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Thesis summary 

The research described herein follows an extensive literature review of the role of 

environmental agents and the host immune system in the manifestation of CRS. 

There are clear deficiencies in our understanding regarding the microbial flora of 

CRS patients and non-diseased sinuses. Chapter two describes a detailed study 

of the fungal and bacterial microbiome of diseased and healthy sinuses and 

forms a basis on which to build the subsequent research projects. The third and 

fourth chapters describe the development of two animal models to determine the 

environmental and host factors, which are associated with sinonasal fungal 

biofilm formation. The final chapter seeks to determine the relevance of sinonasal 

microorganisms by detecting them on host surfaces and correlating these with 

specific host immune responses. The interaction of bacteria and host 

hypersensitivities to allergens is also explored. 

 

The initial investigation focused on understanding the microbial flora in CRS 

patients. This study forms a foundation for the thesis, and was critical to address 

the many deficiencies and contradictions in the published literature regarding the 

microbiome of CRS patients. We used state of the art microbial detection 

techniques to determine the presence and abundance of fungi and bacteria on 

the mucosa of CRS patients, and appropriate healthy control mucosa. This 

highlighted some cornerstones of microbial variability between healthy and 

diseased sinuses. We have shown that the healthy sinus is clearly not sterile, and 

that prevalence, but more importantly, species composition and population 
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density are critical factors in determining the disease state. Comparisons between 

various detection techniques such as molecular analysis, Fluorescence in situ 

hybridization (FISH), and conventional culture showed FISH to be highly sensitive 

and specific, with a detection threshold related to organism abundance, whereas 

culture has a tendency to select for rapidly growing organisms. 

 

The subsequent study is detailed in chapter three, and addresses two of the most 

contentious, environment versus host issues in the CRS research community – 

the interaction between fungal organisms, and the host with type I 

hypersensitivity to fungi. We developed a large animal (sheep) model of fungal 

sinusitis to investigate these factors and successfully sensitized 45% of animals 

to fungal antigens, as evidenced by positive skin prick tests. Despite the 

presence of fungal hypersensitivity, we were unable to produce fungal biofilms in 

the occluded frontal sinus. Following our clinical observations of fungi frequently 

co-habiting with bacteria, particularly Staphylococcus aureus, we co-inoculated 

fungi with this bacterium and florid fungal biofilm formed on sinus mucosa. Type I 

hypersensitivity to fungi had no correlation with fungal biofilm or inflammation. 

These results suggested that fungi may not be able to form biofilm on mucosa 

with intact immune defences and a primary insult from the bacteria was requisite 

for fungal adhesion and proliferation.  

 

A follow up study addressed the factors, which contribute to fungal biofilm 

establishment on sinus mucosa. An animal model was again developed to 

determine if co-inoculation of fungi with other bacterial species would allow fungi 

to proliferate. Four bacterial species commonly detected in CRS patients were 
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utilized. We hypothesized that bacterial induced cilial injury may have a role in 

allowing early fungal adhesion, and a cilia toxin was utilized to assess the effect 

of isolated cilial impairment on fungal proliferation. Cilia were assessed using 

transmission electron microscopy. Again, no fungal biofilm formed when fungi 

was inoculated in isolation. Three of the bacterial species formed bacterial 

biofilms in >75% of sinuses, and this was associated with significant cilial 

damage, and fungal biofilm formation. One of the bacterial species did not form 

biofilm, and no fungal biofilm formed in co-inoculated sinuses. Cilia toxin caused 

significant cilial injury, and was also associated with fungal proliferation. This 

study demonstrates the importance of the physiochemical barrier in defence 

against fungal organisms. This led to the question of the role of fungi in CRS 

patients – are they contributing to the inflammation or merely saprophytic 

colonizers of the impaired mucosa? 

 

The final study addressed this question in a human subject cohort. To determine 

if microorganisms have a role in inflammatory processes, we need to be able to 

display an organism specific immune response in the host. We measured the 

organism specific IgE levels in the serum and mucosa of 48 CRS patients and 10 

controls. We also determined the presence of these microorganisms on the 

mucosa using conventional culture, and FISH using specific probes. We showed 

that in CRSwNP patients, the presence of S. aureus and fungi on the mucosa 

was related to elevated organism specific IgE within the mucosa. This 

phenomenon was specific to nasal polyp patients, and was not observed in non-

polyp CRS or control patients. This demonstrates that these organisms have the 

capacity to incite specific immune responses in the host, potentially contributing 
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to mucosal inflammation in CRS. Additionally we determined that the presence of 

S. aureus on the mucosa also exacerbates mucosal fungal allergy, potentially 

enhancing hypersensitivity to ubiquitous airborne fungal allergens. Although this 

mechanism has been observed in other atopic diseases, this is the first study to 

document the phenomenon in CRS. It adds to the mounting evidence that S. 

aureus has an important role in the pathogenesis of CRS. 
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1.1 CHRONIC RHINOSINUSITIS - BACKGROUND 

1.1.1 The definition of rhinosinusitis 

The term ‘rhinosinusitis’ describes a constellation of disease entities with a 

common feature - inflammation of the mucosa lining the nasal cavity and the 

paranasal sinuses2. There are multiple subtypes and distinct aetiologies, with 

varied severity and clinical presentations, which is further complicated by 

overlapping symptoms and pathology with other medical conditions3. For 

simplicity, the definition has been based on the duration of inflammation and 

symptoms – see Table 1.1 The classification of rhinosinusitis 

 

Table 1.1 The classification of rhinosinusitis 

Classification Duration 

Acute Rhinosinusitis Up to four weeks 

Subacute Rhinosinusitis Between four & twelve weeks 

Recurrent Acute Rhinosinusitis Four or more episodes per year 

with complete resolution between 

episodes. Each episode lasts at 

least seven days  

Chronic Rhinosinusitis 12 weeks or longer  

  

The complexity and controversy surrounding rhinosinusitis is highlighted by 

the abundance of guidelines, which have been published in the last 10 years. 

Five separate multi-national expert panels have recently published guidelines 

addressing the definitions, diagnosis, and management of rhinosinusitis2,4-7. 
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These documents have drawn on the evidence base of the published 

literature, as well as the expert opinions of many of the worlds leading 

otolaryngologists and immunologists. Whilst many of these guidelines are 

contradictory and limited in their conclusions3, they provide clinical guidance, 

and form the basis for further research, to address many of the unanswered 

questions in this field. 

 

Acute rhinosinusitis (ARS) is a common disorder affecting approximately 31 

million people in the US annually with direct costs estimated at $US 3 billion8. 

It is frequently caused by an acute viral infection associated with the common 

cold, but bacteria have also been implicated in the primary infection but more 

commonly in a secondary infection9. The principal bacterial pathogens in 

ARS are Streptococcus pneumoniae, Haemophilus influenzae, Moraxella 

catarrhalis and Streptococcus pyogenes10. Key diagnostic criteria include 

symptoms following upper respiratory tract infection, purulent nasal 

discharge, unilateral maxillary sinus tenderness, maxillary tooth or facial pain 

(especially unilateral), and a history of initial improvement followed by a 

worsening of symptoms9,11. Other non-specific symptoms include malaise, 

halitosis, nasal congestion, hyposmia / anosmia, fever and cough. 

Complications are uncommon, occurring in an estimated 1 in 1000 cases, 

with the majority settling with empirical antibiotic therapy12.  

 

Whilst many of the symptoms are similar, understanding the distinction 

between the acute forms of rhinosinusitis and CRS has both clinical and 

scientific importance. In CRS the duration is greater than 12 weeks, and 
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whilst disease fluctuations occur, the signs and symptoms of CRS never 

completely resolve between these, setting CRS apart from ARS, subacute 

rhinosinusitis, and recurrent ARS. It is believed that CRS is not one disease 

but a complex of separate, but related entities with differing clinical and 

pathological manifestations, and applying a definition to these disorders is 

difficult. However, both clinicians and researchers require a broad definition 

to enable progress in this field. According to the most recent European 

position paper on rhinosinusitis and nasal polyps (EP3OS)2, the term 

rhinosinusitis describes inflammation of the nose and paranasal sinuses 

which is associated with two or more symptoms (see Table 1.2 EP3OS 

Criteria for the diagnosis of CRS). These must include at least one of - nasal 

blockage, obstruction or congestion, or nasal discharge (anterior or 

posterior), and may include facial pain or pressure, and hyposmia or 

anosmia. These symptoms must be associated with objective signs of 

disease; either endoscopic and / or radiological (computed tomography) 

signs. Endoscopic evidence of polyps, mucopurulent discharge (mostly from 

the middle meati), mucosal oedema / obstruction are all considered important 

signs of CRS. Computed tomography may show thickened mucosa within the 

ostiomeatal complex and / or the paranasal sinuses2.  
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Table 1.2 EP3OS Criteria for the diagnosis of CRS 

Symptoms 

Two or more for > 12 weeks 

Special Assessment 

Nasal blockage / obstruction / 

congestion* 

Endoscopic assessment 

? nasal polyposis† 

Nasal discharge (anterior / 

posterior nasal drip)* 

CT Sinuses† 

Facial pain / pressure Allergy Testing if history suggestive 

Reduction or loss of smell  

* Must include at least one of these symptoms † Must include at lease one endoscopic or radiological 

finding 

 

1.1.2 Epidemiology 

According to the National Health Interview survey, sinusitis (acute, and 

chronic types) affects 12.5% of the American population, or 31 million people 

in the US alone13-15.  Data from a recent Australian national health survey 

has shown that 9.0% of Australians suffer from CRS symptoms16. Europe 

has a prevalence of 10.9% overall, but there is significant regional variation. 

For example, 6.9% of the population suffer from CRS in Brandenburg, 

Germany, compared to 27.1% in Coimbra, Portugal17. This contrasts with a 

rate of only 1% CRS reported in Korea18.  These studies relied predominately 

of self-reporting of CRS symptoms, and the actual prevalence of CRS may 

be lower. However symptomatic CRS diagnosis has been shown to correlate 

well with self reported doctors diagnosis19.  
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CRS has significant socioeconomic implications, with an estimated annual 

direct health care cost in the US of $US 5.8 billion, which results 

predominately from outpatient and emergency department attendances, as 

well as approximately 500,000 surgical procedures on the paranasal sinuses 

annually20. Indirect costs related to CRS from decreased productivity and 

work absenteeism are even greater, resulting in an estimated 73 million days 

of restricted activity annually in the US7.  

 
Patients with CRS visit primary care clinicians twice as often as those without 

the disorder, and have five times as many prescriptions filled7. As a 

proportion of all ambulatory care attendances, CRS comprises 1.39%, and 

ARS 0.3%21. CRS is the principal diagnosis in 14 million visits to a health 

care facility in the US, compared to 3 million for ARS22.  CRS is therefore, the 

second most prevalent chronic health condition in the US population13-15. It is 

extremely detrimental to the quality of life of those suffering from it, and 

quality of life measures are similar or worse than chronic obstructive 

pulmonary disease (COPD), chronic back pain, and congestive cardiac 

failure23.  

1.1.3 CRS subclassification 

The complexity of CRS is exemplified by the lack of consensus as to the 

categorization of the disease. The simplest, and most commonly used 

classification is based on the presence or absence of nasal polyps5. ‘Polyp’ in 

the context of CRS, describes the macroscopic appearance of a grape-like 

tissue projection pedicled from a mucosal surface, most often originating 

from the middle meatus / ostiomeatal complex. They are usually soft and 
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shiny, somewhat translucent, with a blue-grey appearance. Polyps are 

composed of benign, non-granulomatous inflammatory tissue, with loose 

connective tissue, inflammatory cells, oedema, glands and capillaries24. They 

are usually covered with ciliated pseudostratified epithelium with goblet cells. 

Eosinophils are the most common leukocyte within nasal polyps, however 

they can also contain neutrophils, mast cells, lymphocytes, monocytes, and 

fibroblasts. The eosinophil content of nasal polyps is greater in the presence 

concomitant asthma, aspirin sensitivity, or both25,26. Interestingly eosinophil 

predominant polyps are seen in 80% of CRS patients in Western countries, 

however Asian patients, and patients with cystic fibrosis with nasal polyposis 

have a predominantly neutrophilic cellular infiltrate27. This may have 

important implications for treatment, as eosinophilic polyps are thought to be 

more responsive to corticosteroid treatment than non-eosinophilic polyps28. 

The symptom patterns of CRS can be different between polyp and non-polyp 

CRS with CRSsNP patients often complaining of anterior and posterior nasal 

discharge and pain, whereas CRSwNP patients may complain more of nasal 

obstruction and anosmia, however clearly differentiating the diseases based 

on symptoms lacks accuracy, and such measures are best used to assess 

individual response to therapy28. The prognostic implications of nasal polyps 

are conflicting. The presence of nasal polyposis was shown to be the most 

important predictor of poor outcome following ESS in a 5-year prospective 

outcomes trial29. Another study showed that CRSwNP patients have 

significant symptomatic improvement following ESS, but again noted a higher 

revision rate than CRSsNP30. Contrary to these findings, another group found 

that the success rate (based on symptom reduction) was higher in CRSsNP 
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patients but this was not statistically significant, in a study of 132 patients31. 

Other studies have likewise found no adverse effect of nasal polyps on post-

surgical outcomes32,33. 

 

Apart from nasal polyposis, other important differentiating factors include the 

presence or absence of eosinophilic mucus, and fungal hyphae or bacteria 

within sinus mucus5. A histological sub-classification based on the presence 

or absence of eosinophilic mucus (EM) has been proposed34. EM consists of 

necrotic eosinophils, mixed inflammatory infiltrate, and Charcot-Leyden 

crystals – the byproduct of eosinophils34. The presence of EM or peripheral 

eosinophilia has been shown to be a predictor of the need for revision 

surgery in a small study of 56 patients35. EM-CRS patients are often sub-

classified based on the presence or absence of fungal elements in the 

mucus, and fungal allergy. However a recent study has found no distinction 

between these subgroups on clinical or immunological grounds36. 

 

It is clear that accurate subclassification of CRS is clinically important. It will 

enable us to tailor treatment regimes to our patients, and provide accurate 

prognostic information. It will also enable the development and utilization of 

targeted therapeutic strategies. Hopefully, in the future, we will categorize 

CRS patients according to genotypic or phenotypic characteristics, allowing 

us to target specific inflammatory pathways with immunomodulatory 

medications, such as the emerging therapies for treatment of inflammatory 

bowel disease, and other autoimmune diseases.  
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Subclassification is also critical to direct further research into the disease, as 

critical pathogenic differences may be missed if disease subsets are not 

analyzed separately. Much of the current research effort into CRS may 

provide pathological characteristics, which can be used to classify patients. 

These can be broadly classified as environmental or host factors. 

Environmental factors which may be important include microorganism 

presence and abundance, including bacteria and fungi, encompassing biofilm 

phenotypes, and superantigen production and possibly viruses. Other 

environmental factors may include aeroallergens, air pollution, and cigarette 

smoking. Host specific factors may include comorbid conditions which 

interact with, or pre-dispose to CRS including, asthma, aspirin sensitivity, 

cystic fibrosis, cilia motility disorders, and certain congenital and acquired 

immunodeficiency states. Other host factors which may form a basis for 

future disease subcategorization include genetic susceptibility, autoimmune 

states, including certain human leukocyte antigen (HLA) subtypes, systemic 

or local immunodeficiency (both innate & adaptive) including defects in 

inflammatory pathways, defective immune surveillance, or tolerance due to 

for example, abnormal regulatory T cell function, allergy (type I 

hypersensitivity) either systemically or locally within the mucosa, and 

epithelial barrier defects including mucus abnormalities, and cilia dysfunction. 

The current research examining many of these factors is discussed in 1.3 - 

Host factors in CRS. Allergic fungal rhinosinusitis (AFRS) is a specific 

subclassification of CRS based on environmental (presence of fungi) and 

host (fungal allergy) factors, and will be discussed in section 1.1.5. 
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1.1.4 Non-surgical management of CRS  

Medical treatments for CRS are first line therapies to be considered prior to 

any surgical intervention. In severe forms of CRS, they are used to reduce 

symptoms and delay recidivism, however no single treatment modality has 

been shown to have durable results in preventing disease recurrence and the 

need for revision surgery. Systemic anti-inflammatory agents such as 

corticosteroids have been shown to reduce polyp size & decrease intra-

operative bleeding37,38. Post-operative systemic corticosteroids may also 

prevent early polyp recurrence39, however long term use is limited by 

significant side effects. Despite their widespread use, no ideal treatment 

dose or duration has been agreed upon. Intranasal corticosteroids (INCS) 

have minimal side effects and can reduce sinonasal inflammation and can 

reduce polyp size40, and are currently considered the medical treatment of 

choice for nasal polyposis41. A pilot uncontrolled study suggested 0.5mg of 

budesonide in >100mL of saline for twice daily nasal douching can improve 

symptoms and CT sinus scores in patients with EM CRS42. Two large, 

multicentre placebo controlled trials showed efficacy of mometasone furoate 

in providing lasting symptom relief compared with placebo for nasal 

congestion, anterior rhinorrhoea, and post-nasal drip scores in nasal 

polyposis patients43,44.  Symptom relief can commence as soon as two to five 

days after initiation of therapy45. However, despite their efficacy, a large 

proportion of patients with nasal polyposis will continue to have significant 

symptoms whilst using INCS46. Leukotriene receptor antagonists have been 

employed due to their favourable side effect profile, aiming to reduce 

systemic steroid use, but efficacy is lacking46. Macrolide antibiotics have also 
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been used for their anti-inflammatory action, with a recent trial comparing 

methylprednisolone, doxycycline and placebo suggesting both agents 

reduced polyp size, symptoms, and markers of inflammation47. 

Methylprednisolone had a greater effect, which lasted 8 weeks, whereas 

doxycyline’s benefit lasted for 12 weeks.  

1.1.5 Allergic Fungal Rhinosinusitis (AFRS) 

1.1.5.1 Epidemiology of AFRS 

AFRS is the most common type of fungal rhinosinusitis48, and accounts for 

between 7 and 12% of CRS cases which require operative intervention in the 

US40,49. The incidence of AFRS in a similar cohort of Australian CRS patients 

was 9%50. AFRS has significant regional variation with warmer climates 

having a much higher incidence48,51. The incidence is highest in adolescent 

and young adult males, with a male to female ration of 1.6:1 38,52. Affected 

individuals are immunocompetent and have a history of atopy. By 

definition5,53, all patients have fungal allergy by skin prick testing or in vitro 

testing however, only 2/3 of these will report a history of allergic rhinitis52. 

1.1.5.2 Clinical presentation of AFRS 

The symptoms of AFRS are often subtle in the early stages of disease. 

Patients often delay seeking medical attention for the rhinosinusitis 

symptoms until the advanced stages, when complete nasal obstruction, 

visual disturbance or facial distortion are noted40. Symptoms are frequently 

unilateral, and may include the production of nasal casts of dark, thick mucus 

drainage. The accumulation of inflammatory mucus and polypoid material 

can lead to sinus obstruction, erosion of bone, rupture of the sinus wall, and 
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prolapse of sinus contents into the orbit and brain. Proptosis and less 

commonly, hypertelorism can be seen at initial presentation, especially in 

younger patients in whom sinus structures may not have fully calcified54. 

Endoscopic examination may reveal extensive polyposis, which is often 

asymmetric, and mucus is usually evident between the polyps.  

 

The natural history of AFRS suggests a recurrence rate following treatment 

between 10 and 100%38. Universal recurrence was noted in one study 

following endoscopic sinus surgery where rigorous post-operative medical 

therapy was not instituted55. A longitudinal study over 7 years suggested 

AFRS patients undergo an average of two surgical procedures, and three 

courses of systemic corticosteroids per year, and despite being symptom 

free, endoscopy suggests that ongoing polypoid inflammation persists in 

many patients56. 

1.1.5.3 Diagnostic criteria for AFRS 

Allergic fungal rhinosinusitis (AFRS) is a distinct clinical entity, however much 

controversy exists over the clinical criteria for its diagnosis53,57-59. Whilst no 

consensus exists, there is general agreement regarding most aspects. A 

combination of clinical, radiographic microbiological and histopathologic 

criteria are required, hence it is a diagnosis that can only be made post-

operatively. A number of authors have proposed specific diagnostic criteria, 

the most widely accepted being that of Bent & Kuhn53 (See Table 1.3). 
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Table 1.3 Diagnostic criteria for AFRS (Bent & Kuhn, 1994) 

1 Type I hypersensitivity to fungi 

2 Nasal polyposis 

3  Characteristic CT scan findings (double densities) 

4 Eosinophilic mucus, Absence of fungal tissue invasion 

5 Positive fungal stain/culture of sinus contents 

 

Arguably the most important criterion is the presence of eosinophilic mucus, 

often termed ‘allergic mucus’ or ‘fungal mucus’. On gross examination it is 

darkly coloured, thick and tenacious, and can often appear similar to peanut 

butter, however microscopically they are distinct. It is characterized by 

laminations of degraded eosinophils on a background of mucus often 

including the eosinophil breakdown product of Charcot-Leyden crystals 

(lysophospholipase) which appear as long needle-shaped, or bipyramidal 

eosinophilic crystals. Fungal hyphae are present but may be scarce, if not 

seen they should be cultured and may require specific staining for 

identification. Despite reports of heterogeneity within patient samples, 

evidence of fungi invading tissue is still considered an exclusion criterion for 

AFRS. The most disputed diagnostic criterion has been the presence of 

fungal allergy. Only 2/3 of patients had systemic fungal sensitization to the 

actual fungal species cultured as reported in a study by DeShazo & Swain, 

and they concluded that if not universal, they should not be a criterion for 

diagnosis57. In stark contrast another group detected fungi in 97% of CRS 

patients regardless of atopic status, and determined that all CRS was due to 

fungi, and hypersensitivity was irrelevant60. Despite this controversy, a 
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collection of international experts formed the Rhinosinusitis Taskforce 

(American Academy) and concluded that AFRS is defined by the presence of 

eosinophilic mucus and type I hypersensitivity to fungi5.  

1.1.5.4 Radiologic features of AFRS 

The characteristic radiologic findings of AFRS form an important component 

of the diagnostic criteria53. CT scans often show multiple opacified sinuses, 

often with central hyperattenuation. Sinus expansion, with bony erosion or 

effacement with a pushing border is commonly seen, especially involving the 

lamina papyracea or skull base. AFRS tends to cause bone erosion more 

commonly than other forms of CRS and such radiographic findings along 

with nasal polyps, should raise suspicion of the diagnosis. In one study, more 

than 50% of AFRS patients had radiographic evidence of skull base erosion 

or orbital extension, compared to approximately 5% of other CRS cases61. 

MRI may be indicated when there is concern for intracranial or intraorbital 

invasion and complications. Eosinophilic mucus has a high protein and low 

water content, hence involved sinuses have central low signal on gadolinium 

enhanced T1, and T2 sequences with peripheral high signal corresponding to 

inflamed mucosa62. 

1.1.5.5 Immunotherapy for AFRS 

Allergen immunotherapy (IT) has been used in diseases associated with IgE 

mediated hypersensitivity such as asthma and allergic rhinitis63,64. 

