Genetics and Functional Characterization of GATA2, a Novel Cancer Gene in Familial Leukaemia

CHAN ENG CHONG

Bachelor of Science (Hons.) (Biochemistry) Master of Science (Biochemistry)

A thesis submitted for the Degree of Doctor of Philosophy

School of Medicine (Discipline of Medicine) Faculty of Health Sciences University of Adelaide, South Australia. July 2013

TABLE OF CONTENTS

ABSTRACT	vii
STATEMENT	ix
ACKNOWLEDGMENTS	xi
LIST OF FIGURES	xiii
LIST OF TABLES	XV
LIST OF ABBREVIATIONS	xvi
Chapter 1: Literature Review	
1.1 Introduction to Haematopoiesis	1
1.1.1 Ontology of the Haematopoietic System	2
1.1.2 Transcription Factors in Myelopoiesis1.1.2.1 Haematopoietic Stem Cell Transcription Factors1.1.2.2 Common Myeloid Progenitors and Granulocyte Macrophage	5 6
Progenitors 1.1.2.3 Megakaryocyte Erythroid Progenitors	9 9
1.2 Leukaemias and Other Myeloid Malignancies	10
1.2.1 Classification of Acute Myeloid Leukaemia1.2.1.1 French-American-British System (FAB)1.2.1.2 WHO Classification	10 11 12
1.2.2 The Genetics of Myeloid Malignancies1.2.2.1 Intermediate and Small Genetic Lesions1.2.2.2 Large Genetic Lesions	13 14 15
 1.2.3 Acute Myeloid Leukaemia and Myeloid Neoplasms 1.2.3.1 <i>De novo</i> AML 1.2.3.2 Myelodysplastics Syndromes 1.2.3.3 Myeloproliferative Neoplasms 	16 17 18 19
1.2.4 Pure Familial Leukaemia 1.2.4.1 <i>RUNX1</i> Associated Familial Platelet Disorder with Propensity to AML	21 21

1.2.4.2 CEBPA Associated Leukaemia1.2.4.3 GATA2 Associated Myeloid Malignancies	21 22
1.2.5 Hereditary Syndromes with Predisposition to Leukaemia	22
1.2.5.1 Emberger Syndrome	24
1.2.5.2 MonoMAC/DCML Deficiency Syndrome	24
1.3 Introduction to GATA Family of Transcription Factors	25
1.3.1 GATA Family Members	26
1.3.1.1 GATA1	26
1.3.1.2 GATA2	28
1.3.1.3 GATA3	31
1.3.2 GATA1 and 2 Related Diseases	31
1.4 Aim of the Study	33
1.5 References	34
Chapter 2: Materials and Methods	
2.1 Introduction	49
2.2 General Methods	50
2.2.1 DNA Isolation	50
2.2.2 Total RNA Isolation	50
2.2.3 DNA or RNA Purification	50
2.2.4 Restriction Enzyme Digestion	50
2.2.5 DNA Dephosphorylation and Cloning	51
2.2.6 Routine PCR	51
2.2.7 Colony PCR	52
2.2.8 Site-Directed Mutagenesis 2.2.9 Tissue Culture	52 53
2.2.9 Tissue Culture 2.2.10 Lipofectamine-Mediated Transfection	53
2.2.10 Exported and Transfection 2.2.11 Whole Cell Lysate Preparation	53
2.2.12 Nuclear Lysate Preparation	54
2.3 Chapter 3 Methods	54
2.4 Chapter 4 Methods	54
2.4.1 Generation of GATA2 Mutant Constructs	54
2.4.2 Luciferase Reporter Assay	54
2.4.3 Homology Modelling of GATA2 WT and Mutants	55
2.4.4 Verification of GATA2 Theoretical Model	55

