

Clonal proliferation of hepatocytes during chronic hepatitis B virus infection

Mr. Thomas Tu B.Sc. (Hons) (Biomedical Science)

A thesis submitted to The University of Adelaide for The Degree of Doctor of Philosophy

School of Molecular and Biomedical Sciences

The University of Adelaide, Australia

October 2012

Table of contents

Title pa	age	i		
Table of	of contents	ii		
Abstra	ct	X		
Declara	ation	xii		
Acknow	wledgements	xiii		
Publica	ations and presentations arising from this thesis	xv		
Award	s arising from this thesis	xviii		
Abbrey	viations	xix		
1.	Introduction	1		
1.1	Epidemiology of Hepatitis B Virus (HBV) infection	2		
1.2	HBV structure and replication	2		
1.3	Natural history of HBV infection	5		
	1.3.1 Acute HBV infection	5		
	1.3.2 Chronic HBV infection - Immune tolerance phase	6		
	1.3.3 Chronic HBV infection - Immune clearance phase	7		
	1.3.4 Chronic HBV infection - Immune control phase and reactivation	9		
	1.3.5 Disease outcomes of chronic HBV infection	10		
1.4	Liver anatomy and microstructure	11		
1.1	Hepatocyte repopulation in the liver	11		
1.5	Tracing hepatocyte lineages			
1.0	Histology of HCC and HCC-associated lesions	15		
1.7	Molecular changes during HCC progression			
1.0	HBV and HCC progression	21		
1.7	1.9.1 The role of HBV proteins in HCC progression	21		
	1.9.2 The role of HBV DNA integration in HCC progression	22		
	1.9.3 The role of HBV associated inflammation in HCC progression	25		
1 10	HBV associated disease progression as a Darwinian process	23		
1.10	Summary and significance	21		
1.11	Aims and hypotheses	21		
1.12	Anns and hypotheses	51		
2.	Materials and Methods	32		
2.1	Collection of liver tissues	33		
2.2	Tissue fixation and paraffin wax-embedding	33		
2.3	Liver tissue histological staining and analysis	34		
	2.3.1 Haematoxylin and Eosin staining	34		
	2.3.2 Periodic acid-Schiff Diastase staining	35		
	2.3.3 Gordon and Sweet's reticulin staining	35		
	2.3.4 Haematoxylin van Gieson staining	36		
	2.3.5 Perls' Prussian Blue Iron staining	36		
	2.3.6 Fouchet's Bile pigment staining	36		
24	Detection of HBcAg and HBsAg in liver sections by immunohistochemistry	37		
2. + 2.5	Dual detection of HBsAg and cytokeratin 19 in liver sections by dual	57		
2.0	immunofluorescence	38		
	mmunonuorescence	50		

ii

2.6	Detection of HBV DNA in liver sections using in situ hybridisation	39
	2.6.1 Probe production	39
	2.6.2 Pre-hybridisation and hybridisation solutions	39
	2.6.3 In situ hybridisation	40
2.7	Extraction of total DNA from snap-frozen liver tissue	41
2.8	Extraction of total DNA from paraffin wax-embedded liver tissue sections	42
2.9	Extraction of nuclear DNA from liver samples	42
2.10	Extraction of total DNA from serum samples	43
2.11	Optical Density Spectroscopy	43
2.12	Amplification and sequencing of HBV DNA	43
	2.12.1 PCR primer design	43
	2.12.2 PCR conditions	44
	2.12.3 DNA sequencing	44
2.13	Enumeration of HBV DNA or virus-cell junction copy number by qPCR	45
	2.13.1 Primer design	45
	2.13.2 qPCR conditions	45
	2.13.3 Generation of plasmid DNA standards for Beta Globin	45
2.14	invPCR	46
2.15	invPCR of high molecular weight DNA	48
2.16	Gel extraction in 96-well format	49
2.17	Semi-DOP PCR	49
2.18	qPCR analysis of virus-cell junctions	50
2.19	Computer simulation	51
2.20	Laser microdissection of foci of hepatocytes	51
2.21	Total DNA extraction and invPCR from tissue isolated by laser-microdissection	51
2.22	Calculation of clone size from invPCR of DNA extracts from liver sections	52
2.23	Detection of PreS-mutants in hepatocytes isolated by laser-microdissection	52
2.24	Quantification of methylated HBV DNA CpG regions in hepatocytes	
	isolated by laser-microdissection	53
2.25	Estimation of global methylation of DNA in hepatocytes isolated by	
	laser-microdissection	53
2.26	Imaging mass spectrometry	54
2.27	High pressure Liquid Chromatography Electrospray Ionisation Linear Ion Trap	
	Orbitrap mass spectrometry (HPLC-nESI-LTQ Orbitrap MS)	55
2.28	High Pressure Liquid Chromotography Matrix-assisted Laser Desorption	
	Ionisation Time of Flight tandem Mass Spectrometry (HPLC-MALDI-TOF	
	MS/MS)	56
	2.28.1 HPLC and Fraction Collection	56
	2.28.2 MALDI-TOF MS of HPLC Fractions	57
	2.28.3 Tandem MS of HPLC Fractions	58
2.29	Data processing and visualisation of the distribution of known proteins in tissue	
	sections	58
3.	Methods Optimisation	60
3.1	Introduction	61
3.2	Results	62
		iii

