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Abstract

This thesis explores the problem of unsupervised selection of a set of spectral wave-

bands in a hyperspectral sensor for a surveillance task. Selecting a subset of wavebands

for surveillance has the advantage of reducing data throughput and hence network

bandwidth requirements, computational complexity for processing the data and stor-

age requirements in a ground-station. For the sensor designer, Signal-To-Noise Ratio

and other sensor-band improvements can be made on those bands deemed critical for

the surveillance task. In chapters 3 and 4, we propose the use of locally correlated

high-dimensional Gaussian Mixture models to account for band overlap where max-

imum likelihood estimates of the parameters of such a model are provided using the

SAGE-EM (Space Alternating Generalised Expectation Maximisation) algorithm. In

both these chapters convex-relaxation strategies are proposed to handle the combina-

torial complexity of selecting a subset-of bands that are locally correlated and contain

non-Gaussian measurements. However, in chapter 4, we select bands according to

anomaly detection criteria as opposed to modelling estimation accuracy (likelihood) as

done in chapter 3. We breakdown the problem such that any pixel contains band mea-

surements that belong to either an outlier or partial background distribution, where

the distributions diverge across band-subsets in a Kullback-Leibler (KL) divergence

sense. A pixel is deemed as an anomaly if it contains a certain number of outliers. We

identify the bands that contain the most number of contiguous outlier measurements

and also subsequently reveal the presence of anomalies. Finally, in the last chapter

we solve the problem of online band selection for sub-pixel compositional hyperspec-

tral models using a Bayesian approach. Online band-selection enables spectral-band

cueing and automation for adaptive focal plane arrays where not all bands are used

to measure each pixel. We apply beta process models to provide a recursive strat-

egy to select bands based on prior knowledge of their utility as well as bands used in

neighbouring pixels. Band utility is measured through convex-relaxation as the subset

of bands that provides the best abundance estimation accuracy of training data. The
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Abstract

combination of a Gaussian process prior for possible end-members (pure materials) as

well as a Gamma distributions for the abundance, enables efficient posterior sampling

from a joint Normal-Gamma distribution. Furthermore, natural spectral band varia-

tions are retained making the model suitable for band selection, where approximate

sum-to-one constraints are enforced through an intelligent update of the Gamma hy-

perparameters, based on the Dirichelet-Gamma relation. Experiments are conducted

on synthetic Gaussian Mixture data with additive noise (Chapters 3, 4), Rochester In-

stitute of Technology (RIT) Target Detection Test using the HyMAP sensor, (Chapter

4), synthetic sub-pixel data created using USGS spectral database [1] (Chapter 4) and

AVIRIS-Cuprite dataset used by Mittelman et.al. in [2] (Chapter 4).
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Chapter 1

Introduction

T
HIS chapter is the introduction to the thesis. It provides the mo-

tivation for the thesis, the problems addressed and their signifi-

cance as well as key contributions made. It also introduces some

background information on Hyperspectral Imaging to provide sufficient

context for the rest of the thesis.
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1.1 Overview

1.1 Overview

A Hyperspectral Image (HSI) provides a rich description of an observed scene by cap-

turing signals reflected at hundreds of narrow contiguous wavelengths or frequencies

in the electo-magnetic spectrum, where a unique narrow range of wavelengths is re-

ferred to as a frequency band or spectral band. A hyperspectral sensor is made up

of hundreds of sensor elements, where each element measures the incoming radiance

signal reflected by materials on ground, at a unique frequency band. Strides made

in sensor development technology have made hyperspectral sensing a realistic tool to

characterise natural and man-made material in-terms of their spectral properties ow-

ing to the narrow frequency bandwidth. Increase in computer processing power and

network bandwidth over the last 20 years has enabled airborne and space-borne col-

lection of vast spatial regions and dissemination of data on-ground for processing and

evaluation. Both these factors have opened up applications in land-cover mapping

in the agriculture sector, mineral mapping in the mining sector and target detection

in defence surveillance to name a few. All these communities have seen rich-payoffs

[3] for their problem at-hand and continue to seek improvements in their respective

hyperspectral systems. From a systems-engineering standpoint, these systems typi-

cally consist of the sensor payload, an airborne platform (satellite or aircraft), computer

processors and memory, networking interface and bandwidth to disseminate data to

a ground station consisting of image analysts and their respective workstations. Fur-

thermore, the system may also include spectral analysts who collect spectral signatures

using spectrometers on-ground, prior to data collection to verify their result or as part

of their analysis.

The practical applicability of hyperspectral systems across these sectors as well as

prospective new ones is therefore restricted by system cost, timeliness in task comple-

tion and robustness which also suffers due to system complexity. Further applications

such as persistent surveillance used for National Security and Defence [4] face obsta-

cles such as data bottlenecks which introduce latencies in processing over-burdening
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image and spectral analysts and thus restricting their capacity to deliver a timely re-

sult. Since most hyperspectral sensors are made up of more than a hundred frequency

bands. The requirements to capture, store and disseminate data is a resource inten-

sive exercise. Naturally, storage requirements are greater when the number of bands

to be transmitted is large. Spectral bandwidth required to disseminate data to ground

stations is also great and processing of the data to address surveillance problems is

a computationally demanding exercise. The computational demands also place time

constraints on how quickly a problem can be solved which is crucial in time-critical sit-

uations which is the case especially in Defence and National Security. Modern systems,

carry out a certain degree of on-board processing [5] before the data can be dissemi-

nated. Such systems thrive on unsupervised processing where user intervention is

minimal. If the data can be reduced whilst preserving useful information before dis-

semination and further processing takes place, computational and monetary require-

ments on hyperspectral systems will be reduced a great deal. Furthermore, such auto-

mated paradigms enable analysts to focus on higher-level analysis and inference tasks

which cannot be easily automated.

In this thesis, we propose a methodology that reduces, analyst overload, improves re-

liability and also potentially reduces system cost. We show that this can be achieved

through the unsupervised selection of frequency bands according to maximum likeli-

hood, anomaly detection and sub-pixel mixing criteria. The rationale behind intelli-

gent reduction of bands is that it reduces computational burden, processing and net-

work bandwidth requirements when it is carried out prior to collection. For the De-

fence community, unsupervised band selection according to anomaly detection crite-

ria not only reduces the number of spectral measurements disseminated to the analyst

but also the number of pixels. We propose a paradigm where only anomalies across a

selected number of frequency bands need to be disseminated which reduces time con-

straints and data complexity burden of the analyst. Since this proposed paradigm is

unsupervised it reduces human resources required to carry out this task. Finally, we

extend our rationale to low Signal-To-Noise (SNR) scenarios, resulting from a coarse

sensor resolution and/or high platform altitude, the use of compositional sub-pixel
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models are beneficial under such conditions. We propose a system to cue a subset of

sensor bands online as the sensor gathers data based on prior knowledge of the scene

and bands used to capture signals across previous pixels. We believe that proposed

methods offer an exciting alternative for the development of future hyperspectral sys-

tems and the thesis offers a proof-of-concept, through novel generative models, prob-

lem formulation and optimisation techniques.

1.2 Hyperspectral Imaging (HSI)

An airborne hyperspectral sensor measures the energy reflected or emitted off the

earth’s surface by decomposing the incoming radiance signal into hundreds of snap-

shots of a spatial region of the ground. In hyperspectral sensing, each snapshot refers

to a frequency band which in turn represents a narrow wavelength range in the order

of 5 to 100 nanometers. The frequency bands are unique, contiguous, and span the

visible (VIS) to short-wave-infra-red (SWIR) regions of the electro-magnetic spectrum

which in-terms of wavelength is a range of 0.4 - 2.5 µm. The fine spectral resolution

reveals subtle changes in the chemistry of visually similar materials on the ground

and acts as a means of material identification which is un-available in other commonly

known remote sensing modalities. We briefly define some terms which are used in the

remainder of the study:

Definition 1: The collection of snapshots acquired at unique, contiguous frequency

bands across a spatial region form a hyperspectral image.

Definition 2: A pixel in the image represents an area on the ground and depending on

the spatial resolution may contain one or many objects. A hyperspectral image consists

of thousands of pixels.
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Definition 3: A Spectral measurement refers to the at-sensor-radiance representing a

single pixel. The spectral signal measured is a vector consisting of hundreds of co-

ordinates, where each co-ordinate represents the energy reflected or emitted at a unique

frequency band.

Definition 4: Band measurements refer to all measurements in a spatial region gathered

by the specified frequency band.

We describe the image acquisition process briefly and subsequently describe the most

popular method used for gathering hyperspectral measurements, pushbroom sensing

[3]. Alternative modes of image acquisition such as electronically tunable focal plane

arrays are discussed in the final chapter since they have an implication on the signal

processing methods proposed in that chapter. The multi-dimensional signal that rep-

resents the pixel is a function of the instrument response of a 2-D detector array in

the sensor, the sensor optics and the input irradiance (energy at the sensor). Measure-

ments gathered across the X-Y co-ordinates of the 2-D detector array represents the

detector’s spectral response both in a spatial and spectral sense. Measurements across

the X-direction correspond to a row of pixels whilst measurements in the Y-direction

correspond to spectral response across contiguous frequency bands. Whilst the sen-

sor optics split incoming signals across multiple frequency bands, the detector array

integrates the at-sensor-irradiance in the order of micro-seconds converting them into

voltages and subsequently digital numbers (a single number at each frequency band

for each pixel). A new ”slab” (refer to Fig.4.1a.) of measurements is captured by the de-

tector array as the sensor-platform moves along-track forming a hyperspectral image,

one row at a time. Some prominent aspects of hyperspectral sensing relevant to this

thesis include: spectral measurement correlation, sub-pixel mixing and noise sources.

Spectral correlation refers to (1) correlation of neighbouring spectral responses in the

detector array due to the narrow frequency bandwidth. The extent of overlap and

correlation is specified by the sensor design and is known prior to measurement. (2)
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(a)

Figure 1.1. a) A slab of measurements are recorded by multiple frequency band snapshots as the

sensor platform moves along track. The X and Y axes correspond to the 2D detector

array. The multi-dimensional radiance signal recorded across multiple bands, for a single

pixel is also shown. The acronyms VIS refers to Visible, NIR refers to the near-infrared

region of the electro-magnetic spectrum and SWIR refers to the short-wave-infrared

region.

Unknown frequency band correlation is also present in each signal due to material

chemistry [6] which varies according to the material present in each pixel. This can be

seen in the smoothness in the spectral response across multiple bands, in the exper-

iments conducted in Chapters 4 and 5. In this thesis, both sources of correlation are

considered. In chapter 4, local correlation due to the sensor is built into a generative

Gaussian mixture model. In chapter 5 we also capture correlation due to the material

chemistry of a known class of materials using the prior covariance obtained from a

Gaussian Process.

Sub-pixel Mixing refers to the nature in which pixels in a scene are distributed. The

rationale behind hyperspectral sensing is to build spectral richness by sampling across

narrow frequency bins as opposed to improving the spatial resolution (also referred to

as the Ground Sampling Distance - GSD). The GSD can vary from a fraction of a meter

to tens of meters. As a result, in a natural scene pixels may be a combination of mul-

tiple material classes such as tree, grass and soil, at varying proportions. The spectral

Page 6



Chapter 1 Introduction

measurement in each pixel can be considered as a linear combination of the materials

with some additive noise. The proportion or abundance of each material present, re-

flects the spatial extent to which it occupies the pixel. This behaviour is not captured

by the Gaussian mixture model, where each measurement is assumed to be a represen-

tative from a single material class. A compositional model best describes the sub-pixel

mixing that occurs where the spectral response received is a convex combination of

up-welling radiance of multiple materials within a pixel. Typically, the constituent

materials within a pixel are representative of unique classes of materials referred to

as endmembers. Nonetheless, in chapter 4 a Gaussian Mixture model is used as a sim-

plified representation of sub-pixel data due to advantages in analytic tractability in the

inferring parameters of a Gaussian Mixture model with a fixed number of components.

However, in chapter 5 we use a sub-pixel compositional model to represent the scene,

thereby building a richer model but losing analytic tractability in the process.

Spectral variability and Noise Sources There are many sources of noise in the spectral

responses of pixels which in combination with the coarse spatial and rich spectral

resolution provide a wide gamut of spectral responses characterising a scene. Some

sources of scene noise include atmospheric absorption and scattering of radiation, wa-

ter vapour and aerosol conditions, adjacency effects of neighbouring sensor elements

and nonlinear motion of sensor leading to sensor artifacts. Spectral variability refers to

the variation in the spectral responses of pixels that belong to the same material class.

This is an outcome of un-even terrain orientation, radiation scattering and reflection

from nearby pixels, shadows in the scene and seasonal variations. Both spectral vari-

ability and noise sources motivate the inference of statistical probabilistic models to

represent hyperspectral data as opposed to use of the raw measuements. Spectral vari-

ability and non-homogeneity of material classes in the scene are captured by Gaussian

mixture and compositional models where spectral variability and scene noise are built

into the statistical models.
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1.3 Hyperspectral Band Selection

Traditionally, hyperspectral band selection is designed to reduce redundant measure-

ments as well as noise gathered during the measurement process. When used, manu-

ally, automated or both, band selection is often used as a pre-processing step after the

sensor gathers data across all bands. Typically, it is carried out by an analyst before

they use an eigen-decomposition technique such as Principal Components Analysis

(PCA) or Minimum Noise Fraction (MNF) [7] to reduce the data dimensionality and

use the the K most significant eigenvectors. This has been found to improve both clas-

sification [7] as well as detection performance [8]. Other techniques which preserve

physical band information vary according to performance criteria and extent to which

they are automated. Most techniques also assume some prior knowledge about the

materials within the scene using a spectral library that contains representative signa-

tures of each material class. However, these methods are typically conducted post-

collection by the image analyst which does not address network bandwidth, memory

or time constraint issues stated earlier. A clever future hyperspectral sensor may col-

lect data across a subset of bands that provides the most useful information in a scene,

where the band subset varies from scene to scene [9]. This not only reduces power and

energy requirements of the sensor but also allows electro-optics engineers to improve

signal-to-noise ratio on those bands that are likely to be more useful. Hypothetically,

another application maybe that, we cue certain bands to gather measurements for cer-

tain parts of the scene, the intention again here is to reduce the amount of data collected

and improve that ability to produce a faster surveillance outcome. Such an adaptive

system is already being proposed by DARPA [9]. Finally, consider a surveillance prob-

lem where the objective is to find man-made materials amongst natural background,

but there are no prior spectral signature(s) available of the man-made material. In hy-

perspectral sensing, man-made materials are known to vary from natural background

across a certain distinct wavelength range of the energy spectrum. If this knowledge is

available for a geoscientist or spectral analyst and a set of useful bands identified fall

within the distinct wavelength range, we can then confirm the presence of that man-

made material. Standard benchmark band-reduction schemes such as PCA alone does
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not provide such insights about the bands. PCA transforms the data such that maxi-

mum information content lies in an ordered set of principal components. This enables

data compression, since the latter set of components which contain the least informa-

tion can be discarded. However, the physical band-structure of data is altered, which

means we do not have any information regarding the utility of each band, in terms of

its contribution to a surveillance task.

1.4 Problems Addressed

We address three problems in this thesis:

1. Unsupervised Band Selection to improve Model Estimation Accuracy of a Scene

2. Inferring Appropriate Bands to find Anomalies in the Scene

3. Pixel-by-Pixel Online Band Selection for Band Cueing using Sub-Pixel Mixing

Criteria

1.4.1 Unsupervised Band Selection to improve Model Estimation Ac-

curacy of a Scene

For many surveillance scenarios where the objective is to find targets or anomalies, one

of the key steps is to estimate a probabilistic model for the scene background. These in-

clude Gaussian [8], Gaussian Mixture [10], [11] and Elliptic-T distributions as used by

Manolakis et. al. in [12] and Theiler et. al. in [13]. Band noise is known [12], [14] to have

adverse effects on model estimation accuracy even when using just the principal eigen-

vectors. For Gaussian Mixture backgrounds, the unsupervised removal of noisy bands

whilst statistically guaranteeing improvements in model estimation accuracy is an un-

solved problem within HSI. This is because it requires clustering in a high-dimensional

space, where the number of bands in many hyperspectral sensors exceed well over a

hundred. We carry out clustering using the Space-Alternating Generalised Expectation

(SAGE) condition in-conjunction with the standard Expectation-Maximisation (EM)
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algorithm to guarantee maximum-likelihood convergence of model likelihood. Band

selection is carried out using a relaxation of a binary band-utility indicator variable

to overcome combinatorial complexity. The problem is formulated as a convex opti-

misation problem with convex inequality and linear equality constraints and solved

using semi-definite programming [15]. The formulation guarantees the best possible

model estimation accuracy in relation to the subset of bands selected. The method is

restricted by the fact that the analyst needs to specify the number of bands he/she

wishes to preserve. Nonetheless, the proposed method does not rely on any prior

knowledge of the scene or materials within the scene and provides an unsupervised

generic pre-processing step to reduce the number of bands. We conduct tests with syn-

thetic Gaussian Mixture data and leave all testing with real data to subsequent chapters

since the noise removal claims of the chapter are sufficiently validated with synthetic

data and also that Gaussian Mixture models are well-known descriptors of HSI data.

1.4.2 Inferring Appropriate Bands to find Anomalies in the Scene

Unlike the previous problem, we seek bands that reveal the presence of anomalies in

the HSI scene. Therefore, the problem addressed here is the simultaneous identifica-

tion of these critical bands as well as anomalies in the scene to restrict the data through-

put from the sensor to just the anomalies across these critical bands. This provides a

drastic reduction in computational complexity and means that potential targets can be

verified by tools such as spectral matching just using anomalies and a reference library.

This is relevant for many surveillance scenarios, where the scene captured contains a

large number of natural background pixels relative to a sparse number of man-made

anomalies which are of interest. Identifying the necessary bands that reveal their pres-

ence also promotes an improvement in SNR across these bands in future sensor-design.

Furthermore, properties of man-made materials across certain regions of the infra-red

spectrum is well known but the capacity to utilise this knowledge in bands selection is

largely unknown. We develop a method using EM and Convex Relaxation (as the pre-

vious problem), but formulate a model such that we find anomalies and critical bands
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according to a distributed Kullback Leibler (KL) divergence measure across band sub-

sets. Thus we carry out simultaneous band selection and detect anomalies whilst also

enabling the analyst to impose prior knowledge about potentially useful bands. It must

be noted that the procedure can be implemented on-board an aircraft or satellite before

the data is transmitted to ground stations for dissemination and analysis. We believe

the procedure significantly reduces the processing burden on the analyst. Unlike the

previous method there is no need to specify the number of useful bands apriori but

we do assume that data is collected across all bands as per convention. We conduct

tests with both synthetic Gaussian Mixture data generated across 30 bands and real

HSI data obtained from the RIT Target Detection blind Test dataset [16] [17] using a

HyMap airborne sensor with 126 bands.

1.4.3 Pixel-by-Pixel Online Band Selection for Band Cueing using

Sub-Pixel Mixing Criteria

The advent of electronically tunable focal plane arrays referred to as Adaptive Focal

Plane Arrays (AFPAs) [9] have meant that bands can be adaptively cued to measure the

content of each pixel improving both data storage and computational requirements of

conventional HSI. Since materials exhibit different properties across frequency bands

each pixel may be sufficiently described by a different set of bands. In many land-

cover mapping scenarios, each pixel contains multiple materials and more complex

sub-pixel compositional models are required to provide an accurate model. Nonethe-

less, the problem is alleviated by prior knowledge of possible materials in the scene as

well as their spectral signatures in the form of stored spectral libraries. The problem

addressed, is the ability to cue appropriate bands to gather measurements such that

sub-pixel un-mixing performance is retained as per use of the full set of bands. In this

methodology, the only output that is required from on-board processing in the aircraft

is the abundance fraction of each material at each pixel, with band selection carried out

online and implicitly as the data is received. This removes the need for end-member

extraction procedures carried out post-processing and promotes the notion of online

HSI. We provide a Bayesian treatment of the spectral un-mixing problem using convex
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optimisation to estimate band utility on training data, Gaussian processes to capture

the natural variations across endmembers and non-parametric Beta processes to select

the bands online as the data is gathered by the sensor. We formulate the posterior

probability of the endmembers, abundances and band selection variables in the test

image and develop a Gibbs sampling algorithm to estimate these parameters. Tests

and sub-pixel mixing performance comparisons are conducted with synthetic USGS

[1] data and real HSI data acquired from the AVIRIS sensor with 226 bands and used

by Mittelman et. al. in [2].

1.5 Contributions and Publications

Contributions made in this thesis are divided into practical and theoretical:

Practical

1. Unsupervised Band Selection algorithm for removing Band Noise: Chapter 3

2. Anomaly Detection algorithm using Convex Optimisation and EM: Chapter 4

3. Unsupervised Band Selection algorithm using Anomaly Detection criteria: Chap-

ter 4

4. Online Spectral Unmixing algorithm using Gaussian Processes and Gamma Dis-

tributions: Chapter 5

5. Online Band Selection using Convex Relaxation and Beta Processes: Chapter 5

Theoretical

1. Application of SAGE-EM structure to HSI data without any modification to the

measurement set.

2. Application of Convex Relaxation for Measurement Selection in Un-Categorised

Gaussian Mixtures.

3. Formulation of Simultaneous Anomaly detection and Unsupervised Band Rank-

ing problem using Convex Relaxation and distributed Likelihood Ratio Tests.
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4. Proof that the solution to the problem is equivalent to maximising a KL diver-

gence term between outliers and partial background distributions.

5. Application of a Gaussian Process to estimate endmember mean and covariance

modelling spectral correlation of hyperspectral signals.

6. Use of Dirchelet-Gamma Relation for posterior hyperparameter update of abun-

dances which improves sparsity as well as pixel likelihood.

7. Deriving an abundance sampling technique that is equivalent to sampling from

each element of Dirichelet distribution using a non-linear transformation of ran-

dom variables.

8. Derivation of a Gibbs-Sampler to estimate posterior probabilities of endmember

and abundances using a sparse number of bands.

Publications

1. Inferring Appropriate Bands to Find True Anomalies: Submitted to IEEE Trans-

actions in Signal Processing (Under Review)

2. Band Sparsity for Compositional Models in Hyperspectral Imaging: Journal Pa-

per In Preparation

1.6 Thesis Structure

The thesis can be broadly split up into the following, (1) the assumed generative model

of the spectral measurements (2) the band correlation structure (3) and the scoring cri-

teria for selecting bands. We begin by imposing just the local sensor band-correlation

and using model estimation accuracy as the band scoring method to select a known

number of bands under a Gaussian mixture model in chapter 3. Using a similar lo-

cally correlated Gaussian mixture model, we develop a band scoring method that uses

an anomaly detection criteria for selecting bands without any prior knowledge of the

possible number of useful bands in chapter 4. In the final component of the study, we

Page 13



1.6 Thesis Structure

assume sensor as well as material dependant correlation whilst assuming sub-pixel

mixing and hence apply a compositional model rather than a Gaussian mixture model

in chapter 5. We apply two independent band-scoring measures to carry out online

band selection on training and test data, where the band scoring procedure using the

training set provides forms discrete prior band utility for the test set. In a broad sense,

the systems-engineering approach of gradually building model complexity highlights

the role that band-structure plays in hyperspectral surveillance which is important in

this thesis. Pre-requisite knowledge required for the thesis is provided in chapter 2. Fi-

nal conclusions and some thoughts for future work are elaborated in the final chapter.
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Chapter 2

Preliminaries

T
HIS chapter covers the technical background material required

to follow the mathematical argument in the chapters to follow in

terms of providing a background for the techniques introduced

as well as introducing mathematical notation.
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2.1 Introduction

In this chapter, we introduce the technical background that is necessary to understand

and follow the remaining chapters. Our focus is on parameter estimation, where the

probabilistic models relevant for hyperspectral measurements motivate a variety of

parameter estimation techniques. This section can be divided into four parts - two

for the statistical models used and two for the band selection techniques applied. First,

we introduce the two statistical models to represent hyperspectral data in this thesis (1)

Gaussian mixture models and (2) compositional or sub-pixel models. We introduce pa-

rameter estimation techniques that are used to infer parameters for both models. Since

the rationale behind the thesis is to preserve the original frequency bands and avoid

rotating the measurement axes, we introduce two distinct measurement selection ap-

proaches which reduce hyperspectral measurement complexity for the models used to

describe them. These include (3) convex optimisation and (4) stochastic beta processes.

The remaining chapters in the thesis describe the varying ways in which these statis-

tical models and parameter estimation techniques are applied for a variety of band

selection problems. In this chapter we establish the foundations of the parameter es-

timation techniques as well as how they are motivated by the proposed model. The

proposed models to describe HSI data gradually increase in their complexity and tech-

niques to infer parameters graduate from a non-Bayesian to a Bayesian form. This also

applies to band selection, where the optimal number of frequency bands are treated as

a random variable when using the Stochastic Beta Process as opposed to deterministic

parameters which is the case when using convex optimisation techniques.

