from 0 °C was found 

for different ending temperatures and different E and s 

values, and then plotted using a Matlab code (see Appendix 

A). 

 

For the E and s values found in Li and Li (2006), the model 

suggests that the trap population fully depopulates at around 

575°C, indicating that our samples do not have TT-OSL signals 

transferred by a 260 °C preheat that originate from a 

metastable state with these kinetic values. 

 

Values of E and S were taken from Spooner and Questiaux 

(2000), Bailey (2001), Spooner and Franklin (2002), and Kitis 

(2002) and used in the model (see fig. 13.7). The 

experimental results fit between the 325 °C trap and the 375 

°C trap depletion values, fitting in between the depletion 

rates for the OSL UV signal (Spooner and Questiaux, 2000) and 

the 375 °C trap as calculated by Kitis (2002). 

 

 
Figure 13.7: Thermal decay model results for various E and s 

values from Spooner and Questiaux (2000), Bailey (2001), 

Spooner and Franklin (2002), Kitis (2002), and Li and Li 

(2006). 
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-Fitting to the model- 

 

It is theoretically possible to use this model to find E and 

s values for the origins of the DD-TT-OSL signal. However, 

this assumes that the DD-TT-OSL signal originally comes from 

only one trap, which may not be the case. The TT-OSL signal 

is made up of two distinct signals, the DD-TT-OSL and the DI-

TT-OSL signals, which come from two different origins. Even 

if the DD-TT-OSL signal does only come from one trap, there 

may be a small amount of DI-TT-OSL signal in the experimental 

results due to the DI-TT-OSL subtraction process not being 

completely efficient. 

 

To minimise the effects of other signals, the TT-OSL 

normalised, near-TT-OSL background subtracted, 0.1 s integral 

signal was used to attempt to find E and s values for the DD-

TT-OSL signal. Iterations of E values from 0.5 to 3.0 eV, and 

s values from 1*10
9
 to 1*10

15
 were put through the modelling 

calculations, and the one with the lowest least squares value 

was found, using the "simdepopfit.m" Matlab code (see 

Appendix). Experimental results from 260 °C and onwards were 

used, as increased backgrounds due to the presence of shallow 

traps in the OSL signal may have influenced earlier results. 

It was assumed that at 150 °C the TT-OSL thermal depletion 

rate is near zero, and so the TT-OSL signals were normalised 

by this data point. The results are shown in table 13.3, and 

figure 13.8 below. 

 

Aliquot E (eV) s (s
-1
) R

2
 value 

Robe 1.8 10
9 

0.72 

Woakwine 1.9 10
10 

0.65 

Naracoorte East 1.9 10
10 

0.76 

Table 13.3: Modelling results for the simdepopfit.m function, 

including E, s, and R-squared values. 
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Figure 13.8: Comparisons of the experimental results (blue 

circles) and the fitting model (red crosses) for TT-OSL 

normalisation, near-TT-OSL background subtractions, and 0.1 s 

of signal. 
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Note that the normalisation of the DD-TT-OSL values (by the 

value of depletion at 150 °C) heavily influences the result 

of these results, and may not be accurate. In addition, the 

near-TT-OSL background subtraction with 0.1 s of signal has 

large counting errors, and the scatter of the data could 

effect the results. More experimental work must be done in 

this area to find accurate kinetic values for the DD-TT-OSL 

signal.  
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------------------------- 

14-DISCUSSION AND SUMMARY 

------------------------- 

 

-Unusual signals- 

Natural dose order 

The TT-OSL SAR protocol did not produce results consistent 

with other results for SESA samples older than East Dairy 

(approximately 200-300 ka). However, the test in the 'Initial 

research into the TT-OSL behaviour of SESA samples' chapter 

of this thesis, which compared the natural TT-OSL response of 

each sample, showed that even up to the oldest sample, the 

TT-OSL response increased with age. This may mean that the 

inability of the approaches tested here to date older SESA 

samples is due to the protocol used, rather than the TT-OSL 

signal itself. 

 

Another explanation for this phenomenon is that the sample's 

sensitivity is dependent on age. Looking at the signal 

received after the first test dose, which is the test dose 

directly after measuring the natural TT-OSL signal, this 

appears to be the case (see fig 14.1). The fact that the 

older samples' natural TT-OSL response increases under the 

same test dose when its equivalent dose results do not may 

mean that the test dose normalisation techniques used here do 

not take into account all of the sensitivity changes in the 

sample. 
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Figure 14.1: TT-OSL test dose signals from eight aliquots for 

each sample, using 0.1 s of signal and no background 

subtraction. Expected doses were calculated using the 

Belperio and Cann (1990) oxygen-isotope ages and the 

dosimetry of the individual samples. 

 

Anomalous dose response curves 

Some dose response curves using OSL normalisation, end-of-OSL 

background subtraction, and the first 0.1 s of signal, rather 

than being linear or saturating exponential in shape, had a 

'tick' shape (see fig 14.2), where the zero-dose was larger 

than the next few doses. This may be a peculiarity of the 

samples or the TT-OSL signal, or may be a sign that 

normalisation using a test dose was not correcting for all 

the sensitivity changes in the sample, or possibly due to 

"dose quenching". For these samples there was in general an 

increase in sensitivity throughout the cycles (though the 

bulk of the sensitivity change of a cycle was dependent on 

the dose of that cycle and the previous one). In the 

sequences used, the signal with zero dose was always measured 
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second-to-last, and the sample at that point could 

potentially be much more sensitive than for cycles situated 

earlier in the protocol. 

 

 

Figure 14.2: Example of 'tick' behaviour in a Woakwine 

sample. The numbers below each data point indicate the cycle 

of the single-aliquot regenerative dose protocol in which 

they were measured. 

 

-Measurement precision- 

The experimental errors of the equivalent dose for the 

Woakwine sample, using the signal and data analysis methods 

that best matched previous Woakwine results (DD-TT-OSL 

results using OSL normalisation, end-of-TT-OSL background 

subtraction, and the first 0.1 s of signal) were quite small, 

between 5 and 12 %. Similar results for the Baldina Creek 

sample gave errors between 3 and 9 %. However, the spread of 

results was much larger, the average Woakwine sample result 

deviating 18 Gy from the mean value (15 %), and the average 

Baldina Creek result deviating 56 Gy from the mean value (21 
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%). The spread of data is obviously dependent on the sample 

(the Woakwine results had a smaller spread with seven 

aliquots than the Baldina Creek results with 37), and this 

more than the experimental error determines the precision of 

the result. 

 

TT-OSL signals are almost always much dimmer than their OSL 

counterparts (barring residual signals at nominally zero 

doses), and so suffer from greater counting errors. Results 

in chapter nine (where light from the samples was 

artificially dimmed due to salt build-up on the apparatus 

(see Chapter 10 for details)) show the effect very dim 

samples can have on the results. Experimental errors were 

extremely large, and a much greater number of aliquots would 

have been needed to gain a similar precision to the results 

in chapter 11. Also of note from Chapter nine, it was much 

less likely to gain a result when using the first 0.1 s of 

signal, and the first 0.5 s of signal had to be used in order 

to gain more results for a given number of aliquots. As using 

the first 0.1 s of signal gave better results for the 

Woakwine sample, it is possible that the accuracy of dim 

samples would be affected as well as the precision. 

 

-Analysis variables- 

In this thesis different signals and data analysis methods 

were used on each sample, and each variable had a different 

effect on the final aliquot result, as discussed below. 

 

Signal used (DD-TT-OSL, TT-OSL, or DI-TT-OSL) 

Different workers have previously used DD-TT-OSL (Wang et al, 

2006a), TT-OSL (Porat et al, 2009), and DI-TT-OSL (Jacobs et 

al, 2011) signals to gain TT-OSL age results. For young SESA 

samples, DD-TT-OSL results were closer to expected results, 

while TT-OSL results in general overestimated the age of 

these young samples. DI-TT-OSL results were not near expected 

values, but results increased with age when TT-OSL and DD-TT-

OSL results did not. It might be that the SESA samples need a 

higher temperature anneal to remove all the DD-TT-OSL signal, 

and that DI-TT-OSL signals could be more accurate for older 

SESA samples than results suggest, if analysed in a different 

way. 
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Portion of signal used 

In this thesis, both the first 0.1 s of signal and the first 

0.5 s of signal were used to gain results. The 0.1 s signal 

results were more scattered, as is to be expected as the 

counting errors would be larger for these results. The 0.5 s 

of signal results were further from the expected value than 

the 0.1 s signal results, indicating that the 0.1 s of signal 

results are more reliable. This may be because there is a 

slower OSL signal interfering with the TT-OSL signal that is 

minimised in the 0.1 s signal results. 

 

Background subtraction 

Three different types of background subtraction were used in 

this thesis: end-of-OSL, end-of-TT-OSL, and near-TT-OSL 

methods. In general, near-TT-OSL background subtractions led 

to scattered data points that could not be fit to a dose 

curve, probably due to the small amount of signal remaining 

after the background subtraction. In contrast, end-of-OSL and 

end-of-TT-OSL background subtractions resulted in dose curves 

that were easily fitted. In general, results with end-of-TT-

OSL background subtraction were the nearest to the expected 

age. It should also be noted that end-of-TT-OSL background 

subtraction maximises the amount of signal used, giving 

smaller counting errors and hence greater precision. 

 

Normalisation method 

For all samples, including those that did not give expected 

results, OSL normalisation gave dose response curves that 

could be fit well to a linear or saturating exponential fit. 

Using TT-OSL normalisation gave more scattered data points 

and in addition, except for the very young samples (Long 

Beach and Woakwine), growth curves saturated before the 

natural dose. OSL normalisation, however, may not normalise 

all components of the signal reliably, as discussed in the 

'unusual signals' section above. 

 

-Overview of sample results- 

SESA results 

Woakwine and East Dairy ages were measured to be within the 

expected age range when using DD-TT-OSL signals with OSL 

normalisation, giving the best results when using the first 
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0.1 s of signal, and end-of-TT-OSL background subtraction. 

The Long Beach sample, from the modern beach, gave results 

larger than zero, suggesting that a residual signal may also 

be present in the other samples. Baker, Harper, and 

Naracoorte East results significantly underestimated the age 

of the samples when compared to previous results, no matter 

what TT-OSL signal was used. 

 

Baldina Creek 

Baldina Creek results gave answers that were within the 

expected age range: stratigraphic correlation suggests an 

approximate age range of 40-110 ka. Errors of the TT-OSL 

signals are larger than typical OSL errors, although 

decreasing the error of the final result is possible by using 

more aliquots. 

 

Large errors in a dating technique can limit its usefulness 

in answering questions people may have about the dated 

sample. One major question posed by palaeontologists is 

whether the megafauna of Australia became extinct due to 

human hunting or climactic change. Due to the larger errors 

of this technique, the age measured here straddles both the 

climate change event (last ice age) and the migration of 

humans to Australia, and so using TT-OSL to date this 

megafaunal skeleton does not support either theory. 
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-------------- 

15-CONCLUSIONS 

-------------- 

 

In the introduction to this thesis, I outlined a number of 

questions I wished to answer, the answers to which are below: 

 

Is TT-OSL suitable for dating buried sediments at natural 

doses where optical dating fails? 

As shown from the Baldina Creek sample, the TT-OSL signal has 

the potential to date relatively "young" sediments with large 

natural doses that are saturated when measured by 

conventional OSL. Care must be taken, however, to ensure that 

the sediment's environment and age are suitable for use with 

the TT-OSL signal. 

 

Is TT-OSL suitable for dating buried sediments older than can 

be dated using conventional OSL (more than half a million 

years)? 

While the TT-OSL signal was successful at matching age 

results from younger samples, no TT-OSL dating method used 

was able to date SESA samples older than 250 ka. 

 

How precise are TT-OSL measurements, and how much time and 

sample is needed to obtain a result? 

As mentioned in the previous chapter, the precision of the 

TT-OSL measurements are effected mainly by the variability of 

dose given in the sample, unless the TT-OSL signals are very 

dim. As the signal strength is also sample dependent, it is 

not possible to make any generalisations about the precision 

of TT-OSL measurements. 

 

Using a Sr
90
/Y

90
 beta source which doses quartz at a rate of 

0.092 Gy/s in an automated Risø TL/OSL DA-20, the full 

Woakwine SAR protocol took approximately eight hours to run 

one 5 mm (3.5—5.5 mg) sample, while the Baldina Creek 

protocol took 12 hours, due to the large natural dose. To 

obtain results for the 37 Baldina Creek aliquots in this 

thesis, therefore, took approximately 18.5 days of machine 

time, and 0.1665 g of sample. For comparison, an OSL protocol 

with the same doses given would take approximately 7 hours to 

complete one sample, or 10.8 days for 37. 

 



184 
 

Is TT-OSL more suitable for dating older sediments than other 

luminescence methods, such as thermoluminescence (TL)? 

As seen in chapters 11 and 13, the TT-OSL signal does not 

have a large lifetime suitable for dating old sediments. In 

chapter 7, it was shown that wind-blown sands that have had 

significant exposure to sunlight still contained a residual 

TT-OSL dose, and TT-OSL is therefore not suitable for dating 

very young sediments. According to the research done in this 

thesis on the SESA samples, TT-OSL has a small window of 

usefulness: for dating samples of approximately 50-150 ka, 

that have dose rates large enough for conventional OSL 

signals to be saturated. TT-OSL protocols require high 

temperature preheats and signal depletion steps, and so need 

the same specialised equipment as thermoluminescence 

procedures. In addition, resetting of TT-OSL in nature is 

problematic: TT-OSL does not have the advantage of short 

resetting times that conventional OSL does. If there is a TL 

peak with a suitable lifetime to date in this range and a 

similar dose saturation level, TL dating would be preferable 

to TT-OSL, as it would give brighter signals, and the signal 

is much more readily identifiable as coming from only one 

peak. 
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----------- 

16-APPENDIX 

----------- 

 

A: MATLAB CODES 

 

Contents of Appendix A: 

 

1) "iner" 

 

The function used to find and collect instrumental errors which create 

mean values with small differences. 

 

2) "differences1" 

 

The function used to find the smallest differences between the means and 

the corresponding instrumental error values. 

 

3) "allparts2" 

 

The function used to gain natural dose results when using single grain 

discs. 

 

4) "natdose" 

 

The function used to gain natural dose results for large aliquots. 

 

5) "variations" 

 

The function used to process the reproducibility experiments in Chapter 

9. A variation was also used to process the kinetic data in Chapter 12. 

 

6) "simdepop" 

 

The function used to model preheat depletion of traps using previously 

published E and s values. 

 

7) "simdepopfit" 

 

The function used to find E and s values that fit experimental thermal 

depletion data. 
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"INER" 

 

function iner 

  

%A function to find the most probable instrumental error. 

  

close all 

clear all 

  

%inporting data 

  

whichdata=input('Which data file do you want to use? (1=d3; 2=d5)'); 

  

if whichdata==1; 

    points=300; 

sdata=csvread('alld3.txt'); 

%whichd='alld3'; 

end 

  

if whichdata==2; 

    points=300; 

sdata=csvread('alld5.txt'); 

%whichd='alld5'; 

end 

  

%results=zeros(4,4); 

results=zeros(1,4); 

  

%Defining ie 

ie=linspace(0,1000,1001); 

%res=ie(2)-ie(1); 

ie2=ie; 

%l=length(ie); 

  

%mean=zeros(1,l); 

%meanerr=zeros(1,l); 

%err=zeros(1,l); 

  

for intergral=4:5%2:5; 

disp(intergral-1); 

    data=sdata; 

%Stripping to wanted data 

data(1,:)=[]; 

data(:,1)=[]; 

data(:,intergral:600)=[]; 

  

data=sum(data,2); 

  

y=zeros(1,points); 
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yerrsquared=zeros(1,points); 

  

%Finding ie 

for qq=1:length(ie) 

    for rr=1:length(ie2) 

     

    for aa=0:(points-1); 

%02/08/2012 changed yerrsquared--had ie2 dependent on data(aa.*2+1), 

rather than being +1 and then +2. 

%02/08/2012 changed yerrsquared--now ie2/(data(aa.*2+X)-1) (instead of 

sans 

%-1) 

        y(aa+1)=data(aa.*2+1)./data(aa.*2+2); 

        yerrsquared(aa+1)=y(aa+1).^2.*(  ((sqrt(data(aa.*2+1)) + ie(qq) + 

(ie2(rr)./sqrt(data(aa.*2+1)-1))) ./ (data(aa.*2+1))).^2  +  

((sqrt(data(aa.*2+2)) + ie(qq) + (ie2(rr)./sqrt(data(aa.*2+2)-1))) ./ 

(data(aa.*2+2))).^2); 

        %yerr(aa+1)=sqrt(yerrsquared(aa+1)); 

  

    end 

     

   % 

   % 

l=length(y); 

mean=sum(y)/length(y); 

ytakemeansquared=(y-mean).^2; 

%meanerr=sqrt((1/(length(y)-1))*sum(ytakemeansquared)/sqrt(length(y))); 

meanerr=sqrt((1/(l*(l-1)))*sum(ytakemeansquared)); 

err=sqrt((1/length(y))^2 * (sum(yerrsquared))); 

  

    if (err <= meanerr) && ((err+0.01) > meanerr); 

    results(1)=ie(qq); 

    results(2)=ie2(rr); 

    results(3)=err; 

    results(4)=meanerr; 

    if intergral==2; 

        dlmwrite('test2int1da.txt',results,'-append','newline','pc'); 

    end 

    if intergral==3; 

        dlmwrite('test2int2da.txt',results,'-append','newline','pc'); 

    end 

    if intergral==4; 

        dlmwrite('test2int3da.txt',results,'-append','newline','pc'); 

    end 

    if intergral==5; 

        dlmwrite('test2int4da.txt',results,'-append','newline','pc'); 

    end 

    end 
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    end 

end 

  

end 

  

%Recording errors of means and instrumental errors. 

  

%dlmwrite('ies_nodatadep.txt',whichd,'-append','newline','pc'); 

%dlmwrite('ies_nodatadep.txt',results,'-append','newline','pc'); 

  

end 

  



189 
 

"DIFFERENCES1" 

 

function differences1 

  

%A function to find the ie and ie2 values with the smallest deviation 

from 

%the ideal errormean=statmean. 

%Note: the text document written in the for and if loops and read in 

%'matches' needs to be reset each time. 

