Water use efficiency in Almonds (Prunus dulcis (Mill.) D. A. Webb)

Vahid Rahimi Eichi

B.Sc., M.Sc.

Submitted in fulfilment of the requirements for the degree of

Master of Philosophy

School of Agriculture, Food and Wine

Faculty of Science

University of Adelaide

July 2013

Table of Contents

Table of Contents	I
Abstract	III
Declaration and Authorisation of Access to copying	V
Acknowledgments	VI
List of Abbreviations	VII
List of Figures	IX
List of Tables	XI
CHAPTER ONE	1
General introduction and literature review	1
1.1 Almonds in the world and in Australia	1
1.1.1 Almond irrigation in Australia	3
1.2 Water restrictions and solutions	4
1.3 Effects of drought stress on Almonds	5
1.4 Water use efficiency	6
1.4.1 Improving the efficiency of deficit irrigation strategies	8
1.4.2 Carbon Isotope Discrimination	9
CHAPTER TWO	12
Comparison of different water status indicators in	12
almond (Prunus dulcis) trees grown under two	12
deficit irrigation strategies.	12
2.1 Introduction	12
2.2 Materials & Method	17
2.2.1 Site	17
2.2.2 Irrigation treatments	17
2.2.3 Plant measurements	19
2.2.4 Statistical analysis	22
2.3 Results	22
2.3.1 Kernel yield and WUE	23
2.3.2 Plant water relations	24
2.3.2.1 Midday stem water potential (MSWP) and stomatal conductance (g_s)	24
2.3.2.2 Increment of trunk circumference (ΔTC)	25
2.3.2.3 Carbon isotope discrimination	25
2.4 Discussion	30
2.4.1 Water status indicators	30
2.4.2 Relationships between water status indicators	36
CHAPTER THREE	42
Water relations in almonds	42

3.1 Introduction	42
3.2 Materials and Methods	46
3.2.1.1 HCFM methodology	47
3.2.2.1 Visualizing the post-venous area by Scanning Electron Microscope (SEM)	49
3.3 Results	51
3.4 Discussion	56
CHAPTER FOUR	59
General Discussion	59
Bibliography	62

Abstract

Almond (*Prunus dulcis* (Mill) D. A. Webb) is a nut tree in the family Rosaceae, which compared to other nut crops, grown in Mediterranean climates, is relatively drought resistant. Due to the lack of, or high cost of water, almond growers are more inclined to improve gross production water use efficiency (WUE) by adopting water saving irrigation strategies. To this aim, the sensitivity and accuracy of different water status indicators need to be compared to design a suitable irrigation schedule. Meanwhile, instantaneous water use efficiency (WUE_i) that is a measure made at the leaf scale can also be used as a criterion for estimating WUE in breeding programs.

To study the effects of different deficit irrigation strategies, sustained and regulated deficit irrigations (SDI and RDI) were applied on almond trees for two consecutive seasons (2009-2010 and 2010-2011). Five levels of water amount were applied; namely, 55, 70, 85, 100 and 120% ET_c. Kernel yield, midday stem water potential (MSWP), stomatal conductance (g_s), increment in trunk circumference (Δ TC) and carbon isotope discrimination (Δ^{13} C) were measured for both seasons. Results obtained in the 2009-2010 season showed that regardless of irrigation strategy, kernel yield was reduced in 70% ET_c of irrigation or less. Meanwhile kernel yield, WUE and water status indicators in this season were more sensitive to the quantity of water applied rather than to the deficit strategy (SDI or RDI). However, kernel yield was slightly lower in RDI 70% ET_c compared to SDI 70% ET_c treatments.

Although, there were high correlations between all water status indicators and the amount of water applied, g_s and $\Delta^{13}C$ showed lower sensitivity towards water deficit compared to MSWP and ΔTC , implying an anisohydric behaviour of almond trees. Meanwhile, in the first season, the observed correlation coefficients between kernel yield and ΔTC were lower than those of other water status indicators: MSWP $\approx g_s \approx \Delta^{13}C > \Delta TC$. In addition, there was only a moderate correlation (R^2 = 0.61) between $\Delta^{13}C$ and WUE in the first season indicating that $\Delta^{13}C$ may not be a reliable indicator of changes in WUE in almond trees. In the 2010-2011 season, there were no significant differences in kernel yields and water status indicators III

between different treatments. It was probably due to the humid weather and frequent rain in the second season that negated the effects of deficit irrigation on almond trees.

