Gene Regulation by Sphingosine kinase

Duyen H. Pham

Centre for Cancer Biology, SA Pathology and Discipline of Biochemistry, School of Molecular and Biomedical Science

University of Adelaide

Presented for the degree of Doctor of Philosophy

October, 2012

TABLE OF CONTENTS

Title Pagei
Table of Contentsii
Table of Figures
Abbreviationsxi
Abstractxv
Declarationxvii
Acknowledgements xviii
Chapter 1: Introduction1
1.1 S1P as a signalling molecule
1.2 Sphingolipids7
1.3Control of S1P levels.10
1.4Sphingosine kinases (SKs)11
1.5 S1P signalling
1.5.1 Extracellular actions of S1P 17
$1.5.1.1 S1P_1 20$
$1.5.1.2 S1P_2 20$
$1.5.1.3 S1P_3 21$
1.5.1.2 $S1P_4$ and $S1P_5$
1.5.2SIP as an intracellular second messenger23
1.6SK/S1P in diseases
1.6.1 Cancer
1.6.2 Inflammation and immunity
1.6.3 Asthma
1.6.4 Atherosclerosis
1.6.5 Neurodegenerative diseases
1.7 SK regulation
<i>1.7.1 Activation of SK1</i>
1.7.1.1 Activation of SK1 by phosphorylation

1.7.1.2 Activation of SK1 by translocation to the plasma membrane	33
1.7.1.3 Activation of SK1 by protein-protein interactions	34
1.7.2 Activation of SK2	35
1.7.1.1 Activation of SK2 by phosphorylation-induced translocation	35
1.7.1.2 Activation of SK2 by protein-protein interactions	36
1.8 Transcriptional regulation of SKs	36
1.8.1 Transcriptional regulation of SK1	36
1.8.2 Transcriptional regulation of SK2	37
1.9 Transcriptional regulation by SK/S1P	38
1.10 Hypothesis	39
1.11 Aims	39

Chapter 2: Generation and Characterisation of Cell Lines with Tightly Regulated Inducible Expression of Sphingosine Kinase 1 and 2......40 2.1 2.2 2.3 2.3.1 2.3.2 Construction of expression plasmids...... 44 2.3.3 Cell culture and generation of stably transfected HEK293 cell lines... 44 2.3.4 Generation and affinity purification of anti-SK1/anti-SK2 antibodies...45 Generation and affinity purification of anti-phospho-SK1 antibodies...45 2.3.5 2.3.6 2.3.7 2.3.8 2.3.9 2.4.1Examination of cell lines with inducible expression of SK1 and SK2

2.4.2 Generation of cell lines with tightly regulated inducible expression of

	SK1 and SK2 using the Invitrogen Flp-In T-Rex system	53
2.4.2.1	Inducible SK expression using the Invitrogen Flp-In T-Rex system	.53
2.4.2.2	Effect of tetracycline-free foetal bovine serum on SK	
	expression using the Invitrogen Flp-In T-Rex system	56
2.4.2.3	Design and construction of doxycycline-inducible expression system	п
	containing 3' AU-rich elements	59
2.4.2.4	Incorporation of AREs effectively reduce leakiness in doxycycline-	
	inducible expression via mRNA destabilization	60
2.4.2.5	Universality of the approach	63
2.4.3	Characterisation the cellular effects of inducible SK expression	65
2.4.3.1	Titration of SK induction levels	. 65
2.4.3.2	Proliferation and survival of the SK1 inducible cell line	68
2.4.3.3	Phosphorylation of SK1 inducible cell lines	. 68
2.4.3.4	Proliferation and Survival of the SK2 inducible cell line	. 72
2.4.3.5	Localisation of SK2 in the inducible cell line	72
2.5 Dis	cussion	. 77
2.5.1	Generation of cell lines with tight inducible SK expression	77
2.5.2	Characterisation the cellular effects of SK inducible cell lines	79
2.5.2.1	Low level SK1 overexpression enhances cell survival	
	and proliferation	79
2.5.2.2	Effect of different levels of SK2 overexpression on cell survival	
	and proliferation	79
2.5.2.3	Regulation of cell survival and proliferation by SK2	80
2.5.2.4	Likely importance of SK2 in its function	81
Chapter 3: (Gene and microRNA Regulation by Sphingosine Kinases	.83
3.1 Abs	stract	. 83
3.2 Intr	oduction	84
3.3 Ma	terials and Methods	86
3.3.1	Construction of expression plasmids	86
3.3.2	RNA preparation, and DNA microarray and microRNA	