	3.2.1 Op	timisation of genomic-based techniques	62
	3.2.1.1	Approximation of nucleus concentration	62
	3.2.1.2	2 Optimisation of DNA extraction from liver tissue	63
	3.2	2.1.2.1 Total DNA extraction of 5 mg liver tissue fragments	63
	3.2	2.1.2.2 Total DNA extraction of EtOH-fixed paraffin wax-embedded	
		liver tissue sections	64
	3.2	2.1.2.3 Nuclear DNA extraction	65
	3.2	2.1.2.4 Total DNA extraction of hepatocyte foci isolated by	
		laser-microdissection	65
	3.2.1.3	Optimisation of semi-degenerate oligonucleotide primer PCR	66
	3.2.1.4	Optimisation of invPCR	67
	3.2.1.5	Gel purification of high-molecular weight DNA using	
		ultrasonication or partial restriction enzyme digestion	68
	3.2.1.6	5 Human invPCR design and efficiency of inversion reaction	69
	3.2.1.7	Optimisation of detection of long interspersed element (LINE)	
		promoter methylation	70
	3.2.1.8	B HBV DNA CpG island methylation	71
	3.2.2 Op	timisation of proteomic-based techniques	72
	3.2.2.1	Optimisation of imaging mass spectrometry (IMS)	72
	3.2.2.2	2 Optimisation of HPLC-nESI-LTO Orbitrap MS	74
	3.2.2.3	3 Optimisation of HPLC-MALDI-TOF MS/MS	75
	3.2.2.4	Optimisation of visualising the distribution of known proteins in	
		liver tissue sections	76
	3.2.3 Op	stimisation of RNA extraction from frozen liver tissues	77
3.3	Discussion		78
0.0	3.3.1 DNA	A extraction	78
	3.3.2 Dete	ection of virus-cell DNA junctions	78
	3.3.3 Enig	renetic genotyping	79
	3.3.4 Prote	eomic phenotyping	80
	3 3 5 Sum	mary	82
	5.5.5 Sum	ind y	02
4.	Character	isation of liver tissues	84
4.1	Introductio		85
4.2	Experimen	ital Outline	86
43	Results		88
110	4 3 1 Pat	tient details and liver histology reports	88
	432 HE	3V DNA analysis	90
	433 De	tection and localisation of HBV DNA by <i>in situ</i> hybridisation	91
	434 De	tection of HBV antigens by immunohistochemistry	92
	435 HF	$R_{SA,\sigma}$ and Cytokeratin 19 (CK19) localisation by dual	
	i.5.5 III	mmunofluorescence	94
44	Discussion		95
7. 7		assification of nations tissues	95 Q5
	4 4 2 Vi	rological aspects of HBV patients	95 06
		RV antigen expression in cells other than henetocytes	90 07
		mmary	97 08
	н.н. эu	iiiiiai y	70
			iv

5.	Detecti	ion of hepatocyte clones in HBV-infected liver tissues	99
5.1	Introdu	lection	100
5.2	Experimental Outline		
5.3	Results		
	5.3.1	Primer design and restriction enzymes selection for invPCR	104
	5.3.2	Calculation of theoretical maximum fraction of observable virus-cell	
		junctions	105
	5.3.3	Large hepatocyte clones were observed in DNA extracts from 5 mg of liver fragments by invPCR	108
	5.3.4	Characterisation of large clones found in patients XA and CY	109
	5.3.5	InvPCR analysis of DNA extracted from sections of ethanol-fixed liver	111
	536	Bradominantly unique subsets of virus call junctions were observed	111
	5.5.0	using the DryII and the Neel invPCP designs	113
	537	Observed integration sites of HBV DNA are clustered around the	115
	5.5.7	expected right hand and of the delDNA form	113
	538	Observed integration sites are random within the cellular DNA with	115
	5.5.0	respect to chromosomes and genes and do not affect clone size	114
	530	Observed integration sites (but not clone sizes) are weakly associated	114
	5.5.9	with structural/matrix attachment regions (S/MAR)	115
5 /	Discus	sion	115
5.4	5 4 1	$PCR_{amplified}$ DNA artefacts	118
	542	Changes in phenotype directly caused by HBV DNA integration	110
	543	Clonal proliferation due to stem cell activation and proliferation	121
	5.4.4	Increased liver turnover over the course of infection increases stochastic	121
	5.4.4	clonal proliferation or clonal proliferation of henatocytes with survival	
		advantage	122
(C		
0.	Compi	iter simulation of hepatocyte proliferation during chronic HBV	104
<u>c</u> 1	Intec		124
0.1			125
	0.1.1 F	Assumptions	120
	0.1	grown adult	126
	6.1	.1.2 Hepatocyte number in the adult liver remains constant	127
	6.1	.1.3 All hepatocytes are infected at the start of infection	127
	6.1	.1.4 Survival advantages are heritable	127
	6.1.2 F	Program description	128
	6.1.3 F	Parameters	129
	6.1	.3.1 LiverArray size	129
	6.1	.3.2 Connectivity	130
	6.1	.3.3 Focal cell death	131
	6.1	.3.3 Hepatocytes with a survival advantage	132
	6.1	.3.4 Stem-cell populations	133
6.2	Results		133