  

close all 

clear all 

  

disp('Please ensure that the results_differences1 text document has been 

reset, and then press any key.'); 

pause 

  

data1=csvread('test2int4d3.txt'); 

  

data2=csvread('test2int4d5.txt'); 

  

  

length1=length(data1(:,1)); 

length2=length(data2(:,2)); 

 

for aa=1:length1 

    for bb=1:length2 

                if data1(aa,1)==data2(bb,1) && data1(aa,2)==data2(bb,2); 

            result=[data1(aa,:),data2(bb,3:4)]; 

  

            dlmwrite('results_differences1_20120802.txt',result,'-

append','newline','pc'); 

                end 

         

    end 

end 

  

matches=csvread('results_differences1_20120802.txt'); 

  

differences=[abs(matches(:,3)-matches(:,4)),abs(matches(:,5)-

matches(:,6))]; 

  

diffvec=sqrt(differences(:,1).^2+differences(:,2).^2); 

  

  

[~,jj]=min(diffvec); 

  

disp('The numbers with minimum error are:'); 

res1=matches(jj,1:2); 
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disp(res1); 

  

disp('The differences of the means are:'); 

res2=differences(jj,:); 

disp(res2); 

  

%To find next lowest: 

% delete lowest 

diffvec(jj)=[]; 

matches(jj,:)=[]; 

differences(jj,:)=[]; 

  

% find minimum as before. 

  

[~,jj]=min(diffvec); 

  

  

disp('The numbers with secondmost minimum error are:'); 

res1=matches(jj,1:2); 

disp(res1); 

  

disp('The differences of the means are:'); 

res2=differences(jj,:); 

disp(res2); 

  

%To find next lowest: 

% delete lowest 

diffvec(jj)=[]; 

matches(jj,:)=[]; 

differences(jj,:)=[]; 

  

% find minimum as before. 

  

[~,jj]=min(diffvec); 

  

  

disp('The numbers with thirdmost minimum error are:'); 

res1=matches(jj,1:2); 

disp(res1); 

  

disp('The differences of the means are:'); 

res2=differences(jj,:); 

disp(res2); 

  

%To find next lowest: 

% delete lowest 

diffvec(jj)=[]; 

matches(jj,:)=[]; 

differences(jj,:)=[]; 
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% find minimum as before. 

  

[~,jj]=min(diffvec); 

  

  

disp('The numbers with fourthmost minimum error are:'); 

res1=matches(jj,1:2); 

disp(res1); 

  

disp('The differences of the means are:'); 

res2=differences(jj,:); 

disp(res2); 

  

  

end 

  



192 
 

"ALLPARTS2" 

 

function allparts2 

  

  
%a function to redo cleanly and create a function that: 
%-finds 8pt TT-OSL, BT-OSL, ReOSL 
%-finds recycling ratio 
%-fits growth curve and finds age with errors 
% 
% 
%#1: select and crop aliquot, OSL, TT-OSL, BT-OSL, test doses 
%#2: plot ReOSL, TT-OSL, BT-OSL data. 
%#3: select fits 
%#4: from fits find dose (seconds) equivalent, and errors 
%#5: from De and errors find age and errors, and write down information. 
% 
% 
%Things different from findingx calculatingDe: 
%*An escape clause if no fit is good. 
% 
% 
%*outputs: 
%-disc number 
%-aliquot number 
%-ReOSL age 
%-ReOSL error 
%-TT-OSL age 
%-TT-OSL error 
%-fit type 
%-recycling ratio 
%-natural peak TT-OSL 
%number of data points (0.02 seconds) in TTOSL and BTOSL intergrals 

  
%THINGS TO REMEMBER: 
%*Instrumental error is set as 1.7% 
%*R2 values are created by the following equation:  
%R2=1-{(sum[(Y(point)-Y(fit))^2]/sum(variances^2)} 

  
%CHANGES: 
%-NOTE 23/01/12 CHANGED '0' NUMBERS TO '0.1' NUMBERS TO AVOID 0 ERRORS 

AND 
%NaN WEIGHTS. NOTE THAT THE SMALLEST NATURAL VALUE WOULD BE 1 (CANNOT 
%NATURALLY HAVE 0.1 OF A PHOTON) 
% 
%-Note 23/01/12 CHANGED ERROR EQUATIONS FROM 'AVERAGE ERROR' TERMS TO 
%'VARIANCE' TERMS. 
% 
%-Note 23/01/12 Changed the system of viewing so one has to look at all 
%fits possible. Note that the fit bounds had to be changed to do this, to 
%prevent 'Inf computed by model function, fitting cannot continue.' error 
%messages that stop the code. 
% 
%-Note 23/01/12 Legends were turned off to make viewing graphs easier. 
% 
%-Note 24/01/12 Ttestintergral was changed so that 0 numbers turn to 0.1, 
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%to prevent NaN error messages that stop the code. (Tintergral is divided 
%by Ttestintergral and then plotted.) 

  
close all 
clear all 

  

  
%*******Things that stay the same for each disc and each aliquot: 
cycles=[300 600 1000 2000 3000 0 300]; 
x=[300;600;1000;2000;3000;0;300]; 
%Defining dose rate per grain: 
dose=[0.16 0.16 0.154 0.154 0.145 0.145 0.135 0.135 0.135 0.135 0.145 

0.145 0.145 0.145 0.145 0.135 0.135 0.135 0.125 0.12 0.145 0.145 0.145 

0.145 0.145 0.135 0.135 0.125 0.125 0.115 0.145 0.145 0.145 0.145 0.145 

0.135 0.125 0.125 0.125 0.111 0.145 0.145 0.145 0.145 0.135 0.135 0.135 

0.125 0.125 0.111 0.135 0.135 0.135 0.135 0.135 0.135 0.125 0.125 0.111 

0.111 0.135 0.135 0.135 0.135 0.135 0.125 0.125 0.111 0.111 0.111 0.125 

0.125 0.125 0.120 0.120 0.120 0.1 0.1 0.1 0.1 0.11 0.11 0.11 0.11 0.11 

0.11 0.11 0.1 0.105 0.105 0.105 0.105 0.105 0.1 0.1 0.1 0.1 0.09 0.09 

0.086]; 
%WK4 dose rate and errors 
WK4dr=0.5823; 
WK4drerror=0.075; 

  
xnat=linspace(0,3000,9); 
ynat=ones(1,9); 
xtestTT=[0 1 2 3 4 5 6 7]; 
xtestBT=[0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5]; 

  
lastaliquot=csvread('lastaliquot.txt'); 

  
%Fit types (linear, saturating exponential (zero variable), saturating 
%exponential plus linear (zero variable). 
F1=fittype('poly1'); 
F2=fittype('-a.*exp(-b.*x) + c','coeff',{'a','b','c'}); 
F3=fittype('-a.*exp(-b.*x) + c*x + d','coeff',{'a','b','c','d'}); 
%************************************************************** 
%First item: which disc? This will also be the disc number output. 
disc=input('Which disc?'); 
q1=input('Do you want to start at the beginning? (aliquot 1) (y=1)'); 
if q1==1 
    ali=1; 
else 
    q2=input('Do you want to start at the last uncalculated aliquot? 

(y=1)'); 
    if q2==1 
        ali=lastaliquot; 
    else 
        ali=input('Which aliquot would you like to start at?'); 
    end 
end 

  
%reading off disc data 
if disc==1 
    data=csvread('8pt01.txt'); 
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end 

  
if disc==2 
    data=csvread('8pt02.txt'); 
end 

  
if disc==3 
    data=csvread('8pt03.txt'); 
end 

  
if disc==4 
    data=csvread('8pt04.txt'); 
end 

  
if disc==5 
    data=csvread('8pt05.txt'); 
end 

  
if disc==6 
    data=csvread('8pt06.txt'); 
end 

  
if disc==7 
    data=csvread('8pt07.txt'); 
end 

  
if disc==9 
    data=csvread('8pt09.txt'); 
end 

  
if disc==10 
    data=csvread('8pt10.txt'); 
end 

  
if disc==11 
    data=csvread('8pt11.txt'); 
end 

  
if disc==12 
    data=csvread('8pt12.txt'); 
end 

  
if disc==13 
    data=csvread('8pt13a.txt'); 
end 

  

  
%************************************************************************ 
%After this, everything will be for a specific aliquot. 

  
for aliquot=ali:100 

    
    

%********************************************************************** 
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    %******************    PART ONE   

************************************* 
    

%********************************************************************** 

  
    %Part one reads off variable strings, crops them, and processes them 

for 
%calculating intergrals. 
%It also calculates peak TTOSL and BOSL and the number of points in TT 

and BT vectors. 

  
%getting all data for each point. 

  
%Preallocating matrices: 
TOSL=zeros(8,111); 
TTOSL=zeros(8,111); 
Ttest=zeros(8,111); 
BTOSL=zeros(8,111); 
BOSL=zeros(8,111); 
Btest=zeros(8,111); 

  

  
for point=1:8 

  
TOSL(point,:)=data(aliquot+(600*(point-1)),:); 

  
TTOSL(point,:)=data(100+aliquot+(600*(point-1)),:); 

  
Ttest(point,:)=data(200+aliquot+(600*(point-1)),:); 

  
BTOSL(point,:)=data(400+aliquot+(600*(point-1)),:); 

  
BOSL(point,:)=data(300+aliquot+(600*(point-1)),:); 

  
Btest(point,:)=data(500+aliquot+(600*(point-1)),:); 

  
end 

  
%cropping ends of each data string 

  
TOSL(:,107:111)=[]; 
TOSL(:,1:6)=[]; 

  
TTOSL(:,107:111)=[]; 
TTOSL(:,1:6)=[]; 

  
%finding peak TT-OSL (natural) 
peakT=TTOSL(1,1) + TTOSL(1,2); 

  
Ttest(:,107:111)=[]; 
Ttest(:,1:6)=[]; 

  
BTOSL(:,107:111)=[]; 
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BTOSL(:,1:6)=[]; 

  
peakB=BTOSL(1,1) + BTOSL(1,2); 

  
BOSL(:,107:111)=[]; 
BOSL(:,1:6)=[]; 

  
Btest(:,107:111)=[]; 
Btest(:,1:6)=[]; 

  

  
%Creating test dose values: Will be using first four points of each test 
%curve. 

  
%Note that Ttest intergral has its own error, as found below: 

  
Ttest=Ttest(:,1:4); 
Ttestintergral=sum(Ttest,2); 
Ttesterror=sqrt(Ttestintergral + (0.017.*Ttestintergral).^2); 

  
for fixit=1:8 
    if Ttestintergral(fixit)==0 
        Ttestintergral(fixit)=0.1 
    end 
end 

  
Btest=Btest(:,1:4); 
Btestintergral=sum(Btest,2); 
Btesterror=sqrt(Btestintergral + (0.017.*Btestintergral).^2); 

  

  
%Creating values for the end of OSL curve. Note that these are made from 
%the average of the two ends of the OSL curve. 

  
endTOSL=TOSL(:,99:100); 
endTOSL=sum(endTOSL,2); 
endTOSLerror=sqrt(endTOSL*1/4 + 1/4*(0.017.*endTOSL).^2); 
endTOSL=endTOSL./2; 

  
endBOSL=BOSL(:,99:100); 
endBOSL=sum(endBOSL,2)/2; 
%before=(sqrt(endBOSL) + 0.017.*endBOSL)./2 
endBOSLerror=sqrt(endBOSL*1/4 + 1/4*(0.017.*endBOSL).^2); 
endBOSL=endBOSL./2; 

  

  
%Creating TTOSL and BTOSL intergrals 
for pp=1:8 
TTOSL(pp,:)=TTOSL(pp,:)-endTOSL(pp); 

  
BTOSL(pp,:)=BTOSL(pp,:)-endBOSL(pp); 

  
end 



197 
 

  
%Note cannot delete parts of matrix 
TTOSLn=TTOSL(1,:); 
TTOSL1=TTOSL(2,:); 
TTOSL2=TTOSL(3,:); 
TTOSL3=TTOSL(4,:); 
TTOSL4=TTOSL(5,:); 
TTOSL5=TTOSL(6,:); 
TTOSL6=TTOSL(7,:); 
TTOSL7=TTOSL(8,:); 

  
BTOSLn=BTOSL(1,:); 
BTOSL1=BTOSL(2,:); 
BTOSL2=BTOSL(3,:); 
BTOSL3=BTOSL(4,:); 
BTOSL4=BTOSL(5,:); 
BTOSL5=BTOSL(6,:); 
BTOSL6=BTOSL(7,:); 
BTOSL7=BTOSL(8,:); 

  

  
for ee=0:99 

     
    if TTOSLn(100-ee)<=0 
    TTOSLn(100-ee)=[]; 
    end 

     
    if TTOSL1(100-ee)<=0 
    TTOSL1(100-ee)=[]; 
    end 

     
    if TTOSL2(100-ee)<=0 
    TTOSL2(100-ee)=[]; 
    end 

     
    if TTOSL3(100-ee)<=0 
    TTOSL3(100-ee)=[]; 
    end 

     
    if TTOSL4(100-ee)<=0 
    TTOSL4(100-ee)=[]; 
    end 

     
    if TTOSL5(100-ee)<=0 
    TTOSL5(100-ee)=[]; 
    end 

     
    if TTOSL6(100-ee)<=0 
    TTOSL6(100-ee)=[]; 
    end 

     
    if TTOSL7(100-ee)<=0 
    TTOSL7(100-ee)=[]; 
    end 
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    if BTOSLn(100-ee)<=0 
    BTOSLn(100-ee)=[]; 
    end 

     
    if BTOSL1(100-ee)<=0 
    BTOSL1(100-ee)=[]; 
    end 

     
    if BTOSL2(100-ee)<=0 
    BTOSL2(100-ee)=[]; 
    end 

     
    if BTOSL3(100-ee)<=0 
    BTOSL3(100-ee)=[]; 
    end 

     
    if BTOSL4(100-ee)<=0 
    BTOSL4(100-ee)=[]; 
    end 

     
    if BTOSL5(100-ee)<=0 
    BTOSL5(100-ee)=[]; 
    end 

     
    if BTOSL6(100-ee)<=0 
    BTOSL6(100-ee)=[]; 
    end 

     
    if BTOSL7(100-ee)<=0 
    BTOSL7(100-ee)=[]; 
    end 
end 

  
%Calculating number of seconds of TTOSL and BTOSL. 
lengthT=length(TTOSLn); 
lengthB=length(BTOSLn); 

  

  

  
    

%********************************************************************** 
    %******************    PART TWO   

************************************* 
    

%********************************************************************** 

     
    %Part two creates ReOSL, TT-OSL and BT-OSL intergrals and plots them. 

  

  
%Calculating intergrals for TTOSL 
TTOSLint(1)=sum(TTOSLn); 
lengthTTn=length(TTOSLn); 
if length(TTOSLn)==0 
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    lengthTTn=0.1; 
end 
if TTOSLint(1)==0 
    TTOSLint(1)=0.1; 
end 
%(to prevent 0 errors and NaN weights.) 
errorTTOSLint(1)=sqrt(TTOSLint(1) + (0.017*TTOSLint(1))^2 + 

(lengthTTn*endTOSLerror(1))^2); 

  
TTOSLint(2)=sum(TTOSL1); 
lengthTT1=length(TTOSL1); 
if length(TTOSL1)==0 
    lengthTT1=0.1; 
end 
if TTOSLint(2)==0 
    TTOSLint(2)=0.1; 
end 

  
%(to prevent 0 errors and NaN weights.) 
errorTTOSLint(2)=sqrt(TTOSLint(2) + (0.017*TTOSLint(2))^2 + 

(lengthTT1*endTOSLerror(2))^2); 

  
TTOSLint(3)=sum(TTOSL2); 
lengthTT2=length(TTOSL2); 
if length(TTOSL2)==0 
    lengthTT2=0.1; 
end 
if TTOSLint(3)==0 
    TTOSLint(3)=0.1; 
end 
%(to prevent 0 errors and NaN weights.) 
errorTTOSLint(3)=sqrt(TTOSLint(3) + (0.017*TTOSLint(3))^2 + 

(lengthTT2*endTOSLerror(3))^2); 

  
TTOSLint(4)=sum(TTOSL3); 
lengthTT3=length(TTOSL3); 
if length(TTOSL3)==0 
    lengthTT3=0.1; 
end 
if TTOSLint(4)==0 
    TTOSLint(4)=0.1; 
end 
%(to prevent 0 errors and NaN weights.) 
errorTTOSLint(4)=sqrt(TTOSLint(4) + (0.017*TTOSLint(4))^2 + 

(lengthTT3*endTOSLerror(4))^2); 

  
TTOSLint(5)=sum(TTOSL4); 
lengthTT4=length(TTOSL4); 
if length(TTOSL4)==0 
    lengthTT4=0.1; 
end 
if TTOSLint(5)==0 
    TTOSLint(5)=0.1; 
end 
%(to prevent 0 errors and NaN weights.) 
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errorTTOSLint(5)=sqrt(TTOSLint(5) + (0.017*TTOSLint(5))^2 + 

(lengthTT4*endTOSLerror(5))^2); 

  
TTOSLint(6)=sum(TTOSL5); 
lengthTT5=length(TTOSL5); 
if length(TTOSL5)==0 
    lengthTT5=0.1; 
end 
if TTOSLint(6)==0 
    TTOSLint(6)=0.1; 
end 
%(to prevent 0 errors and NaN weights.) 
errorTTOSLint(6)=sqrt(TTOSLint(6) + (0.017*TTOSLint(6))^2 + 

(lengthTT5*endTOSLerror(6))^2); 

  
TTOSLint(7)=sum(TTOSL6); 
lengthTT6=length(TTOSL6); 
if length(TTOSL6)==0 
    lengthTT6=0.1; 
end 
if TTOSLint(7)==0 
    TTOSLint(7)=0.1; 
end 
%(to prevent 0 errors and NaN weights.) 
errorTTOSLint(7)=sqrt(TTOSLint(7) + (0.017*TTOSLint(7))^2 + 

(lengthTT6*endTOSLerror(7))^2); 

  
TTOSLint(8)=sum(TTOSL7); 
lengthTT7=length(TTOSL7); 
if length(TTOSL7)==0 
    lengthTT7=0.1; 
end 
if TTOSLint(8)==0 
    TTOSLint(8)=0.1; 
end 
%(to prevent 0 errors and NaN weights.) 
errorTTOSLint(8)=sqrt(TTOSLint(8) + (0.017*TTOSLint(8))^2 + 

(lengthTT7*endTOSLerror(8))^2); 

  
%Calculating intergrals for BTOSL 

  
BTOSLint(1)=sum(BTOSLn); 
lengthBTn=length(BTOSLn); 
if length(BTOSLn)==0 
    lengthBTn=0.1; 
end 
if BTOSLint(1)==0 
    BTOSLint(1)=0.1; 
end 
%(to prevent 0 errors and NaN weights.) 
errorBTOSLint(1)=sqrt(BTOSLint(1) + (0.017*BTOSLint(1))^2 + 

(lengthBTn*endBOSLerror(1))^2); 

  