2.4.5 Generation of FLAG- <i>GATA2</i> Expression Constructs 2.4.6 Generation of Inducible FLAG- <i>GATA2</i> Dual Lentiviral Expression Constructs	55 s 55
2.4.7 Generation of Regulatable FLAG-GATA2 Expressing HL-60 Cell Lines	56
2.4.8 Co-Immunoprecipitation	56
2.4.9 Generation of <i>Gata2</i> Retrovirus Constructs	56
2.4.10 Generation of Retrovirus	57
2.4.11 Animal Handling and Bone Marrow Cell Extraction	57
2.4.12 Retrovirus Transduction and Colony forming Unit Assay	57
2.5 Chapter 5 Methods	58
2.5.1 Generation of <i>Gata2</i> Mutant Constructs	58
2.5.2 Immunofluorescence Staining	58
2.5.3 Generation of <i>PEE</i> GATA Mutated Site Luciferase Reporter Plasmid	58
2.6 Media and Solutions	58
2.7 References	61
	01
Chapter 3: Novel GATA2 Mutations in Familial MDS/AML	
3.1 Summary	62
3.2 Notes	63
3.3 Permission to Reuse Published Materials	64
3.4 The Published Article	64
3.5 Additional Results	73
3.6 General Discussion	76
3.6.1 GATA2 is a New Predisposition Gene for MDS and AML	76
3.6.2 Role of GATA2 in Haematological Disease	77
3.7 Conclusion	79
3.8 References	79
Chapter 4: Characterization of Novel GATA2 Mutations Associated with Haematological Malignancies, Immunodeficiency Syndrome and Lymphoedema	
4.1 Introduction	81
4.2 Results	83

4.2.1 GATA2 Mutants Appropriately Localize to the Nucleus	83
4.2.2 GATA2 Mutants Reduce Transactivation	84
4.2.3 GATA2 Mutants Reduce DNA Binding Potential	86
4.2.4 Homology and Structural Modelling of GATA2 and Mutants	88
4.2.5 GATA2 Mutants Alter Protein-Protein Interaction	91
4.2.6 GATA2 Mutants Allow Myeloid Progenitor Differentiation Ex Vivo	93
4.2.7 GATA2 Mutants Do Not Confer Self-Renewal Capacity Ex Vivo	95
4.3 Discussion	98
4.3.1 Substitution of Conserved Residues in GATA2 Disrupt Its Function	98
4.3.2 GATA2 Mutants Cause Aberrant Protein Partnerships	100
4.3.3 GATA2 Mutants Display Loss-of-Function in Haematopoietic Cells	100
4.3.4 T354M is a Potent Mutation Affecting Myeloid Differentiation	102
4.4 Conclusion	105
4.5 Recommendations for Future Work	105
4.6 References	107

Chapter 5: Effect of GATA2 Mutations in the Lymphatic System

5.1 Introduction	109
5.2 Results	111
5.2.1 GATA2 Transactivates the <i>Prox1</i> Promoter/Enhancer Element	111
5.2.2 GATA2 Binds to Prox1 Promoter/Enhancer Element	113
5.2.3 GATA2 WT and Mutants Exhibit Differential Binding Affinity to GATA2-	
Responsive Elements in PEE and Human Haematopoietic Lineage Promoters	115
5.2.4 <i>Prox1</i> -11.3kb Enhancer is Transactivated by Multiple Transcription Factors	116
5.3 Discussion	119
5.3.1 GATA2 is regulator for <i>Prox1</i> expression	119
5.3.2 <i>Prox1</i> Enhancer is a Functioning <i>cis</i> -Regulatory Element	120
5.4 Conclusion	121
5.5 Recommendations for Future Work	122
5.5 References	122
Chapter 6: Final Discussion and Conclusion	
6.1 GATA2 is a Predisposition Gene for MDS/AML, Infectious Diseases and	
Emberger Syndrome	125

