ZINC AND GENOMIC STABILITY

A thesis submitted to the University of Adelaide for the degree of Doctor of Philosophy

Razinah Sharif

School of Medicine,
Faculty of Health Sciences, University of Adelaide
and
CSIRO Food and Nutritional Sciences, Adelaide

TABLE OF CONTENTS

ABSTRACT	viii
DECLARATION	ix
ACKNOWLEDGEMENTS	Х
PRESENTATIONS AND PUBLICATIONS ARISING FROM THE THESIS	xii
LIST OF ABBREVIATIONS	XV
Chapter 1: The Role of Zinc in Genomic Stability	1
1.1 Abstract	3
1.2 Introduction	3
1.2.1 Genomic stability and cancer; the role of nutrition	3
1.2.2 Zinc functions	5
1.3 Zinc deficiency, DNA damage and chromosomal instability	13
1.4 Zinc excess, DNA damage and toxicity	20
1.5 Zinc and telomeres	27
1.6 Knowledge gaps and future directions	26
Chapter 2: Aims, Hypotheses and Models	30
2.1 Aims and hypotheses	31
2.2 Experimental models	31
2.2.1 <i>In vitro</i> model	31
2.2.2 <i>In vivo</i> model	34
Chapter 3: The Effect of Zinc Sulphate and Zinc Carnosine on Genome Sta	bility and
Cytotoxicity in WIL2-NS Lymphoblastoid Cell Line	35
3.1 Abstract	38
3.2 Introduction	39
3.3 Materials and methods	42

	3.3.1 WIL2-NS cell culture	42
	3.3.2 Cell counting using the Coulter Counter	42
	3.3.3 Culture medium	42
	3.3.4 9-day WIL2-NS culture in 24 well plates	44
	3.3.5 Inductively Coupled Plasma Optical Emission Spectrometry (ICPOES) 45
	3.3.6 MTT assay	46
	3.3.7 Alkaline comet assay	46
	3.3.8 CBMN-Cyt assay	47
	3.3.8.1 Scoring criteria	48
	3.3.9 Gamma-ray-irradiation of cells	52
	3.3.10 H ₂ O ₂ treatment of cells	52
	3.3.11 Western blotting	53
	3.3.12 Statistical analysis	55
	3.3.13 Optimization of cell growth for long term culture	56
3.4 Re	sults	57
	3.4.1 Cellular Zinc concentrations	57
	3.4.2 MTT assay	59
	3.4.3 Alkaline comet assay	62
	3.4.4 Effect of Zinc concentration on baseline levels of cytotoxicity	
	and chromosome damage as measured by the CBMN-Cyt assay	63
	3.4.5 Effect of Zinc concentration on γ-radiation induced cytotoxicity	
	and chromosome damage as measured by the CBMN-Cyt assay	67
	3.4.6 Effect of Zinc concentration on H ₂ O ₂ induced cytotoxicity	
	and chromosome damage as measured by the CBMN-Cyt assay	70
	3.4.7 Western blot analysis	74
3.5 Dis	scussion	80

Chapter 4: Zinc Deficiency or Excess within the Physiological Range Increases		
Geno	me Instability, Cytotoxicity, respectively, in Human Oral Keratinocytes	86
4.1 A	bstract	89
4.2 Ir	itroduction	90
4.3 N	laterials and methods	92
	4.3.1 HOK cell culture and study design	92
	4.3.2 Cell counting using the Coulter Counter	93
	4.3.3 Culture medium	93
	4.3.4 10-day HOK culture in 24 well plates	95
	4.3.5 Inductively coupled plasma optical emission spectrometry (ICPOES)	96
	4.3.6 MTT cell growth and viability assay	97
	4.3.7 Alkaline comet assay	97
	4.3.8 CBMN-Cyt assay	98
	4.3.8.1 Scoring criteria	100
	4.3.9 Gamma-ray-irradiation of cells	104
	4.3.10 H ₂ O ₂ treatment of cells	104
	4.3.11 Western blotting	104
	4.3.12 Statistical analysis	107
	4.3.13 Optimization of cell growth for long term culture	108
	4.3.14 Optimization of Cytochalasin B (Cyto B) concentration	109
4.4 R	esults	111
	4.4.1 Cellular Zinc concentrations	111
	4.4.2 Effect of Zinc concentration on cell viability as measured via the	
	MTT assay	114
	4.4.3 Effects of Zinc concentration on DNA strand breaks as measured	
	via the comet assay	116
	4.4.4 Effect of Zinc concentration on baseline levels of cytotoxicity	
	and chromosome damage as measured by the CBMN-Cyt assay	118
	4.4.5 Effect of Zinc concentration on γ-radiation induced cytotoxicity	
	and chromosome damage as measured by the CBMN-Cyt assay	121
	4.4.6 Effect of Zinc concentration on H ₂ O ₂ induced cytotoxicity	