  
BTOSLint(2)=sum(BTOSL1); 
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lengthBT1=length(BTOSL1); 
if length(BTOSL1)==0 
    lengthBT1=0.1; 
end 
if BTOSLint(2)==0 
    BTOSLint(2)=0.1; 
end 
%(to prevent 0 errors and NaN weights.) 
errorBTOSLint(2)=sqrt(BTOSLint(2) + (0.017*BTOSLint(2))^2 + 

(lengthBT1*endBOSLerror(2))^2); 

  
BTOSLint(3)=sum(BTOSL2); 
lengthBT2=length(BTOSL2); 
if length(BTOSL2)==0 
    lengthBT2=0.1; 
end 
if BTOSLint(3)==0 
    BTOSLint(3)=0.1; 
end 
%(to prevent 0 errors and NaN weights.) 
errorBTOSLint(3)=sqrt(BTOSLint(3) + (0.017*BTOSLint(3))^2 + 

(lengthBT2*endBOSLerror(3))^2); 

  
BTOSLint(4)=sum(BTOSL3); 
lengthBT3=length(BTOSL3); 
if length(BTOSL3)==0 
    lengthBT3=0.1; 
end 
if BTOSLint(4)==0 
    BTOSLint(4)=0.1; 
end 
%(to prevent 0 errors and NaN weights.) 
errorBTOSLint(4)=sqrt(BTOSLint(4) + (0.017*BTOSLint(4))^2 + 

(lengthBT3*endBOSLerror(4))^2); 

  
BTOSLint(5)=sum(BTOSL4); 
lengthBT4=length(BTOSL4); 
if length(BTOSL4)==0 
    lengthBT4=0.1; 
end 
if BTOSLint(5)==0 
    BTOSLint(5)=0.1; 
end 
%(to prevent 0 errors and NaN weights.) 
errorBTOSLint(5)=sqrt(BTOSLint(5) + (0.017*BTOSLint(5))^2 + 

(lengthBT4*endBOSLerror(5))^2); 

  
BTOSLint(6)=sum(BTOSL5); 
lengthBT5=length(BTOSL5); 
if length(BTOSL5)==0 
    lengthBT5=0.1; 
end 
if BTOSLint(6)==0 
    BTOSLint(6)=0.1; 
end 
%(to prevent 0 errors and NaN weights.) 
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errorBTOSLint(6)=sqrt(BTOSLint(6) + (0.017*BTOSLint(6))^2 + 

(lengthBT5*endBOSLerror(6))^2); 

  
BTOSLint(7)=sum(BTOSL6); 
lengthBT6=length(BTOSL6); 
if length(BTOSL6)==0 
    lengthBT6=0.1; 
end 
if BTOSLint(7)==0 
    BTOSLint(7)=0.1; 
end 
%(to prevent 0 errors and NaN weights.) 
errorBTOSLint(7)=sqrt(BTOSLint(7) + (0.017*BTOSLint(7))^2 + 

(lengthBT6*endBOSLerror(7))^2); 

  
BTOSLint(8)=sum(BTOSL7); 
lengthBT7=length(BTOSL7); 
if length(BTOSL7)==0 
    lengthBT7=0.1; 
end 
if BTOSLint(8)==0 
    BTOSLint(8)=0.1; 
end 
%(to prevent 0 errors and NaN weights.) 
errorBTOSLint(8)=sqrt(BTOSLint(8) + (0.017*BTOSLint(8))^2 + 

(lengthBT7*endBOSLerror(8))^2); 

  
%Creating TTOSL (dose dependent+dose independent) points for plotting. 
Ttestintergral=Ttestintergral'; 
Ttesterror=Ttesterror'; 
TTOSLplot=TTOSLint./Ttestintergral; 
TTOSLploterror=sqrt(TTOSLplot.^2.*((errorTTOSLint./TTOSLint).^2 + 

(Ttesterror./Ttestintergral).^2)); 

  

  

  
%Creating BTOSL (less dose dependent?) points for plotting 
Btestintergral=Btestintergral'; 
Btesterror=Btesterror'; 
BTOSLplot=BTOSLint./Btestintergral; 
BTOSLploterror=sqrt(BTOSLplot.^2.*((errorBTOSLint./BTOSLint).^2 + 

(Btesterror./Btestintergral).^2)); 

  
%Creating ReOSL (dose dependent TT-OSL) points. 
ReOSLplot=TTOSLplot-BTOSLplot; 
ReOSLploterror=sqrt(TTOSLploterror.^2 + BTOSLploterror.^2); 

  
%Defining Naturals and cropping plots 
TTnat=TTOSLplot(1); 
TTnaterror=TTOSLploterror(1); 
TTOSLplot(1)=[]; 
TTOSLploterror(1)=[]; 
Trecyclingratio=TTOSLplot(1)/TTOSLplot(7); 
if Trecyclingratio<1 
    Trecyclingratio=1/Trecyclingratio; 
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end 
ynatTT=ynat.*TTnat; 
ynatTTerror=ynat.*TTnaterror; 

  
BTnat=BTOSLplot(1); 
BTnaterror=BTOSLploterror(1); 
BTOSLplot(1)=[]; 
BTOSLploterror(1)=[]; 
Brecyclingratio=TTOSLplot(1)/TTOSLplot(7); 
if Brecyclingratio<1 
    Brecyclingratio=1/Brecyclingratio; 
end 
ynatBT=ynat.*BTnat; 
ynatBTerror=ynat.*BTnaterror; 

  
Renat=ReOSLplot(1); 
Renaterror=ReOSLploterror(1); 
ReOSLplot(1)=[]; 
ReOSLploterror(1)=[]; 
Rrecyclingratio=ReOSLplot(1)/ReOSLplot(7); 
if Rrecyclingratio<1 
    Rrecyclingratio=1/Rrecyclingratio; 
end 
ynatRe=ynat.*Renat; 
ynatReerror=ynat.*Renaterror; 

  

  
%Plotting 
subplot(4,1,1), errorbar(xnat,ynatRe,ynatReerror,'k-') 
hold on 
subplot(4,1,1), errorbar(cycles,ReOSLplot,ReOSLploterror,'bo'); 
hold off 
title(aliquot) 
xlim([-1 3001]); 
subplot(4,1,2), errorbar(xnat,ynatTT,ynatTTerror,'k-'); 
hold on 
subplot(4,1,2), errorbar(cycles,TTOSLplot,TTOSLploterror,'bo'); 
hold off 
title('All thermally transferred signal') 
xlim([-1 3001]); 
subplot(4,1,3), errorbar(xnat,ynatBT,ynatBTerror,'k-'); 
hold on 
subplot(4,1,3), errorbar(cycles,BTOSLplot,BTOSLploterror,'bo'); 
hold off 
xlim([-1 3001]); 
title('Less dose dependent(?) signal'); 
subplot(4,1,4), 

plot(xtestTT,Ttestintergral,'bx',xtestBT,Btestintergral,'bx'); 
title('Sensitivity changes'); 
xlim([-1 8]); 

  

  
%**********above this was tested (and modified) to success on 08/12/2011. 
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%    good=input('Good aliquot? (y=1)'); 
%    if good ==1 

  
    

%********************************************************************** 
    %******************    PART THREE   

*********************************** 
    

%********************************************************************** 

         
    %Part three fits curves to data, and finds out whether the curves are 
%reasonable. 

  
%This part is much improved from earlier versions (pre 10/02/2012) by 

'try' 
%and 'catch' functions. Thanks to Tilanka. 

  
goflin=0; 
gofsate=0; 
gofsatelin=0; 

  
%Fitting grains 

  
%if Rgood==1 
    Rfit=ReOSLplot'; 
    Rw=(1./(ReOSLploterror.^2))'; 

     
    %Creating start points for saturating exponential 
% 
RstartptF2(1)=Rfit(4); 
RstartptF2(2)=0.0001; 
RstartptF2(3)=Rfit(6); 
RstartptF2=RstartptF2'; 

  
RlowF2(1)=RstartptF2(1)-2; 
RuppF2(1)=RstartptF2(1)+2; 
RlowF2(2)=RstartptF2(2)-5; 
RuppF2(2)=RstartptF2(2)+5; 
RlowF2(3)=RstartptF2(3)-2; 
RuppF2(3)=RstartptF2(3)+2; 

  
%Creating start points for saturating exponential plus linear 

  
RstartptF3(1)=Rfit(3); 
RstartptF3(2)=0.01; 
RstartptF3(3)=0.001; 
RstartptF3(4)=Rfit(3); 
RstartptF3=RstartptF3'; 

  
%RlowF3(1)=RstartptF3(1)-100; 
%RuppF3(1)=RstartptF3(1)+100; 
%RlowF3(2)=0; 
%RuppF3(2)=RstartptF3(2)+5; 
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%RlowF3(3)=0; 
%RuppF3(3)=RstartptF3(3)+1; 
%RlowF3(4)=RstartptF3(4)-100; 
%RuppF3(4)=RstartptF3(4)+100; 

  
R1=0; 
try 
    [Rf1,goflin]=fit(x,Rfit,F1,'Weights',Rw); 
catch 
    disp('Rf1 cannot be fitted') 
    R1=1; 
end 
R2=0; 
try 
    [Rf2,gofsate]=fit(x,Rfit,F2,'StartPoint', 

RstartptF2,'Weights',Rw,'Lower', RlowF2, 'Upper', RuppF2); 
catch 
    disp('Rf2 cannot be fitted') 
    R2=1; 
end 
R3=0; 
try 
    [Rf3,gofsatelin]=fit(x,Rfit,F3,'StartPoint',RstartptF3,'Weights',Rw); 
    %'Lower', RlowF3, 'Upper', RuppF3, 'Weights',Rw); 
catch 
    disp('Rf3 cannot be fitted') 
    R3=1; 
end 
%    R1R2=(1/7)*((abs(Rfit(1)-Rf1( 
%R1R2=0.125*(abs(Rfit(1)-Rf1(300))/ReOSLploterror(1)+abs(Rfit(2)-

Rf1(600))/ReOSLploterror(2) + abs(Rfit(3)-Rf1(1000))/ReOSLploterror(3) + 

abs(Rfit(4)-Rf1(2000))/ReOSLploterror(4) + abs(Rfit(5)-

Rf1(3000))/ReOSLploterror(5) + abs(Rfit(6)-Rf1(0))/ReOSLploterror(6) + 

abs(Rfit(7)-Rf1(300))/ReOSLploterror(7)) 
%R2R2=0.125*(abs(Rfit(1)-Rf2(300))/ReOSLploterror(1)+abs(Rfit(2)-

Rf2(600))/ReOSLploterror(2) + abs(Rfit(3)-Rf2(1000))/ReOSLploterror(3) + 

abs(Rfit(4)-Rf2(2000))/ReOSLploterror(4) + abs(Rfit(5)-

Rf2(3000))/ReOSLploterror(5) + abs(Rfit(6)-Rf2(0))/ReOSLploterror(6) + 

abs(Rfit(7)-Rf2(300))/ReOSLploterror(7)) 
%R3R2=0.125*(abs(Rfit(1)-Rf3(300))/ReOSLploterror(1)+abs(Rfit(2)-

Rf3(600))/ReOSLploterror(2) + abs(Rfit(3)-Rf3(1000))/ReOSLploterror(3) + 

abs(Rfit(4)-Rf3(2000))/ReOSLploterror(4) + abs(Rfit(5)-

Rf3(3000))/ReOSLploterror(5) + abs(Rfit(6)-Rf3(0))/ReOSLploterror(6) + 

abs(Rfit(7)-Rf3(300))/ReOSLploterror(7)) 
%The higher the number the less good the fit. 

  
%R1R2numer=(Rfit(1)-Rf1(300))^2+(Rfit(2)-Rf1(600))^2 + (Rfit(3)-

Rf1(1000))^2 + (Rfit(4)-Rf1(2000))^2 + (Rfit(5)-Rf1(3000))^2 + (Rfit(6)-

Rf1(0))^2 + (Rfit(7)-Rf1(300))^2; 
%R1R2denom=sum(ReOSLploterror.^2); 

  
%R1R2=1-R1R2numer/R1R2denom 

     
figure 
plot(xnat,ynatRe,'k-'); 
hold on 
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plot(cycles,ReOSLplot,'bo'); 
if R1~=1 
plot(Rf1,'r-'); 
end 
if R2~=1 
plot(Rf2,'g-'); 
end 
if R3~=1 
plot(Rf3,'b-'); 
end 
legend off 
hold off 

  
fitgoodR=0; 
fitgoodR=input('Do the curves fit? (1=yes)'); 
if fitgoodR==1 
try 
    goflin 
    gofsate 
    gofsatelin 
catch 
    disp('Some fits did not work.') 
end 
    %end 
goflin=0; 
gofsate=0; 
gofsatelin=0; 
%resetting fitgood 
fitgoodR=0; 
fitgoodR=input('which fit is good? (red=1, green=2, blue=3, none=0'); 
end 
    %below modded 23/01/11 
if fitgoodR==1 
    Rgood=1; 
elseif fitgoodR==2 
        Rgood=1; 
elseif fitgoodR==3 
        Rgood=1; 
else 
    Rgood=0; 
end 

  
close figure 2 

  
%Note that the coefficient variances are assuming a normal distribution 
if fitgoodR==1 
    coeffsR=coeffvalues(Rf1); 
    variancescoeffsR=confint(Rf1,0.682689); 
    variancescoeffsR=variancescoeffsR(2,:)-coeffsR; 
    optionsR=fitoptions('Method','LinearLeastSquares','Weights',Rw); 
    goodfitR=F1; 
end 

  
%RlowF2=RstartptF2-50; 
%RuppF2=RstartptF2+50; 
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%Changed 13/04/12 
try 
RlowF2=coeffvalues(Rf2)-25; 
RuppF2=coeffvalues(Rf2)+25; 
RstartptF2=coeffvalues(Rf2); 
end 

  
if fitgoodR==2 
    coeffsR=coeffvalues(Rf2); 
    variancescoeffsR=confint(Rf2,0.682689); 
    variancescoeffsR=variancescoeffsR(2,:)-coeffsR; 
    

optionsR=fitoptions('Method','NonlinearLeastSquares','Weights',Rw,'StartP

oint',RstartptF2,'Lower',RlowF2,'Upper',RuppF2); 
    goodfitR=F2; 
end 

  
%RlowF3=RstartptF3-50; 
%RuppF3=RstartptF3+50; 

  
%Changed 13/04/12 
try 
RlowF3=coeffvalues(Rf3)-25; 
RuppF3=coeffvalues(Rf3)+25; 
RstartptF3=coeffvalues(Rf3); 
end 

  
if fitgoodR==3 
    coeffsR=coeffvalues(Rf3); 
    variancescoeffsR=confint(Rf3,0.682689); 
    variancescoeffsR=variancescoeffsR(2,:)-coeffsR; 
    

optionsR=fitoptions('Method','NonlinearLeastSquares','Weights',Rw,'StartP

oint',RstartptF3,'Lower',RlowF3,'Upper',RuppF3); 
    goodfitR=F3; 
end 
%end for 'if Rgood =1 
%end 

  

  
%if Tgood==1 
Tfit=TTOSLplot'; 
Tw=(1./(TTOSLploterror.^2))'; 

  
%Creating start points for saturating exponential 
TstartptF2(1)=Tfit(4); 
TstartptF2(2)=0.0001; 
if Tfit(6) > 0 
TstartptF2(3)=Tfit(6); 
else 
    TstartF2(3) = 0; 
end 
TstartptF2=TstartptF2'; 

  
TlowF2(1)=TstartptF2(1)-2; 
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TuppF2(1)=TstartptF2(1)+2; 
TlowF2(2)=TstartptF2(2)-5; 
TuppF2(2)=TstartptF2(2)+5; 
TlowF2(3)=0; 
TuppF2(3)=TstartptF2(3)+2; 

  
%Creating start points for saturating exponential plus linear 
TstartptF3(1)=Tfit(4); 
TstartptF3(2)=0.01; 
TstartptF3(3)=0.001; 
TstartptF3(4)=Tfit(4); 
TstartptF3=TstartptF3'; 

  
%TlowF3(1)=TstartptF3(1)-100; 
%TuppF3(1)=TstartptF3(1)+100; 
%TlowF3(2)=0; 
%TuppF3(2)=TstartptF3(2)+5; 
%TlowF3(3)=0; 
%TuppF3(3)=TstartptF3(3)+1; 
%TlowF3(4)=TstartptF3(4)-100; 
%TuppF3(4)=TstartptF3(4)+100; 

  
T1=0; 
try 
[Tf1,goflin]=fit(x,Tfit,F1,'Weights',Tw); 
catch 
    disp('Tf1 cannot be fitted') 
    T1=1; 
end 
T2=0; 
try 
[Tf2,gofsate]=fit(x,Tfit,F2,'Weights',Tw,'StartPoint',TstartptF2, 

'Lower',TlowF2,'Upper',TuppF2); 
catch 
    disp('Tf2 cannot be fitted') 
    T2=1; 
end 
T3=0; 
try 
[Tf3,gofsatelin]=fit(x,Tfit,F3,'Weights',Tw,'StartPoint',TstartptF3); 
%,'Lower',TlowF3,'Upper',TuppF3); 
catch 
    disp('Tf3 cannot be fitted') 
    T3=1; 
end 

  
figure 
plot(xnat,ynatTT,'k-'); 
hold on 
plot(cycles,TTOSLplot,'bo'); 
if T1~=1; 
plot(Tf1,'r-'); 
end 
if T2~=1 
plot(Tf2,'g-'); 
end 



209 
 

if T3~=1 
plot(Tf3,'b-'); 
end 
legend off 
hold off 

  
%reset seegof 
seegof=0; 
fitgoodT=input('Do the curves fit? (1=yes)'); 
if fitgoodT==1 
try 
    goflin 
    gofsate 
    gofsatelin 
catch 
    disp('Some fits did not work.') 
end 
    %end 
goflin=0; 
gofsate=0; 
gofsatelin=0; 

  
%resetting fitgood 
fitgoodT=0; 
fitgoodT=input('Which fit is good? (red=1, green=2, blue=3, none=0'); 
end 

  
if fitgoodT==1 
    Tgood=1; 
elseif fitgoodT==2 
    Tgood=1; 
elseif fitgoodT==3 
    Tgood=1; 
else Tgood=0; 
end 

  
close figure 2 

  
%Note that the coefficient variances are assuming a normal distribution. 
if fitgoodT==1 
    coeffsT=coeffvalues(Tf1); 
    variancescoeffsT=confint(Tf1,0.682689); 
    variancescoeffsT=variancescoeffsT(2,:)-coeffsT; 
    optionsT=fitoptions('Method','LinearLeastSquares','Weights',Tw); 
    goodfitT=F1; 
end 

  
%TlowF2=TstartptF2-50; 
%TuppF2=TstartptF2+50; 