6.2 GATA2 in Sporadic AML and CML	130
6.3 Significance and Impact of the GATA2 Discovery	134
6.4 Conclusion	135
6.5 References	135
Appendix A Additional Information for Chapter 3	138
A-1 STATEMENT OF AUTHORSHIP	138
A-2 SUPPLEMENTARY METHODS	145
A-3 SUPPLEMENTARY INFORMATION 1	150
A-4 SUPPLEMENTARY NOTE	169
A-5 SUPPLEMENTARY INFORMATION 2	173
Appendix B Additional Information for Chapter 4	174
B-1 STATEMENT/DECLARATION OF CONTRIBUTION	174
B-2 SUPPLEMENTARY INFORMATION	176
Appendix C Additional Information for Chapter 5	178
C-1 STATEMENT/DECLARATION OF CONTRIBUTION	178
C-2 SUPPLEMENTARY INFORMATION 1	179
C-3 SUPPLEMENTARY INFORMATION 2	181
Supplementary References	182

ABSTRACT

We first report GATA2 mutations (heterozygous) in 4 families that are susceptible to MDS/AML (3 large families) and MDS (1 small family). Molecular analysis revealed a germline transmission of a GATA2 missense mutation (T354M) in MDS/AML families and a GATA2 deletion mutation (T355del) in MDS family. Neither germline RUNX1 nor CEBPA mutations were found in these families, in 695 non-leukemic ethnically matched controls and 268 sporadic AML samples. The mutations resided within the GATA2 zinc finger 2 domain, a critical region for DNA-binding and protein-protein interactions, but not for nuclear localization. T354M reduced DNA binding ability of GATA2; whereas, T355del bound very little, if any, to the consensus WGATAR DNA motif. T354M and T355del also significantly reduced the transactivation of GATA2 in known GATA2 responsive sequences. Moreover, cotransfection of T354M or T355del with WT reduced WT transactivation ability, suggesting that these mutants act in a dominant negative fashion. Regulatable stable promyelocytic HL-60 cells expressing WT and mutants were generated. Forced expression of WT and T354M inhibited HL-60 cell differentiation when induced with all *trans* retinoic acid. However, when compared to WT, T354M enabled cell proliferation/survival while simultaneously reducing apoptosis. In contrast, T355del was a complete loss-of-function mutant. Microarray studies elucidated that both T354M and T355del significantly decreased the expression of downstream target genes. Together, our data suggest that both T354M and T355del are lossof-function mutations with some dominant negative attributes.

Recently, we and others have described *GATA2* genetic lesions in other diseases. We further investigated *in vitro* functions of an allelic series of GATA2 mutants representing the major disease phenotypes: MDS/AML (T354M), MDS (T355del), CML-BC (L359V), Emberger syndrome (R361L and C373R), AML-M5 and biallellic *CEBPA* AML (R362Q), and immunodeficiency syndrome (R398W). We showed that these GATA2 mutants (except L359V) are loss-of-function that reduce DNA binding affinity and transactivation of target genes. Nevertheless, they maintain the ability to bind to known protein binding partners. Intriguingly, T354M and C373R have an enhanced affinity for PU.1, highlighting that these

mutants can influence both DNA-binding and protein-protein interaction. Preliminary transduction of *Gata2* WT or mutant expression constructs into mouse whole bone marrow cells demonstrated that GATA2 mutants did not confer self-renewal capacity, but allowed specific myeloid progenitor differentiation.

We further demonstrated that *Gata2* is expressed in lymphatic endothelial cells and that it can bind to and transactivate a *Prox1* promoter/enhancer element (*PEE*) region. *Prox1* is required for lymphatic development and maintenance, and hence *Gata2* may contribute to lymphoedema throught its action on *Prox1*. Intriguingly, *Gata2* mutants displayed differential binding affinity to two GATA binding sites and reduced transactivation of the *PEE* region. Furthermore, an enhancer region 11.3kb upstream of *Prox1* is activated by GATA2, FOXC2 and SOX18, but repressed by PROX1 itself suggesting that these key lymphatic TFs may cooperate to regulate *Prox1* expression.

In conclusion, I present the experimental work for the landmark discovery of a new MDS/AML predisposition gene. I have also characterized the molecular landscape of *GATA2* mutations where each of the mutations confers specific and major effects on GATA2 function, but where there are also subtle differences between the mutants in the contexts of DNA binding and transactivation.