2.2 Gaussian Mixture Models

2.2.1 Parameter Estimation - Maximum Likelihood

Consider anRD valued random variable, Y with probability distribution function PY(.; θ)

parameterised by a vector θ ∈ Θ ⊂ Rq. Let y1, . . . , yN denote independent and iden-

tically distributed samples of Y. Suppose that Y is a continuous random variable, so
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that it has a probability density function (pdf) pY(.; θ). The likelihood of the parameter

θ is the product of individual samples from the p.d.f, pY(.; θ),

L(y1 . . . yn; θ) =
N

∏
n=1

p(yn; θ), (2.1)

where Y is assumed known and fixed. A standard procedure for estimating the param-

eters θ when they are regarded as deterministic and unknown is Maximum Likelihood

estimation, and the resulting estimate is given by

θ̂ML = arg max
θ∈Θ

L(y1 . . . yN; θ) (2.2)

where, θ̂ML is considered to have good asymptotic properties when N is large [18].

An important class of probabilistic models we shall use to characterise HSI data is

Gaussian Mixtures which have the p.d.f,

pY(; θ) =
K

∑
k=1

N (µk, Σk)πk (2.3)

where, Y represents N pixel measurements or observations, y1 . . . yN, πk represents the

proportion of measurements described by the kth Gaussian component, µk ∈ RD, Σk ∈

RD×D are the kth Gaussian component mean and covariance. The likelihood for the

Gaussian Mixture model is given by,

L(y1 . . . yN; θ) =
N

∏
n=1

K

∑
k=1

N (yn; µk, Σk)πk (2.4)

Maximising the likelihood (2.4) over the set of parameters θ = (π1, ..., πK, ...) is a con-

strained maximisation problem (the weights need to be non-negative and sum to one

and the covariance matrices need to be positive semi-definite) for which an analytic so-

lution can’t be found and which is also numerically intractable [19]. The effective total

number of parameters is (K-1) for the mixture weights, incorporating the sum-to-unity

constraint, KD for the means and KD(D + 1)/2 for the (symmetric) covariance matri-

ces. Hence, the problem is intractable and an analytical solution cannot be derived.
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2.2.2 Maximum Likelihood Estimation of Gaussian Mixtures via Expectation-

Maximisation

A tractable solution for maximum likelihood estimation of the parameters of a Gaus-

sian mixture from i.i.d. samples, however can be achieved through iterative means.

Consider the log-likelihood for the Gaussian Mixture,

ℓ(y1 . . . yN; θ, V) = log
N

∏
n=1

K

∏
k=1

π
vn,k
k N (yn; µk, Σk)

vn,k (2.5)

where, vn,k ∈ {0, 1} is an indicator variable that indicates whether the nth measure-

ment is a member of the kth Gaussian component. The problem is deemed in-complete

or un-categorised if vn,k∀n = 1 . . . N, k = 1 . . . K is unknown for all measurements.

The complete set of random variables is denoted by Z = {Y, V}, where probability

distribution,PZ(θ) ≡ PY,V(θ). Given that, V is unknown, and Z in-complete, analytic

maximisation is carried out using the expected log-likelihood of the expression in (2.5),

where

ℓE(y1 . . . yN; θ, W) = EV{L(y1 . . . yN; θ, V)}

=
N

∑
n=1

K

∑
k=1

wn,k log(πn,k) +
N

∑
n=1

K

∑
k=1

wn,k logN (yn; µk, Σk) (2.6)

where, wn,k = E{vn,k} ∈ [0, 1]∀n = 1 . . . N, ∀k = 1 . . . K is the component member-

ship. The expected log-likelihood is the lower-bound [20] of the complete likelihood

where a closed form expression to compute θ is derived using estimates of the expected

value, W. Iterative calculations of both W, θ form the Expectation-Maximisation or EM

algorithm involve solving the following optimisation problem,

θ̂(m+1) = arg max
θ∈Θ

ℓE(y1 . . . yN; θ̂(m), W(m)) (2.7)

where, parameter estimates are computed each m+ 1th iteration using the mth approx-

imation of each measurement’s membership to that component. These two steps are

respectively referred to as the respectively as the M-step and E-step, and are repeated

until analytic convergence of likelihood is reached. Its relatively easy to show [20] that

the E and M steps are given by,
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E Step:

w(m)
n,k =

N (yn; µ̂k
(m−1), Σ̂(m−1)

k )π̂
(m−1)
k

∑K
k=1 N (yn; µ̂

(m−1)
k , Σ̂(m−1)

k )π̂
(m−1)
k

(2.8)

M Step:

θ̂(m+1) = arg max
θ∈Θ

ℓE(y1 . . . yN; θ̂, W(m)) (2.9)

where,

π̂
(m+1)
k =

1
N

N

∑
n=1

w(m)
n,k , µ̂

(m+1)
k =

∑N
n=1 w(m)

n,k yn

∑N
n=1 w(m−1)

n,k

Σ̂(m+1)
k =

1
N

N

∑
n=1

K

∑
k=1

w(m)
n,k AAT (2.10)

where, A = (yn − µ
(m+1)
k ). The EM algorithm guarantees that the model likelihood

increases during each iteration when we are maximising the expected log-likelihood.

However, the algorithm suffers from convergence rate issues as the data dimension-

ality grows. It is shown in [19] both theoretically and via simulations that asymptotic

convergence of parameter estimates suffers as data dimensionality D, grows. Barber

et. al in [21] and Neal et. al. in [22] provide stochastic variants, which would provide

faster convergence rates for high-dimensional datasets. However this comes at a cost

of asymptotic properties offered by the standard EM. In this thesis, we wish to preserve

the asymptotic property and hence continue to use the standard EM algorithm.

2.2.3 Space Alternating Generalised Expectation (SAGE)

Given that Y ∈ RD, when D is large, parameter complexity also grows, asymptotic

properties are not preserved under such instances and also result in slow convergence

rates which was found to be the case when D > 10 in simulations conducted in this

thesis and previous work [23].

In HSI D corresponds to the number of bands. To alleviate this problem , Marden et. al.

in [11] opt to reduce the number of bands by mapping the data to its principle eigenvec-

tors before implementing EM. Alternatively, the HSI surveillance community describes
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the data using heavy-tailed Elliptic T distributions rather than Gaussian Mixtures to

avoid the computational challenges in accurately estimating mixture parameters [12].

Elliptic Contoured pdfs can be considered as heavy-tailed Gaussian pdfs, where an ad-

ditional parameter is introduced to control the heaviness in the tail. This pdf captures

the large measurement variability rather than an additional Gaussian component.

Whilst the standard EM algorithm requires that Y is fixed throughout the E and M

steps, Fessler et. al. in [24] introduce the SAGE condition which enables indepen-

dent maximisation of parameter subsets, fast convergence rates and asymptotic con-

vergence of parameter estimates. Consider a sequence of R independent random vari-

ables, Y1 . . . YR, where the rth random variable Y(r) ∈ RQ(r), its probability distribu-

tion is denoted by PY(r)(.; θ̃(r)) and y1(r) . . . yN(r) denote the N iid samples of Y(r).

The probability distribution of Y is given by, P(Y) = ∏R
r=1 PY(r)(.; θ̃(r)), and param-

eterised by θ̃(r) ⊂ θ ∈ Rm. If y1(r) . . . yN(r)∀r = 1 . . . R represent the total Fessler

et. al. show that asymptotic properties of the maximum likelihood estimator can be

achieved through independent maximisation of θ̃(1) . . . θ̃(R) as long as Y(r) is inde-

pendent ∀r = 1 . . . R and ∀n = 1 . . . N.

Guaranteed asymptotic convergence improves our confidence in the predicted model

and in further decisions made based on the derived model. Such guarantees exist only

because of analytic convergence properties of EM and maximum likelihood estimation

in a non-Gaussian setting. Furthermore, the computational complexity of the problem

is reduced since we are maximising over parameter subsets rather than the entire set.

Fessler. et. al. in [24] claim faster convergence and demonstrate it on large comput-

erised tomography data. For HSI Surveillance problems, the SAGE property can be

applied in a weak sense in two instances. Firstly, we can assume that pixels are more

or less spatially independent, where adjacency effects are negligible as discussed in

the previous chapter. We can also assume that R band-subsets are conditionally inde-

pendent to each other, where the influence of material chemistry across band subsets

evident in the smoothness of signatures is not explicitly modelled under this frame-

work. We model the material chemistry explicitly in 5.3 using Gaussian Processes. We
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apply the SAGE condition in chapters 3 and 4, both in a spectral and a spatial sense,

where Y represents the total measurement set.

2.3 Compositional Models

The parameter estimates for a Gaussian mixture model describe the behaviour of N

measurements and thus remain fixed across N measurements. Whereas, in a compo-

sitional model, the parameter estimates can vary for each nth measurement. Under

this model each measurement is described as a convex combination of source signals

with some additive noise. This signal model for N measurements is described by the

following affine model with sum-to-one and inequality constraints,

yn ∼ ∑k GkXk + W

s.t. xk,n ≥ 0, ∑k xk,n = 1∀n = 1 . . . N measurements, (2.11)

where, Gk ∈ RD is a random variable describing the kth source signal out of k =

1 . . . K possible sources describing N measurements, Xk ∈ R describes the source signal

weight and W corresponds to the random variable representing the additive noise.

Alternatively, the model can be described in terms of samples of the random variables

to describe each nth measurement, where gk,1 . . . gk,N ∼ Gk, xk,1 . . . xk,N ∼ Xk and

wn ∼ W. Thus, each measurement is described by a sample of each random variable,

yn = ∑
k

gk,nxk,n + wn

s.t. gk,n ≥ 0, ∑
k

xk,n = 1 (2.12)

Typically, exact values of both xk,n, gk,n∀k = 1 . . . K∀n = 1 . . . N are unknown and so is

wn. Given some prior knowledge on the K possible sources, Gk, the parameter estima-

tion problem is to estimate sample values xk,n, gk,n, wn of respective random variables

Xk, Gk, W, ∀k = 1 . . . K∀n = 1 . . . N that best describe yn. Note that the formulae for the

compositional model varies from the standard Gaussian Mixture model in that pro-

portions X are a random variable compared to π which is a deterministic parameter.

The source G is also treated as a separate random variable with a prior probability,
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whereas the Gaussian Mixture model the sources are inferred from N measurements,

where the assumption is that each measurement can only be a member of a single

source. Furthermore, the sources themselves are not labelled unlike the compositional

model where use of prior probabilities automatically impose a label.

The sample instance of the compositional model is referred to as a linear mixture model

or linear subpixel model in Hyperspectral Imaging. The problem of inferring the sam-

ple values is known as spectral unmixing and is a parallel to the blind source sepa-

ration problem found in speech processing. Although we have modelled he problem

using a compositional model, with probability, many techniques deal with the raw

measurements directly. We refer to such methods as deterministic methods, where

unknown parameters are not random variables but are fixed values. Deterministic

methods are typically iterative, due to the need to evaluate sum-to-one and positiv-

ity constraints. The problem is solved via a combination of dimensionality reduction,

since D >> K, and norm-minimisation, where inclusion of the constraints is addressed

through optimisation of the Lagrangian Dual. Additionally matrix factorisation meth-

ods [25], enable the parameters to be estimated simultaneously assuming the noise

is fixed and known across N measurements. A Bayesian treatment of the problem

enables parameter uncertainty to be captured through the form of variance, which is

unavailable through matrix factorisation methods. Furthermore, it enables the utili-

sation of prior knowledge of gk,n∀k = 1 . . . K which is available through the form of

spectral libraries. Measurements from spectral libraries differ from the scene due to

atmospheric, instrumentation and scene variation stated in the first chapter which fur-

ther illustrates the advantage of introducing randomness and probability. In Chapter

5 we provide an elaborate treatment of varying approaches to this problem in the hy-

perspectral community. The purpose here is to introduce the Bayesian treatment of the

problem.
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2.3.1 Bayesian Parameter Estimation

In the Bayesian treatment of the parameter estimation problem, unknown parameters

are treated as random variables and are described by probability distributions. Thus

the parameter Θ introduced previously, is a random variable as opposed to a fixed

parameter and θ1, . . . θN ∼ Θ ∈ Rp are its samples. Thus, the nth measurement lies

in the joint space described by the joint probability distribution Pyn,θn , where yn ∈ RD.

The parameters for the sub-pixel model consist of Θ = {Gk, Xk, ∀k = 1 . . . K, W}, where

parameter estimates correspond to sample values of the parameters. The posterior

probability P(Θ = θn|yn) given measurement yn is derived according to the Bayes

rule,

PΘ=θn|yn =
P(yn|Θ = θn)P(Θ = θn)

p(Y = yn)
, (2.13)

where p(Y = yn) is the prior probability of the measurement expressed as,

P(yn) =
∫

θn∈Θ
P(yn|θn)P(θn)∂θ. (2.14)

Computation of aposteriori joint distribution and in (2.13) is possible only when the

joint probability between P(Gk, Xk)∀k = 1 . . . K can be computed. Although a prior

distribution can be enforced on each of the K candidates in G, we do not know which

of the K sources describe the measurement. Therefore, both parameter estimates are

unknown along with their respective means and variances given yn. We rely on iter-

ative Monte-Carlo simulations such as the Gibbs Sampler to estimate the conditional

aposteori distribution of each parameter and subsequently the joint aposteori distribu-

tion.

2.3.2 Inference using Gibbs Sampling

In chapter 5 of this thesis a Gibbs Sampler is applied to a problem where the gen-

erative model is Bayesian. We derive suitable conditional posterior probabilities to

sample source signal and weight parameters. Source signal means and variances are

estimated by a Gaussian Process, making the source signals Gaussian and the poste-

rior probability given the weights also a Gaussian. The weights and sources are drawn
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from a conditional Gamma Gaussian distribution, where the conditional probability

is computed iteratively between each kth source and weight. Gibbs Sampling is an

instance of Markov Chain Monte Carlo (MCMC) method that is used to approximate

an intractable high-dimensional distribution where a closed form expression for the

distribution cannot be obtained.

For this problem, although the Gamma Gaussian provides a closed form expression

for the joint distribution, simultaneous estimate of the parameters are not tractable.

Moreover, the sum to one and positivity constraints also make sampling from the

conditional posterior a tricky exercise since a Gamma distribution or any other con-

jugate distribution to the Normal does not provide sum-to-one-constraints. The in-

tractable distribution corresponds to the joint distribution of all parameters, where the

term high-dimensional corresponds to multiple random variables. In a Gibbs sampler,

any random variable, Zk is sampled one-at-a-time conditional on the knowledge of re-

maining K − 1 instances of the same parameter Zk′ as well as other remaining random

variables, Y/Z, whose values remain fixed at the time of sampling. The assumption

here, is that it is tractable to sample from p(Zm
k |yn, Zm

k′ , Y/Z) which is the conditional

posterior distribution. If m → ∞, then z(m)
k is a valid sample from the originally in-

tractable distribution. There are polynomial bounds that describe how long it takes for

the parameter estimates to converge to its true values [26], but it is difficult to guar-

antee. Hence, it is generally advised to run the Gibbs Sampler from several different

initialisation conditions. If parameter estimates are slow to change and slow mixing is

observed, Rao-Blackwellised Gibbs Sampling or Blocked Gibbs Samplers can alterna-

tively be used [27].

2.4 Band Selection

Unsupervised band selection in this thesis is carried out using two different meth-

ods: convex optimisation (Chapters 3,4,5) and stochastic beta processes (Chapter 5).

In each chapter the band selection/ranking cost function varies according to optimi-

sation criteria and motivation. Optimality criteria for convex optimisation methods

include maximum likelihood and Kull-back Leibler divergence, where band-selection
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is carried out offline once the scene has been gathered by all frequency bands. We use

stochastic beta processes in an online band selection framework in Chapter 5, where

the optimality criteria is based on most likely bands in a probabilistic sense required

for measurement of each pixel. In this section we explain how the underlying optimi-

sation/inference is performed for both convex optimisation and stochastic beta pro-

cesses. However, the exact form of each cost function is introduced separately in each

chapter.

2.4.1 Convex Optimisation

Consider the following problem,

min
t

− f0(t, θ)

s.t. c1 ≤ f1(t) ≤ c2, f2(t) = c3 (2.15)

where, f0(t, θ) represents the objective function and f1(t), f2(t) are constraint functions.

The problem differs from the maximum likelihood problem stated in equation (2.2) in

terms of the constraints and parameterisation of variable t. For example, in chapter

3,4, the band selection problem is described as a combinatorial measurement selection

problem. The objective f (0) corresponds to the likelihood of statistical model describ-

ing the data and is additionally parameterised to infer the measurements which max-

imise the likelihood given the model parameters are fixed. The in-equality constraints

f1(t), f2(t) placed on the problem correspond to minimum and maximum number of

measurements determined apriori. Similarly in Chapter 3, a similar parametrisation is

applied to maximise the Kullback-Leibler divergence between two statistical models.

A convex optimisation problem requires that the objective function is convex, in-equality

constraint functions f1 are also convex and equality constraints f2 are affine. These ob-

jective and constraints can be manipulated to obey these conditions in many cases.

Convex optimisation is suitable for problems without an analytic solution that are NP-

Hard to solve iteratively, can be framed in terms of the Lagrangian dual with proper-

ties stated above and take the primal form stated in (2.15). The selling point for convex
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optimisation lies in the fact that a solution to such a problem is equivalent to the so-

lution to the original primal problem stated in equation (2.15). Firstly, a Lagrangian

relaxation to the problem stated in equation (2.15) merges constraints into the objec-

tive, where each constraint represents a penalty that constricts the number of possible

solutions. Thus, the relaxed objective is given by,

ℓ(λ1, λ2, λ3, t) = f0(t) + λ1(c1 − f1(t)) + λ2( f1(t)− c2) + λ3( f2(t)− c3)|t ∈ T (2.16)

where, T represents a feasible set that includes all possible solutions and λ1, λ2, λ3 are

Lagrangian multipliers. The dual problem is given by,

ℓ∗ = max
λ1,λ2,λ3

ℓ(λ1, λ2, λ3|tmin), (2.17)

where, tmin is first obtained by minimising (2.16) with respect to t. Given that we have

a feasible set, T, it is well established that the solution to the dual in (2.17) is equivalent

(2.15) under the stated conditions. Please refer to [15] for further details on the proof.

The problem is then solved using semi-definite programming or interior-point meth-

ods [15] depending on the type of cost function and constraints. These techniques are

not described in this chapter since the focus is on formulating the problem and more-

over we are not interested in the computational performance but are satisfied as long

as the global maxima/minima can be reached and an optimal solution can be found.

In chapters 3 and 4 we show why the problem requires a convex optimisation solu-

tion and frame the problem such that the necessary conditions for the objective and

constraints are fulfilled.

2.4.2 Stochastic Beta Processes

Consider a random variable Y ∈ RD which describes the possible measurement values

for all n = 1 . . . N pixels across D bands. An unknown random variable, Xn ∈ RPn is a

subset of Y, Xn ⊂ Y, contains Pn <= D desired number of bands to be inferred from a

maximum number D for each nth measurement. The value of Pn is unknown for all N

pixels. Non-Parametric Bayesian techniques can be used to identify the exact number

Pn as well as the exact co-ordinates that are unique to each nth pixel. This problem is
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referred to in a general sense as a feature selection problem in machine learning, where

each co-ordinate refers to a single band or feature. It is general because in many cases

Pn is assumed to be constant across many features. However, in chapter 5, we aim to

carry out online band selection for each nth pixel within a probabilistic framework.

Stochastic Beta Processes are a non-parametric stochastic process that enables such in-

ference to take place. We briefly define its mechanics.

Consider a measure space which represents the possible values of band measurements

across D frequency bands across N pixels, represented by Θ ⊆ ℜ. For the nth pixel, the

joint probability of measurement values across the co-ordinates are uniquely param-

eterised by P(θn(1), . . . θn(P)) where θn(1), . . . θn(P) ∈ Θ correspond to Pn unknown

number of independent parameters in measure space for each nth pixel. The parame-

ters themselves are drawn from a base distribution G0(Θ). Therefore,

yn(d) ∼ P(θn(d))

θn(d) ∼ G0(Θ), ∀n = 1 . . . N, ∀d = 1 . . . Pn (2.18)

where yn(d) denotes the measurement value at the dth band of the nth pixel, θn(1) . . . θn(P) ∼

G0(Θ) corresponds to Pn draws from a base distribution G0. Since the parameters are

independent they form unique partitions. Non-Parametric Bayesian methods provide

a framework for determining Pn possible candidates θn(1) . . . θn(P) for each nth obser-

vation without specifying Pn. The stochastic process describing likelihood or utility of

each co-ordinate across n = 1 . . . N pixels is given by,

Gn =
P=D

∑
d=1

πn(d)δθn(d)(Θ), ∀n = 1 . . . N (2.19)

where, δθn(d) is a dirac delta indexing the dth band location or co-ordinate for the

nth pixel and πn(d) is the likelihood of the dth band parameter θn(d) being used to

describe the nth pixel. The values of θ and π are drawn successively from unique

distributions, θn(1) . . . θn(P) ∼ G0, πn(1) . . . πn(P) ∼ B making each θ value represent

a unique partition along with the corresponding π. Note that the upper limit is set to

P = D and D may equal an infinitely large number and is often denoted as ∞. After

many observations of θ, the posterior update shown below ensures that the number
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of possible parameters reduce to a manageable number. In this thesis, B corresponds

to a Beta distribution, which does not enforce sum to one constraints on π unlike the

Dirichelet distribution. For n = 1 . . . N pixels the sequence of random variables form

the stochastic non-parametric process where the number of parameters grows with

each pixel measured. The posterior probability of G given N × Pn draws of θn(d) is

given by,

E{G(Θ)|θn(1) . . . θn(P)} =
1

c + N
(cG0(Θ) +

P

∑
d=1

N(d)δθn(d)(Θ))

where, Nd =
P

∑
i=1

δ(θ̃n(i), θn(d)) (2.20)

where Nd is the number of previous draws denoted θ̃n(i) that equal θn(d), c is a Beta

process hyperparameter that weights the influence of the prior distribution in relation

to the previously chosen parameters. This leads to a predictive distribution of similar

form where the P(θ̃N+1 = θn(d)) ∝ Nd. Thus, the probability of rarely used features

or its corresponding parameter estimates diminish as other estimates and features are

chosen. Please refer to [27] and [28] for an introduction to Bayesian Non-Parametrics,

Thibaux et. al. in [29] apply the problem to feature learning using Beta Processes.

In chapter 4 of this thesis Pn corresponds to Pn bands out of D that are sufficient to

represent the nth pixel, the non-parametric stochastic process is a Beta process and

θn(1) . . . θn(P) corresponds to the observation parameters across each band for the nth

pixel, drawn from a discrete band utility prior, B0, estimated using training data.
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Unsupervised Band
Selection using Gaussian
Mixtures and Maximum

Likelihood Criteria

I
N this chapter, we deal with the problem of unsupervised identifi-

cation of a subset of frequency bands to improve estimation accu-

racy of the scene model. This is a measurement selection problem,

where the aim is to eliminate noisy measurements from the set of signals

describing a scene. Experiments conducted on synthetic Gaussian Mixture

data demonstrate the effectiveness of the proposed method to choose an

optimal subset of sensor frequency bands that improve the model estima-

tion accuracy. The chapter also highlights the limitations of the proposed

approach in the context of the thesis.
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3.1 Introduction

It is shown in [3] that noise sources such as payload motion, measurement noise and

atmospheric interference are uniform for all pixels in the scene. Some of these noise

sources result in additive or multiplicative noise and are typically localised to certain

frequency bands [3]. Not all noisy bands are easily picked up by atmospheric correc-

tion algorithms [30] which do not address estimation accuracy of measurement pa-

rameters in each frequency band. In noisy bands, spurious measurements are known

to worsen the estimation accuracy of the scene model. The omission of such noisy fre-

quency bands is an important problem since it can lead to improvements in the model

estimation accuracy which subsequently leads to better analysis either for classification

problems [31] or target/anomaly detection [32]. Unsupervised methods facilitate for

on-board processing and faster throughput in terms of obtaining time-critical results.

There are many prior works that justify the need for frequency band selection from the

standpoint of data redundancy as well as model over-fitting. Nonetheless, in a pure

regression sense, estimation error of scene parameters are reduced in a penalised sense

when noisy measurements in the signal are removed. Typically, many existing meth-

ods [31], [32], [33], [34] assume prior knowledge and carry this out in a supervised

sense but we assume no prior knowledge on the existing classes in the scene and aim

to carry out unsupervised frequency band selection. In this study, we use the EM al-

gorithm, which is an iterative procedure, to estimate band parameters that correspond

to a Gaussian Mixture model. We use an objective function for scoring bands such that

theoretical maximum likelihood of the model is guaranteed in a penalized sense for M

number of bands. It is shown via simulation that the model estimation error converges

in a reasonable number of iterations. In section 3.4.1, we motivate the use of maximum

likelihood as the optimality criteria. In section 3.2.1 we provide justification for why

we consider Gaussian mixture models. We briefly consider two different scoring ap-

proaches in section 3.2.2 and argue why the non-linear approach is more suited to the

problem. In sections 3.4.4 and 3.4.2 we develop the methodology behind our proposed

approach which is tested with some simulations on synthetic Gaussian Mixture data in

section 3.5. Importantly, in section 3.6 we describe the limitations of such an approach
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in-terms of band selection criteria which form the catalyst for the work conducted in

chapter 4.