  
%Changed 13/04/12 
try 
TlowF2=coeffvalues(Tf2)-25; 
TuppF2=coeffvalues(Tf2)+25; 
TstartptF2=coeffvalues(Tf2); 
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end 

  
if fitgoodT==2 
    coeffsT=coeffvalues(Tf2); 
    variancescoeffsT=confint(Tf2,0.682689); 
    variancescoeffsT=variancescoeffsT(2,:)-coeffsT; 
    

optionsT=fitoptions('Method','NonlinearLeastSquares','Weights',Tw,'StartP

oint',TstartptF2,'Lower',TlowF2,'Upper',TuppF2); 
    goodfitT=F2; 
end 

  
%TlowF3=TstartptF3-50; 
%TuppF3=TstartptF3+50; 

  
%Changed 13/04/12 
try 
TlowF3=coeffvalues(Tf3)-25; 
TuppF3=coeffvalues(Tf3)+25; 
TstartptF3=coeffvalues(Tf3); 
end 

  
if fitgoodT==3 
    coeffsT=coeffvalues(Tf3); 
    variancescoeffsT=confint(Tf3,0.682689); 
    variancescoeffsT=variancescoeffsT(2,:)-coeffsT; 
    

optionsT=fitoptions('Method','NonlinearLeastSquares','Weights',Tw,'StartP

oint',TstartptF3,'Lower',TlowF3,'Upper',TuppF3); 
    goodfitT=F3; 
end 

  
%endifTgood==1 
%end 

  
%resetting fitgood 
%if Bgood==1 
    Bfit=BTOSLplot'; 
    Bw=(1./(BTOSLploterror.*2))'; 

     
    %Creating start points for saturating exponential 
%BstartptF2(1)=Bfit(3); 
%BstartptF2(2)=0.01; 
%BstartptF2(3)=Bfit(3); 
%BstartptF2=BstartptF2'; 

  
%BstartptF2(1)=Bfit(3); 
%BstartptF2(2)=0.1; 
%if Bfit(4) > 0 
%BstartptF2(3)=Bfit(4); 
%else 
%    BstartF2(3) = 0; 
%end 
%BstartptF2=BstartptF2'; 
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%BlowF2(1)=BstartptF2(1)-0.5; 
%BuppF2(1)=BstartptF2(1)+0.5; 
%BlowF2(2)=BstartptF2(2)-20; 
%BuppF2(2)=BstartptF2(2)+20; 
%BlowF2(3)=0; 
%BuppF2(3)=BstartptF2(3)+0.01; 

  
BstartptF2(1)=Bfit(4); 
BstartptF2(2)=0.0001; 
if Bfit(6) > 0 
BstartptF2(3)=Bfit(6); 
else 
    BstartF2(3) = 0; 
end 
BstartptF2=BstartptF2'; 

  
BlowF2(1)=BstartptF2(1)-2; 
BuppF2(1)=BstartptF2(1)+2; 
BlowF2(2)=BstartptF2(2)-5; 
BuppF2(2)=BstartptF2(2)+5; 
BlowF2(3)=0; 
BuppF2(3)=BstartptF2(3)+2; 

  

  
%Creating start points for saturating exponential plus linear 
BstartptF3(1)=Bfit(3); 
BstartptF3(2)=0.01; 
BstartptF3(3)=0.001; 
BstartptF3(4)=Bfit(3); 
BstartptF3=BstartptF3'; 

  
%BlowF3(1)=BstartptF3(1)-25; 
%BuppF3(1)=BstartptF3(1)+25; 
%BlowF3(2)=0; 
%BuppF3(2)=BstartptF3(2)+1; 
%BlowF3(3)=0; 
%BuppF3(3)=BstartptF3(3)+1; 
%BlowF3(4)=BstartptF3(4)-2; 
%BuppF3(4)=BstartptF3(4)+2; 

  
B1=0; 
try 
    [Bf1,goflin]=fit(x,Bfit,F1,'Weights',Bw); 
catch 
    disp('Bf1 cannot be fitted.') 
B1=1; 
end 
B2=0; 
try 
[Bf2,gofsate]=fit(x,Bfit,F2,'Weights',Bw,'StartPoint',BstartptF2,'Lower',

BlowF2,'Upper',BuppF2); 
catch 
    disp('Bf2 cannot be fitted.') 
    B2=1; 
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end 
B3=0; 
try 
    [Bf3,gofsatelin]=fit(x,Bfit,F3,'Weights',Bw,'StartPoint',BstartptF3); 
    %,'Lower',BlowF3,'Upper',BuppF3); 
catch 
    disp('Bf3 cannot be fitted.') 
    B3=1; 
end 

  
figure 
    plot(xnat,ynatBT,'k-'); 
    hold on 
    plot(cycles,BTOSLplot,'bo'); 
    if B1~=1 
    plot(Bf1,'r-'); 
    end 
    if B2~=1 
        plot(Bf2,'g-'); 
    end 
    if B3~=1 
        plot(Bf3,'b-'); 
    end 
    legend off 
    hold off 

     
    fitgoodB=0; 
    fitgoodB=input('Do the curves fit? (1=yes)'); 
    if fitgoodB==1 
    try 
        goflin 
        gofsate 
        gofsatelin 
    catch 
        disp('Some fits did not work.') 
    end 
 %   end 
goflin=0; 
gofsate=0; 
gofsatelin=0; 

  
    fitgoodB=0; 
    fitgoodB=input('Which fit is best? red=1, green=2, blue=3, none=0'); 

    
    end 

     
    if fitgoodB==1 
        Bgood=1; 
    elseif fitgoodB==2 
        Bgood=1; 
    elseif fitgoodB==3 
        Bgood=1; 
    else Bgood=0; 
    end 

     
    close figure 2 
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    if fitgoodB==1 
        coeffsB=coeffvalues(Bf1); 
        variancescoeffsB=confint(Bf1,0.682689); 
        variancescoeffsB=variancescoeffsB(2,:)-coeffsB; 
        optionsB=fitoptions('Method','LinearLeastSquares','Weights',Bw); 
        goodfitB=F1; 
    end 

     
%BlowF2=BstartptF2-50; 
%BuppF2=BstartptF2+50; 

  
%Changed 13/04/12 
try 
BlowF2=coeffvalues(Bf2)-25; 
BuppF2=coeffvalues(Bf2)+25; 
BstartptF2=coeffvalues(Bf2); 
end 

  
    if fitgoodB==2 
        coeffsB=coeffvalues(Bf2); 
        variancescoeffsB=confint(Bf2,0.682689); 
        variancescoeffsB=variancescoeffsB(2,:)-coeffsB; 
        

optionsB=fitoptions('Method','NonlinearLeastSquares','Weights',Bw,'StartP

oint',BstartptF2,'Lower',BlowF2,'Upper',BuppF2); 
        goodfitB=F2; 
    end 

     
%BlowF3=BstartptF3-50; 
%BuppF3=BstartptF3+50; 

  
%Changed 13/04/12 
try 
BlowF3=coeffvalues(Bf3)-25; 
BuppF3=coeffvalues(Bf3)+25; 
BstartptF3=coeffvalues(Bf3); 
end 

  
    if fitgoodB==3 
        coeffsB=coeffvalues(Bf3); 
        variancescoeffsB=confint(Bf3,0.682689); 
        variancescoeffsB=variancescoeffsB(2,:)-coeffsB; 
        

optionsB=fitoptions('Method','NonlinearLeastSquares','Weights',Bw,'StartP

oint',BstartptF3,'Lower',BlowF3,'Upper',BuppF3); 
        goodfitB=F3; 
    end 

     
    %endifBgood==1 
%end 

  
%end part three 
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%********************************************************************** 
    %******************    PART FOUR   

************************************ 
    

%********************************************************************** 

         
    %part five creates x-values, variances, covariances, and errors. 
%Clearing variables that have variable size 
clear covarR covarT covarB 
%creating estimation of covariance via jackknife-like calculation. 

  
if Rgood==1 
    %Exclusion value things 
    %creating logical vectors for excluding points. 
ee1=[1;0;0;0;0;0;0]; 
ee1=logical(ee1); 
e1=excludedata(x,Rfit,'indices',ee1); 

  
ee2=[0;1;0;0;0;0;0]; 
ee2=logical(ee2); 
e2=excludedata(x,Rfit,'indices',ee2); 

  
ee3=[0;0;1;0;0;0;0]; 
ee3=logical(ee3); 
e3=excludedata(x,Rfit,'indices',ee3); 

  
ee4=[0;0;0;1;0;0;0]; 
ee4=logical(ee4); 
e4=excludedata(x,Rfit,'indices',ee4); 

  
ee5=[0;0;0;0;1;0;0]; 
ee5=logical(ee5); 
e5=excludedata(x,Rfit,'indices',ee5); 

  
ee6=[0;0;0;0;0;1;0]; 
ee6=logical(ee6); 
e6=excludedata(x,Rfit,'indices',ee6); 

  
ee7=[0;0;0;0;0;0;1]; 
ee7=logical(ee7); 
e7=excludedata(x,Rfit,'indices',ee7); 

  
%Creating coefficient matrix: 
options1=fitoptions(optionsR,'Exclude',e1); 
fitr1=fit(x,Rfit,goodfitR,options1); 
covarR(1,:)=coeffvalues(fitr1); 
covarR(1,:)=covarR(1,:)-coeffsR; 

  
options2=fitoptions(optionsR,'Exclude',e2); 
fitr2=fit(x,Rfit,goodfitR,options2); 
covarR(2,:)=coeffvalues(fitr2); 
covarR(2,:)=covarR(2,:)-coeffsR; 
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options3=fitoptions(optionsR,'Exclude',e3); 
fitr3=fit(x,Rfit,goodfitR,options3); 
covarR(3,:)=coeffvalues(fitr3); 
covarR(3,:)=covarR(3,:)-coeffsR; 

  
options4=fitoptions(optionsR,'Exclude',e4); 
fitr4=fit(x,Rfit,goodfitR,options4); 
covarR(4,:)=coeffvalues(fitr4); 
covarR(4,:)=covarR(4,:)-coeffsR; 

  
options5=fitoptions(optionsR,'Exclude',e5); 
fitr5=fit(x,Rfit,goodfitR,options5); 
covarR(5,:)=coeffvalues(fitr5); 
covarR(5,:)=covarR(5,:)-coeffsR; 

  
options6=fitoptions(optionsR,'Exclude',e6); 
fitr6=fit(x,Rfit,goodfitR,options6); 
covarR(6,:)=coeffvalues(fitr6); 
covarR(6,:)=covarR(6,:)-coeffsR; 

  
options7=fitoptions(optionsR,'Exclude',e7); 
fitr7=fit(x,Rfit,goodfitR,options7); 
covarR(7,:)=coeffvalues(fitr7); 
covarR(7,:)=covarR(7,:)-coeffsR; 

  
%Covariances: (a-A)(b-B), like variances are (a-A)(a-A) 
%No. coefficients: 
%linear:2 (covariances=1) 
%exponential: 3 (covariances=3) 
%saturating exponential plus linear: 4 (covariances=6) 
VarsR=zeros(1,5); 

  

  
covarR1=covarR(:,1).*covarR(:,2); 
covarR1=6/7.*(sum(covarR1)); 

  
if fitgoodR==1 
    covarR2=0; 
    covarR3=0; 
    VarsR(2:3)=variancescoeffsR; 
else 
    covarR2=covarR(:,1).*covarR(:,3); 
    covarR2=6/7.*abs(sum(covarR2)); 

     
    covarR3=covarR(:,2).*covarR(:,3); 
    covarR3=6/7.*abs(sum(covarR3)); 
    VarsR(2:4)=variancescoeffsR(1:3); 
end 

  
if fitgoodR==3 
    covarR4=covarR(:,1).*covarR(:,4); 
    covarR4=6/7.*abs(sum(covarR4)); 
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    covarR5=covarR(:,2).*covarR(:,4); 
    covarR5=6/7.*abs(sum(covarR5)); 

     
    covarR6=covarR(:,3).*covarR(:,4); 
    covarR6=6/7.*abs(sum(covarR6)); 

     
    VarsR(5)=variancescoeffsR(4); 
else 
    covarR4=0; 
    covarR5=0; 
    covarR6=0; 
end 

  
%Rvariances for coefficients: 

  
VarsR(1)=Renaterror; 
VarsR=VarsR.^2; 
end 

  
%TT-OSL 
%creating estimation of covariance via jackknife-like calculation. 

  
if Tgood==1 
    %Exclusion value things 
    %creating logical vectors for excluding points. 
ee1=[1;0;0;0;0;0;0]; 
ee1=logical(ee1); 
e1=excludedata(x,Tfit,'indices',ee1); 

  
ee2=[0;1;0;0;0;0;0]; 
ee2=logical(ee2); 
e2=excludedata(x,Tfit,'indices',ee2); 

  
ee3=[0;0;1;0;0;0;0]; 
ee3=logical(ee3); 
e3=excludedata(x,Tfit,'indices',ee3); 

  
ee4=[0;0;0;1;0;0;0]; 
ee4=logical(ee4); 
e4=excludedata(x,Tfit,'indices',ee4); 

  
ee5=[0;0;0;0;1;0;0]; 
ee5=logical(ee5); 
e5=excludedata(x,Tfit,'indices',ee5); 

  
ee6=[0;0;0;0;0;1;0]; 
ee6=logical(ee6); 
e6=excludedata(x,Tfit,'indices',ee6); 

  
ee7=[0;0;0;0;0;0;1]; 
ee7=logical(ee7); 
e7=excludedata(x,Tfit,'indices',ee7); 

  
%Creating coefficient matrix: 
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options1=fitoptions(optionsT,'Exclude',e1); 
fitt1=fit(x,Tfit,goodfitT,options1); 
covarT(1,:)=coeffvalues(fitt1); 
covarT(1,:)=covarT(1,:)-coeffsT; 

  
options2=fitoptions(optionsT,'Exclude',e2); 
fitt2=fit(x,Tfit,goodfitT,options2); 
covarT(2,:)=coeffvalues(fitt2); 
covarT(2,:)=covarT(2,:)-coeffsT; 

  
options3=fitoptions(optionsT,'Exclude',e3); 
fitt3=fit(x,Tfit,goodfitT,options3); 
covarT(3,:)=coeffvalues(fitt3); 
covarT(3,:)=covarT(3,:)-coeffsT; 

  
options4=fitoptions(optionsT,'Exclude',e4); 
fitt4=fit(x,Tfit,goodfitT,options4); 
covarT(4,:)=coeffvalues(fitt4); 
covarT(4,:)=covarT(4,:)-coeffsT; 

  
options5=fitoptions(optionsT,'Exclude',e5); 
fitt5=fit(x,Tfit,goodfitT,options5); 
covarT(5,:)=coeffvalues(fitt5); 
covarT(5,:)=covarT(5,:)-coeffsT; 

  
options6=fitoptions(optionsT,'Exclude',e6); 
fitt6=fit(x,Tfit,goodfitT,options6); 
covarT(6,:)=coeffvalues(fitt6); 
covarT(6,:)=covarT(6,:)-coeffsT; 

  
options7=fitoptions(optionsT,'Exclude',e7); 
fitt7=fit(x,Tfit,goodfitT,options7); 
covarT(7,:)=coeffvalues(fitt7); 
covarT(7,:)=covarT(7,:)-coeffsT; 

  
%Covariances: (a-A)(b-B), like variances are (a-A)(a-A) 
%No. coefficients: 
%linear:2 (covariances=1) 
%exponential: 3 (covariances=3) 
%saturating exponential plus linear: 4 (covariances=6) 

  
covarT1=covarT(:,1).*covarT(:,2); 
covarT1=6/7.*abs(sum(covarT1)); 

  

  
VarsT=zeros(1,5); 

  
if fitgoodT==1 
    covarT2=0; 
    covarT3=0; 

     
    VarsT(2:3)=variancescoeffsT; 
else 
    covarT2=covarT(:,1).*covarT(:,3); 
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    covarT2=6/7.*abs(sum(covarT2)); 

     
    covarT3=covarT(:,2).*covarT(:,3); 
    covarT3=6/7.*abs(sum(covarT3)); 

     
    VarsT(2:4)=variancescoeffsT(1:3); 
end 

  
if fitgoodT==3 
    covarT4=covarT(:,1).*covarT(:,4); 
    covarT4=6/7.*abs(sum(covarT4)); 

     
    covarT5=covarT(:,2).*covarT(:,4); 
    covarT5=6/7.*abs(sum(covarT5)); 

     
    covarT6=covarT(:,3).*covarT(:,4); 
    covarT6=6/7.*abs(sum(covarT6)); 

     
    VarsT(5)=variancescoeffsT(4); 
else 
    covarT4=0; 
    covarT5=0; 
    covarT6=0; 
end 

  
end 
VarsT(1)=TTnaterror; 
VarsT=VarsT.^2; 

  
%BB-OSL 
%creating estimation of covariance via jackknife-like calculation. 

  
if Bgood==1 
    %Exclusion value things 
    %creating logical vectors for excluding points. 
ee1=[1;0;0;0;0;0;0]; 
ee1=logical(ee1); 
e1=excludedata(x,Bfit,'indices',ee1); 

  
ee2=[0;1;0;0;0;0;0]; 
ee2=logical(ee2); 
e2=excludedata(x,Bfit,'indices',ee2); 

  
ee3=[0;0;1;0;0;0;0]; 
ee3=logical(ee3); 
e3=excludedata(x,Bfit,'indices',ee3); 

  
ee4=[0;0;0;1;0;0;0]; 
ee4=logical(ee4); 
e4=excludedata(x,Bfit,'indices',ee4); 

  
ee5=[0;0;0;0;1;0;0]; 
ee5=logical(ee5); 
e5=excludedata(x,Bfit,'indices',ee5); 
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ee6=[0;0;0;0;0;1;0]; 
ee6=logical(ee6); 
e6=excludedata(x,Bfit,'indices',ee6); 

  
ee7=[0;0;0;0;0;0;1]; 
ee7=logical(ee7); 
e7=excludedata(x,Bfit,'indices',ee7); 

  
%Creating coefficient matrix: 
options1=fitoptions(optionsB,'Exclude',e1); 
fitb1=fit(x,Bfit,goodfitB,options1); 
covarB(1,:)=coeffvalues(fitb1); 
covarB(1,:)=covarB(1,:)-coeffsB; 

  
options2=fitoptions(optionsB,'Exclude',e2); 
fitb2=fit(x,Bfit,goodfitB,options2); 
covarB(2,:)=coeffvalues(fitb2); 
covarB(2,:)=covarB(2,:)-coeffsB; 

  
options3=fitoptions(optionsB,'Exclude',e3); 
fitb3=fit(x,Bfit,goodfitB,options3); 
covarB(3,:)=coeffvalues(fitb3); 
covarB(3,:)=covarB(3,:)-coeffsB; 

  
options4=fitoptions(optionsB,'Exclude',e4); 
fitb4=fit(x,Bfit,goodfitB,options4); 
covarB(4,:)=coeffvalues(fitb4); 
covarB(4,:)=covarB(4,:)-coeffsB; 

  
options5=fitoptions(optionsB,'Exclude',e5); 
fitb5=fit(x,Bfit,goodfitB,options5); 
covarB(5,:)=coeffvalues(fitb5); 
covarB(5,:)=covarB(5,:)-coeffsB; 

  
options6=fitoptions(optionsB,'Exclude',e6); 
fitb6=fit(x,Bfit,goodfitB,options6); 
covarB(6,:)=coeffvalues(fitb6); 
covarB(6,:)=covarB(6,:)-coeffsB; 

  
options7=fitoptions(optionsB,'Exclude',e7); 
fitb7=fit(x,Bfit,goodfitB,options7); 
covarB(7,:)=coeffvalues(fitb7); 
covarB(7,:)=covarB(7,:)-coeffsB; 

  
%Covariances: (a-A)(b-B), like variances are (a-A)(a-A) 
%No. coefficients: 
%linear:2 (covariances=1) 
%exponential: 3 (covariances=3) 
%saturating exponential plus linear: 4 (covariances=6) 

  
covarB1=covarB(:,1).*covarB(:,2); 
covarB1=6/7.*abs(sum(covarB1)); 
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VarsB=zeros(1,5); 

  
if fitgoodB==1 
    covarB2=0; 
    covarB3=0; 

     
    VarsB(2:3)=variancescoeffsB; 
else 
    covarB2=covarB(:,1).*covarB(:,3); 
    covarB2=6/7.*abs(sum(covarB2)); 

     
    covarB3=covarB(:,2).*covarB(:,3); 
    covarB3=6/7.*abs(sum(covarB3)); 

     
    VarsB(2:4)=variancescoeffsB(1:3); 
end 

  
if fitgoodB==3 
    covarB4=covarB(:,1).*covarB(:,4); 
    covarB4=6/7.*abs(sum(covarB4)); 

     
    covarB5=covarB(:,2).*covarB(:,4); 
    covarB5=6/7.*abs(sum(covarB5)); 

     
    covarB6=covarB(:,3).*covarB(:,4); 
    covarB6=6/7.*abs(sum(covarB6)); 

     
    VarsB(2:5)=variancescoeffsB(4); 

     
else 
    covarB4=0; 
    covarB5=0; 
    covarB6=0; 
end 

  
VarsB(1)=BTnaterror; 
VarsB=VarsB.^2; 

  
end 

  

  
%Note that partial derivatives depend on x for saturating exponential 

plus 
%linear part. Therefore x must be found at least for this fit before 
%partial derivates are calculated. 