and chromosome damage as measured by the CBMN-Cyt assay	124
4.4.7 Western blot analysis	127
4.4.8 Cytotoxicity and genotoxicity effect of HOK cells in optimal medium	131
4.5 Discussion	134
Chapter 5: Zinc Deficiency Increases Telomere Length and is Associated	with
Increased Telomere Base Damage, DNA Strand Breaks and Chromosomal	
Instability	141
5.1 Abstract	142
5.2 Introduction	143
5.3 Materials and methods	144
5.3.1 WIL2-NS lymphoblastoid cell culture	144
5.3.2 HOK cell culture	144
5.3.3 Isolation of genomic DNA	145
5.3.4 Telomere length assay	145
5.3.4.1 qPCR of DNA for telomere length assay	146
5.3.5 Telomere base damage assay	147
5.3.5.1 Excision of 8oxodG and incision of oligomers at 8oxodG	
sites using FPG	147
5.3.5.2 qPCR of synthetic oligomers and genomic DNA	148
5.3.6 Zinc content of the cells, comet assay and CBMN-Cyt assay	149
5.3.7 Experimental design and statistical analysis	149
5.4 Results	150
5.4.1 Cellular Zinc content	150
5.4.2 Impact of Zinc on telomere length (TL) in WIL2-NS and HOK cells	150
5.4.3 Impact of Zinc on telomere base damage in WIL2-NS and HOK cells	153
5.4.4 Correlation between telomere length, telomere base damage with	
DNA damage biomarkers (tail moment, tail intensity, micronuclei,	
nucleoplasmic bridges and nuclear buds)	154
5.5 Discussion	158

Chapter 6: Genome Health Effect of Zinc Supplement in an Elderly South Australian	
Population with Low Zinc Status	160
6.1 Abstract	162
6.2 Introduction	163
6.3 Materials and methods	165
6.3.1 Screening and recruitment of volunteers	165
6.3.2 Intervention design	166
6.3.3 Nutritional assessment	167
6.3.4 Blood collection and sample preparation	167
6.3.5 Plasma analysis	169
6.3.5.1 Plasma mineral, B12, Folate and Homocysteine analysis	169
6.3.5.2 FRAP analysis	171
6.3.5.3 eSOD assay	173
6.3.6 DNA damage assay	175
6.3.6.1 Cytokinesis Block Micronucleus Cytome (CBMN-Cyt) assay	175
6.3.6.2 Alkaline comet assay	185
6.3.6.3 Isolation of DNA/RNA	186
6.3.6.4 Telomere length	188
6.3.6.5 Telomere base damage	189
6.3.7 Gene expression	191
6.3.7.1 MT1A and ZIP expression	191
6.3.8 Statistical analysis	193
6.4 Results	193
6.4.1 Screening results	193
6.4.2 Characteristics of volunteers	196
6.4.3 Plasma micronutrients: Zinc, Carnosine, Mineral, B12, Folate and	
Homocysteine	196
6.4.4 Antioxidant activity (FRAP and eSOD)	197
6.4.5 DNA damage assay: CBMN-Cyt assay and alkaline comet assay	202
6.4.6 Telomere integrity: Telomere length and telomere base damage	208
6.4.7.7 inc transporter genes: MT1A and 7IP1	210