Immunotherapy appears to be safe in AFRS patients65, and has been 

proposed to decrease the reliance on systemic corticosteroids66. One study 

compared IT treated AFRS patients with non-IT treated AFRS patients over 
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33 months, and showed improved mucosal appearance, lower symptom 

scores and less reliance on topical and systemic corticosteroids67. Clearly a 

randomized, placebo controlled trial is needed, however these studies 

suggest an important role for IT in the treatment of AFRS.  

1.1.5.6 The universal fungal theory - implications for therapy 

Following the finding of fungi in 97% of CRS patients in one study68, two 

uncontrolled trials of the topical antimycotic agent, Amphotericin B were 

undertaken, both showing clear efficacy in symptom reduction and objective 

improvement in endoscopic and radiological parameters69,70. A subsequent 

randomized, double blinded placebo controlled trial (RCT) showed similar 

results for the objective measures though no symptomatic improvement71, 

and the research group concerned propagated a theory of universal fungi 

pathogenesis in CRS72. A battery of RCTs followed, analyzing the efficacy of 

topical73-76 or systemic77 antifungal therapies in CRS patients. The findings 

were recently summarized in a Cochrane review which reported there is no 

evidence of efficacy of anti-fungal therapy in CRS patients78. Based on this, 

many commentators have dismissed fungi as a mere bystander, with no role 

in the pathogenesis of CRS79,80. There are problems with such 

comprehensive claims, however. The underlying hypothesis for these studies 

has been that fungi have a universal role, contributing to all CRS, hence the 

presence of fungi within the sinuses, or indeed the other diagnostic features 

of allergic fungal sinusitis53 were not used as inclusion criteria. Importantly, 

one of the trials specifically excluded AFRS patients75. Studies assessing the 

efficacy of antifungal therapy in appropriately selected patients are few, but 

suggest subjective and objective benefit81-83. However, until larger studies 
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are performed with rigorous methodology, which include patients with 

diagnostic features of AFRS, the efficacy of antifungal therapy will remain 

unknown. 

1.1.5.7 Surgical management of AFRS 

Surgery is required in the great majority of AFRS cases because whilst 

intensive medical treatment can reduce polyp volume, high grade, 

obstructing polyposis and tenacious eosinophilic mucus rarely respond. In 

times past, external approaches, followed by aggressive mucosal stripping 

was regularly performed84. Contemporary procedures involve mucosal 

sparing endoscopic approaches, with removal of polypoid mucosa and 

anatomical obstruction, restoring sinus drainage pathways, followed by 

complete evacuation of eosinophilic mucus. Care must be taken especially 

when normal surgical landmarks, and bony barriers have been distorted or 

destroyed by disease. Incomplete removal of obstructed cells, and mucus is 

a risk factor for early recurrence85. 
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1.2  ENVIRONMENTAL FACTORS IN CRS - MICROBIAL 
AGENTS 

1.2.1 Introduction 

The aetiology of chronic rhinosinusitis is complex and multifactorial, and the 

historical concept of subclinical or chronic infection has been replaced by a 

concept of chronic mucosal inflammation. In some cases, clear genetic or 

systemic host disorders such as cystic fibrosis, Wegener’s granulomatosis or 

primary ciliary disorders are identified as causes for persistent mucosal 

inflammation. However, the overwhelming majority of cases remain 

idiopathic. A plethora of possible contributory environmental and host factors 

have been described, including ostial obstruction, impaired mucociliary 

clearance, genetic susceptibility, osteitis, allergy, airborne irritants including 

cigarette smoking and air pollution, microbial organisms including biofilms 

and secreted superantigens1.  

 

CRS is increasingly recognized as a heterogeneous disease with respect to 

clinical phenotypes, immunopathology, and response to therapy, which calls 

for better understanding of the disease and improved treatments. The 

relative contribution of host factors and environmental triggers is unknown 

but much research is focusing on this issue. A large body of research has 

focused on potential external (environmental) triggers, including bacteria, 

fungi, biofilms, superantigens, and aero-allergens. However it is clear that of 
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these environmental factors studied, none have been universally attributed to 

disease causation.  

 

CRS was originally believed to be an infectious disease, primarily caused by 

pathogenic bacteria. However, it became clear with time, that this was a 

disease which could not fulfill Koch’s postulates86 for a disease caused by 

microorganisms and many came to believe it was primarily an inflammatory 

disorder5. Classical methods for the study of bacterial pathogens have 

proven to be inadequate to inform with respect to chronic diseases, which 

are increasingly recognized as polymicrobial87. The effort to develop 

antibiotics has been directed solely at the planktonic minority (associated 

with systemic illness), which explains our inability to eradicate chronic 

infections87. Despite this, CRS patients do experience symptomatic 

improvement following antibiotic use88,89, although this result is generally not 

durable, with recurrence of symptoms following cessation of the agent. 

 

Historically, the role of fungi in CRS pathogenesis has been limited to AFRS, 

however, this was recently expanded, predominately based on literature that 

suggested an excessive mucosal inflammatory response to common 

airborne fungi (specifically Alternaria alternata) was the universal cause for 

all CRS60,90 (See Section 1.1.5.6). This was supported by experiments 

demonstrating A. alternata as a trigger for cytokine release from peripheral 

blood mononuclear cells from CRS patients but not controls90, and others 

demonstrating A. alternata as the target of eosinophil chemotaxis, and 

degranulation91, with resultant potential for tissue destruction92. 
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The following discussion will examine the current research regarding the role 

of bacteria and fungi in CRS, including controversy regarding the flora of 

diseased and non-diseased sinuses, contemporary microbial detection 

techniques, virulence factors which impede microbial detection and promote 

persistence and damage to the host. 

1.2.2 Microorganisms in disease - historical perspectives  

The processing and interpretation of nasal swabs from CRS patients by 

laboratories tasked with determining the organisms present, has been 

shaped by the historical development of diagnostic microbiology. Who made 

the earliest observation of microorganisms is debated today, but the 

microscope was available in the mid-1600s and Robert Hooke, an English 

scientist made early observations. In the 1670s, a Dutch student of natural 

history and maker of microscopes, Anton van Leeuwenhoek, made 

observations of microscopic organisms and termed them ‘animalcules’, from 

the Latin meaning little animals. He is regarded as one of the first to 

accurately describe fungi and bacteria.  

 

In the 1800s, Louis Pasteur performed numerous experiments to discover 

why dairy products and wine soured, and discovered bacterial contaminants 

were responsible for this reaction. He wondered similarly if they could cause 

illness in humans. He pioneered the germ theory of disease, which states 

that microbes are the cause of infectious disease93.  
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The German scientist Robert Koch earned a Nobel Prize in 1905 by 

providing evidence for the germ theory of disease; cultivating organisms from 

anthrax affected mice in the laboratory, and injecting them into healthy 

animals, proving that the organism caused anthrax disease. These 

experiments were the genesis of Koch’s postulates, which provide a set of 

principles designed to establish a causal relationship between a 

microorganism and certain diseases86 (See Table 1.4). 

 

Table 1.4 Koch's Postulates 

1 The microorganism must be found in abundance in all organisms 

suffering from the disease, but should not be found in healthy 

organisms. 

2 The microorganism must be isolated from a diseased organism and 

grown in pure culture. 

3 The cultured microorganism should cause disease when introduced 

into a healthy organism. 

4 The microorganism must be re-isolated from the inoculated, diseased 

experimental host and identified as being identical to the original 

specific causative agent. 

 

The philosophy of isolating a single organism and relating it to disease, 

hence fulfilling Koch’s postulates, has shaped microbiological methods 

throughout their development. This process can be entirely appropriate in 

many cases, with diseases such as septicaemia or meningitis attributable to 

a single organism isolated on culture. Increasingly however, we are 
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discovering that many infections are polymicrobial, and axenic culture has 

been polarizing our understanding of these94. In diseases such as CRS, 

where the host mucosa is in constant exposure to the environment, 

polymicrobial flora are common, and fulfilling Koch’s postulates, and finding a 

distinction between pathogen and commensal becomes incredibly complex. 

1.2.3 Microbial detection in CRS – culture based techniques 

Accurate information regarding the presence of organisms in our patients has 

important implications for clinical practice, as well as for research, where we 

endeavor to determine the pathogenic importance of organisms in CRS. 

Traditional culture dependent techniques have been the workhorse of 

microbial diagnostics in CRS. However, despite decades of CRS research 

using clinical microbiological culture techniques, the role of microbes in this 

disease is incompletely understood. Between 10 and 53% of all CRS 

specimens sent for routine microbiological culture result in no growth of 

organisms95,96. Additionally, samples of overt purulence are frequently 

reported as sterile following culture, prompting questions over the sensitivity 

of these techniques in CRS97,98.  

 

The process of isolating an organism for culture detection necessitates that it 

be separated from the polymicrobial milieu using a process of selection using 

enrichment culture – providing conditions favourable for growth, whilst 

excluding other species. This principle forms the basis of traditional culture 

based microbial detection, and persists today in modern diagnostic 

microbiological laboratories. By it’s very nature, culture based diagnosis of 
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aetiological agents relies on our ability to provide the appropriate conditions 

for in vitro growth of the organism, including specific oxygen tension, energy 

sources, major and trace elements, pH and temperature. This implies a 

degree of selection bias, as one must choose which media and conditions to 

use, and therefore which organism(s) to select for. Clearly to identify all of 

the organisms in a CRS sample using these techniques would be exhaustive. 

Most clinical laboratories use guidelines, which determine how a sample will 

be processed, based on the most ‘pathogenic’ organisms to be detected,99. 

The choice of target ‘pathogen’ organisms which were used for the current 

guidelines is based on a single microbiological study of CRS, in which, over 

50% of the patients had been using antimicrobial therapy in the month 

preceding sample collection100. Whilst guidelines are essential to ensure 

laboratories can perform diagnostic analysis within reasonable time and cost 

constraints, the predetermination of organisms may be significantly skewing 

our understanding of the diversity of microbial flora in our patients, and 

controls.  

 

Many organisms are unable to thrive on nutrient media once removed from 

the native environment, and the advantages of polymicrobial communities, 

and mutualistic relationships are lost. Environmental changes experienced by 

organisms being transferred to growth media include significant alterations in 

temperature, pH, and nutrient sources, which may significantly impact the 

capacity to thrive, and hence reduce detection sensitivity. The reliance of 

cultivation on nutrient media can also result in ‘enrichment bias’ with 

detection of a narrow range of microbes which is not representative of the 
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diversity present101. The competition between organisms, using such 

methods can result in dominance of the fastest growing organisms, further 

polarizing the results101. In a study to culture the complete diversity of a 

microbial community from an oral site using multiple chemically diverse 

media types, and aerobic and anaerobic conditions, only a maximum of 50% 

were recovered despite exhaustive efforts 102. 

 

1.2.4 Microbial detection in CRS – molecular techniques 

The paradigm of organism cultivability has been central to the practice of 

microbiology since it’s inception. However, in this molecular age it is now 

possible, and indeed necessary to move beyond this traditional methodology 

and attempt to unravel the complexity of chronic polymicrobial infections103. 

Additionally, the long-standing use of culture–dependant techniques for 

microbial characterization, has led to considerable confusion regarding the 

prevalence, and importance of organisms in CRS. The occurrence of sterile 

results from a swab of mucopurulence from the sinuses is a common 

occurrence in clinical practice98. There has been an increasing awareness of 

the role of complex polymicrobial communities in chronic diseases, which 

occur at the interface between the host and the environment, such as 

mucosa, and the majority of these species are refractory to culture104. 

Microbial biofilms, were recognized as a common cause of persistent 

infections, and were detected in CRS, and many of these organisms were 

resistant to culture105. Fortunately, the growing impetus for more accurate 

characterization of these fastidious organisms in CRS has been paralleled by 
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advances in molecular biological detection techniques. Detection methods 

that target microbial nucleic acids have revolutionized modern microbiology. 

Such techniques rely on the specificity of nucleic acid sequences, which act 

as a fingerprint for any given organism.  

 

The advent of PCR (polymerase chain reaction) amplification has provided a 

basis for the development of assays to exploit differences in DNA 

sequences. Two different approaches depend on the specificity of the 

technique. Broad focused approaches amplify kingdom specific DNA 

sequences, and then certain methods are employed to determine which 

species the sequences correspond to. Narrow focused methods use primers, 

which are specific for certain species to determine the presence or absence 

of that organism in a sample. The fundamental difference between these 

techniques, is broad focused techniques do not require a priori selection of 

microbial targets106. Both narrow focused molecular methods, and 

conventional culture require pre-analysis decisions regarding which species 

to search for. 

 

The initial process therefore involves extraction of DNA / RNA from the 

organisms. This is most efficiently performed, when preceded by a physical 

disruption phase, by bead beating and use of specialized buffers and 

proteases to lyse the cells106. The nucleic acids are purified, followed by 

amplification using PCR.  
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Narrow focused molecular methods use oligonucleotide primer sets, which 

match a target region within the DNA of the organism in question. In other 

words, one first decides which organism (s) to target, and if present, the 

specific primers will bind to, and amplify the sequence, thus identifying the 

presence of the organism. This technique is extremely sensitive to small 

numbers of organisms, including within the context of a large population of 

non-targeted organisms106. This is particularly useful if only searching for one 

or two organisms within a polymicrobial population, and provides a much 

higher resolution of bacterial detection and identification than that provided 

by culture103. Thus whilst these culture independent approaches provide 

significant improvements in accuracy, the use of species specific PCR 

techniques is equivalent to the use of selective media in culture dependent 

approaches. They still require a prediction to be made as to which agent is 

likely to be associated with a particular sample, and have a practical limit as 

to the number of species specific assays that can be performed94,106.  

 

Broad focused molecular methods use specific oligonucleotide primers to 

amplify specific regions of DNA which are used as a phylogenetic fingerprint, 

most commonly those which encode for - 16S rRNA for bacteria106, and 18S, 

5.8S and 28S rRNA for fungi107. Initial broad focused techniques for microbial 

identification following DNA extraction & purification, used denaturing 

gradient gel electrophoresis (DGGE) which separated the DNA from a 

sample based on its ability to move through an acrylamide gel containing a 

denaturing agent which causes the DNA strands to melt (split). The resulting 

strands travel different distances through the gel based on the length, 
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nucleotide ratios, and charge of the DNA sequence. This is a laborious 

process but results in relatively high separation of DNA sequences to a 

resolution of 200-700 base pairs. The distinct bands within the gels can then 

be removed and analyzed by 454 sequencing106. Such sequences can be 

compared to known species, using tools such as the BLAST database108. 

 

A more recent development in broad focused molecular diagnostics has 

been the Ibis T5000 Biosensor. Following imminent threats of bioterrorism, 

The US Department of Defense commissioned the search for new methods 

for the rapid detection and identification of microbial species, as the 

molecular methods at the time were seen as too time consuming and 

cumbersome106. Ibis developed a novel strategy whereby amplicons, which 

were amplified by PCR, would be weighted by mass spectroscopy and their 

precise mass would be used to calculate the nucleotide base composition. 

Electrospray ionization (ESI) is used to gently separate DNA strands as they 

enter the time of flight mass spectrometer. The calculated nucleotide base 

composition is then compared with a database of known base compositions 

to determine the identities of any microorganisms that are present109. The 

Ibis biosensor has been shown to be extremely sensitive and specific for 

organisms from different kingdoms including bacteria, fungi, and 

viruses109,110. Additionally, the Ibis T5000 biosensor can provide crucial 

information on relative abundance of organisms, as well as antimicrobial 

resistance, such as the mecA gene for MRSA109. Additionally, such 

molecular based methods confer a much greater level of sensitivity of 

detection compared to conventional culture111. This can be particularly critical 
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when attempting to detect uncommon or fastidious bacteria112. This 

increased sensitivity can also be crucial when specimens have been 

collected after antibiotic administration, or transportation conditions have 

been sub-optimal113. Another significant advantage of broad based molecular 

detection techniques such as the Ibis T5000 has been in relation to the 

analysis of samples regarded as culture negative. Multiple studies have 

shown that such techniques can secure a diagnosis where traditional culture 

has failed106,114. Broad focused molecular methods offer great potential for 

analysis of microbial diversity in CRS, which is untempered by the limitations 

of conventional culture. Access to molecular detection instrumentation and 

expertise may limit it’s utility in the clinical setting, but this is rapidly 

improving. 

 

1.2.5 The bacteriology of chronic rhinosinusitis 

The medical management of CRS usually involves the use of antimicrobial 

therapy, often empirically. The basis for antibiotic selection is often 

extrapolated from ARS, a disease which has well defined microbial 

aetiology115. However, applying these treatment protocols to CRS may be 

flawed. The relationship between microbial agents and disease is not clearly 

established in CRS. ARS is often treated successfully with empiric 

antimicrobial treatment directed towards the three most commonly cultured 

organisms, S. pneumoniae, M. catarrhalis, and H. influenzae, however, many 

CRS patients continue to have symptomatic disease despite repeated 

administration of antimicrobial agents116. Characterizing the microbial flora 
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common to CRS patients was determined to be of high importance to 

improve antimicrobial therapy in CRS117.Unfortunately, despite extensive 

research involving predominately microbiological culture methods, the 

bacteriology of CRS remains uncertain118. 

 

It has been suggested that the microbiological dynamics of CRS change over 

time, with a predominance of aerobic organisms in the first few months, with 

gradual replacement by anaerobes in the longer term, as sinuses become 

more obstructed and oxygen levels and pH fall119. Selective pressure from 

antibiotics directed predominately at aerobic species may also have a role100. 

 

Some studies have stressed the predominance of anaerobic species in 

CRS120-124 whilst others have found little or no role118,125. More recent studies 

highlight the importance of both anaerobes and aerobes in CRS126. 

Anaerobic bacteria possess many virulence factors, which may be important 

in chronic infectious states. These include the production of catalases, 

immunoglobulin proteases, superoxide dismutase, collagenase and 

fibrinolysin. Encapsulation of anaerobes is common, and can also confer a 

survival advantage by increasing adhesion, providing oxygen tolerance, and 

resisting opsonization and phagocytosis127. 

 

The use of antimicrobial therapy in these patients, particularly those with 

recalcitrant disease who may have multiple courses, may also impact on the 

flora of the sinuses. Some authors propose therapy for up to 10 weeks 
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continuously119. Antibiotic resistance rates as high as 21% have been 

reported in CRS patients118 

 

The heterogeneity of results from microbiological studies may be explained 

partly by variations in disease type and severity, revision surgery rate, 

sample type, site, contamination by skin and vestibule flora, the uncontrolled 

use of medications including antibiotics and corticosteroids, transportation, 

and processing methods in the laboratory128. Some studies have examined 

mucus samples via swabs129, others have used mucosal biopsies in an 

attempt to reduce contamination115,126, whilst others have used inferior 

antrostomy 100 or canine fossa approaches to sample maxillary sinus 

contents130. One study in children showed a good correlation between culture 

results from the maxillary sinus and the middle meatus125. 

 

Atypical bacteria such as Mycoplasma pneumoniae, Chlamydia pneumoniae, 

and Legionella pneumophila, are resistant to culture and have been 

associated with chronic infection of the lower respiratory tract and chronic 

asthma131,132, and a potential role for such organisms in CRS is compelling. 

However, these bacteria have been investigated in a small number of CRS 

patients using PCR techniques, and were not detected133. 

1.2.6 The bacteriology of non-diseased sinuses 

 
Knowledge of the composition of the normal sinonasal flora in non-disease 

states is critical to understanding the importance of microbial populations in 

disease. Whilst normal flora can potentially be hazardous, they can also be 
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beneficial partners, by protecting the host from colonization, or subsequent 

invasion by potentially virulent bacteria117. The literature again, is ambiguous 

in this regard. Many reports of the bacteriology of CRS have not included 

control tissue, which limits the capacity to interpret them accurately. Many 

investigators have reported that all sinuses of healthy controls are completely 

sterile134-137, whilst others have suggested that the majority are sterile138. 

Others reported that aerobic species existed as normal flora in non-diseased 

sinuses, but anaerobic organisms were only present in chronically inflamed 

sinuses, concluding therefore that anaerobes were the hallmark of 

disease124. One critical limitation of many of these studies is the definition of 

control tissue. Most samples were taken as part of a diagnostic or 

therapeutic procedure in symptomatic patients. Radiology and symptom 

scores have not been routinely reported. One study used canine fossa 

puncture during a diagnostic procedure and ‘normal’ mucosa was based on 

the lack of mucus, and patent ostia, even if patients had a history of CRS130. 

The use of such patients in studies examining the flora of normal sinuses is 

clearly misleading. Valid control tissue must satisfy these criteria: 
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Table 1.5 Criteria for control sinonasal tissue 

1 Absence of rhinological symptoms as assessed by a validated 

rhinological symptom battery  

2 Absence of radiological (CT) evidence of sinus disease  

(Lund-Mackay Score = 0) 

3 Absence of endoscopic evidence of sinusitis / mucosal inflammation 

(Lund-Kennedy Score = 0) 

4 Absence of previous nasal surgery 

5 Absence of co-morbidities which may affect the sinonasal 

environment (e.g. Diabetes mellitus, cystic fibrosis, Kartagener’s 

syndrome, Asthma) 

6 Absence of antimicrobial therapy for preceding 3 weeks 

 

 

Brook reported the first study of control patients, who were undergoing nasal 

septal surgery, reporting the presence of aerobes and anaerobes in the 

maxillary aspirates. However controls were recruited based on the absence 

of symptoms only, and sinus disease was not excluded endoscopically or 

radiologically139. Additionally, those with a septal deviation symptomatic 

enough to require surgery arguably should be excluded as the symptoms of 

nasal obstruction and CRS can overlap. Additionally some septal deflections, 

depending on location, may efface the ostia. A recent study enrolled patients 

undergoing Le-Fort I osteotomies for orthognathic surgery, and used strict 

exclusion criteria similar to Table 1.5. 
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Using rigorous asepsis, and aerobic and anaerobic culture methods, more 

than 80% of maxillary aspirates were found to be sterile140. Organisms 

recovered included coagulase negative Staphylococci, and Citrobacter fundii. 

A study employing both culture and PCR methods detected organisms in 

most control sinuses, including aerobic and anaerobic species141. 

Unfortunately endoscopy, symptoms scores, and co-morbidities were not 

recorded. 