  
%Finding x: 

  
%For Re-OSL 
if Rgood==1 
    if fitgoodR==1 
        RX=(Renat-coeffsR(2))/coeffsR(1); 
    end 
    if fitgoodR==2 
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        RX=-1/coeffsR(2)*log((coeffsR(3)-Renat)/coeffsR(1)); 
    end 
    if fitgoodR==3 
   %Note that there are these restrictions in the sat exp plus lin 

result: 
   %-No extrapolation 
   %-'Digital' type result with resolution 0.001. 
   %-Always rounds up, not down (for positive slope). 
        RX3=linspace(0.001,3000,300000); 
        RY3=-coeffsR(1).*exp(-coeffsR(2).*RX3) + coeffsR(3).*RX3 + 

coeffsR(4); 
        RX=0; 
        for hh=1:300000 
            if RY3(300001-hh)>Renat; 
                RX=RX3(300001-hh); 
            end 
        end 
    end 
end 

  
%For TT-OSL 
if Tgood==1 
    if fitgoodT==1 
        TX=(TTnat-coeffsT(2))/coeffsT(1); 
    end 
    if fitgoodT==2 
        TX=-1/coeffsT(2)*log((coeffsT(3)-TTnat)/coeffsT(1)); 
    end 
    if fitgoodT==3 
   %Note that there are these restrictions in the sat exp plus lin 

result: 
   %-No extrapolation 
   %-'Digital' type result with resolution 0.001. 
   %-Always rounds up, not down (for positive slope). 
        TX3=linspace(0.001,3000,300000); 
        TY3=-coeffsT(1).*exp(-coeffsT(2).*TX3) + coeffsT(3).*TX3 + 

coeffsT(4); 
        TX=0; 
        for hh=1:300000 
            if TY3(300001-hh)>TTnat; 
                TX=TX3(300001-hh); 
            end 
        end 
    end 
end 

  

  
%For BT-OSL 
if Bgood==1 
    if fitgoodB==1 
        BX=(BTnat-coeffsB(2))/coeffsB(1); 
    end 
    if fitgoodB==2 
        BX=-1/coeffsB(2)*log((coeffsB(3)-BTnat)/coeffsB(1)); 
    end 
    if fitgoodB==3 
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   %Note that there are these restrictions in the sat exp plus lin 

result: 
   %-No extrapolation 
   %-'Digital' type result with resolution 0.001. 
   %-Always rounds up, not down (for positive slope). 
        BX3=linspace(0.001,3000,300000); 
        BY3=-coeffsB(1).*exp(-coeffsB(2).*BX3) + coeffsB(3).*BX3 + 

coeffsB(4); 
        BX=0; 
        for hh=1:300000 
            if BY3(300001-hh)>BTnat; 
                BX=BX3(300001-hh); 
            end 
        end 
    end 
end 

  

  

  
%Creating Partial Derivatives 

  
%For Re-OSL 
if Rgood==1 
    if fitgoodR==1 
        Rdxdy=1/coeffsR(1); 
        Rdxda=-1/coeffsR(1); 
        Rdxdb=(coeffsR(2)-Renat)/(coeffsR(1)^2); 
        Rdxdc=0; 
        Rdxdd=0; 
    end 
    if fitgoodR==2 
        Rdxdy=1/(coeffsR(2)*(coeffsR(3)-Renat)); 
        Rdxda=1/(coeffsR(1)*coeffsR(2)); 
        Rdxdb=(log((coeffsR(3)-Renat)/coeffsR(1)))/(coeffsR(2)^2); 
        Rdxdc=-1/(coeffsR(2)*(coeffsR(3)-Renat)); 
        Rdxdd=0; 
    end 
   if fitgoodR==3  
       Rdxdy=1/(coeffsR(1)*coeffsR(2)*exp(-coeffsR(2)*RX) + coeffsR(3)); 
       Rdxda=1/(exp(coeffsR(2)*RX)*(-Renat*coeffsR(2) + 

coeffsR(4)*coeffsR(2) + coeffsR(3)*(1+(coeffsR(2)*RX)))); 
       %changed 13/12/11 on all R,T,B. 
       %Rdxda=1/((coeffsR(3)*(RX/coeffsR(2))-Renat + 

coeffsR(4))*coeffsR(2)*exp(coeffsR(2)*RX)); 
       Rdxdb=1/(RX^-2*log((coeffsR(3)*RX + coeffsR(4) - 

Renat)/coeffsR(3)) - (1/RX)*(coeffsR(3)/(coeffsR(3)*RX + coeffsR(4) - 

Renat))); 
       Rdxdc=1/(-(Renat/(RX^2))+(coeffsR(4)/(RX^2))-((coeffsR(1)*exp(-

coeffsR(2)*RX))/(RX^2))-((coeffsR(2)*coeffsR(1)*exp(-

coeffsR(2)*RX))/(RX))); 
       Rdxdd=1/(-(coeffsR(3) - coeffsR(1)*coeffsR(2)*exp(-

coeffsR(2)*RX))); 
   end 
end 

  
%For TT-OSL 
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if Tgood==1 
    if fitgoodT==1 
        Tdxdy=1/coeffsT(1); 
        Tdxda=-1/coeffsT(1); 
        Tdxdb=(coeffsT(2)-TTnat)/(coeffsT(1)^2); 
        Tdxdc=0; 
        Tdxdd=0; 
    end 
    if fitgoodT==2 
        Tdxdy=1/(coeffsT(2)*(coeffsT(3)-TTnat)); 
        Tdxda=1/(coeffsT(1)*coeffsT(2)); 
        Tdxdb=(log((coeffsT(3)-TTnat)/coeffsT(1)))/(coeffsT(2)^2); 
        Tdxdc=-1/(coeffsT(2)*(coeffsT(3)-TTnat)); 
        Tdxdd=0; 
    end 
   if fitgoodT==3  
       Tdxdy=1/(coeffsT(1)*coeffsT(2)*exp(-coeffsT(2)*TX) + coeffsT(3)); 
       Tdxda=1/(exp(coeffsT(2)*TX)*(-TTnat*coeffsT(2) + 

coeffsT(4)*coeffsT(2) + coeffsT(3)*(1+(coeffsT(2)*TX)))); 
       Tdxdb=1/(TX^-2*log((coeffsT(3)*TX + coeffsT(4) - 

TTnat)/coeffsT(3)) - (1/TX)*(coeffsT(3)/(coeffsT(3)*TX + coeffsT(4) - 

TTnat))); 
       Tdxdc=1/(-(TTnat/(TX^2))+(coeffsT(4)/(TX^2))-((coeffsT(1)*exp(-

coeffsT(2)*TX))/(TX^2))-((coeffsT(2)*coeffsT(1)*exp(-

coeffsT(2)*TX))/(TX))); 
       Tdxdd=1/(-(coeffsT(3) - coeffsT(1)*coeffsT(2)*exp(-

coeffsT(2)*TX))); 
   end 
end 

  

  
%For BT-OSL 
if Bgood==1 
    if fitgoodB==1 
        Bdxdy=1/coeffsB(1); 
        Bdxda=-1/coeffsB(1); 
        Bdxdb=(coeffsB(2)-BTnat)/(coeffsB(1)^2); 
        Bdxdc=0; 
        Bdxdd=0; 
    end 
    if fitgoodB==2 
        Bdxdy=1/(coeffsB(2)*(coeffsB(3)-BTnat)); 
        Bdxda=1/(coeffsB(1)*coeffsB(2)); 
        Bdxdb=(log((coeffsB(3)-BTnat)/coeffsB(1)))/(coeffsB(2)^2); 
        Bdxdc=-1/(coeffsB(2)*(coeffsB(3)-BTnat)); 
        Bdxdd=0; 
    end 
   if fitgoodB==3  
       Bdxdy=1/(coeffsB(1)*coeffsB(2)*exp(-coeffsB(2)*BX) + coeffsB(3)); 
       Bdxda=1/(exp(coeffsB(2)*BX)*(-BTnat*coeffsB(2) + 

coeffsB(4)*coeffsB(2) + coeffsB(3)*(1+(coeffsB(2)*BX)))); 
       Bdxdb=1/(BX^-2*log((coeffsB(3)*BX + coeffsB(4) - 

BTnat)/coeffsB(3)) - (1/BX)*(coeffsB(3)/(coeffsB(3)*BX + coeffsB(4) - 

BTnat))); 
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       Bdxdc=1/(-(BTnat/(BX^2))+(coeffsB(4)/(BX^2))-((coeffsB(1)*exp(-

coeffsB(2)*BX))/(BX^2))-((coeffsB(2)*coeffsB(1)*exp(-

coeffsB(2)*BX))/(BX))); 
       Bdxdd=1/(-(coeffsB(3) - coeffsB(1)*coeffsB(2)*exp(-

coeffsB(2)*BX))); 
   end 
end 

  

  

  
%Have partial derivatives eg "Rdxdy", variances eg "VarsR(1)", 

covariances 
%eg "covarR1", x values eg "RX". Now to find variances: 

  
if Rgood==1 
    Rvariance=VarsR(1)*(Rdxdy.^2) + VarsR(2)*(Rdxda.^2) + 

VarsR(3)*(Rdxdb.^2) + VarsR(4)*(Rdxdc.^2) + 

VarsR(5)*(Rdxdd.^2)+2*covarR1*Rdxda*Rdxdb + 2*covarR2*Rdxda*Rdxdc + 

2*covarR3*Rdxdb*Rdxdc + 2*covarR4*Rdxda*Rdxdd + 2*covarR5*Rdxdb*Rdxdd + 

2*covarR6*Rdxdc*Rdxdd; 
Rerror=real(sqrt(Rvariance)); 
end 

  
if Tgood==1 
    Tvariance=VarsT(1)*(Tdxdy.^2) + VarsT(2)*(Tdxda.^2) + 

VarsT(3)*(Tdxdb.^2) + VarsT(4)*(Tdxdc.^2) + VarsT(5)*(Tdxdd.^2) + 

2*covarT1*Tdxda*Tdxdb + 2*covarT2*Tdxda*Tdxdc + 2*covarT3*Tdxdb*Tdxdc + 

2*covarT4*Tdxda*Tdxdd + 2*covarT5*Tdxdb*Tdxdd + 2*covarT6*Tdxdc*Tdxdd; 
Terror=real(sqrt(Tvariance)); 
end 

  
if Bgood==1 
    Bvariance=VarsB(1)*(Bdxdy.^2) + VarsB(2)*(Bdxda.^2) + 

VarsB(3)*(Bdxdb.^2) + VarsB(4)*(Bdxdc.^2) + VarsB(5)*(Bdxdd.^2) + 

2*covarB1*Bdxda*Bdxdb + 2*covarB2*Bdxda*Bdxdc + 2*covarB3*Bdxdb*Bdxdc + 

2*covarB4*Bdxda*Bdxdd + 2*covarB5*Bdxdb*Bdxdd + 2*covarB6*Bdxdc*Bdxdd; 
Berror=real(sqrt(Bvariance)); 
end 

  

  

  
%So have RX, TX, BX, Rerror, Terror, Berror 

  

  
    

%********************************************************************** 
    %******************    PART FIVE   

************************************ 
    

%********************************************************************** 

     
%Part 5 calculates ages from dose in seconds, and writes information to a 
%file. 
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%Assuming dose error=0 for now. 

  
%Importing in values: dose, aliquot, WK4dr, WK4drerror, RX, TX, BX, 

Rerror, 
%Terror, Berror Rrecyclingratio, Trecyclingratio, Brecyclingratio, peakT, 
%peakB, lengthT, lengthB 

  
%Importing also Rgood, Tgood, Bgood, fitgoodR, fitgoodT, fitgoodB. 

  
%Writing to file: 
%disc no. 
%aliquot no. 
%age (ka) 
%age error (ka) 
%fit type (1=linear, 2=saturating exponential, 3=saturating exponential 
%plus linear) 
%recycling ratio (largest always on numerator) 
%sum of first two points in TTOSL 
%sum of fist two points in BTOSL 
%number of data points (each 0.02 seconds) of TTOSL 
%number of data points (each 0.02 seconds) of BTOSL 

  

  
if Rgood==1 
    RXGy=RX*dose(aliquot); 
    RXGyerror=sqrt(RXGy^2*((Rerror/RX)^2 + 0.08^2)); 

     
    ageR=real(abs(RXGy/WK4dr)); 
    ageRerror=sqrt(ageR^2*((RXGyerror/RXGy)^2+(WK4drerror/WK4dr)^2)); 

  
    Rwrite=[disc, aliquot, ageR, ageRerror, fitgoodR, Rrecyclingratio, 

peakT, peakB, lengthT, lengthB]; 
dlmwrite('Rages.txt',Rwrite,'-append','newline','pc'); 
end 

  
if Tgood==1 
    TXGy=TX*dose(aliquot); 
    TXGyerror=sqrt(TXGy^2*((Terror/TX)^2 + 0.08^2)); 

     
    ageT=(TXGy/WK4dr); 
    ageTerror=sqrt(ageT^2*((TXGyerror/TXGy)^2+(WK4drerror/WK4dr)^2)); 

     
    Twrite=[disc, aliquot, ageT, ageTerror, fitgoodT, Trecyclingratio, 

peakT, peakB, lengthT, lengthB]; 
dlmwrite('Tages.txt',Twrite,'-append','newline','pc'); 
end 

  
if Bgood==1 
    BXGy=BX*dose(aliquot); 
    BXGyerror=sqrt(BXGy^2*((Berror/BX)^2 + 0.08^2)); 

     
    ageB=real(abs(BXGy/WK4dr)); 
    ageBerror=sqrt(ageB^2*((BXGyerror/BXGy)^2+(WK4drerror/WK4dr)^2)); 
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    Bwrite=[disc, aliquot, ageB, ageBerror, fitgoodB, Brecyclingratio, 

peakT, peakB, lengthT, lengthB]; 
dlmwrite('Bages.txt',Bwrite,'-append','newline','pc'); 
end 

  
%This is the 'end' for the if good==1 
%    end 

  
    alquot=aliquot+1; 
    csvwrite('lastaliquot.txt',alquot); 
%This is the 'end' for the aliqot statement. 
end 
%This is the 'end' for the function. 
end 
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"NATDOSE" 

 

function natdose 

  
%The function of natdose is to calculate the natural equivalent dose of 

an 
%aliquot of quartz grains from the TT-OSL SAR procedure. The output 
%includes the equivalent dose, and its upper and lower error limits. 

  
%Variation 5: includes the ability to use different backgrounds: end of 
%OSL, near start TL, and end of TL. 
%This variation is more efficient than variation 1. (From variation 2) 

  
%This variation also includes a check of recycling ratio, and prints 
%'recycling bad' on the results sheet if the recycling is worse than the 
%errors of the first point. 

  
%The check of the recycling ratio was changed on 20120912 to say 

'recycling 
%bad' on the results sheet if the doubled dose points do not agree with 
%each other within errors (each other's 68% confidence limits). 

  
%This variation also reads out the natural signal (unnormalised) of the 
%particular aliquot and measurement (TTOSL,BTOSL,REOSL). 

  
%This variation also has a function that allows one to skip over initial 
%bins, in order to create an OSL 'plateau test'. Note that OSL plateau 
%tests are not as reliable as TL plateau tests, so shouldn't be used as a 
%definitive test. 

  
%Earlier variations did not subtract the background from OSL test doses. 

  
%Note that the output reads as: result(Gy), lower bound(Gy), upper 
%bound(Gy), normalising type(OSL or TT-OSL), fit type(lin; sat...), which 
%background(OSL end; TTOSL end; TTOSL initial), recycling(good or bad), 
%unnormalised natural ReOSL count, aliquot number, day, month, year 

  
close all 
clear all 

  
%Constants that stay the same throughout all aliquots are defined here. 
%Note that some of these constants change for different samples. These 
%should not be defined anywhere but here, to avoid accidentally leaving 
%these unchanged when going on to different samples. These to-be-changed 
%constants will be marked with the sign "**SD**" (sample dependent). 