v

	6.2.1	The current model replicates the results of a previous stochastic	
		simulation	133
	6.2.2	The effect of LiverArray size on complexity, maximum clone size and	
		clone frequency	134
	6.2.3	Connectivity weakly affects clonal proliferation	134
	6.2.4	Stochastic clonal proliferation is highly predictable during liver turnover	135
	6.2.5	Clonal proliferation due to liver growth during development is similar to	that
		of 10 liver turnovers	137
	6.2.6	Focal liver cell death inhibits clonal proliferation	137
	6.2.7	Clonal proliferation is exquisitely sensitive to the introduction of survival	
		advantage	138
	6.2.8	The effect of oval cells is undetectable	139
	6.2.9	Estimation of maximum liver turnovers in chronic HBV patients	139
6.3	Discuss	sion	140
7.	Charae	cterisation of hepatocyte foci	144
7.1	Introdu	ction	145
	7.1.1	Detectable virus-cell DNA junctions in cells other than hepatocytes	146
	7.1.2	Histological changes in hepatocytes that have undergone clonal	
		proliferation	146
	7.1.3	Association between expression of HBV DNA and clonal proliferation	
		of hepatocytes	147
	7.1.4	Mechanisms of heterogeneous expression of HBV antigens	147
	7.1.5	Altered cellular protein expression in hepatocytes	148
	7.1.6	Aims and hypotheses	148
7.2	Experii	mental Outline	149
7.3	Results		150
	7.3.1	Isolation of liver cell subpopulations by laser-microdissection	150
	7.3.2	InvPCR and qPCR analysis of non-hepatocyte cell populations for HBV	
		DNA	151
	7.3.3	Virus-cell junctions were not frequently detected in hepatocytes with	
		large cell change (LCC)	152
	7.3.4	Virus-cell DNA junctions were 2 times more likely to be detected in foci	
		of HBsAg-negative hepatocytes compared to foci of HBsAg-positive	
		hepatocytes	152
	7.3.5	Detected HBV DNA integrations display no preference for particular	
		genes or proximity to S/MAR	153
	7.3.6	HBsAg-positive hepatocytes contain two times more HBV DNA	
		genomes per cell compared to HBsAg-negative hepatocytes	154
	7.3.7	HBV PreS1/S2 mutants were predominantly detected in HBsAg-positive	
		hepatocytes	156
	7.3.8	No significant difference in methylation of HBV DNA was observed	
		between HBsAg-positive and -negative foci of hepatocytes	156
	7.3.9	Cellular protein expression was altered in foci of HBsAg-positive	
		hepatocytes compared to foci of HBsAg-negative hepatocytes	157

	7.3.10	Altered cellular protein expression due to zonal heterogeneity was not observed in liver tissue sections by IMS	159	
	7.3.11	Cellular protein distribution is heterogeneous in liver tissue sections from	יני ו	
		patients with chronic HBV infection compared to HBV non-infected	-	
		controls	161	
7.4	Discus	sion	162	
	7.4.1	Identification of the cell populations that had undergone the clonal		
		proliferation detected by invPCR	162	
	7.4.2	HBsAg expression and clonal proliferation	163	
	7.4.3	Heterogeneous expression of HBsAg	165	
	7.4.4	Heterogeneous expression of cellular proteins	166	
	7.4.5	Summary	169	
8.	Conclu	ıding remarks	170	
8.1	Summa	ary	171	
8.2	Future	work	173	
8.3	Impact	on other fields of study	176	
8.4	Conclu	sion	177	
9.	Appen	dices	178	
9.1	Sequer	ice of pHBV1.3BB4.5	179	
9.2	Meltin	g temperature of Southern hybridisation probe	181	
9.3	Efficiency of self-ligation of excised virus-cell DNA junctions in the invPCR			
	proto		182	
	9.3.1	Assumptions Coloulation of factor i	182	
	9.5.2	Calculation of factor j	182	
	9.3.3	Carculation of factor <i>i</i>	183	
0.4	9.3.4 Comios	Caculation of <i>J/l</i>	185	
9.4	Copies	of Etnics Approval forms	180	
	9.4.1	NSW Health UDEC approval for Protocols #V10,0072 and	180	
	9.4.2	HUDEC/10/DDA11/120	107	
	0 4 3	#IREC/10/RFAH/150 For Chase Cancer Center Institutional Deview Deard approvals for	10/	
	9.4.5	Protocols #21, 281 and #08, 801	190	
	044	Southern Clinical HPEC approval for Protocol #171.11 and	109	
	9.4.4	amondmonts	102	
	0.4.5	amenuments Devel Adeleide Heapitel HPEC approvel for Protocol #050802	192	
0.5	9.4.J Drotoin	Royal Adelaide Hospital IREC approval for Flotocol #050805	195	
9.5	lvee	tos of hanatogytos isolatad by lasor microdissociion of NHL tissue	104	
	1ysa	ViveSpin purified lysates of hepatocytes	194	
	9.5.1	Populson purified lysates of hepotocytes	194	
0.6	9.J.2 Drotein	represent purmed rysales of hepatocytes	199	
9.0	digo	s detected by III EC MALDI-TOP MS/MS results from trypsin-		
	by 1	sicu, repopul Cro opin commi-purmen or nepatocytes isolated	202	
07	The LI	aser-interodissection of Will ussue	203	
7.1	971	Patient C	200 206	
	7.1.1		200	