	array analysis	86
3.3.3	Data analysis	88
3.3.4	Quantitative real-time PCR (qPCR)	88
3.4 Re	sults and Discussion	91
3.4.1	Expression profiling of gene regulation by SK1	91
3.4.2	Expression profiling of gene regulation by SK2	111
3.4.3	Analysis of differential gene regulation by SK1 and SK2	115
3.4.4	MiRNA regulation by SK1	123
3.5 Co	nclusions	124

Chapter 4: Activated Sphingosine Kinase 1 Induces Transferrin Receptor 1 Expression to Promote Cell Proliferation, Survival and Neoplastic

Tr	ansforr	nation	125
	4.1 A	bstract	125
	4.2 I	ntroduction	126
	4.3 N	Iaterials and Methods	127
	4.3.1	Materials	127
	4.3.2	Generation of expression constructs	128
	4.3.3	Cell culture and generation of stably transfected inducible	
		HEK293 cell lines	128
	4.3.4	SK enzyme activity	128
	4.3.5	Western blot analysis	128
	4.3.6	siRNA knock-down of S1P2	129
	4.3.7	Quantitative real-time PCR (qPCR)	129
	4.3.8	Immunofluorescence	129
	4.3.9	Transferrin (Tf) alexa 568 uptake assay	130
	4.3.1	0 Cell proliferation and apoptosis assays	130
	4.3.1	1 Focus formation assays	130
	4.4 F	esults	131
	4.4.1	SK1-mediated changes in TFR1 mRNA and protein	131
	4.4.2	SK1 induces cell-membrane TFR1 expression	

		and mediates Tf uptake	136
	4.4	4.3 SK1 phosphorylation and localisation to the plasma membrane	
		is critical for its effects on TFR1 regulation	136
	4.4	4.4 Addition of exogenous S1P regulates TFR1 expression	145
	4.4	4.5 SK1 regulates TFR1 expression via S1P ₂	145
	4.4	4.6 Inhibition of cell-surface TFR1 ablates SK1-induced	
		cell proliferation, survival and neoplastic transformation	151
	4.5	Discussion	156
	4.5	5.1 SK1 enhances TFR1 expression and subsequent Tf uptake into cells	156
	4.5	5.2 SK1 activation and plasma membrane localisation are necessary	
		for enhanced TFR1 expression	160
	4.5	5.3 S1P ₂ is necessary for TFR1-mediated SK1 oncogenesis	160
	4.5	5.4 Conclusions and implications to this study	163
Ch	apter	r 5: General Discussion	164
	5.1	Advantages of using tight-inducible system to study SK	
		cellular functions	164
	5.2	Array studies	166
	5.3	Transferrin receptor 1 (TFR1)	170
	5.4	Conclusions & future work	173
	Refe	erences	175
	Арр	endix 1	215
			216

List of Figures

Chapter 1: Introduction

Figure 1.1	SK phosphorylates sphingosine to form S1P	2
Figure 1.2	Tissue distribution of human $S1P_{1-5}$ based on Affymetrix	
	gene expression analysis	.5
Figure 1.3	The sphingomyelin cycle showing the pathway involved in the	
	regulation of S1P	8
Figure 1.4	Human sphingosine kinases	12
Figure 1.5	Tissue distribution of human SK1 and SK2 based on	
	Affymetrix gene expression analysis	15
Figure 1.6	Major downstream biological processes regulated by S1P via the	
	five S1P receptors	19