  
%x' : the column vector defining the doses given to each cycle. **SD** 
x=[INSERT DOSES GIVEN EACH CYCLE HERE].*0.092;  %changed from 0.11, then 

from 0.091 to (0.092 on 2012-09-03) 
x=x';         %**SD** 

  
%natx : the vector facilitating the plotting of the natural dose **SD** 
natx=linspace(-1,(max(x)+1),10)';     %**SD** 
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%whichn : the integer (1 or 2) that defines which normalising dose is 
%used: OSL or TTOSL. 
whichn=1; 
if whichn==1; 
    normsalising='OSL test dose'; 
elseif whichn==2; 
    normalising='TTOSL test dose'; 
end 

  
%Defines what background is to be used. (1=OSL end; 2=near start TT-OSL; 
%3=TT-OSL end.) 20120905 
whichbg=1; 

  
%nobins : the integer detailing the number of bins used for a particular 
%sample. By default, this is left as one in the original file. **SD** 
nobins=1;     %**SD** 

  
%binstart: the bin on which the counting starts. 
binstart=1; 

  
%PN : the vector facilitating the plotting of the natural dose (y axis) 
PN=ones(1,10); 

  
%F1: the linear fit. 
F1=fittype('poly1'); 

  
%F2: the saturating exponential fit. 
F2=fittype('-a.*exp(-b.*x) + c','coeff',{'a','b','c'}); 

  
%F3: the saturating exponential plus linear fit. 
F3=fittype('-a.*exp(-b.*x) + c.*x + d','coeff',{'a','b','c','d'}); 

  
%Start points and lower and upper bounds for saturating exponential. 
RstartptF2(1)=0.5; 
RstartptF2(2)=0.001; 
RstartptF2(3)=0.5; 
RstartptF2=RstartptF2'; 

  
RlowF2(1)=RstartptF2(1)-10; 
RuppF2(1)=RstartptF2(1)+10; 
RlowF2(2)=RstartptF2(2)-25; 
RuppF2(2)=RstartptF2(2)+25; 
RlowF2(3)=RstartptF2(3)-2; 
RuppF2(3)=RstartptF2(3)+2; 

  
% 
% 
% 

  
%READING OF DATA 

  
%After these aliquots, protocol TTOSLNE4S-02 was used. 
file=input('Which aliquot would you like to use (1-8)' ); 
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if file==1 
data=csvread('XX01.txt'); 
end 

  
if file==2 
data=csvread('XX02.txt'); 
end 

  
if file==3 
data=csvread('XX03.txt'); 
end 

  
if file==4 
data=csvread('XXE04.txt'); 
end 

  
if file==5 
data=csvread('XX05.txt'); 
end 

  
if file==6 
data=csvread('XX06.txt'); 
end 

  
if file==7 
data=csvread('XX07.txt'); 
end 

  
if file==8 
data=csvread('XX08.txt'); 
end 

  

  
% 
% 
% 

  
%PREPROCESSING OF DATA 
%Getting rid of unwanted columns. 

  
data(:,1)=[]; 

  
% 
% 
% 

  
%PROCESSING OF DATA 
%  -Integrating light sums 
%  -Finding the error 

  
%Preallocating variables 
bgTT=zeros(1,8); 
errbgTT=zeros(1,8); 
iTTOSL=zeros(1,8); 
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erriTTOSL=zeros(1,8); 
TTOSL=zeros(1,8); 
errTTOSL=zeros(1,8); 
tTOSL=zeros(1,8); 
errtTOSL=zeros(1,8); 
bgtTT=zeros(1,8); 
errbgtTT=zeros(1,8); 
tiTTOSL=zeros(1,8); 
errtiTTOSL=zeros(1,8); 
tTTOSL=zeros(1,8); 
errtTTOSL=zeros(1,8); 
bgBT=zeros(1,8); 
errbgBT=zeros(1,8); 
iBTOSL=zeros(1,8); 
erriBTOSL=zeros(1,8); 
BTOSL=zeros(1,8); 
errBTOSL=zeros(1,8); 
tBOSL=zeros(1,8); 
errtBOSL=zeros(1,8); 
bgtBT=zeros(1,8); 
errbgtBT=zeros(1,8); 
tiBTOSL=zeros(1,8); 
errtiBTOSL=zeros(1,8); 
tBTOSL=zeros(1,8); 
errtBTOSL=zeros(1,8); 

  
%Creating variables 
for aa=0:7; 
    if whichbg==1 
%TOSLend 
temp=data(aa*8+1,591:600); 
bgTT(aa+1)=sum(temp)/10; 
errbgTT(aa+1)=sqrt((1/10)^2*(sqrt(sum(temp)) + ((580-563*exp(-

0.2617*10))/sqrt(sum(temp))))^2); 
    elseif whichbg==2 
%initbgTT (initial background; 20120905) 
temp=data(aa*8+2,(nobins-1)+binstart+1:(nobins-1)+binstart+4); 
bgTT(aa+1)=sum(temp)/3; 
errbgTT(aa+1)=sqrt((1/3)^2*(sqrt(sum(temp)) + ((580-563*exp(-

0.2617*3))/sqrt(sum(temp))))^2); 
    elseif whichbg==3 
%TendTT 
temp=data(aa*8+2,291:300); 
bgTT(aa+1)=sum(temp)/10; 
errbgTT(aa+1)=sqrt((1/10)^2*(sqrt(sum(temp)) + ((580-563*exp(-

0.2617*10))/sqrt(sum(temp))))^2); 
    end 

     
%iTTOSL 
iTTOSL(aa+1)=sum(data(aa*8+2,binstart:binstart+(nobins-1))); 
erriTTOSL(aa+1)=sqrt(iTTOSL(aa+1)) + ((580-563*exp(-

0.2617*nobins))/sqrt(iTTOSL(aa+1))); 

  
%tTOSL 
tTOSL(aa+1)=sum(data(aa*8+3,1)); 
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errtTOSL(aa+1)=sqrt(tTOSL(aa+1)) + ((580-563*exp(-

0.2617))/sqrt(tTOSL(aa+1))); 
tTOSLbg(aa+1)=sum(data(aa*8+3,591:600))/10; 
errtTOSLbg(aa+1)=sqrt((1/10)^2*(sqrt(sum(data(aa*8+3,591:600)) + ((580-

563*exp(-0.2617*10))/sqrt(sum(data(aa*8+3,591:600)))))^2)); 
tTOSL(aa+1)=tTOSL(aa+1)-tTOSLbg(aa+1); 
errtTOSL(aa+1)=sqrt(errtTOSL(aa+1)^2+errtTOSLbg(aa+1)^2); 

  
if whichbg==1 
%tTOSLend 
temp=data(aa*8+3,591:600); 
bgtTT(aa+1)=sum(temp)/10; 
errbgtTT(aa+1)=sqrt((1/10)^2*(sqrt(sum(temp)) + ((580-563*exp(-

0.2617*10))/sqrt(sum(temp))))^2); 
elseif whichbg==2 
%initbgtTT 
temp=data(aa*8+4,(nobins-1)+binstart+1:binstart+(nobins-1)+4); 
bgtTT(aa+1)=sum(temp)/3; 
errbgtTT(aa+1)=sqrt((1/3)^2*(sqrt(sum(temp)) + ((580-563*exp(-

0.2617*3))/sqrt(sum(temp))))^2); 
elseif whichbg==3 
%TendtTT 
temp=data(aa*8+4,591:600); 
bgtTT(aa+1)=sum(temp)/10; 
errbgtTT(aa+1)=sqrt((1/10)^2*(sqrt(sum(temp)) + ((580-563*exp(-

0.2617*10))/sqrt(sum(temp))))^2); 
end 

  
%tiTTOSL 
tiTTOSL(aa+1)=sum(data(aa*8+4,binstart:binstart+(nobins-1))); 
errtiTTOSL(aa+1)=sqrt(tiTTOSL(aa+1)) + ((580-563*exp(-

0.2617*nobins))/sqrt(tiTTOSL(aa+1))); 

  
if whichbg==1 
%BOSLend 
temp=data(aa*8+5,591:600); 
bgBT(aa+1)=sum(temp)/10; 
errbgBT(aa+1)=sqrt((1/10)^2*(sqrt(sum(temp)) + ((580-563*exp(-

0.2617*10))/sqrt(sum(temp))))^2); 
elseif whichbg==2 
%initbgBT 
temp=data(aa*8+6,(nobins-1)+binstart+1:(nobins-1)+binstart+4); 
bgBT(aa+1)=sum(temp)/3; 
errbgBT(aa+1)=sqrt((1/3)^2*(sqrt(sum(temp)) + ((580-563*exp(-

0.2617*3))/sqrt(sum(temp))))^2); 
elseif whichbg==3 
%TendBT 
temp=data(aa*8+6,291:300); 
bgBT(aa+1)=sum(temp)/10; 
errbgBT(aa+1)=sqrt((1/10)^2*(sqrt(sum(temp)) + ((580-563*exp(-

0.2617*10))/sqrt(sum(temp))))^2); 
end 

  
%iBTOSL 
iBTOSL(aa+1)=sum(data(aa*8+6,binstart:binstart+(nobins-1))); 
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erriBTOSL(aa+1)=sqrt(iBTOSL(aa+1)) + ((580-563*exp(-

0.2617*nobins))/sqrt(iBTOSL(aa+1))); 

  
%tBOSL 
tBOSL(aa+1)=data(aa*8+7,1); 
errtBOSL(aa+1)=sqrt(tBOSL(aa+1)) + ((580-563*exp(-

0.2617))/sqrt(tBOSL(aa+1))); 
tBOSLbg(aa+1)=sum(data(aa*8+7,591:600))/10; 
errtBOSLbg(aa+1)=sqrt((1/10)^2*(sqrt(sum(data(aa*8+7,591:600)) + ((580-

563*exp(-0.2617*10))/sqrt(sum(data(aa*8+7,591:600)))))^2)); 
tBOSL(aa+1)=tBOSL(aa+1)-tBOSLbg(aa+1); 
errtBOSL(aa+1)=sqrt(errtBOSL(aa+1)^2+errtBOSLbg(aa+1)^2); 

  
if whichbg==1 
%tBOSLend 
temp=data(aa*8+7,591:600); 
bgtBT(aa+1)=sum(temp)/10; 
errbgtBT(aa+1)=sqrt((1/10)^2*(sqrt(sum(temp)) + ((580-563*exp(-

0.2617*10))/sqrt(sum(temp))))^2); 
elseif whichbg==2 
%initbgtBT 
temp=data(aa*8+8,(nobins-1)+binstart+1:(nobins-1)+binstart+4); 
bgtBT(aa+1)=sum(temp)/3; 
errbgtBT(aa+1)=sqrt((1/3)^2*(sqrt(sum(temp)) + ((580-563*exp(-

0.2617*3))/sqrt(sum(temp))))^2); 
elseif whichbg==3 
%TendtBT 
temp=data(aa*8+8,291:300); 
bgtBT(aa+1)=sum(temp)/10; 
errbgtBT(aa+1)=sqrt((1/10)^2*(sqrt(sum(temp)) + ((580-563*exp(-

0.2617*10))/sqrt(sum(temp))))^2); 
end 

  
%tiBTOSL 
tiBTOSL(aa+1)=sum(data(aa*8+8,binstart:binstart+(nobins-1))); 
errtiBTOSL(aa+1)=sqrt(tiBTOSL(aa+1)) + ((580-563*exp(-

0.2617*nobins))/sqrt(tiBTOSL(aa+1))); 

  
%TTOSL 
TTOSL(aa+1)=iTTOSL(aa+1)-bgTT(aa+1); 
errTTOSL(aa+1)=sqrt((erriTTOSL(aa+1)+errbgTT(aa+1))^2); 

  
%tTTOSL 
tTTOSL(aa+1)=tiTTOSL(aa+1)-bgtTT(aa+1); 
errtTTOSL(aa+1)=sqrt(errtiTTOSL(aa+1)^2+errbgtTT(aa+1)^2); 

  
%BTOSL 
BTOSL(aa+1)=iBTOSL(aa+1)-bgBT(aa+1); 
errBTOSL(aa+1)=sqrt(erriBTOSL(aa+1)^2+errbgBT(aa+1)^2); 

  
%tBTOSL 
tBTOSL(aa+1)=tiBTOSL(aa+1)-bgtBT(aa+1); 
errtBTOSL(aa+1)=sqrt(errtiBTOSL(aa+1)^2+errbgtBT(aa+1)^2); 

  
end 
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REOSL=TTOSL-BTOSL; 

  
% 
% 
% 

  
%NORMALISING DATA 
%Choosing how to normalise 
if whichn==1 
    normT=tTOSL; 
    errnormT=errtTOSL; 
    normB=tBOSL; 
    errnormB=errtBOSL; 
elseif whichn==2 
    normT=tTTOSL; 
    errnormT=errtTTOSL; 
    normB=tBTOSL; 
    errnormB=errtBTOSL; 
end 

  
%creating normalised data and their errors. 

  
%nTTOSL 
nTTOSL=TTOSL./normT; 
%To prevent NaN errors: 
nTTOSL2=nTTOSL; 
TTOSL2=TTOSL; 
normT2=normT; 
for ii=1:8; 
if nTTOSL2(ii)==0; 
   nTTOSL2(ii)=0.0001; 
end 
if TTOSL2(ii)==0; 
   TTOSL2(ii)=1; 
end 
if normT2(ii)==0; 
   normT2(ii)=1; 
end 
end 
errnTTOSL=sqrt((nTTOSL2.^2 .*( (errTTOSL./TTOSL2).^2 + 

(errnormT./normT2).^2))); 

  
nrTTOSL=nTTOSL; 
nrTTOSL(1)=[]; 
errnrTTOSL=errnTTOSL; 
errnrTTOSL(1)=[]; 
TW=(1./errnrTTOSL).^2'; 

  
natnTTOSL=nTTOSL(1); 
errnatnTTOSL=errnTTOSL(1); 
PNT=PN.*natnTTOSL; 
errPNT=PN.*errnatnTTOSL; 

  
%nBTOSL 



234 
 

nBTOSL=BTOSL./normB; 
%To prevent NaN errors: 
nBTOSL2=nBTOSL; 
BTOSL2=BTOSL; 
normB2=normB; 
for ii=1:8; 
if nBTOSL2(ii)==0; 
   nBTOSL2(ii)=0.0001; 
end 
if BTOSL2(ii)==0; 
   BTOSL2(ii)=1; 
end 
if normB2(ii)==0; 
   normB2(ii)=1; 
end 
end 
errnBTOSL=sqrt((nBTOSL2.^2 .*( (errBTOSL./BTOSL2).^2 + 

(errnormB./normB2).^2))); 

  
nrBTOSL=nBTOSL; 
nrBTOSL(1)=[]; 
errnrBTOSL=errnBTOSL; 
errnrBTOSL(1)=[]; 
BW=(1./errnrBTOSL).^2'; 

  
natnBTOSL=nBTOSL(1); 
errnatnBTOSL=errnBTOSL(1); 
PNB=PN.*natnBTOSL; 
errPNB=PN.*errnatnBTOSL; 

  
%nREOSL 
nREOSL=nTTOSL-nBTOSL; 
errnREOSL=sqrt(errnTTOSL.^2 + errnBTOSL.^2); 

  
nrREOSL=nREOSL; 
nrREOSL(1)=[]; 
errnrREOSL=errnREOSL; 
errnrREOSL(1)=[]; 
RW=(1./errnrREOSL).^2'; 

  
natnREOSL=nREOSL(1); 
errnatnREOSL=errnREOSL(1); 
PNR=PN.*natnREOSL; 
errPNR=PN.*errnatnREOSL; 

  
% 
% 
% 

  
%Calculating the recycling ratio (non-order dependent). If the recycling 
%ratio is beyond 68% errors, will give a warning. 

  
%changed 20120912 

  
for jj=1:7 
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    for ii=1:7 
        if (x(ii)==x(jj)) && (ii ~= jj) 
            a=ii; 
            b=jj; 
        end 
    end 
end 

  

  
if nrTTOSL(a)>nrTTOSL(b) 
    aa=b; 
    bb=a; 
else 
    bb=b; 
    aa=a; 
end 
%TT-OSL 
drp=(nrTTOSL(aa)+errnrTTOSL(aa))-(nrTTOSL(bb)-errnrTTOSL(bb)); 
if drp<0 
    Trr='recycling bad'; 
else 
    Trr='recycling good'; 
end 

  

  
if nrBTOSL(a)>nrBTOSL(b) 
    aa=b; 
    bb=a; 
else 
    bb=b; 
    aa=a; 
end 
%BT-OSL 
drp=(nrBTOSL(aa)+errnrBTOSL(aa))-(nrBTOSL(bb)-errnrBTOSL(bb)); 
if drp<0; 
    Brr='recycling bad'; 
else 
    Brr='recycling good'; 
end 

  

  

  
if nrREOSL(a)>nrREOSL(b) 
    aa=b; 
    bb=a; 
else 
    bb=b; 
    aa=a; 
end 
%REOSL 
drp=(nrREOSL(aa)+errnrREOSL(aa))-(nrREOSL(bb)-errnrREOSL(bb)); 
if drp<0; 
    Rrr='recycling bad'; 
else 
    Rrr='recycling good'; 
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end 

  

  
% 
% 
% 

  
%PLOTTING AND FITTING 
%Weighted fits of TTOSL, BTOSL, REOSL 
%Fits of linear, saturating exponential, and saturating exponential plus 
%linear types. 