 

1.2.7 The mycology of chronic rhinosinusitis 

The first published record of fungal involvement in sinonasal disease was in 

1965 when Hora identified two different clinical presentations in patients who 

cultured fungi from the mucus; one had symptoms indistinguishable from 

chronic bacterial sinusitis, whilst the other had a fungal mass which eroded 

bone and spread like malignancy into adjacent tissues142. The invasive 

capacity of sinonasal fungi was further described following histopathological 

analysis143,144. In 1971, researchers discovered that 10% of their allergic 

bronchopulmonary aspergillosis (ABPA) patients suffered from nasal polyps, 

and were productive of nasal plugs similar to those expectorated from the 

lung145. Culture of these nasal plugs grew A. fumigatus. Additionally, 41% of 

the ABPA patient group had partial or complete maxillary opacification on 

plain X-ray145. The first description of the symptoms of rhinitis in ABPA 

patients was reported in 1975146, and the following year, a patient with ABPA, 

who suffered from severe nasal obstruction, improved dramatically following 

a course of oral corticosteroids147. Two years later, Young et al, reported a 
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case study, describing a young patient with sinusitis, nasal polyposis, and 

proptosis due to extension of fungal material into the orbit148. A third 

manifestation of fungal disease, with a rapid and malignant course in an 

immunodeficient patient, was described in 1980149. In 1983, the first series of 

patients suffering from CRS and having fungi isolated from the mucus was 

reported58,150. A sinonasal disease with distinct similarities to ABPA was 

described in 1981 by Miller et al151, and again in 1983 by Katzenstein et 

al58,150, who coined the term ‘allergic Aspergillus sinusitis’ when describing 

the thick, tenacious, eosinophil rich mucus filling the sinuses, along with 

dense polyposis. Following the discovery of other fungal organisms in this 

disease it was renamed allergic fungal rhinosinusitis (AFRS)53,152-154. In an 

attempt to provide clarity for clinicians and researchers, the International 

Society for Human and Animal Mycology convened a working group to 

attempt consensus on terminology and disease classification of fungal 

rhinosinusitis155.	   Though much confusion still exists, this classification 

describes six forms of fungal involvement in sinonasal disease, based on 

histopathological evidence of invasion, and the condition of the immune 

defences (See Table 1.6). 
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Table 1.6 The classification of fungal rhinosinusitis 

Disease Type Tissue 

Invasion 

Immune 

Competence 

Acute invasive (fulminant) FRS Yes Immunodeficient 

Granulomatous invasive FRS Yes Immunocompetent 

Chronic invasive FRS Yes Immunodeficient 

Saprophytic fungal infestation No Immunocompetent 

Fungal Ball No Immunocompetent 

Fungal-related eosinophilic FRS including 

AFRS 

No Immunocompetent 

 

Acute invasive (fulminant) fungal rhinosinusitis is a disease characterized by 

a rapid time course (<4 weeks) with histopathological evidence of vascular 

invasion by fungal hyphae. Vasculitis with haemorrhage, thrombosis, 

necrosis and neutrophillic infiltrates are characteristic156. The most 

susceptible populations are those with neutropenia, such as those with 

haematological malignancies, aplastic anemia, uncontrolled diabetes 

mellitus, those undergoing chemotherapy for malignancy, or 

immunosuppression for transplantation 156-158. 

 

Granulomatous invasive fungal rhinosinusitis has a longer time course of >12 

weeks and is characterized by an enlarging mass in the orbit, nose or 

sinuses in the immunocompetent host, with proptosis as the most common 

clinical feature155. It is seldom seen outside of Sudan, India, Pakistan, and 

Saudi Arabia159,160. Histopathological analysis shows fibrosis, and a non-
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caseating granuloma with giant cell formation, vasculitis, and angiogenesis. 

Aspergillus flavus is the fungal agent commonly associated with this disease, 

but is rarely present in great quantity161.  

 

Chronic invasive fungal rhinosinusitis is a destructive disease which occurs 

slowly over a period of >12 weeks. It involves predominately the sphenoid 

and ethmoid sinuses, and in contrast to the granulomatous form, fungal 

hyphae (predominately A. fumigatus) tend to be dense160. Vascular invasion 

is seen occasionally, and the inflammatory reaction is limited. 

Immunodeficiency is requisite, and is usually related to AIDS, poorly 

controlled diabetes mellitus, or chronic corticosteroid use156. 

 

Saprophytic fungal infestation describes the asymptomatic colonization of the 

nasal cavity with fungi, often associated with mucus crusts following 

endoscopic sinus surgery. It has been proposed that this condition may 

related to the early stages of fungal ball formation162. 

 

Fungal ball describes a relatively common condition where a conglomeration 

of fungal debris is present, usually within an isolated sinus. The maxillary 

sinus is the most commonly affected, but it has occurred in others163,164. 

Other terms have been used including aspergilloma and mycetoma162. The 

treatment involves endoscopic extirpation which is curative163,164. This 

disease is clearly differentiated from AFRS, and is characterized by the 

following criteria155: 
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1. Radiological evidence of sinus opacification +/- heterogeneity 

2. Mucopurulent or cheesy / clay-like material within sinus 

3. A dense conglomeration of fungal hyphae separate from mucosa 

4. Non-specific mucosal inflammation 

5. No predominance of eosinophils / granuloma / allergic mucin 

6. Absence of tissue invasion 

There are some caveats to these criteria however. Tissue invasion has been 

reported following immunosuppression for organ transplantation in a patient 

with a fungal ball165. Additionally, allergic mucous has been reported in 

patients with fungal balls when corticosteroid dosages have been 

reduced162,166. There have also been case reports of AFRS and chronic 

invasive fungal rhinosinusitis in the same patient specimen on 

histopathological analysis, with speculation that they are part of a disease 

spectrum rather than distinct entities48,162. 

 

1.2.8 Bacterial biofilms in chronic rhinosinusitis 

Biofilm infections were defined in 1999, and have revolutionized Medicine, 

and our understanding of chronic diseases105, and an estimated 99% of all 

bacteria preferentially form biofilms167, therefore they constitute the 

ubiquitous and natural phenotype of bacteria. The characterization of a 

biofilm infection requires the demonstration of a matrix enclosed microbial 

community within or upon the affected tissue106. The matrix is self-produced, 

and the organisms are irreversibly attached to the surface. The biofilm mode 
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of growth affords the microorganisms considerable protection from 

antibiotics168-170, host defenses106, and other environments considered hostile 

to planktonic organisms105. Microorganisms embedded in these complex 

structures are under altered transcriptional regulation, and are thus 

phenotypically different to their planktonic counterparts, resulting in reduced 

metabolism and slower growth167. They are often slow to produce symptoms, 

often with an insidious onset171. Antibiotic therapy may ameliorate symptoms 

in the short term (likely due to eradication of planktonic clones) but the 

symptoms recur until the biofilm is physically removed105. 

 

Many biofilm organisms are resistant to culture172, or have variable culture 

rates173, and their detection requires specialized techniques174. Phenotypic 

differences which occur between planktonic and biofilm based organisms, 

may contribute to the relative incapacity of biofilm associated organisms to 

grow on nutrient media105,106.  

1.2.8.1 Detection of microbial biofilms in CRS 

Since the discovery in 2004, of biofilms on the sinonasal mucosa of CRS 

patients175, multiple investigators have used various imaging modalities to 

characterize the occurrence, microbial diversity, and clinical relevance, of 

mucosal biofilms in CRS. Initial studies used scanning electron microscopy 

(SEM)176 to detect and characterize the nature and structure of biofilms in 

CRS patients175, which was confirmed by a number of other SEM based 

studies177, and in an animal model178. Transmission electron microscopy 

(TEM) was also employed to examine biofilms in CRS patients with similar 

findings176,179. An animal model of sinus biofilm formation examined the 
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sensitivity and specificity of SEM, TEM, and confocal scanning laser 

microscopy (CSLM) for detecting mucosal biofilms, confirming the former two 

modalities to have inherent flaws for the accurate detection and description 

of biofilms, recommending CSLM as the modality of choice for this 

purpose180. CSLM allows critical assessment of the three-dimensional 

structure of the biofilm, and resident microorganisms thus reducing false 

positive results180.  

1.2.8.2 Biofilms in CRS – organism specificity 

The overriding limitation of all of the biofilm detection methodologies 

described above, is lack of organism specificity. Characterization of relevant 

biofilm forming organisms was based on the detection of biofilm using 

microscopy, and relating this to conventional laboratory culture 

results175,177,179. However, this approach is clearly limited, as biofilms are 

known to be particularly resistant to conventional culture techniques106,172,181. 

More recently investigators have used organism specific FISH probes to 

examine the biofilms in CRS patients. When combined with CSLM detection, 

FISH has enabled investigators to characterize the relevant microorganisms 

and relate these to clinical outcomes. Despite it’s utility in biofilm research, 

FISH/CSLM techniques still require investigators to pre-select organism 

specific probes. In other words, one must choose which organisms to detect, 

and due to the limitations of the technique, only a small number of probes 

can be used on a piece of mucosal tissue. Molecular detection techniques 

such as 16S rRNA PCR and sequencing, and Ibis T5000 biosensor 

detection, afford the opportunity to detect all organisms on the sinonasal 

mucosa without a priori selection of organisms, and without the limitation of 
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culture techniques. They are described above in Section 1.2.4 - Microbial 

detection in CRS – molecular techniques. 

 

1.2.8.3 Clinical relevance of microbial biofilms in CRS 

The discovery of biofilms in CRS patients but not controls, was a pivotal 

finding in a number of independent studies, which highlighted the association 

of biofilms with the disease state182-186. However, two studies have detected 

H. influenzae biofilms in a proportion of control patients, casting some doubt 

on this dictum187,188.  

 

The prognostic implications of biofilms in CRS patients have been examined 

in both a retrospective189 and a prospective trial182. The presence of mucosal 

biofilm was associated with more severe disease pre-operatively, more post-

operative visits to the surgeon, and persistent CRS symptoms and mucosal 

inflammation on endoscopy following ESS182. SEM based studies have 

shown that biofilms also impact negatively on the physiochemical barrier of 

the epithelium (see Section 1.3.8). The presence of biofilm was associated 

with significant destruction of the mucosal epithelium, with destruction of cilial 

elements177,185. Additionally, biofilms have shown to significantly impair 

wound healing in an animal model190. 

 

The use of organism specific biofilm detection techniques, such as FISH, has 

furthered our understanding of the capacity of certain microbial biofilms to 

impact on disease. S. aureus was identified as the most common biofilm 

forming organism in CRS patients186. H. influenzae was identified as the 
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second most common organism within mucosal biofilms in CRS patients. A 

follow-up study compared the clinical outcomes of CRS patients with either 

H. influenzae or S. aureus biofilms, finding that the latter, was associated 

with more severe disease pre-operatively, and more protracted post-

operative course, marked by higher complication rates191. A prospective 

study of CRS patients confirmed S. aureus biofilms as the ‘nemesis of the 

endoscopic sinus surgeon’192.  

 

1.2.9 Fungal biofilms in chronic rhinosinusitis 

The study of medical mycology has observed a paradigm shift recently, with 

the emerging appreciation that clinically important fungi are capable of 

forming biofilms on host surfaces193,194. Industrial mycologists have known of, 

and exploited the beneficial aspects of Aspergillus biofilms for some time195. 

Despite this there is still debate on what constitutes a fungal biofilm, however 

the basic criteria – that the fungi must be irreversibly attached to a surface 

and / or one another, and surrounded by an exopolymeric substance are 

generally accepted196. Fungal biofilms, like bacterial biofilms, have defined 

developmental phases that include the initial physical contact with an 

appropriate substrate, adhesion, colonization, matrix production, and biofilm 

maturation and dispersal197-199.  

 

Filamentous growth is a fundamental feature of fungal proliferation, however 

germination of conidia is required, and conidial adhesion is essential to 

trigger germination196,200. Fungal spores adhere to surfaces through several 
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mechanisms. Physical properties including hydrophobicity, electrostatic 

charge, and the roughness of the surface are important in initial conidial 

adhesion201,202. Fungi also produce a number of proteins, which stabilize the 

adhesion of spores to natural surfaces203. 

 

Healy et al, discovered the presence of fungal biofilms using epifluorescent 

microscopy, whilst investigating microbial biofilms in CRS patients 187. These 

fungi were noted to be physically associated with bacterial biofilms, and were 

more prevalent in those with more severe disease – eosinophilic mucus 

chronic rhinosinusitis (EMCRS) patients. More recently, Foreman et al, 

detected fungal biofilms in 11/50 (22 %) CRS patients using fluorescence in-

situ hybridization (FISH)186. Interestingly, 7 / 11 (64%) of these patients also 

had evidence of S. aureus biofilms highlighting a potential cross-kingdom 

synergy. This is also supported by another study which found evidence of 

fungal hyphae in eosinophilic mucus coincident with positive culture of S. 

aureus204. 

1.2.10 Polymicrobial flora in CRS 

The role of polymicrobial flora in disease pathogenesis is being increasingly 

recognized. The nature of interspecies interaction can significantly alter the 

way microorganisms interact with the host, and can mean the difference 

between disease and health. Certain bacterial species may not be able to 

maintain chronic infections on their own, but if these species co-occur in 

appropriate mixtures, they can act symbiotically to successfully establish a 

pathogenic biofilm which contributes to inflammation103. Mixed fungal-
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bacterial biofilms have been reported in CRS patients186,205, as described 

above, however why these develop, and their clinical significance is not yet 

known. The complex structure of biofilms allows stratification into spatially 

organized populations of microorganisms that can be of mixed species, 

where interspecies cooperation can develop206. Multiple metabolic 

interactions have been observed in mixed biofilms, including mutualistic and 

commensal relationships207. For example, within polymicrobial biofilms, 

oxygen only penetrates a few µm into the surface208, and aerobic species 

may consume oxygen, creating anaerobic niches, allowing obligate 

anaerobes to gain an advantage when in close proximity to their oxygen 

consuming counterparts103. Co-aggregation is seen in oral biofilms, and is 

another example of a mutually beneficial interaction, where distinct species 

increase adherence to mucosal surfaces by specific cell – cell recognition. 

1.2.11 Functional equivalence in polymicrobial biofilms 

The concept of functional equivalence has importance as it may significantly 

alter the single-pathogen paradigm of chronic infections103. This concept is 

based on the requirement of organisms to perform a number of roles in order 

to persist within, and interact with the host. A group of otherwise innocuous 

organisms may together, have the required virulence factors to cause harm 

to the host. These diverse consortia may possess functional equivalence to 

organisms such as P. aeruginosa and S. aureus, which may be capable of 

performing these essential function in isolation103. Furthermore, diverse 

pathogenic biofilms are more stable than less diverse biofilms87, which may 



Environmental factors - microbial 

S J Boase 
 
47 

explain the recalcitrance when single treatment modalities, especially 

narrow-spectrum antimicrobials, are employed119. 
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1.3 HOST FACTORS IN CRS 

1.3.1 Introduction 

The sinonasal cavity, like the gastrointestinal system and lower respiratory 

tract, is an area of constant interaction between the host and the 

environment. Here, the host becomes in intimate contact with a plethora of 

inhaled and implanted organisms, which have potential to harm the host, and 

contribute to disease. The host has a repertoire of physical and immunologic 

defenses, which, in normal circumstances prevent the environmental agents 

from inciting disease. Ciliated epithelium prevents colonization by 

microorganisms in three ways209: 

1. The physical removal by ciliary action and cough 

2. The presence of broad spectrum innate antimicrobial agents in the 

mucus 

3. The recruitment of phagocytic cells and an immune response (innate 

and adaptive) 

A number of host factors may be important in CRS pathogenesis, including 

sinonasal anatomical abnormalities, impairment of mucociliary function, and 

a number of co-morbidities including allergy, asthma, immunocompromise, 

and aspirin sensitivity.  

1.3.2 Anatomic abnormalities 

Many anatomical variants can contribute to obstruction of the outflow tracts 

of the paranasal sinuses, including deviation of the nasal septum, concha 

bullosa, Haller cells, and paradoxical curvature of the middle turbinate. 
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However it is unlikely that these play a significant role in most cases of CRS, 

as they are present in similar frequencies in CRS patients and controls210,211. 

However, a number of anatomical factors have been associated with disease 

recalcitrance, including middle meatal stenosis, middle turbinate 

lateralization, scarred frontal recess212, and residual ethmoid cells212,213. 

1.3.3 Ciliary impairment 

As will be discussed in further detail in Section 1.3.8 - The physiochemical 

barrier, cilia play an important role in the clearance of organisms, debris, 

allergens and pollutants from the nose and paranasal sinuses through their 

movement of sinonasal mucus. Primary cilia dyskinesias (PCD) are a group 

of autosomal recessive disorders, which are characterized by inherited 

defects in cilia function, which results in inefficient, uncoordinated cilial 

movements. Kartagener’s syndrome is a type of PCD, which is also 

characterized by situs inversus, due to the critical role of monocilia in 

embryonic development. These conditions result in mucus stasis, and 

affected patients are particularly pre-disposed to develop CRS, and often 

suffer from chronic upper and lower respiratory illness214. As genetic markers 

for these diseases are discovered, subclinical cilial dysfunction may be found 

to predispose to CRS215. 

1.3.4 Sinonasal mucus abnormalities 

Cystic fibrosis is one of the most common autosomal recessive disorders, 

affecting approximately 1 in 2500 live births, and 1 in 25 Caucasians are 

heterozygote carriers216. The most common mutation (in more than 2/3 of 

sufferers) is Δ508, which results in an abnormal chloride transport protein – 
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the cystic fibrosis transmembrane conductance regulator (CFTR). As a 

result, the surface liquid of upper and lower airways suffers major 

modifications with high concentrations of chlorine, mucus thickness and 

reduction of mucociliary clearance. 25-40% CF patients suffer from CRS with 

nasal polyposis217, and some authors suggest that carrier status may also be 

associated with an increased prevalence of nasal polyposis218. Others have 

recommended genetic screening of nasal polyp patients due to the 

overrepresentation of CFTR mutations in this population219. 

1.3.5 Immunocompromise 

Although most patients with sinus disease are not overtly immunodeficient, a 

significant proportion of patients with recalcitrant CRS may have a systemic 

immunodeficiency220. Recurrent ARS and CRS are the most common 

manifestation of common variable immunodeficiency (CVID) and many 

patients are only diagnosed as immunodeficient following multiple sinus 

procedures220. Patients with global immunoglobulin deficiency and CRS 

clearly benefit from immunoglobulin replacement therapy, and there may also 

be a role for CRS patients with more selective deficiencies220. In a review of 

recalcitrant CRS patients, 55% had abnormal results for in vitro T lymphocyte 

testing, 5 – 18% had low immunoglobulin isotype titres, and CVID was 

diagnosed in 10% of patients. Another study showed similar levels of 

systemic immunoglobulin deficiency221.  

 

Acquired immunodeficiency has also been related to CRS manifestation. 

One study reported a prevalence of 35% CRS in HIV patients. The CD4+ cell 
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count was an independent predictor of CRS manifestation222. In another 

study, 12% of HIV infected patients were diagnosed with CRS223. 

1.3.6 Aspirin sensitivity 

Aberrant arachidonic acid metabolism, and impaired eicosanoid production 

may contribute to the pathogenesis of CRS with nasal polyps, however the 

underlying mechanisms remain to be elucidated224. 36 – 96% of aspirin 

sensitive patients have nasal polyps, and up to 96% have radiographic 

evidence of mucosal abnormalities consistent with CRS225. A recent study of 

aspirin tolerant and aspirin sensitive CRS patients showed significant 

differences in the expression of enzymes involved in the arachidonic acid 

cascade226. Aspirin sensitive patients with nasal polyposis have a high rate of 

recurrence, requiring revision surgery227. The diagnosis of aspirin sensitivity 

has important implications for research, as well as clinical outcomes for the 

patient, who may benefit from desensitization228. 

1.3.7 Asthma 

There is growing evidence of a unified airway phenomenon, linking the upper 

and lower airways. Nasal polyposis has a prevalence of 2 – 4% in the 

general population, approximately 5% in atopic asthmatics, and 13% in non-

atopic asthmatics2,229. Asthmatics generally have more severe disease, with 

a higher proportion of nasal polyps, and higher rates of surgical revision than 

non asthmatics230. The clinical severity of asthma may also be important - in 

a cross sectional analysis of 187 patients, asthma severity was associated 

with a greater incidence of nasal polyposis, and severity of sinus CT Lund-

Mackay scores231. 
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1.3.8 The physiochemical barrier 

The initial line of defense for the sinonasal cavity is the barrier function of the 

epithelium, which effectively separates the luminal surface from the 

basolateral surface. Structurally, the sinonasal mucosa has many 

characteristics, which resist, and remove microorganisms. An epithelial layer 

of ciliated, pseudostratified, columnar cells, which are joined by tight 

junctions, rest on a collagenous basement membrane, and provides a 

physical barrier to prevent microbial invasion and adherence232.  

 

The mucociliary escalator is important for the clearance and prevention of 

bacterial colonization233,234. Each epithelial cell is covered by 50 – 200 cilia; 

membrane-bounded microtubules, which are approximately 10-15µm long 

and each, contain an outer and inner dynein arm, which are the force 

producing molecules, which respond to cAMP and Ca2+ flux235. The cilia 

extend into the overlying mucus layer and propel mucus and any trapped 

foreign matter and microbes from the sinuses into the nasal cavity towards 

the pharynx for swallowing. Primary ciliary dyskinesia (PCD) is a disease, 

which is characterized by genetic mutations resulting in dynein arm defects, 

and impaired ciliary beat frequency236. Clinical features of the disease are 

indications of the processes in which ciliary motility are essential. Some of 

the strongest phenotypic markers of PCD are chronic rhinosinusitis, as well 

as otitis media with effusion. It is of great interest that both of these diseases 

have been independently associated with microbial biofilms186,237-240, even 

when PCD criteria are not met, highlighting the intimate relationship between 

ciliary clearance and microbial colonization. Many bacteria are known to 
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secrete toxins, which impair cilia motility241. Additionally, certain inflammatory 

cytokines have been shown to impair cilia beat frequency, including IL8
242, 

IL13
243, IL6

244 and tumor necrosis factor-α245. Modulation of cilia physiology by 

cytokines, which are often elevated in CRS, is a potential mechanism for 

decreased mucociliary clearance in this disease. 

 

Mucus production and composition is critically important to the function of 

mucociliary clearance. Cystic fibrosis provides an instruction into the 

profound effects of abnormal mucus composition even when cilia motility is 

normal236. The sinonasal epithelial surface is covered by mucus - a thicker 

(gel) mucus layer which rides along the tips of the cilia, overlying a thinner 

peri-ciliary (sol) layer246, produced by submucous glands, goblet cells, 

ciliated epithelial cells, Clara cells, bloods vessels, and secretory cells 

resident within the mucosa246. The nature of the mucus is critical to 

respiratory tract health and it serves many critical functions, including 

protection of the mucosa and essential host-defense roles. The sol phase is 

a solution of water and electrolytes (Na+, K+, Ca++
, Cl-). In health, the mucus 

layer is completely replaced every 10-20 minutes247. The mucus layer travels 

at approximately 1cm per minute, removing microbes and particulate matter. 

  

In addition to the physical trapping and removal of foreign material and 

microorganisms, mucus is also a complex, immunologically active substance 

made of carbohydrates, enzymes, proteins, immunoglobulins, and other 

active molecules.	   The most abundant compound is mucus glycoproteins 

(mucins), which provide viscoelastic properties248. Whilst not offering 
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antimicrobial properties per se, the mucins can provide host defense by 

physical protection of the tissue, and segregation of inhaled particles and 

microorganisms248. Fleming discovered the first of the antimicrobial agents of 

nasal secretions in lysozyme249. Since discovered are many other peptides 

and enzymes with antibacterial and antifungal activity, including lactoferrin, 

immunoglobulins, defensins, uric acid, nitric oxide, peroxidases, β-

defensins209,246,250. Lactoferrin in particular, possesses a variety of functions, 

including antimicrobial and antibiofilm activity251. 

