EPIGENETICS IN CANCER: BASIC AND TRANSLATIONAL ASPECTS

SUE PING LIM

B. Med. & Pharm. Biotech. (Chem.)

BSc. (Honours, Nano- & Bio-materials)

This thesis is presented for the degree of Doctor of Philosophy of

THE UNIVERSITY OF ADELAIDE

SCHOOL OF MEDICINE

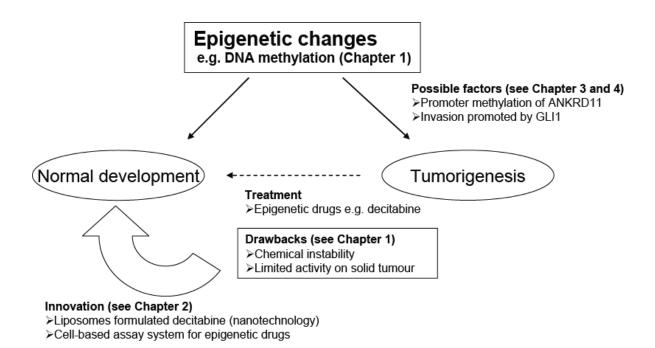
DISCIPLINE OF MEDICINE

JULY 2012

TABLE OF CONTENT

OVERVIEW	vi
DECLARATION	ix
*LIST OF PUBLICATIONS ARISING FROM THIS THESIS	X
ACKNOWLEDGEMENTS	xi
LIST OF FIGURES	xiii
LIST OF TABLES	XV
LIST OF ABBREVIATIONS	xvi
CHAPTER 1: INTRODUCTION-THE APPLICATION OF DELIVERY SYSTEM	S FOR
DNA METHYLTRANSFERASE INHIBITORS	1
1.1 Foreword	5
1.2 Abstract.	6
1.3 Introduction	7
1.4 Demethylating cytidine analogs	13
1.5 Demethylating non-nucleoside analogs	20
1.6 Drug delivery systems	26
1.6.1 Pharmacokinetics of azanucleosides	28
1.6.2 Inactivation of the drugs	30
1.6.3 Instability of the drugs	31
1.6.4 Improving cellular uptake	34
1.6.5 Metabolism of cytidine analogs	35
1.6.6 Specific targeting	36

1.6.7 Development of controlled-release approaches	
1.6.8 Nanotechnology and drug delivery	
1.7 Conclusions	43
1.8 Acknowledgments	43
CHAPTER 2: DEVELOPMENT OF A NOVEL CELL-BASED ASSAY SY	STEM
EPISSAY FOR SCREENING EPIGENETIC DRUGS AND LIPOSOMES	
FORMULATED DECITABINE	
2.1 Foreword	50
2.2 Abstract.	51
2.3 Introduction	
2.4 Materials and Methods	56
2.4.1 Plasmids	56
2.4.2 Cell culture	58
2.4.3 Reagents	58
2.4.4 Preparation of liposomal decitabine	58
2.4.5 Liposomes characterisation	59
2.4.6 Generation of stable cell line and clonal selection	59
2.4.7 Quantitative real-time polymerase chain reaction (RT-qPCR)	60
2.4.8 Western blotting	60
2.4.9 Flow cytometry	61
2.4.10 Statistical analysis	61
2.5 Results	62


2.5.1 Development of a cell-based assay system EPISSAY for scre	ening epigenetic
drugs	62
2.5.2 Proof of principle of the assay system	67
2.5.3 The physiochemical properties of liposomal decitabine	69
2.5.4 The potency of liposomal formulated decitabine and pure dru	ig tested in the
EPISSAY system	71
2.6 Discussion	74
2.7 Acknowledgements	78
2.8 Supplementary Information	79
A) Supplementary Materials and Methods	
B) Supplementary Results	
C) Supplementary Discussion	93
CHAPTER 3: SPECIFIC-SITE METHYLATION OF TUMOUR SUI	PPRESSOR
ANKRD11 IN BREAST CANCER	94
3.1 Foreword	100
3.2 Abstract.	101
3.3 Introduction	
3.4 Materials and Methods	104
3.4.1 Clinical sample collections	
3.4.2 Cell culture	104
3.4.3 Treatment with DNA methyltransferase inhibitors	105
3.4.4 Luciferase reporter system	
3.4.5 RT-qPCR	