STATEMENT

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. The author acknowledges that copyright of published works (as listed in next page*) contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed,

CHAN ENG CHONG

Date: 29 JULY 2013

* THE PUBLISHED ARTICLES

Methods published in the following article were cited in Chapter 3.

Hahn CN, <u>Chong CE</u>, Carmichael CL, Wilkins EJ, Brautigan PJ, Li XC, Babic M, Lin M, Carmagnac A, Lee YK, Kok CH, Gagliardi L, Friend KL, Ekert PG, Butcher CM, Brown AL, Lewis ID, To LB, Timms AE, Storek J, Moore S, Altree M, Escher R, Bardy PG, Suthers GK, D'Andrea RJ, Horwitz MS, Scott HS. Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia. *Nat. Genet.* 2011 Sep 4;43(10):1012-7.

© 2011 Nature America, Inc. All rights reserved.

The authors of articles published by Nature Publishing Group, or the authors' designated agents, do not usually need to seek permission for re-use of their material as long as the journal is credited with initial publication. For further information about the terms of re-use for authors please refer to <u>http://www.nature.com/reprints/permission-requests.html</u>.

Materials, methods and partial results published in the following article were cited in Chapter 4.

Kazenwadel J, Secker GA, Liu YJ, Rosenfeld JA, Wildin RS, Cuellar-Rodriguez J, Hsu AP, Dyack S, Fernandez CV, <u>Chong CE</u>, Babic M, Bardy PG, Shimamura A, Zhang MY, Walsh T, Holland SM, Hickstein DD, Horwitz MS, Hahn CN, Scott HS, Harvey NL. *Blood*. 2012 Feb 2;119(5):1283-91.

© the American Society of Hematology.

Authors have permission to do the following after their article has been published in Blood, either in print or online as a First Edition Paper.

- Reprint the article in print collections of the author's own writing.
- Present the work orally in its entirety.
- Use the article in theses and/or dissertation.
- Reproduce the article for use in courses the author is teaching. If the author is employed by an academic institution, that institution may also reproduce the article for course teaching.
- Distribute photocopies of the article to colleagues, but only for noncommercial purposes.
- Reuse figures and tables created by the author in future works.
- Post a copy of the article on the author's personal website, departmental website, and/or the university intranet. A hyperlink to the article on the Blood website must be included.

http://bloodjournal.hematologylibrary.org/site/misc/rights.xhtml#authors

ACKNOWLEDGMENTS

The work presented in this thesis was performed in the Molecular Pathology Research Laboratory at the in the Department of Molecular Pathology, in the Centre for Cancer Biology (a centre of excellence in cancer research) of SA Pathology under the supervision of Prof. Hamish S. Scott and Dr Christopher N. Hahn.

First of all, I would like to thank my supervisor, Prof. Scott for giving me an opportunity and accepting me as a PhD. student in his laboratory. Throughout my PhD, I have been granted the freedom to devise, conduct and implement my experiments. Through this freedom, he moulded me from a naïve student to an independent researcher. He reminds me of Albert Einstein who famously said, "I never teach my pupils; I only attempt to provide the conditions in which they can learn." In other words, he constantly inspires me to think out of the box and see things from multiple angles. Hamish also challenges and motivates me to step out of my comfort zone and encourages me to explore the new realm for the answers I am seeking. Hence, my growth as a scientist in both scientific knowledge and confidence are well looked after in his laboratory. I would also like to take this opportunity to thank him for his generous financial aid in supporting my travel for attending both national and international conferences, hence improving my scientific knowledge and allowing me to interact with many brilliant minds. Thank you Hamish!

I would like to express my gratitude to my co-supervisor, Dr Hahn, who has been advising, motivating and guiding me through my PhD. Chris is a knowledgeable (a.k.a. walking dictionary) and a patient man. He taught me basically everything that I needed to know for my study. I have enjoyed very much the theoretical framework discussion in his new office and I learned a lot from him. Chris also taught me to interpret, analyse, clarify and articulate my available data into the strongest and persuasive arguments. Here, I would also like to thank him for his patience and time he spent on reading and correcting my thesis written in Manglish (Malaysian English) and his efforts in improving my writing skills. Thank you Chris!