 

1.3.9 Innate immunity 

Faced with constant immunological stimulation, the unique challenge for the 

mucosa is to find homeostatic balance between tolerance and immunity. A 

number of protective mechanisms operate at mucosal level to prevent 

adherence, invasion of microorganisms, and subsequent induction of cell 

damage. The innate immune system of the sinonasal cavity provides the first 

defense against potential pathogens at this host – environment interface. It 

consists of multiple immunologic components, with complex functions, which 

act to reduce the microbial load within the sinuses, and reduce antigenic 

stimulation of immune cells residing within the mucosa. It also has critical 

functions in differentiating self and non-self, and in the early detection of 

pathogens.  

 

Innate immune responses include a universal and ancient form of host 

defense, which relies upon a limited number of germ line encoded receptors. 
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These receptors have evolved to recognize well conserved pathogen-

associated molecular patterns (PAMPs) found in bacteria, fungi and 

viruses250. The specificity of these receptors forms a critical, early self vs. 

non-self discrimination step in pathogen recognition. Principal functions of 

these receptors include opsonization, activation of complement, 

phagocytosis, and activation of pro-inflammatory signaling pathways250. Toll-

like receptors (TLRs) are a family of membrane bound receptors, which have 

a role in detecting PAMPs and performing early pro-inflammatory functions. 

They are expressed on many cell types including dendritic cells and 

sinonasal epithelial cells209,252. 

 

Innate immune system cells consist of dendritic cells, macrophages, natural 

killer cells, mast cells, basophils, eosinophils, and γδ T cells253. Dendritic cells 

are pivotally positioned at the interface of the innate and adaptive immune 

systems254. They are the most efficient antigen-presenting cells in the 

immune system, and have emerged as key players in initiating and regulating 

adaptive immune responses255.	   Dendritic cells reside in the peripheral 

tissues, where they sample antigens from the environment. TLRs on the 

surface of DCs recognize PAMPs and activate dendritic cell maturation via 

intracellular signaling pathways, leading to antigen processing, and co-

stimulation of lymphocytes254.  

 

Glucocorticoids have been traditionally believed to have immunosuppressive 

effects, but recent evidence suggests they actually augment many aspects of 

innate immunity. These include enhanced mucociliary function, neutrophil 
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survival and phagocytosis, and increased epithelial production of 

antimicrobial molecules such as collectins, complement, and pentraxins256. 

The positive effects of glucocorticoids on innate immunity mirror the 

therapeutic effects, with clinical improvement of diseases, which are subject 

to infective exacerbations, including asthma, CRS, and COPD.  

1.3.10 Adaptive immunity 

Many researchers have subclassified CRS according to the predominant 

cytokines detected within the tissue often termed the ‘cytokine profile’. These 

are generally grouped into those associated with T helper 1 (Th1) or Th2 

cytokine profiles257. Most have shown that CRSsNP is generally associated 

with a Th1 profile, whilst CRSwNP is associated with Th2 cytokines. This has 

recently been called into question however, as Asian CRSwNP patients tend 

to have Th1 / Th17 cytokine predominance, compared to European polyp 

patients who have Th2 predominance27. CRSwNP patients with co-morbid 

cystic fibrosis (CF) also have Th1 associated cytokines within nasal 

tissues257. Furthermore, the polyps of Asian CRS, and CF patients, show a 

predominance of neutrophils, rather than eosinophils257.  

 

Innate and adaptive immunity are often described as separate entities which 

act sequentially, like lines of defence. However in reality they are intricately 

linked, working together to maintain homeostatic balance. Adaptive immunity 

is so named, because it is able to adapt to new microorganisms, and has 

specificity, amplification, and memory characteristics. As described above, 

dendritic cells are believed to be a critical link between epithelial surface 
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based innate mechanisms, and the cellular environment of the submucosa, 

which forms the cellular and humoral aspects of the adaptive response256. 

Recent research supports this hypothesis, and offers pathways of immune 

activation, which may be common to many diseases associated with atopy. 

The activation of epithelial surface TLRs results in secretion of granulocyte 

macrophage colony stimulating factor (GM-CSF), which is a powerful inducer 

of dendritic cell formation and recruitment258. When TLR3 is activated, 

epithelial cells secrete a substance known as thymic stromal lymphopoietin 

(TSLP) which also stimulates dendritic cells to become activated, and 

subsequently skews T cells to become Th2 cells259. Interestingly the 

expression of TSLP was strongly suppressed by topical glucocorticoid 

application, mirroring the efficacy of these medications clinically. 

Furthermore, TSLP production was significantly increased in the presence of 

respiratory viruses, which are known to exacerbate disease clinically. TSLP 

mRNA is elevated in diseases which may have a related pathophysiology - 

CRSwNP, asthma, and atopic dermatitis. In addition to activation of T cells 

through antigen presentation, and cytokine release, superantigens have 

been shown to activate large populations of T cells in nasal polyps, as 

evidenced by skewing of the Vβ receptor profile of the lymphocytes260.  

 

B lymphocytes are actively recruited to mucosal sites where they are 

activated, undergo class switch recombination, and differentiation into 

plasma and memory cells256. These processes play a role in asthma and 

allergy, and class switch recombination to IgE is of particular importance, as 

IgE is significantly elevated in CRSwNP261. Certain proteins which are 



Host factors in CRS 

S J Boase 
 
58 

important in B cell recruitment and class switch recombination to IgE are 

significantly elevated in CRSwNP. Levels of B cell activating factor (BAFF) 

were significantly elevated following antigen challenge, and were correlated 

with B cell activating cytokines and eosinophil numbers, supporting it’s role 

as a critical protein in allergy, and class switch recombination262. 

1.3.11 The role of IgE in chronic inflammation 

Classical type I hypersensitivity reactions occur with IgE as a critical factor. In 

these reactions IgE binds the high affinity FcεRI, which exists on mast cells, 

basophils and antigen-presenting cells. Multivalent antigen binding to these 

IgE-FcεRI complexes on mast cells and basophils leads to the release of 

histamine, leukotrienes and IL4, leading to immediate mucosal inflammation. 

Recent advances in our understanding suggest additional roles for IgE in the 

late phase response and non-allergic inflammation263. Binding of IgE to FcεRI 

in the absence of antigen for which the IgE has known specificity, can 

enhance mast cell survival, signaling and mediator secretion264. IgE binding 

to the low affinity receptor, FcεRII, has effects on B cell differentiation and 

apoptosis, and the regulation of IgE synthesis265. Such pathways may 

underlie novel mechanisms of chronic inflammatory stimulus in CRS.  
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1.4 HOST - ENVIRONMENT INTERACTIONS IN CRS 

1.4.1 Introduction 

The interaction of environmental factors and the host immune system is 

critical in understanding CRS pathogenesis. Clearly, the plethora of microbial 

and non-microbial factors, their complex inter-relationships, and interactions 

with a poorly understood immune system, makes this a formidable task. 

Despite this challenge, much is being discovered about how the host, 

particularly at the mucosal level, interacts with the environment in health and 

disease states. The following discussion highlights the literature on this topic, 

and concludes with a focus on the important and contentious organisms in 

CRS, namely S. aureus and fungi. 

1.4.2 Environmental factors and atopic disease 

The interaction between environmental agents and atopic disease is 

intriguing. Allergy involves an abnormal host response to an otherwise 

innocuous environmental agent, resulting in adverse outcomes for the host. 

The manifestation of allergic disease therefore, usually occurs at the site of 

contact with the environment: the host-environmental interface, although 

systemic manifestations can occur. There is emerging evidence that 

microorganisms can alter the magnitude, and perhaps the development of 

these allergic responses, which may have implications in CRS. 

 

The role of environmental agents, such as microorganisms, in other diseases 

involving the mucosal – environmental interface raises questions of 
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additional pathogenic mechanisms in CRS. The role of bacteria in modifying 

allergic responses has particular importance in CRS, as both allergy, and 

bacteria have been individually linked to the pathophysiology of CRS. Atopic 

respiratory diseases such as asthma and allergic rhinitis have been 

classically associated with aeroallergens such as pollens and fungi, but 

bacterial products have increasingly been implicated266. Staphylococcal 

superantigens have been demonstrated to enhance inflammatory airway 

responses in models of asthma and allergic rhinitis266,267, and S. aureus 

colonization increases the sensitization to inhaled aero-allergens in asthmatic 

patients267. Additionally, the use of antibiotics in the first year of life increases 

the risk of developing asthma, allergic rhinitis and atopic eczema at age 6, by 

56-82%, which suggests a role for bacterial infection in the development of 

atopic disease268.  

 

Atopic dermatitis (AD) is another ‘interface’ disease in which, IgE mediated 

hypersensitivity plays an important role, and AD also has a very high rate of 

S. aureus colonization269. IgE synthesis in the peripheral blood of these 

patients is significantly upregulated in the presence of S. aureus 

enterotoxins270. Another study showed that pollen specific IgE production 

was also enhanced in the presence of staphylococcal superantigens.271 

 

Shiomori et al, found that S. aureus colonization rates were higher in 

perennial allergic rhinitis patients (45%) compared with controls (20%)272. 

Furthermore, perennial allergic rhinitis patients have significantly worse nasal 

symptom scores when S. aureus is present272.  It is possible that S. aureus 
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enhances the mucosal IgE mediated allergy in these patients however this 

was not specifically addressed. These studies suggest a role for 

microorganisms as disease modifying agents, with the potential to 

exacerbate sensitization to inhaled aero-allergens in susceptible individuals. 

 

Medical treatments for CRSwNP are generally directed at either host or 

environmental mechanisms, and include corticosteroids to reduce mucosal 

inflammation and exudation, and antibiotics, antimycotics, and antibiofilm 

treatments to reduce the microbial bioburden. Other immunomodulatory 

medications are targeted at specific inflammatory pathways such as 

histamine and leukotriene antagonists273. In practice, these treatments play a 

role in reducing disease burden in the short term, but cessation of these 

agents often leads to disease recurrence and subsequent surgical 

intervention. Recent trials of the novel anti-IgE monoclonal antibody, 

omalizumab have shown promise for nasal polyposis in preliminary 

studies274-276, and suggest a critical role of IgE in the underlying 

pathogenesis of this disease. 

 

1.4.3 Polymicrobial flora and the host - Symbiosis 

Following birth, colonization of environmentally exposed surfaces begins, 

and continues throughout life. Many host – organism associations have 

evolved into beneficial relationships, creating an environment of mutualism. 

By adulthood, the human host supports one of the most complex microbial 

ecosystems known277. Symbiosis derives from Ancient Greek, meaning to 
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‘live with’. A common misconception is the assumption that symbiosis is a 

positive phenomenon for both parties. Three types of symbiosis exist278. 

Table 1.7 The three types of symbiosis 

Parasitism One organism benefits, while the other is harmed 

Commensalism One organism benefits and no harm occurs to the other 

Mutualism Both organisms benefit 

 

In the past certain organisms have been labeled as commensals (such as S. 

epidermidis on the skin) but it is becoming clear that the same organism can 

take on different roles at different times. The distinction between an organism 

which benefits the host, and one which harms, may lie in the host’s capacity 

to resist infection, rather than inherent characteristics of the microbe itself278. 

An example is S. epidermidis, traditionally considered to be a commensal, 

but contemporary research suggests it has mutualistic properties, 

significantly benefiting the host, through secretion of multiple antibacterial 

peptides, which are toxic to other organisms such as S. aureus and 

Streptococcus pyogenes. S. epidermidis also produces modified peptide 

pheromones which interact with quorum sensing mechanisms of bacteria 

such as S. aureus, which ultimately leads to colonization inhibition279. 

However, when the host defenses are compromised, due to, for example, 

immune barrier breakdown or immunosuppression, S. epidermidis can be 

pathogenic, secreting proteases, collagenases and numerous toxins which 

cause significant tissue damage280. 
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1.4.4 Polymicrobial flora and the host - Dysbiosis 

The importance of understanding the complex polymicrobial communities in 

the sinuses is highlighted by the concept of dysbiosis. In conditions of 

dysbiosis, there is an unnatural shift in the composition of the microbiota, 

which leads to immunological dysregulation and inflammation. Several 

studies have shown that the surface microflora can influence the host 

immune system, with certain basic developmental features and functions of 

the human immune system depending on interactions with the human 

microbiome281. Unlike opportunistic pathogens which elicit immune 

responses that result in inflammation and tissue damage, some symbiotic 

bacterial species have been shown to prevent inflammatory disease during 

colonization. Surprisingly the ‘normal’ microbiome also contains 

microorganisms that have been shown to induce inflammation under certain 

conditions281. It is possible that alterations in the development or composition 

of the microbiota, known as dysbiosis, disturbs the partnership between 

microbes and the human immune system, ultimately leading to altered 

immune responses that may underlie various human inflammatory 

disorders282. 

 

There is evidence to suggest that microbial diversity is important for 

health283, and a reduced biodiversity associated with increased abundance, 

is associated with chronic inflammation and poor healing284. There is also 

literature to suggest that host genetics and immunity strongly influence the 

composition of the mucosal microflora285.  Microbial communities inhabiting 

mucosal surfaces such as the gastrointestinal tract can result in a significant 
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mutualism, including local immune homeostasis281,282 and protection from 

pathogens through processes such as nutrient consumption, occupation of 

attachment sites, and secretion of antimicrobial substances286. 

Propionibacterium acnes, which is commonly found in the sinonasal cavity 

using molecular detection, has been shown to produce bacteriocins which 

have antibacterial and antifungal activity which may be protective against 

pathogens.287 Competition between microbes on mucosal surfaces can result 

in selection of virulence factors which can be detrimental to the host288. In an 

elegant model of polymicrobial interactions, Sibley et al, have shown that 

avirulent organisms can enhance the pathogenicity of other organisms, 

highlighting the importance of comprehensive microbial community analysis 

to investigate disease289.  

 

The use of probiotics in inflammatory bowel disease is an example of 

microorganisms, which can be beneficial to the host. Initially thought to be a 

physical phenomena, with mutualistic organisms out-competing pathogens 

for attachment sites, nutrients etc., it is now understood that probiotic strains 

modulate intestinal immune responses, by interacting with epithelial cells, 

dendritic cells, and T lymphocytes to maintain immune homesostasis282. 

Clearly, characterizing the microbial communities which reside on the 

mucosa of CRS patients, and their interactions with each other, and with the 

host immune system, is critical to furthering our understanding of this disease 
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1.4.5 Microbial bioburden 

There are two main microbial factors, which can influence whether microbes 

exist with the host (mutualism or commensalism) or aggravate the host 

eliciting an immune response and subsequent inflammation (parasitism). The 

first is the net pathogenic effect, or microbial virulence, which relates to the 

organisms present290, as described above. Current CRS research has 

focused specifically on this, and more recently, on the polymicrobial diversity 

of the sinuses as described above. The second factor is the contamination 

level, otherwise known as the disease load, or bioburden. Importantly, the 

great majority of studies aimed at characterizing the microbial flora of CRS, 

fail to analyze the abundance of organisms in the sinuses, particularly in 

reference to controls. One isolated study however, did show the chance of 

symptomatic recurrence was related to the abundance of anaerobic 

organisms. To fully understand the potential role of microorganisms in 

disease the abundance of organisms must be analyzed, as well as the 

diversity. A novel theory of chronic infection management focuses on 

reducing the microbial abundance rather than aiming for microbial 

eradication, the goal being to create a host-manageable bioburden290. 

1.4.6 Staphylococcus aureus – host interactions 

S. aureus deserves special mention here as it emerging as an important 

organism in CRS, with potential disease modifying characteristics. It is one of 

the most commonly detected, and well studied species in the CRS literature. 

Much can be learned from it’s plethora of virulence factors, and the complex 

interaction of this organism with the host.  
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S. aureus  is a facultative anaerobic Gram-positive spherical (coccal) 

bacterium approximately 1µm in diameter. It is a common human commensal 

microorganisms carried chronically in the upper respiratory tract and on the 

skin of 20% of the population, and intermittently by up to 60% of the 

population291. In healthy individuals, the carrier state for S. aureus does not 

appear to be associated with any immediate complications. Multiple microbial 

and host factors have been linked to the development and maintenance of S. 

aureus carrier state but the precise mechanism remains unclear292. In 

contrast to it’s commensal status, S. aureus is capable of causing many 

human infections ranging from skin and soft tissue, to invasive disease such 

as pneumonia, osteomyelitis and endocarditis. It is the most commonly 

isolated microbe from inpatient specimens and the second most common 

from outpatient specimens292.  

 

The duality of S. aureus interactions with human hosts, from apparent 

innocuous colonization, to highly pathogenic invasion begs the question of 

what mechanisms determine the balance between these two phenomena. 

This question is particularly relevant when considering the many toxins and 

virulence molecules produced by S. aureus and the innate and adaptive 

mechanisms that these molecules interact with.	  

 

A broad array of virulence factors contribute to S. aureus pathogenesis 

including pore-forming toxins (alpha-hemolysin, Panton-Valentine 

leukocidin), superantigens (enterotoxins A, B, C, and toxic shock syndrome 
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toxin-1), phagocytosis inhibitors (polysaccharide capsule, protein A), and 

immune evasion molecules (chemotaxis inhibitory protein, staphylokinase, 

aureolysin)293. The virulence factors of S. aureus have significant redundancy 

in subverting the same host mechanism, which underlies it’s importance as a 

human pathogen.  

1.4.6.1 Adhesion 

S. aureus produces numerous surface proteins, which enable it to persist in 

the sinonasal cavity, via enhanced adhesion to host tissues and 

secretions294, and reduced mucociliary clearance. It, and other bacteria have 

been shown to secrete specific toxins to impair nasal ciliary motion and co-

ordination241. Agents that aid bacterial attachment include collagen binding 

protein, protein A, fibronectin binding protein, and clumping factor A & B.  

 

S. aureus is also capable of forming biofilms (see Section 1.2.8) which 

affords the microorganism significant adhesion capabilities295. The 

polysaccharide biofilm matrix is predominately composed of poly-N-

acetylglucosamine (PNAG)295. Some investigators suggest that 60% of S. 

aureus strains are capable of forming biofilms296, whilst others suggest that 

all strains have that capacity297. In a recent study, 45% to 75% of clinical 

isolates of S. aureus were reported to be of biofilm forming capacity298. 

1.4.6.2 S. aureus innate immunity evasion 

The crucial role of the innate immune system in controlling S. aureus is 

reflected by the abundance of mechanisms that the bacterium employs to 

evade killing by phagocytosis. S. aureus produces a protective 
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polysaccharide coat to evade phagocytosis, which also aids in surface 

adherence and biofilm formation299. It also secretes proteins, which block 

phagocyte receptor function. Following ingestion, S. aureus counters the 

antimicrobial mechanisms of phagocytes by secreting proteins such as 

catalase and superoxide dismutase to neutralize reactive oxygen species 

(ROS). The characteristic yellow pigment of S. aureus, staphyloxanthin also 

plays a crucial role in protecting the bacterium from ROS300. Post-

phagocytosis, the bacterium is capable of lysing the phagocyte, using similar 

killing mechanisms as the phagocyte itself301. Other innate immune 

avoidance strategies employed by S. aureus include secretion of CHIPS 

(chemostaxis inhibitory protein of S. aureus) which blocks Toll-like receptor 

recognition of PAMPs301,302, and secretion of SCIN (staphylococcal 

complement inhibitor) which is one of many proteins which inhibit host 

complement function303. The immune evasion mechanisms described thus 

far are passive, enabling the bacterium to evade recognition or elimination. 

S. aureus also produces a battery of toxins which directly harm human cells. 

A large family of leukocidins and hemolysins exist which destroy white and 

red blood cells, respectively.  

Further highlighting the duality of S. aureus – host interactions, recent 

studies have shown that the bacterium produces multiple ligands for human 

TLR2 receptors some of which are associated with a profound pro-

inflammatory effect, whilst others are associated with immunomodulation, 

which may explain the protective immunity afforded S. aureus during the 

carrier state292,304.  
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1.4.6.3 S. aureus acquired immunity evasion 

In addition to innate immune evasion, S. aureus also moderates the acquired 

immune system of the host to improve its survival. Protein A enables S. 

aureus to sequester antibodies on it’s surface, affording protection from 

attacks of the acquired and innate immune host defenses305. Protein A also 

has a specific role in respiratory infections by interacting with tumor necrosis 

factor α on respiratory epithelium306.  

1.4.6.4 S. aureus small colony variants 

S. aureus is capable of forming small colony variants (SCV), following 

mutations in metabolic genes, becoming auxotrophic – unable to synthesize 

essential compounds required for growth307. The small colony variant 

phenotype is associated with biofilm formation, and the phenotypes share 

many similarities 308. SCVs are often associated with chronic bacterial 

infections, and have distinctive phenotypic and pathogenic traits, which afford 

increased resistance to host defenses. Such factors include hyper-adherence 

to host cells309, intracellular persistence310, serum resistance311, and also 

antibiotic resistance310. Selection pressure from antibiotic exposure, 

particularly long term, can promote SCV formation307. The reduced 

metabolism of SCV S. aureus results in extremely long generation times, 

which often results in overgrowth of other competitive flora on nutrient media. 

When they are able to be grown on nutrient agar, they often lack the 

characteristic appearance of wild type strains, and biochemical tests used for 

identification are often non-reactive, making diagnostic detection difficult307. 
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Specialized media for S. aureus SCVs can be used312, however, molecular 

detection techniques are becoming the method of choice307. 

 

1.4.6.5  Superantigens – modification of the host immune 

response 

Overstimulation of the immune response represents a unique method of 

interfering with the host defenses. S. aureus produces many enterotoxins 

which have been linked to human disease. Toxic shock syndrome was 

named in 1978 following the observation that a staphylococcal illness in 

mucosal sites produces systemic illness despite the absence of the 

organisms systemically, leading to the assumption that a secreted toxin was 

the cause313. These toxins, termed superantigens (SAgs) are usually coded 

by accessory genetic elements such as plasmids, hence are transferrable 

between strains. More than twenty SAgs are known to be produced by S. 

aureus, termed TSST-1, SAE-A, SAE-B, SAE-C etc. The potent 

immunostimulatory capacity of SAgs is based on their capacity to directly 

bind to specific Vβ regions of the T cell receptor (TCR) and to human 

leukocyte antigens (HLA) class II molecules outside the peptide binding 

groove on antigen-presenting cells (APCs), linking them to Th2 lymphocytes 

but avoiding the need to go through the processing and loading into HLA 

molecules required for presentation of conventional antigens to T cells260,314. 

This stimulates potent mitogenic expansion of T lymphocytes and results in 

massive inflammatory influx, known as a ‘cytokine storm’292. The 

hyperactivation of the T cell compartment induced by SAg ultimately leads to 
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activation induced apoptosis, and the majority of surviving T cells enter a 

state of anergy315,316.  