3.4.6 SEQUENOM MassARRAY EpiTYPER for methylation analysis10	7
3.5. Results	2
3.5.1 ANKRD11 is downregulated in human breast tissues	2
3.5.2 ANKRD11 expression in breast cell lines is restored by DNMT inhibitors11	7
3.5.3 Identification of ANKRD11 promoter	0
3.5.4 The ANKRD11 promoter is methylated in breast cancer	2
3.5.5 Site-specific methylation of ANKRD11 promoter	3
3.5.6 Site-specific mutation and DNA methylation silence ANKRD11 expression. 13	1
3.5.7 Relationship of DNMTs and ANKRD11 expression134	4
3.6 Discussion	7
3.7 Acknowledgements	9
CHAPTER 4: DIFFERENTIAL EXPRESSION OF ANKRD11 AND GL11 IN DUCTA	L
CARCINOMA IN SITU AND INVASIVE CARCINOMA OF THE BREAST14	0
4.1 Foreword14	0
4.2 Abstract	2
4.3 Introduction	4
4.4 Materials and Methods14	8
4.4.1 Clinical sample collections	8
4.4.2 Plasmids14	8
4.4.3 Cell cultures and transfection	8
4.4.4 Reporter Assays	9
4.4.5 Treatment	9
4.4.6 RT-qPCR	0

4.4.7 Statistical analysis	150
4.5 Results	152
4.5.1 ANKRD11 and GLI1 are variably expressed in different grades of invasiv	e breast
cancer	152
4.5.2 Expression of GLI1 and ANKRD11 in different types of breast cancer	156
4.5.3 GLI1 and ANKRD11 mRNA expression in breast cell lines	161
4.5.4 The ANKRD11 promoter region between -689 and +306 bp may not be the	e binding
site for GLI1	165
4.6 Discussion	169
4.7 Acknowledgements	172
GENERAL DISCUSSION	173
FINAL CONCLUSION	183
BIBLIOGRAPHY	184

OVERVIEW

Figure: EPIGENETICS IN CANCER: Basic and Translational Aspects

This thesis investigates epigenetics in cancer with particular emphasis on breast cancer. There are two major themes, see Figure above. The first theme relates to the potential for assessing and developing more efficient epigenetic drugs while the second theme investigates mechanism of downregulation of *ANKRD11*, a putative tumour suppressor gene, in human breast cancer. This thesis is in the publication format with Chapters 1 and 3 as published articles, Chapter 2 submitted for publication and Chapter 4 as a manuscript in preparation.

Theme 1: To improve the epigenetic-based therapeutic approach (Chapter 1 and 2)

One of the roles that epigenetics plays in cancer development is the inhibition of transcription of tumour suppressor genes. Chapter 1, published as a review in *Biodrugs*, examines the knowledge of currently available therapeutic approaches related to epigenetic mechanisms such as DNA methylation for cancer treatment. Drug-related issues that could influence the application of therapeutics for clinical use are reviewed and possible developments to improve the clinical use of the drugs explored. Epigenetic-based drugs are emerging as anti-cancer therapies in the clinic. Existing demethylating agents have poor pharmacological properties that limit their clinical use, and the application of nano-based encapsulation to resolve these issues is discussed.

Chapter 2, submitted as an original research article to *Biodrugs*, presents the development and assessment of an assay to allow comparison of epigenetic-related drugs in a high throughput format. Decitabine is encapsulated in a liposomal formulation and the potency of this newly formulated decitabine and existing drugs are effectively compared using the developed assay system. Further development and validation of the assay system and the liposomal formulated decitabine, not included in the submitted manuscript are included as supplementary data.