To study the WUE_i in different genotypes, g_s and assimilation rate (*A*) in 5 mixed crosses of almond were examined. The significant correlations between g_s , *A* and internal concentration of CO₂ (C_i) indicated that *A* was probably limited by both stomatal and non-stomatal parameters that might be affected by genotype variations. Mesophyll anatomy and g_s between three almond varieties (Nonpareil, Carmel and Masbovera) were also compared. The results demonstrated that the post-venous hydraulic distance D_m and the density of mesophyll cells might indirectly affect g_s .

Declaration and Authorisation of Access to copying

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of thesis, when deposited in the University Library, being available for loan and photocopying.

Signed

Date

Acknowledgments

I acknowledge my supervisors Dr Michelle Wirthensohn, Professor Stephen Tyerman and Dr. Mark Downey. Thank you for giving me the opportunity to carry out this project in your laboratory and for your support and feedback throughout my Masters candidature. Thanks must also go to Dr. Karl Sommer for his support and valuable comments.

I want to acknowledge the following people for their contribution to my project: Jana Kolesik, Kate Delaporte, Cathy Taylor, Cassandra Collins, Rebecca Vandeleur, Wendy Sullivan, Sigfredo Fuentes, Matthew Gilliham, Iman Lohraseb, Ehsan Tavakkoli, Esmaeil Ebrahimi, Jessica Bauschke, Richard Ratna and Maclin Dayod.

Special thanks to Nenah MacKenzie for her assistance to work with Mass Spectrometer. Thank you to the School of Agriculture, Food and Wine.

My special regards to my parents for all their love and support.

List of Abbreviations

А	assimilation rate per unit of leaf area (μ mol m ⁻² s ⁻¹)
Ca	external CO ₂
C _i	Internal CO ₂
D _m	post-venous hydraulic distance
E	transpiration rate per unit of leaf area (mmol m ⁻² s ⁻¹)
Epan	class A evaporation pan
ET _c	potential crop evapotranspiration
ETo	reference crop evapotranspiration
g _c	stomatal conductance to $CO_2 \pmod{m^{-2} s^{-1}}$
g _m	mesophyll conductance (mmol $m^{-2} s^{-1}$)
gs	stomatal conductance (mmol $m^{-2} s^{-1}$)
g _w	stomatal conductance to water vapour (mmol $m^{-2} s^{-1}$)
HCFM	hydraulic conductance flow meter
k _{leaf}	leaf hydraulic conductance
K_c	crop coefficient
KF	kernel fraction
KY	kernel yield (t ha ⁻¹)
L ₁	leaf hydraulic conductance normalized to leaf area (kg s ⁻¹ mpa ⁻¹ s ⁻²)
MDB	Murray-Darling River Basin
MSWP	midday stem water potential (Mpa)
PPFD	photosynthetic photon flux density μ mol m ⁻² s ⁻¹
RDI	regulated deficit irrigation
SDI	sustained deficit irrigation
VPD	vapour pressure deficit
W _a	external water vapour

- W_i internal water vapour
- WUE water use efficiency or gross production water use efficiency (kg mm⁻¹)
- WUE_i instantaneous water use efficiency (μ molCO₂ mmol⁻¹ H₂O)
- $\Delta^{13}C$ carbon isotope discrimination
- δ_a carbon isotope composition in atmosphere
- δ_p carbon isotope composition in plant tissue
- δ^{13} C isotope discrimination for carbon 13
- ΔTC increment in trunk circumference (mm)

