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Abstract

This thesis explores the problem of unsupervised selection of a set of spectral wave-

bands in a hyperspectral sensor for a surveillance task. Selecting a subset of wavebands

for surveillance has the advantage of reducing data throughput and hence network

bandwidth requirements, computational complexity for processing the data and stor-

age requirements in a ground-station. For the sensor designer, Signal-To-Noise Ratio

and other sensor-band improvements can be made on those bands deemed critical for

the surveillance task. In chapters 3 and 4, we propose the use of locally correlated

high-dimensional Gaussian Mixture models to account for band overlap where max-

imum likelihood estimates of the parameters of such a model are provided using the

SAGE-EM (Space Alternating Generalised Expectation Maximisation) algorithm. In

both these chapters convex-relaxation strategies are proposed to handle the combina-

torial complexity of selecting a subset-of bands that are locally correlated and contain

non-Gaussian measurements. However, in chapter 4, we select bands according to

anomaly detection criteria as opposed to modelling estimation accuracy (likelihood) as

done in chapter 3. We breakdown the problem such that any pixel contains band mea-

surements that belong to either an outlier or partial background distribution, where

the distributions diverge across band-subsets in a Kullback-Leibler (KL) divergence

sense. A pixel is deemed as an anomaly if it contains a certain number of outliers. We

identify the bands that contain the most number of contiguous outlier measurements

and also subsequently reveal the presence of anomalies. Finally, in the last chapter

we solve the problem of online band selection for sub-pixel compositional hyperspec-

tral models using a Bayesian approach. Online band-selection enables spectral-band

cueing and automation for adaptive focal plane arrays where not all bands are used

to measure each pixel. We apply beta process models to provide a recursive strat-

egy to select bands based on prior knowledge of their utility as well as bands used in

neighbouring pixels. Band utility is measured through convex-relaxation as the subset

of bands that provides the best abundance estimation accuracy of training data. The
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Abstract

combination of a Gaussian process prior for possible end-members (pure materials) as

well as a Gamma distributions for the abundance, enables efficient posterior sampling

from a joint Normal-Gamma distribution. Furthermore, natural spectral band varia-

tions are retained making the model suitable for band selection, where approximate

sum-to-one constraints are enforced through an intelligent update of the Gamma hy-

perparameters, based on the Dirichelet-Gamma relation. Experiments are conducted

on synthetic Gaussian Mixture data with additive noise (Chapters 3, 4), Rochester In-

stitute of Technology (RIT) Target Detection Test using the HyMAP sensor, (Chapter

4), synthetic sub-pixel data created using USGS spectral database [1] (Chapter 4) and

AVIRIS-Cuprite dataset used by Mittelman et.al. in [2] (Chapter 4).
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