Theme 2: Investigation of gene silencing mechanism of tumour suppressor ANKRD11 (Chapter 3 and 4)

ANKRD11 is novel gene that was previously characterised in our laboratory, and found to be a putative tumour suppressor gene and a p53-coactivator (Neilsen et al. 2008). Chapter 3, published in *European Journal of Cancer*, investigates the mechanism of downregulation of *ANKRD11* in human breast cancer. This chapter identifies the promoter sequence of *ANKRD11*,

demonstrates the critical region of the *ANKRD11* promoter subjected to DNA methylation, and associates the DNA methylation levels of *ANKRD11* with its gene expression and clinical data. Further analysis of the DNA methylation pattern of this gene revealed a putative GLI1 transcription-factor binding site within the localised region of the promoter that is methylated.

Chapter 4, presented as a manuscript in preparation, further explores the relationship between ANKRD11 and GLI1 in breast cancer. GLI1 is a Hedgehog signalling transcription factor, which has been shown to be involved in breast cancer development. This study analyses the transcriptional activity of *ANKRD11* in the cells overexpressed with GLI1 and quantifies differential expression of these two genes in different stages of breast cancer. Future experiments to confirm and extend these exciting preliminary findings are discussed.

The final chapter of this thesis summarises the findings of these studies and possible future research directions. The impact of these findings for the development of anti-cancer drugs, and the possible role of expression of *ANKRD11* and *GLI1* in breast cancer are highlighted.

DECLARATION

I, Sue Ping Lim, certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis (as listed*) resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed...... Date.....

*LIST OF PUBLICATIONS ARISING FROM THIS THESIS

CHAPTER 1

Lim et al. (2011). The application of delivery systems for DNA methyltransferase inhibitors. *BioDrugs*; 25 (4): 227-242.

CHAPTER 2

Lim et al. (2012).Development of a novel cell-based assay system EPISSAY for screening epigenetic drugs and liposomes formulated decitabine. *Biodrugs*; *Submitted*.

CHAPTER 3

Lim et al. (2012). Specific-site methylation of tumour suppressor ANKRD11 in breast cancer. *European Journal of Cancer; In Press.*

Copyright holder for dissertation (but not for commercial purposes):

Sue Ping Lim (candidate)

ACKNOWLEDGEMENTS

"The only reason for time is so that everything doesn't happen at once."

- Albert Einstein

My career started under supervision of Prof. Peter Majewski from University of South Australia and Dr. Brendon King from SA water who have instrumented me with the right tools for my next approach.

In term of encouraging me to pursue an education,

I start by thanking my previous employer A/ Prof. Donald S. Anson from Women's and Children's Hospital, Adelaide, my parents, sisters and brother, for whom education was a natural form of achievement.

Additionally, it is a privilege to acknowledge the contribution of the following individuals to the work presented herein.

First and foremost, Prof. David F. Callen, my principal supervisor, whose support and advice were invaluable throughout the candidature that allowed me to accomplish every task with extra assurance.

Dr. Raman Kumar, my external supervisor and my mentor, for his scientific inspiration, bountiful guidance, invaluable advice and extensive helps in permitting me to become an independent scientist.

Prof. Clive Prestidge, my external supervisor, for his advice and assistance, and many useful suggestions that presented in a counterpoint to the academic window.

Dr. Rachel Suetani, my colleague and a wholehearted mate, for her advice in research ethics, logical thinking, manuscript preparation, writing and statistical analysis.

Prof. Fritz Aberger, an expert in Hedgehog signalling pathway, for his generous guidance in expanding the knowledge of science.

Furthermore, I would also like to express my truthful gratitude to

Cancer Therapeutics Laboratory, School of Medicine and The University of Adelaide, for providing me with a stimulating atmosphere and financial support;

The University of Adelaide, and South Australian Health and Medical Research Institute (SAHMRI), for giving an opportunity to wider my view in a different country.

In addition, I would like to thank my colleagues, especially Dr. Paul M. Neilsen, Renee Schulz, Kristen Ho, Bee Suan Tay and Cui Xia Wang, for their technical supports.

Special thanks to my husband Victor, for all his supports to make the success of this challenging candidature possible.