I would like to express my thanks for the great time and support to all who work in the Scott laboratory: Mr Peter Brautigan, Ms Milena Babic, Dr Manuela Klingler-Hoffmann and Ms Parvathy Venugopal. Special thanks to Ms Young Kyun Lee for her dauntless and persistent efforts in the proteomic work and Dr David Yeung (haematologist) for his professional opinion and constructive suggestion for my thesis. Without their help, my PhD. journey would not have been smooth. I would also like to thank all my ex-lab members for the quality time we spent during the course of my study, particularly Dr Michael Ling King Hwa, Dr Brita Ardesjo Lungren, Mr Scott Warming and Mr Joseph Carolan.

Special thanks particularly go to all our collaborators: A/Prof. Richard D'Andrea, Dr Anna Brown, Dr Chung Kok, Dr Sonya Diakiw, Mr Grant Engler and Ms Diana Larossi (Acute Leukaemia Laboratory) and Dr Genevieve Secker, Dr Drew Sutton, Ms Jan Kazenwadel and Dr Natasha Harvey (Lymphatic Development Laboratory). Without their help, I could not have survived this PhD. I would like to thank all Molecular Pathology staff, particularly Dr John Rayner and Ms Ming Lin for their technical contribution toward the completion of my experiments and data analysis. Several groups have also generously allowed me to use their equipment over the years, including A/Prof. Richard D'Andrea (cytospin), Prof. Gregory Goodall and Dr Yeesim Khew-Goodall (confocal microscope and multiwell-plate luminometers) and Dr Jane Arthur (Ultracentrifuge).

Above all, I must thank my family. No other words could express how truly grateful and indebted I am to my parents and siblings. I thank them for their endless patience and for their support during my study. On a personal note, I would like to thank Ms Sze Yee Phuah. I would not be here without her love, patience, encouragement and support. She shares my greatest disappointments along with my successes. Thank you very much Sze Yee!

LIST OF FIGURES

Figure 1.1:	A Classic Model of the Hierarchical Development of Haematopoietic Cells.	
Figure 1.2:	Conventional and Alternative Models for Haematopoietic Stem Cell and Blood Lineage Commitment in Murine.	4
Figure 1.3:	A Revised Version of the Classical Model of the Haematopoietic Tree.	5
Figure 1.4:	Model of GATA2 Function in the Haematopoietic Lineage Determination.	8
Figure 1.5:	Schematic of Heptad Proteins Bound to DNA.	8
Figure 1.6:	AML-Related Genetic Pathways.	17
Figure 1.7:	The Clonal Bone Marrow Disorders.	20
Figure 3.1:	Binding of GATA2 ZF2 to the <i>GM-CSF</i> and <i>Prox1</i> Oligonucleotide Probes Analyzed by EMSA.	74
Figure 4.1:	Expression of GATA2 Mutants in HEK293 Cells.	83
Figure 4.2:	Transactivation of GATA2 on Known Responsive Elements.	85
Figure 4.3:	DNA Binding Assay on GATA2 WT and Mutant Proteins.	87
Figure 4.4:	Multiple Sequence Alignment of GATA2 ZF2 Motif Across Different Vertebrates and Among GATA Family Members.	89
Figure 4.5:	Structural Modelling of GATA2 WT and Mutants.	90
Figure 4.6:	Co-Immunoprecipitation of GATA Proteins and PU.1.	92
Figure 4.7:	Whole BM Clonogenic Assays.	94
Figure 4.8:	Clonogenic Assays on Total Bone Marrow Cells Transduced with Gata2 WT or Mutants.	96
Figure 4.9:	Participation of GATA2 in the Haematopoietic Transcriptional Regulatory Network.	103
Figure 4.10:	Gain-of-Function and Loss-of-Function Models for GATA2 Mutation.	104
Figure 5.1:	Prox1 Enhancer/Promoter Elements Contain Functional GATA Sites.	112