 

As discussed in section 1.4.2, microorganisms may have a role in altering 

allergic responses in a number of atopic diseases such as asthma266,267, 

allergic rhinitis272, and atopic dermatitis270,271. Superantigens secreted by 

mucosal organisms such as S. aureus, may play an important role in the 

modulation of allergic disease by affecting the activation and proliferation of 

B lymphocytes.  The staphylococcal superantigen TSST-1 has been shown 

to modulate T cell dependent IgE synthesis by B cells in vitro by induction of 

CD40 ligand expression on T cells, which may be independent of the MHC 

class II engagement classically attributed to superantigens317. The capacity 

of bacterial superantigens to promote Th cell dependent B cell activation has 

also been shown in an animal model318 Superantigen exposure may also 

enhance the immune response following conventional fungal antigen 

presentation, as superantigen mediated Th cell – B cell interactions have 

been shown to selectively promote the proliferation of B cells which have 

encountered antigen319. Conventional allergens are phagocytosed by antigen 

presenting cells, such as dendritic cells, where the antigen is cleaved into 

small peptides, which bind to MHC class II molecules. Subsequent allergen 

specific activation of T lymphocytes occurs through specific binding between 

the T cell receptor (TCR) and the MHC class II / peptide complex. 

Superantigens stimulate T cells without antigen specific binding, linking the 

TCR-Vβ with the MHCII β chain. Direct binding of SAE to the MHC class II 

molecule which is processing conventional fungal antigen may amplify this 
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reaction320. In an animal model, Okano et al, demonstrated significantly 

increased antigen specific IgE and eosinophillia when conventional antigen 

was presented to the nasal mucosa in the presence of SAE (SEB)320. Finally, 

superantigen activation of T lymphocytes leads to the production of a 

significant pro-inflammatory milieu of cytokines and chemokines, which may 

influence the processing of conventional antigens.  

 

1.4.7 Fungal – host interactions 

As discussed in section 1.1.5 and 1.2.7, the role of fungi in CRS is still a topic 

of active debate in the rhinology literature. Innate and adaptive components 

collaborate, with dendritic cell input, to resist mycotic infections. The following 

discussion examines the current research of fungal – host interactions in 

CRS, and potential immune defects which may lead to fungal disease in 

CRS. 

 

1.4.7.1 Fungi & the innate immune system 

As discussed in 1.3.8, nasal mucus contains many substances with 

antimicrobial and immunomodulatory actions. These substances are 

secreted by epithelial cells, submucosal glands, and local inflammatory cells, 

and many have anti-fungal activity321,322. Recent studies have shown 

differential expression of many of these substances in CRS patients 

compared to controls323. Lactoferrin was shown to be down-regulated in CRS 

patients with nasal polyps324, and biofilms251, however no difference was 

observed between those with, and without fungi251. The cathelicidins are a 
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family of innate defense proteins with antimicrobial actions. Expression of the 

cathelicidin peptide LL-37 has been shown to be upregulated in response to 

fungal antigens in CRS explant tissue, but this was not seen in tissue from 

EMCRS patients, suggesting a potential innate deficiency in these patients, 

however no fungal positive EMCRS patients were included325. Certain 

surfactant proteins, believed to have anti-fungal activity, are found in high 

levels in healthy controls, but are undetectable in AFRS patients, suggesting 

their absence may be related to poor anti-fungal defense in these patients326.  

 

Innate immune effectors on the surface of mucosal epithelial cells have a 

limited number of receptors, which detect common peptides on the surface of 

microorganisms (see 1.3.9). Toll like receptors are involved in innate defense 

against fungi, and certain TLR polymorphisms have been associated with 

susceptibility to fungal infections327. Of these, TLR2, TLR4 and TLR6 are 

believed to be the most important in innate fungal defence328. A number of 

studies have generally found lower TLR2 and TLR4 expression in CRS 

patients compared with controls, positing that this may reduce the ability of 

the epithelium to resist to fungal organisms329-331.  

 

1.4.7.2 Fungi and eosinophils 

The study of eosinophils in CRS mucosa has become a focus of intense 

research, as eosinophil induced tissue damage is somewhat of an endpoint 

of the poorly understood immune dysregulation in CRS, particularly 

CRSwNP. The interactions of fungi with eosinophils have therefore been of 

great interest. Eosinophils are prominent in immune reactions to parasites, 
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and also in the late phase of allergic rhinitis. The concurrent presence of 

eosinophils and fungi in CRS tissue specimens led to the suggestion of a 

cause and effect relationship. One study showed that mucus and mucosa 

from CRS patients resulted in eosinophil chemotaxis332. Another showed that 

peripheral blood cells from CRS patients produced a florid cellular and 

humoral immune response, whilst control blood cells did not respond90. 

Fungal elements have also been shown to directly cause activation and 

degranulation of eosinophils333. The possibility of a T cell driven antifungal 

response which results in the accumulation of eosinophils in response to 

nasal fungi is postulated, but confounding by high numbers of patients with 

co-morbid asthma, have made these studies difficult to interpret. 

Furthermore, conflicting studies have since been published examining the 

critical eosinophil related cytokines, IL5 and IL13. Peripheral blood cells from 

CRS patients and controls were exposed to the same fungal elements as the 

previous studies, but showed heterogeneous secretion of these cytokines, 

which was unrelated to the presence of CRS334. The authors did note 

however, that IL5 levels were significantly correlated to levels of fungal 

specific IgE in the serum, suggesting a possible link between fungal allergy, 

and eosinophil activation cytokines. Interestingly, these results were also 

disputed335, highlighting how far we are from conclusive evidence for either 

argument.  

1.4.7.3 Fungi and adaptive immunity 

In human fungal infections, a dominant Th1 response, driven by IL12 is 

essential for the expression of protective immunity to fungi336. Through the 

production of IFNγ, and opsonizing antibodies, the activation of Th1 
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lymphocytes results in optimal activation of phagocytic cells for clearance of 

fungal elements. Patients with disseminated fungal infections often show 

defective production of IFNγ, and associated elevations of Th2 cytokines (IL4 

& IL5), IgE, and eosinophil levels, which are all markers of poor prognosis in 

systemic mycoses337,338. Applying this paradigm to the mucosal level in CRS, 

a Th2 based, hyper IgE response to colonizing fungi may be detrimental to 

the clearance of the organisms.  

 

The dichotomy of Th1 / Th2 inflammation has been challenged in recent years 

with the discovery of IL17 secreting CD4+ T cells known as Th17 cells. Th17 

cells are induced in fungal infections through TLR and non-TLR dependent 

signaling, and are associated with defective pathogen clearance and failure 

to resolve inflammation337. In situations of high fungal burden, activation of 

pathogenic Th17 cells, and non protective Th2 cells is seen336, potentially 

leading to fungal persistence and ongoing inflammation. Additionally, 

neutralization of IL17 increases fungal clearance, ameliorated inflammatory 

pathology, and restores protective Th1 antifungal resistance339.  

 

To limit the pathologic consequences of an excessive inflammatory cell-

mediated reaction, the immune system resorts to a number of protective 

mechanisms including the actions of regulatory T cells (Treg)337. The balance 

between microbial tolerance and resistance is believed to be orchestrated by 

Treg cells, by acting to restrain exuberant immune activity, which may be 

inciting tissue damage337. Treg cells are believed to be deficient within nasal 

polyps, and some have suggested that this may account for the more 
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pronounced Th2 inflammation seen in these patients340. Whilst these 

populations have been examined in CRS patients, their relationship to 

disease is poorly understood, and no relationship to mucosal microorganisms 

have yet been made340-344. 

1.4.8 The role of systemic allergy in CRS 

The role of systemic allergy in the pathogenesis of CRS has divided opinion 

in the rhinology research community.  Many have speculated that allergic 

inflammation in the nose predisposes the atopic patient to the development 

of CRS through mucosal oedema, which may obstruct sinus drainage and 

lead to mucus stasis and infection345,346. The prevalence of both CRS and 

atopy is increasing347. However many authors disagree primarily due to the 

large number of CRS patients who do not show systemic sensitivity to 

commonly tested allergens.  

 

In diseases such as allergic rhinitis, allergen specific IgE in serum correlates 

well with symptoms348, however in CRS, some authors advocate that atopic 

status has no bearing on symptom scores, or surgical revision rate349. Others 

have shown that systemic atopy has no effect on the cellular content of nasal 

polyps compared to non atopic polyp patients350. It has also been argued that 

nasal polyps are not more frequent in atopic individuals351,352, and more 

polyp patients have negative skin prick tests than positive ones353. However 

conversely, there is evidence to suggest that allergy rates are higher in polyp 

patients than the general population354,355. Another study found much higher 
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radiological evidence of sinus disease in allergic rhinitis patients (67%) 

compared with a control group (33%)356.  

 

Analyzing fungal allergy more specifically, some studies have found similar 

rates of fungal allergy in CRS patients and healthy controls90, however others 

have found evidence of higher rates of fungal specific allergy in CRS 

patients354,355 than the general population357. The prevalence of allergy (any 

allergen) in the general population is estimated at 20-25%358. The reported 

prevalence of systemic fungal sensitivity (allergy) in CRS patients varies 

significantly. Collins et al, reported no difference in inhalant allergy between 

CRSwNP patients and controls, although fungal allergy was significantly 

higher in the polyp group351. Another study showed CRS patients with and 

without polyps had significantly higher fungal allergy (46%) than healthy 

volunteers (0%), although there was no difference between eosinophilic CRS 

patients and allergic rhinitis patients359. Corey et al, found that 51.5% of CRS 

patients undergoing endoscopic sinus surgery had fungal allergy354, and 

other studies have had skin prick test positivity rates of 60% in those 

undergoing polypectomy360. Houser et al, found the prevalence of perennial 

allergy in CRSwNP patients to be 73%, with 29.8% of these having fungal 

allergy355. Additionally, fungi are far more numerous and antigenically 

variable than other aero-allergens and are impossible to avoid, further 

complicating allergy management357. There is considerable regional 

variability in the environmental burden of fungal aeroallergens, and fungal 

allergy rates361, which complicates the comparisons between studies. Whilst 

hard epidemiologic evidence for a role of allergy in CRS is still lacking, it is 
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known that failure to address allergy as a contributing factor to CRS 

diminishes the chance of success of ESS362. 

1.4.9 Entopy - the concept of local allergy 

The concept of localized, mucosal allergy in the absence of systemic allergy, 

was first proposed in 1975, when specific IgE antibodies were detected in the 

nasal secretions of allergic rhinitis patients in the absence of positivity of both 

skin prick, and RAST testing363. Others have noted that 50% of allergic 

individuals have normal serum IgE levels364, and allergic rhinitis and allergen 

skin reactivity may occur independently of each other365. More recently, 

researchers found that 30% of ‘idiopathic rhinitis’ patients who had no 

evidence of systemic allergy on skin and serum testing, actually had allergen 

specific IgE within the mucosa, and coined the term entopy to describe the 

presence of local IgE366. Sensi et al, examined the kinetics of IgE production 

by examining the specific IgE levels in the nose and serum of rhinitis patients 

during a period of controlled antigen avoidance, noting that nasal IgE 

dropped rapidly over three days following antigen avoidance, with serum 

levels trailing by approximately 60 days367.  This raises the possibility of an 

overflow phenomenon where surplus IgE from the nasal mucosal sites enters 

the systemic circulation.  

1.4.10 Entopy in chronic rhinosinusitis with nasal polyps 

As described above in Section 1.4.8, the role of systemic allergy in CRSwNP 

is controversial, however it has been proposed that local allergic responses 

are more important in the aetiology of nasal polyp formation that systemic 

allergic responses368. In 1985, Small et al, were the first to demonstrate 
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specific IgE production in nasal polyps associated with negative skin prick 

and serum testing369. Several studies have since demonstrated isolated 

mucosal allergic response to environmental products and allergens, including 

staphylococcal superantigens, within nasal polyps368,370. Additionally, Sabirov 

et al, found no relationship between Alternaria alternata specific IgE in serum 

and mucosa in CRSwNP, further supporting the concept of local IgE 

production371. Interestingly Bachert et al, found evidence of local production 

of specific IgE in nasal polyps, but they found a good correlation between 

skin prick tests and specific IgE in inferior turbinate tissue of control patients, 

suggesting that entopy is associated with the disease state372. 

 

The definition of AFRS includes systemic fungal allergy, however a number 

of patients have AFRS like disease in the absence of systemic allergy, and a 

number of studies have sought local allergy as an explanation. Collins et al, 

examined 32 CRS patients with eosinophilic mucus containing fungal 

elements but no systemic fungal allergy. 6/32 (19%) of these had fungal 

specific IgE within nasal mucus, supporting the argument for entopy373. 

Another study examined 14 ‘AFRS’ patients with allergy to only non-fungal 

antigens on serum testing. However 12/14 of these patients had mucosal IgE 

sensitivity to Aspergillus species374. The concept of entopy may have 

significant implications for our understanding of the role of allergy in CRS, in 

particular relating to CRSwNP and AFRS, as the true role of antigen specific 

IgE sensitization may be significantly underestimated using systemic testing 

measures. 
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Summary of the Literature Review 

Chronic rhinosinusitis describes a group of related disorders, which have a 

significant prevalence in society. It results in an enormous financial and social 

burden. Despite the magnitude of the problem however, the pathogenesis 

remains obscure. A significant body of research has been completed thus far, 

examining many potential factors, which may play a role. These can be divided 

into environmental and host factors. 

 

Of the environmental factors, microorganisms such as bacteria and fungi are of 

significant interest. Initial concepts of infectious aetiology have been surpassed 

by a more insidious role of microorganisms. Our understanding of the flora in 

CRS is still evolving, and the majority of literature in this area is based on 

outdated scientific methods. The detection of microorganisms in these patients 

has been impeded by the reliance on conventional culture, which has many 

limitations in this context. The majority of microorganisms are unculturable by 

conventional laboratory methods, and remain so even when exhaustive culture 

techniques are used. Furthermore, biofilm associated microorganisms are also 

resistant to growth on nutrient media.  

 

We are beginning to understand that polymicrobial flora exist, and interactions 

between organisms which may be regarded individually as innocuous, or 

commensal, may be critical in determining disease pathogenesis. Culture based 

detection methods have distinct limitations in detecting the plethora of 

microorganisms in a biological sample, further limiting our understanding.  
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Many studies examining the flora in CRS have also been hampered by a lack of 

suitable control tissue with which to add context to disease findings. Many have 

used control tissue based on unacceptable criteria, which may lead to inadvertent 

labeling of disease tissue as healthy controls.  

 

In addition to understanding which microorganisms can successfully colonize the 

sinonasal mucosa of diseased and healthy individuals, there is evidence to 

suggest that abundance can be just as important when determining a pathogenic 

role. Studies from other specialty areas have suggested that the burden of 

microorganisms may actually be more important than the species themselves. 

The majority of microbial studies in CRS have failed to deliver information 

regarding microbial abundance. 

 

Multidiscilpinary biofilm research provides an added perspective to Koch’s 

postulates and suggests a complexity of host-pathogen interaction that traditional 

culturing does not reveal. The discovery of bacterial and fungal biofilms in CRS 

patients, but not controls has been a landmark finding. Subsequently, certain 

bacterial species within these biofilms, such as S. aureus, have been shown to 

portend a poorer prognosis, compared to other bacterial species. Biofilm related 

organisms are known to be resistant to culture, further limiting the use of these 

detection methods in rhinological research.  

 

The finding of co-existing fungal, and S. aureus biofilms in a number of disease 

states, as well as CRS has been of particular interest. The role of fungi in CRS 
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remains contentious and a universal role for fungi has been refuted. However, a 

small proportion of CRS patients have fungal biofilms, but the reasons for fungal 

proliferation in these patients is obscure. Fungi are known to be ubiquitous in the 

environment, and a number of innate and adaptive immune mechanisms 

effectively clear fungi from the sinonasal cavity in health, and these may be 

impaired in disease states. 

 

Of the host factors involved in CRS manifestation, the role of IgE in CRS, 

particularly CRS with nasal polyps, is a topical issue. Allergy in particular has 

been a focus of intense research, and the role of systemic sensitivity to antigens 

has been questioned, particularly in relation to fungal allergy in allergic fungal 

rhinosinusitis. However, it has recently been discovered that local, mucosal IgE 

may be more important than systemic IgE, and measures of systemic 

hypersensitivity may significantly underestimate the role in disease manifestation. 

Furthermore, microorganisms such as S. aureus, have been shown in other 

disease states, to modulate allergic responses to other antigens, possibly through 

the actions of secreted superantigens. 
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A systematic review of the literature raises a number of topical issues, which will 

be addressed within this thesis: 

 

• The microbial flora, which exists on the sinonasal mucosa of CRS 

patients and controls has been based on inadequate methodologies, 

and therefore remains uncertain. 

• The relative abundance of these microorganisms compared to controls 

may be of importance but is unknown. 

• Biofilm detection techniques have been employed successfully to 

analyze the presence and clinical significance of biofilms in CRS 

patients and controls. However, the sensitivity and specificity of these 

contemporary detection techniques is unknown. 

• Fungal biofilms have been detected in CRS patients, often in the 

context of bacterial biofilms, but the biological and environmental 

factors that encourage fungal biofilm formation in the sinuses are 

unknown. 

• The role of local and systemic IgE based hypersensitivity may be 

important in CRS, but the relationship between them requires further 

elucidation. 

• Both bacterial and fungal organisms have been discovered on the 

mucosa of CRS patients, but contention exists as to the role of these in 

inciting inflammation. There is little evidence in the literature that these 

microorganisms can incite organism specific immune responses in the 

host. 
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• S. aureus microorganisms have been shown to modulate, and 

exacerbate allergic immune responses in diseases such as asthma 

and atopic dermatitis, however a similar role in CRS patients is 

unknown. 
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Aims 

1. Characterize and compare the diversity and abundance of bacterial and 

fungal microorganisms, which comprise the sinonasal mucosal 

environment of CRS patients and controls, using sensitive molecular 

detection techniques. 

2. Determine the sensitivity and specificity of contemporary biofilm detection 

techniques. 

3. Investigate the factors which contribute to the formation of sinus fungal 

biofilms in a sheep model of sinusitis 

4. Investigate four bacterial species commonly detected in CRS, and their 

capacity to promote sinus fungal biofilm formation by altering sinonasal 

physiochemical barriers in a sheep model.  

5. Investigate the role of mucosal cilia in resisting fungal biofilm proliferation 

by applying cilia toxin to the sinus in a sheep model. 

6. Investigate the relationship between microorganisms and mucosal allergy 

in CRS patients.  

7. Determine a potential pathogenic role of fungi and bacteria in CRS by 

determining the presence of these microbes on the mucosa, and observing 

organism-specific immune responses in the host. 

8. Examine the capacity of S. aureus to modulate allergic responses in CRS 
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2.1 ABSTRACT 

Introduction: Bacteria and fungi are thought to influence inflammation of 

sinonasal mucosa in chronic rhinosinusitis. Through recent advances in microbial 

detection we are beginning to understand the flora of sinuses and the role of 

biofilms. This study used multiple detection methods to further our understanding 

of microbial diversity and microbial abundance in healthy and diseased sinuses. 

Methods: Sinonasal mucosa was analyzed from 38 CRS and 6 controls. 

Bacterial and fungal analysis was performed using conventional culture, 

molecular diagnostics (polymerase chain reaction coupled with electrospray 

ionization time-of-flight mass spectrometry) and fluorescence in situ hybridization 

(FISH). 

Results: Microbes were detected in all samples, including controls, and were 

often polymicrobial. 33 different bacterial species were detected in CRS, and 5 in 

control patients, with frequent recovery of anaerobes. Staphylococcus aureus and 

Propionibacterium acnes were the most common organisms in CRS and controls, 

respectively. Using a model organism, FISH had a sensitivity of 78%, and a 

specificity of 93%. 

Conclusion: This study highlights some cornerstones of microbial variations in 

healthy and diseased paranasal sinuses. Whilst the healthy sinus is clearly not 

sterile, it appears prevalence and abundance of organisms is critical in 

determining disease. Evidence from high-sensitivity techniques, limits the role of 

fungi in CRS to a small group of patients.  Comparison with molecular analysis 

suggests that the detection threshold of FISH and culture is related to organism 

abundance and, furthermore, culture tends to select for rapidly growing 

organisms. These findings have implications for our clinical management of CRS 

and future research. 

2.2 INTRODUCTION 

Chronic rhinosinusitis is a disease cluster with a significant societal burden, and 

despite extensive research efforts, has an unknown pathophysiology. There is 
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emerging evidence however, that microorganisms play an important role in the 

exacerbation and perpetuation of mucosal inflammation. However, the microbial 

biodiversity in disease and controls is not well defined. To further our 

understanding of the role of microorganisms in CRS, it is important to 

comprehensively characterize the resident microbial community in healthy and 

diseased tissue and examine the specific host immunological responses to these 

organisms. Thus, we sought to characterize the microbial populations in CRS and 

controls to establish a basis for further species directed research into this 

heterogeneous disease. Only through such a systematic approach can we 

determine the importance, or otherwise, of these microorganisms in the disease 

phenotypes. Furthermore, comparative microbiome studies will provide important 

information for the selection of antimicrobial therapies, and enable the 

determination of the effectiveness of such treatments.  

 

The study of the impact of microorganisms on human disease rapidly expanded 

following advances in microscopy, including the work of scientists such as 

Pasteur and Koch, resulting in a paradigm where aetiological agents were 

associated with certain diseases, by fulfilling dogmatic criteria. In many cases this 

still holds true today, particularly for acute diseases in which the bacteria adopt a 

clonal planktonic lifestyle such as septicaemia or meningitis attributable to a 

single organism isolated on culture. Increasingly however, we are discovering 

that complex polymicrobial communities exist, especially at the host-environment 

interface such as mucosal surfaces, and the majority of these bacterial species 

are refractory to culture104. Many of these organisms are found to be residing in 

complex communities known as biofilms; communities of organisms surrounded 
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by a self-produced exopolysaccharide matrix, irreversibly attached to a live or 

inert surface105. There have been recent advances in our understanding of 

biofilms in CRS, and their importance regarding disease evolution following 

treatment182, increased postoperative infection182, and altered host immune 

mechanisms375. Many biofilm organisms are resistant to culture172, and their 

detection requires specialized techniques174. Phenotypic differences which occur 

between planktonic and biofilm based organisms, may contribute to the relative 

incapacity of biofilm associated organisms to grow on nutrient media106,181. 

 

Traditional culture-dependent techniques have been the mainstay of microbial 

diagnostics in CRS. However, the reliance of cultivation on nutrient media often 

results in ‘enrichment bias’ with detection of a narrow range of microbes which is 

not representative of the actual diversity present101. Competition between 

organisms during enrichment often results in dominance of one or two organisms 

with the fastest growth rates101. Selective media techniques use nutrient 

restriction to enhance or restrict growth of organisms based on inherent microbial 

characteristics for identification. In a complex microbial community such as the 

diseased sinonasal mucosa, the identification of every organism using this 

method would be exhaustive. Additionally, many organisms may not thrive on 

nutrient media once the advantages of biofilm structures, and symbiotic 

relationships are lost.  
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2.3 MATERIALS AND METHODS 

This prospective study was undertaken in the tertiary referral rhinology practice of 

the senior author (PJW), at the academic hospitals, Adelaide, South Australia. 