LIST OF FIGURES

Figure 1.1 The catalytic mechanisms of DNA methyltransferase (DNMT) that occur during the
methylation of physiologic cytidine and cytidine analogs (DNMT inhibitors)9
Figure 1.2 Chemical structures of compounds identified as having demethylation
potency18
Figure 1.3 Mechanisms of action of non-nucleoside-based demethylating agents
Figure 1.4 Proposed nano-controlled release system of decitabine
Figure 2.1 The design of cell-based assay system
Figure 2.2 Flow cytometric assessment and western blot
Figure 2.3 Proof of principle of the assay system
Figure 2.4 The comparison of pure and newly-formulated epigenetic drugs using
EPISSAY72
Figure S1 Sensitivity of different nitroreductase genes to CB1954
Figure S2 Western blot of the single clones of stable MCF10A cells transduced with viruses
expressing RFP-TMnfsB
Figure S3 Flow cytometric assessment of EPISSAY cells prior to CMV methylation
analysis
Figure S4 Epigram showing methylation levels of the CMV promoter
Figure S5 Amplicon design and the target region for methylation analysis
Figure S6 Controlled release study of liposomal decitabine
Figure S7 The comparison of the toxicity of pure and newly-formulated decitabine using
EPISSAY

Figure 3.1 ANKRD11 is downregulated in breast tumours	115
Figure 3.2 Variant B [NM_013275.4] is responsible for higher levels of ANKRD11 exp	ression
in T14 tumour	. 116
Figure 3.3 ANKRD11 is upregulated in breast cell lines after treatment with DNMT	
inhibitors	118
Figure 3.4 Characterisation of the ANKRD11 promoter	121
Figure 3.5 Methylation patterns of the ANKRD11 promoter in human breast cancer	125
Figure 3.6 Relationship of tumour grade, ER, PR and MIB-1 status, and methylation level	el at unit
7	127
Figure 3.7 Amplicon design and the target region for methylation analysis	128
Figure 3.8 Average methylation levels of all CpG units in PF2 and PF3	130
Figure 3.9 In vitro methylation and site-directed mutagenesis of ANKRD11 promoter	132
Figure 3.10 Levels of DNMT1 and DNMT3B mRNA were assayed in human breast	
tissues	135
Figure 4.1 The relationship of GLI1 and ANKRD11 expression in invasive breast cancer	r. 154
Figure 4.2 The GLI1 and ANKRD11 expressions in DCIS and IBC	160
Figure 4.3 The relationship of ANKRD11 and GLI1 in breast cancer cell lines	163
Figure 4.4 The transcriptional activity of ANKRD11, PTCH and PTCH_mut	167

LIST OF TABLES

Table 1.1 Demethylating agents: cytidine analogs	14
Table 1.2 Demethylating agents: non-nucleoside analogs	23
Table 1.3 Modification of demethylating agents to improve their delivery	27
Table 2.1 PCR primers used in this study	57
Table 2.2 The physiochemical properties of the liposomes	70
Table 3.1 Cloning design for luciferase reporter system	108
Table 3.2 PCR primers used in this study	110
Table 3.3 Clinical data of human breast samples in this study	113
Table 4.1 PCR primers used in this study	151
Table 4.2 Clinical data and levels of ANKRD11 and GLI1 mRNA in human breast	
samples	158

LIST OF ABBREVIATIONS

5′UTR	-	5' untranslated region
7AAD	-	7-amino-actinomycin-D
A_2O_3	-	Arsenic trioxide
AdoHcy	-	S-adenosylhomocysteine
AdoMet	-	S-adenosylmethionine
ANKRD11	-	Homo sapiens ankyrin repeat domain 11
ATCC	-	American type culture collection
Azacitidine	-	5-azacytidine
С	-	Carbon
-C=O	-	Carbonyl group
CB1954	-	5-(azaridin-1-yl)-2,4-dinitro-benzamide
CES1	-	Carboxylesterase 1
ChIP	-	Chromatin immunoprecipitation
CMV	-	Cytomegalovirus
CpG	-	Cytosine-guanine dinucleotide
DCIS	-	Ductal carcinoma in situ
dCK	-	Cytidine/deoxycytidine kinase
Decitabine	-	5-aza-2'-deoxycytidine, Dacogen
DHAC	-	5,6-dihydro-5-azacytidine
DIRAS3	-	GTP-binding protein Di-Ras3
DMEM	-	Dulbecco's modified Eagle's medium