3.2 Background

3.2.1 Gaussian Mixtures for Hyperspectral Data

In this chapter and in chapter 4 frequency band measurements gathered by an over-

head platform of a scene contain more than one material class, which is typically the

case. A Gaussian mixture probability distribution has been used in previous studies,

[11], [10] to model hyperspectral data with D bands. The non-Gaussian nature of hy-

perspectral data is evident in numerous studies which use elliptic-T models [12], [13].

The probability measure is a many-to-one mapping representing the likely spectral re-

sponse values of any spectral band. A one-to-one mapping would be a probability

assigned to the possible values across each spectral band. Hence, the many-to-one

probability can be considered a joint probability. Sawo et. al. in [35] show that if the

joint pdf is a Gaussian mixture, the marginal is also a Gaussian mixture but with a cor-

relation factor influencing the number of Gaussian components. In terms of frequency

bands, the marginal probability of a D dimensional Gaussian mixture could be for each

dth band, where d = 1 . . . D. We can also extend this definition to say that the marginal

pdf across a localised set of neighbouring bands is a multivariate Gaussian mixture

since the joint probability of measurements across each D bands is also a Gaussian

mixture.

3.2.2 Nonlinear vs Linear Band Scoring

Consider the following definition:

Definition 5: A localised frequency band-subset is a set of neighbouring bands that are

correlated due to the overlap in spectral response. A localised band-subset can contain

anywhere between 3-20 bands [3] according to the band configuration in the sensor
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payload.

The scoring techniques proposed in section 3.4.4 depend on the practitioner’s intent.

There are two choices: (1) If the practitioner is happy in finding out P optimal localised

frequency band-subsets out of a possible R total band-subsets, then linear likelihood

scoring should suffice. In the linear case, the global likelihood score is additive of

the likelihoods of individual band-subsets. Thus P − R band-subsets would contain a

lower likelihood score than the individual scores of the R band-subsets. (2) However, if

exact knowledge of M out of D exact bands is needed, under a locally correlated model

a non-linear scoring technique is required to find the optimal bands. This is because a

band’s contribution to the the global likelihood score is dependant on the neighbouring

bands. The context-specific nature of bands introduces non-linearity into the problem

if we wish to find the M exact frequency bands. From an application perspective, the

exact knowledge of M optimal bands is especially useful due to hyperspectral bands

having a narrow spectral bandwidth. For example atmospheric interference maybe

negligible in some bands in a localised band-subset but prominent in others within

the same subset [3]. The fine spectral resolution provided by hyperspectral sensors

provides a rich measurement set, which introduces non-linearities that make a non-

linear scoring approach more useful.

3.3 Existing Work

Du et. al. in [36] adopt a similarity measure to find the subset of frequency bands

that are most dissimilar to each other in terms of projecting the most orthogonal com-

ponents after the application of an orthogonal subspace projection or least similar in

terms of being linear combinations of each other. In this method there is a reliance

on the initial chosen band subset where another pre-processing step is required to se-

lect the initial bands. In our proposed method we use a single criteria throughout the

band-selection process and do not rely on any other heuristic. The machine learning

community refers to bands as features and a cluster of studies deal with problem of
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feature selection and unsupervised learning. Graham and Miller [37], use the EM al-

gorithm to estimate the unknown Gaussian components of a D-dimensional mixture.

The saliency of each of the D frequency bands/features in describing the component

is determined by the change in the component distribution when considering remain-

ing features. Whenever two component distributions share similar parameters across

a particular feature, that particular feature is deemed irrelevant. Law et. al. [38], ap-

ply a similar saliency principle by applying a soft feature saliency for all components

but measure the feature’s usefulness by considering the relative increase in number of

Gaussian components in the model as a result of its presence. Our work differs, in

that we steer away from combinatorial approaches to evaluate the usefulness of each

feature. We deem a feature as useful in the context of its neighbours and how well

it describes the global model whilst assuming a fixed number of model components.

Therefore, we address the estimation accuracy of the D dimensional model as opposed

to using sparsity to improve identifiability of Gaussian components such as the latter

study.

Roth and Lange [39] carry out feature selection in a regression setting, where the prob-

lem is formulated as an extension of Linear Discrimanant Analysis (LDA) problem [40].

A scoring procedure [41], referred to as LASSO [42], is used to quantify each feature’s

contribution in terms of improving the class membership of observations to the global

Gaussian mixture. The philosophy of Roth and Lange is similar to the one adopted

in this chapter, however, eigen-decompositions of the original feature set are used to

overcome large combinatorial problems. In this study, we use a convex relaxation of

the original problem to overcome this issue.

In this sense, our work is closest in flavour to Joshi et. al. in [43], who address the

problem of selecting M ⊂ D correlated measurements which improves the estimation

accuracy of a Gaussian model fitting the measurements. The estimation accuracy for

the linear Gaussian is characterised by an error covariance and performance is mea-

sured by calculating the volume of the confidence ellipsoid and subsequently relaxing
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the scoring problem to choose M measurements. If D measurements were indepen-

dent, estimation accuracy is simply an additive function of the number of measure-

ments which requires a search of DlogD. To address measurement correlation and to

avoid a computationally intensive search procedure (for large D), we also use a convex

relaxation procedure but deal with non-Gaussian measurements unlike Joshi et. al. in

[43]. We ensure the M frequency bands selected are optimal in terms of how well they

describe the measurements.

3.4 Maximum Likelihood Criteria for Band Scoring

3.4.1 Motivation

The non-Gaussian nature of hyperspectral data can be attributed to multiple mate-

rial classes in the scene as well as numerous noise sources listed in chapter 1. Noise

and atmospheric interference introduced during the measurement process is sporadic

in nature, specific only to certain frequency bands and hence difficult to model [3]. In

anomaly detection applications, the scene model is a representative background model

since true anomalies tend to be sparse in comparison relative to the land-cover and nat-

ural vegetation. Thus, elimination of noisy frequency bands can thus be a catalyst for

improving the likelihood of the background model due to removal of sporadic mea-

surements. This translates to an improvement in anomaly detection performance. In

this chapter, we attempt to eliminate the noisy frequency bands and maximise likeli-

hood of the model.

Maximum likelihood criteria for frequency band selection also has some nice theoreti-

cal properties. If a set of M frequency bands are selected out of a possible D bands such

that the likelihood of the model is a maximum. We can say that the fewest number of

additional assumptions are made about the data generation process. Berger et. al. [44]

show that the maximum likelihood estimate of a model from the exponential family

is the dual equivalent of a model where the entropy is maximum with respect to its

natural parameter. The maximum entropy principle states that such a model makes
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the fewest number of assumptions of the data generation process. Selecting M optimal

bands out of D could provide the most certainty in terms of model estimation accu-

racy which could eliminate additional sources such as atmospheric interference that

are difficult to characterise. For the band selection application this could mean in a

theoretical sense that the chosen bands are the ones that contain the least amount of

band noise, atmospheric interference and the least number of redundant information

sources. Thus, the measurements are more likely to be explained by their true chemical

properties when maximum likelihood criteria is used due to fewer assumptions about

the measurements’ sources.

3.4.2 Proposed Model

Definition 6: We consider a spatial subset of a snapshot captured by the hyperspectral

sensor, where we consider a total of N spatial samples captured by each of the d = 1 . . . D

spectral frequency bands. We assume the samples are independent and identically

distributed (i.i.d) in a spatial sense, which means objects in neighbouring locations do

not affect the radiation gathered at the location of interest. This is not always true

in reality where pixel reflectance is influenced by radiation reflected by neighbouring

pixels around it, referred to as the adjacency effect. Nonetheless, we argue that any

evidence of spatial correlation is due to the homogeneity of natural scenes and sig-

nal measured is pre-dominantly an accurate representation of the material(s) residing

within the pixel. Healey et. al. in [45] claim that the adjacency effect is small enough

to be neglected in most cases other than hazy atmospheric conditions or if small ob-

jects lie within the pixel. We assume adjacency effects are minimal in the context of

this study and note that any small man-made objects occupying the pixels are sparse

in number in relation to the scene observed. In a broad sense, this validates the use of

probabilistic models that assume the i.i.d condition.

Definition 7: Each co-ordinate of the Q(r) dimensional vector represents a frequency

band. A Q(r) ⊂ D of co-ordinates is referred to in plural form as the rth subset of

co-ordinates. The co-ordinates of the Q(r) dimensional vector are correlated due to
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the sensor’s frequency response, where neighbourhood correlation is due to the prox-

imity of the sensor bands as mentioned earlier. Since this is localised to neighbouring

bands and is known prior to measurement [11], [3], this makes the measurements in rth

band-subset independent to the remaining R − 1 band-subsets given Q(r)∀r = 1 . . . R.

Thus, each nth pixel is a multi-dimensional vector whose co-ordinates are denoted by

y(1, r, n), . . . y(Q(R), R, n).

Definition 8: Each spectral sample, denotes the measurements of the nth pixel, y(1, r, n),

. . . y(Q(R), R, n), across the rth frequency band subset. Each spectral sample is i.i.d

(since the R band-subsets are independent).

Thus, the entire set of pixels in the scene consisting of spatial samples across all D

frequency bands and spectral samples across R frequency band subsets is summarised

by a matrix Ȳ.

Ȳ =


y(1, 1, 1) y(2, 1, 1) · · · y(Q(R), R, 1)

y(1, 1, 2) y(2, 1, 2) · · · y(Q(R), R, 2)
...

...
...

...

y(1, 1, N) y(2, 1, N) · · · y(Q(R), R, N)


where, Ȳ is an N × D measurement matrix, where each of the N rows represents N

pixels and each column represents the Q(r) th frequency band from the rth frequency

band subset.

If a random variable Y(r) ∈ RQ(r) represents all Q(r) dimensional measurements in

the rth frequency band-subset. We let random variable Y ∈ RD where Y = ∏R
r=1 Y(r)

be the possible measurement values across D bands for the N pixels. In this chapter

we represent Y(r) as a Gaussian Mixture model given the spectral measurements in

the rth band-subset.

PY(r) =
K

∑
j=1

N (; µj(r), Σj(r))πj(r), (3.1)

∀r = 1 . . . R frequency frequency band-subsets
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where µj(r) ∈ RQ(r) is the jth Gaussian component mean of the rth frequency band-

subset, Σj(r) ∈ ℜQ(r)×Q(r) is the covariance of the Gaussian and component propor-

tions are denoted by πj(r). The probability across R independent frequency band-

subsets,

PY(; θ) =
R

∏
r=1

PY(r)(; θ(r)) (3.2)

where, θ ∈ Θ ⊂ Rq. In this chapter, we assume prior knowledge of the number of

Gaussian components denoted by K since estimating model order is not the primary

focus of the study. The problem now is two-fold. The first is to estimate the maximum

likelihood of θ in (3.2) and the second is to select M frequency bands which are optimal

in terms of maximising the likelihood.

3.4.3 EM Algorithm

Parameter estimation in Gaussian Mixture models cannot be performed analytically

but only iteratively, if membership of data to Gaussian components in the model is un-

known. We refer to such datasets as un-categorised. The model parameters often fail to

converge to an asymptotic value [24] if parameter complexity is high as is the case with

high-dimensional hyperspectral data. This phenomena is addressed by Fessler and

Hero in [24], who reduce the data into smaller partitions when the measurement space

is i.i.d. The chosen subset is smaller, less-informative and is modified in-between EM

iterations. The authors demonstrate that analytic convergence of likelihood is achieved

in spite of a modification to measurement the space as long as the chosen partitioned

subset adheres to the SAGE condition. The SAGE condition states that if measurements

of Ȳ and a partitioned subset of measurements described by ZS ⊂ Ȳ are independent,

the probability of the entire measurement space denoted by random variable Y is given

by the product of conditional of Y given ZS and the probability of Z,

PY = PY|ZS(; θS̃)PZ(; θS) (3.3)

where Z denotes the random variable describing ZS measurements. In this chapter,

Z ≡ Y(r) for any rth and refers to N measurements contained in the rth frequency
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band subset, θS̃ represents the Gaussian Mixture parameters which belonging to the

remaining R − 1 band-subsets. Its worth re-emphasising that the condition only holds

true as long as measurements in ZS and those described by Y are independent. The

likelihood of the θ given the measurement space Y is given by the product of likeli-

hoods,

L(y1 . . . yN; ϕ) = L(ZS; θS)× L(y1 . . . yN|ZS; θS̃), (3.4)

where, the parameter ϕ characterises all measurement values in Y. We maximise the

likelihood in equation (3.4), w.r.t to θS which means the latter term after the product

can be ignored. We have,

arg max
θS∈Θ

log(L(ZS; θS)L(y1 . . . yN|ZS; θS̃)) ≡ arg max
θS∈Θ

log(L(ZS; θS)), (3.5)

which, is the maximisation performed in the standard EM algorithm defined in section

3.4.3, where we alternate between the R − 1 frequency band-subsets for ZS till maxi-

mum likelihood convergence is reached. Let ZS = Y(r) and

θS = {µ1(r), . . . µK(r), Σ1(r) . . . ΣK(r), π1(r) . . . πK(r)} for some value of r,

the un-categorised log-likelihood is given by,

L(y1(r) . . . yN(r); θS) =
N

∏
n=1

K

∑
j=1

πj(r)N (yn(r); µj(r), Σj(r)) (3.6)

where vj,n(r) ∈ {0, 1} and represents the membership of the nth spectral measurement

to the jth component in the rth frequency band-subset. The complete data log-likelihood

(neglecting constant terms not dependent of the parameters and assuming that πj(r) >

0) is thus,

log(Lc(y1(r) . . . yN(r); θS) = ℓc(y1(r) . . . yN(r); θS) =
N

∑
n=1

K

∑
j=1

vj,n(r) . . .(
log πj(r)− 1/2

(
(yr,n − µj(r))TΣ−1

j (r)(yn(r)− µj(r))
))

(3.7)

Since the dataset is un-categorised, the membership of V is unknown and we consider

the expected value of V. The EM algorithm thus involves computing the conditional

expectation of ℓc(y1(r) . . . yN(r); θS). This requires computation of E
{

Vj,n(r)|y1(r), . . . , yN(r)
}

.

It is straightforward to show [20] that

pr,j,n = E
{

Vj,n(r)|y1(r), . . . , yN(r)
}
=

πj(r) ∏N
n=1 N (yn(r);µj(r),Σj(r))

∑K
j=1 πj(r) ∏N

n=1 N (yj(r);µj(r),Σj(r))
. (3.8)
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We denote this quantity by pj,n(r). The M step computes maximising argument for

each mth estimate of the expected complete log-likelihood given by,

E
{
ℓc(y1(r), . . . , yN(r); θS)

}
=

K

∑
j=1

N

∑
n=1

pj,n(r) log πj(r)−

pj,n(r)
2

(
(yn(r)− µj(r))TΣ−1

j (r)(yn(r)− µj(r))
)

. (3.9)

The m+1th parameter update is thus,

π̂
(m+1)
j (r) =

1
N

N

∑
n=1

p(m)
j,n (r), µ̂

(m+1)
j (r) =

∑N
n=1 p(m)

j,n (r)yn(r)

∑N
n=1 p(m)

j,n (r)

Σ̂(m+1)
j (r) =

1
N

N

∑
n=1

K

∑
j=1

p(m)
j,n (r)AAT (3.10)

where, A = (yn(r)− µ
(m+1)
j (r)). Once we derive a sufficiently accurate set of param-

eter estimates across the D frequency bands, D − M sub-optimal bands are removed

and we can continue running the EM steps until the total likelihood for the M mod-

els are reached. The SAGE condition shows that the parameter estimates provide the

maximum likelihood of the model.

When the E-M steps are repeated L times across each rth frequency band-subset ∀R

band-subsets. We have parameter estimates µ̂j(r), Σ̂jr), π̂j(r)∀r = 1 . . . R, ∀j = 1 . . . K.

If K is assumed to be the same across R band-subsets, the expected complete log-

likelihood of the R independent independent band-subsets, is given by,

E
{
ℓc(y1, . . . , yN; ϕ̂)

}
=

R

∑
r=1

K

∑
j=1

N

∑
n=1

pj,n(r) log π̂j(r)−
pj,n(r)

2(
(yn(r)− µ̂j(r))TΣ̂−1

j (r)(yn(r)− µ̂j(r))
)

. (3.11)

where, ϕ̂ = {θ̂S
1 . . . θ̂S

R} denotes mixture parameter estimates across all R band subsets,

which are estimated by carrying out the E and M steps indicated above.
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3.4.4 Non-linear Band Scoring using Convex Optimisation

Consider random variable X which denotes a linear transformation of Y and is given

by,

X = T.Y (3.12)

where, X ∈ ℜM and represents the possible measurement values made across M opti-

mal frequency bands, T is M × D binary matrix whose elements take the values {0, 1},

Tm,d represents whether the dth frequency band is represented by the mth element of X.

In this section we consider the non-linear band scoring problem. We wish to determine

a subset, M of the D available bands of given size M < D which best represents the

scene under analysis. By this we mean selecting those M bands which maximise the

likelihood compared to any other subset of M bands. Taking into account the neigh-

bourhood correlation, this is a combinatorial optimisation problem which is NP-Hard

[43]. So rather than performing a “hard” assignment of bands, we follow the approach

of [43], and perform a “soft” assignment. The soft assignment problem can be viewed

as an extension to the treatment of the “hard” assignment problem described as fol-

lows. A combinatorial problem of selecting from (n
k) combinations is simply avoided

by applying a relaxation to the band selection parameter and rounding it suitably to

represent the binary matrix T.

Parameter estimates for the linearly transformed random variable Y across all R fre-

quency band-subsets are obtained by concatenating the parameters into a single vector

or matrix all R frequency band-subsets. This includes µ̄j ∈ ℜD which is the concate-

nated component mean, Σ̄j ∈ ℜD×D which is a block diagonal-covariance and π̄j ∈ ℜD

is concatenated component membership to the jth component. It is assumed that each

rth band-subset has the same number of components, K which is reasonable given that

the all bands are observing the same scene. We consider the problem of finding M

optimal bands and subsequently estimating X. The optimisation objective is given by,

T̂ = arg max
T̃

ℓx(ϕ̂, T̃) ≡ arg max
T̃

N

∑
n=1

K

∑
j=1

logN (yn; T̃µ̄j, T̃Σ̄jT̃T)

s.t T̃ ∈ [0, 1], 1T T̃ = M (3.13)
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where, ℓx(ϕ, T̃) is the likelihood of the D frequency band model, T̃ ∈ [0, 1]M×D is the

parameter with respect to which the optimisation is performed. The first constraint is

a convex inequality and the second equality constraint ensures that rows and columns

of T̃ sum to M. The log-likelihood of D frequency band model can be written as,

ℓx(ϕ̂, T̃) = −1/2
K

∑
j=1

(N(log |2π̄jT̃Σ̄jT̃T| −

1/2
N

∑
n=1

K

∑
j=1

(yn − T̃µ̄j)
T T̃Σ̄−1

j T̃T(yn − Tµ̄j) (3.14)

This objective can be reduced to the following in order to simplify the optimisation,

ℓx(ϕ̂, T̃) = −N/2
K

∑
j=1

(log |2π̄T̃Σ̄jTT|+ tr(T̃Σ̄−1
j T̃TS)

+ (ỹn − T̃µ̄j)
T T̃(Σ̄−1

j )T̃T(ỹn − T̃µ̄j) (3.15)

where S denotes the sample covariance of D-dimensional random variable Y, ỹ ∈ ℜD

is the sample mean across all N pixels and tr() denotes the trace operator. The objective

can be shown to be log-concave w.r.t to T̃. Please refer to section 3.4.6 for the complete

proof. Since the objective is long-concave and we have convex in-equality and linear

equality constraints the problem can be solved as a convex optimisation problem. The

use of the standard EM algorithm, where parameter estimates converge to their re-

spective maximum likelihood estimates as well as the equality constraint ensures that

there is sufficient sparsity. This was found to be the case in the simulations conducted

even though there is no specific condition stating that values of T̂ ≈ {0, 1}. The new

M dimensional subset X is estimated using equation (3.12) where X = T̂.Y.

3.4.5 EM CVX Algorithm

1. Repeat E and M steps a maximum of L times across each rth frequency band

subset ∀r = 1 . . . R. In the experiments conducted, convergence across each fre-

quency band subset was set at to a maximum value of L = 20 iterations. If the

likelihood converged at an earlier stage the subsequent parameter estimates were

accepted to be optimal in a maximum likelihood sense.

2. Solve for T̂ in equation (3.13) using the objective in (3.15)
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3. Normalise T̂ to values between 0 and 1 and compute the M dimensional linear

transformation X = T̂.Y.

3.4.6 Proof of Concavity for the Band Selection Objective

Consider the log-likelihood function given in equation (3.14). We will show that this

expression is a sum of two concave expressions and hence in turn also concave, which

means that we can find a global maxima and solve equation (3.13) as a convex optimi-

sation problem. Properties of convex functions were mainly obtained from Boyd et. al.

in [15].

Consider the first term in equation (3.14),

N/2
K

∑
j=1

log |2π̄TΣ̄jTT| (3.16)

where |.| denotes determinant. Let function f (Z) = log |Z|, where, Z = T̃ΣjT̃T, is a

symmetric positive definite matrix. Consider the function, g(t) = log |Z+ tV|, restricts

g(t) to a positive number, where Z, V ∈ |ℜD×D. We can say that, f (Z) is a concave

function, if g(t) is a concave function as shown.

g(t) = log |Z + tV|

= log |Z|+ log |I + tZ−1/2VZ−1/2|

= log |Z|+
D

∑
d=1

log(1 + tλd) (3.17)

where, λ1 . . . λD are eigenvalues of Z−1/2VZ−1/2. When we take the derivative of g(t)

with respect to t, we have,

g′(t) =
D

∑
d=1

λd
1 + tλd

and,

g′′(t) = −
D

∑
d=1

λ2
d

(1 + tλd)2 (3.18)

where g′(t), g′′(t) denote the derivative and second derivative respectfully. Since,

g′′(t) < 0 f is concave. From the term in equation (3.16), we have an affine com-

bination of a concave expression, which makes entire term concave if we ignore the
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negative multiplier before N/2. Consider the second term in equation (3.14). Let,

ℓB(ϕ̂, T) = 1/2
N

∑
n=1

K

∑
j=1

(yn − Tµ̄j)
TTΣ̄−1

j TT(yn − Tµ̄j) (3.19)

We shall prove that this quadratic expression is concave by proving that ∂2ℓB
∂T̃2 < 0. First,

consider the derivative of this expression:

∂ℓB

∂T̃
= (yn − T̃µ̄j)

2(T̃2Σ̄−1
j )

= (yn − T̃µ̄j)
22T̃Σ̄−1

j − 2T̃2Σ̄−1
j (yn − T̃µ̄j)

= 2T̃Σ̄−1(yn − T̃µ̃j)(yn − T̃µ̃j − T̃)

= 0 (3.20)

Therefore the solution for T̃ include, 0, yn − T̃µ̃j,
yn
µj

. This leaves the only possible solu-

tion for which the ∂2ℓB
∂T̃2 exists.

∂ℓB

∂T̃
(yn − T̃µ̄j) = −µ̄j < 0 (3.21)

Therefore, the expression is concave. Since both expressions have a negative multiple,

concavity is maintained by dividing through by -1 and maximising the negative of the

objective in (3.14).

3.5 Experiment A

The dataset in each experiment consists of N = 1000 samples which are generated by

K = 2 component Gaussian mixtures where the mean is randomly selected across all

R frequency band-subsets for each trial in each experiment as listed in Table 3.5. The

number of bands in each band-subset is set to Qr = 3 which is fixed for all experiments

but the total number of band-subsets R vary for each experiment. Covariance is uni-

form across K components and R across K components and R frequency band-subsets

but varied for each trial, where correlation between Q(r) bands in a band-subset is var-

ied arbitrarily in a constrained sense for each rth band-subset. White-Gaussian noise

is added in some experiments at a specified SNR, where the SNR calculation is com-

puted in decibels (dB) using 20 log Y
R . The estimation error for dth band is given by
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Exp.

No.

SNR No. of Bands

(D)

Desired

Bands (M)

No. of Trials

A1 0 10 5 7000

A2 0 100 20 1000

A3 20 200 25 1000

A4 5,10,20 100 10 1000

Table 3.1. Band Selection Experiment Summary

Ed =
{∥∥θ − θ̂

∥∥+ ∥π − π̂∥
}

and for M sensors
∥∥∥∑P

d Ed

∥∥∥. Initialisation conditions were

kept constant throughout the experiment. Further details of the experiments are pro-

vided in table 3.5.