6.4.8 Correlation between plasma Zinc and other biomarkers measured	
in this study	212
6.4.9 Correlation between other measured biomarkers	212
6.5 Discussion	217
Chapter 7: Conclusions, Knowledge Gaps and Future Directions	224
7.1 Introduction	225
7.2 Zinc and genomic stability: in vitro (WIL2-NS and HOK cells)	
7.3 Zinc and genomic stability: in vivo (Genome health effect of Zinc	
supplementation in an elderly South Australian population with low Zinc status)	227
References	229
APPENDIX: PAPER REPRINTS	

Abstract

Zinc (Zn) is an essential trace element required for both optimal human health and maintaining genomic stability. The main aim of this thesis was to address important knowledge gaps regarding the possible impact of Zn status on genomic stability events in both lymphocytes and epithelial cells using both in vitro and in vivo models. The project also aimed to study the differential impact of Zn Carnosine (ZnC) and Zn Sulphate (ZnSO₄) on genome stability as the former is a newly emerging commercially available supplement renown for its antioxidant capacity. The in vitro studies investigated the effects of ZnSO₄ and ZnC on cell proliferation via MTT assay and DNA damage rates and was measured using both the comet assay and the Cytokinesis-block micronucleus cytome (CBMN-Cyt) assay in the WIL2-NS human lymphoblastoid cell line and HOK cell line. This study also investigated the impact of Zn status on both telomere length and telomere base damage in vitro. An in vivo study was designed to further investigate the effect of Zn supplementation in minimising genome instability events in lymphocytes. An increased intake of Zn may reduce the risk of degenerative diseases but may be toxic if taken in excess. This study aimed to investigate whether taking daily supplements of 20 mg of Zn as Zn Carnosine can improve Zn status, genome stability events and Zn transporter genes in an elderly South Australian cohort characterised by having low plasma Zn levels. In conclusion, the *in vitro* studies suggest that 1) Zn deficiency (0 µM) and high Zn concentrations increase DNA damage; 2) Zn at 4-16 µM is optimal in maintaining genome stability events; 3) Zn at 16-32 µM is optimal in protecting the cell against DNA damage induced by irradiation and hydrogen peroxide challenges; and 4) Zn may play an important role in telomere maintenances. The in vivo study suggests that Zn supplementation may be beneficial in an elderly population with marginal lowered Zn status by raising plasma Zn levels, lowering DNA damage events and modifies Zn transporter gene expression.

Declarations

I, Razinah Sharif certify that this work contains no material which has been accepted

for the award of any other degree or diploma in any university or other tertiary

institution and, to the best of my knowledge and belief, contains no material

previously published or written by another person, except where due reference has

been made in the text.

I give consent for a copy of my thesis when deposited in the University Library, to be

made available for loan and photocopying, subject to the provisions of the Copyright

Act 1968.

The author acknowledges that copyright of published works contained within this

thesis (as listed on page xv) resides with the copyright holders of those works. I also

give permission for the digital version of my thesis to be made available on the web,

via the University's digital research depository, the Library catalogue and also

through web search engines, unless permission has been granted by the University

to restrict access for a period of time.

CSIRO Food and Nutritional Sciences retain the copyright of any subsequent

publications arising from this thesis.

Signatura:	Nate:
Zionallira.	11310,

ix

Acknowledgements

First and foremost, I would like to praise God for everything whilst travelling through this PhD journey. It has been a roller coaster ride and whenever I became stuck or felt unmotivated, God always listened to me and things worked out fine eventually.

Secondly, I would like to thank my amazing supervisors (Prof Michael Fenech, Dr Philip Thomas and Dr Peter Zalewski) for giving me the opportunity to undertake this PhD project and for their guidance through out the study. I would also like to thank Prof Robin Graham and Prof Ross Butler who were initially involved with the project design.