vii

	9.7.2	Patient CN	206
	9.7.3	Patient CY	207
	9.7.4	Patient CYRY	207
	9.7.5	Patient DG	208
	9.7.6	Patient FMC1	208
	9.7.7	Patient FMC2	208
	9.7.8	Patient FMC3	208
	9.7.9	Patient FMC4	208
	9.7.10	Patient FMC5	209
	9.7.11	Patient FMC6	209
	9.7.12	Patient FMC7	209
	9.7.13	Patient GS1	209
	9.7.14	Patient GS2	210
	9.7.15	Patient GS3	210
	9.7.16	Patient GS4	210
	9.7.17	Patient GS5	210
	9.7.18	Patient HN	211
	9.7.19	Patient HS	211
	9.7.20	Patient L	211
	9.7.21	Patient MH	212
	9.7.22	Patient NT	212
	9.7.23	Patient SAAO	212
	9.7.24	Patient WN	212
	9.7.25	Patient XA	213
	9.7.26	Patient Y2	213
	9.7.27	Patient Y3	213
	9.7.28	Patient Y4	214
	9.7.29	Patient Y5	214
	9.7.30	Patient Y6	214
9.8	Sequen	nces of virus-cell DNA junctions	215
	9.8.1	Patient C	215
	9.8.2	Patient CN	216
	9.8.3	Patient CY	216
	9.8.4	Patient CYRY	217
	9.8.5	Patient DG	217
	9.8.6	Patient FMC1	218
	9.8.7	Patient FMC2	218
	9.8.8	Patient FMC3	218
	9.8.9	Patient FMC4	219
	9.8.10	Patient FMC5	219
	9.8.11	Patient FMC6	219
	9.8.12	Patient FMC7	219
	9.8.13	Patient GS1	220
	9.8.14	Patient GS2	220
	9.8.15	Patient GS3	220
	9.8.16	Patient GS4	220
			viii

0.	Refere	nces	249
	positiv	e patients	242
	nESI-L	TQ Orbitrap MS in multiple liver tissue sections of HBV-negative and -	
9.10	Ion ma	ps of mass peaks corresponding to proteins identified by IMS and HPLC-	
	9.9.4	Source code for the 2D visualisation of stochastic clonal proliferation	237
	9.9.3	Source code for the simulation of stochastic clonal proliferation	230
	9.9.2	Cell selection	230
	9.9.1	Random number generation	230
9.9	Compu	iter programming	230
	9.8.30	Patient Y6	228
	9.8.29	Patient Y5	227
	9.8.28	Patient Y4	225
	9.8.27	Patient Y3	224
	9.8.26	Patient Y2	223
	9825	Patient XA	222
	9.6.23	Patient WN	221
	9.0.22	Patient NA	221
	9.8.21	Patient NT	221
	9.8.20	Patient L Datient MIL	220
	9.8.19	Patient HS	220
	9.8.18	Patient HN	220
	9.8.17	Patient GS5	220

10. References

Abstract

Chronic hepatitis B virus (HBV) infection causes liver disease that can progress to cirrhosis and hepatocellular carcinoma (HCC). Changes in the hepatocyte population that occur from the early immune-tolerant stage of infection to late-stage disease outcomes remain unclear. We hypothesised that some hepatocytes lose HBV antigen expression and escape the HBVspecific immune response, allowing them to undergo clonal proliferation. Clonal proliferation of altered hepatocytes may be a marker of disease progression and may have a direct role in the development of HCC.