Chapter 2: Generation and Characterisation of Cell Lines with Tightly

Regulated Inducible Expression of Sphingosine Kinase 1 and 2

Figure 2.1	SK1 expression in the Clontech TetOn [™] system	51
Figure 2.2	SK2 expression in the Clontech TetOn ^{m} system	52
Figure 2.3	Leakiness in SK1 expression in the doxycycline-inducible system	54
Figure 2.4	Leakiness in SK2 expression in the doxycycline-inducible system	55
Figure 2.5	Attempts to attenuate leakiness in the doxycycline-inducible SK1	
	expression system using Tet-free-FBS	57
Figure 2.6	Attempts to attenuate leakiness in the doxycycline-inducible SK2	
	expression system using Tet-free-FBS	58
Figure 2.7	Schematic representation of ARE incorporation into the 3' UTR	
	of the Tet-inducible Flp-In T-Rex vector system	59
Figure 2.8	AREs strongly attenuate leakiness in SK1 expression in the	
	doxycycline-inducible system	61
Figure 2.9	Degradation of SK1 mRNA is enhanced by insertion of AREs	
	in the 3' UTR	62
Figure 2.10	AREs also strongly attenuate leakiness in SK2 expression in the	
	doxycycline-inducible system	64

Figure 2.11	Dose-dependent induction of SK1 in the doxycycline-inducible	
	system	66
Figure 2.12	Dose-dependent induction of SK2 in the doxycycline-inducible	
	system	67
Figure 2.13	Low and high induction of SK1 enhances cell proliferation and	
	survival	69
Figure 2.14	SK1 is phosphorylated when overexpressed at high and low levels	71
Figure 2.15	Low and high induction of SK2 mediates differential cellular	
	functions	74
Figure 2.16	Low and high induction of SK2 mediates differential subcellular	
	localisation	76

Chapter 3: Gene and microRNA Regulation by Sphingosine Kinases

Figure 3.1	Differential genes expression mediated by cellular SK1	93
Figure 3.2	Heat plot of differentially expressed genes altered by inducible	
	expression of SK1	94
Figure 3.3	Low SK1 & SK1 ^{G82D} expression level used in arrays	96
Figure 3.4	Heat plot comparing differentially expressed genes by SK1 versus	
	SK1 ^{G82D}	97
Figure 3.5	Validation of FUS, SFPQ & PCGF2 mRNA expression by SK1	
	versus SK1 ^{G82D}	102
Figure 3.6	Validation of RASD1 & TFR1 mRNA expression in SK1 versus	
	SK1 ^{G82D}	104
Figure 3.7	Validation of HSPA5, CLK1, IRS4, HSPA8 and MANF mRNA	
	expression in SK1 versus SK1 ^{G82D}	108
Figure 3.8	Validation of ZNF711 and TSC23D3 mRNA expression in SK1	
	versus SK1 ^{G82D}	109
Figure 3.9	Validation of TNFRSF10D, PPP1R10, PCTK3 and	
	EIF4B mRNA expression in SK1 versus SK1 ^{G82D}	110
Figure 3.10	Differential expression of genes modulated by increased cellular	
	SK2	. 112

Figure 3.11	Heat plot of differentially expressed genes by increased cellular	
	SK2 versus SK2 ^{G212D}	113
Figure 3.12	Heat plot of differentially expressed genes by cellular SK2 versus	
	SK1, SK2 ^{G212D} and SK1 ^{G82D}	116
Figure 3.13	Heat plot of differentially expressed genes by SK1 versus SK2,	
	SK1 ^{G82D} and SK2 ^{G212D}	118
Figure 3.14	Validation of RASD1, FUS & SFPQ mRNA expression in SK2	
	versus SK2 ^{G212D}	120
Figure 3.15	Validation of CLK1 & HSPA8 mRNA expression in SK2 versus	
	SK1 ^{G212D}	122