I'm also grateful to all the staff and students at CSIRO Nutrigenomics lab and also to Kylie Lange (CSIRO), Erin Symonds (IMVS), Steve Henderson (CSIRO Waite), Eugene Roscioli (QEH), Rhys Hamon (QEH), Teresa Fowles (Waite campus), Lyndon Palmer (Waite campus), and Nathan O'Callaghan (CSIRO) who have always listened and helped me with some of the experiments and making it a complete story line. I would also like to acknowledge the group of PhD students who shared the pain, sweat and tears (Arnida, Carly, Eva, Sau Lai, Ann, Penny, Kacie, Mansi), you guys are the best bunch! I would really appreciate all the advice, the conversations and all the help. Thanks a million!

In order to complete the biggest part of my PhD project which was the *in vivo* study, I needed to conduct a human trial and I would like to express my gratitude to the staff at the CSIRO clinical trial unit (Julia Weaver, Lyndi Lawson, Rosemary McArthur, Vanessa Courage and Peter Royle) who helped me in completing this study. Thank you so much! On this occasion, I would also like to acknowledge Metagenics Company who provided the pills for the Zinc study without any charges at all. I would also like to thank all the volunteers who completed the study without any provided renumeration. They were willing to participate for the sake of science only. I'm really thankful to them!

I would also like to acknowledge my parents, my housemates (Maisara, Fauziah, and Norhalisa) and my other Malaysian communities for their friendship, support and prayers during the course of my study.

A PhD is always a stressful journey and for this matter, I am really thankful to Fernwood Gym Adelaide City, a place where I can go and ease my stress and a place that I can go whenever I'm having breakdown moments. Special credit to Abby, Rachel, Lou, Tam, Eman, Sandy, Sophie and Katrina for being the best gym buddies and also to Tracey for being my personal trainer.

Last but not least, I would like to acknowledge CSIRO Food and Nutritional Sciences for the funding provided to support all the chemicals needed in my study and also to my employer (Universiti Kebangsaan Malaysia) and Ministry of Higher Education, Malaysia who provided the scholarship (tuition fees and living allowances).

Thank you everyone for all the help and support. This thesis wouldn't be a thesis without all of your support and prayers.

Thank you!

Presentations and Publications arising from the thesis

Abstract/Poster Presentations

- 1. **Sharif, R**., Thomas, P., Zalewski, P., Graham, R. & Fenech, M. The effect of Zinc Sulphate and Zinc Carnosine on cytotoxicity and genotoxicity in the WIL2-NS lymphoblastoid cell line. 19th International Conference on Nutrition. 4-9th October 2009, Bangkok, Thailand.
- 2. **Sharif, R.**, Thomas, P., Zalewski, P., Graham, R. & Fenech, M. The effect of Zinc Sulphate and Zinc Carnosine on cytotoxicity and genotoxicity in the WIL2-NS lymphoblastoid cell line. Australian Science Medical Research 2010. 9-10th June 2010, Adelaide, Australia.
- 3. **Sharif, R**., Thomas, P., Zalewski, P., Graham, R. & Fenech, M. The effect of Zinc Sulphate and Zinc Carnosine on cytotoxicity and genotoxicity in the WIL2-NS lymphoblastoid cell line. Nutrigenomics Symposium, CSIRO. 30th July 2010, Adelaide, Australia.
- 4. **Sharif, R.** Thomas, P. Zalewski, P. and Fenech, M. Zinc deficiency increases genome instability in Human Oral Keratinocytes (HOK). Nutrition in Medicine Conference. 13–15th May 2011, Bondi, Australia.
- 5. **Sharif, R.** Thomas, P. Zalewski, P. and Fenech, M. Zinc deficiency increases genome instability in Human Oral Keratinocytes (HOK). Australian Science Medical Research 2011. 9-10th June 2011, Adelaide, Australia.
- 6. **Sharif, R.** Thomas, P. Zalewski, P. and Fenech, M. Zinc deficiency increases genome instability in Human Oral Keratinocytes (HOK). XI Asian Congress on Nutrition 2011. 13-16th July 2011, Singapore.