The primary goals whilst conducting these experiments is to demonstrate that a) the

algorithm is robust under different noise conditions and b) the frequency bands se-

lected are the ones with the lowest-SNR. Hence, all testing is conducted with synthetic

Gaussian mixture data where noise conditions are adequately controlled. The former

aim is reflected in the convergence of parameter estimation error towards an arbitrar-

ily small value as indicated in figures 3.1,3.2, 3.3, 3.5. The latter is tested by adding

white Gaussian noise at varying noise ratios and examining which frequency bands

are selected. The bands chosen are the ones with a SNR of 20 as opposed to 10 and 5 at

two different initialisation points. Figure 3.4, shows the slow convergence of the stan-

dard EM, for when no frequency bands are removed. This highlights the benefit of the

algorithm performing the band selection within-the-EM loop. In both the noise-less

and noisy case, where ϕ̃ ≈ ˜ϕML, the estimation error converges towards an arbitrarily

small value.

3.6 Conclusions and Limitations

The proposed approach finds frequency bands which provide the best model estimate,

from which we can infer that the measurements are likely to be less corrupted by spuri-

ous noise sources and atmospheric effects and hence provide a more useful model for
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Figure 3.1. Exp. A1: Combined Band MSE; EM-CVX Algorithm; Selected 5 out of 10 frequency

bands, 0 dB SNR across all frequency bands

anomaly or target detection. Our results indicated in fig. 3.3, 3.4 demonstrate this to be

the case. Furthermore, EM also fails when no bands are removed which highlights the

utility of removing bands when performing clustering on a HSI scene whilst retaining

the true measurements. The proposed formulation ensures that the bands selected are

optimal in-terms of model estimation accuracy relative to those bands that were left

out. However, we cannot necessarily guarantee that the collection of bands identified

are optimal for finding anomalies in the given scene, since its not part of the perfor-

mance criteria. In the subsequent chapter, the band selection criteria is one which is

useful for determining the presence of anomalies in the scene if there are any. More-

over, we also have to specify M, the desired number of bands, which is overcome in

chapter 4.
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Figure 3.2. Exp. A2: Combined Band MSE; EM-CVX; Select 20 out of 100 frequency bands, 0 dB

SNR across all channels
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Figure 3.3. Exp. A3: Combined Band MSE; EM-CVX; Select 25 out of 200 frequency bands, 20

dB SNR across all frequency bands
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Figure 3.4. Combined Band MSE; EM-CVX; Select 10 frequency bands, no removal of

frequency bands
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Figure 3.5. Exp. A5: Combined Band MSE; EM-CVX; Select 10 out of 50 frequency bands, 20, 10

,5 dB SNR evenly distributed across all frequency bands for two arbitrary initialisation

points
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Inferring Appropriate Bands
To Find True Anomalies

I
N Hyperspectral Imaging, a sensor with hundreds of sensor-

elements gathers measurements of a spatial region of interest. The

measurements collected by each sensor-element are considered a

snapshot of the same spatial area but at a unique frequency referred to

as a spectral band. In a scene, where there are sparse man-made materi-

als (anomalies) relative to natural background, we show that it is possible

to infer a ranking of the spectral bands that help identify anomalies. We

consider the problem of simultaneously identifying anomalies and infer-

ring spectral bands where anomalies vary significantly from background.

Simultaneous identification of critical band frequencies that help identify

anomalies, can lead to: improvements in sensor design, confirm the pres-

ence of true man-made materials and improve data throughput. In existing

literature, eigen-decomposition methods alter the physical band-structure

whilst unsupervised band-selection schemes do not guarantee the presence

of anomalies. We develop a partition-based anomaly-clustering scheme

that groups non-Gaussian measurements according to the extent to which

the groups are divergent from one another. The SAGE condition guarantees

groups are described by a locally optimal model whilst a convex relaxation

scheme is used to evaluate suitability of group members. Simulations con-

ducted demonstrate acceptable probability of detection, false-alarm-rates

and band-ranking accuracy with synthetic non-Gaussian data with a sparse

number of anomalies as well as real hyperspectral measurements gathered

by the HyMap airborne sensor.
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4.1 Introduction

A problem addressed in hyperspectral surveillance is the detection of sparse man-

made materials relative to natural background such as soil and vegetation. This study

is motivated by two specific surveillance problems:

1. The detection of visually similar man-made and natural materials such as green

grass, green paint or camouflage.

2. Man-made materials which are small in size in relation to the pixel it occupies.

In both these cases, the man-made materials are likely to exhibit distinct differences

in only a subset of bands. In the former case, this is due to the similarity of materials

across certain wavelengths whilst in the latter the spectral measurement of the pixel

is dominated by the surrounding background. In both cases, the exact bands across

which the material varies the most is unknown apriori to measurement.

The problem of identifying critical bands is important for various reasons: (1) By virtue

of the wavelengths identified, critical bands provide confirmation that at least some of

the anomalies detected are anomalies and not noisy background, (2) a detection and

false alarm metric associated with critical bands provides a quantitative way to as-

sess the usefulness of the sensor-band design in terms of the ability to detect anoma-

lies as well as improving the signal-to-noise ratio of critical bands, (3) the identifica-

tion of critical bands allows the future designer to cue different bands for different

tasks, which would also reduce the deluge of measurements collected in an intelligent

manner, (4) schemes such as Principal Components Analysis (PCA) provide a linear-

transformation such that maximum information content lies in an ordered set of prin-

cipal components. This enables data compression since the latter set of components

can be discarded. However, PCA does not guarantee explicitly or implicitly that the

data transformation results in anomalies being found. Furthermore, the physical band-

structure of the data is altered which means we do not have any information regarding

the utility of each band. Metrics such as probability of detection (PD) and false alarm

rate (FAR) used in this study provide the hyperspectral data analyst a more tangible

indication of the efficacy of the band-ranking step.
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4.2 Existing Work

The following studies are studies carried out in Spectral Band Selection as well as Sen-

sor or Feature Selection from signal processing and machine learning communities.

They are representative of the work carried out in these fields, hence the list is not ex-

haustive:

4.2.1 Band Selection Criteria

Paper: Du et. al. in [33]

Contribution: Unsupervised Band Selection Using Compositional Models and Matrix

Factorisation

Du et. al. assume a sub-pixel compositional model of hyperspectral data, where each

pixel is a convex combination of a set of pure materials at varying fractions, where the

pure materials are unknown but the maximum possible number of materials is fixed.

They measure the contribution of each band towards re-constructing pure materials

for each pixel measured. We use Gaussian mixture models to describe HSI data and

attempt to identify bands that may reveal the presence of anomalies, whereas Du et.al.

use pixel re-construction accuracy as opposed to anomaly detection accuracy as the

band selection criteria. Nonetheless, both methods are unsupervised.

Paper: Keshava et. al. in [34]

Contribution: Supervised Combinatorial Band Selection Using Spectral Angle

Keshava et. al. in [34] add a band to a critical band set if the spectral angle between a

reference and a test signature is maximised due to the addition of the band to the crit-

ical band set. Various two band combinations are used as initial bands in the set. The

method relies on prior knowledge of a target spectral library to be used as a reference

which is not the case in our method. We use convex relaxation to reduce computational
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burden in band selection which is not the case in [34], which relies on cycling through

many combination of bands.

Paper: Guo et. al. in [31]

Contribution: Information Theoretic Criteria for Band Selection

Guo et. al. visually identify spectral bands that show the greatest separability be-

tween pixels across a region of interest. A discretised reference map across each band

in the identified range is created for the entire scene by averaging the class member-

ship revealed by each band measurement in the identified range across each pixel. The

mutual information between the averaged reference and each band measurements is

estimated for the entire scene, where the maximum mutual information is revealed by

bands which show the greatest similarity to the estimated reference map. Our pro-

posed technique explicitly handles scenarios where there are sparse number of man-

made materials in the scene whereas such information maybe lost during the averaging

process suggested by Guo et. al. in [31]. We seek bands where the mutual information

between potential targets and backgrounds is a minimal, without the use of reference

maps.

Paper: Stein et. al. [14]

Contribution: Unsupervised Band Selection using Likelihood Ratio

Stein et. al. carry out hypothesis tests to determine whether a pixel belongs to a multi-

variate Gaussian background estimated from the scene or a multi-variate target distri-

bution. Bands are removed until the likelihood ratio for a set of pixels in the scene is

maximised. Although similar in spirit, we do not assume any knowledge of the target

library and apply a convex relaxation to overcome combinatorial complexity. Further-

more, we also assume a Gaussian mixture as opposed to multivariate Gaussian used

by [14].
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Paper: Law et. al [38] (Machine Learning)

Contribution: Unsupervised Feature Selection for Gaussian Mixtures using Model Iden-

tifiability Criteria

Law et. al. improve identifiability of Gaussian components by removing bands or

measurement features. Our method varies due to the fact that we apply a divergence

criteria to estimate unique groups of Gaussian mixtures and seek the bands that again

maximise divergence between a cumulative larger group of mixtures, where we are

also able to identify measurements that are anomalies as well as identifying critical

bands. We do not seek to remove bands but merely rank them.

4.2.2 Band Selection or Reduction Process

Paper: Green et. al. in [7]

Contribution: Band Reduction via Eigenvector Analysis

Propose a method called MNF (Maximum Noise Fraction) that maximises measure-

ment/scene SNR through eigenvector analysis and a noise covariance, from which

measurement dimensionality and thus data size can be reduced. However, the method

relies on the rotation of the measurement axes which does not say anything about a

band’s utility or contribution in finding anomalies which is possible through our work.

Moreover, the technique requires an analyst to carefully select a region of interest for

estimating noise covariance, this is not required for our method.

Paper: Joshi et. al. [43] (Signal Processing)

Contribution: Unsupervised Sensor Selection for Gaussian Measurements using Con-

vex Relaxation

Joshi et. al. in [43] apply a relaxation to the combinatorial problem of selecting an

optimal P out of N correlated measurements which improves the estimation accuracy
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of the system parameter. We formulate a relaxed likelihood ratio test to group mea-

surements as opposed to minimising the determinant of an error covariance ellipsoid

which cannot be directly derived for non-Gaussian data with unknown parameters.

Nonetheless, we also apply convex optimisation in our proposed method, to overcome

combinatorial complexity.

Paper: Griffiths et. al. [46] (Machine Learning)

Contribution: Unsupervised Band Selection for Compositional Models using Bayesian

Methods

The Indian Buffet Process proposed by [46] estimates the distribution of a sparse bi-

nary random matrix, where D rows correspond to bands and columns correspond to

K latent classes. Each element (d,k) corresponds to the relevance of each kth latent

probability model to the dth band for all spectral measurements collected in the scene.

The optimal number of bands to represent the each pixel is modelled as a random vari-

able where prior knowledge can influence the exact number of components, this is not

the case in our work. The technique also requires each latent class be a D dimensional

latent factor which may suffer from over-fitting for large values of D, which is not the

case in our proposed method in this chapter. Nonetheless, the method offers a unique

alternative to carry out online band selection.

4.2.3 Summary of Work and Contributions

We develop an algorithm to carry out detection of anomalies through the inference of

a subset of critical bands. Please refer to Definitions 1− 7 for an elaboration of the itali-

cised terms in this paragraph and to Fig. 4.1 for a visual representation of the proposed

technique. The standard EM approach to finding maximum likelihood estimates of

high-dimensional non-Gaussian data suffers from parameter complexity and requires

dimensionality reduction methods such as PCA to find a low-dimensional mapping

before carrying out the clustering. In this study, (1) the model proposed is framed such
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that local convergence of high-dimensional parameter estimates to maximum likeli-

hood values is still achieved without a rotation of the principal axes and a reduction in

measurement-dimensionality. We partition the measurement space in each band-subset

and estimate parameters for outlier and partial background measurements using a Gaus-

sian mixture model. By applying the SAGE condition to the problem, we show that

the algorithm is still a standard EM algorithm [24] with the same implicit theoretical

guarantees as the standard EM for maximum likelihood convergence of Gaussian Mix-

ture parameter estimates. In the hyperspectral domain, to the author’s knowledge, the

model is the first of its kind where standard EM convergence guarantees apply without

any physical alteration to the measurements’ axes. (2) We formulate a novel scoring

scheme using convex optimisation to establish membership of each spectral measure-

ment in a band-subset to an outlier or partial background. Convex relaxation methods

have been previously applied for combinatorial measurement selection by Joshi et. al.

in [43], however the models were fully Gaussian and the cost function to evaluate an

optimal subset of measurements is an analytically derived error covariance ellipsoid.

In this study, we apply convex relaxation to a measurement selection scenario where

the measurements are non-Gaussian and an error covariance ellipsoid cannot be de-

rived. (3) To evaluate class membership and estimate outlier and partial background

classes, we maximise a value proportional to the KL divergence between outlier and

partial background classes with respect to an indicator matrix with convex constraints

and then estimate class parameters using SAGE-EM. To the author’s knowledge, this

is the first instance of a convex-relaxation and KL divergence formulation used in the

context of anomaly detection in a multi-dimensional non-Gaussian setting. (4) Subse-

quently we evaluate whether a pixel, which contains a combination of outlier and par-

tial background measurements belongs to a anomaly or a standard background class.

The constraints used in the optimisation problem enables class membership evaluation

to be carried out based on a critical band rank which also enables the system designer to

build in prior band knowledge for detecting anomalies. The information may include

sensor band correlation, atmospheric bands and knowledge about band-subsets that

are more useful in identifying metals, paints, etc. Such prior knowledge is useful for
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maximising PD and FARs. This feature is the first of its kind in hyperspectral band

ranking schemes.

4.3 Methodology

In this section, we first setup the problem by proposing a statistical model that de-

scribes Hyperspectral data in terms of outliers and partial backgrounds. We define both

these terms as well as providing criteria and justification for evaluating both these la-

bels. We subsequently use this model to infer anomalies and critical frequency bands,

where the problem is described in-terms of a constrained optimisation formulation.

Our solution comprises of the following features : (1) We resolve for outlier and partial

background labels using Mahalanobis distance and convex relaxation in section 4.3.2.

(2) We estimate the intractable model parameters using EM and show that standard

convergence guarantees still apply in section 4.3.3 (3) We show how the procedure for

determining unknown labels and model parameters is a maximisation of the KL diver-

gence between outlier and partial background models in section 4.3.4 (4) Using these

parameter estimates we again apply a convex relaxation with respect to an indicator

variable to find anomalies and critical bands in section 4.3.5. We consider these un-

known man-made materials as anomalies and the bands that reveal their presence as

critical bands.

4.3.1 Problem Formulation

We first propose a novel representation of hyperspectral data. A hyperspectral image is

three-dimensional data cube which contains signals measured by D spectral frequency

bands across X − Y spatial co-ordinates. Consider a spatial window within the X − Y

co-ordinates containing a total of N pixels determined by an operator, the D bands in

this region can be partitioned into r = 1 . . . R band-subsets containing Q(r) contigu-

ous bands in each subset where each rth band-subset is independent of the remaining
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R − 1.

This is possible due to the spectral correlation properties of the sensor and material

correlation assumptions discussed in the Introduction. The measurement values across

each band-subset can be described by random variable Y(r), that describes the N pixel

measurement values y1(r) . . . yN(r) ∈ RQr in the spatial window across the rth band-

subset. If Y(r) is described by a statistical model, each nth pixel measurement across

the rth band-subset can either be labelled as either an outlier of this model or a partial

background.

Definition 9: An outlier lies on the tails of the probability distribution describing Y(r)

and partial backgrounds lie closer to the mean of this distribution. The term partial is

used since we are referring to pixel measurements across a band subset and not the

full set of bands. Outliers in real world are likely to be partial measurements of rare

background materials in the window, noisy backgrounds or man-made anomalies.

Definition 10: Anomalies are pixels that are sparse in number and contain a number of

spectral measurements that are outliers as depicted in Fig.4.1b. The degree of sparsity

and number of outliers to deem a pixel a anomaly is determined by a likelihood ratio

test between outlier and partial backgrounds across all bands. The P highest ratio val-

ues refer to P anomalies. On the corollary, a pixel that contains predominantly partial

backgrounds is most likely to be natural background such as vegetation.

Definition 11: Critical bands are bands that contain the most number of outliers.

If θ(r) ∈ Θ is a parameter describing Y(r), the likelihood of θ(r) is given by,

L(y1 . . . yR; θ(r)) =
N

∏
n=1

{
K

∑
j=1

πj(r)N (yn; µj(r), Σj(r))τn(r) +

W

∑
w=1

πw(r)N (yn; µw(r), Σw(r))τc
n(r)}, ∀r = 1 . . . R (4.1)
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where, the term after the summation describes the mixture model for outliers and pre-

ceding the summation describing partial backgrounds, θ(r) = {µj/w(r) ∈ RQ(r), Σj/w(r) ∈

RQ(r)×Q(r), πj/w(r) ∈ R∀j = 1 . . . K, w = 1 . . . W} are Gaussian Mixture model pa-

rameters, respectively, describing outlier and partial backgrounds across the rth band-

subset, τn(r) ∈ {0, 1} and its complement denoted τc
n(r) is an indicator vector that

says the nth pixel measurement across the rth band subset is described by either the

outlier or partial background models. Please refer to the introduction for a justifica-

tion of why we consider Gaussian mixtures as appropriate models for hyperspectral

data. The Gaussian mixture parameter estimates as well as the indicator variables are

unknown. The indicator variable is determined by,

τn(r) =

 0 if ∑
Q(r)
d=1 td,n(r) ≤ ρ ∗ Q(r);

1 if ∑
Q(r)
d=1 td,n(r) ≥ ρ ∗ Q(r),

(4.2)

where, ρ is a tolerance threshold empirically determined by the operator prior to the

experiment, tn(r) ∈ {0, 1}Q(r) is a vector weight determined by the following objective,

t̂n(r) = arg max
tn(r)

∑
w
(tn(r) ◦ (yn − µ̂w(r)))TΣ̂−1

w (r)(tn(r) ◦ (yn − µ̂w(r)))

− ∑
j
(tc

n(r)(◦yn − µ̂j(r)))TΣ̂−1
j (r)(tc

n(r) ◦ (yn − µ̂j(r))),

s.t. tn ∈ {0, 1}∀r = 1 . . . R (4.3)

where ˆ denotes known estimates of mixture parameters, ◦ denotes the Hadamard or

element-wise product. The value of tn(r) = 1 when a measurement across a band is

close to the measurement mean and 0 when they are further away, thus providing a

vector indicator of the degree to which a pixel measurement across a band subset is an

outlier or partial background. Thus, the expression in (4.3) measures how well pixel

y(n) is described by the model with respect to each frequency band.

The optimisation problem is equivalent to maximising the Mahalanobis distance be-

tween the outlier and partial background models which is desirable since it reduces

the possibility of false alarms in anomaly detection. The justification for tn(r) being

a vector as opposed to a scalar is that we get a richer metric to work with in-terms

of measuring the sensitivity of each frequency band before labelling it as an outlier

Page 60



Chapter 4 Inferring Appropriate Bands To Find True Anomalies

or partial background. This is especially relevant for atmospheric bands that affect all

pixels. Contribution of known atmospheric bands in determining whether a pixel mea-

surement across a band-subset is an outlier can be reduced without having to remove

the bands altogether in a supervised manner. Thus, a set of S outliers in the rth band-

subset is given by, zÃ
1 (r) . . . zÃ

S (r) ∈ Z(r) ⊂ RQ(r), where Z(r) = τn(r) ◦ Y(r) ∈ RQ(r)

is random variable representing the outliers and τn(r) = 1∀s = 1 . . . S(r) unknown

pixel measurements from a total N. Alternatively the Zc(r) represents all N − S(r)

measurements, zB̃
1 (r) . . . zB̃

N−S(r)(r) ∈ Zc(r) ⊂ RQ(r), that are partial backgrounds. The

parameter estimates for these random variables are unknown. We denote the respec-

tive parameter estimates as θ̂ Ã(r) and θ̂B̃(r), where θ̂(r) = {θ̂ Ã(r), θ̂B̃(r)}∀r = 1 . . . R.

4.3.2 Labelling Outliers and Partial Backgrounds using Convex Re-

laxation

In this section we solve for t̂n(r)∀r = 1 . . . R for the problem stated in (4.3) and propose

an iterative algorithm to label pixel measurements across each rth band subset. We

assume that θ̂(r) = {µj/w(r) ∈ RQ(r), Σj/w(r) ∈ RQ(r)×Q(r), πj/w ∈ R∀j = 1 . . . K, w =

1 . . . W} have been found in a separate step.

Solving for vector tn(r) from the objective stated in (4.3) is an intractable problem since

the co-ordinates of tn(r) are correlated spectrally which means the value of a single

co-ordinate in tn is dependant on the values of Q(r)− 1 remaining co-ordinates which

means there are a total of ( Q(r)
Q(r)−1) × . . . (Q(r)

1 ) × R × N calculations for each window

of pixels. If total number of pixels, N is in the order of thousands and if R and Q(r)

are large, combinatorial strategies of evaluating membership become computationally

intractable for an entire scene which can have up to hundred thousand pixels. There-

fore, we relax the constraints and solve the problem using convex optimisation, where

tn(r) ∈ [0, 1]Q(r) is a convex in equality and the objective is a quadratic function of

tn(r) which is concave. Both these factors mean, a solution to the problem via convex

optimisation can be found [15] through semi-definite programming or interior point
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(a) (b)

Figure 4.1. a) Proposed algorithm simultaneously identifies critical band-subsets which reveal the

presence of anomalies. Outlier (O) and partial backgrounds (PB) measurements are

first identified across R band-subsets. The diagram on the right shows P < N anomaly

pixels (A) that produce the greatest KL divergence between PB and O distributions

using a subset of bands from a critical band rank. b) The graphical model describes

the generative process for each r-th band-subset which contains Q(r) bands. Indicator

variable T(r) indicates the membership of a spectral sample from the r-th band-subset to

outlier, Z(r) and partial background Z(r)c subsets. The full circles are random variables

whilst the square plates around the circles indicate number of measurements, bands or

components of the variable in the circle whilst dotted circles represent parameters that

are non-random variables. A measurement window contain a maximum of P anomalies

where anomalous pixels exceed P + 1 thresholds. Both anomalies and critical bands

are derived from convex matrix Φ which is restricted by inequality constraints λ1, λ2.

ZA
n , ZB

n are binary matrices that indicate membership of the nth pixel to anomaly and

background groups.

methods. The revised objective is given by,

t̂n(r) = arg max
tn(r)

∑
w
(tn(r) ◦ (yn − µ̂w(r)))TΣ̂−1

w (r)(tn(r) ◦ (yn − µ̂w(r)))

− ∑
j
(tc

n(r) ◦ (yn − µ̂j(r)))TΣ̂−1
j (r)(tc

n(r) ◦ (yn − µ̂j(r))),

s.t. tn ∈ [0, 1]∀r = 1 . . . R (4.4)
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The idea is to alternate between finding the parameters θ̂(r) and tn(r)∀n = 1 . . . N for

each rth band-subset.

1. Assume all measurements, y1(r) . . . uN(r) across each rth band subset are partial

backgrounds. Estimate θ̂B̃(l)(r)∀k = 1 . . . K fixed number of components, where

l denotes the lth iteration of the algorithm. However, assume a fixed proportion

of these measurements are outliers according to the likelihood score and estimate

θ̂ Ã(l)(r).

2. Using parameter estimates θ̂l(r) estimate, tn(r) from (4.4) ∀n = 1 . . . N pixel mea-

surements.

3. Solve for τn(r)∀n = 1 . . . N from (4.2) and compute membership of pixel mea-

surement to the outlier Z(r) or partial background class Zc(r)

4. Solve for θ̂l+1(r) using newly labelled measurements from the previous step.

5. Repeat steps 2 − 4, l = 1 . . . L̃ times or until ∑s ts(r)∀s = 1 . . . S(r) pixel measure-

ments is maximum.

6. Repeat steps 1 − 5∀r = 1 . . . R band-subsets

Note that we do not repeat these steps until the likelihood is maximum since the de-

sirable scenario is for tight clusters, that is when the outliers and partial backgrounds

are as close as possible to the component means which results in a small variance. This

does not correspond to a high likelihood value, since the likelihood is greater when the

model tries to explain all measurements. Nonetheless, since we repeatedly switch be-

tween estimating the partial background and the outlier models, there is convergence

in the combined likelihood of both models which further justifies the use of a relax-

ation approach on likelihood.

In section 4.3.3, we obtain maximum likelihood estimates for ϕ̂, where, {ϕ̂ = θ̂(1) . . . θ̂(R)}

are the parameter estimates for R band-subsets, where ϕ̂ parameterises the selected

window of pixels. This is denoted by random variable Y ∈ RD with D bands.
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4.3.3 Maximum Likelihood Estimation of Gaussian Mixture Band-

Subsets

We seek the maximum likelihood estimates of ϕ̂ to establish a sense of optimality for

parameters describing the scene. In this section we show how maximum likelihood

guarantees are attained as well as stating the equations to derive the parameter esti-

mates. We assume that the sets Z(r), Zc(r) are derived from a previous step and fixed

throughout the parameter estimation process.

