
Theory and Applications of VHF Meteor

Radar Observations

Joel P. Younger

Thesis submitted for the degree of

Doctor of Philosophy

in

Physics

Supervisors

Prof. Iain M. Reid and Prof. Robert A. Vincent

The University of Adelaide

School of Chemistry and Physics

submitted

25 October, 2011



Contents

Abstract 1

Declaration 3

Acknowledgments 5

1 Introduction 9

1.1 Meteors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 The Atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Meteor Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Early History of Meteor Radar . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.6 Summary of Original Research . . . . . . . . . . . . . . . . . . . . . . . 18

2 Interferometric Meteor Radar 21

2.1 Hardware Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 Antenna Array . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.2 ATRAD Meteor Radar General Configuration . . . . . . . . . . 22

2.1.3 Transmission Signal Flow . . . . . . . . . . . . . . . . . . . . . 26

2.1.4 Reception Signal Flow . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.5 Phase Determination . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Angle-of-Arrival Estimation . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 0.5/2.0/4.5 method . . . . . . . . . . . . . . . . . . . . . . . . . 29

i



CONTENTS ii

2.2.2 Conversion to azimuth, zenith, and height . . . . . . . . . . . . 31

2.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.1 Underdense meteor function . . . . . . . . . . . . . . . . . . . . 32

2.3.2 Overdense cutoff . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.3 Minimum detectable electron line density . . . . . . . . . . . . . 35

2.3.4 Observed detection rates . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Antenna Mutual Coupling . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.1 Measurement of Mutual Coupling . . . . . . . . . . . . . . . . . 38

2.4.2 Impact of Mutual Coupling on Positional Accuracy . . . . . . . 40

2.5 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5.1 Meteor echo phase calibration . . . . . . . . . . . . . . . . . . . 42

2.5.2 Correction using geophysical data . . . . . . . . . . . . . . . . . 43

2.5.3 Equi-D shell fitting . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5.4 Effectiveness of equi-D shell fitting . . . . . . . . . . . . . . . . 45

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 Atmospheric Entry and Meteor Ablation 51

3.1 Meteoroid Entry into the Atmosphere . . . . . . . . . . . . . . . . . . . 52

3.2 Thermal Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Sputtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
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Abstract

This thesis examines the operation and observations made by VHF interferometric

radar. Broad topics include the operation of interferometric meteor radar, the physics

of meteor ablation, the formation and diffusion of meteor trails, and meteor astronomy.

The performance of the basic radar configuration is examined with particular at-

tention paid to the source and mitigation of positional errors introduced by hardware.

Sources include random errors in phase and range estimates, mutual coupling between

antennas, and biases in the phase measurements used to determine the angle-of-arrival

of incident radiation. A new method for post-statistical steering is presented, using

height dependent ambipolar diffusion coefficients as a reference.

The physics of meteor flight and ablation in the atmosphere is examined in de-

tail. The heating and vaporization of meteoroids as they enter Earth’s atmosphere is

modeled and the effect of sputtering on the formation of meteor ionization is assessed.

These calculations are performed for a variety of meteor types, sorted by velocity,

angle-of-entry, composition, and size. The results are then used in conjunction with

atmospheric models to produce predictions of meteor radar performance.

The effect of the atmosphere on the ablation and subsequent detection of meteors

is considered and used to construct new metrics for the characterization of the atmo-

spheric density profile in the meteor region. The effects of constant density level and

density scale height are assessed with regards to the peak detection height and range

of heights over which a radar detects meteors.

The formation of the underdense meteor echo is examined in detail. New contribu-

tions to the understanding of this topic include an assessment of the effects of variable

1



electron line density in the trail, deceleration, and fragmentation on the eventual

measurement of the decay time of meteor echoes. Estimates of ambipolar diffusion

coefficients are examined by determining the effect of anomalous diffusion resulting

from electron absorbing aerosols and multi-constituent trail chemistry.

Meteor astronomy techniques used to overcome the limitations of interferometric

meteor radars are implemented in order to search for discrete streams of solar system

debris that result in meteor showers. The results include a significant number of

previously undiscovered shower systems.
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