Functional characterisation of the N-terminal region of Holocarboxylase synthetase

by

Lungisa Mayende, M.Sc.

A thesis submitted to the University of Adelaide, South Australia in fulfilment of the requirements for the degree of Doctor of Philosophy

May, 2012

School of Molecular and Biomedical Sciences Discipline of Biochemistry University of Adelaide South Australia

Abstract

Biotin (vitamin H or B7) is an important micronutrient that is covalently attached to biotindependent enzymes by human biotin protein ligase (hBPL) or holocarboxylase synthetase (HCS). Patients with HCS deficiency are treated with oral biotin supplementation, which in most cases is able to reverse the clinical symptoms. However, some patients respond poorly to biotin therapy and have an extremely poor long-term prognosis. The molecular explanation for this is not understood. In this study HCS was investigated to improve our understanding of this key enzyme.

The catalytic region of all BPLs is contained in the conserved C-terminal region. HCS contains a long N-terminal extension that is not present in bacterial BPLs. The structure and function of the N-terminal region is yet to be determined. In order to delineate the domain structure of HCS limited proteolysis was performed previously in our laboratory. Two protease-sensitive linker regions were identified, one between residues 151-153, the other at amino acid 314. Of particular importance is the proposed structured domain containing residues 159-314, as amino acid substitutions in this region have been shown to compromise enzyme activity despite being distal to the C-terminally located active site. This thesis provides genetic evidence for a direct interaction between the N-terminal and C-terminal halves of HCS using a yeast two-hybrid assay. This interaction was mapped using a trucation study to the proposed structured domain of the N-terminal region of HCS (159-314 N-HCS).

HCS deficiency gives rise to the metabolic disorder multiple carboxylase deficiency (MCD). Mutations within the proposed structured domain 159-314 N-HCS give rise to MCD patients that are poorly responsive to the current therapy (biotin supplementation) and have an extremely poor long-term prognosis. In this thesis, a series of novel mutations in the

ii

proposed structured domain 159-314 N-HCS were generated using "error prone" PCR. The catalytically inactive mutants were isolated from the library using an *in vivo* complementation assay. The mutants that were isolated were identified by DNA sequencing as L166R, L206P, W210R, L246M, L270S, H306R, F321S and the double mutant E181G, E327G. These residues are highly conserved within vertebrate species. These novel HCS mutants, together with the MCD mutants L216R HCS and L237P HCS, were employed to further characterise the function of the proposed structured N-terminal domain. Using the Yeast Two-hybrid assay, it was shown that the interaction between the two halves of HCS was not disrupted by the MCD mutants nor the novel mutants. Conversely, it was shown that the MCD mutants, and the majority of the novel HCS mutants, disrupted the interaction between HCS and its protein substrate the Pyruvate Carboxylase biotin domain hPC107.

Surface Plasmon Resonance was then employed to further characterise this observation. This study has demonstrated for the first time that although the association between HCS and its substrate was not compromised by mutation, the MCD mutants had a >15-fold increase in dissociation rate from the substrate compared to wild type HCS. This work provided a novel function for the proposed structural N-terminal domain. Furthermore, these data provide a molecular explanation for the HCS deficient patients that do not respond to biotin therapy.

iii

Statement of Originality

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed

.....

Lungisa Mayende

Acknowledgements

I would like to thank my supervisor, Grant Booker for having a place for me to work in his lab. Before I came to Australia your enthusiasm was encouraging and I am glad that I completed my PhD in your lab. Thank you for your expertise, knowledge and perfectionism that have helped to produce this thesis.

I extend gratitude to my co-supervisor, Steven Polyak. I appreciate the amount of time and support that you gave me these past few years. This thesis would not have been completed without your constant and untiring advice, guidance, expertise and assistance.

I was the recipient of the International Postgraduate Research Scholarship (IPRS) and the Adelaide Scholarships International (ASI), which funded my PhD studies. I appreciated the financial assistance.