Liver tissues from 30 patients were analysed, including patients with early-stage HBV infection, late-stage infection with cirrhosis, or with HCC. Unique virus-cell DNA junctions formed by the integration of HBV DNA into the host cell genome were detected using inverse nested PCR (invPCR). The copy number of unique virus-cell DNA junctions was used as a measure of clonal proliferation of hepatocytes. A computer simulation of a liver undergoing stochastic liver turnover was used to determine if the hepatocyte clones observed by invPCR could have been formed by random chance. Immunohistochemistry for HBV surface antigen (HBsAg) expression and Imaging Mass Spectrometry (IMS) for cellular protein expression were carried out to detect cellular changes that may be associated with clonal proliferation.

Significantly (p<0.01) larger clones were observed by invPCR in liver DNA extracts of patients with late-stage HBV-associated disease (\leq 280000 hepatocytes) compared to patients in early-stage HBV infection (8-1124 hepatocytes). Computer simulations indicated that stochastic turnover could not produce clones of >10000 hepatocytes, suggesting that the hepatocytes that had formed large clones had a survival advantage. No significant difference in the extent of clonal proliferation was observed in foci of HBsAg-positive and -negative hepatocytes isolated by laser-microdissection. Heterogeneous expression of cellular proteins was detected using IMS in hepatocytes with apparently normal histology.

These results indicate that clonal proliferation of hepatocytes with survival advantage does occur in the hepatocyte population during chronic HBV infection and can be detected before histological changes are evident in the hepatocytes of patients with both early- and late-stage disease. Consistent with our hypothesis, larger hepatocyte clones were associated with disease progression. The cause of the clonal proliferation remains unknown. Contrary to our

hypothesis, loss of HBsAg expression was not associated with increased clonal proliferation, suggesting that escape from HBsAg-specific immune attack is not a survival advantage. While not investigated in this thesis, the loss of expression of other HBV antigens may provide a survival advantage. Heterogeneous cellular protein expression suggests that hepatocyte phenotype has been altered in some hepatocytes. However, we could not show using invPCR approaches that the foci of hepatocytes with altered cellular protein expression were clonal.

In conclusion, this research has provided groundwork in determining the relationship between the clonal proliferation of hepatocytes, altered hepatocyte phenotype and HBV-associated disease progression. Further studies into the molecular causes of clonal proliferation of hepatocytes with survival advantages could elucidate pathways of HBV-associated disease progression and novel ways to curb the evolution of the hepatocyte population to a less pathogenic state.

Declaration

NAME: Thomas Tu

PROGRAM: Doctor of Philosophy (Ph.D.)

I declare that no material from this work has been submitted for the award of any other degree or diploma in the University of Adelaide or any other tertiary institution. To the best of my knowledge and belief, this work contains no material previously published or written by another person, except where due reference has been made in the text.

I consent to this copy of my thesis being made available for circulation and photocopying for purposes of study and research in accordance with the rules established by the University of Adelaide and subject to the provisions of the Copyright Act 1968.

I consent for the digital version of my thesis to be made available on the Internet via the University of Adelaide digital research repository, the Barr Smith Library catalogue, the Australian Digital Thesis Program and through web search engines, unless permission has been granted by the University of Adelaide to restrict access for a period of time.

Thomas Tu

October, 2012

Acknowledgements

First and foremost, I would like to acknowledge A/Prof. **Allison Jilbert**, for accepting me into her laboratory to do my Ph.D. project and nurturing my growth as a person and a scientist. Her guidance and encouragement has honed me and my research into something that I am proud of.

Also, I acknowledge my co-supervisors: Emeritus Prof. **William Mason** (FCCC), who not only supervised me during the early parts of my candidature, but also has provided me with bench experience, feedback and helpful conversations through my time as a Ph.D. student; and Dr. **Uwe Stroeher**, who brought new knowledge to my project and has supported me with his mentoring.

I have made almost-familial bonds with past and present lab mates, to whom I express deep thanks for support and conversations, scientific and not. Special thanks to Ms. **Catherine Scougall**, who has eagerly helped out in technical lab work, thesis editing and proofreading; Ms. **Huey Chi Low**, who has laid down many foundation techniques required for this project; and Dr. **Georget Reaiche-Miller**, whose experience in the lab and scientific life has continually helped me throughout my candidature.

I am also indebted to the significant contribution by collaborators to this project: A/Prof. **Hugh Harley** (RAH), Prof. **Geoff McCaughan** (Centenary Institute), and Drs. **Nick Shackel** (Centenary Institute), **John Chen** (FMC), and **Andrew Ruszkiewicz** (IMVS) for providing access to liver tissues; A/Prof. **Andrew Clouston** (UQ) for histological interpretation; **eResearch SA** for computing time; Mr. **Ashleigh Brook** and Mr. **Luke Maurits** for invaluable help on mathematics and programming; Mr. **Johan Gustaffson**, Ms. **Yin Ying Ho** and A/Prof. **Peter Hoffmann** (APC) for their collaboration, conversations about proteomics theory and conducting of the mass-spectrometry experiments; and to the **patients who have volunteered their liver tissues** that this research could be possible.