The study was approved by the Human Ethics Committee and 44 consecutive 

patients provided informed consented to involvement in the study. 38 patients 

met the definition of CRS as defined by the rhinosinusitis taskforce376 having 

failed medical therapy necessitating the need for endoscopic sinus surgery 

(ESS). A control group consisted of 6 patients who had no clinical or radiological 

evidence of sinus disease. These patients were undergoing transnasal 

endoscopic procedures including trans-sphenoidal hypophysectomy for non-

functioning adenomas (5 patients) or CSF leak repair (1 patient). Patients were 

excluded if less than 18 years of age, immunocompromised, or had decreased 

ciliary dysfunction such as cystic fibrosis and Kartagener’s syndrome. Other 

exclusion criteria included inadequate mucosa for analysis, no fungal or bacterial 

culture taken, and antibiotic or systemic corticosteroid used in the three weeks 

preceding surgery.  
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Tissue Collection 

CRS patients had sinus mucosal tissue harvested from the ethmoid sinuses 

during ESS. Control patients had mucosa harvested from the posterior ethmoid 

and sphenoid as required to access relevant skull base pathology. Tissue was 

immediately stored in Dulbecco’s modified Eagle medium (Gibco, Invitrogen 

Corp., Grand Island, NY) without antibiotic or antimycotic, and transported on ice 

to the laboratory for further analysis. Mucus was harvested for histopathological 

examination, and for routine bacterial and fungal culture. In the absence of 

mucus, a middle meatal swab was taken for bacterial and fungal culture.  

Bacterial & Fungal Culture 

Intraoperative swabs were transported to the laboratory (Oxoid Transport Swabs, 

Thermo-Fischer Scientific, Scoresby, Australia) and were streaked onto Columbia 

horse blood agar, and Chocolate agar (Thermo-Fisher Scientific). Fungal swabs 

were inoculated onto Sabouraud agar (Thermo-Fisher Scientific). Further nutrient 

restriction and testing was performed as required for identification. 

Biofilm Analysis 

Fluorescence in-situ hybridization (FISH) was performed on mucosa that had 

been stored at -80oC. Cryopreservation prior to FISH analysis of sinus mucosa 

has been validated in our department186. Defrosted samples were washed 

thoroughly in MilliQ water prior to hybridization to remove planktonic organisms. 

Two probes were utilized on separate pieces of mucosa - a S. aureus specific 

16S sequence conjugated to Alexa-488 probe, and a pan-fungal 18S Alexa-488 

probe. (AdvanDx, Woburn, MA). The manufacturer’s protocol was followed. 

Briefly, samples were fixed to glass slides, dehydrated in 90 % ethanol, air dried, 

and hybridized at 55 oC for 90 minutes. Samples were transported to Adelaide 
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Microscopy for analysis using the Leica TCS SP5 Confocal Scanning Laser 

Microscope (Leica Microsystems, Wetzlar, Germany). An excitation of 488nm 

with emission range of 495 – 540nm was used to detect S. aureus and fungus. 

The entire sample was systematically scanned for biofilm elements. Axial Z 

stacks (0.5µM) were recorded of representative areas to construct a three 

dimensional virtual images of the tissue, overlying mucus and biofilm. 

DNA extraction 

An 8 x 8mm square of mucosa was carefully dissected for each patient using 

sterile instruments under laminar flow conditions and stored at -80°C prior to DNA 

extraction. A 1 mm3 piece of this tissue was placed into a sterile microcentrifuge 

tube containing 270 µL of ATL Lysis buffer (Qiagen, Germantown, MD, cat# 

19076) and 30 µL proteinase K (Qiagen, cat# 19131). Samples were incubated at 

56 °C until lysis of the material was noted by visual inspection, then 100 µL of a 

mixture containing 50 µL each of 0.1 mm and 0.7 mm Zirconia beads (Biospec 

cat# 11079101z, 11079107zx respectively) were added to the samples which 

were then homogenized for 10 min at 25 Hz using a Qiagen Tissuelyser. Nucleic 

acid from the lysed sample was then extracted using the Qiagen DNeasy Tissue 

kit (Qiagen cat# 69506). 10 µL of each sample was loaded per well for both the 

Ibis Bacteria, Antibiotic Resistance, and Candida (BAC) and Fungal detection 

PCR plates (Abbott Molecular, cat# PN 05N13-01). 

Ibis T5000 Analysis - PCR Coupled with Electrospray Ionization 

Mass Spectrometry  

The BAC detection plate contains 16 PCR primer pairs that collectively survey all 

bacterial organisms by using both omnipresent loci (eg. 16S rDNA sequences), 

as well as more taxa-specific targets (eg. the Staphylococcus-specific tufB gene) 
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as well as providing coverage for major antibiotic resistance genes and Candida. 

The fungal detection plate also uses 16 PCR primer pairs that collectively survey 

nearly all pathogenic fungal species.  An internal calibrant consisting of synthetic 

nucleic acid template is also included in each well for both assays which controls 

for false negatives (eg. from PCR inhibitors) and enables a semi-quantitative 

analysis of the amount of template DNA present. PCR amplification was carried 

out as per Jiang and Hofstadtler377. The PCR products were then desalted in a 

96-well plate format and sequentially electrosprayed into a time-of-flight mass 

spectrometer. The spectral signals were processed to determine the masses of 

each of the PCR products present with sufficient accuracy that the base 

composition of each amplicon could be unambiguously deduced109. Using 

combined base compositions from multiple PCRs, the identities of the pathogens 

and a semi-quantitative determination of their relative concentrations in the 

starting sample were established by using a proprietary algorithm to interface with 

the Ibis database of known organisms. 

Statistical analysis 

Demographic data and species data where appropriate were reported as the 

mean +/- interquartile range. The Kruskal-Wallis test was used to compare 

multiple groups with Dunn’s post hoc test for non-parametric data. Sensitivity and 

specificity are presented with upper and lower 95% confidence intervals (CI). 

Genomes per sample are presented as mean (lower – upper 95% CI), and 

analysed using The Mann-Whitney U test. GraphPad Prism software (San Diego, 

CA) was used for statistical analysis, and a p-value of 0.05 was considered 

significant.  
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2.4 RESULTS 

Table 2.1 Demographic & Clinical Data 

 CRS Controls 

Number 38 6 

Age* 41 (35-47) 44 (37-54) 

Male / Female 22/16 2/4 

Nasal polyposis (%) 25 (66%) 0 

Lund-MacKay CT Score* 17 (15-20) 0 

Revision Surgery (%) 25 (66%) 0 

Smoking 2 (5%) 0 

Aspirin Sensitivity 3 (8%) 0 

Asthma 10 (26%) 1 (17%) 

 

Number of species detected 

Molecular organism detection using the Ibis T-5000 was positive in 100% of CRS 

patients and controls. A total of 33 different bacterial species were identified in 

CRS patients by the Ibis system, with a mean of 3.0 (2.0-4.0) species detected 

per patient. In control patients, 5 different organisms were detected with a mean 

of 2.0 (1.0-3.0) per patient. There was a trend of increasing mean isolates per 

patient from controls 2.0 (1.0-3.0), CRS without nasal polyposis (CRSsNP) 2.5 

(1.0-3.0), to CRS with nasal polyposis (CRSwNP) 3.2 (2.0-4.0) but this was not 

statistically significant (p>0.05, Kruskal-Wallis test, Dunn’s post-hoc comparison). 

Ibis analysis detected fungi in only 4 CRSwNP patients, and no fungi were 

detected in CRSsNP patients or controls.  
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Conventional culture was positive in 73% of CRS patients, with an average of 1.3 

organisms per patient detected. 12 different organisms were identified. Cultures 

were positive from 33% of control patients. Only one organism (Staphylococcus 

epidermidis) was cultured from this subject group.  

Diversity 

30/38 (79%) CRS patients, and 3/6 (50%) of control patients, had more than one 

bacterial species detected on the mucosa using the Ibis molecular diagnostic. 

Staphylococcus aureus was the most commonly detected organism in CRS 

patients (23/38, 61%), followed by Staphylococcus epidermidis (21/38, 55%), and 

Propionibacterium acnes (14/38, 37%, see Table 2). Nocardia asteroides (9/38, 

24%), Haemophilus influenzae (5/38, 13%) and Pseudomonas aeruginosa (3/38, 

8%) were detected less commonly. In control patients, Propionibacterium acnes 

was the most commonly detected organism (5/6, 85%), followed by 

Staphylococcus epidermidis, present in 4/6 (67%) of patients. Less commonly 

detected were Staphylococcus aureus 2/6 (33%), Nocardia asteroides 1/6 (17%) 

and Streptococcus agalactiae 1/6 (17%). Anaerobic species were detected in 

18/38 (47%) of CRS patients, and 5/6 (83%) of control patients.  

 

Conventional cultures produced polymicrobial results in 21/38 (55%) CRS 

patients, whereas no control patients had polymicrobial flora using this method. 

CRS patients yielded predominantly S. aureus (14/38) and Staphylococcus 

epidermidis / coagulase-negative Staphylococcus (CNS) (11/38). Only 

Staphylococcus epidermidis / CNS was cultivated from 2 control patients. No 

growth was reported for 9/38 CRS patients, and 4/6 control patients.  



The microbiome of CRS – culture, molecular diagnostics & biofilm detection 
S Boase, A Foreman, LW Tan, R Melton-Kreft, H Pant, FZ Hu, GD Ehrlich, PJ Wormald 

 

   99 

 

Fungi were rarely detected in CRSwNP patients regardless of technique used, 

and were not detected in CRSsNP patients or controls. Analysis with the Ibis 

biosensor showed only two species - Aspergillus fumigatus (3), and Bipolaris 

papendorfii (1). Culture detected only two of the Ibis fungal positive patients (both 

Aspergillus fumigatus) plus one Penicillium chrysogenum, and one Trichosporon 

in other patients, which were not detected by the biosensor. Fungal-specific FISH 

analysis was positive in the three A. fumigatus patients detected by the Ibis 

biosensor, the P. chrysogenum culture-positive patient, and two additional 

patients, which were negative by the other techniques. Regardless of detection 

technique, all patients in whom fungi was detected had nasal polyposis. 

Detection of S. aureus using Ibis biosensor, FISH, and culture 

We used S. aureus as a model organism for studying the characteristics of the 

three different detection methods. The biosensor detected S. aureus in 61% of 

CRS patients, biofilm was positive in 50%, and conventional culture was positive 

in 37%. FISH analysis had a sensitivity of 78% (±18) for the detection of S. 

aureus compared to Ibis, with a specificity of 93% (± 6). In contrast, conventional 

culture detected S. aureus with a sensitivity of 61% (±17), and a specificity of 

93% (+16). S. aureus was detected in control patients only by molecular detection 

(2/6, 33%). Neither conventional culture nor FISH analysis was positive for S. 

aureus in these patients.  

Relative Microbial Density 

We determined the relative numbers of the bacterial species using the Ibis 

biosensor, which provides a genomes/well measure.  Results for the top ten 

organisms are shown in Table 2. The most commonly detected organisms in 
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CRS patients, S. aureus and S. epidermidis, had markedly different microbial 

densities, with S. aureus organisms present in much higher numbers than S. 

epidermidis based on bacterial genomes detected. Some of the less commonly 

detected organisms such as Corynebacterium pseudodiphtheriticum, Moraxella 

catarrhalis, Streptococcus pneumoniae, and Pseudomonas aeruginosa, were 

found in relatively high numbers when detected on the mucosa. The abundance 

of S. aureus was much greater in CRS patients compared to controls, however 

other organisms such as S. epidermidis and P. acnes were detected in similar 

quantities in both patient groups. When all organisms were considered, CRS 

patients had significantly greater bacterial genomes per sample than control 

patients (p<0.05, Mann-Whitney U test - see Table 2.2). 
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Table 2.2 Molecular detection top ten organisms: detection frequency and 
prevalence 

 CRS  

N=38 

Control 

N = 6 

 No. 

Detected 

(%) 

Total 

genomes / 

sample 

Mean 

genomes / 

sample 

No. 

Detected 

(%) 

Total 

genomes /  

sample 

Mean 

genomes / 

sample 

Staphylococcus aureus 23  

(61%) 

10549 459 2  

(33%) 

101 51 

Staphylococcus epidermidis 21  

(55%) 

508 24 4  

(67%) 

21 5 

Propionibacterium acnes 14  

(37%) 

2339 167 5  

(83%) 

621 124 

Nocardia asteroides 9  

(24%) 

1587 176 1  

(17%) 

72 72 

Haemophilus influenzae 5  

(13%) 

404 81 - - - 

Corynebacterium 

pseudodiphtheriticum 

4  

(11%) 

2121 530 - - - 

Streptococcus agalactiae 4  

(11%) 

57 14 1  

(17%) 

3 3 

Moraxella catarrhalis 3  

(8%) 

2931 977 - - - 

Pseudomonas aeruginosa 3  

(8%) 

1852 617 - - - 

Streptococcus pneumoniae 3  

(8%) 

1908 636  

- 

- - 

Mean microbial genomes 

per patient sample 

all detected organisms 

(lower - upper 95% CI) 

 

870  

(605 - 1136) 

 

136 

(-32 - 303) 

 



The microbiome of CRS – culture, molecular diagnostics & biofilm detection 
S Boase, A Foreman, LW Tan, R Melton-Kreft, H Pant, FZ Hu, GD Ehrlich, PJ Wormald 

 

   102 

Are FISH and culture detection related to microbial abundance? 

We again used the organism S. aureus to compare detection techniques based 

on microbial numbers. The quantitative genomic analyses of the 25 (CRS and 

control) samples in which S. aureus was detected by the Ibis biosensor, were 

compared to the detection of the organism by FISH and conventional culture to 

determine if these latter detection methods are dependent on the abundance of 

organisms to provide a positive finding (see Figure 2-1). The number of S. aureus 

genomes per sample was significantly higher in those specimens that tested 

positive for S. aureus by FISH and conventional culture (p<0.05, Kruskal-Wallis 

test, Dunn’s post-hoc comparison).  However there was no statistically significant 

difference between FISH and culture detection sensitivity based on S. aureus 

genomes per sample (p>0.05, see Figure 2-1). 
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Figure 2-1 The relationship between S. aureus abundance, and detection by 
FISH and culture. The detection of S. aureus by FISH and culture is dependent 
on the abundance of the bacteria as measured by the number of bacterial 
genomes present in the sample.  
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2.5 DISCUSSION 

 

This study compares the microbial bioburden in CRS patients, with healthy 

controls using three markedly different, but complementary detection techniques. 

We have shown that conventional laboratory culture has a tendency to polarize 

the detected microbes, selecting for abundant, rapidly growing aerobic organisms 

with favourable growth characteristics, such as S. aureus and S. epidermidis. 

Biosensor molecular detection allows a more comprehensive analysis of the 

microbial community and has the advantage of not requiring a priori knowledge of 

the flora. S. aureus was the most commonly detected organism in CRS patients, 

and was relatively more abundant in CRS patients compared to controls. It was 

detected with high sensitivity with FISH compared to the biosensor, but at lower 

levels by conventional culture. We have shown that molecular quantification can 

provide additional information with respect to microbial abundance, and 

comparisons between health and disease may assist our understanding of the 

role of these organisms in pathogenesis. Additionally we have shown that the 

detection of organisms using FISH and conventional culture is significantly 

dependent on microbial abundance as measured using molecular quantification. 

Fungi were present uncommonly, in a select group of nasal polyp patients. 

 

Staphylococcus aureus was the most prevalent organism in CRS patients using 

molecular detection, followed by Staphylococcus epidermidis and 

Propionibacterium acnes.  When the microbial density was compared for these 

three organisms between CRS and control patients, S. aureus was present at 



The microbiome of CRS – culture, molecular diagnostics & biofilm detection 
S Boase, A Foreman, LW Tan, R Melton-Kreft, H Pant, FZ Hu, GD Ehrlich, PJ Wormald 

 

   105 

approximately 10 times higher genomes per sample in CRS patients, whereas S. 

epidermidis and P. acnes were found in similar abundance between both patient 

groups. The increased bioburden of S. aureus in the disease group is of particular 

interest, as it is emerging as a prominent disease modifying organism in CRS and 

it’s presence in patients has important clinical implications192,378. The capacity of 

S. aureus to exist within dense mucosal biofilms has been documented186,191, 

which may explain the variable detection from clinical specimens using traditional 

culture techniques.  

 

A multitude of other studies have recently reported CRS microbiological data 

using a variety of techniques, including molecular diagnostics and FISH. 

Comparison with these studies is of interest to further our understanding of this 

disease. In the current study, Haemophilus influenzae was detected at relatively 

low levels (13%) in CRS patients, and was not detected in controls. This is in 

agreement with Stephenson et al, who detected H. influenzae in 17% of CRS 

patients379, but contrasts with earlier FISH based studies which proposed it as the 

dominant organism in CRS187,188. Pseudomonas aeruginosa was also found 

infrequently in the current study (8%), confirming the findings of Stephenson et al. 

These results contrast with a recent molecular study which found P. aeruginosa 

to be the dominant organism in CRS patients, however control patients were not 

assessed98. The disparity in organism profiles between studies may reflect 

regional variation, patterns of antimicrobial use, methodological differences, or 

disease severity patterns. 
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The disease burden in the current study was relatively high as measured by the 

radiological severity and the rate of non-primary surgery, which were at least 

twice as high as others98,379, reflecting the tertiary nature of the practice. Some 

microbial biofilms have been associated with a more severe disease process than 

others191, and the microbial community in this study may reflect some bias 

towards the more severe end of the CRS spectrum. However, this is arguably the 

population which is most resistant to current treatment paradigms, and therefore 

of utmost importance to investigate. 

 

The high prevalence of anaerobes detected in CRS patients is in agreement with 

previous molecular studies98,379, however we also found high rates in controls, 

with similar abundance, casting doubt on a direct pathogenic role. There was 

poor agreement between the Ibis biosensor and conventional culture data for 

anaerobes, which reflects the paucity of culture-based studies reporting 

anaerobic species in CRS. These different detection methodologies seem to have 

comparable efficacy at detecting abundant, fast growing organisms. The 

pathologic importance of these species remains to be determined however. 

 

Through the use of molecular detection we are beginning to understand the 

natural flora of non-diseased sinuses. Contrary to previous reports of 

sterility134,140, we have shown that all healthy sinuses in this study are associated 

with a microbial community, and many of these organisms are also found in 

diseased sinuses. Nevertheless, we have shown that the abundance of 

organisms is significantly greater in CRS patients compared to controls - a 
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phenomenon which requires further investigation with greater numbers of 

patients. 

 

The cultivation of microorganisms using traditional culture has many pitfalls which 

may explain it’s limited utility in describing polymicrobial communities such as that 

within diseased sinuses. To be detected, organisms must grow on media after 

being removed from the native mucosal surface, with significant environmental 

changes in temperature, pH, nutrient sources, and without the complex dynamics 

of polymicrobial communities and host immune systems. Molecular methods such 

as the Ibis biosensor offer great potential for analysis of microbial diversity in 

CRS, which is untempered by the limitations of conventional culture. Molecular 

methods are sensitive and accurate and provide a more complete view of the 

bacterial communities present, and even provide a molecular antibiogram to 

guide treatment decisions. Access to molecular detection instrumentation and 

expertise may also limit it’s utility in the clinical setting, but this is rapidly 

improving. 

 

The formation of biofilms also impacts on the culture rates from patients. 

Organisms that form these immobilized consortia often undergo phenotypic 

transformations with reduced metabolic activity, which impacts the capacity to 

grow on selective media105. Using the model organism S. aureus, we have shown 

significantly increased detection rates using both FISH and molecular detection 

compared to cultivation techniques. Similar to previous studies185,186,240, biofilm 

was not detected in the control patients, despite detection of S. aureus in 2/6 

controls by the Ibis biosensor. In situ hybridisation techniques have previously 
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been reported to have reduced sensitivity in detecting low copy number nucleic 

acids of scarce bacteria104. In an attempt to counter this, we have employed 

protein nucleic acid (PNA) FISH which has higher affinity and stability for 

microbial DNA sequences than conventional FISH probes380. Despite this 

however, some of the CRS patients, and both controls with S. aureus detected at 

low DNA copy number by Ibis, were not detected by FISH. This limitation not 

withstanding, we have shown a good correlation between FISH and biosensor 

detection of S. aureus in CRS patients, with high sensitivity and specificity, 

suggesting it has good clinical and research applicability.  

 

The prevalence of fungi in CRS and healthy control patients has long been 

debated79. Many studies have found a predominance of fungi in both patient 

groups when the nasal cavity is sampled60,381,382. It is possible that these studies 

are detecting inhaled environmental fungi, which is trapped within nasal mucus 

en-route to the oropharynx. When sinus mucosa is specifically analysed, studies 

suggest a lesser prevalence in CRS patients and absence in controls383,384. The 

characterization of fungal species in CRS is far less advanced than for bacteria, 

and whether or not certain fungal species are more prevalent or important in CRS 

is still unknown. Therefore we employed a pan-fungal FISH probe to detect all 

species, in conjunction with culture and molecular detection. We found fungi in a 

small proportion of the sinus mucosa of CRS patients using all three detection 

methods, and an absence in control patients. The three methods showed similar 

sensitivity. Fungi may be playing a role in this small subset of CRS patients, all of 

whom had nasal polyposis. This study refutes the theory that current culture 
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methods are insensitive and missing a large proportion of patients in whom fungi 

are playing a central role.  

 

The importance of understanding the complex polymicrobial communities in the 

sinuses is highlighted by the concept of dysbiosis, where organisms interact in 

positive (mutualistic) or negative ways to alter the local community, and 

interaction with the host. There is evidence to suggest that microbial diversity is 

important for health283, and a reduced diversity with increased abundance is 

associated with chronic inflammation and poor healing284. There is also literature 

to suggest that host genetics and immunity strongly influence the composition of 

the mucosal microflora285.  Microbial communities inhabiting mucosal surfaces 

such as the gastrointestinal tract can result in a significant mutualism including 

local immune homeostasis281,282, and protection from pathogens through 

processes such as nutrient consumption, occupation of attachment sites, and 

secretion of antimicrobial substances286. Propionibacterium acnes, which was 

found in more than 80% of control patients in the current study, has been shown 

to produce bacteriocins which have antibacterial and antifungal activity which 

may be protective against pathogens.287 Competition between microbes on 

mucosal surfaces can result in selection of virulence factors which can be 

detrimental to the host288. In an elegant model of polymicrobial interactions, 

Sibley et al, have shown that avirulent organisms can enhance the pathogenicity 

of other organisms, highlighting the importance of comprehensive community 

analysis to investigate disease289.  
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It is possible that disruption of mutualistic relationships, through shifts in mucosal-

associated microbial composition, could contribute to the onset, progression, or 

recalcitrance of CRS. For example, the change in microbial dynamics during a 

viral upper respiratory tract infection or acute bacterial exacerbation of CRS. The 

often protracted use of antibiotics in our patients may also have detrimental 

sequelae on the microbial balance in CRS which requires further substantiation. 

There is poor understanding of such mechanisms in CRS, but they are an active 

focus of research at present. The first step in this journey is to greatly improve our 

knowledge of the mucosal microbial communities in CRS patients and controls.  