Parameter estimation in Gaussian mixture models cannot be performed analytically

but only iteratively, if membership of data to Gaussian components in the model is

unknown. We refer to such datasets as un-categorised. The model parameters of-

ten fail to converge to an asymptotic value [24] if parameter complexity is high as is

the case with high-dimensional hyperspectral data. This phenomena is addressed by

Fessler and Hero in [24], who reduce the data into smaller partitions when the mea-

surement space is i.i.d. The chosen subset is smaller, less-informative and is modified

in-between EM iterations. The authors demonstrate that analytic convergence of like-

lihood is achieved in-spite of a modification to measurement the space as long as the

chosen partitioned subset adheres to certain conditions.

From chapter 3, if Ȳ represents all pixel measurements described by Y and a partitioned

subset of measurements described by ZS ⊂ Ȳ are independent, the SAGE condition

states that the probability of the entire measurement space Y is given by the product of

conditional of Y given ZS and the probability of ZS,

PY = PY|ZS(; θS̃)PZ(; θS) (4.5)

where, θS is a parameter estimate characterising ZS measurements, θS̃ represents the

parameterisations of the remaining measurements in Ȳ. Its worth re-emphasising that

the condition only holds true as long as measurements in ZS and Y are independent. In

this chapter, we restrict the choice of ZS to represent either the r-th partial background

Page 64



Chapter 4 Inferring Appropriate Bands To Find True Anomalies

or outlier measurements, assuming that the labels are known, where ZS is a permissi-

ble subset since yn∀n = 1 . . . N pixels are are i.i.d, and enable partitioning within the

band-subset and the partition between the r-th band-subset and the remaining R − 1

band-subsets are independent. Therefore, θS = θ̂ ∈ {θ̂ Ã, θ̂B̃}. Partitioning within a

band-subset was not carried out in Chapter 2.

We now state the likelihood equation describing all measurements in Y and an EM

algorithm to estimate θ̂(r) for any r-th band-subset. The likelihood of ϕ given the

measurement space Y is given by the product of likelihoods,

L(y1 . . . yN; ϕ) = L(y1(r) . . . yS(r)(r); θS)× L(y1(r′ ̸= r) . . . yN(r′ ̸= r); θS̃), (4.6)

where, r′ ̸= r refers to the remaining R − 1 band subsets, the parameter ϕ characterises

all measurement values described by Y. We maximise the likelihood in equation (4.6),

w.r.t to θS which means the latter term after the product can be ignored. We have,

arg max
θS∈Θ

log(L(y1(r) . . . yN(R); θS)L(y1(r′ ̸= r) . . . yN(r′ ̸= r)θS̃)) ≡

arg max
θS∈Θ

log(L(y1(r) . . . yN(R); θS)), (4.7)

which, is the maximisation performed in the standard EM. We alternate the measure-

ment subsets ZS between outlier and partial background in-between EM iterations in

each r-th band-subset for all band-subsets. If ZS = zÃ
1 (r) . . . zÃ

S (r), the likelihood of

θ̂ Ã(r) is given by,

L(y1(r) . . . yN(R); θS) = L(Z(r); θ̂ Ã(r)) =
S(r)

∏
s=1

W

∑
w=1

π Ã
w (r)N (zÃ

s (r)|µÃ
w(r), ΣÃ

w(r)) (4.8)

If we knew which component in the mixture each measurement came from, then an-

alytic maximisation of (4.8) is straightforward because the log likelihood function is

Gaussian. This defines the so-called complete data - the measurements augmented by

the knowledge of which component of the mixture each measurement comes from. ,

the complete data likelihood of θ̂ Ã(r) is given by,

Lc(Z(r); θ̂ Ã(r)) =
S(r)

∏
s=1

W

∏
w=1

π Ã
w (r)

vw,s(r)N (zÃ
s (r)|µÃ

w(r), ΣÃ
w(r))

vw,s(r) (4.9)
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where vw,s(r) ∈ {0, 1} and represents the membership of the s-th sample to the wth

component in the r-th band-subset. The complete data log-likelihood (neglecting con-

stant terms not dependent of the parameters and assuming that πw(r) > 0) is thus,

log(Lc(Z(r); θ̂ Ã(r))) = ℓc(θ(r)Ã) =
S(r)

∑
s=1

W

∑
w=1

vw,s(r) . . .(
log πw(r)− 1/2

(
(zÃ

s (r)− µw(r))TΣ−1
w (r)(zÃ

s (r)− µw(r))
))

(4.10)

Since the membership of V is unknown the expected value of V is computed before

estimating θ(r)Ã. This forms the iterative EM algorithm which consists of two steps.

For the mth iteration, the E step involves computing the conditional expectation of

ℓc(θ Ã(r)) given measurements zÃ
s (r) and parameter estimates from the previous itera-

tion θ Ã(m−1)(r). The expected value of V is denoted by

E
{

V(m)
w,s (r)|zÃ

1 (r), . . . , zÃ
S(r)(r), θ̂ Ã(m−1)(r)

}
and it is straightforward to show [20] that,

E
{

V(m)
w,s (r)|zÃ

1 (r), . . . , zÃ
S(r)(r), θ̂ Ã(m−1)(r)

}
= p(m)

w,s (r) =

π̂
(m−1)
w (r) ∏

S(r)
s=1 N (zÃ

s (r);µ̂
(m−1)
w (r),Σ̂(m−1)

w (r))

∑W
w=1 π̂

(m−1)
w (r) ∏

S(r)
s=1 N (zÃ

s (r);µ̂
(m−1)
w (r),Σ̂(m−1)

w (r))
. (4.11)

The M step computes maximising argument for each m-th estimate of the expected

complete log-likelihood,

E
{
ℓc(θ̂

Ã(m)(r))|zÃ
1 (r), . . . , zÃ

S(r)(r), θ Ã(m−1)(r)
}
=

W

∑
w=1

S(r)

∑
s=1

p(m)
w,s (r) log π̂

(m−1)
w (r)− p(m)

w,s (r)
2

×

(zÃ
s (r)− µ̂

(m−1)
w (r))TΣ̂−1(m−1)

w (r)(zÃ
s (r)− µ̂

(m−1)
w (r)). (4.12)

The m+1-th parameter update is given by

π̂
(m+1)
w (r) =

1
S(r)

S(r)

∑
s=1

p(m)
w,s (r), µ̂

(m+1)
w (r) =

∑
S(r)
s=1 p(m)

w,s (r)zÃ
s (r)

∑
S(r)
s=1 p(m)

w,s (r)

Σ̂(m+1)
w (r) =

1
S(r)

S(r)

∑
s=1

W

∑
w=1

p(m)
w,s (r)AAT (4.13)

where, A = (zÃ
s (r) − µ̂

(m+1)
w (r)). These two steps are repeated using the estimates

(4.13) as the values of the parameters in (4.11) for the next iteration. It is well-known

that the expected-complete log-likelihood in (4.12) increases monotonically until a local
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maximum is found. So, now we have a complete description of set {Z(r), V}. Similar

update equations are applied to partial backgrounds, where samples from Zc(r) rather

than Z(r) and θS = θ̂B̃(r), with K Gaussian components instead of W.

4.3.4 A Kullback-Leibler Divergence for Maximising Partially La-

belled Gaussian Mixtures

In this subsection we show that the algorithm for determining outlier and partial back-

ground distributions listed in section 4.3.2 is equivalent to maximising the Kullback-

Leibler divergence between these distributions. This provides a sense of optimality to

these distributions.

Consider the expected log likelihood in equation (4.12). This expression can be param-

eterised as

E
{
ℓc(θ̂

Ã(m)(r))|τ1(r) ◦ y1(r), . . . , τN ◦ yN(r), θ Ã(m−1)(r)
}
=

W

∑
w=1

N

∑
n=1

p(m)
w,n (r) log π̂

(m−1)
w (r)− p(m)

w,n (r)
2

×

(τn(r) ◦ yn(r)− µ̂
(m−1)
w (r))TΣ̂−1(m−1)

w (r)(τn(r) ◦ yn(r)− µ̂
(m−1)
w (r)). (4.14)

where the N values of τn(r) are known. Since τn(r) = ∑
Q(r)
d td,n(r), we can say that

maximising the difference between the expected complete outlier and partial back-

ground likelihoods with respect to τn is proportional to maximising the objective in

(4.4). By the monoticity property of expectations, the objective is equivalent to

E
{
ℓc(yn(r); θ̂ Ã(r), tn(r))

}
− E

{
ℓc(yn(r); θ̂B̃(r), tc

n(r))
}

= E
{
ℓc(yn(r); θ̂ Ã(r), tn(r))− ℓc(yn(r); θ̂B̃(r), tc

n(r))
}

= E
{

log L(yn(r); θ̂ Ã(r), tn(r))− log L(yn(r); θ̂B̃(r), tc
n(r))

}
= E

{
log

L(yn(r); θ̂ Ã(r), tn(r))
L(yn(r); θ̂B̃(r), tc

n(r))

}
= D(P(yn; θ̂ Ã(r), tn(r))||P(yn; θ̂B̃(r), tc

n(r))) (4.15)

where, P(yn; θ̂ Ã(r), tn(r)) and P(yn; θ̂B̃, tc
n(r))) are respectively the outlier and partial

background probability distributions of the nth pixel measurement from the rth band
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subset. The distributions are parameterised by the indicator vector tn instead of τn due

to the proportionality established above. D() denotes the Kull-back Leibler divergence

due to the expectation and log-likelihoods. Maximising the Mahalanobis distance be-

tween measurements described by fully-categorised Gaussian Mixtures is proportional

to maximising the Kullback Leibler divergence with respect to outlier and partial back-

ground models for un-categorised Gaussian Mixtures.

For scalable solutions we consider optimising for all N samples without any iterative

means. Maximising the expression in (4.15) is equivalent to the following,

T̂(r)(m+1) = arg min
T(r)

tr
W

∑
w=1

(Σ̂− 1
2 (m)

w T(r) ◦ (Y(r)− ⃗̂µ
Ã(m)
w ))TΣ̂− 1

2 (m)
w T(r) ◦ (Y(r)− ⃗̂µ

Ã(m)
w )

− 1
2

K

∑
j=1

(Σ̂− 1
2 (m)

j T(r)c ◦ (Y(r)− ⃗̂µ
B̃(m)
j ))TΣ̂− 1

2 (m)
j T(r)c ◦ (Y(r)− ⃗̂µ

B̃(m)
j )

s.t T(r) ∈ [0, 1]Q(r)×N (4.16)

where, T(r) ∈ [0, 1]Q(r)×N indicator matrix, Y(r) represents all N measurements from

the r-th band-subset and ⃗̂µ represents N copies of the mean. A larger value of T(r)

results in the minimisation of the expression, where the complement, T(r)c minimises

the objective further and thus maximises the divergence. This improves the certainty

in membership, where values of T(r) are either maximum or minimum subject to a

good fit of the model being maintained.

The equation in (4.16) contains the trace of two terms, let ∑w AT
w Aw represent the first

expression before the addition operator and ∑j BT
j Bj represents the second term. Since

the trace of a square is equivalent to the square of the Frobenius norm and the triangle

in-equality, we have,

tr(∑
w

AT
w Aw + ∑

j
BT

j Bj) =

∥∥∥∥∥∑
w

Aw

∥∥∥∥∥
2

F

+

∥∥∥∥∥∑
j

Bj

∥∥∥∥∥
2

F

=

∥∥∥∥∥∑
w

Aw + ∑
j

Bj

∥∥∥∥∥
2

F

≤
∥∥∥∥∥∑

w
Aw

∥∥∥∥∥
2

F

+

∥∥∥∥∥∑
j

Bj

∥∥∥∥∥
2

F

(4.17)
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We use this lower-bound to simplify the optimisation and thus maximise the following

expression,

T̂(m+1) = arg max
T(r)

−∥
W

∑
w=1

Σ̂− 1
2 (m)

w (r)T(r) ◦ (Y(r)− ⃗̂µ
Ã(m)
w (r))

T
Σ̂− 1

2 (m)
w (r)T(r) ◦

(Y(r)− ⃗̂µ
Ã(m)
w (r)) +

K

∑
j=1

Σ̂− 1
2 (m)

j (r)Tc(r) ◦ (Y(r)− ⃗̂µ
B̃(m)
j (r))

T
◦

Σ̂− 1
2 (m)

j (r)Tc(r)(Y(r)− ⃗̂µ
B̃(m)
j (r))∥2

F (4.18)

Finding a closed from estimate of T(r) from the above expression is difficult [15] and

hence, we consider convex optimisation methods to solve the problem. The stated

objective is concave since the negative of a Frobenius norm is convex with respect to

the measurements. Since T(r) is also bounded by a convex inequality the solution can

be found through iterative convex optimisation methods. We use the CVX toolbox by

Grant et. al. [47] to solve the problem.

4.3.5 Anomaly Detection and Band Ranking Using Convex Relax-

ation

In this subsection, we shift our attention to finding anomalies and critical bands once

we have the maximum likelihood estimates, θ̂(r) = θ̂ Ã(r), θ̂B̃(r)∀r = 1 . . . R after Mr

iterations ∀r = 1 . . . R band-subsets. If random variable Y ∈ RD represents the pixel

measurements y1 . . . yN across all R independent band-subsets, the statistical model

describing Y is defined by the following hypotheses,

H0 : y1 . . . yN ∼
K

∑
k=1

π̃kN (yn; θ̂0
k , Ψc)

H1 : y1 . . . yN ∼
W

∑
w=1

π̃wN (yn; θ̂1
w, Ψ), (4.19)

where, θ̂0,1
k/w = {µ̃k/w ∈ RD, Σ̃k/w ∈ RD×D, π̃k/w ∈ [0, 1]∀k = 1 . . . K∀w = 1 . . . W} and

Ψ ∈ [0, 1]D×N matrix with vectors [ψ1 . . . ψN ] plays a similar role as tn did previously

where each dth element of the nth pixel indicates whether the measurement is a mem-

ber of outlier or partial background. Since the R band subsets are independent, each
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element of the Gaussian mixture component mean is the estimated mean across each

rth band-subset, thus µ̃k,/w = [µ̂k/w(1) . . . µ̂k/w(R)]T. Similarly each Gaussian com-

ponent covariance is block-diagonal and consists of the estimated covariances from

R band-subsets Σ̃k,/w = diag(Σ̂k/w(1) . . . Σ̂k/w(R)). We use approximated values for

Gaussian component proportions, π̃k/w, where we compute the average value of the

kth and wth Gaussian component across all R band-subsets.

If η(Y; ϕ̂, Ψ) = ∏N
n=1(

H1
H0
) represents the likelihood ratio, an optimisation problem is

setup to determine whether each pixel is an anomaly or a background,

Ψ∗ = arg max
ψ

η(Y, θ̂, Ψ)

s.t λ1 <= ∑
d

∑
n

Ψd,n <= λ2, Ψd,n ∈ [0, 1] (4.20)

where, the indicator matrices are represented by Ψ, Ψ∗ ∈ [0, 1]D×N. Let,

αn = ∑
d

Ψ∗
d,n, βd = ∑

n
Ψ∗

n (4.21)

Summing the rows of αn indicates whether the nth pixel is an anomaly, whilst summing

the columns of βd indicates whether the dth band is a critical band. The lower bound

λ1 ensures a pixel with a few outliers is not considered an anomaly and similarly, the

upper-bound λ2 ensures that a pixel with many outliers is simply a noisy or dead pixel.

The exact values for these are empirically determined and can evaluated using training

data prior to on-board processing where they remain fixed. Thus, the likelihood of any

pixel yn being a anomaly is dependant on the size of α, which reflects the number of

outlier measurements in each pixel,

P(yn ∈ Z(r)) =
1 if α > α0

0 otherwise

∀n = 1 . . . N pixels, where α ∈ RN contains N values and α0 refers to the P+ 1th largest

value of α, P denotes the maximum number of anomalies we expect to find within a

window. It can be set based on how conservative the practitioner wishes to be with the

FAR or PD. In experiments conducted, P ∈ [1, 10]. This means we expect no more than

P = 10 anomalies per window, where there are N ∈ [200, 289] pixels in each window.
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Under this formulation, the values of αn need not necessarily be evaluated over all D

bands but across a subset M of which which we consider the L highest values of βn

across the M bands. Thus, L ⊂ M ⊂ D. In the experiments conducted M, L were

restricted to a maximum of M = 60 and L = 20 bands respectively.

Thus, it can be seen that the technique can be used to fix a false alarm rate for each

window, through the setting of P, but at the cost of missing anomalies. The setting

of M is optional and can be carried out if the practitioners wishes to use some prior

knowledge about the anomalies, sensor or scene itself. The L most critical bands pro-

vides a quantification of band utility with respect to PD and FAR.

A summary of the entire algorithm is provided below,

Steps:

1. Let ZS = Ȳ, where Q(r) is set by the user ∀r = 1 . . . R.

2. Estimate θ̂B̃(m+1)(r) for l iterations using (4.13).

3. Calculate (4.12) for each n-th sample.

4. Let zÃ
1 (r) . . . zÃ

S (r) consists of samples with the Sr smallest scores.

5. Estimate θ̂ Ã(m+1)(r)|ZS = zÃ
1 (r) . . . zÃ

S (r) for l iterations from (4.13).

6. Estimate T(m+1) using equations, (4.18), (4.2).

7. Repeat steps 2-6 until likelihood value in equation ∑ T(m+1) converges or after

m = 1 . . . M̃ iterations.

8. Estimate ψ∗, α, β to find anomalies and critical bands, using (4.20), (4.21). If any

prior band knowledge is available, such as regions of potential contrast, such as

those in experiment B, apply constraints across only those bands.

9. Set λ1, λ2 according to empirical experimentation based on prior knowledge of

possible materials in the scene. Refer to section for further details on how these

values were obtained for the experiments conducted.
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10. Set P, M, L depending on tolerance to false alarms.

4.4 Experiments

4.4.1 Experiment A: Simulated Gaussian Mixture data

In this experiment we create a synthetic dataset with outliers spanning M ⊂ D critical

bands. We attempt to test the capacity of the proposed method in identifying anoma-

lies as well as critical bands. Prior knowledge of critical bands and anomalies are sub-

sequently used to illustrate performance. Experiments are repeated e = 1 . . . E times,

where each eth dataset consists of N × R independent samples drawn from R indepen-

dent Gaussian Mixtures. The Q(r) dimensional r-th band-subset consist either entirely

of partial backgrounds or outliers that are drawn independently from K = 2 and W = 2

component Gaussian Mixtures, respectively. For every eth simulation and r-th band-

subset, partial background and outlier means and co-variances are varied randomly,

but the component weights are fixed for both experiments. Outliers are randomly gen-

erated Me times for every eth simulation. Since we are interested in cases where only a

subset of bands vary significantly, an upper bound is placed on M for all E simulations

and possible number of outlier in each critical band is also fixed to a maximum of 10.

Values for thresholds τ in equation (4.2) are set to a value of 0.95. The upper and lower

bounds of the inequality constraints in equation (4.21) are fixed to λ1 = 100, λ2 = 300

for all E simulations for a total of N = 200 pixels, where M ∈ [9, 21] are the range of

bands that contain outliers out of a total of D = 30 bands, with Q(r) = 3 ∀r = 1 . . . R.

The total possible number of anomalies for each eth simulation are fixed to P = 10,

on the assumption that there are no more than 5 percent of pixels in the window that

are anomalies. We evaluate PD and FAR for P = 10 anomalies and evaluate L = 10

critical bands to check whether specific outlier measurements were artificially placed

in these bands. Please refer to table 4.2 for a summary of the experiment parameters

and Fig. 4.2 for visualisation of input data. The number of critical bands identified

are compared with the actual band-subsets that contain outliers. The experiment is

repeated for E = 1000 simulations. Initial values for each model component is random
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Figure 4.2. Experiment A: a) Subset of backgrounds (blue) and all true anomalies (red) detected

for the least difficult scenario considered where there are 7/10 band-subsets that contain

outliers. b)Arbitrary backgrounds (blue) and all true anomalies (red) detected for the

tougher case where there are 4/10 band-subsets that contain outliers

for the mean and co-variance but fixed for each Gaussian component prior through-

out all simulations. The best probability of detection and lowest FAR achieved out of

ten different initialisation conditions were chosen for each eth simulation. Results are

also expressed as a function of the cumulative sum of Cauchy-Schwarz distance [48]

between outlier and partial background distributions across E = 1000 simulations. We

show the PD vs. FAR for all M cases. Error bars indicate the maximum and minimum

probability of detection at these thresholds across E simulations. Refer to Fig. 4.3 for

results of Experiment A.

4.4.2 Experiment B: Real Hyperspectral Data

In this section we test the efficacy of the proposed algorithm with real Hyperspectral

data. The dataset was collected by the Rochester Institute of Technology (RIT) using a

HyMAP sensor with 126 bands collected over Cooke City, Montana, USA in 2006 [49],

[16]. The airborne sensor was flown at height of 1.4 km from the ground and yields a

ground spatial resolution of 3m per pixel. The dataset is publicly available including

ground-truth information and can be accessed at (http://dirsapps.cis.rit.edu/blindtest/).
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Table 4.1. Experiment B: Anomaly Details

Anomaly Code Anomaly Type No. of Anomalies Pixel Resolution

F1 Red Cotton Cloth 9 3m x 3m

F2 Yellow Nylon 9 3m x 3m

F3a, F3b Blue Cotton 9,9 1m x 1m, 2m x 2m

F4a, F4b Red Nylon 9,9 1m x 1m, 2m x 2m

True anomaly details can be found in table 4.1. We examine the critical bands inferred

whilst detecting anomalies, F1, F2, F3, F4, from a total of 10000 pixels. This subset of

pixels in the RIT dataset was chosen such that it is inclusive of varying backgrounds,

forest, grass and soil as well as known anomalies. The problem is to examine the

bands inferred in the detection of these anomalies at varying PD and FARs. We fix

the window-size to N = 289 pixels and apply the window sequentially until we reach

10000 pixels, Fig. 4.4 illustrates the difficulty of the problem. We set the number of

bands in each rth band-subset, to Q(r) = 10 for all R band-subsets, taking into ac-

count the maximum spectral overlap of the HyMAP sensor [50] i.e. 10 bands is also

sufficient for the convergence of the parameters given the number of samples consid-

ered in the window. For the experiment conducted, τ = 0.5 in (4.2) across known

atmospheric bands enabled convergence of likelihood across these bands, where set-

ting it to a higher value meant that global convergence of outlier and background

parameters was never reached and resulted in an infeasible solution to the optimi-

sation problem in (4.20). The atmospheric band-subsets correspond to R = 6 which

contains bands 61 − 70, τ = 0.95 across the remaining band subsets accounting for

some band noise which may affect estimation performance. Prior knowledge regard-

ing the spectral regions of contrast provides a means of reducing FAR and is incorpo-

rated into the optimisation problem in (4.20). The first summation in the in-equality

constraint is restricted to a particular band range. We add two unique constraints,

for band ranges 10 − 30, 70 − 90, which are maintained throughout the entire experi-

ment. These regions were empirically determined from visual inspection as regions

of potential contrast, refer to Fig. 4.4. Two penalties are effectively applied due to

the constraints, hence if the indicator Td,r,n is equal to 1 contiguously across some or
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Table 4.2. Experiments A,B: Parameter Summary (* Parameter setting for Atmospheric Bands)

Exp. Q(r) τ R α0; P=10,10 β
′
; L=10,20 λ1, λ2 Prior Bands

A 3 0.95 10 α11 β
′
1 . . . β

′
10 100, 300 -

B 10 0.95 / *0.5 12 α11 β
′
1 . . . β

′
20 400, 1500 10-30, 70-90

Table 4.3. Critical Bands, True Anomaly Detection Summary

Anom. Code Inferred Critical Bands PD (FAR < 0.012)

F1 22-44 1.0

F2 20-30, 61-62 0.778

F3 70-80, 64, 66-69 1.0

F4 6-33, 110-115 0.278

all of these regions, the possibility of the pixel containing a anomaly is more likely.

The inference of a band rank provides the exact wavelengths that are critical to detec-

tion of these anomalies and are quantified according to certain FARs and PD. Hence,

the upper and lower bounds in (4.20) are adjusted from the previous experiment to

λ1 = 400, λ2 = 1500 due to the increase in window size and size of Q(r), through a

manual process across a window consisting of a known set of anomalies. If the resul-

tant inference of bands across a certain window corresponds to a low rank of either

bands 10 − 30 or 70 − 90, the presence of a anomaly in the window is unlikely. On the

corollary, results show that if the bands inferred do not fall within the region of po-

tential contrast, the FAR is likely to be high. For experiment B we set P = 10, L = 20,

where the aim was to maximise PD assuming that there are no more than 10 anomalies

per window. For evaluating anomalies the threshold values correspond to summing

the rows, αn = ∑m ϕ∗
m,n ∈ R∀n = 1 . . . N evaluated across the pre-specified band range,

M. Subsequently, the threshold values used to evaluate the presence of critical bands

correspond to summing the columns across N pixels, βm = ∑n ϕ∗
m,n ∈ R∀m = 1 . . . M.