List of Figures

Figure 1.1 Australia's share of global almond production in 20122
Figure 1.2 The estimated areas of almond plantings in Australia2
Figure 1.3 Almond production in Australia by variety in 2012
Figure 1.4 Murray-Darling River Basin4
Source: http://ramblingsdc.net/Australia/MurrayDarling.htm4
Figure 1.5 Relationships between Δ^{13} C and C _i / C _a (A) and between Δ^{13} C and WUE (B) in
the leaves of wheat
Figure 2.1 The plot plan of the field trial
Figure 2.2 Two irrigation strategies and five watering levels. Y-axis depicts the percentage
full ET _c . Flowering and fruit setting times were August and September respectively with
harvest in March
Figure 2.4 Values of kernel yield (A), kernel fraction (kernel yield/(shell + hull)) (B), gross
production water use efficiency WUE (C), midday stem water potential MSWP (D), stomatal
conductance g_s (E), increment in trunk circumference ΔTC (F) and carbon isotope
discrimination (Δ^{13} C‰) (G) in the almond trees of eight irrigation treatments at the first
(2009-2010) season. Each bar corresponds to the mean of 6 (A, B, C, E and F) and 3 (D and
G). TC was measured at 22/05/2009 and 21/05/2010. Δ^{13} C was measured in the shells of fruit
samples collected at the end of season (27/2/2010). Error bars are standard errors. Error Bars
with the same letter are not significantly different at $P < 0.05$ (Duncan's test)26
Figure 2.5 Relationship between the total amount of applied water, including rainfall,
(mm/season) and kernel yield (A), midday stem water potential MSWP (B), trunk
circumference ΔTC (C), stomatal conductance g_s (D), carbon isotope discrimination $\Delta^{13}C$ ‰
(E) and gross production water use efficiency WUE (F) for each deficit irrigation treatment
with respect to control 100% ET_c over 2009-2010 season. Each point represents the mean of 6
(A, C, D, E and F) and 3 (B and E) replications ± SE
Figure 2.6 seasonal fluctuations in (A) midday stomatal conductance (g _s) and (B) midday
stem water potential (MSWP) of almond trees grown in control and water-stressed conditions.
The developmental stages (II-III: rapid vegetative growth, IV: kernel-filling, V: post-harvest)
of <i>P. dulcis</i> tree are separated by dashed vertical lines
Figure 2.7 Relationship between trunk circumference variations (ΔTC) with the average
midday stem water potential (MSWP) (A) and stomatal conductance (g_s) (B). Data are
recorded from the almond trees irrigated with eight different regimes in 2009-2010 season.
Each point is the mean of 6 (g_s and ΔTC) and 3 (MSWP) replicates ±SE, (P < 0.001)35

Figure 2.8 Relationship between midday stem water potential (MSWP) and stomatal conductance (g_s) of almond trees over the same season under eight irrigation regimes. Each Figure 2.9 Relationship between kernel yield (t.ha⁻¹) and water status indicators over 2009-2010 season. Each point represents the mean of 6 (kernel yield, ΔTC and g_s) and 3 (MSWP and Δ^{13} C) replications ± SE. Δ TC: trunk circumference. MSWP: midday stem water potential. Figure 2.10 Relationship between gross production water use efficiency (WUE) * 100 with stomatal conductance (g_s) (A) and carbon isotope discrimination (Δ^{13} C‰) (B) water status indicators over 2009-2010 season. Each point represents the mean of 6 (WUE and g_s) and 3 Figure 3.1 Cross sections from the leaves of *Curatela americana*. Red arrows depict the post venous distances. "y" letters indicate the vertical distance from vascular tissue to the leaf Figure 3.2 After cutting under water condition, the branch is tightly attached to the tube.48 Figure 3.3 Transpiration rate E (A), assimilation rate A (B), stomatal conductance g_s (C), leaf hydraulic conductivity normalized to leaf area L_{shoot} (D), instantaneous water use efficiency WUE_i A/E (E) and internal concentration of CO₂ (C_i) (F) for 5 mixed crosses of almond. Each column represents the average of 4 replicates \pm SE. Different letters indicate statistical Figure 3.4 The relationships between hydraulic conductance normalised to leaf area L_{shoot} with stomatal conductance g_s (A) and carbon assimilation A (B). The relationships between carbon dioxide assimilation rate A with stomatal conductance g_s (C) and internal concentration of CO_2 (C_i) (D). Error bars represent the average of 4 replicates \pm SE for each **Figure 3.5** The variation of stomatal conductance (g_s) (A) and post venous distance (D_m) (B) for Carmel, Masbovera and Nonpareil. The means \pm SE (n = 3 and 8) are shown for D_m and g_s, respectively. Error Bars with the same letter are not significantly different (Duncan's test; Figure 3.6 Scanning electron microscope images of almond (*P. dulcis*) leaves. Horizontal (x) and vertical (y) distances of vascular bundles from stomata in Masbovera (A) and Carmel (B)

List of Tables