Chapter 4: Activated Sphingosine Kinase 1 Induces Transferrin Receptor 1

Expression to Promote Cell Proliferation, Survival and Neoplastic

Transformation

SK1 increases TFR1 mRNA in a dose-responsive manner	.133
SK1 mediates increase TFR mRNA and protein expression	135
SK1 mediates enhance cell-surface TFR1 expression	138
SK1 mediates increase Tf uptake into cells	139
Characterisation of non-phosphorylatable SK1 (SK1 ^{S225A}) in	
doxycycline-inducible system	141
Characterisation of non-phosphorylatable SK1 mutant that	
constitutively localized to plasma membrane $(SK1^{pm-S225A})$ in	
doxycycline-inducible system	142
$SK1^{\ensuremath{\text{pm-S225A}}}$ but not $SK1^{\ensuremath{\text{S225A}}}$ mediates increase TFR1 mRNA and	
protein expression	143
S1P increases TFR1 protein expression in a dose-responsive	
manner way	147
SK1 does not mediate increase TFR1 expression via $S1P_1$ or $S1P_3$	
receptors	148
SK1 mediates increase TFR1 expression via $S1P_2$ receptor	149
S1P2 receptor knocked-down inhibits SK1-enhanced TFR1	
	SK1 mediates increase TFR mRNA and protein expression SK1 mediates enhance cell-surface TFR1 expression SK1 mediates increase Tf uptake into cells Characterisation of non-phosphorylatable SK1 (SK1 ^{S225A}) in doxycycline-inducible system Characterisation of non-phosphorylatable SK1 mutant that constitutively localized to plasma membrane (SK1 ^{pm-S225A}) in doxycycline-inducible system SK1 ^{pm-S225A} but not SK1 ^{S225A} mediates increase TFR1 mRNA and protein expression S1P increases TFR1 protein expression in a dose-responsive manner way SK1 does not mediate increase TFR1 expression via S1P ₁ or S1P ₃ receptors SK1 mediates increase TFR1 expression via S1P ₂ receptor

	expression	150
Figure 4.12	TFR1 neutralizing antibodies ablate SK1-induced cell proliferation	
	and survival	153
Figure 4.13	Inhibition of TFR1 expression reduces SK1-induced neoplastic	
	transformation	155
Figure 4.14	Regulation of TFR1 expression in response to cellular iron levels	158
Figure 4.15	Proposed pathways for the regulation of TFR1 by SK1	162

ABBREVIATIONS

ADDKEV	IATIONS
ABC;	ATP binding cassette
AC;	Adenylate cyclase
AD;	Alzheimer disease
ADP;	Adenosine-5'-diphosphate
ApoE;	Apolipoprotein E
ApoM;	Apolipoprotien M
AREs;	AU-rich mRNA destabilizing elements
ATP;	Adenosine-5'-triphosphate
AML;	Acute myeloid leukaemia
BAL;	Bronchoalveolar lavage
BH3;	Bcl-2 homology 3
BrdU;	5-bromo-2-deoxyuridine
BSA;	Bovine serum albumin
Cdc42;	Cell division cycle 42
CerS;	Ceramide synthase
CIB1;	Calcium and integrin binding protein 1
C1P;	Ceramide-1-phosphate
CML;	Chronic myeloid leukaemia
CNS;	Central nervous system
COX-2;	Cyclooxygenase 2
DAPI;	4',6-diamidino-2-phenylindole
DEPC;	Diethylpyrocarbonate
DMS;	N,N-dimethylsphingosine
Dox;	Doxycycline
DTT;	Dithiothreitol
EAE;	Encephalomyelitis
EC;	Endothelial cell
eEF1A;	Eukaryotic elongation factor 1A
EGF;	Epidermall growth factor
EGFP;	Enhanced green fluorescent protein

eNOS;	Endothelial nitric oxide synthase
ER;	Endoplasmic reticulum
ERK1/2;	Extracellular signal regulated kinase 1/2
eYFP;	Enhanced yellow fluorescent protein
FACS;	Fluorescence associated cell sorter
FBS;	Foetal bovine serum
FceRI;	High-affinity receptor for IgE
FDR;	False discovery rate
FHL-2;	Four and a half LIM domains protein 2
FLNa;	Filamin A
GAP43;	Growth associated protein 43
GC;	Germinal centre
GDNF;	Glial cell line-derived neurotrophic factor
HDAC;	Histone deactetylases
HDL;	High density lipoproteins
HEK293;	Human embryonic kidney 293 cells
HRP;	Horseradish peroxidase
HSPs;	Heat shock proteins
IRES;	Internal ribosome entry site
IRPs;	Iron regulatory proteins
LDL;	Low density lipoproteins
LPA;	Lysophosphatidic acid
LPP;	Lipid phosphate phosphatase
LPS;	Lipopolysaccharide
MAPK;	Mitogen-activated protein kinase
MiRNA;	microRNA
MMP;	Matrix metalloproteinase
MS;	Multiple sclerosis
MTs;	Metallothioneins
NES;	Nuclear export signal
NGF;	Nerve growth factor