The ROC curves are shown in Fig. 4.5. Inferred critical bands are provided in table 4.3.

Bands are shown in the order in which they were ranked.
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4.5 Discussion

It is important to note that all false alarms occur locally since we have used a window-

based technique which maybe more acceptable from a surveillance perspective. Fur-

thermore, a rank and window-based technique to determine anomalies also implicitly

provides a method to fix the false-alarm rate which is advantageous. Receiver Opera-

tor Characteristic (ROC) curves from the RIT test image indicate the difficulty (as can

be expected) in finding sub-pixel anomalies at low false-alarm rates. The critical band

ranks obtained especially for F1, F2, F3 in experiment B confirm the utility of contigu-

ously placed bands in hyperspectral sensor design since they reveal these anomalies.

Results obtained from the detection of F4 suggest that bands that fall outside the pre-

selected list of bands are likely to contribute to a greater number of false alarms. This

not only motivates the notion of scene-dependant hyperspectral measurement across

critical bands but also highlights the value of measuring prior band utility (specified by

the variable M) for anomaly detection. The process of constraint addition accommo-

dates for multiple types of anomalies as indicated by the different bands used to detect

F4, F3. Prior knowledge of specifying useful bands is achieved through visual inspec-

tion. Although this process does not have any notion of optimality, results indicate

that it was reasonably accurate and perhaps a suitable visual metric can be developed

in subsequent work. Furthermore, the process of adding or selecting the appropriate

bands and constraints does not need to be repeated once it has been conducted for the

combination of scene background and anomaly. Similarly, the values for λ1 and λ2 for

the experiments considered were determined for the simulated data through a process

of trial and error but was fixed throughout the experiment. For the real dataset, the

thresholds were increased appropriately to a value based on window-size and size of

Q(r)∀r = 1 . . . R. Finding optimal values for λ1, λ2 is not necessarily a search problem

since we would like to use the least number of bands to identify the maximum num-

ber of anomalies. Nonetheless, we note that future work shall include empirical testing

to determine the effects of varying λ1, λ2, as well as exploring an adaptive procedure

to determine their exact values that incorporates belief in the number of anomalies in

the scene as well as minimum number of critical bands required for doing so. Results
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from both experiments show that anomaly detection and band subset selection perfor-

mance are not a direct function of D but rather a subset M of appropriate bands. If

the inequality constraints in equation (4.20) are fixed, irrespective of D, performance

is dependant only on the accuracy of the parameter estimates and the extent to which

anomalies vary in terms of distance from the background. Results in experiment A,

show that performance deteriorates as distances and number of bands with artificially

placed outliers reduce. The use of fully Bayesian techniques to infer model parameters

may result in greater accuracy but at the cost of analytic local convergence in likeli-

hood offered by the standard EM approach. We also note that critical bands quoted

in table 4.3 are band numbers and not wavelengths. Further details regarding exact

wavelengths chosen are a subject for future study since the study is a proof-of-concept.

4.6 Conclusion

The technique proposed in the study provides an avenue for simultaneous anomaly

detection and critical band-subset selection. The novelty lies in (1) the proposed gen-

erative model and anomaly inference process, (2) the iterated inference of an indicator

matrix and system parameters for a Gaussian mixture model according to a KL di-

vergence measure whilst maintaining local convergence guarantees using SAGE-EM.

(3) a technique to identify critical bands in surveillance problems using convex op-

timisation as well as detecting low SNR anomalies in hyperspectral data. Anomaly

detection performance is demonstrated through acceptable PD and FARs for multi-

dimensional measurements that vary significantly across a subset of co-ordinates or

critical bands. Band-subset selection accuracy is also measured as a function of dis-

tance between anomaly and background and shows that the accuracy deteriorates as

distance reduces (as is the case with sub-pixel anomalies) but produces acceptable re-

sults when the anomalies vary across a sufficient number of bands. The results moti-

vate the idea of picking and choosing which bands to measure from, based on a com-

bination of prior information and a performance metric using the test data available,

which is pursued in the next chapter.
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Figure 4.3. Experiment A: a) PD vs. FAR for M = 7, 6, 5, 4, 3 anomalous bands-subsets out of

R = 10 total band-subsets. They are represented by red, blue, purple, black and

green curves respectively. Each band-subset consists of Q(r) = 3 bands hence making

the total number of bands equal to 30. Error bars (referred to as SD in the legend)

indicate the accuracy range for E = 1000 simulations. b) Band Ranking performance is

measured according to how many times critical band-subsets that contain unique outliers

were actually chosen. It is represented as a function of the cumulative Cauchy-Schwarz

distances between partial background and outlier distributions and as a function of the

anomalous band subsets is indicated in the legend.
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Figure 4.4. Spectral measurements of anomaly vs background in local window consisting grass, tree

and soil. Green asterix indicates critical bands inferred for each material. Note how the

locations vary. For anomaly, F4, which produced the worst result in terms of PD, 34

bands are required to obtain the result. Critical bands identified for F1 can be validated

visually, whereas the inferred critical bands are not so obvious for the others.
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Band Sparsity for
Compositional Models in

Hyperspectral Imaging

T
HIS chapter deals with the problem of online band selection in

Hyperspectral Imaging. The advent of Adaptive Focal Plane Ar-

rays (AFPAs) [9] enable a sensor array to be electronically tuned

to measure signals across a varying subset of sensor bands for each pixel

gathered. AFPA payloads are also light-weight which make them suitable

for spaceborne imaging where weight restrictions become a consideration.

Thus AFPAs, promise a reduction in power, processing and bandwidth re-

quirements making it suitable for applications such as persistent surveil-

lance. To the authors’ knowledge however, a suitable technique to deter-

mine the subset of bands to cue at each pixel is not yet available. The

proposed algorithm alleviates the need for eigen-decomposition based di-

mensionality reduction schemes that operate in batch mode and rely on the

entire scene being collected before dimensionality reduction takes place.

Given a library of possible scene signatures, we first design a sub-pixel

model and then subsequently measure the influence of each band on abun-

dance estimation performance. Subsequently, we design a recursive algo-

rithm that combines prior band utility and bands used in previous pixels to

estimate the most likely band subset to be cued for each subsequent pixel.

All experiments are conducted on synthetic and real AVIRIS-Cuprite data

used by Mittelman et. al. in [2]. Both abundance and endmember estima-

tion accuracy are better in-term of (Sum- Squared Error) SSE than state-of-

the-art techniques operating in batch-mode.
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5.1 Introduction

In hyperspectral imaging, the signal used to represent each pixel in the scene is a con-

vex combination of a finite set of signals rather than a single unique signal. This is

mainly due to the ground sampling distance (GSD) that can vary anywhere between

one to twenty meters [3], depending on the distance of the sensor to the ground below

and is referred to as spatial resolution. The linear sub-pixel model is represented by,

yn =
K

∑
k=1

gk,nxk,n + wn

s.t. xk,n ∈ [0, 1], c = ∑
k

xk,n = 1 (5.1)

where, yn ∈ RD represents the signal measured across D spectral bands which is the

radiation reflected by the nth spatial location or pixel on ground for n = 1 . . . N total

number of pixels, gk,n ∈ RD∀k = 1 . . . K represents K possible constituents or endmem-

bers, xk,n ∈ [0, 1]K is the abundance or fractional contribution of each constituent signal

and wn represents the additive sensor noise. This model is an instance of a composi-

tional model where each observation under the model does not fall under one unique

class but is a member of K classes. If xk,n, gk,n∀k = 1 . . . K, n = 1 . . . N are treated

as samples of random variables, Xk, Gk described in Chapter 2. This means each pixel

falls under a joint distribution of endmember and abundance, where N samples or pix-

els are independent and identically distributed. A common problem in hyperspectral

imaging is to solve for unknowns gk,n, xk,n∀k, n and is referred to as spectral unmix-

ing and is not restricted to probabilistic treatment of endmember and abundance. In

fact, the spectral unmixing problem can be thought of as resolving a linear system

of equations, where we alternate between estimating gk,n and xk,n∀k, n. If we fix the

values of gk,n∀K and resolve for xk,n, since D > 100 and K << D, the system is over-

determined. The total number of linearly independent equations is restricted to less

than K + 1. The number of rows corresponding to D equations is greater than K un-

known variables that correspond to the abundances in each row. If the sum-to-one

constraint is ignored briefly, this implies that there could either be single, infinite or

no solution depending on the exact number of linearly independent equations which

is unknown. Nonetheless, the natural sum-to-one abundance constraint prevalent in
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sub-pixel HSI data implies the solution for xk,n lies in a K − 1 dimensional convex sub-

space, since D >> K. This has subsequently motivated a plethora of techniques [51]

that seek a mapping of Gk : RD → RK−1∀k = 1 . . . K endmembers, where the trans-

formed K − 1 dimensional basis vectors are independent to one-another. Typically, the

methods are eigen-decomposition methods where the basis vectors correspond to K

principal eigenvectors. Although the mapping enables the practitioner to deal with a

convex subspace and reduces the solution space which improves computational com-

plexity, it removes natural chemistry variations in the data.

Hyperspectral signals are spectrally correlated due to overlap in neighbouring spectral

band responses and also due to chemistry variations across across the infra-red spec-

trum, which also differ for each material. Given these conditions, the signal measured

at each pixel exhibit non-Markovian behaviour, where a band measurement is influ-

enced not only by the value across the previous band but also by whether its a member

of a larger chemical absorption or reflectance feature that encompasses many bands.

The modification of the measurement axes, as is the case eigen-decomposition meth-

ods is intended to remove this correlation structure, which can lead to poor unmixing

performance especially for low Signal-to-noise-Ratio (SNR) materials in surveillance

applications [52]. Furthermore, eigen-decomposition methods also imply batch mode

processing which imply that all pixels have already been gathered by the sensor.

We do not attempt such a mapping in this study, we wish to preserve the natural phys-

ical structure and cue Qn ⊂ D bands to collect measurements across each pixel, where

Qn varies ∀n = 1 . . . N pixels. We hypothesise that not all D spectral measurements

are required for an accurate estimate of the abundance in each pixel. We also assume

that the remaining N − n pixels are yet to be collected. We seek a reasonable method

to select Qn conditional on some prior knowledge of the utility of each band as well

using recursive estimates based on bands used in previous pixels. In this study, we

seek a technique to find Qn∀n = 1 . . . N pixels and carry out online band selection un-

der a novel sub-pixel model where no eigen-decomposition is applied. We assume that
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gk,n, xk,n are samples of random variables, Gk, Xk, that represent measurements which

lie in Gk ∈ RD, X ∈ [0, 1]K−1.

5.1.1 Motivation and Significance

Our primary motivation for online band selection is for Hyperspectral sensors with

Adaptive Focal Plane Arrays (AFPA). AFPA’s [9] are electronically tunable focal plane

that offer an alternative mode of collecting signals than a conventional pushbroom

scanning in a hyperspectral sensor. Rather than collect signals in a mechanical man-

ner across all bands, an AFPA can be electronically tuned to gather signals across

only certain bands and can be adaptively tuned for each pixel gathered. An AFPA

facilitates for cueing of hyperspectral bands which reduces the amount of informa-

tion gathered, reducing computational storage, network throughput and processing

requirements, thus minimising system costs. Moreover, AFPA systems are also com-

pact and lightweight compared their mechanical counterparts which make them more

relevant for spaceborne systems. However, a systematic automated procedure to select

appropriate bands for each pixel observed is not widely documented. It is unknown

on what basis the bands are selected and whether prior scene knowledge is required to

adaptively tune bands. In surveillance applications, it is realistic to assume that some

prior knowledge of possible materials in the scene is available via spectral libraries,

satellite data and/or previous collections over the region. This can have serious im-

plications for sensor design, where measurement collection can be cued across a small

subset of bands out of a large number of available bands in the array based on prior

knowledge and those used across previous pixels. To our knowledge the combination

of prior knowledge and unsupervised recursive band selection are not used in AFPAs.

Moreover, evaluating the utility of a band prior to collection also enables potential

improvement in SNRs for that bands if it is deemed useful for a particular scene type.
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5.1.2 Summary of Work and Contributions

Our overall contribution is the novel sub-pixel model, Gibbs Sampling algorithm for

inferring the abundance and procedure for carrying out recursive band selection in

sub-pixel hyperspectral data. To our knowledge, this is the first instance of such an

algorithm in hyperspectral literature. We briefly provide an overview of the proposed

algorithm and identify novel contributions:

1. A Gaussian Process is used to spectrally approximate prior end-member means

and covariance from a spectral library, where each endmember is drawn from a

Gaussian probability distribution. Posterior update of endmember means and

covariance follow the Kalman Filter update equations after each Gibbs Sampling

iteration. This approach to evaluating endmembers is novel, in terms of sequen-

tial update of means and covariances whilst preserving the physical structure of

the endmembers. Moreover, even when original band information is preserved

as is the case for sparse regression techniques [51], within class-variance infor-

mation of each endmember class is not used unlike our proposed method.

2. Unlike conventional approaches that use truncated Gaussian distributions to rep-

resent the abundance vector, we model the abundance parameter using a Gamma

distribution. The posterior abundance estimates are also Gamma distributed con-

ditioned from a joint Gamma Gaussian model. We apply two unique techniues

to enforce sum-to-one constraints since the Gamma distribution does not pro-

vide sum-to-one constraints on the abundance. In the first method, we use the

Gamma-Dirichelet relation to enable a simple update of the abundance hyperpa-

rameters which improves the sparsity of future abundance candidates. We select

the abundance candidate that provides the maximum likelihood estimate of pixel

parameters from an arbitrary number of Gibbs Sampling iterations. The use of

the Dirichelet-Gamma equivalency for hyperparameter update and modelling of

the abundance estimate using a Gamma distribution is novel. In the second sam-

pling technique, a nonlinear transformation of the abundance random variable is

applied resulting in an implicit enforcement of the sum-to-one constraint. Both

techniques are unique.
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3. The current study does not facilitate the use of large spectral libraries but we

apply the sparsity principle in the number of bands used to estimate the abun-

dance. A Beta process recursively estimates the number of bands required to

estimate the abundance in each pixel for all pixels in the test scene using some

prior knowledge. Whilst we adopt the Gibbs sampler used by Thibaux et. al. in

[29] to construct and sample from the posterior Beta process, this study is the first

instance of such a process being applied to hyperspectral imaging. The base dis-

tribution of the Beta process encodes prior knowledge by measuring the number

of times each band is used to estimate abundance from a training dataset which

contains similar materials. The formulation and application of the stochastic pro-

cess to band selection using sub-pixel mixing criteria is novel.

4. A set of sub-optimal band weights are derived from a convex relaxation pro-

cedure that is formulated to estimate band utility for the base distribution. The

formulation takes into account band correlation which is not pre-specified or con-

strained in any way. The formulation and application of the convex optimisation

problem is also novel.

In section 5.2 we provide an overview of existing unmixing methods that carry out

Bayesian unmixing and highlight where our technique differs. For purposes of clar-

ity for the reader we present the problem in two parts a) sub-pixel mixing b) band

selection. The sub-pixel mixing component is presented in section 5.3, where we in-

troduce our proposed sub-pixel Bayesian model consisting of Gaussian Processes to

capture endmember means and covariance and Gamma distributions to capture abun-

dances. Subsequently, we describe the Gibbs Sampling procedure required to infer

unknown parameters and hyperparameters and derive the posterior probabilities for

endmember and abundance estimates. In section 5.6.1, we introduce a convex relax-

ation approach with training data to estimate the base measure of a stochastic Beta

Process to recursively cue bands for each pixel. In section 5.6 we update our existing

Bayesian model for the test dataset we introduce the Beta process that determines the

number and the exact bands to be used to describe each pixel. In section 5.6.3, we pro-

vide a summary of the proposed Recursive Sparse Band Selection (RSBS) algorithm.
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We conduct simulations with both synthetic and real-data in section 5.7, where the

former is used to benchmark abundance estimation accuracy with state-of-the-art un-

mixing algorithms for comparative purposes and the latter tests show the endmember

reconstruction accuracy with real data. In section 5.8 we discuss design aspects that

are significant to performance. We conclude in section 5.9 with some ideas for future

work.

5.2 Existing Work

In terms of band selection we believe our work is the first of its kind that carries out

an online recursive band selection approach using a sub-pixel model, therefore scope

for comparison does not exist. However, the sub-pixel mixing problem has received

considerable treatment. We provide an overview of existing sub-pixel mixing methods

and then illustrate how the design of our model differs to accommodate for the online

recursive band selection aspect.

Existing approaches can be divided into two categories; (1) those methods that rely

explicitly on training data - to model endmembers Gk∀k = 1 . . . K this includes pure

signals collected and stored in spectral libraries. In this category the nth abundance,

P(Xk = xk,n) is inferred given observation yn and estimates Ĝk = gk,n∀K; and (2)

those that rely on the scene to estimate both gk,n, xk,n. The latter category includes ge-

ometric, and statistical techniques that rely on the entire scene being gathered before

represent endmebers. Regression and sparse coding techniques fall under the former

category, where the reliance is on spectral libraries, which facilitate for online unmix-

ing. Bioucas-Dias et. al. in [51] provide an elaborate account of methods which fall

under both categories. However, both categories have their disadvantages. Methods

that rely on training data suffer from being specific in terms of being localised to certain

sensor instrumentation and also suffer from an inability to handle spectral variability

such as atmospheric noise which is often scene specific [51]. Geometric and statistical

techniques such as Zare et. al in [53] and Nascimento et. al. in [54] pose a heavy com-

putational storage burden and does not facilitate for online processing. The proposed
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technique in this study falls under the former category.

Techniques that fall under the former category are referred to as sparse regression or

sparse coding methods. These techniques are applied to cases where spectral libraries

are quite large i.e. > 100. The term sparse refers to the fact that, there is typically

no more than 10 materials that are present in a single pixel thus zeroing abundance

estimates of the remaining endmembers. Sparse regression methods use raw spectral

training data, where differences in sensor instrumentation, atmospheric conditions and

natural spectral variability of test conditions are not accounted for. These shortcomings

are addressed by sparse coding methods, where posterior estimates of possible spectra

in each pixel is learnt from a spectral library or referred to as a dictionary. We also ap-

ply a sparsity principle in our study but assume that there is a small number of bands

are sufficient to describe the abundance of each pixel. We estimate the posterior of the

dictionary given the pixels but assume the number of endmembers in the dictionary is

small and hence does not require sparsity to be imposed either on the abundance [55]

or the dictionary [56], [57] itself.

Given some prior knowledge of endmembers in the scene, a fully Bayesian model aims

to capture the spectral variation between training data and the scene by computing the

posterior of the endmembers given the pixel measurement and abundance. Eches et. al.

in [58] represent the endmember as a draw from a Gaussian distribution, with known

means derived from the spectral library with diagonal covariance. The variance in

each band is also a random variable and modelled as an inverse Gamma distribution

which provides convenient conjugacy properties during sampling. However, in the

study they do not compute the posterior probability of the endmember given the mea-

surement and therefore it remains fixed throughout the Gibbs Sampling procedure. We

treat the endmember as a draw from a Gaussian but where each endmember mean is

drawn from a Gaussian Process and also re-sampled during each Gibbs Sampling iter-

ation using a Kalman Filter update unlike [58]. Dobigeon et. al. in [59] and Mittelman

et. al. in [2] apply similar priors as Eches et. al. in [58] but use the scene to estimate

endmember means using endmember extraction procedures like Vertex Component
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Analysis [54] which is not relevant for online band selection. Both studies also use

PCA to reduce endmember dimensionality, which does not provide an indication of

useful bands that are required for AFPAs and is hence not pursued in this study.

The abundance posterior in [58] [2] and [59] is a draw from a truncated multivariate

Gaussian where the sum-to-one constraints are enforced through a partial estimate of

the abundance. In this study, we propose two separate techniques to enforce sum-to-

one constraints, where in the first we use the Dirichelet-Gamma equivalency to obtain

posterior abundance estimates that maintain the sum-to-one constraints whilst in the

second we rely on a nonlinear transformation of the abundance random variable to im-

plicity enforce a sum-to-one constraint. Other approaches to estimate the abundance

parameter are optimisation approaches, where the parameter is not a random variable

such as the adaptive Lasso in [55]. Mittelman et. al. in [2] propose a hierarchical ap-

proach and spatial smoothing to estimate sparse abundances. In the proposed method,

abundances are sparsified by propagating group membership probabilities from the

top of a quadrature tree, where the leaves of the tree represent each pixel. Posterior

estimates of the abundances include the multi-layer group membership probabilities

which zero small abundance values. The degree of sparsity achieved is reflected in

abundance estimation accuracy evident in table 5.2 in the Results section.

5.3 Problem Formulation

We analyse the sub-pixel mixing aspect of the proposed model before analysing the

band selection component. The proposed generative model representing the sub-pixel

mixing problem is listed in figure 5.1. In the proposed model, the prior distributions
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Figure 5.1. This directed graphical model represents the generative model used to capture linear

sub-pixel mixing phenomena described in equation (5.1). Random variables (circles) and

hyperparameters (smooth boxes) are unknown and inferred using a Gibbs Sampler. The

lower-case symbols used inside the circles represents samples of those random variables.

Arrows indicate the dependencies between random variables. The exception to this rule

is the pixel yn which is an observation. In this model the kth abundance of the nth pixel

is represented by xk,n and gk,n is the kth endmember that is present in the nth pixel

and sampled from posterior probabilities of random variables Xk, Gk. The endmember

and abundance are conditionally dependant given the measurement at the nth pixel yn.

Hyperparameters αk,n (shape) and βk,n (scale) vary for each nth pixel. In this model, the

measurement at each nth pixel is assumed to be independent of remaining N − 1 pixels.

Indicator matrix Td,n is not a random variable and is iteratively inferred to determine

whether Mn bands are sufficient to describe the pixel. yn. The band selection aspect

of the model is specific to training data and is used to estimate the base distribution of

the Beta process B0.

are described by the following,

P(Gk = gk,n|µk,n, Σk,n) ∼ N (µk,n, Σk,n),

P(Xk = xk,n|αk,n, βk,n) ∼ Ga(αk,n, βk,n),

wn ∼ N (0, R)

σ̃2 ∼ IG(v0, ρ)

α0, β0, βk,n, αk,n,∼ U(.) ∀k = 1 . . . K (5.2)
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where, random variable Pk = cXk ∈ [0, 1] is a scalar transformation whose samples

are denoted by pk,1 . . . pk,n and c = 1
∑k xk,n

, wn ∈ RQn is additive zero-mean inde-

pendent Gaussian noise with a covariance R ∈ RQn×Qn has an inverse-Gamma prior,

µk ∈ RQn , Σk ∈ RQn×Qn∀K, are hyperparameters that represent endmember means and

covariances obtained from a Gaussian Process that takes into account the correlation

across bands, (this is further elaborated in subsection 5.4.1), the abundance estimate

Xk is described by a Gamma distribution represented by Ga(.) and parameterised by

the shape αk,n, and scale βk,n ∈ R parameters. Refer to subsection 5.4.2 for further ex-

planation and justification for using the Gamma distribution. Since P(cXk ≤ pk,n) ≡

P(Xk ≤
pk,n

c ), any sample xk,n =
pk,n

c . The likelihood or joint probability of the proposed

generative model is given by,

P(yn, Xk = xk,n, Gk = gk,n, W = wn, βk,n, αk,n, µk,n, Σk,n∀k) =
K

∏
k=1

P(yn|X̂k = xk,nĜk = gk,n∀k)P(Gk = gk,n|yn, Ĝk′ = gk′,n∀k′, X̂k = xk,n, β̂k,n, α̂k,n∀k) . . .

P(Xk = xk,n|yn, Ĝk = gk,n∀k, X̂k′ = xk′,n∀k′, α̂k,n, β̂k,n∀k) . . .