I acknowledge my financial support during my Ph.D. through a Faculty of Science Divisional Scholarship. I also would like to thank the staff and students at the School of Molecular and Biomedical Sciences, and the University of Adelaide for their support throughout my student life.

On a personal note, I would like to thank all my friends and family. In particular, I would like to acknowledge my mother, Mrs. **Tee Wu**, whose upbringing, sacrifices and hot meals have made me who I am today. Finally, thanks to Ms. **Miriam Kleinig** for her tender warmth, support and love.

"A poet once said, "The whole universe is in a glass of wine." We will probably never know in what sense he meant that, for poets do not write to be understood. But it is true that if we look at a glass of wine closely enough we see the entire universe. There are the things of physics: the twisting liquid which evaporates depending on the wind and weather, the reflections in the glass, and our imagination adds the atoms. The glass is a distillation of the Earth's rocks, and in its composition we see the secrets of the universe's age, and the evolution of stars. What strange arrays of chemicals are in the wine? How did they come to be? There are the ferments, the enzymes, the substrates, and the products. There in wine is found the great generalization: all life is fermentation. Nobody can discover the chemistry of wine without discovering, as did Louis Pasteur, the cause of much disease. How vivid is the claret, pressing its existence into the consciousness that watches it! If our small minds, for some convenience, divide this glass of wine, this universe, into parts — physics, biology, geology, astronomy, psychology, and so on — remember that Nature does not know it! So let us put it all back together, not forgetting ultimately what it is for. Let it give us one more final pleasure: drink it and forget it all!"

- Richard P Feynman, Volume I, 3-10, The relation of Physics to other sciences

Publications and presentations resulting from this thesis

Manuscripts in preparation

Tu, T., Mason, W.S., Low, H.C., Clouston, A., Stroeher, U., and Jilbert A.R. Clonal proliferation of hepatocytes is associated with disease progression in chronic hepatitis B virus infection.

Tu, T., Gustafsson, J., Ho, Y.Y., Mason, W.S., Clouston, A., Stroeher, U., and Jilbert A.R. Heterogeneous viral and cellular protein expression in hepatocytes during chronic hepatitis B virus infection – analysis by imaging mass-spectrometry.

Tu, T., Ruszkiewicz, A., Clouston, A., and Jilbert A.R.

Liver cell coexpression of hepatitis B surface antigen and cytokeratin 19 during chronic HBV infection.

Oral presentations at international conferences

Tu, T., Mason, W.S., Low, H., Clouston, A., Stroeher, U., and Jilbert A.R. (2012)
Clonal proliferation of hepatocytes in chronic hepatitis B virus infection.
14th International Symposium on Viral Hepatitis and Liver Disease, Shanghai International
Convention Centre, 24th June 2012

Tu, T., Mason, W.S., Low, H., Clouston, A., Stroeher, U., and Jilbert A.R. (2010)
Clonal proliferation of hepatocytes in chronic hepatitis B virus infection.
The International Meeting for the Molecular Biology of Hepatitis B Viruses, Academia Sinica,
Taipei, Taiwan, 12th October 2010

Poster presentations at international conferences

Tu, T., Mason, W.S., Low, H., Clouston, A., Grosse, A., Stroeher, U., and Jilbert A.R. (2009) Clonal proliferation of hepatocytes in chronic hepatitis B virus infection. The International Meeting for the Molecular Biology of Hepatitis B Viruses, Vinci International Convention Centre, Tours, Loire Valley, France, 30th August 2009.

Oral presentations at national conferences

Tu, T., Mason, W.S., Low, H., Clouston, A., Stroeher, U., and Jilbert A.R. (2011) Clonal proliferation of hepatocytes in chronic hepatitis B virus infection. Australian Centre for HIV and Hepatitis Virology Workshop 2011, Twin Waters Resort, Sunshine Coast, QLD, 1st June 2011. **Tu, T.**, Mason, W.S., Low, H., Clouston, A., Grosse, A., Stroeher, U., and Jilbert A.R. (2009) Clonal proliferation of hepatocytes in chronic hepatitis B virus infection. Australian Centre for HIV and Hepatitis Virology Workshop 2009, Crowne Plaza, Terrigal, NSW, 3rd June 2009.

Tu, T., Low, H., Grosse, A., Miao, Y., Mason, W.S., and Jilbert A.R. (2008)
Clonal proliferation of hepatocytes in chronic hepatitis B virus infection.
Australian Centre for HIV and Hepatitis Virology Workshop 2008, Novotel Barossa Valley
Resort, SA, 4th June 2008.

Tu, T., Low, H., Miao, Y., Mason, W.S., and Jilbert A.R. (2007)
Clonal proliferation of hepatocytes in chronic hepatitis B virus infection.
Australian Centre for Hepatitis Virology Workshop 2007, Burnet Institute, Melbourne, 15th May 2007.