I would like to thank the Booker Lab members for their support during my PhD. Especially Tatiana Soares da Costa, you have been a great friend (more like a sister, you are so right), someone to bounce ideas off of and helpful (thanks for assisting me with SPR). I am grateful to have such a beautiful person in my life, thank you for choosing this lab! Thank you Kate Wegener for helping me with NMR analysis and general structural work. Thank you Colleen Bindloss for your assistance with gel filtration and ASTRA. Thank you to James Eddes and Chris Crusaro from the Adelaide Proteomics Centre for your assistance with the MS work. Thanks to Al Azhar and Wanisa Salaemae for making the lab the positive place that it is. I extend thanks to previous Booker Lab members especially Ethan Chen (we made it, you're next!), Iain Murchland (thanks for the helpful structural models discussion), Rachel Swift (thanks for the work on HCS that you performed) and Shee Chee Ong (thanks for the cloning you did). I would also like to thank previous BPL team

V

members, namely Lisa Bailey (your work on HCS was invaluable) and Nicole Pendini. Thanks to the Wallace lab for being our go to place when we need to borrow something (we always return the favour).

To everyone in the department, the different labs and the lovely people from CSU and other support staff, thank you for the smiles and chats in the hallways. You make the MBS building what it is.

I would like to thank all of my friends and family that have supported me these past few years. I love you each and every one of you! Thank you Mama for your love and belief in me. Being away from you has been hard but you have supported all of my dreams, including this one. Your constant encouragement gave me strength. I love you, my twin soul. To my partner Shane Devitt, thanks for being my best friend. For being the person I turned to when I was frustrated, needed support or needed a hug. You always found a way to make me smile, you uplifted me. I stayed sane these past few years because of you. Thank you for also sharing in my triumphs. I love you boo! :)

And finally, thank you God for getting me through to the other side of this thesis. Without you pulling me together, I would have surely fallen apart. I am very content to have made it!

Table of Contents

Abstract	ii
Statement of Originality	iv
Acknowledgements	v
Table of Contents	vii
List of Publications	xi
List of Abbreviations	xiii
Chapter 1 Introduction	1
1 Introduction	۱۱ د
1.1. Biotin and higtin-dependent enzymes	ےد 2
1.2 Biotin domains	ے
1.3 Biotin protein ligase	4
1.4 Holocarboyulase synthetase (HCS)	،ع و
1.5 Microbial BPLs provide structural and functional information on HCS	
	15
1.5.1 Dr Ls	15
1.5.2 Class II BPLs	13
1.5.2 Class II DF LS	21
153 Class III BPI s	
1.5.3.1 Yeast biotin protein ligase (vBPL)	
1.6 Comparison of the N-terminal and C-terminal regions of HCS (and other E	ukarvotic
BPLs) with N- and C- terminal regions of microbial BPLs.	
1.7 Multiple Carboxylase Deficiency (MCD)	27
1.7.1 $K_{\rm M}$ MCD mutants	
1.7.2 V _{MAX} MCD mutants	31
Chapter 2 General Materials and Methods	
2.1.1 General materials.	
2.1.2 Chemical reagents.	
2.1.3 Restriction endonucleases	38 20
2.1.4 ATTUDULES.	აბ აი
2.1.5 Datterial strains	აბ აი
	აბ აი
2.1.7 Teast Sulall.	
2.1.0 Tedal Illeuid	
	40