P(αk,n)P(βk,n)P(Gk = gk,n|µ̂k,n, Σ̂k,n)P(Xk = xk,n|α̂k,n, β̂k,n) (5.3)

where, P(Gk = gk,n|yn, . . . ) and P(Xk = xk,n|xk,n . . . ) refer to the posterior probabil-

ity distributions of the endmember and abundance, where, parameters denoted with

a ˆ refer to parameter estimates stored and inferred ∀k = 1 . . . K, n = 1 . . . N samples,

Ĝk′ = gk′,n, X̂k′ = xk′,n, βk′,n refer to inferred values of all K − 1 instances apart from the

kth. The terms P(Gk = gk,n|µ̂k,n, Σ̂k,n) is initialised using training data and a Gaussian

process, P(Xk = xk,n|α̂k,n, β̂k,n) refers to prior of Xk drawn from a Dirichelet with hyper-

parameters initialised to 1 across all K samples. We derive both posterior probabilities

before stating the Gibbs Sampling steps, including two separate sampling techniques

for the posterior abundance.
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5.4 Background

5.4.1 Representing End-members using Gaussian Processes

Given that the endmember is described by, P(Gk = gk,n) ∼ N (µk,n, Σk,n), Gaussian

processes (GPs) provide a means to estimate the mean and covariance capturing neigh-

bourhood band correlation and also non-Markovian correlation which are both re-

flected in the smoothness of hyperspectral signatures. Furthermore, GPs allow for

differences in sensor types between the spectral library, Φ as well as from the test sen-

sor in the aircraft. If D̃ band wavelengths in a spectral library are denoted by vector,

z = z1 . . . zD̃ and Qn test wavelengths by z∗ = z∗1 . . . z∗Qn
, the Gaussian mean and co-

variance of the kth endmember are given by,

µk,n = γk(z∗, z)[γk(z, z) + σ2
n I]−1 g̃k (5.4)

Σk,n = γk(z∗, z∗)− γT
k (z

∗, z)[γk(z, z) + σ2
n I]−1γT

k (z, z∗), ∀z, z∗∀k = 1 . . . K (5.5)

where, γ is a covariance function and represents the inner product between a pair

of input values, z, z∗, σ2
n I is the diagonal noise for each endmember in the spectral

library denoted g̃k ∈ RD∀k = 1 . . . K . The derivations for the endmember mean and

covariance function γ is provided by Rasmussen et. al. in pp. 19 of [60]. The choice of

the covariance function type or kernel, γ, plays a strong role in abundance estimation

accuracy. We consider the use of the Matern covariance kernel that has traditionally

been used to capture behaviour of geophysical processes [60]. The hyperparameters of

this kernel are used to determine the sensitivity of the function to a spectrally varying

process as well as accounting for spectral variability within the material class between

training and test data. We discuss the choice of the covariance kernel in sec.5.7.

5.4.2 Using Gamma and Dirichelet Distribution to represent Abun-

dance

Given that the endmember is a draw from the Normal distribution and the abundance

has a Gamma prior, the joint probability is a Normal-Gamma distribution. The justifi-

cation for using a Gamma prior is the analaytic tractability it offers with the Gaussian, it
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also allows for an easier hyperparameter update given its relationship to the Dirichelet

distribution. Subsequently the hyperparameter update is used to narrow the search

space of the abundance parameter estimates. Since the Dirichelet distribution implic-

itly enforces sum-to-one constraints. Its usage is advantageous. We briefly describe

how this can be couched into the Gaussian Gamma framework and highlight the ef-

fects of updating the hyperparameters, αk,n, βk,n.

Since pk,n =
xk,n

∑k xk,n
, where P(Xk = xk,n) ∼ Ga(αk,n, βk,n) then for K samples, p1,n . . . pK,n ∼

Dir( α1,n
β1,n

, . . . , αK,n
βK,n

) is represented by a Dirichelet distribution, where ∑k pk,n = 1. The

parameters αk,n, βk,n∀k = 1 . . . K is the normalised set of hyperparameters, that corre-

spond to the shape and scale parameters respectively. The mean of Xk at the nth pixel

is given by E{Xk} =
αk,n
βk,n

and variance by, E{X2
k} =

αk,n
β2

k,n
. Therefore the smaller the

value of αk,n the smaller the scalar mean and variance and more certain the abundance

estimate. If α0 = ∑k
αk,n
βk,n

∀k = 1 . . . K, the Dirichelet abundance mean corresponds to,

E{Pk} =

αk,n
βk,n
α0

and variance by E{P2
k } =

αk,n(α0−
αk,n
βk,n

)

α2
0(α0+1)

, where a reduction in αk,n also trans-

lates to a smaller mean but larger variance increasing the possible number of sample

values for that random variable. Although samples drawn from a Dirichelet can be

described as those from a normalised Gamma, a reduction in hyperparameter αk,n re-

sults in different outputs. We adjust the hyperparameters to reduce the search space for

abundance parameter. In this study we also adjust the hyperparameters and re-sample

from the Dirichelet to penalise and reward reasonable Gamma generated abundances

that fall within a certain threshold. A reduction in hyperparameters or penalty results

in increased uncertainty over an abundance estimate, whereas an increase in hyperpa-

rameters or reward narrows the solution space of that random variable. Sudderth et.

al. in [27] provide a succinct introduction to the Dirichelet distribution. The Dirichelet-

Gamma relation is explored in [61] whilst Fox et. al. in [62] apply this condition to

estimate transition probabilities whilst maintaining conjugacy relations.
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5.5 Posterior Probability Estimates for a Naive Gibbs

Sampler

We model unknown parameters as random variables and perform Bayesian inference

using a Gibbs Sampler. In a Gibbs Sampler, posterior inference of the kth state out of

K possible states of a parameter is computed given the remaining K − 1 states of the

parameter, the pixel measurement and the values of other dependant random variables

in the Bayesian model. When the procedure is iterated across all possible states of a

random variable and across all random variables, for a certain number of Monte-Carlo

iterations the parameter estimates are known to converge to a global maximum [27],

[26]. We derive the posterior probabilities of the kth endmember or abundance given

prior knowledge K − 1 estimates of that parameter as well as all K estimates of the

remaining corresponding parameters.

5.5.1 Estimating the Endmember Posterior

We consider the posterior probability P(Gk = gk,n|yn, . . .) given measurement yn, K − 1

other endmembers of gk′,n∀k′ . . . K − 1 and K estimates of xk,n. Let,

ỹk,n = yn − ∑
k′ ̸=k

gk′,nxk′,n = gk,nxk,n + wn (5.6)

where wn ∼ N (0, R). Given that we are using a Gibbs Sampler to perform inference

and we have linear Gaussian system with additive noise we can improve the estima-

tion accuracy of the endmember mean and variance by using previous estimates of the

same variable. A Kalman Filter update of the estimate of the endmember means and

covariance during the lth Gibbs Sampling iteration is given by,

µ̂
G(l)
k,n = µ̂

G(l−1)
k,n + K(ỹk,n − xk,nµk,n)

Σ̂G(l)
k,n = Σ̂G(l−1)

k,n − K(xk,nΣk,n)

K = Σ̂G(l−1)
k,n xk,n(x2

k,nΣ̂G(l−1)
k,n + R)

−1

P(Gk = gk,n|yn, . . .) ∼ N (µ̂
G(l)
k,n , Σ̂G(l)

k,n ) (5.7)

where, µk,n, Σk,n∀k = 1 . . . K are the original endmember mean and variance obtained

from the Gaussian Process. In Kalman Filter terms xk,n maps the true state estimate
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gk,n into the observed space ỹn. There are many studies that describe the Kalman Filter

update equations, Welch et. al. in [63] provide a concise summary.

5.5.2 Estimating the Abundance Posterior

The true conditional posterior distribution we seek requires joint sampling of parame-

ters from the following distribution,

P(P1 = p1,n . . . PK = pK,n|yn, Ĝk = gk,n, X̂k = xk,n∀k = 1 . . . K) ∼

Dir(
α̃1,n

β̃1,n
. . .

α̃K,n

β̃K,n
)N (yn − ∑

k
gk,nxk,n|0, R) (5.8)

where, pk,n∀k = 1 . . . K is a sparse posterior abundance drawn from the joint Dirichelet-

Gaussian distribution, α̃k,n∀k = . . . K and β̃k,n∀k = . . . K are hyperparameters that sup-

port sparse abundance estimates. Finding a conditional distribution of each kth abun-

dance xk,n∀k = 1 . . . K is intractable for a Gibbs sampler or any of its block variants

since the joint distribution is in-tractable. The tractable Gamma Gaussian form alle-

viates this issue but at the cost of ignoring the sum-to-one constraints. In this study,

we provide two techniques to overcome this issue. The Gibbs Sampler for both the

proposed Unmixing techniques are provided in the subsequent two subsections 5.5.5,

5.5.3 Abundance Sampling - Technique A: Gamma Dirichelet Rela-

tion

When Xk is a Gamma random variable, the conditional posterior probability distri-

bution, P(Xk = xk,n|yn, Ĝk = gk,n∀k, X̂k′ = xk′,n∀k′, αk′,n, βk′,n∀k′) is also Gamma dis-

tributed [64], where,

P(Xk = xk,n|X̂k′ = xk′,n∀k′, Ĝk = gk,n∀k = 1 . . . K, yn) ∼ Ga(α̃k,n/2, β̃k,n/2), ∀k, n (5.9)

where, α̃k,n = α̂k,n + Qn and β̃k,n = β̂k,n + (gk,n − µk,n)
TR−1(gk,n − µk,n), where µk,n ∈

RQn , R ∈ RQn×Qn∀k = 1 . . . K is the prior means from the Gaussian Process and the

measurement noise covariance, respectively. Qn denotes the degrees of freedom. Refer

to the appendix in sec. 5.10 for an immediate proof. At this stage, xk,nR∀k = 1 . . . K
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and sum-to-one constraints do not apply.

We artificially impose a constraint on the posterior abundance estimates via an update

of the posterior Gamma hyperparameters. We penalise posterior abundances that ex-

ceed a certain threshold and reward those abundance values that fill within a certain

range. Experimentally it was found that, when the procedure was carried out across

many iterations, the number of the abundances estimates that sum to an approximate

value of 1 increased in comparison to without the update. The hyperparameter update

is carried out is given by,

α̂k,n =


α̃k,n

2 − c1 iff xk′,n ≥ τ1
α̃k,n

2 + c2 iff xk′,n ≤ τ2
α̃k,n

2 − c3 iff xk′,n < τ3

 (5.10)

The exact values c1, c2, c3 used for the hyperparameter update are discussed in Step 5

of the Gibbs Sampler. In our final step, we re-sample the abundance posterior from the

Dirichelet using the updated hyperparameters, which provides a sparse set of abun-

dance estimates as well as ensuring the sum-to-one constraints are preserved.

P(p1,n, . . . , pK,n) ∼ Dir(
α̂1,n

β1,n
. . .

α̂K,n

βK,n
), ∀k, n (5.11)

Each element of this vector drawn from a Dirichelet distribution is Gamma distributed,

where

P(Xk = pk,n|α̂k,n, β̂k,n) ≡ P(
xk,n

∑k xk,n
|X̂k′ = xk′,n∀k′, Ĝk = gk,n∀k = 1 . . . K, yn)

∼ Ga(α̂k,n, β̂k,n) (5.12)

We propagate the samples values of, the linearly transformed random variable Pk,

pk,n∀k = 1 . . . K, ∀n = 1 . . . N throughout the rest of the chain to ensure that sum-

to-one constraints are preserved. Recursive updates of αk,n and βk,n results in sparse

abundance estimates. The maximum likelihood posterior abundance estimate is se-

lected from a list of estimates as the final solution, where the likelihood value refers to

pixel likelihood given all parameters.
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This procedure can be likened to a Metropolis-Hastings Rejection Sampling scheme,

where the desired distribution is stated in equation (5.8) and the actual distribution is

given by (5.11). However, further work is required to demonstrate that w are indeed

sampling from (5.8). Nonetheless, Samples estimates are drawn from (5.11) and re-

jected until the maximum likelihood solution is achieved and subsequently preserved

and propagated throughout the rest of the chain.

5.5.4 Abundance Sampling - Technique B: Non-Linear Transforma-

tion

Consider the following form,

yn ∼ ∑
k

GkXk + W

∼ ∑k GkXk

∑k Xk
+ W

∼ ∑k′ ̸=k Gk′Xk′ + GkXk

∑k′ ̸=k Xk′ + Xk
+ W (5.13)

If Sk′ = ∑k′ ̸=k Xk′ and Pk =
Xk

Sk′+Xk
. The joint posterior probability can be expressed as,

P(Xk = pk,n, Xk′ ̸=k = xk′,n∀k′, yn, Gk = gk,n∀k = 1 . . . K) =

P(Pk = pk,n)N (yn − pk,ngk,n − (1 − pk,n)(
∑k′ ̸=k xk′,ngk′,n

Sk′
), R). (5.14)

By the law of non-linear transformation of random variables, where samples of pk,n

are drawn according to the following probability distribution, the prior probability

of Pk may be computed using the following equation rather than the Dirichelet used

equation (5.11) in Technique A,

P(Pk = pk,n) ∼ Ga(α̂k,n, β̂k,n)
∂Pk
∂Xk

(5.15)

where the mean µP
k =

α̂k,n β̂k,n
α̂k,n β̂k,n+Sk

and its easy to show the variance is given by σ2P
k =

α̂k,n β̂2
k,n(

Sk
(Sk+µP

k )
2 )

2. In a Monte-Carlo sense α̂k,n, β̂k,n correspond to the hyperparame-

ter values used in the previous Monte-Carlo simulation. Subsequently, the conditional

posterior probability of Xk is computed from a Gamma distribution according to con-

ditions stated in the appendix in sec. 5.10, and is given by,

P(Xk = pk,n|Xk′ ̸=k = xk′,n∀k′, Pk = pk,n, yn, Gk = gk,n∀k = 1 . . . K) ∼ Ga(α̃k,n, β̃k,n)(5.16)
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where, α̃k,n = α0 +Qn, β̃k,n = β̂k,n +(yn − pk,ngk,n − (1− pk,n)(
∑k′ ̸=k xk′ ,ngk′ ,n

S ))TR−1(yn −

pk,ngk,n − (1 − pk,n)(
∑k′ ̸=k xk′ ,ngk′ ,n

Sk′
)).

5.5.5 Gibbs Sampler using Abundance Sampling Technique A

The following steps outline the Gibbs sampling algorithm:

Step 1: Estimate µk,n, Σk,n from a Gaussian process using (5.4) and spectral library Φ

for K possible endmembers in the scene.

Step 2: Sample gk,n using Gaussian parameters from (5.4), and initialise p(l)1,n . . . p(l)K,n

using a uniform Dirichelet distribution, where αk,n = 10, βk,n = 0.5∀k = 1 . . . K. Thus,

P(Gk = g(l)k,n) ∼ N (µk,n, Σk,n), ∀k = 1 . . . K

P(P1 = p(l)1,n, . . . PK = p(l)K,n) ∼ Dir(
10
0.5

. . .
10
0.5

) (5.17)

where, D × D noise covariance R, is initialised to a reasonable value and the value of

βk,n remains fixed throughout the entire experiment.

Step 3: Using equation (5.7), estimate the lth endmember posterior estimate given pre-

vious values of X̂k = x(l−1)
k,n , α̂

(l)
k,n, β̂

(l)
k,n, re-sample g(l)k,n using the updated means and

covariances.

Step 4: Estimate the posterior of the abundance stated in (5.9) and derived in section

5.10, using re-sampled values of g(l)k,n∀k = 1 . . . K from step 3.

Step 5: Update hyperparameter α̂k,n, using posterior estimates of x(l)k,n∀k = 1 . . . K from

step 4,

α̂k,n =


α̃k,n

2 − c1 iff x(l)k′,n ≥ τ1
α̃k,n

2 + c2 iff x(l)k′,n ≤ τ2
α̃k,n

2 − c3 iff x(l)k′,n < τ3

 (5.18)
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where, k′, represents a sum of all values till k′, constants c1 = c2 = c3 = 10, τ1 =

0.8, τ2 = 0.6, τ3 = 0.1. The hyperparameter update reflects prior belief in the content of

each pixel. The probability of higher abundances of a material is considered to be low,

hence we penalise , which reduces the possible abundance values of that material as

evident in the first constraint. Similarly, we believe for mapping problems, a material

if present will exist at proportions greater than c = 0.05. Finally, we believe that the

most likely scenario is for abundances to exist between 0.05 − 0.8, hence we increase

the variance for abundances that fall within this range.

Step 6: Re-sample x(l)k,n according to (5.11) using posterior updates values of α from

Step 4 and estimates of β from Step 2, where,

P(P1 = p(l)k,n, . . . PK = p(l)K,n) ∼ Dir(
α̂
(l)
1,n

β̂1,n
. . .

α̂
(l)
K,n

β̂
(l)
K,n

) (5.19)

Step 7: Using posterior estimates, g(l)k,n in Step 3 and p(l)k,n∀k = 1 . . . K from Step 6, the

posterior noise variance is given by,

σ
2(l)
n ∼ IG(v0 + 1, ρ + 1 + ||yn − ∑

k
gk,n pk,n||) (5.20)

where, parameter values v0 = 20, ρ = 0.1∀n = 1 . . . N. We choose the Inverse Gamma

distribution since it has been successfully applied previously by Eches et. al in [65].

The parameter values were empirically determined to ensure that the noise variance

is not too large. Bernardo et. al in [61] provide further details on the Inverse-Gamma

distribution.

Step 8: Re-estimate µk,n, Σk,n∀k = 1 . . . K

µ̂
(l)
k,n, Σ̂(l)

k,n|gk,n, pk,n∀k = GP(gk,n∀k = 1 . . . K, γ), (5.21)

where, g(l)k,n, x(l)k,n are posterior draws, from steps 3 and 6.
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Step 9: Repeat Steps 2 − 8, for l = 1 . . . L Monte-Carlo iterations. Calculate the likeli-

hood across all l = 1 . . . L iterations,

P(yn, p(l)k,n, g(l)k,n, µ
G(l)
k,n , ΣG(l)

k,n , α̂
(l)
k,n, β̂

(l)
k,n∀k = 1 . . . K) =

Dir(pk,n; α̂
(l)
k,n, β̂

(l)
k,n∀k = 1 . . . K)

K

∏
k=1

N (yn;
K

∑
k=1

g(l)k,n p(l)k,n, R)N (g(l)k,n; µ
G(l)
k,n , Σ̂G(l)

k,n ) (5.22)

Alternatively the first term before the product, can be substituted with a Gamma dis-

tribution with the same hyperparameters and multiplied K times.

Step 10: Identify the abundance estimate, x̂(l)n ∈ [0, 1]K−1, and endmember estimates

g(l)1,n . . . g(l)K,n ∈ RQn×K that produces the maximum likelihood value in (5.22).

5.5.6 Gibbs Sampler using Abundance Sampling Technique B

1. Apply Steps 1-3 according to Technique A.

2. Sample pk,n according to (5.16) ∀k = 1 . . . K.

3. Omit Step 5 and 6 from Technique A and continue with Steps 7 − 10.

5.6 Recursive Band Selection using Beta Processes

Imposing sparsity to have a reduced band representation of each pixel facilitates for

improved throughput, but to have a large proportion of bands consistently used through-

out the scene to collect data is desirable since we can save cost and improve band

Signal-to-Noise-Ratio (SNR) across a smaller subset of bands. Determining the exact

bands as well as the exact number required to describe the contents of each pixel is

still an open problem to be solved in the hyperspectral community. We setup a convex

optimisation problem using training data to estimate a set of band weights to estimate

the base measure of a Beta process. Whilst the base measure provides prior knowledge

regarding the utility of each band for unmixing a particular set of materials, the poste-

rior Beta process encodes the recursive aspect based on bands previously used without
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Figure 5.2. The following graphical model applies to test data where prior band utility is described

by a base measure B0 obtained from training data. Each nth pixel is represented by no

more than Qn ⊂ D total number of bands in the sensor array, where value Qn is drawn

from a Poisson random variable, πn(d) is the posterior band utility which forms the

posterior Beta process that depends on base distribution B0 derived from training data

and prior band labels. Hyperparameters for the Beta process are indicated by ρ1, c. Both

sets of weights are combined in estimating binary random matrix Z = z1(d), . . . zN(d)

which is a result of successive draws from a Bernoulli random variable and forms the

posterior Bernoulli process.

specifying which bands and how many to use. We update the existing sub-pixel model

by introducing a binary matrix Z whose elements zn(d) describe whether the dth band

is useful in describing the nth pixel. The updated model is shown in Fig. 5.2.

5.6.1 Estimating Base Measure using Convex Relaxation

In this section, we estimate the discrete base probability measure B0, which is a band

utility measure that provides prior knowledge of a band’s potential usefulness using

∀n = 1 . . . Nt training pixels. The base measure is subsequently used by a stochastic

Beta Process to carry out recursive online band selection on a test dataset. Band utility

is measured across the training set through a convex optimisation procedure in Steps

11 and 12. Whereas, these two steps are omitted when using the test set and Steps 13

and 14 listed below carry out the recursive procedure. We first describe the convex
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optimisation step to estimate the base measure B0 for a training set.

Step 11: We seek Ms+1 ⊂ D bands that minimise abundance estimation error, where

Ms denotes the M number of bands used to estimate the abundance at the sth iteration

of the algorithm. Ms bands are removed for s = 1 . . . S iterations of Steps 1-10, where

S corresponds to the number of iterations until the inequality stated in (5.24) fails. We

assume that best-case estimate even for pixels which are difficult to describe given the

library, are resolved in a maximum L number of iterations in Steps 1 − 10. We treat

this Step as an outer loop to remove as many bands as possible before the abundance

estimation error exceeds a certain threshold. The reason for removing just Ms bands at

a time has to do with the fact that we do not know the exact number of bands before

we exceed the threshold. The justification behind iterating through Steps 1-10 is that

abundance estimates are likely to change when measurement set describing the end-

members changes in structure.

For the experiments conducted, ξ = 0.1, bands are removed as long as estimation

performance does not suffer beyond this threshold in-comparison to the full-set. The

combinatorial optimisation problem is given by,

T̂Ms+1
n = arg min

TMs
n

∥∥∥TTMs
n (ĝMs

n (x̂Qn − x̂Ms
n ))

∥∥∥ < ξ

s.t. TMs
n ∈ {0, 1},

Ms

∑(d)T̂Ms
n (d) == Ms+1, ∀n = 1 . . . Nt pixels, (5.23)

where, TTMs
n ∈ {0, 1}1×Ms is an indicator vector that denotes the critical bands for un-

mixing performance for each nth pixel, ĝn ∈ RMs×K endmember matrix containing K

Ms band endmembers, x̂Ms
k,n∀k = 1 . . . K is obtained after L iterations of steps 1 − 10

and the value of Ms+1 was set to maximum of Ms − 50 during the initial iterations

and adjusted to Ms − 10 for the latter iterations when ξ > 0.08. The optimisation cri-

teria is Mth
s+1 band subset that minimise the difference in norm between the original

abundance and the Ms band case. The parameter estimates x̂D
n , x̂Ms

n ∈ [0, 1]K×1, ĝn, are

maximum likelihood abundance and endmember estimates obtained from measure-

ments with Qn = D original bands and Qn = Ms < D reduced number of bands, after
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L runs of Steps 1− 10. Online band selection for each of the n = 1 . . . Nt training pixels

is carried out as a function of the accuracy of the abundance estimate.

The problem stated in (5.23) is a combinatorial problem that is difficult to solve since

measurements across certain bands are correlated which means dependency may ex-

ists across an unknown number of contiguous bands. The problem however can be

addressed if we relax the constraints on the indicator variable, TTMs
n . The relaxed opti-

misation problem is given by,

T̂Ms+1
n = arg min

TMs
n

∥∥∥TTMs
n (ĝMs

n (x̂P
n − x̂Ms

n ))
∥∥∥ < ξ

s.t. 0 ≤ TMs
n ≤ 1,

Ms

∑
d=1

T̂Ms
n (d) == Ms+1, ∀n = 1 . . . Nt pixels,. (5.24)

This problem is a convex optimisation problem since the objective, which is a L2 norm,

is convex with respect to the optimisation variable, the in-equality constraints are con-

vex and equality constraints are affine. The problem is addressed in terms of its equiva-

lent dual space via Lagrangian variables and solved using semi-definite programming.

Refer to Chapter 2 and Boyd et. al. in [15] for further details. The final step in the band

selection procedure is given by,

Step 12: Update bands for yn, gk,n∀K, Nt for the s + 1th iteration with,

ys+1
n = T̂Ms+1

n ◦ yMsT
n ,

ĝMs+1
k,n = T̂Ms+1

n ◦ ĝMsT
n

∀n = 1 . . . Nt pixels. (5.25)

We compute the probability of the dth band being useful by counting the number of

times it has been used over all Nt training image pixels. Thus,

B0(d) =
N(d)

Nt
∀d = 1 . . . Qn bands (5.26)

where N(d) = ∑n T̂n(d)∀n = 1 . . . Nt pixels and B0 ∈ [0, 1].
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5.6.2 Beta and Bernoulli Processes

Consider a random measure B on a space Θ ∈ R, where Θ is a random variable and

θn(1), . . . θn(Q) ∼ Θ are Qn samples of Θ. The samples correspond to Qn independent

partitions of the space relevant to the nth pixel. B(θn(1)), . . . B(θn(Q)) are masses as-

signed to independent partitions, if the masses assigned are also independent and do

not sum to 1, the stochastic process is referred to as a Levy process characterised by a

Levy measure, which is a measure on Θ × [0, 1]. A Beta process is a positive Levy pro-

cess, where B ∼ BP(c, B0) whose Levy measure depends on a concentration parameter

c and a fixed discrete measure B0(Θ). B has the form, B = ∑d πn(d)δθn(d), where,

πn(d) ∼ Beta(1, c), θ(d) ∼ B0(Θ) is a draw from the discrete base measure B0(Θ) and

B represents the probability mass associated at each location θn(d).