- 7. **Sharif, R.** Thomas, P. Zalewski, P. and Fenech, M. Zinc deficiency increases genome instability in Human Oral Keratinocytes (HOK). Postgraduate Research Conference, Faculty of Health Science, University of Adelaide. 25th August 2011, Adelaide, Australia.
- 8. **Sharif, R.** Thomas, P. Zalewski, P. and Fenech, M. The effect of Zinc Sulphate and Zinc Carnosine on cytotoxicity and genotoxicity in the WIL2-NS lymphoblastoid cell line. NSNZ & *NSA* Joint Annual Scientific Meeting. 30th November-2nd December 2011, Queenstown, New Zealand.
- 9. **Sharif, R.** Thomas, P. Zalewski, P. and Fenech, M. Zinc supplementation influences genomic instability biomarkers, antioxidant activity and Zn transporter genes in an elderly Australian population with low Zn status. International Society for Zinc Biology 2012 Conference. 15-19th January 2012, Melbourne, Australia.

Oral Presentations

- 1. Zinc and Genomic Stability. Wednesday Wrap. School of Medicine, University of Adelaide. 16th September 2009.
- 2. Zinc and Genomic Stability. Wednesday Wrap. School of Medicine, University of Adelaide. 14th December 2011.
- 3. Zinc and Genomic Stability. Special Seminar. Genome Stability Laboratory. Yong Loo Lin School of Medicine. National University of Singapore. 11th July 2011.
- 4. The effect of Zinc Sulphate and Zinc Carnosine on genome stability and cytotoxicity in the WIL2-NS lymphoblastoid cell line. International Society for Zinc Biology 2012 Conference. 15-19th January 2012. Melbourne, Australia.

Publications

- 1. **Sharif, R.**, Thomas, P., Zalewski, P., Graham, R. & Fenech, M. (2011) The effect of Zinc Sulphate and Zinc Carnosine on cytotoxicity and genotoxicity in the WIL2-NS lymphoblastoid cell line. *Mutation Research*. **720(1-2)**: 22-33.
- 2. **Sharif, R**., Thomas, P., Zalewski, P. & Fenech, M. (2011) Zinc deficiency or excess within the physiological range increases genome instability and cytotoxicity, respectively, in human oral keratinocyte cells. Genes and Nutrition. In press.
- 3. **Sharif, R**., Thomas, P., Zalewski, P. & Fenech, M. (2011) The role of zinc in genomic stability. Mutation Research. In press.
- 4. O'Callaghan, N., Baack, N., **Sharif, R.**, and Fenech, M. (2011) A qPCR-based assay to quantify oxidized guanine and other FPG-sensitive base lesions within telomeric DNA. Biotechniques. Vol. 51 (6): 403–412.

List of Abbreviations

ACCV Anti Cancer Council of Victoria

AOA Antioxidant Activity
ANOVA Analysis of Variance
AP1 Activator Protein 1

APE Apyrimidinic Endonuclease
ATCC American Type Culture Collection

aTL Absolute Telomere Length
ATM Ataxia Telangiectasia Mutated

ATR Ataxia Telangiectasia and Rad3 Related

ATRIP Ataxia Telangiectasia and Rad3 Related Interacting Protein

AU Arbitrary Unit

BCA Bicinchoninic Acid
BER Base Excision Repair

BN Binucleate
BNed Binucleated

BHMT Betaine-homocysteine-S-methyltranferase

BSA Bovine Serum Albumin

Ca Calcium

CBMN Cyt assay Cytokinesis Block Micronucleus Cytome assay

cDNA Complementary Deoxyribonucleic Acid

CRP C-Reactive Protein

CSIRO Commonwealth Scientific and Industrial Research Organisation

C_T Cycle Threshold

Cu Copper

CuSO₄ Copper Sulphate

Cu/ZnSOD Copper Zinc Superoxide Dismutase

CV Coefficient of Variation

Cyto-B Cytochalasin B

DCF 2'7'-dichlorofluorescein

DCFH 2'7'-dichlorofluorescein hydrochloride

dH₂O Distilled Water

DMSO Dimethyl Sulfoxide

DNA Deoxyribonucleic Acid

DNMT Deoxyribonucleic Acid Methyltransferase

DTT Dithiothreitol

EDTA Ethylenediaminetetraacetic Acid
ELISA Enzyme-linked Immunosorbent Assay
eSOD Erythrocyte Superoxide Dismutase