Oral presentations at awards presentations

Tu, T., Low, H., Grosse, A., Miao, Y., Mason, W.S., and Jilbert A.R. (2008)
Clonal proliferation of hepatocytes in chronic hepatitis B virus infection.
The Australian Society for Microbiology (SA Branch) 2008 Student Awards Night, Flinders
Medical Centre, Adelaide, 26th November 2008.

Poster presentations at national conferences

Tu, T., Mason, W.S., Low, H., Clouston, A., Grosse, A., Stroeher, U., and Jilbert A.R. (2009)
Clonal proliferation of hepatocytes in chronic hepatitis B virus infection.
Australian Society of Microbiology meeting 2009, Perth Convention Exhibition Centre, Perth, 6th July 2009.

Tu, T., Low, H., Miao, Y., Mason, W.S., and Jilbert A.R. (2007)
Clonal proliferation of hepatocytes in chronic hepatitis B virus infection.
4th Australian Virology Group Meeting 2007, Kingfisher Bay Resort, Frazer Island, 9th December 2007.

Oral presentations in a seminar series

Tu, T., Mason, W.S., Low, H., Clouston, A., Stroeher, U., and Jilbert A.R. (2009)
Clonal proliferation of hepatocytes in chronic hepatitis B virus infection.
Medical Infectious Diseases Research Seminar Series, Institute of Medical and Veterinary
Science (Now SA Pathology), Adelaide, 27th August 2010.

Tu, T., Mason, W.S., Low, H., Clouston, A., Grosse, A., Stroeher, U., and Jilbert A.R. (2009)

Clonal proliferation of hepatocytes in chronic hepatitis B virus infection.

Infectious Diseases Laboratories Research Seminar Series, Institute of Medical and Veterinary Science (Now SA Pathology), Adelaide, 24th April 2009.

Tu, T., Low, H., Grosse, A., Miao, Y., Mason, W.S., and Jilbert A.R. (2008)
Clonal proliferation of hepatocytes in chronic hepatitis B virus infection.
Infectious Diseases Laboratories Research Seminar Series, Institute of Medical and Veterinary
Science (Now SA Pathology), Adelaide, 13th June 2008.

Bold represents presenting author

Awards resulting from this thesis

Invited Guest Speaker Honorarium from 14th International Symposium on Viral Hepatitis and Liver Disease, valued at USD \$1500 (Awarded in 2012)

Integrated Science Young Achievement award at Australian Centre for HIV and Hepatitis Virology Workshop 2011, valued at AUD \$500 (Awarded in 2011)

Student Travel Grant Award, International Meeting for Molecular Biology of HBV, valued at USD \$800 and USD \$1100 (Awarded in 2009 & 2010)

ASM SA Branch Student Award, valued at AUD \$1500 (Awarded in 2008)

Abbreviations

Abbreviation	Full Meaning
%GC	Guanosine and Cytosine content (expressed as a percentage)
~	Approximately
<	Less than
=	Equal to
>	Greater than
\geq	Greater than or equal to
°C	degree(s) Celsius
μg	Microgram(s)
μL	Microlitre(s)
μΜ	Micromolar
μm	Micrometre(s)
5'-CG-3'	Cytosine-guanadine dinucleotide sequences
Ab	Antibodies
ABC	Avidin-Biotin Complex
ABI	Applied Biosystems
ACN	Acetonitrile
AFP	Alpha Fetoprotein
ALT	Amino liver transferase
APC	Adenomatous Polyposis Coli
BCIP	5-Bromo-4-chloro-3-indolyl phosphate
BLAST	Basic Local Alignment Search Tool
bp	Base pairs
BRDU	5-bromo-2'-deoxyuridine
BSA	Bovine serum albumin
cccDNA	Covalently closed circular DNA
CCl4	Carbon tetrachloride
Cdie	Cell nominated for cell death
CHCA	α-cyano-4-hydroxycinnamic acid
CK19	Cytokeratin 19
Clive	Cell nominated to replace dying cell
cm	Centimetre(s)
CNTF	Ciliary Neurotrophic Factor
COBRA	Combined Bisuphite and Restriction Analysis