 

Future directions for research should examine larger populations of CRS patients 

to characterize the microbiome of the different CRS phenotypes in comparison 

with healthy controls. Furthermore, longitudinal molecular studies evaluating the 

effect of antibiotics, endoscopic sinus surgery, and topical treatments on microbial 

diversity and abundance in CRS patients would be invaluable. Investigating the 

relationships within the microbial communities, and their interactions with the host 

immune system in health and disease, will ultimately lead to a greater 

understanding of the pathogenesis of chronic rhinosinusitis.
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3.1 ABSTRACT 

Background: The role of fungi in the spectrum of chronic rhinosinusitis (CRS) is 

poorly understood. Fungal biofilms have recently been discovered in CRS 

patients. We have developed an animal model for the investigation of sinonasal 

fungal biofilms. The role of type I hypersensitivity, and pathogenic bacteria is 

presented. 

Methods: Thirty sheep were sensitized with fungal antigens – Aspergillus 

fumigatus, and Alternaria alternata, or control. Endoscopic surgery was 

performed to expose both frontal sinus ostia– one was occluded. Fungi with or 

without Staphylococcus aureus were inoculated into the sinus. Skin prick tests 

assessed for fungal allergy. Fungal and S. aureus biofilms, histology, and culture 

rates were assessed. 

Results: 45% of experimental sheep were sensitized to fungal antigen. Only one 

sinus inoculated with fungus, developed minimal fungal biofilm. 80% developed 

fungal biofilm when S. aureus was co-inoculated. The presence of 

hypersensitivity to fungus was not related to fungal biofilm development. 

Conclusions: Significant fungal biofilm only occurred when S. aureus was the 

co-inoculum. Hypersensitivity was not requisite. The relationship of S. aureus to 

fungal biofilms is of great clinical interest. Fungi may be opportunistic pathogens 

that simply require inflamed mucosa with weakened innate defenses; 

alternatively, a cross-kingdom synergy could be contributing to fungal 

proliferation. 
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3.2 INTRODUCTION 

Chronic rhinosinusitis (CRS) is a heterogeneous group of disorders, 

characterized by inflammation of the sinonasal mucosa, which is often refractory 

to medical and surgical treatment. A significant global research effort is currently 

underway aimed at understanding the underlying pathophysiological mechanisms 

of these diseases. It is probable that a constellation of factors including host 

immune mechanisms and environmental triggers such as microorganisms, lead to 

disease manifestations.  

 

Of the environmental triggers, fungi are perhaps the most controversial. 

Katzenstein et al, first discovered fungus in the sinuses of CRS patients in 1983, 

describing the thick, tenacious, eosinophil rich mucus filling the sinuses, along 

with dense polyposis, coining the term “Allergic Aspergillus Sinusitis” 150. Since 

then it has emerged as a prominent, but contentious etiologic agent in CRS. 

Whilst fungi are identified in various CRS subgroups, at the most severe end of 

the spectrum is allergic fungal rhinosinusitis (AFRS) representing some of the 

most recalcitrant CRS patients. AFRS represents the most robust and accepted 

involvement of fungi in the pathogenesis of CRS. The diagnostic criteria for AFRS 

were described by Bent & Kuhn, which include IgE mediated, type I 

hypersensitivity385. It is proposed that IgE mediated hypersensitivity may 

contribute to the mucosal inflammation in these patients, which may facilitate 

fungal retention and proliferation in the sinuses. Additionally, numerous other 

mechanisms may contribute to the development of inflammation, possibly 

including biofilm formation. 
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Healy et al, discovered the presence of fungal biofilms using epi-fluorescent 

microscopy, whilst investigating microbial biofilms in CRS patients 187. These 

fungi were noted to be physically associated with bacterial biofilms, and were 

more prevalent in those with more severe disease – eosinophilic mucus chronic 

rhinosinusitis (EMCRS) patients. More recently, Foreman et al, detected fungal 

biofilms in 11/50 (22 %) CRS patients using fluorescence in-situ hybridization 

(FISH)186. Interestingly, 7 of these patients also had evidence of Staphylococcus 

aureus (S. aureus) biofilms highlighting a potential cross-kingdom synergy. This is 

also supported by histological evidence of fungal hyphae in eosinophilic mucus 

coincident with positive culture of S. aureus204. 

 

Much of the challenge in elucidating the pathophysiology of fungal rhinosinusitis 

is related to the lack of a reliable animal surrogate386. We have developed a novel 

in-vivo model of sinusitis in the aerated frontal sinus of sheep, to investigate the 

role of systemic type I hypersensitivity to fungi, and the influence of pathogenic 

bacteria, in fungal biofilm formation. 

3.3 MATERIALS AND METHODS 

Fungal Sensitization 

All protocols were approved by the Animal Ethics Committees of the University of 

Adelaide and The Institute of Medical & Veterinary Science, South Australia. 

Thirty male Marino sheep were used in this study. Sensitization commenced at 

the time of the sinus access procedure (Day 0). 8 sheep were controls, 11 were 
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sensitized to Aspergillus fumigatus antigen, and 11 were sensitized to Alternaria 

tenuis (alternata) antigen (Hollister-Stier Laboratories, LLC, Spokane, WA). 

Control solution consisted of 50% glycerol (Sigma-Aldrich, St Louis, MO, USA) in 

1X phosphate buffered saline (PBS). All solutions were sterile filtered, pooled and 

stored at -80oC prior to use. 

 

Sheep were immunized intraperitoneally with control or study solution mixed with 

aluminium hydroxide as adjuvant (1:1), as previously described387,388. The 

immunization protocol involved three injections per week for four weeks (see 

Figure 3-1).  

 

 

 

Figure 3-1 Timeline of the experimental protocol. 28 days of sensitization 
followed by frontal sinus inoculation and 10 day incubation.  
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Skin Prick Testing 

All sheep were skin prick tested prior to initial sensitization, and again at the end 

of the sensitization period, immediately prior to trephination. Two test antigens 

were used, A. tenuis (alternata)(Aa) and A. fumigatus (Af) (Hollister-Stier 

Laboratories, LLC, Spokane, WA). Negative control was sterile filtered 50 % 

glycerol in 1X PBS. Histamine phosphate 10mg/mL supplied by the Royal 

Adelaide Hospital Pharmacy Production Service, was used as a positive control. 

The animals were restrained in the sitting position, and the non-wool bearing skin 

of the rear inner thigh was cleaned with ethanol. A single drop of allergen was 

applied to the skin and plucked with a single use lancet. Allergen solution was 

blotted at 1 minute. Wheal diameter was recorded at 10 minutes. Results were 

recorded as non-diagnostic if positive control wheal was <4mm, or negative 

control was >1mm. 

Fungal Inoculum 

Pure strains of A. fumigatus (Af) and A. alternata (Aa) were inoculated onto 

inhibitory mold agar (Becton-Dickinson, NJ, USA) without antibiotic, and grown to 

confluence over 5 days, in the dark at room temperature. Fungi were harvested, 

agitated, and resuspended in cerebrospinal fluid (CSF) broth (Oxoid, Adelaide 

Australia) and adjusted to 1.5 McFarland units above baseline. Samples were 

placed on ice until instillation.  

Bacterial Inoculum 

A pure strain of S. aureus was isolated from the sinus of a CRS patient with 

proven S. aureus biofilm, and supplied by the Department of Microbiology, The 

Queen Elizabeth Hospital, Adelaide, Australia. S. aureus was initially grown on 
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Columbia Horse Blood Agar (Oxoid) overnight at 37oC. A single colony was 

inoculated into CSF broth (Oxoid), placed on a shaker and incubated overnight at 

37oC. The culture was adjusted to 0.5 McFarland units above baseline, and 

placed on ice prior to instillation.  

Anesthetic 

All 30 sheep were given a general anesthetic by an experienced animal 

technician. Intravenous induction with sodium thiopentone (19mg/kg) via the 

internal jugular vein, followed by endotracheal intubation, and maintenance 

anesthesia with 1.5 – 2 % inhalational isoflurane. The nasal cavities were 

topically decongested with 2 sprays of co-phenylcaine forte nasal spray (ENT 

Technologies, Victoria, Australia). 

Endoscopic Sinus Surgery – Sinus Access 

Endoscopic access to the frontal sinus was required for the next stage of the 

protocol. A standard endoscopic procedure to access the frontal ostia in sheep 

has been developed in our department using custom made endoscopic 

instruments.180,389 Briefly, under general anesthesia as described above, the 

sheep was placed supine on the operating table. A middle turbinectomy was 

performed to expose the anterior ethmoid complex, which was dissected and 

removed to reveal the frontal sinus ostia. Following hemostasis, the animal was 

recovered. During the convalescent phase, the sheep were housed in a paddock 

to undergo the 4 week sensitization procedure. 

 

Endoscopic Sinus Surgery – Trephination & Occlusion 
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Following sensitization, all sheep were again skin prick tested. Subsequently, a 

second general anesthetic was given to permit frontal sinus trephination. The 

forehead was shorn and landmarks for the frontal trephine made on the skin, 1cm 

on each side of the midline in line with the mid supra-orbital ridge. Sterile saline 

was injected, and aspirates of the frontal sinus were taken for mycology and 

bacteriology. The site of the frontal ostia was confirmed endoscopically following 

a flush of 1 % fluorescein through the trephines. The left frontal ostium was then 

occluded with petroleum jelly impregnated gauze until fluorescein was unable to 

be passed into the nasal cavity. The right frontal ostium was left patent. Any 

residual fluorescein was removed from the sinuses. 1 mL of control or study 

inoculum was injected into each sinus via trephine, according to the study 

protocol. Trephines were capped and left in-situ, and the animals were recovered. 

Specimen Collection 

Sheep were euthanized at day 10 with intravenous pentobarbitone sodium 

(>100mg/kg). The skin and anterior table of frontal sinus were removed, exposing 

the sinus mucosa. The sinus mucosa was carefully dissected using sterile 

instruments. The mucosa was placed in Dulbecco’s Modified Eagle’s Medium 

(Gibco, Invitrogen Grand Island, NY) without antibiotic or antimycotic, and 

transported to the laboratory. Under laminar flow conditions, the sinus tissue was 

dissected into appropriate sized pieces for the various analytical processes: 10 x 

10 mm for fungal biofilm detection, 10 x 10 mm for FISH analysis, and 5 x 5 mm 

in 10% formalin for histology – with hematoxylin and eosin (H&E) stain. Mucous 

was scraped from the residual mucosa and sent for mycology and bacteriology.  
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Fungal Biofilm Determination 

Sinus mucosal samples for fungal biofilm analysis were initially washed 

thoroughly in 3 consecutive flasks of 100mL MilliQ water (Millipore, Billerica, MA) 

to remove any planktonic organisms. Each tissue sample was processed fresh, 

and immersed in a solution containing 100 µL of concanavalin A, Alexa Fluor 488 

conjugate (5 mg/mL in 0.1 M NaHCO3 pH 8.3, Invitrogen GmbH Karlsruhe, 

Germany), 5 µL FUN-1 Cell Stain (10 mM solution in DMSO, Invitrogen), and 895 

µL of 1X PBS. These were incubated for 1 hour, in the dark at room temperature. 

Samples were transported to Adelaide Microscopy for analysis using a Leica TCS 

SP5 Confocal Scanning Laser Microscope (CSLM) (Leica Microsystems, Wetzlar, 

Germany). Prior to slide mounting, samples were gently rinsed in 1X PBS to 

remove excess stain. An excitation wavelength of 488 nm, and dual emission 

detection at 495 – 540nm and 560 – 610nm was employed. A combination of 20x 

and 63x magnification was used.  The entire 10 x 10mm sample was 

systematically scanned for fungal elements. Axial Z stacks were recorded of 

representative areas to construct a three dimensional virtual image of the tissue, 

overlying mucus and biofilm. The scoring system employed was: 0 no fungal 

elements identified, + infrequent fungal elements found, ++ florid fungal biofilm. 

Histopathologic Scoring  

A blinded examiner graded inflammation on H&E stained slides on a scale from 

0-4. The scoring system has been previously described386. 0 - reflecting normal 

mucosa; 1 – minimal change with rare individual inflammatory cells within mucosa 

& submucosa; 2 - mild changes with light infiltrate of inflammatory cells; 3 – 

moderate changes with moderately dense inflammatory cells; 4 – severe changes 
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with dense inflammatory infiltrate – partially obscuring normal tissue architecture. 

Secretory hyperplasia was graded based on loss of cilia, and hyperplasia & 

cytoplasmic blebbing of non- ciliated cells. 0 – no change; 1 – minimal changes; 2 

– mild; 3 – moderate, and 4 – severe changes affecting most of the mucosa.  

Fluorescence in-situ hybridization 

Following our observation that significant fungal biofilm only formed in the 

presence of S. aureus infection we performed FISH to examine the physical 

relationship between the two biofilms. Additionally, the molecular specificity of the 

FISH probe ensures the bacterial biofilms are indeed composed of S. aureus 

species. FISH was performed on surplus mucosal samples that had been stored 

at -80oC. Cryopreservation prior to FISH analysis of sinus mucosa has been 

validated in our department186. Defrosted samples were washed in MilliQ water 

prior to hybridization. A pan-fungal Alexa-488 probe, and a S. aureus - TAMRA 

probe were utilized (AdvanDx, Woburn, MA). The manufacturer’s protocol was 

followed. Briefly, samples were fixed to glass slides, dehydrated in 90 % ethanol, 

air dried, and hybridized at 55oC for 90 minutes. Samples were transported to 

Adelaide Microscopy for analysis using the Leica TCS SP5 Confocal Scanning 

Laser Microscope (Leica Microsystems, Wetzlar, Germany). Sequential scanning 

was performed, with scan 1 at an excitation of 488nm, emission range 495 – 

540nm, scan 2 at an excitation of 543nm, emission range 550 – 590nm, for pan-

fungal and S. aureus probes, respectively. 
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3.4 RESULTS 

Skin Prick Test Responses to Fungal Immunizations 

Sheep were inoculated with fungal antigen (Af or Aa) or control, mixed with alum 

adjuvant over a period of four weeks via the intraperitoneal route. Immediately 

preceding the sensitization protocol, no sheep  (0/30) had recordable skin 

reactions to either Af or Aa, or control. At the conclusion of the protocol, 0/8 

control sheep, 7/11 Af sheep, and 3/11 Aa sheep had a positive skin prick test to 

the respective fungal antigen (see Figure 3-2). Combined, 10/22 (45%) of 

experimental sheep were sensitized to fungal antigen. No adverse local or 

systemic effects from intraperitoneal inoculation were noted, however there was 

frequently some deep tissue induration at the injection site.  
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Figure 3-2 Skin Prick Test Results. X-axis denotes the sensitization antigen 
followed by the skin prick challenge antigen. Dotted line at 3mm, ≥3mm was 
taken as a positive result. Af = A. fumigatus antigen, Aa = A. alternata antigen. 

 



A sheep model to investigate the role of fungal biofilms in sinusitis: fungal & bacterial synergy 

S Boase, R Valentine, D Singhal, LW Tan, PJ Wormald  

 

 125 

Histopathologic Analysis 

A moderate to severe mucosal inflammatory infiltrate, with predominant 

neutrophils and eosinophils was noted following S. aureus inoculation.  Similar 

infiltrates were seen in sinus mucosa following fungal inoculation alone, but to a 

lesser degree. Some of the control mucosa showed low levels of inflammation 

also, likely secondary to nasal packing and post-operative change (see Figure 

3-3 & Figure 3-4). Histopathological scores were analyzed using 1 way ANOVA 

and Tukey post-hoc test. Inflammation scores were significantly greater when S. 

aureus was inoculated, compared to fungal inoculations, and controls (P<0.01). 

However, there was no statistical difference in mucosal inflammation between S. 

aureus inoculation alone, and S. aureus and fungus together (P>0.05). 

Additionally, there was no statistical difference in inflammatory scores between 

fungal inoculation and control sinuses (P>0.05,) This suggests the inflammatory 

mucosal responses were primarily due to the presence of S. aureus (see Figure 

3-5).   

 

Histopathological scoring of secretory hyperplasia showed a trend of higher 

scores when S. aureus was inoculated compared to fungus and controls, 

however the results were not statistically significant (ANOVA, P>0.05). Similar to 

inflammation scores, fungal inoculation did not significantly affect mucosal 

secretory hyperplasia compared to controls (P>0.05, see Figure 3-6).  
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Figure 3-3 H&E stained sinus tissue, 20x micrograph – Control tissue 
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Figure 3-4 A. alternata / S. aureus inoculation. Note the influx of 
lymphocytes, neutrophils and eosinophils, epithelial hyperplasia. 
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Figure 3-5 Histology scoring: Inflammation compared to frontal sinus 
inoculum.  The ‘box’ represents the interquartile data range, the horizontal bar 
shows the median value and the ‘whiskers’ represent the 5th and 95th percentile 
values. 
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Figure 3-6 - Histology scoring:  Secretory hyperplasia compared to frontal 
sinus inoculum.   
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Fungal Sensitization and Histopathological Change 

Fungal sensitization as measured by positive skin prick test was compared to 

histological scores. The degree of inflammation and secretory hyperplasia was 

not statistically different between animals based on skin prick test (Mann Whitney 

U test, P = 0.556 & 1, respectively). 

 

Fungal Biofilm Analysis 

Confocal scanning laser microscopy was used to assess for fungal biofilm 

formation.  There was no significant growth of fungus, bacteria, or biofilm 

formation in the non-occluded sinuses. The following data are from the left 

(occluded) frontal sinus. No fungal biofilm was detected in any of the control 

sinuses (see Figure 3-7). There were a small number of scattered hyphae 

detected in 1 of 6 sinuses inoculated with A. fumigatus alone (16.7%). No fungal 

biofilm was detected in the sinuses inoculated with A. alternaria alone. However, 

when either fungal species was co-inoculated with S. aureus, 80% produced 

fungal biofilm. 2/10 showed occasional fungal elements (see Figure 3-9), whilst 

6/10 developed florid fungal biofilm (see Figure 3-10). The co-innoculation of 

fungal species with S. aureus produced significantly more frontal sinus fungal 

biofilm than fungus inoculation alone (Chi-square, p<0.001 - see Table 3.1). 
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Figure 3-7 Fungal Biofilm Analysis CSLM – Control mucosa 20x  
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Figure 3-8 Fungal Biofilm Analysis CSLM – S. aureus inoculation 63x 
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Figure 3-9 Fungal Biofilm Analysis CSLM – A. fumigatus / S. aureus  - 
Occasional fungal biofilm (+)20x  
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Figure 3-10 Fungal Biofilm Analysis CSLM – A. fumigatus / S. aureus Florid 
fungal biofilm (++) 20x  
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Table 3.1 Frontal sinus fungal biofilm formation results 

 Fungal Biofilm formation 

 

Sinus inoculation 

0 

No fungal  

biofilm 

+ 

Occasional 

fungal biofilm 

++ 

Florid fungal 

biofilm 

Control (n=4) 

 

4 (100%) 0 (0%) 0 (0%) 

A. fumigatus (n=6) 

 

5 (83.3%) 1 (16.7%) 0 (0%) 

A. alternata (n=6) 

 

6 (100%) 0 

 

(0%) 0 

 

(0%) 

A. fumigatus / S .aureus 

(n=5) 

0 (0%) 1 (20%) 

 

4 (80%) 

A. alternata / S. aureus 

(n=5) 

2 

 

(40%) 1 

 

(20%) 2 

 

(40%) 

S. aureus (n=4) 

 

4 

 

(100%) 0 

 

(0%) 0 

 

(0%) 
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Fungal Biofilm and Systemic Type I Hypersensitivity 

The presence of type I fungal hypersensitivity measured by skin prick test, was 

compared to fungal biofilm formation for both species of fungi. There was no 

significant relationship between skin prick results and the propensity to form 

fungal biofilm. (Fisher’s exact test, P = 0.467)  

Fungal & Bacterial Culture 

Bacterial and fungal cultures from the sinuses were compared at day 28, prior to 

sinus inoculation, and at day 38 at euthanasia. Prior to inoculation the most 

commonly cultured sinus organisms were coliforms (8/30). Fungi were less 

commonly cultured from the sinuses pre-inoculation, the most prevalent species 

was Candida sp. (not albicans) (2/30). There was no significant difference 

between the culture rates of fungi or bacteria at day 28 between the treatment 

groups. Importantly, neither A. fumigatus, A. alternata, nor S. aureus were 

cultured from the sinuses prior to sinus inoculation. 

 

At day 38 (euthanasia), A. fumigatus was cultured from 2/6 (33.3%) sinuses 

following A. fumigatus inoculation alone, and from 4/5 (90%) sinuses that were 

co-inoculated with A. fumigatus and S. aureus. Similarly, A. alternata was 

cultured from 1/6 (16.6%) sinuses inoculated with A. alternata alone, and 3/5 

(60%) of sinuses co-inoculated with A. alternata and S. aureus. Neither fungus 

was cultured from control sinuses, or S. aureus inoculated sinuses. 

Fluorescence in-situ Hybridisation 

FISH was performed to investigate the co-localisation of fungi and S. aureus. 

The fungal hyphae were often found around areas of dense S. aureus biofilm 

F
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(see Figure 3-11).  Additionally, this analysis confirmed the species of bacterial 

biofilms formed following S. aureus inoculation. The molecular specificity of FISH 

probes for fungus, and S. aureus assists in the correct identification of these 

organisms, confirming the fungal biofilm analysis results. 

 

 

Figure 3-11 Fluorescence in situ hybridisation CSLM 63x. S. aureus – green; 
Fungi – red. Note the adherence of S. aureus to the upper portion of the 
hyphae 
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3.5 DISCUSSION 

 

Fungi are associated with some of the most refractory CRS patients, with AFRS 

at the most severe end of the disease spectrum. The exact pathological 

mechanisms are as yet, elusive. Fungal hypersensitivity and biofilms may play a 

role, and an animal model presents an ideal opportunity to study these in-situ.  

We report that fungi alone do not readily form biofilm structures in otherwise non-

inflamed sinuses. S. aureus was identified as an important co-factor for fungal 

persistence and proliferation in the sinuses. There is increasing evidence that 

cross-kingdom biofilms are prevalent in CRS patients186,187. The interactions 

between, often polymicrobial, flora and the host are highly complex. The type of 

interaction is dependent on a range of environmental, pathogen, and host factors. 

One such factor may be type I hypersensitivity to fungi. Our study examined the 

role of systemic fungal allergy, and it’s relationship to fungal biofilm development. 

We successfully sensitized 45% of animals to fungal antigen. In these animals, 

there was no relationship between fungal allergy and inflammation, or propensity 

to form fungal biofilm. This study has provided many insights into the 

pathogenisis of fungal associated CRS. The role of S. aureus, and perhaps more 

generally, mucosal inflammation in fungal growth and proliferation is of great 

clinical importance. 

 

IgE mediated hypersensitivity to fungi is one of the five postulates, described by 

Bent & Kuhn, as diagnostic criteria for allergic fungal rhinosinusitis (AFRS)53. 

Therefore, fungal sensitization was an important factor to include in an animal 
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model of fungal sinusitis. A. fumigatus and A. alternata were chosen for this study 

as they are two of the most commonly identified species from the sinuses of CRS 

patients390, and antigenic solutions of these species are commercially available 

for sensitization and skin prick testing. We successfully induced type I 

hypersensitivity385 to A. alternata and A. fumigatus antigens according to skin 

prick test results in 10/22 (45%) inoculated animals. This result is comparable to 

other sheep models of allergy induction388.  