FapyGua 2,6-diamino-4-hydroxy-5-formamidopyrimidine

FapyAde 4,6-diamino-5-formamidopyrimidine

FBS Foetal Bovine Serum

Fe Iron

FeCl₃.6H₂O Iron Chloride

FFQ Food Frequency Questionnaire

Fpg Formanidopyrimidine-DNA Glycosylase

FRAP Ferric reducing Ability of Plasma

GAPDH Glyceraldehyde 3-Phosphate Dehydrogenase

gDNA Genomic Deoxyribonucleic Acid

H₂O₂ Hydrogen Peroxide

HBSS Hanks Balanced Salt Solution

HCy Homocysteine HCl Hydrochloric Acid

HOK Human Oral Keratinocyte

HUMN HUman MicroNucleus/ The International Collaborative Project

on Micronucleus Frequency in Human Populations

H₂O Water

ICPOES Inductively Coupled Plasma Optical Emission Spectrometry

IL-6 Interleukin-6

IMVS Institute of Medical and Veterinary Science

IR Irradiated

K Potassium Kb Kilobases

MDA Malondialdehyde

Mg Magnesium

MgCl₂ Magnesium Chloride

MNi Micronuclei
MNed Micronucleated

MnSOD Manganese Superoxide Dismutase

mRNA Messenger Ribonucleic Acid

MT Metallothionein
MT1A Metallothionein-1A
MTR Methionine Synthase

MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide

MZnD Marginal Zinc Deficiency

Na Sodium

NaCl Sodium Chloride
NaF Sodium Fluoride
NaOH Sodium Hydroxide
NBud Nuclear Bud

NDI Nuclear Division Index

NFKB Nuclear Factor kappa-light-chain-enhancer of activated B cells

NI Non Irradiated NK Natural Killer

NPB Nucleoplasmic Bridge

NO Nitric Oxide

Na₄P₂O₇.10H₂O Sodium Pyrophosphate Na₃VO₄ Sodium Orthovanadate

8-OHdG 8-Hydroxy-2-deoxyguanosine

8-oxoG 8-Oxoguanine

8-oxodG 8-Oxo-2'-deoxyguanosine
OGG1 8-Oxoguanine DNA glycosylase
OKM Oral Keratinocyte Medium

OKGS Oral Keratinocyte Growth Supplement

P Phosphorus

p53 p53 Tumor Suppressor genes
PARP Poly (ADP-ribose) Polymerase
PBL Peripheral Blood Lymphocyte
PBS Phosphate Buffered Saline
PCR Polymerase Chain Reaction

PHA Phytohemagglutinin

PMSF Phenylmethanesulfonylfluoride

Q-FISH Quantitative Fluorescent In Situ Hybridization

RDA Recommended Daily Allowance
RDI Recommended Daily Intake

Ref1 Redox Factor-1

RPMI Roswell Park Memorial Institute

ROS Reactive Oxygen Species

RT Real Time

RT Room Temperature

RTPCR Real Time Polymerase Chain Reaction

S Sulphur

SAM S-adenosyl Methionine

SE Standard Error
SD Standard Deviation
SDS Sodium Dodecyl Sulfate

SDS-PAGE Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis

SNP Single Nucleotide Polymorphism

SOD Superoxide Dismutase

TANK1 Human Tankyrase 1

TBAR Thiobarbituric Acid Reaction
TBD Telomere Base Damage

TI Tail Intensity
TL Telomere Length
TM Tail Moment

TPEN N,N,N'N'-tetrakis(-)[2-pyridylmethyl]-ethylenediamine

TPTZ Tripyridyl Triazine

WAS Waite Analytical Service
WHO World Health Organization

WIL2-NS Lymphoblastoid Cell Line

WST-1 2-(4-lodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-

tetrazolium monosodium salt

Zn Zinc

ZnC
 Zinc Carnosine
 ZnD
 Zinc Deficiency
 ZnAD
 Zinc Adequate
 ZnSO₄
 Zinc Sulphate

ZIP1 ZIP1 human Zinc transporter gene

γ-H2AX genes coding for Histone 2A (phosphorylated)