COX	Cytochrome c oxidase
СРМ	Counts per minute
CV	Central Vein
Da	Dalton(s)
DAB	3,3'-Diaminobenzidine tetrahydrochloride
dCTP	Deoxycytidine
DHBV	Duck hepatitis B virus
DMNT	DNA methyltransferase
DNA	Deoxyribonucleic acid
DOP	Degenerate Oligonucleotide Primer
DR	Direct repeat sequence
dslDNA	Double-stranded linear DNA
DTT	Dithiothreiatol
E. coli	Escherichia coli
EAA	Ethanol acetic acid
EDTA	Ethylene-diamine-tetraacetic acid
ELISA	Enzyme-linked immunosorbent assay
ER	Endoplasmic Reticulum
EST	Database of Expressed Sequence Tags
EtOH	Ethanol
F	Frequency
FA	Formic Acid
FAH	Foci of altered hepatocytes
FCCC	Fox Chase Cancer Center
FH	Fulminant Hepatitis
g	Gram(s)
GGH	Ground Glass Hepatocytes
H&E	Haematoxylin & eosin
H2O	Water
HBcAg	Hepatitis B core antigen
HBeAg	Hepatitis B e antigen
HBsAg	Hepatitis B surface antigen
HBV	Hepatitis B virus
HBx	Hepatitis B x protein
HCC	Hepatocellular carcinoma

HCl	Hydrochloric acid
HCV	Hepatitis C Virus
HPLC	High-pressure liquid chromatography
HPLC-nESI-LTQ	High Pressure Liquid Chromotography Electrospray Ionisation
Orbitrap MS	Linear Ion Trap Orbitrap Mass Spectrometry
hr	Hour(s)
HREC	Human Research Ethics Committee
hTERT	Human Telomere Reverse Transcriptase
ID	Unique identifier
IMS	Imaging Mass-Spectrometry
IMVS	Institute of Medical and Veterinary Science
invPCR	Inverse nested PCR
kbp	Kilobase pair
kDa	Kilodalton(s)
L	Litre(s)
lacZ	Beta-galactosidease gene
LB	Luria broth
LCC	Large cell change
LHBs	Large Hepatitis B surface antigen
LINE	Long interspersed elements
LTQ	Linear Ion Trap
Μ	Molar
m/z	Mass:Charge ratio
mA	Milliampere(s)
MALDI	Matrix-assisted laser-desorption/ionisation
mg	Milligram(s)
MgCl2	Magnesium chloride
MHBs	Medium Hepatitis B surface antigen
MHC	Major histocompatability complex
min	Minute(s)
mL	Millilitre(s)
mM	Millimolar
mm	Millimetre(s)
MPN	Most Probable Number
mRNA	Messenger Ribonucleic Acid

MS	Mass spectometry
MW	Molecular weight
NaCl	Sodium chloride
NB	Needle Biopsy
NBT	Nitro blue tetrazolium chloride
NCBI	National Center for Biotechnology Information
ND	Not Detected
NEB	New England Biolabs
nESI	Nano-electrospray ionisation
NHEJ	Non-homologous end joining
NHL	Normal human liver
nm	nanometre(s)
NP40	Nonidet-P40
nt	Nucleotide(s)
O/N	Overnight
ORF	Open reading frame
PAS-D	Periodic acid schiff - diastase
PBS	Phosphate-buffered saline
PCA1	Procollagenase alpha 1
PCNA	Proliferating cell nuclear antigen
PCR	Polymerase chain reaction
PD-1	Programmed Death 1
PD-1L	Programmed Death-1 Ligand
PEN	Polyethylene Napthalate
pgRNA	Pregenomic RNA
РК	Proteinase K
pM	Picomolar
pol	Hepatitis B polymerase protein
РТ	Portal tract
qPCR	Quantitative Polymerase Chain Reaction
R	Resistant
RB1	Retinoblastoma-1
rcDNA	Relaxed circular DNA
RE	Restriction enzyme(s)
RI	Replicative intermediates

RNA	Ribonucleic acid
rnd	Random number
RP-HPLC	Reverse Phase High Pressure Liquid Chromatography
rpm	Revolutions per minute
RT	Room temperature
8	Second(s)
S	Sensitive
S/MAR	Structural and Matrix Attachment Regions
S/N	Supernatant
SA	Survival advantage
SAdie	Survival advantage of the cell nominated for cell death
SAlive	Survival advantage of the cell nominated to replace dying cell
SCC	Small cell change
SD	Standard Deviation
SDS	Sodium dodecyl sulphate
SHBs	Small Hepatitis B surface antigen
SINE	Short interspersed elements
SSC	Saline sodium citrate
TAE	Tris-acetate EDTA
TE	Tris-EDTA
TGF	Tumour Growth Factor
Tm	Melting temperature
ТО	Turnover(s)
TOF	Time of Flight
TOF/TOF	Tandem Time of Flight
TRF1/2	Telomere Repeat Binding Factor1/2
Tris	2-amino-2-hydroxymethyl-1,3-propanediol
U	unit(s)
ULN	Upper limit normal
UV	Ultraviolet
V	Volt(s)
WHO	World health organisation
WHV	Woodchuck hepatitis virus
X-Gal	Bromo-chloro-indolyl-galactopyranoside
α-HBcAb	Antibodies specific against hepatitis B core antigen

α-HBeAb	Antibodies specific against hepatitis B e antigen
α-HBsAb	Antibodies specific against hepatitis B surface antigen
3	Epsilon region