DLBCL	-	Diffuse large B-cell lymphoma
DMSO	-	Dimethylsulfoxide
DNMT1	-	Homo sapiens DNA (cytosine-5-)-methyltransferase 1
DNMT3B	-	Homo sapiens DNA (cytosine-5-)-methyltransferase 3B
dNTP	-	Deoxyribonucleotide triphosphate
DOPG	-	1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1-glycerol) sodium salt
DSPC	-	1,2 distearoyl-sn-glycero-3-phosphocholine
DSPE-PEG2000	-	1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-
	[amin	o(polyethylene glycol)-2000] ammonium salt
EGCG	-	(-)epigallocatechin-3-gallate
EMSA	-	Electrophoretic mobility shift assay
EPC	-	Encapsulated papillary carcinoma
EPR	-	Enhanced permeability and retention
ER	-	Estrogen receptor
FCDR	-	5-fluoro-2'-deoxycytidine
FDA	-	Food and Drug Administration
FOXM1	-	Forkhead box protein M1
GLI	-	Glioma-associated oncogene family member
GFP	-	Green fluorescent reporter
Н	-	Proton
НА	-	Hyaluronic acid
HDAC	-	Histone deacetylase
HER2	-	Human epidermal growth factor receptor 2

Hh	-	Hedgehog	
HPLC	-	High performance liquid chromatography	
IBC	-	Invasive breast carcinoma	
IC ₅₀	-	Half maximal inhibitory concentration	
IPC	-	Intracystic papillary carcinomas	
LOH	-	Loss of heterozygosity	
MALDI-TOF-MS	-	Matrix-assisted laser desorption and ionisation time-of-flight mass	
	spectr	ometry	
mDCIS	-	Micropapillary ductal carcinoma in situ	
MDS	-	Myelodysplastic syndrome	
MIB-1	-	Proliferative index	
MLV	-	Multilamellar vesicle	
MMP-11	-	Matrix metalloproteinase 11	
Ν	-	Nitrogen	
NAD(P)H	-	Nicotinamide adenine (phosphate) oxidase	
-NH ₂	-	Amino group	
NKX2.2	-	Homeobox protein Nkx-2.2	
NPEOC	-	2'-Deoxy-N4-[2-(4-nitrophenyl) ethoxycarbonyl] group	
NTR	-	Nitroreductase	
OPN	-	Osteopontin	
PAA	-	Poly(acrylic acid)	
РАН	-	Poly(allylamine hydrochloride)	
PAX6	-	Paired box protein Pax-6	

PBS	-	Phosphate buffered saline	
PCR	-	Polymerase chain reaction	
PEG	-	Poly(ethylene glycol)	
PLGA	-	Poly(lactide-co-glycolide)	
PR	-	Progesterone receptor	
РТСН	-	Transmembrane receptor patched	
RT-qPCR	-	Quantitative real-time polymerase chain reaction	
RFP	-	Red fluorescent reporter	
RG108	-	2-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)-3-(1H-indol-3-yl)	
	propanoic acid		
RNR	-	Ribonucleotide reductase	
RPS11	-	Homo sapiens ribosomal protein S11	
RT-PCR	-	Reverse transcription- polymerase chain reaction	
SH	-	Thiolate	
SMO	-	Smoothened	
SuFu	-	Suppressor of fused	
TCEB1	-	Transcription elongation factor B polypeptide 1	
THU	-	3,4,5,6-tetrahydrourine	
TMnfsB	-	Triple-mutated mammalianised nitroreductase B	
TXNIP	-	Thioredoxin interacting protein	
VHL	-	Von Hippel-Lindau disease tumour suppressor	
Vorinostat	-	Suberoylanilide hydroxamic acid, SAHA	
WT1	-	Wilms tumour gene 1	

Zebularine	-	1-(beta-D-ribofuranosyl)-1,2-dihydropyrimidin-2-one
β-actin	-	Homo sapiens actin, beta (ACTB)