2.1.9 Oligonucleotide Primers	41
2.1.10 Cloning vectors	42
2.1.10.1 Bacterial Cloning Vectors and Protein Expression Ve	ctors42
2.1.10.2 Yeast Two-Hybrid Vectors	42
2.1.11 Commercial kits	43
2.1.12 Buffers and solutions	43
2.1.13 Plasmids and vectors	44
2.1.14 Computer software	44
2.1.15 Web resources	44
2.2 General methods	45
2.2.1 Determination of protein concentration	45
2.2.2 Purification of GST-tagged proteins using Profinia [™]	45
2.2.3 SDS-PAGE electrophoresis and gel staining	45
2.2.4 Western Blotting	46
2.2.5 HCS activity assays	46
2.2.6 Circular Dichroism	47
2.2.7 Molecular biology techniques	47
2.2.7.1 Primer Design	47
2.2.7.2 PCR protocols	47
2.2.7.3 Site-Directed Mutagenesis	48
2.2.7.4 Phosphorylation and annealing of Oligonucleotides	
2.2.7.5 Agarose gel electrophoresis	49
2.2.7.6 Preparation of DH5α competent cells	49
2.2.7.7 Restriction digest of DNA	50
2.2.7.8 Ligation of DNA fragments	50
2.2.7.9 Transformation of competent cells	50
2.2.7.10 Glycerol stocks	50
2.2.7.11 Purification of plasmid DNA	50
2.2.7.12 Quantification of DNA	51
2.2.7.13 DNA sequencing	51
2.2.8 Yeast methods	52
2.2.8.1 Preparation of competent <i>S. cereviseae</i>	52
2.2.8.2 Transformation of competent yeast strains	52
Chapter 3 Exploring the inter-domain interactions within HCS	53
3.1 Introduction	54
3.1.1 Investigating the inter-domain interactions within HCS	54
3.2 Specific Methods	56
3.2.1 Nucleic acid manipulations	56
3.2.2 In vivo selection of HCS mutants	56

3.2.3 Yeast Methods	57
3.3 Results	58
3.3.1 Determination of an interaction between the N-terminal and C-termina	I
regions of HCS using the Yeast Two-hybrid assay	58
3.3.2 Constructs prepared for the interaction studies using Yeast Two-hyb	rid
assay	59
3.3.3 Defining the region of N-HCS that interacts with C-HCS	61
3.3.4 In vivo complementation assay	63
3.3.5 Determining the effect of MCD and novel HCS mutants on the interact	ction
between N-HCS and C-HCS domains	66
3.3.6 Determining the effect of MCD and novel HCS mutants on	the
intermolecular interaction of HCS and hPC107	69
3.4 Discussion	72
Chapter 4 NMR studies of the N-terminal cap of HCS	75
4.1 Introduction	76
4.1.1 Structural Determination of proteins by NMR Spectroscopy	76
4.2 Specific Methods	79
4.2.1 Cloning of pGEX NTC, the NTC variants pGEX NTC (G159-E293)	and
pGEX NTC (G159-D349)	79
4.2.2 Transformation, expression and purification of GST-NTC (G159-R3	314),
GST-NTC ₂ (G159-E293) and GST-NTC ₃ (G159-D349)	80
4.2.3 Cloning, transformation and expression of NTC using alternation	ative
expression vectors	.80
4.2.4 Purification of NTC using on column cleavage	80
4.2.5 2D NMR Spectroscopy Experiments	81
4.2.6 Investigation of the secondary structure composition, structural inte	grity
and thermal stability of NTC using Circular dichroism	82
4.2.7 Investigation of the oligomeric state of NTC using gel filtra	ation
chromatography	83
4.2.8 Molecular structural models of 159-314 N-HCS or NTC and 1	-151
N-HCS	83
4.3 Results and Discussion	84
4.3.1 Selection of NTC construct	.84
4.3.2 Expression and purification of NTC (sample 1)	85
4.3.3 Expression and purification of NTC (sample 2)	86
4.3.4 Expression and purification of NTC (sample 3), indentification of I	NTC
using Mass Spectrometry (MS) and mass determination of NTC using MA	۱LDI
MS	87