xiii

Figure 5.2:	Functional Characterization of PEE.	114
Figure 5.3:	WEMSA for GATA2 WT and Mutants on a Panel of Known Responsive Promoter/Enhancer Elements.	116
Figure 5.4:	WEMSA and Luciferase Reporter Assays on the <i>Prox1</i> -11.3kb Enhancer.	118
Figure 6.1:	Distribution of <i>GATA2</i> Mutations Identified in Various Haematological Malignancies, MonoMAC/DCML Deficiency and Emberger Syndrome.	129
Figure 6.2:	GATA2 Mutant Proteins According to Germline or Somatic Mutation.	133

LIST OF TABLES

Table 1.1:	Frequency of FAB Subtypes in a Study Cohort Consists of 614 Patients with <i>de novo</i> AML.	11
Table 1.2:	A Revised WHO Classification of AML.	13
Table 1.3:	Genetic Factors Predisposing to the Development of Secondary AML.	23
Table 2.1:	List of Restriction Enzymes.	51
Table 3.1:	Association Constants (Ka) and Dissociation Constants (Kd) Determined by Isothermal Titration Calorimetry (ITC) for Each GATA2 Constructs Using the <i>GM-CSF</i> Probe.	75
Table 4.1:	Colony-Forming Activities of GFP-Sorted BM Cells.	94
Table 4.2:	Summary of the In Vitro Characterization of GATA2 Mutants.	97

LIST OF ABBREVIATIONS

Abbreviations Description

4HT	4-hydroxytamoxifen
ALL	acute lymphoid leukaemia
ATRA	all trans retinoic acid
BFU-E	burst forming unit-erythroid
BM	bone marrow
CFU	colony forming unit
CFU-G	CFU-Granulocyte
CFU-GEMM	CFU-Granulocyte/Erythrocyte/Monocyte/Megakaryocyte
CFU-GM	CFU-Granulocyte/Macrophage
CFU-M	CFU-Macrophage
ChIP	chromatin immunoprecipitation
ChIP-Seq	chromatin immunoprecipitation-sequencing
CLL	chronic lymphoid leukaemia
CLP	common lymphoid progenitor
CML-BC	chronic myeloid leukaemia blast crisis
CMP	common myeloid progenitor
CN-AML	cytogenetically normal AML
Co-IP	co-immunoprecipitation
EMSA	electrophoretic mobility shift assay
ENCODE	ENCyclopedia of DNA Elements
ES cells	Embryonic stem cells
FPD/AML	familial thrombocytopenia with increased risk to develop AML
G-CSF	granulocyte-colony stimulating factor
GFP	green fluorescence protein
GM-CSF	granulocyte-macrophage colony-stimulating factor
GMP	granulocyte-macrophage progenitor

GOF	gain-of-function
HM	haematological malignancies
HPCs	haematopoietic progenitor cells
HSCs	haematopoietic stem cells
КО	knock-out
LEC	lymphatic endothelial cells
LOF	loss-of-function
LSK cells	Lineage negative, SCAL positive, c-KIT positive cells
MDS	myelodysplastic syndrome
MDS/AML	AML with myelodysplasia-related changes
MPN	myeloproliferative neoplasm
OMIM	Online Mendelian Inheritance in Man
PB	peripheral blood
RA	refractory anaemia
REAB-1	refractory anaemia with excess blasts 1
REAB-2	refractory anaemia with excess blasts 2
SEM	standard error mean
SCF	stem cell factor
t-AML	therapy-related AML
TF	transcription factor
ТРО	thrombopoietin
TCRD	T cell Receptor Delta
UCSC	University of California, Santa Cruz
WEMSA	Western blotting-electrophoretic mobility shift assay
WT	wild type
ZF1	zinc finger 1
ZF2	zinc finger 2