Consider a Poisson process whose base measure is given by ν(θ, π) =

cπ−1(1 − π)(c−1)B0(Θ), where Θ, π are finite and c is uniform across all Θ. Such a

process is also used to generate a probability mass for θ(d) × πn(d). It is shown by

Thibaux et. al. in [29] that expectation of this process is finite if B0 is finite for both

discrete and continuous cases. If Θ is finite and fixed, this implies that there is a finite

possible number of probabilities that will result from repeated draws of the Beta pro-

cess and represents the Bernoulli distribution drawn from independent subsets. The

Bernoulli process is a conjugate of the Beta process and is denoted by Z|B ∼ BeP(B)

for n = 1 . . . N draws of B, where values of Z are represented by zn ∈ {0, 1}D. Each

row of Z constitutes a binary vector, zn, with Qn number of ones.

For this problem, θn(d) represents the maximum likelihood estimates of the nth pixel

across each dth band representing posterior parameter estimates, where,

θn(d) = {ĝk,n(d), xk,n(d), πk,n(d)∀k = 1 . . . K} represents the endmember measurement

values across the dth band, x̂k,n(d)∀k = 1 . . . K} is uniform across Qn bands and πn(d)

is the probability that the dth band is useful. Due to neighbouring band correlation,

typically the number of independent partitions is less than the total number of bands,

Qn < D∀n = 1 . . . N pixels. Given that we want to estimate the most useful bands for
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each pixel, we seek the posterior Beta process that provides the most likely bands for

each subsequent pixel according to bands chosen to represent previous pixels as well as

those bands with a large probability mass as per the base measure. We follow Thibaux

et. al’s [29] algorithm who construct the posterior Beta process as sum of independent

Beta Processes, where,

B̂n = B̂n−1 +
Qn

∑
d=1

πn(d)δθn(d) (5.27)

where, B = ∑n B̂n, πn(d) ∼ Beta(1, c + n − 1) and Qn is the number of bands chosen to

represent the nth pixel. The algorithm continues to propose a series of steps to generate

the posterior Beta process given by,

B|Z1...N ∼ BP(c + n,
c

c + n
B0 +

1
c + n

N

∑
n=1

Zn) (5.28)

where by using the independence property of Beta process and induction, this is equiv-

alent to the following steps,

Step 13: Estimating the posterior Beta process, B

1. Sample Qn ∼ Poi( cρ1
c+n−1), where ρ1 = ∑d B0(d)

2. Sample Qn new band locations θ(d) according to 1
ρ1

B0

3. Sample the weight, πn(d) ∼ Beta(1, c + n − 1)∀Qn bands.

Step 14: Estimating the Bernoulli process, Zn|Z1 . . . Zn−1, B0

Subsequent to computing the Beta processes, bands are included or omitted from the

representation of each pixel, through a Hadamard product between the Bernoulli vari-

able Z and the pixel yn,

ỹn = Zn ◦ yn. (5.29)
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where, we sample Zn+1 according to a Bernoulli process given by,

Zn+1 ∼ BeP(
c

c + n
B0 +

1
c + n

N

∑
n=1

Zn)∀n = 1 . . . N. (5.30)

where, the Bernoulli process is represented as two independent Bernoulli processes,

Zn+1 = U + V, U ∼ BeP( c
c+n B0), V ∼ BeP(∑d

mn(d)
c+n δθn(d)). The latter Bernoulli process

V is equivalent to estimating Qn and identifying new band locations (carried out in

Step 13) hence it is sufficient that we estimate U, where mn(d) represents the number

of times band d is used to represent abundance in 1 . . . n − 1 previous pixels. The

estimation of πn(d) from Step 12 maybe omitted since its not required to estimate Z in

spite of being part of the generative model.

5.6.3 RSBS Algorithm Summary

1. Implement unmixing algorithm using either Technique A or B and steps 11 − 12

using a training dataset with n = 1 . . . Nt pixels, to estimate B0.

2. Apply unmixing using either Technique A or B followed by steps 13, 14 on a test

dataset for n = 1 . . . N pixels.

5.7 Experiments

We conduct two experiments with synthetic and real data. The purpose of these exper-

iments is to show that the RSBS algorithm proposed in this study can do a comparable

job in terms of unmixing performance relative to state-of-the-art algorithms using a

much smaller subset of bands. The performance measures used include sum-squared

error (SSE) for abundance estimates in synthetic data where the original abundance in

each pixel is known and a mean SSE and standard deviation for the end-member recon-

struction accuracy for a test dataset whose endmember ground-truth is well known.

Both unmixing techniques are tested with the synthetic dataset but Technique B is

omitted for the real dataset since it did not perform as favourably as Technique A.
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Abundance estimates for 3 out of 5 materials were more accurate using Technique A

rather than B. Moreover, Technique B required a greater number of Monte-Carlo sim-

ulations to reach a stable solution, hence it was also not used to estimate band weights

using training data.

5.7.1 Experiment A

For the synthetic case, we use the data provided by Mittleman et. al. in [2] to bench-

mark the performance of our proposed method with current state-of-the-art techniques.

We partition the synthetic data into training and test sets applying the convex-relaxation

step to 100 out of 10000 pixels to measure band utility and derive the discrete base

distribution B0 shown in figure 5.3. Subsequently we apply the Beta process to the

test set to carry out recursive band selection and measure the SSE across each pixel to

characterise the abundance estimation performance across all endmembers. The syn-

thetic data consists of upto 5 end-members arbitrarily selected from the USGS spectral

database [1] where abundances of each pixel are randomly drawn [2] from a Dirichelet

distribution where some pixels are represented by just three of these end-members.

Additive Gaussian noise at 10dB Signal-to-Noise Ratio (SNR) was added to each pixel.

We assume knowledge of the five possible end-members from the spectral library that

can be present in any pixel and do not rely on end-member extraction techniques such

as VCA [66] used by Mittelman et. al. in [2] to represent our initial end-members. Ta-

ble 5.1 shows the minimum SSE of three existing algorithms, VCA (Vertex Component

Analysis) , BLU (Bayesian Linear Unmixing) [59] and SCU (Spectral Constrained Un-

mixing) [2] as well as our proposed approach. The abundance SSE results show that

overall SSE is lower than VCA , BLU and SCU algorithm. Performance across end-

members are also lower in SSE mean and variance.

For the Beta process, we apply a concentration parameter c = 1 and ρ1 = 15 which

were fixed throughout the experiment on the basis that we wish to consider a large

number of new bands but also apply a large weight to the bands used in previous pix-

els due to scene homogeneity. Figure 5.3 shows the prior or base distribution of the
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Beta process. Fig. 5.5 shows the posterior Beta process at 50, 100, 1000, 10000 pixels.

Figure 5.7.2 shows the bands used at those particular pixel locations. The bands cho-

sen are not always contiguous but are neighbours which implies that band correlation

may not be a significant factor for unmixing performance, but shape information from

absorption features maybe useful. There are no more than 24 bands used to describe

each pixel in the entire synthetic image.

For the training set, using Rasmussen et. al.’s GPML toolbox used in [60], we specify a

type 1 Gaussian process Matern kernel with a standard deviation of 0.1 and likelihood

parameter to 30. This ensures that the function captures small absorption features even

if the signal is non-smooth. The ground-truth data was down-sampled to 200 bands

according to procedure proposed by Mittleman et. al. in [2], which were subsequently

normalised to values between band numbers 1 and 224 using a linear mapping. The

use of these widely spaced values as inputs to the Gaussian Process relative to original

wavelengths ensures that the function is not over-sensitive and ignores drastic changes

in spectra due to atmospheric noise. To accommodate for unknown noise sources and

spectral variability, the likelihood value is adjusted to 0.8 and standard deviation to 5.

The former change ensures a smoother function less sensitive to sporadic changes in

the signal whilst lowering the likelihood parameter ensures that the function does not

over-fit the training data.

5.7.2 Experiment B

We assume knowledge of the potential materials in the scene and obtain ground-

truth signatures (Alunite, Montmollonite, Sphene and Kaolinite) from the 2006 USGS

database [1], removing bands 330− 360 through visual inspection on evidence of noisy

absorption features. We down-sample AVIRIS-Cuprite dataset to 189 bands, eliminat-

ing atmospheric absorption and low SNR bands 1 − 2, 110 − 120, 151 − 170, 222 − 224

[2]. Like the synthetic case we create some training data with these signatures using the

same procedure and estimate a base distribution describing prior band utility. We use

the openly available 80 × 80 sub-image used by Mittelman et.al. [2] with added 10dB
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Gaussian noise, to estimate the end-member extraction accuracy in terms of SSE mean.

The mean is computed over all 6400 pixels and compared with the SSE mean com-

puted by Mittelman et. al. for SCU, VCA and BLU across 20 different initialisations.

The posterior endmember estimates are more accurate in terms of SSE than existing

methods across all end-members. Figure 5.8 shows the difference between posterior

and ground-truth endmembers used for an arbitrarily chosen pixel. In Fig. 5.8 a)

although endmember estimates are not smooth they accurately capture the shape of

the original endmember, which results in better endmember estimation accuracy than

methods compared.

Figure 5.7 shows the abundance maps across four minerals. The abundance maps in a

broad sense are well-matched with prominent regions in the visual image. In a broad

sense the segmentation of material classes are quite distinct and match-up well to the

visual image in fig. 5.7(a). Furthermore, the degree of sparsity is evident in the high

abundances of certain materials and low values for the remainder at the same location.

In fig. 5.7(a), the unique pink off-white region in the original image at top-left hand cor-

ner has a high abundance of 0.7 in fig. 5.7(e). In the same figure, the diagonal regions

between locations {30, 32} and {15, 15} matches the distinct white region in-between

the two green from fig. 5.7(a). The green regions have a smaller abundance than the

white. The reverse is evident in fig. 5.7 f), where the green regions have the highest

abundance relative to the rest of the image. The presence of Kaolinite is distinct in fig.

5.7(b), fig. 5.7(c) whilst the distinct brown region at the bottom of fig. 5.7(a) is evident

in fig. 5.7(f). In fig. 5.7 d) parts of the road are visible around co-ordinates {30, 60} to

{70, 10} whilst fig. 5.7 e) the sparsity of Sphene in certain regions is quite evident.

There are no more than 15 bands that are used throughout the entire scene in compari-

son to 24 bands used in the synthetic scene. The variation can be attributed to a larger

difference in prior probabilities between bands greater than 140 to those less than 50

in comparison with Experiment A. This reduces the number of possible new band lo-

cations from which we sample from which results in a more homogenous band set

required for the scene. Increasing the concentration parameter, c and weight, ρ1, can
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Figure 5.3. The figure displays the base probability measure used for the Beta process, B0 in exper-

iment A and experiment B, where the prior probabilities indicate band utility. For both

experiments, bands between 170 − 200 are more useful than the remainder.

Table 5.1. Experiment A: Best-Case Abundance SSE for Synthetic Data: RSBS - Tech. A, noBand-

Sel - Tech. A, B vs SCU, VCA, BLU

Endmem.

No.

VCA BLU SCU noBandSel

- Tech. A

noBandSel

- Tech B.

RSBS -

Tech. A

1 68.28 39.51 14.07 1.71 4.9 2.03

2 108.97 55.14 18.23 4.71 5.35 5.5

3 83.24 18.38 13.28 1.15 2.2 1.19

4 49.13 22.41 9.75 1.30 0.79 1.17

5 67.59 41.15 18.16 1.53 0.738 1.68

account for potentially unknown materials and a non-homogenous scene but at a cost

of using more bands to measure the scene.

5.8 Discussion

Both the abundance estimation accuracy and endmember estimation accuracy is bet-

ter the state-of-the art methods tested using significantly fewer number of bands. The

Beta process can be tuned to use fewer bands, we consider that option as part of future

work. The proposed method involved tuning hyperparameters for both Gaussian and

Beta processes, which can be carried out offline, these hyperparameters have a larger
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Table 5.2. Experiment B: Endmember SSE against USGS ground-truth. Mean and Standard Devi-

ation with added Gaussian Noise at 10dB SNR: RSBS vs SCU, VCA, BLU

SSE Mean - 10dB

Endmem. VCA BLU SCU RSBS -

Tech. A

Kaolin 1.34 1.23 1.02 0.0761

Kaolin 2 1.97 3.15 2.45 0.076

Alunite 11.87 9.97 8.42 0.0759

Mont. 2.59 3.62 2.98 0.0755

Sphene. 3 0.96 1.23 0.0755

SSE Std. Dev.

Endmem. VCA BLU SCU RSBS -

Tech. A

Kaolin. 0.84 0.25 0.26 0.0081

Kaolin. 2 0.3 0.35 0.29 0.0081

Alunite 0.3 0.35 0.29 0.008

Mont. 3.98 1.81 1.45 0.008

Sphene 0.5 0.44 0.34 0.0083

bearing on the result. Computational complexity is an issue with the Naive Gibbs ap-

proach, where L > 100 using both Techniques A and B throughout all experiments.

For scenarios where there are K >> 5 endmembers in the library, L >> 100 signifi-

cantly affecting algorithm performance. Further work is required to device strategies

to reduce the number of Gibbs Sampling iterations. Some alternate approaches include

Rao-Blackwellisation [27] or individual sampling of abundance co-ordinates through

non-linear transformation of the Gamma random variables to enable sum-to-one con-

straints be applied implicitly as was the case in Technique B. Such an approach also

ensures that the sampling occurs from the same Normal-Gamma distribution with-

out the need for any normalisation achieved via the use of the Dirichelet even though
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Figure 5.4. Experiment A a), c): Posterior Beta process measured after 20, 100 pixels, where the

concentration parameter c = 1 and γ = 15. Experiment B b), d): Posterior Beta

process measured after 20, 100 pixels, with the same hyper-parameters. Prior band

utility is captured from the discrete base measures B0 as is evident from the number of

bands chosen after band 100. The small size of c ensures that bands used to describe

previous pixels is captured. The size of the γ value ensures that a sufficient number of

new bands are sampled as evident from bands with a small number of counts.

its unknown whether the same abundance estimation accuracy can be guaranteed es-

pecially when K >> 5. The utility of such a technique in a band selection scenario

such as the one proposed in this paper is questionable due to the computational bur-

den. The technique, however can be developed as a stand-alone abundance estima-

tion technique as part of future work. We also propose to introduce and condition on

a sparsity random variable to reduce computation time and improve accuracy when

there are a large number of possible materials that are present in the scene. Dirichelet
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Figure 5.5. Experiment A a), c): Posterior Beta process measured after 1000, 10000 pixels, where

the concentration parameter c = 1 and γ = 15. Experiment B b), d): Posterior Beta

process measured after 1000, 6400 pixels, with the same hyper-parameters. Prior band

utility is captured from the discrete base measures B0 as is evident from the number of

bands chosen after band 100. The small size of c ensures that bands used to describe

previous pixels is captured. The size of the γ value ensures that a sufficient number of

new bands are sampled as evident from bands with a small number of counts.

processes [27] provide an adequate mechanism to achieve this and enable the selection

of M materials out of K total materials when M << K. The method is also applicable

for surveillance scenarios where one seeks the material phenomenology to justify the

presence of a material. As indicated in previous work [32], the bands used to describe

each pixel can be referred to as critical bands whose locations may indicate the nature

of material present in the pixel [32]. The band utility prior distribution, B0 from both

experiment A and B show a small cluster of neighbourhood bands that are more useful
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Table 5.3. Experiment A: Bands Used at different Pixel Locations

Pixel. No. No. Bands

Used

Bands used

20 20 2, 10, 17, 29, 33, 57, 69, 89, 105,

136, 161, 170, 171, 177, 178, 187,

191, 195, 197, 198

100 22 29, 33, 41, 57, 103, 105, 126, 133,

136, 145, 153, 161, 164, 165, 169,

173, 178, 181, 187, 191, 198, 200

1000 23 8, 17, 33, 41, 55, 57, 60, 75, 102,

105, 125, 140, 145, 153, 158, 165,

178, 181, 187, 188, 191, 198, 200

10000 27 2, 5, 11, 12, 17, 31, 33, 38, 39,

41, 43, 52, 57, 61, 89, 90, 99, 105,

125, 145, 153, 161, 169, 173, 187,

191, 200

than others which is also reflected in the band counts from the posterior Beta process

in figure 5.5. Since this behaviour is not consistent across all bands, it can be said

that sensor band correlation does not play a prominent role in unmixing performance.

However, correlation due to material chemistry seems to have a positive impact that

may contribute to improved unmixing performance. We note that critical bands quoted

in Table 5.3 are band numbers and not wavelengths. Further details regarding exact

wavelengths chosen are a subject for future study since the study is a proof-of-concept.

It was also brought to our attention from a reviewer that the proposed RSBS method

is applicable for any tunable detector in general used in pushbroom sensing which is

more widely used from a surveillance standpoint. This broadens the applicability of

this technique.
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Figure 5.6. a) Experiment A: shows 20, 22, 23, 27 bands used at pixel locations 20, 100 and

1000, 10000. Bands greater than 140 or 1500nm are used consistently across all 4

locations. This is agreeable with the base measure which contains larger probabilities

at these locations. b) Experiment B: Only 10 − 14 bands are used at the four locations

20, 100, 1000, 6400 pixels. Bands greater than 1700 nm are used consistently across

these locations.
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Figure 5.7. Experiment B: Abundance Map of AVIRIS-Cuprite image subset. a) Original Image

(courtesy Mittleman et. al. [2]). b) Kaolnite 1 c) Kaolinite 2 d) Alunite e) Mont-

morollinite f) Sphene
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Figure 5.8. Experiment B: a) Posterior endmember estimates at the first pixel of Kaolinite 1 (blue),

Kaolinite 2 (green), Alunite (red), Montmorillonite (cyan) and Sphene (magenta). The

signatures marked with crosses represent the estimate whilst those without any markers

represent the true value.

5.9 Conclusion

We propose a method to carry out online band selection when the hyperspectral sensor

is carrying an AFPA. The proposed method directly uses unmixing criteria to evalu-

ate the utility of a selected subset of bands. Gaussian processes are used to preserve

the natural variations of endmembers, the Normal-Gamma conjugacy and Dirichelet-

Gamma relation offer a convenient posterior update of the abundance resulting in

sparse abundance estimates and results that are significantly better in abundance and

endmember estimation performance compared to state-of-the art Bayesian techniques.
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Beta processes enable recursive online band selection through prior knowledge of pos-

sible materials and in the scene, where a prior discrete probability describing band util-

ity is evaluated using a convex relaxation approach. The method applied demonstrates

that only a small number of bands are required to achieve comparable unmixing per-

formance as existing algorithms. Further work would entail the inclusion of Dirichelet

processes under the same framework to handle large spectral libraries which handles

scenarios where there is greater uncertainty over the possible endmembers in the scene.

5.10 Appendix

We derive the distribution of the Gamma abundance conditional on the multivari-

ate Gaussian endmember based on Prado et. al.’s treatment in [64]. Since xk,n ∼

Ga(αk,n/2, βk,n/2). The prior distribution is given by,

P(xk,n) =
β

αk,n/2
k,n

2αk,n/2Γ( αk,n
2 )

x
αk,n

2 −1
k,n exp(−xk,nβk,n/2) (5.31)

where, Γ() refers to the gamma function. The conditional distribution of a univari-

ate Gaussian given a univariate Gamma random variable is represented by, g̃|xk,n ∼

N (µ̃, σ̃2x−1
k,n), where g̃, µ, σ2 ∈ R are scalar. Thus, the joint density of xk,n, g̃ is given by,

p(g̃, xk,n) = (
xk,n

2πσ2 )
1/2

exp[
−xk,n(g̃ − µ̃)2

2σ2 ]

×
β

αk,n/2
k,n

2αk,n/2Γ( αk,n
2 )

x
αk,n

2 −1
k,n exp[−xk,nβk,n

2
]

∝ x(
αk,n+1

2 )−1
k,n exp[−xk,n

2
{ (g̃ − µ̃)2

σ2
k,n

+ βk,n}] (5.32)

where, the conditional probability xk,n given g̃,

p(xk,n|g̃) ∝ x(
αk,n+1

2 )−1
k,n exp[−xk,n

2
{ (g̃ − µ̃)2

σ2 + βk,n}]

xk,n|g̃ ∼ Ga(
α̃k,n

2
,

β̃k,n

2
) (5.33)

where, α̃k,n = αk,n + 1 and β̃k,n = βk,n + (g̃ − µ̃)2/σ2. For the multi-variate case, we are

interested in the conditional probability of the abundance given the multivariate Gaus-

sian endmember gk,n. Thus, p(xk,n|gk,n) ∼ G(α̃k,n/2, β̃k,n/2), where P(gk,n|xk,n∀k, xk′,n∀k′, yn) ∼
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N (µ
G(l)
k,n , ΣG(l)

k,n ). From (5.33) the multivariate hyperparameters, α̃k,n, β̃k,n are given by,

α̃k,n = α̃k,n + Qn,

β̃k,n = βk,n + (gk,n − µk,n)
TΣ−1

k,n(gk,n − µk,n) (5.34)

where Qn is the degrees of freedom, µk,n ∈ RQ
n , Σk,n ∈ RQn×Qn refer to the endmember

mean and covariance from the prior distribution, where, gk,n ∼ N (µ
G(l)
k,n , ΣG(l)

k,n ).
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Chapter 6

Concluding Remarks

T
HIS chapter concludes the thesis by highlighting take home mes-

sages for sensor designers and analysts from results obtained in

previous chapters. The chapter also highlights briefly further

technical work to be completed to enhance the understanding and utility

of the band selection work carried out in this thesis.

Page 123



6.1 Conclusion

6.1 Conclusion

From the work conducted in this thesis it is evident that the band selection problem

is dependent on the broader context for which it is used. If the aim is to improve

model estimation accuracy reducing noise and improving data throughput, the work

conducted in chapter 3 is relevant. The limitations are the prior knowledge required

on the possible number of useful bands and assumption of structured local band cor-

relation from overlapping sensor responses. For surveillance applications, where the

aim might be to find anomalies and isolate critical band wavelengths that reveal the

anomalies’ salient chemical properties, chapter 4 is relevant. The algorithm and results

derived in this chapter demonstrate that unknown subsets of contiguous narrow band

wavelengths contribute the most in detecting anomalies, making these bands critical

and subject to further improvement. The unsupervised nature of this algorithm enable

the reduction of data complexity both spatially and spectrally reducing the processing

and throughput burden on the image analyst. In this chapter we assume a locally cor-

related band structure and use a Gaussian mixture model when there is the possibility

of sub-pixel anomalies which are ideally captured by compositional sub-pixel mod-

els. Finally, in scenarios where band selection is needed to be carried out online and

some prior knowledge of possible target materials in the scene is known, chapter 5 is

relevant. Band selection is carried out online, under a sub-pixel model without any as-

sumptions on the band-correlation structure. The proposed framework also provides

the ability to tune and influence band selection performance prior to data collection

which provides a sense of robustness that is not available under methods proposed in

previous chapters. For the scene tested, results demonstrate that it is the capacity of

the proposed model and algorithm to estimate abundances in each pixel that has the

largest bearing on the accuracy more so than the bands selected. Results indicate that

the work carried out in the last chapter 5 is the way forward both in terms of spectral

unmixing and unsupervised band selection both in terms of computational complexity

in terms of number of bands used and the fact that fewer assumptions are made in the

study than previous chapters. The caveat is that prior knowledge of possible endmem-

bers in the scene is required. Band correlation inherent in the sensor as well as in the

materials observed also does not seem to play a critical role for unmixing performance
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since the bands selected are not necessarily contiguous unlike in 4. This highlights the

importance of contiguous spectral bands for maximising divergence between anomaly

and backgrounds and their lack of importance in blind source separation or un-mixing

problems. Needless to say, this has serious implications for sensor design and reflects

the importance of analysis techniques in sensor design.

6.2 Recommendations on Future Work

1. Dirchelet distributions provide inherent sparsity, through a simple hyperparam-

eter update which results in sparse abundance estimates and is a key contributor

in the abundance estimation accuracy. Studying some of the theoretical proper-

ties of this distribution and deriving update rules for hyperparameters that result

in maximum likelihood estimates of the abundance would speed up algorithm

convergence which is relevant for online applications.

2. Expanding the size of the spectral library is required to make the algorithm in

Chapter 5 more realistic and practical. This can be enabled by applying the work

of [57] who introduce non-parametric Bayesian methods to derive posterior es-

timates of a sparse number of signals from a spectral library that can be used to

describe each pixel. Such a method would enable the use of large spectral library

of signatures representing the possible endmembers in the scene.

3. Eigen-decomposition methods can be used to describe the behaviour of the iter-

ative algorithm used to label measurements as outlier and partial backgrounds

in Chapter 4. Such a technique would enable the description of the changes to

outlier and partial background probability distributions in terms of rotation and

scaling which provides an indicator as to what is occurring during this process.
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