	4.3.5 probe	2D NMR experiments of NTC using a triple resonance ${}^{1}H/{}^{13}$ (sample 1) and triple resonance ${}^{1}H/{}^{13}C/{}^{15}N$ PFG cold prob	C/ ¹⁵ N PFG be (sample
	2)		
	4.3.0	4.2.6.1. CD analysis of NTC	
		4.3.6.2 Analysis of NTC CD spectrum using CONTINLL, CD SELCON3.	94 SSTR and
	4.3.7 chrom	Investigation of the oligomeric state of NTC using generation atography	l filtration
	4.3.8	De novo predictions for the structures of NTC or 159-314 N	I-HCS and
	1-151	N-HCS	100
4.4 St	ummary	and Future work	106
Chapter 5	5 The C	haracterisation of MCD HCS mutants	11
5.1 lr	ntroduct	ion	11 [.]
5.2 S	Specific	Methods	112
	5.2.1	Expression and purification of hPC107	112
	5.2.2	Expression and purification of wt HCS, L216R HCS and L237F	, HCS11
	5.2.3	Circular Dichroism (CD) Spectroscopy	11
	5.2.4	Surface Plasmon Resonance (SPR)	114
5.3 F	Results.		118
	5.3.1	Expression and purification of hPC107	117
	5.3.2	Expression and purification of wt HCS, L216R HCS and L237F	, HCS118
		5.3.2.1 Optimisation of HCS purification using a higher conce	entration o
	500		
	5.3.3	HCS activity assay.	120
	5.3.4	Circular Dichroism (CD) Spectroscopy	120
	5.3.5	5.2.5.1 pl locauting and immobiliaction of protoin	22 ا
		5.3.5.1 pH scouling and inmobilisation of protein	IZ4
		5.5.5.2 Determination of the activity of infinobilised HCS of C	100 CHIP
		and binding of biotin and MgATP occurs in an ordered manne	۱۱۷۵ ۲۰۰۰ ۲۷۵
		5.3.5.3 Binding of biotinoi-5 -AMP to wild type and mutant HCS	120
			120
5.4 L	JISCUSSI	001	
	uscussi	al abaractorization of the N terminal region of UCS	
0.1 F		al characterisation of the in-terminal region of HCS	131 a biatia
0.2 A	novel m	UCS definition of the second	
unres	ponsive	nus deliciency.	
0.3 N	iew dire	cuons for the development of v_{MAX} HCS deficiency therapeutics	
Reference	.		144

List of Publications

Pubished Manuscript

<u>Lungisa Mayende</u>, Rachel D. Swift, Lisa M. Bailey, Tatiana P. Soares da Costa, John C. Wallace, Grant W. Booker and Steven W. Polyak. (2012) A novel molecular mechanism to explain biotin-unresponsive holocarboxylase synthetase deficiency, *J. Mol Medicine*, 90(1): 81-88.

Communications and Conference Proceedings

<u>Mayende, L.</u>, Swift, R.D., Bailey, L.M. Wallace, J.C., Booker, G.W. & Polyak, S.W. (2010) Characterisation of the N-terminal region of Holocarboxylase synthetase. Ozbio Conference, Poster 255.

<u>Mayende, L.</u>, Swift, R.D., Bailey, L.M., Wallace, J.C., Booker, G.W. & Polyak, S.W. (2010) Mechanism to explain the juvenile metabolic syndrome Multiple Carboxylase Deficiency. Australian Society for Medical Research SA division Scientific Meeting, Poster 58.

<u>Mayende, L.</u>, Swift, R.D., Bailey, L.M. Wallace, J.C., Booker, G.W. & Polyak, S.W. (2010) Domain mapping and functional analysis of the N-terminal region of Holocarboxylase synthetase. Adelaide Protein Group (APG) Student Award **Finalist**, Oral Presentation.

<u>Mayende, L.</u>, Swift, R.D., Bailey, L.M. Wallace, J.C., Booker, G.W. & Polyak, S.W. (2010) Domain mapping and functional analysis of the N-terminal region of Holocarboxylase synthetase. 35th Lorne Conference on Protein Structure and Function, Poster 285. **Awarded** student travel award. Mayende, L., Swift, R. D., Bailey, L. M., Pendini, N. R., Wallace, J. C., Booker, G.W. & <u>Polyak, S. W</u>. (2010) Protein biotinylation: An example of a post-translational modification of exceptional specificity. 3rd Annual Protein and Peptide Conference (Pep Con). Beijing, China.

<u>Mayende, L.</u>, Swift, R.D., Bailey, L.M., Pendini, N.R., Wallace, J.C., Booker, G.W. & Polyak, S.W. (2008) Interaction and Mutagenesis studies on Holocarboxylase synthetase (HCS). Australian Society for Medical Research SA division Scientific Meeting, Oral Presentation.