NO;	Nitric oxide
OVA;	Ovalbumin
Ox-LDL;	Oxidised LDL
PA;	Phosphatidic acid
PBS;	Phosphate buffered saline
PCR;	Polymerase chain reaction
PDGF;	Platelet-derived growth factor
PECAM-1;	Platelet endothelial cell adhesion molecule
PGE2;	prostaglandin E2
PHB2;	Prohibitin 2
PI3K;	Phosphatidylinositol 3-kinase
PLC;	Phospholipase C
PMA;	Phorbol 12-myristate 13-acetate
PS;	Phosphatidylserine
PS2;	Presenilin 2
qPCR;	Quantitative real-time PCR
rtTA;	Reverse tetracycline-responsive transcriptional activator
siRNA;	Small interfering RNA
SDS;	Sodium dodecyl sulfate
SDS-PAGE;	Sodium dodecyl sulfate polyacrylamide gel electrophoresis
SKs;	Sphingosine kinases
SKIP;	SK1-interacting protein
SMP;	Skim milk powder
S1P;	Sphingosine 1-phosphate
$S1PR_{1-5};$	Sphingosine 1-phosphate receptors 1-5
SPP1/2;	S1P phosphatases 1/2
SPT;	Serine palmitoyltransferase
SREBP;	Sterol regulatory element binding protein
SSC;	Saline-sodium citrate
Tet;	Tetracycline
TetR;	Tet-repressor

Tf;	Transferrin
TFR1;	Transferrin receptor 1
TGFβ;	Transforming growth factor-β
TIMP;	Tissue inhibitor of metalloproteinase
TNF-α;	Tumour necrosis factor-α
TRAF2;	TNF receptor-associated factor 2
TRE;	Tet-responsive element
VEGF;	Vascular endothelial growth factor
VCAM;	Vascular cell adhesion molecule
VSMC;	Vascular smooth muscle cells

ABSTRACT

Sphingosine kinases (SKs) are lipid kinases that catalyse the phosphorylation of sphingosine to form sphingosine-1-phosphate (S1P), a bioactive phospholipid that plays important roles in a wide variety of cellular processes, including calcium mobilisation, proliferation, apoptosis, angiogenesis, inflammatory responses and cytoskeletal rearrangement. Two SK isoforms exist in mammals, termed SK1 and SK2, which originate from different genes, but possess a high degree of sequence similarity. Although the two enzymes utilise the same substrate, sphingosine, to generate S1P, surprisingly, studies have suggested that SK1 and SK2 may have opposing cellular functions, with SK1 inducing cell survival and SK2 appearing to promote apoptosis. However, the molecular mechanisms mediating these apparently divergent roles for the two SKs have not been extensively examined at present. Furthermore, mouse knockout studies have suggested the two enzymes may have at least some overlapping functions.

There is strong evidence implicating SK1 in crucial role(s) in the development and progression of tumourigenesis. However, the mechanism whereby this enzyme induces tumourigenic processes is less clear and remains an important question to be answered in the field. Although high levels of intracellular S1P appears to have a role in regulation of cell proliferation and survival, various observations also suggest a role for extracellular S1P in cell surface G protein-coupled receptor-mediated cell proliferation and survival. However, the specific downstream pathways mediating this oncogenic signalling by SK1 are still poorly defined.