  
%Creating start points for saturating exponential plus linear 
RstartptF3(1)=TTOSL(3); 
RstartptF3(2)=0.01; 
RstartptF3(3)=0.001; 
RstartptF3(4)=TTOSL(3); 
RstartptF3=RstartptF3'; 

  
%Plotting and fitting TTOSL 
%errorbar(x,nrTTOSL,errnrTTOSL,'bo'); 
plot(x,nrTTOSL,'bo') 
hold on 
%errorbar(natx,PNT,errPNT,'k-'); 
plot(natx,PNT,'k-'); 

  
try 
      [tf1,goflin]=fit(x,nrTTOSL',F1,'Weights',TW); 
      plot(tf1,'r'); 
      disp('Linear'); 
      disp(goflin); 
catch 
    disp('Linear equation cannot be fitted'); 
end 

  
try 
    [tf2,gofsate]=fit(x,nrTTOSL',F2,'StartPoint', RstartptF2,'Lower', 

RlowF2, 'Upper', RuppF2,'Weights',TW); 
    plot(tf2,'g'); 
    disp('Saturating exponential'); 
    disp(gofsate); 
catch 
    disp('Saturating exponential equation cannot be fitted.'); 
end 

  
try 
    

[tf3,gofsatelin]=fit(x,nrTTOSL',F3,'StartPoint',RstartptF3);%,'Weights',T

W); 
    plot(tf3,'b'); 
    disp('Saturating exponential plus linear'); 
    disp(gofsatelin); 
catch 
        disp('Saturating exponential plus linear equation cannot be 

fitted; none=0.'); 
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end 

  
hold off 

  
legend off 
title('TT-OSL'); 
whichTTOSL=input('Which fit is best? (linear=1; sat exp = 2; sat exp plus 

lin = 3.  '); 

  
close figure 1 

  
% 

  
%Plotting and fitting BTOSL 
%errorbar(x,nrBTOSL,errnrBTOSL,'bo'); 
plot(x,nrBTOSL,'bo'); 
hold on 
%errorbar(natx,PNB,errPNB,'k-'); 
plot(natx,PNB,'k-'); 

  
try 
      [bf1,goflin]=fit(x,nrBTOSL',F1,'Weights',BW); 
      plot(bf1,'r'); 
      disp('Linear'); 
      disp(goflin); 
catch 
    disp('Linear equation cannot be fitted'); 
end 

  
try 
    [bf2,gofsate]=fit(x,nrBTOSL',F2,'StartPoint', RstartptF2,'Lower', 

RlowF2, 'Upper', RuppF2,'Weights',BW); 
    plot(bf2,'g'); 
    disp('Saturating exponential'); 
    disp(gofsate); 
catch 
    disp('Saturating exponential equation cannot be fitted.'); 
end 

  
try 
    

[bf3,gofsatelin]=fit(x,nrBTOSL',F3,'StartPoint',RstartptF3);%,'Weights',B

W); 
    plot(bf3,'b'); 
    disp('Saturating exponential plus linear'); 
    disp(gofsatelin); 
catch 
        disp('Saturating exponential plus linear equation cannot be 

fitted.'); 
end 

  
hold off 

  
legend off 
title('BT-OSL'); 
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whichBTOSL=input('Which fit is best? (linear=1; sat exp = 2; sat exp plus 

lin = 3; none=0.  '); 

  
close figure 1 

  
% 

  
%Plotting and fitting REOSL 
%errorbar(x,nrREOSL,errnrREOSL,'bo'); 
plot(x,nrREOSL,'bo'); 
hold on 
%errorbar(natx,PNR,errPNR,'k-'); 
plot(natx,PNR,'k-'); 

  
try 
      [rf1,goflin]=fit(x,nrREOSL',F1,'Weights',RW); 
      plot(rf1,'r'); 
      disp('Linear'); 
      disp(goflin); 
catch 
    disp('Linear equation cannot be fitted'); 
end 

  
try 
    [rf2,gofsate]=fit(x,nrREOSL',F2,'StartPoint', RstartptF2,'Lower', 

RlowF2, 'Upper', RuppF2,'Weights',RW); 
    plot(rf2,'g'); 
    disp('Saturating exponential'); 
    disp(gofsate); 
catch 
    disp('Saturating exponential equation cannot be fitted.'); 
end 

  
try 
    

[rf3,gofsatelin]=fit(x,nrREOSL',F3,'StartPoint',RstartptF3);%,'Weights',R

W); 
    plot(rf3,'b'); 
    disp('Saturating exponential plus linear'); 
    disp(gofsatelin); 
catch 
        disp('Saturating exponential plus linear equation cannot be 

fitted.'); 
end 

  
hold off 

  
legend off 
title('RE-OSL'); 
whichREOSL=input('Which fit is best? (linear=1; sat exp = 2; sat exp plus 

lin = 3; none=0.  '); 

  
close figure 1 

  
% 
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% 
% 

  
%FINDING THE NATURAL DOSE 

  
%For TTOSL: 

  
ifthere=exist('whichTTOSL','var'); 
if (ifthere==1) && (whichTTOSL ~= 0); 

     
%Finding the natural dose from the fit 
if whichTTOSL==1 
    TTOSLfit='linear'; 
    fitT=tf1; 
    coeffsT=coeffvalues(tf1); 
    Tnatx=(natnTTOSL-coeffsT(2))/coeffsT(1); 
    %Error of fit at natx 
    errTs=predint(fitT,Tnatx,0.682689,'functional'); 
    errT=natnTTOSL-errTs(1); 
end 

  
if whichTTOSL==2 
    TTOSLfit='saturating exponential'; 
    fitT=tf2; 
    coeffsT=coeffvalues(tf2); 
    Tnatx=log((coeffsT(3)-natnTTOSL)/coeffsT(1))./(-coeffsT(2)); 
    %Error of fit at natx 
    errTs=predint(fitT,Tnatx,0.682689,'functional'); 
    errT=natnTTOSL-errTs(1); 
end 

  
if whichTTOSL==3 
    TTOSLfit='sat exp + lin'; 
    fitT=tf3; 
    coeffsT=coeffvalues(tf3); 

  
    %Note that there are restrictions on the sat exp + lin result: 
    %-No extrapolation 
    %-Low-res digital type result. 
    %-Always rounds up, not down (for positive slope). 
    mx=max(x); 
    TX3=linspace(0,mx,5000); 
    TY3=-coeffsT(1).*exp(-coeffsT(2).*TX3) + coeffsT(3).*TX3 + 

coeffsT(4); 
    Tnatx=0; 
    for ii=1:5000; 
        if TY3(5001-ii)>natnTTOSL; 
            Tnatx=TX3(5001-ii); 
        end 
    end 

     
    %Error of fit at natx 
    errTs=predint(fitT,Tnatx,0.682689,'functional'); 
    errT=natnTTOSL-errTs(1); 
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end 

     
%Finding the y-axis error 

  
errorTy=sqrt(errT^2+errnatnTTOSL^2); 

  
%Finding the x-axis translation of the y-axis error 
if whichTTOSL==1 
    errorloT=((natnTTOSL-errorTy)-coeffsT(2))/coeffsT(1); 
    errorhiT=((natnTTOSL+errorTy)-coeffsT(2))/coeffsT(1); 
end 

  
if whichTTOSL==2 
    errorloT=log((coeffsT(3)-(natnTTOSL-errorTy))/coeffsT(1))./(-

coeffsT(2)); 
    errorhiT=log((coeffsT(3)-(natnTTOSL+errorTy))/coeffsT(1))./(-

coeffsT(2)); 
end 

  
if whichTTOSL==3 
    %Note that there are restrictions on the sat exp + lin result: 
    %-No extrapolation 
    %-Low-res digital type result. 
    %-Always rounds up, not down (for positive slope). 
    TX=linspace(0,mx,5000); 
    TY=-coeffsT(1).*exp(-coeffsT(2).*TX3) + coeffsT(3).*TX3 + coeffsT(4); 

     
    errorloT=0; 
    for ii=1:5000; 
        if TY(5001-ii)>(natnTTOSL-errorTy); 
            errorloT=TX(5001-ii); 
        end 
    end 

     
    errorhiT=0; 
    for ii=1:5000; 
        if TY(5001-ii)>(natnTTOSL+errorTy); 
            errorhiT=TX(5001-ii); 
        end 
    end 
end 

     
else 
    Tnatx='x'; 
    TTOSLfit='none'; 
end 

     
%For BTOSL: 

  
ifthere=exist('whichBTOSL','var'); 
if (ifthere==1) && (whichBTOSL ~= 0); 

  
%Finding the natural dose from the fit 
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if whichBTOSL==1 
    BTOSLfit='linear'; 
    fitB=bf1; 
    coeffsB=coeffvalues(bf1); 
    Bnatx=(natnBTOSL-coeffsB(2))/coeffsB(1); 
    %Error of fit at natx 
    errBs=predint(fitB,Bnatx,0.682689,'functional'); 
    errB=natnBTOSL-errBs(1); 
end 

  
if whichBTOSL==2 
    BTOSLfit='saturating exponential'; 
    fitB=bf2; 
    coeffsB=coeffvalues(bf2); 
    Bnatx=log((coeffsB(3)-natnBTOSL)/coeffsB(1))./(-coeffsB(2)); 
    %Error of fit at natx 
    errBs=predint(fitB,Bnatx,0.682689,'functional'); 
    errB=natnBTOSL-errBs(1); 
end 

  
if whichBTOSL==3 
    BTOSLfit='sat exp + lin'; 
    fitB=bf3; 
    coeffsB=coeffvalues(bf3); 

  
    %Note that there are restrictions on the sat exp + lin result: 
    %-No extrapolation 
    %-Low-res digital type result. 
    %-Always rounds up, not down (for positive slope). 
    mx=max(x); 
    BX3=linspace(0,mx,5000); 
    BY3=-coeffsB(1).*exp(-coeffsB(2).*BX3) + coeffsB(3).*BX3 + 

coeffsB(4); 
    Bnatx=0; 
    for ii=1:5000; 
        if BY3(5001-ii)>natnBTOSL; 
            Bnatx=BX3(5001-ii); 
        end 
    end 

     
    %Error of fit at natx 
    errBs=predint(fitB,Bnatx,0.682689,'functional'); 
    errB=natnBTOSL-errBs(1); 

     
end 

     
%Finding the y-axis error 

  
errorBy=sqrt(errB^2+errnatnBTOSL^2); 

  
%Finding the x-axis translation of the y-axis error 
if whichBTOSL==1 
    errorloB=((natnBTOSL-errorBy)-coeffsB(2))/coeffsB(1); 
    errorhiB=((natnBTOSL+errorBy)-coeffsB(2))/coeffsB(1); 
end 
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if whichBTOSL==2 
    errorloB=log((coeffsB(3)-(natnBTOSL-errorBy))/coeffsB(1))./(-

coeffsB(2)); 
    errorhiB=log((coeffsB(3)-(natnBTOSL+errorBy))/coeffsB(1))./(-

coeffsB(2)); 
end 

  
if whichBTOSL==3 
    %Note that there are restrictions on the sat exp + lin result: 
    %-No extrapolation 
    %-Low-res digital type result. 
    %-Always rounds up, not down (for positive slope). 
    BX=linspace(0,mx,5000); 
    BY=-coeffsB(1).*exp(-coeffsB(2).*BX3) + coeffsB(3).*BX3 + coeffsB(4); 

     
    errorloB=0; 
    for ii=1:5000; 
        if BY(5001-ii)>(natnBTOSL-errorBy); 
            errorloB=BX(5001-ii); 
        end 
    end 

     
    errorhiB=0; 
    for ii=1:5000; 
        if BY(5001-ii)>(natnBTOSL+errorBy); 
            errorhiB=BX(5001-ii); 
        end 
    end 
end 

  
else 
    Bnatx='x'; 
    BTOSLfit='none'; 
end 

  
%For REOSL: 

  
ifthere=exist('whichREOSL','var'); 
if (ifthere==1) && (whichREOSL ~= 0); 

  
%Finding the natural dose from the fit 
if whichREOSL==1 
    REOSLfit='linear'; 
    fitR=rf1; 
    coeffsR=coeffvalues(rf1); 
    Rnatx=(natnREOSL-coeffsR(2))/coeffsR(1); 
    %Error of fit at natx 
    errRs=predint(fitR,Rnatx,0.682689,'functional'); 
    errR=natnREOSL-errRs(1); 
end 

  
if whichREOSL==2 
    REOSLfit='saturating exponential'; 
    fitR=rf2; 
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    coeffsR=coeffvalues(rf2); 
    Rnatx=log((coeffsR(3)-natnREOSL)/coeffsR(1))./(-coeffsR(2)); 
    %Error of fit at natx 
    errRs=predint(fitR,Rnatx,0.682689,'functional'); 
    errR=natnREOSL-errRs(1); 
end 

  
if whichREOSL==3 
    REOSLfit='sat exp + lin'; 
    fitR=rf3; 
    coeffsR=coeffvalues(rf3); 

  
    %Note that there are restrictions on the sat exp + lin result: 
    %-No extrapolation 
    %-Low-res digital type result. 
    %-Always rounds up, not down (for positive slope). 
    mx=max(x); 
    RX3=linspace(0,mx,5000); 
    RY3=-coeffsR(1).*exp(-coeffsR(2).*RX3) + coeffsR(3).*RX3 + 

coeffsR(4); 
    Rnatx=0; 
    for ii=1:5000; 
        if RY3(5001-ii)>natnREOSL; 
            Rnatx=RX3(5001-ii); 
        end 
    end 

     
    %Error of fit at natx 
    errRs=predint(fitR,Rnatx,0.682689,'functional'); 
    errR=natnREOSL-errRs(1); 

     
end 

     
%Finding the y-axis error 

  
errorRy=sqrt(errR^2+errnatnREOSL^2); 

  
%Finding the x-axis translation of the y-axis error 
if whichREOSL==1 
    errorloR=((natnREOSL-errorRy)-coeffsR(2))/coeffsR(1); 
    errorhiR=((natnREOSL+errorRy)-coeffsR(2))/coeffsR(1); 
end 

  
if whichREOSL==2 
    errorloR=log((coeffsR(3)-(natnREOSL-errorRy))/coeffsR(1))./(-

coeffsR(2)); 
    errorhiR=log((coeffsR(3)-(natnREOSL+errorRy))/coeffsR(1))./(-

coeffsR(2)); 
end 

  
if whichREOSL==3 
    %Note that there are restrictions on the sat exp + lin result: 
    %-No extrapolation 
    %-Low-res digital type result. 
    %-Always rounds up, not down (for positive slope). 



244 
 

    RX=linspace(0,mx,5000); 
    RY=-coeffsR(1).*exp(-coeffsR(2).*RX3) + coeffsR(3).*RX3 + coeffsR(4); 

     
    errorloR=0; 
    for ii=1:5000; 
        if RY(5001-ii)>(natnREOSL-errorRy); 
            errorloR=RX(5001-ii); 
        end 
    end 

     
    errorhiR=0; 
    for ii=1:5000; 
        if RY(5001-ii)>(natnREOSL+errorRy); 
            errorhiR=RX(5001-ii); 
        end 
    end 
end 

  
else 
    Rnatx='x'; 
    REOSLfit='none'; 

  
end 

  
% 
% 

  
%WRITING DATA TO A TEXT FILE 
%Includes: 

  
%natural dose 
%dose error (upper) 
%dose error (lower) 
%what test dose used (whichn) 
%what fit type used 
%number of bins used 
%what aliquot used 
%date of calculation 

  
doc=datevec(date); 
doc(4:6)=[]; 

  
%For TTOSL 
fid=fopen('natdoseTTOSL.txt','a'); 
if Tnatx=='x'; 
    fprintf(fid,'x,x,x,%s,%s,%d 

bins,%f,%s,%f,%f,%f,%f,%f\r\n',normalising,TTOSLfit,nobins,whichbg,Trr,TT

OSL(1),file,doc(1),doc(2),doc(3)); 
else 
    fprintf(fid,'%f,%f,%f,%s,%s,%d 

bins,%f,%s,%f,%f,%f,%f,%f\r\n',Tnatx,errorloT,errorhiT,normalising,TTOSLf

it,nobins,whichbg,Trr,TTOSL(1),file,doc(1),doc(2),doc(3)); 
end 
fclose(fid); 
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%For BTOSL 
fid=fopen('natdoseBTOSL.txt','a'); 
if Bnatx=='x'; 
    fprintf(fid,'x,x,x,%s,%s,%d 

bins,%f,%s,%f,%f,%f,%f,%f\r\n',normalising,BTOSLfit,nobins,whichbg,Brr,BT

OSL(1),file,doc(1),doc(2),doc(3)); 
else 
    fprintf(fid,'%f,%f,%f,%s,%s,%d 

bins,%f,%s,%f,%f,%f,%f,%f\r\n',Bnatx,errorloB,errorhiB,normalising,BTOSLf

it,nobins,whichbg,Brr,BTOSL(1),file,doc(1),doc(2),doc(3)); 
end 
fclose(fid); 

  
%For REOSL 
fid=fopen('natdoseREOSL.txt','a'); 
if Rnatx=='x'; 
    fprintf(fid,'x,x,x,%s,%s,%d 

bins,%f,%s,%f,%f,%f,%f,%f\r\n',normalising,REOSLfit,nobins,whichbg,Rrr,RE

OSL(1),file,doc(1),doc(2),doc(3)); 
else 
    fprintf(fid,'%f,%f,%f,%s,%s,%d 

bins,%f,%s,%f,%f,%f,%f,%f\r\n',Rnatx,errorloR,errorhiR,normalising,REOSLf

it,nobins,whichbg,Rrr,REOSL(1),file,doc(1),doc(2),doc(3)); 
end 
fclose(fid); 

  

  
%For TTOSL 
%dlmwrite('natdoseTTOSL.txt',Tnatx,'-append','coffset',1); 
%dlmwrite('natdoseTTOSL.txt',errorloT,'-append','coffset',1); 
%dlmwrite('natdoseTTOSL.txt',errorhiT,'-append','coffset',1); 
%dlmwrite('natdoseTTOSL.txt',whichn,'-append','coffset',1); 
%dlmwrite('natdoseTTOSL.txt',whichTTOSL,'-append','coffset',1); 
%dlmwrite('natdoseTTOSL.txt',file,'-append','coffset',1); 
%dlmwrite('natdoseTTOSL.txt',doc,'-append','newline','pc','coffset',1); 

  
%For BTOSL 
%dlmwrite('natdoseBTOSL.txt',Bnatx,'-append','coffset',1); 
%dlmwrite('natdoseBTOSL.txt',errorloB,'-append','coffset',1); 
%dlmwrite('natdoseBTOSL.txt',errorhiB,'-append','coffset',1); 
%dlmwrite('natdoseBTOSL.txt',whichn,'-append','coffset',1); 
%dlmwrite('natdoseBTOSL.txt',whichBTOSL,'-append','coffset',1); 
%dlmwrite('natdoseBTOSL.txt',file,'-append','coffset',1); 
%dlmwrite('natdoseBTOSL.txt',doc,'-append','newline','pc','coffset',1); 

  
%For REOSL 
%dlmwrite('natdoseREOSL.txt',Rnatx,'-append','coffset',1); 
%dlmwrite('natdoseREOSL.txt',errorloR,'-append','coffset',1); 
%dlmwrite('natdoseREOSL.txt',errorhiR,'-append','coffset',1); 
%dlmwrite('natdoseREOSL.txt',whichn,'-append','coffset',1); 
%dlmwrite('natdoseREOSL.txt',whichREOSL,'-append','coffset',1); 
%dlmwrite('natdoseREOSL.txt',file,'-append','coffset',1); 
%dlmwrite('natdoseREOSL.txt',doc,'-append','newline','pc','coffset',1); 

  
end 
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"VARIATIONS" 

 

function variations 

  
% A function to process the different variations in reproducibility 

experiments. 

  
close all 
clear all 

  
data=csvread('repdNE.txt'); 

  
discid=input('What identifier would you like for this disc? (in 

charstring mode)'); 

  
if isempty(discid) 
    discid='NE01_280ph_350wash'; 
end 

  