<u>Mayende, L.</u>, Swift, R. D., Bailey, L. M., Pendini, N. R., Wallace, J. C., Polyak, S. W. & Booker, G.W. (2008) Domain structure of human Holocarboxylase synthetase: evidence of an interaction between the N-terminal and C-terminal halves. 33rd Lorne Conference on Protein Structure and Function, Poster 255. **Awarded** student travel award.

<u>Mayende, L.</u>, Swift, R. D., Bailey, L. M., Pendini, N. R., Wallace, J. C., Polyak, S. W. & Booker, G.W. (2007) Evidence of an interaction between the N-terminal and C-terminal halves of Holocarboxylase synthetase. University of Adelaide, School of Molecular and Biomedical Sciences Research Symposium.

List of Abbreviations

1D	One-dimensional
2D	Two-dimensional
3D	Three-dimensional
Ab	antibody
ACC	acetyl CoA carboxylase
AD	activation domain
Amp	ampicillin
AMP	adenosine monophosphate
AP	alkaline phosphatase
Аро	unliganded enzyme
ATP	adenosine triphosphate
BirA	biotin inducible repressor A
BCCP	biotin carboxyl carrier protein
BLAST	basic local alignment search tool
BME	beta-mercaptoethanol
bp	base pair
BPL	biotin protein ligase
BSA	bovine serum albumin
C-	carboxyl-
cDNA	complementary deoxyribonucleic acid
C-HCS	C-terminal amino acids 315-726 of Holocarboxylase synthetase
D_2O	deuterium oxide
DMSO	dimethyl sulfoxide
DNA	deoxynucleotide triphosphate
DNA BD	DNA binding domain
dNTPs	deoxynucleotide triphosphates
DTT	dithiothreitol
E. coli	Escherichia coli
EDTA	ethylene diamine tetra-acetic acid
GST	glutathione-S-transferase
HCS	Holocarboxylase synthetase
Holo	ligand bound enzyme
hPC107	107 amino acids encoding the biotin domain of human pyruvate carboxylase

hr	hour
HRP	horseradish peroxidase
IP	immunoprecipitation
<i>k</i> a	association rate constant
<i>k</i> _d	dissociation rate constant
K _D	equilibrium dissociation constant
K _M	Michaelis constant
kb	kilobase pair
kDa	kilodalton
LB	Luria broth
LiAc	Lithium Acetate
m	metre
Μ	molar
μ	micron
mA	milliampere
min	minute, minutes
MCC	methylcrotonyl-CoA carboxylase
MCD	multiple carboxylase deficiency
MOPS	3-morpholinopropanesulfonic acid
<i>Mt</i> BPL	Mycobacterium tuberculosis BPL
MW	molecular weight
MWCO	molecular weight cut-off
n	nano
N-	amino-
N-HCS	N-terminal amino acids 1-314 of Holocarboxylase synthetase
NMR	nuclear magnetic resonance
ODx	nm optical density at x nm wavelength
PCC	propionyl-CoA carboxylase
PBS	phosphate buffered saline
PBS-T	phosphate buffered saline and 0.05% (v/v) Tween-20
PC	pyruvate carboxylase
PCR	polymerase chain reaction
PDB	protein data bank
<i>Ph</i> BPL	P.horikoshii BPL
PMSF	phenylmethylsulfonylfluoride

RMSD	root mean square deviation	
RNA	ribonucleic acid	
RT	room temperature	
SDS	sodium dodecyl sulphate	
SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis		
S	second	
TBS	tris buffered saline	
TBS-T	tris buffered saline and 0.1% (v/v) Triton-X	
Tris	2-amino-2-hydroxymethylpropane-1,3-diol	
Tween-20	polyoxyethylene-sorbitan monolaurate	
U	units	
V _{MAX}	maximum velocity	
UV	ultra violet	
WT	wild type	
yBPL	Yeast (S.cerevisiae) biotin protein ligase	

polyvinyl difluoride

PVDF