In attempts to answer these questions, studies to date have mainly focused on elucidating the cellular signalling pathways that are transiently modulated following SK1 activation. Considerable evidence suggests that SK1 is transcriptionally upregulated in many human cancers and also that its product, S1P, can induce activation of various transcription factors to regulate transcription of other genes. While this type of cellular regulation by SK1 is likely to play an important role in tumourigenesis, no studies have yet been published that systematically examined the molecular mechanisms whereby enhanced SK1 levels lead to oncogenesis. Thus, the main aim of the studies outlined in this thesis was to elucidate the genes regulated by increased cellular SK activity that may be important for normal and pathological cellular regulation.

In order to do this, we generated cell lines with tight doxycycline-inducible expression of SK1 and SK2 via a novel approach that involves the incorporation of AU-rich mRNA destabilizing elements (AREs) into the 3' untranslated regions of the tetracycline-inducible constructs. Use of these tightly controlled SK inducible systems allowed us to perform DNA microarrays and microRNA arrays to elucidate genes and microRNAs regulated soon after a moderate increase in cellular SK levels (approximately 10- and 6-fold overexpression of SK1 and SK2, respectively). This was done to maximise the likelihood of observing direct downstream effects of physiologically relevant increased SK expression that may have been missed by very high constitutive SK expression. While no microRNA regulation was observed following SK1 expression, screening of the Compugen human 19,000-oligonucleotide library, lead to the identification of various genes that were regulated by either SK1 or SK2 or by both enzymes. Of the various SK-regulated genes identified, transferrin receptor 1 (TFR1) was examined in greater detail in this study since its upregulation has been reported in various human cancers, and implicated in tumourigenic progression.

Here, we demonstrate a novel mechanism whereby SK1 regulates cell survival, proliferation and neoplastic transformation through upregulation of TFR1 expression. We show that elevated levels of SK1 enhanced total as well as cell-surface TFR1 expression resulting in increased transferrin (Tf) uptake into the cells. We also found that SK1 phosphorylation and/or translocation to the plasma membrane, which have been shown previously to be critical for SK1-mediated oncogenic effects, are necessary for regulation of TFR1 expression. Furthermore, we also demonstrated that S1P receptor 2 (S1P₂) is essential for SK1-induced TFR1 expression through the use of a S1P₂-specific inhibitor and siRNA knock-down of S1P₂. Finally, we show that blocking TFR1 function with a neutralizing antibody attenuated SK1-induced cell proliferation, survival and transformation. Together, these findings suggest that TFR1 plays an important role in oncogenesis mediated by SK1.

DECLARATION

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Duyen Hong Pham and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis (as listed below*) resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines unless permission has been granted by the University to restrict access for a period of time.

- * Pham, D. H., Moretti, P. A., Goodall, G. J. & Pitson, S. M. (2008) Attenuation of leakiness in doxycycline-inducible expression via incorporation of 3' AU-rich mRNA destabilizing elements. *Biotechniques*, 45, 155-160.
- * Pitman MR, Jarman KE, Leclerq TM, Pham DH and Pitson SM (2011) Sphingosine kinases: biochemistry, regulation and role. In: *Lysophospholipid Receptors: Signaling and Biochemistry*. Chun J, Hla T, Spiegel S and Moolenaar W (Eds). John Wiley & Sons, Hoboken, New Jersey, USA. in press

Duyen Hong Pham

ACKNOWLEDGEMENTS

My sincerest thanks go to my supervisor Assoc. Prof. Stuart Pitson for his unlimited patience and assistance throughout the years, especially during the preparation of this thesis. I am eternally grateful that he has given me the opportunity to work on this project and everything else he taught me, giving me an insight through the eyes of a great scientist. Thank you to Greg Goodall for his valuable input and encouragements throughout my PhD. I would also like to thank Jo Woodcock and Claudine Bonder for many wonderful suggestions and comments during our combined lab meetings, throughout my candidature.

A big thank you goes to all the staff members within the Pitson group, especially Paul Moretti, Melissa Pitman and Julia Dobblins; 'Your kind and caring words filled my heart and will always be remembered'.

I would also like to acknowledge Roslyn Kenyon and Mark Van der Hoek at the Adelaide microarray facility for their help in performing the arrays and the data analysis.

To my parents and my family, especially my partner and my little boy, your love, help, unlimited support, time and encouragement are my motivation and strength. I love you all very much and I could not have completed this project without you.