  
%deleting blank columns 

  
data(:,1)=[]; 

  
for integral=0:1; 
nobins=(integral*4)+1; 

  

  
for whichbg=1:3; 

  
for whichn=1:2; 

  
if whichbg==1 
background='end OSL'; 
elseif whichbg==2 
background='near start TT-OSL'; 
elseif whichbg==3 
background='end TT-OSL'; 
end 

  
if whichn==1; 
    normalising='OSL test dose'; 
elseif whichn==2; 
    normalising='TTOSL test dose'; 
end 

  
integrated=nobins./10; 

  
%Preallocating variables 
bgTT=zeros(1,13); 
errbgTT=zeros(1,13); 
iTTOSL=zeros(1,13); 
erriTTOSL=zeros(1,13); 
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TTOSL=zeros(1,13); 
errTTOSL=zeros(1,13); 
tTOSL=zeros(1,13); 
errtTOSL=zeros(1,13); 
bgtTT=zeros(1,13); 
errbgtTT=zeros(1,13); 
tiTTOSL=zeros(1,13); 
errtiTTOSL=zeros(1,13); 
tTTOSL=zeros(1,13); 
errtTTOSL=zeros(1,13); 
bgBT=zeros(1,13); 
errbgBT=zeros(1,13); 
iBTOSL=zeros(1,13); 
erriBTOSL=zeros(1,13); 
BTOSL=zeros(1,13); 
errBTOSL=zeros(1,13); 
tBOSL=zeros(1,13); 
errtBOSL=zeros(1,13); 
bgtBT=zeros(1,13); 
errbgtBT=zeros(1,13); 
tiBTOSL=zeros(1,13); 
errtiBTOSL=zeros(1,13); 
tBTOSL=zeros(1,13); 
errtBTOSL=zeros(1,13); 

  
%Creating variables 
for aa=0:12; 
    if whichbg==1 
%TOSLend 
temp=data(aa*8+1,591:600); 
bgTT(aa+1)=sum(temp)/10; 
errbgTT(aa+1)=sqrt((1/10)^2*(sqrt(sum(temp)) + ((580-563*exp(-

0.2617*10))/sqrt(sum(temp))))^2); 
    elseif whichbg==2 
%initbgTT (initial background; 20120905) 
temp=data(aa*8+2,nobins+1:nobins+11); 
bgTT(aa+1)=sum(temp)/10; 
errbgTT(aa+1)=sqrt((1/10)^2*(sqrt(sum(temp)) + ((580-563*exp(-

0.2617*10))/sqrt(sum(temp))))^2); 
    elseif whichbg==3 
%TendTT 
temp=data(aa*8+2,291:300); 
bgTT(aa+1)=sum(temp)/10; 
errbgTT(aa+1)=sqrt((1/10)^2*(sqrt(sum(temp)) + ((580-563*exp(-

0.2617*10))/sqrt(sum(temp))))^2); 
    end 

     
%iTTOSL 
iTTOSL(aa+1)=sum(data(aa*8+2,1:nobins)); 
erriTTOSL(aa+1)=sqrt(iTTOSL(aa+1)) + ((580-563*exp(-

0.2617*nobins))/sqrt(iTTOSL(aa+1))); 

  
%tTOSL 
tTOSL(aa+1)=data(aa*8+3,1); 
errtTOSL(aa+1)=sqrt(tTOSL(aa+1)) + ((580-563*exp(-

0.2617))/sqrt(tTOSL(aa+1))); 
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if whichbg==1 
%tTOSLend 
temp=data(aa*8+3,591:600); 
bgtTT(aa+1)=sum(temp)/10; 
errbgtTT(aa+1)=sqrt((1/10)^2*(sqrt(sum(temp)) + ((580-563*exp(-

0.2617*10))/sqrt(sum(temp))))^2); 
elseif whichbg==2 
%initbgtTT 
temp=data(aa*8+4,nobins+1:nobins+11); 
bgtTT(aa+1)=sum(temp)/10; 
errbgtTT(aa+1)=sqrt((1/10)^2*(sqrt(sum(temp)) + ((580-563*exp(-

0.2617*10))/sqrt(sum(temp))))^2); 
elseif whichbg==3 
%TendtTT 
temp=data(aa*8+4,591:600); 
bgtTT(aa+1)=sum(temp)/10; 
errbgtTT(aa+1)=sqrt((1/10)^2*(sqrt(sum(temp)) + ((580-563*exp(-

0.2617*10))/sqrt(sum(temp))))^2); 
end 

  
%tiTTOSL 
tiTTOSL(aa+1)=sum(data(aa*8+4,1:nobins)); 
errtiTTOSL(aa+1)=sqrt(tiTTOSL(aa+1)) + ((580-563*exp(-

0.2617*nobins))/sqrt(tiTTOSL(aa+1))); 

  
if whichbg==1 
%BOSLend 
temp=data(aa*8+5,591:600); 
bgBT(aa+1)=sum(temp)/10; 
errbgBT(aa+1)=sqrt((1/10)^2*(sqrt(sum(temp)) + ((580-563*exp(-

0.2617*10))/sqrt(sum(temp))))^2); 
elseif whichbg==2 
%initbgBT 
temp=data(aa*8+6,nobins+1:nobins+11); 
bgBT(aa+1)=sum(temp)/10; 
errbgBT(aa+1)=sqrt((1/10)^2*(sqrt(sum(temp)) + ((580-563*exp(-

0.2617*10))/sqrt(sum(temp))))^2); 
elseif whichbg==3 
%TendBT 
temp=data(aa*8+6,291:300); 
bgBT(aa+1)=sum(temp)/10; 
errbgBT(aa+1)=sqrt((1/10)^2*(sqrt(sum(temp)) + ((580-563*exp(-

0.2617*10))/sqrt(sum(temp))))^2); 
end 

  
%iBTOSL 
iBTOSL(aa+1)=sum(data(aa*8+6,1:nobins)); 
erriBTOSL(aa+1)=sqrt(iBTOSL(aa+1)) + ((580-563*exp(-

0.2617*nobins))/sqrt(iBTOSL(aa+1))); 

  
%tBOSL 
tBOSL(aa+1)=data(aa*8+7,1); 
errtBOSL(aa+1)=sqrt(tBOSL(aa+1)) + ((580-563*exp(-

0.2617))/sqrt(tBOSL(aa+1))); 

  



249 
 

if whichbg==1 
%tBOSLend 
temp=data(aa*8+7,591:600); 
bgtBT(aa+1)=sum(temp)/10; 
errbgtBT(aa+1)=sqrt((1/10)^2*(sqrt(sum(temp)) + ((580-563*exp(-

0.2617*10))/sqrt(sum(temp))))^2); 
elseif whichbg==2 
%initbgtBT 
temp=data(aa*8+8,nobins+1:nobins+11); 
bgtBT(aa+1)=sum(temp)/10; 
errbgtBT(aa+1)=sqrt((1/10)^2*(sqrt(sum(temp)) + ((580-563*exp(-

0.2617*10))/sqrt(sum(temp))))^2); 
elseif whichbg==3 
%TendtBT 
temp=data(aa*8+8,291:300); 
bgtBT(aa+1)=sum(temp)/10; 
errbgtBT(aa+1)=sqrt((1/10)^2*(sqrt(sum(temp)) + ((580-563*exp(-

0.2617*10))/sqrt(sum(temp))))^2); 
end 

  
%tiBTOSL 
tiBTOSL(aa+1)=sum(data(aa*8+8,1:nobins)); 
errtiBTOSL(aa+1)=sqrt(tiBTOSL(aa+1)) + ((580-563*exp(-

0.2617*nobins))/sqrt(tiBTOSL(aa+1))); 

  
%TTOSL 
TTOSL(aa+1)=iTTOSL(aa+1)-bgTT(aa+1); 
errTTOSL(aa+1)=sqrt((erriTTOSL(aa+1)+errbgTT(aa+1))^2); 

  
%tTTOSL 
tTTOSL(aa+1)=tiTTOSL(aa+1)-bgtTT(aa+1); 
errtTTOSL(aa+1)=sqrt(errtiTTOSL(aa+1)^2+errbgtTT(aa+1)^2); 

  
%BTOSL 
BTOSL(aa+1)=iBTOSL(aa+1)-bgBT(aa+1); 
errBTOSL(aa+1)=sqrt(erriBTOSL(aa+1)^2+errbgBT(aa+1)^2); 

  
%tBTOSL 
tBTOSL(aa+1)=tiBTOSL(aa+1)-bgtBT(aa+1); 
errtBTOSL(aa+1)=sqrt(errtiBTOSL(aa+1)^2+errbgtBT(aa+1)^2); 

  
end 

  

  
% 
% 
% 

  
%NORMALISING DATA 
%Choosing how to normalise 
if whichn==1 
    normT=tTOSL; 
    errnormT=errtTOSL; 
    normB=tBOSL; 
    errnormB=errtBOSL; 
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elseif whichn==2 
    normT=tTTOSL; 
    errnormT=errtTTOSL; 
    normB=tBTOSL; 
    errnormB=errtBTOSL; 
end 

  
%creating normalised data and their errors. 

  
%nTTOSL 
nTTOSL=TTOSL./normT; 
%To prevent NaN errors: 
nTTOSL2=nTTOSL; 
TTOSL2=TTOSL; 
normT2=normT; 
for ii=1:8; 
if nTTOSL2(ii)==0; 
   nTTOSL2(ii)=0.0001; 
end 
if TTOSL2(ii)==0; 
   TTOSL2(ii)=1; 
end 
if normT2(ii)==0; 
   normT2(ii)=1; 
end 
end 
errnTTOSL=sqrt((nTTOSL2.^2 .*( (errTTOSL./TTOSL2).^2 + 

(errnormT./normT2).^2))); 

  
%nBTOSL 
nBTOSL=BTOSL./normB; 
%To prevent NaN errors: 
nBTOSL2=nBTOSL; 
BTOSL2=BTOSL; 
normB2=normB; 
for ii=1:8; 
if nBTOSL2(ii)==0; 
   nBTOSL2(ii)=0.0001; 
end 
if BTOSL2(ii)==0; 
   BTOSL2(ii)=1; 
end 
if normB2(ii)==0; 
   normB2(ii)=1; 
end 
end 
errnBTOSL=sqrt((nBTOSL2.^2 .*( (errBTOSL./BTOSL2).^2 + 

(errnormB./normB2).^2))); 

  

  
%nREOSL 
nREOSL=nTTOSL-nBTOSL; 
errnREOSL=sqrt(errnTTOSL.^2 + errnBTOSL.^2); 

  
fid=fopen('NE01.txt','a'); 
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fprintf(fid,'%s\r\n%s\r\n background is %s\r\n integral is %f s\r\n DD-

TT-OSL\r\n %f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f \r\n errors\r\n  

%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f\r\n DI-TT-OSL\r\n 

%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f\r\n errors 

\r\n%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f\r\n TT-OSL\r\n 

%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f\r\n errors\r\n 

%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f\r\n',discid,normalising, 

background,integrated,nREOSL(1),nREOSL(2),nREOSL(3),nREOSL(4),nREOSL(5),n

REOSL(6),nREOSL(7),nREOSL(8),nREOSL(9),nREOSL(10),nREOSL(11),nREOSL(12),n

REOSL(13),errnREOSL(1),errnREOSL(2),errnREOSL(3),errnREOSL(4),errnREOSL(5

),errnREOSL(6),errnREOSL(7),errnREOSL(8),errnREOSL(9),errnREOSL(10),errnR

EOSL(11),errnREOSL(12),errnREOSL(13),nBTOSL(1),nBTOSL(2),nBTOSL(3),nBTOSL

(4),nBTOSL(5),nBTOSL(6),nBTOSL(7),nBTOSL(8),nBTOSL(9),nBTOSL(10),nBTOSL(1

1),nBTOSL(12),nBTOSL(13),errnBTOSL(1),errnBTOSL(2),errnBTOSL(3),errnBTOSL

(4),errnBTOSL(5),errnBTOSL(6),errnBTOSL(7),errnBTOSL(8),errnBTOSL(9),errn

BTOSL(10),errnBTOSL(11),errnBTOSL(12),errnBTOSL(13),nTTOSL(1),nTTOSL(2),n

TTOSL(3),nTTOSL(4),nTTOSL(5),nTTOSL(6),nTTOSL(7),nTTOSL(8),nTTOSL(9),nTTO

SL(10),nTTOSL(11),nTTOSL(12),nTTOSL(13),errnTTOSL(1),errnTTOSL(2),errnTTO

SL(3),errnTTOSL(4),errnTTOSL(5),errnTTOSL(6),errnTTOSL(7),errnTTOSL(8),er

rnTTOSL(9),errnTTOSL(10),errnTTOSL(11),errnTTOSL(12),errnTTOSL(13)); 
fclose(fid); 

  

  
end 
end 
end 
end 
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"SIMDEPOP" 

 

function simdepop 

  
%A simulation to show how simple model traps deplete at different 
%temperatures. E and s values are variables one can change. The heating 
%includes a 5 K/s ramp up to a particular temperature and then a hold at 
%that temperature for 10 seconds. 

  
close all 

  
clear all 

  
%constants 

  
k=8.627343*(10^-5); %Boltzmann's constant 

  
%Note for this function to work the temperature iteration must go up by 

0.2 
%s every time. eg, T=linspace(x,y,(y-x)*5; 

  
min=150; 
max=500; 
Tlen=(max-min)*5; 

  
T=linspace(min,max,Tlen)+273.25; % Temperature K 

  
x=linspace(min,max,Tlen); % Temperature degC 

  
%Trap variables 

  
s=4.8*10^13; %s^-1 

  
E=1.88; %eV 

  
% Result array 
result=zeros(1,Tlen); 

  
%For each temperature: 
for ii=1:Tlen; 

  

  
%Ramp up: 

  
%How many fifth of seconds? Assume starting from 0 deg C/ 273.25 K 

  
temps=linspace(1,x(ii),x(ii)); 
temps=temps+273.25; 

  
%Calculating the fraction left from the start of each fifth of a second 

to 
%the end of the fifth of a second. 
Fraction=exp(-0.2./(s^-1.*exp(E./(k.*temps)))); 
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lf=length(Fraction); 

  
ramp=1; 
for jj=1:lf; 
    ramp=ramp*Fraction(jj); 
end 

  
%Hold for 10 s: 

  
Hold=exp(-10./(s^-1.*exp(E./(k.*T(ii))))); 

  
%Result for each temperature 

  
result(ii)=ramp*Hold; 

  
end 

  
plot(x,result); 
title('Simulation of emptying trap by heating'); 
xlabel('Temperature in degrees Celsius'); 
ylabel('Proportion of population left in trap'); 

  
%In case of wanting to write down to file the simulation data, let a = 1. 

  
writing=1; 

  
if writing==1; 

  
    %The date record 
simdate=datevec(date); 
simdate(4:6)=[]; 

  
%Any notes to go with data 
note='375 Red by Spooner and Franklin 2002'; 

  
fid=fopen('simulation_data.txt','a'); 
fprintf(fid,'Simulation data for E = %f and s = %f on %f %f %f notes: 

%s\r\n',E,s,simdate(1),simdate(2),simdate(3),note); 
fclose(fid); 

  
dlmwrite('simulation_data.txt',x,'-append','newline','pc'); 
dlmwrite('simulation_data.txt',result,'-append','newline','pc'); 

  
disp('Wrote to file.'); 
disp('Thank you. Simulation ends.'); 

  
end 
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"SIMDEPOPFIT" 

function simdepopfit 

  
%A simulation to show how simple model traps deplete at different 
%temperatures. E and s values are variables one can change. The heating 
%includes a 5 K/s ramp up to a particular temperature and then a hold at 
%that temperature for 10 seconds. 

  
close all 

  
clear all 

  
%constants 

  
k=8.627343*(10^-5); %Boltzmann's constant 

  
%Results data and SST 

  
%Experimental results 
expresults=[]; 

  
l=length(expresults); 

  
mean=sum(expresults)/l; 

  
SSTparts=(expresults-mean).^2; 

  
SST=sum(SSTparts); 

  
%Temperature variables. 

  
%NOTE: This particular function only works if the temperatures given are 
%whole numbers in degrees Celsius. 

  
%Experimental value temperatures 
exaxis=[]; 

  
T=exaxis+273.25; 

  
Tl=length(T); 

  
%result variables 

  
result=zeros(1,Tl); 
difres=zeros(1,Tl); 

  
Values=[0,0]; 
Plotvalues=zeros(1,Tl); 
MinNLLSprev=inf; 

  

  
%Trap variables 
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s=[1*10^09 5*10^09 1*10^10 5*10^10 1*10^11 5*10^11 1*10^12 5*10^12 

1*10^13 5*10^13 1*10^14 5*10^14 1*10^15 5*10^15]; %s^-1 

  
sl=length(s); 

  
E=[0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 

2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0]; %eV 

  
El=length(E); 

  
%For each E value: 
for jj=1:El; 

     
    %For each s value: 
    for kk=1:sl; 

  
%For each temperature: 
for ii=1:Tl; 

  

  
%Ramp up: 

  
%How many fifth of seconds? Assume starting from 0 deg C/ 273.25 K 

  
temps=linspace(1,T(ii),5*T(ii)); 
temps=temps+273.25; 

  
%Calculating the fraction left from the start of each fifth of a second 

to 
%the end of the fifth of a second. 
Fraction=exp(-0.2./(s(kk)^-1.*exp(E(jj)./(k.*temps)))); 

  
lf=length(Fraction); 

  
ramp=1; 
for ll=1:lf; 
    ramp=ramp*Fraction(ll); 
end 

  
%Hold for 10 s: 

  
Hold=exp(-10./(s(kk)^-1.*exp(E(jj)./(k.*T(ii))))); 

  
%Result for each temperature 

  
result(ii)=ramp*Hold; 

  
difres(ii)=(result(ii)-expresults(ii)).^2; 

  
end 

  
Rsquared=1-(sum(difres)/SST); 
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NLLS=sum(difres); 

  

  
if NLLS < MinNLLSprev; 

  
    MinNLLSprev=NLLS; 
    Values=[E(jj),s(kk)]; 
    Plotvalues=result; 
    Rsq=Rsquared; 
end 
    end 
end 

  
disp('The Least Squares value of the E and s values observed are:'); 
disp('E = ');  
disp(Values(1)); 
disp('s = '); 
disp(Values(2)); 
disp('NLLS value ='); 
disp(MinNLLSprev); 
disp('Rsquared = '); 
disp(Rsq); 
plot(exaxis,expresults,'bo'); 
hold on 
plot(exaxis,Plotvalues,'rx'); 

  
end 
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B: NATURAL QUARTZ FOURIER TRANSFORM SPECTROMETER MEASUREMENTS 
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