 

It is theorized that IgE mediated hypersensitivity contributes to the inflammation in 

CRS / AFRS as resident fungi act to continually stimulate the mucosal immune 

defenses, leading to IgE crosslinking, mast cell degranulation, and pro-

inflammatory mediator release. Additionally, IgE may play a pro-inflammatory role 

through non-allergic mechanisms 391. With this in mind, our animal model 

provided the opportunity to examine the sinonasal response to fungi in allergic, 

and non-allergic animals. We observed no relationship between fungal culture 

rates, fungal biofilm status, or histological inflammation, with fungal specific 

allergy. There is increasing evidence that local mucosal IgE production is more 

important in the pathogenesis of fungal sinus inflammation than systemic allergy, 

which could not be assessed in the current study391-393. Furthermore, the induced 

fungal sensitivity in this study is clearly an oversimplification of the immune 

mechanisms underlying hypersensitivity to fungus, which may be multifactorial, 

with potential genetic pre-disposition. These limitations prevent further 

speculation on the role of fungal allergy in sinonasal fungal biofilm formation with 

this model. 
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It is intriguing that we were unable to stimulate fungal proliferation in the sheep 

sinus using fungal inoculation alone. The two fungal species employed are 

ubiquitous in the environment and their growth was presumably impeded by the 

host immune response.  Mucosal defences such as mucociliary clearance, 

secretion of antifungal proteins and other actions of the innate immune system, 

likely prevented fungal adherence and proliferation. It is from our clinical and 

research experience186, observing the occurrence of S. aureus and fungi together 

in CRS mucosa, especially in EMCRS patients, that we chose to co-inoculate 

fungi with S. aureus.  

 

The results of fungal – Staphylococcal co-inoculation were striking. 80 % of these 

sinuses showed evidence of fungal biofilm formation. A. fumigatus showed 

particularly florid biofilm structure. This observation may be a specific feature of 

the species, implying a greater synergy with S. aureus. Importantly, A. fumigatus 

has more rapid growth kinetics than A. alternata, as well as a more favorable 

ideal growth temperature (37oC vs 28oC, respectively)394, which may contribute to 

the differential growth patterns seen between fungal species. 

 

Our unexpected discovery that fungal biofilms only manifest in the presence of S. 

aureus infection has important clinical implications. In this model, it is possible 

that the mucosal reaction to S. aureus, with the associated inflammatory milieu, 

results in an environment where fungi can proliferate. Such a reaction may 

include mucosal disruption, interfering with delicate innate immune defences, 

such as mucosal integrity, cilia & mucus motility, secretion of antifungal enzymes 

by host tissue, and toll-like receptor signaling. Applying this mucosal disruption 
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paradigm to the clinical picture of AFRS patients may, in part, explain the 

recalcitrant nature of this disease. Surgery itself significantly alters mucosal 

integrity, with cilia taking up to three months to regain normal function post-

operatively. Such an environment in the early post-operative period may provide 

suitable conditions for rapid re-colonization with fungus, leading to disease 

recurrence. 

 

The current literature suggests that the relationship between bacteria and fungi is 

more complex than the bacteria simply attenuating host immune defences, 

permitting fungal proliferation.  Interactions between bacteria and fungi can have 

profound effects on the virulence, survival and pathogenesis of these 

organisms395 There are instances when bacteria produce compounds which 

enhance the production of fungal virulence determinants. Also, there are 

occasions when bacteria secrete factors which inhibit fungal pathogenesis, for 

example, by inhibiting fungal filamentation395. The mechanisms of these 

interactions are undoubtedly diverse. These may include: 

1. Environmental modification – pH, nutrient availability. 

2. Attachment, co-aggregation, complex biofilm formation 

3. Secretion of growth factors, quorum sensing agents 

4. Effects on fungal virulence 

 

The majority of published research on bacterial-fungal interactions has focused 

on Candida albicans. A study of the pathogenesis of stomatitis in 50 patients 

found a significant correlation between C. albicans and S. aureus. 78 % of 

patients had co-colonization with these two organisms, probably existing as a 
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mixed species biofilm396. They also showed that a lower pH environment was 

conducive to fungal biofilm formation. Such environmental modification by the 

bacterial biofilm may be one method of improving host conditions for fungal 

proliferation. Previous research on implant related infections has shown the 

frequent incidence of mixed species biofilms on indwelling catheters397,398. It has 

been proposed that such biofilms are more resistant to antibiotic and antifungal 

therapy due to more complex matrix composition396. El-Azizi et al, examined the 

physical interactions between C. albicans and a selection of biofilm forming 

bacterial pathogens. They showed polysaccharide matrix plays an important role 

in the colonization of bacterial biofilms by C. albicans399. Specifically, bacteria 

which produce glycocalyx, such as S. aureus, were better able to adhere to 

Candida biofilms399. The results of this study suggest S. aureus may interact with 

other fungal species in CRS in a similar way to the candida-bacterial interactions 

observed in other disease processes. 

 

3.6 CONCLUSION 

 

This study has provided strong evidence of a synergy between fungi and bacteria 

when forming biofilms on sinonasal mucosa. No role for systemic type I 

hypersensitivity was identified. It is intriguing that we were unable to form fungal 

biofilm without co-inoculation with S. aureus. It is possible that a cross-kingdom 

interaction exists between these organisms that permits fungi to adhere and 

proliferate in an otherwise hostile host environment. Such complex biofilm 

systems are known to have greater resistance to antibiotic and antifungal 
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treatments than single species biofilms, which may have important clinical 

implications. Loss of innate mucosal defences due to S. aureus infection may be 

conducive to fungal growth, analogous to the mucosal disruption in the post-

operative period, which may explain the rapid re-colonization seen in AFRS 

patients following endoscopic sinus surgery. Further studies will investigate the 

role of other pathogenic bacteria in this relationship as well as the effect of cilia 

toxins on fungal biofilm formation. The aim will be to determine if this is a S. 

aureus specific phenomenon, or evidence of a more general abrogation of the 

innate immune response, permitting fungal proliferation. 
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4.1 ABSTRACT 

Introduction: Fungal biofilms have been discovered in CRS patients, but factors 

contributing to their establishment are obscure. A recent animal study showed 

bacterial co-inoculation was required to establish sinus fungal biofilms. We 

examine the role of four bacterial species and a cilia toxin on fungal biofilm 

formation in a sheep model of sinusitis. The importance of cilial integrity on fungal 

biofilm formation is also examined. 

Methods: 24 sheep had Aspergillus fumigatus inoculated into the occluded 

frontal sinus alone, or with one of four bacteria commonly detected in CRS 

patients; Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas 

aeruginosa and Haemophilus influenzae.  A cilia toxin was also co-inoculated. 

Bacterial and fungal biofilm was determined using confocal scanning laser 

microscopy, as well as histological inflammation scores and cilia grading using 

transmission electron microscopy. 

Results: No fungal biofilm formed when fungus was inoculated alone. Florid 

fungal biofilm developed in more than 75% of sinuses in association with bacterial 

biofilm of all species, except Haemophilus influenzae, which failed to establish 

bacterial or fungal biofilm. Fungal biofilm also established in association with cilia 

toxin. Significant cilial damage was incited by all bacterial biofilms, and cilia toxin, 

and was associated with fungal proliferation. Fungal biofilm formation did not 

significantly increase mucosal inflammation or cilial damage over that caused by 

the bacteria or cilia toxin alone. 

Conclusion:   Bacterial biofilms cause sinonasal mucosal inflammation and cilial 

injury, which provides conditions appropriate for fungal biofilm proliferation. The 

role of cilia in sinonasal mucosal defence against fungal organisms has been 

demonstrated, and without such an insult, fungal biofilms fail to proliferate in the 

occluded sinus. Improving cilial recovery post-operatively, and treating bacterial 

biofilms may be key factors in reducing recalcitrance in allergic fungal 

rhinosinusitis patients. 
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4.2 INTRODUCTION 

Chronic rhinosinusitis is a prominent focus of rhinology research because despite 

its prevalence, the etiology and pathogenesis is poorly understood. The role of 

microorganisms and biofilms in CRS is still debated, however it is likely that the 

chronic mucosal inflammation that is a hallmark of the disease, results, at least 

partly, from an aberrant mucosal response to agents such as bacteria and fungi. 

Fungi were first discovered within the sinuses in 1976147, and in 1981, allergic 

aspergillosis of the maxillary sinus was described as a distinct clinical entity151. 

Allergic fungal rhinosinusitis (AFRS) as it is now known, is characterized by thick, 

tenacious mucus containing fungal elements, abundant eosinophils and their 

breakdown products, nasal polyposis, and fungal allergy53. It is marked by a high 

rate of disease recalcitrance following surgery. Why some patients develop florid 

fungal sinusitis is unknown. 

 

The formation of fungal biofilms in humans has classically been associated with 

the abiotic surfaces of indwelling medical devices such as central venous 

catheters, urinary catheters, and cochlear implants400,401. However, there is a 

growing body of evidence suggesting that fungal biofilm colonization of host 

surfaces may be an important factor in chronic disease in the absence of foreign 

bodies400, and fungal biofilms have been discovered on the sinonasal mucosa of 

chronic rhinosinusitis patients186,187. Recently we developed an animal model of 

fungal sinusitis, to investigate the factors associated with disease establishment. 

However, we were unable to produce fungal biofilms in sinuses with intact innate 

immune defenses. Subsequently, co-inoculation with Staphylococcus aureus 



 Bacterial induced cilia damage promotes fungal biofilm formation in a sheep model of sinusitis 

S Boase, J Jervis-Bardy, E Cleland, H Pant, LW Tan, PJ Wormald  

 

 149 

resulted in florid fungal biofilm formation. S. aureus was associated with greater 

inflammation than fungal inoculation alone, and controls, and we postulated that 

S. aureus alters the local environment, through mucosal injury, providing 

conditions suitable for fungal biofilm proliferation402. The current study examines 

the capacity of bacterial species commonly found in CRS patients, to induced cilia 

damage permitting fungal biofilm formation in a sheep model of sinusitis. 

Additionally the effect of a cilia toxin on cilial integrity, mucosal inflammation, and 

fungal biofilm formation was assessed.  

4.3 MATERIALS AND METHODS 

Fungal Inoculum 

Aspergillus fumigatus (Af) American Type Culture Collection (ATCC) reference 

strain 204305 was inoculated onto inhibitory mold agar (Becton-Dickinson, NJ, 

USA) without antibiotic, and grown to confluence over 5 days, in the dark at room 

temperature. Fungi were harvested, agitated, and resuspended in cerebrospinal 

fluid (CSF) broth (Oxoid, Adelaide Australia) and adjusted to 1.5 McFarland units 

above baseline. Samples were placed on ice until instillation.  

 

Bacterial Inoculum 

Four different bacterial species were utilised; Staphylococcus aureus (SA) (ATCC 

25923), Pseudomonas aeruginosa (PA) (ATCC 27855), Haemophilus influenzae 

(HI) (ATCC 49247), and Staphylococcus epidermidis (SE) (ATCC 14990). All 

organisms were initially grown on Columbia Horse Blood Agar (Oxoid) overnight 

at 37oC, except for HI, which was grown on Chocolate agar (Oxoid). A single 
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colony of each was inoculated into CSF broth (Oxoid), placed on a shaker and 

incubated overnight at 37oC. The culture was adjusted to 0.5 McFarland units 

above baseline, and placed on ice prior to instillation.  

 

Cilia toxin 

CAZS solution, comprising a sodium citrate-buffered citric acid solution with a 

zwitterionic surfactant (caprylyl sulfobetaine), was supplied by Medtronic ENT, 

Jacksonville, FL. This agent was shown in previous studies to be highly cilia toxic. 

 

Frontal Ostia Access 

All 24 sheep were given a general anesthetic by an experienced animal 

technician. The first stage endoscopic sinus surgery was performed using custom 

made instruments as previously described402, to enable access to the frontal 

ostia. Animals were recovered for a minimum of two weeks prior to the second 

procedure. 

 

Frontal sinus trephination & inoculation 

A second general anesthetic was given to permit frontal sinus trephination. 

Frontal trephines were inserted as described. The site of the frontal ostia was 

confirmed endoscopically using a flush of 1 % fluorescein. Both frontal ostia were 

occluded with petroleum jelly impregnated gauze until fluorescein was unable to 

be passed into the nasal cavity. Residual fluid was aspirated from the sinuses. 1 

mL of bacterial inoculum was injected into each sinus via trephine. 1ml of fungal 

inoculum was injected into the left sinus, whilst 1ml of sterile CSF broth was 
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injected into the right sinus. 4 animals had 10mL of CAZS solution instilled into 

both sinuses, waiting 10 minutes followed by aspiration of the sinus. 1mL of 

fungal solution was inoculated into the left sinus plus 1mL sterile CSF broth, the 

right sinus received 2mL sterile CSF broth. Control animals had 2mL of fungal 

solution inoculated into the left sinus plus 1mL of sterile CSF broth, with the right 

sinus treated with 2mL sterile CSF broth. Trephines were capped and left in-situ, 

and the animals were recovered. 

 

Specimen Collection 

Sheep were euthanized on day 8 and the sinuses tissue was removed as 

previously described402, and transported in Dulbecco’s Modified Eagle’s Medium 

(Gibco, Invitrogen Grand Island, NY) without antibiotic or antimycotic to the 

laboratory. Sinus tissue was dissected under laminar flow conditions, into 

appropriate sized pieces for the various analytical processes: 10 x 10 mm for 

fungal biofilm detection, 10 x 10 mm for FISH analysis, 5 x 5 mm in 10% buffered 

formalin for histology – with hematoxylin and eosin (H&E) stain, and 3 x 3mm for 

TEM. Electron microscopy samples were subject to 1 min of ultrasonication to 

remove mucus to allow assessment of epithelial structures. 

 

Fungal biofilm determination 

The analysis of fungal biofilm on sinonasal mucosa has been previously 

described402,403. Briefly, 10x10mm sinus mucosal samples were processed fresh, 

with dual staining with concanavalin A - Alexa Fluor 488 conjugate  (Invitrogen 

GmbH Karlsruhe, Germany), and FUN-1 Cell Stain (Invitrogen). Following a one 
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hour incubation these were washed to remove excess stain and were analyzed 

using the Leica TCS SP5 Confocal Scanning Laser Microscope (CSLM) (Leica 

Microsystems, Wetzlar, Germany). An excitation wavelength of 488 nm, and dual 

emission detection at 495 – 540nm and 560 – 610nm was employed. A 

combination of 20x and 63x magnification was used.  The entire sample was 

systematically in the X and Y planes scanned for fungal elements. Axial Z stacks 

were recorded of representative areas to construct a three dimensional virtual 

image of the tissue, overlying mucus and biofilm.  

 

Histopathologic scoring  

Two blinded examiners (JJB and EC) graded inflammation on H&E stained slides 

on a scale from 0-4. The mean results are shown. The scoring system has been 

previously described386. 0 - reflecting normal mucosa; 1 – minimal change with 

rare individual inflammatory cells within mucosa & submucosa; 2 - mild changes 

with light infiltrate of inflammatory cells; 3 – moderate changes with moderately 

dense inflammatory cells; 4 – severe changes with dense inflammatory infiltrate – 

partially obscuring normal tissue architecture.  
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Electron Microscopy 

Sinus tissue were fixed in a solution of 4% paraformaldehyde / 1.25% 

glutaraldehyde in phosphate-buffered solution (PBS) with 4% sucrose, pH 7.2, 

and stored at 4°C overnight. Samples were postfixed with 2% osmium tetroxide 

(OsO4) for 1 hour on a rotator, and subsequently dehydrated with a series of 70–

100% ethanol. Dehydration was continued in 100% propylene oxide for 20 

minutes and then infiltrated in a 1:1 mixture propylene oxide/resin overnight. Over 

the next 24 hours, several changes of 100% resin were performed. Next, the 

specimens were embedded in fresh resin and polymerized at 70°C for 24 hours. 

Ultrathin sections, 70 nm in thickness, were collected onto copper grids, which 

then were stained with 2% uranyl acetate in 50% methanol for 15 minutes, 

followed by 1% lead citrate for 5 minutes. Sections then were examined with a 

Transmission Electron Microscope (CM 100, Philips Eindhoven, The 

Netherlands).  

 

Cilia Grading 

Cilia were graded on TEM images by two blinded observers (JJB and EC) using 

an arbitrary scale – 0 = normal cilia structure, 1 = mild cilial shortening / 

abnormality, 2 = moderate cilial shortening / abnormality, 3 = severe cilial 

shortening / abnormality, 4 = complete cilial loss. The mean of the observer 

results are shown. 
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Biofilm Analysis 

Fluorescence in-situ hybridization was performed on mucosa that had been 

stored at -80oC. Cryopreservation prior to FISH analysis of sinus mucosa has 

been validated in our department186. Defrosted samples were washed in MilliQ 

water prior to hybridization to remove planktonic organisms. Species-specific 

PNA-FISH probes were used (AdvanDx, Woburn, MA), S. aureus - Alexa-488 

(KT001 – custom probe), S. epidermidis (CNS) – Texas Red (KT005), P. 

aeruginosa – Alexa-488 (KT001 – custom probe). A universal bacteria probe 

(BacUni PNA Alexa 488 – (CP0054) was used to determine total bacterial biofilm 

formation (AdvanDx). As no H. influenzae probe was available, a novel probe 

conjugated to Cy3 was developed in our laboratory from published sequences404 

and we have used this probe previously186. The probe was manufactured by 

GeneWorks, Thebarton, Australia. The manufacturer’s protocol was followed. 

Briefly, samples were fixed to glass slides, dehydrated in 90 % ethanol, air dried, 

and hybridized at 55oC for 90 minutes. In addition, the HI mucosa was pre-

hybridized with BET-42 (Sigma-Aldrich, St. Louis, MO) for 30 minutes to reduce 

nonspecific binding of the probe. Plated pure cultures of each bacterium were 

used as positive controls. Samples were transported to Adelaide Microscopy for 

analysis using the Leica TCS SP5 CSLM. An excitation of 488nm with emission 

range of 495 – 540nm was used to detect SA & PA & universal bacteria. An 

excitation of 561nm with emission range of 570 – 600nm was used to detect HI. 

An excitation of 594nm with emission range of 610 – 630nm was used to detect 

SE. A combination of 20x and 63x magnification was used.  The entire sample 

was systematically scanned for biofilm elements. Axial Z stacks (0.5µM) were 
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recorded of representative areas to construct a three dimensional virtual image of 

the tissue, overlying mucus and biofilm. 

 

Statistical analysis 

The one-way ANOVA test was used to compare multiple groups with Tukey’s 

post hoc multiple comparison test. GraphPad Prism software (San Diego, CA) 

was used for statistical analysis, and a p-value of 0.05 was considered significant.  

 

4.4 RESULTS

Fungal & Bacterial Biofilm Formation 

The formation of bacterial biofilms was determined for all mucosal samples. 

Control sinuses and A. fumigatus alone inoculated sinuses showed no evidence 

of bacterial biofilm formation. A minimum of 75% of sinuses inoculated with 

bacteria alone (S. aureus, S. epidermidis, and P. aeruginosa), or these bacteria 

co-inoculated with fungi, showed species-specific bacterial biofilm formation. 4/8 

(50%) of the CAZS and bacteria inoculated sinuses also showed evidence of 

bacterial biofilm formation using the universal bacterial probe (see Figure 4-1). 

Species-specific analysis showed P. aeruginosa to be the dominant bacterial 

organism in CAZS treated sinuses. However, the 4 sinuses inoculated with H. 

influenzae alone, and the 4 sinuses inoculated with H. influenzae & A. fumigatus 

showed no evidence of biofilm formation. These results were confirmed with a H. 

influenzae FISH probe, as well as a universal pan-bacterial probe.  
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Fungal analysis showed no fungal biofilm formation in control sinuses, those 

inoculated with A. fumigatus alone, or those sinuses inoculated with bacteria 

alone or CAZS alone (see Figure 4-8). 3/4 (75%) of sinuses inoculated with fungi 

and either S. aureus, S. epidermidis, or CAZS solution, formed fungal biofilms. 

Co-inoculation of A. fumigatus and P. aeruginosa produced fungal biofilms in all 

sinuses (see Figure 4-9). Co-inoculation of fungi and H. influenzae produced no 

fungal biofilms (see Figure 4-1). 
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Figure 4-1 Fungal and bacterial biofilm formation according to frontal sinus 
inoculum. 
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Table 4.1 Fungal and bacterial biofilm formation according to frontal sinus 
inoculum. 

Sinus Inoculation 
 
 

Bacterial Biofilm 
n 

(%) 

Fungal Biofilm 
n 

(%) 
Control (n=4) 
 

0 
 

0 
 

A. fumigatus (n=4) 
 

0 
 

0 
 

S. aureus (n=4) 
 

3 
(75) 

0 
 

A. fumigatus + S. aureus (n=4) 
 

4 
(100) 

3 
(75) 

S. epidermidis (n=4) 
 

3 
(75) 

0 
 

A. fumigatus + S. epidermidis (n=4) 
 

3 
(75) 

3 
(75) 

P. aeruginosa (n=4) 
 

4 
(100) 

0 
 

A. fumigatus + P. aeruginosa (n=4) 
 

4 
(100) 

4 
(100) 

H. influenzae (n=4) 
 

0 
 

0 
 

A. fumigatus + H. influenzae (n=4) 
 

0 
 

0 
 

CAZS cilia toxin (n=4) 
 

2 
(50) 

0 
 

A. fumigatus + CAZS cilia toxin (n=4) 
 

2 
(50) 

3 
(75) 

 



 Bacterial induced cilia damage promotes fungal biofilm formation in a sheep model of sinusitis 

S Boase, J Jervis-Bardy, E Cleland, H Pant, LW Tan, PJ Wormald  

 

 159 

Cilia integrity grading 

Sinus mucosal tissue was processed and analysed using TEM to determine the 

effect of the interventions on cilia structure. There was a statistically significant 

reduction in cilia length in the sinuses inoculated with S. epidermidis, S. aureus, 

P. aeruginosa compared to control (p < 0.05, 1 way ANOVA, Tukey, see Figure 

4-2 & Figure 4-5). CAZS treatment was also associated with a significant 

reduction in cilia compared to control sinuses (p < 0.05). However, fungal 

inoculation alone, and H. influenzae inoculation did not result in a significant 

alteration in cilia structure (p>0.05, see Figure 4-4 & Figure 4-2). The addition of 

A. fumigatus to sinuses did not lead to a significant difference in cilia damage 

(p>0.05, see Figure 4-2) 
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Figure 4-2 Cilia grading according to sinus inoculum. The ‘box’ represents 
the interquartile data range; the horizontal bar shows the median value and the 
‘whiskers’ represent the 5th and 95th percentile values. 
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Inflammation grading 

Histological preparations were analysed to determine the degree of inflammation 

in the sinonasal mucosa. There was no significant difference in inflammation 

severity between control tissue and those inoculated with fungi alone, HI alone, 

HI / fungi, CAZS or CAZS / fungi (p > 0.05, 1 way ANOVA, Tukey post-hoc 

multiple comparison test – see Figure 4-3). Inflammation severity was significantly 

greater in those sinuses inoculated with bacteria (SA, SE, PA) compared to 

control (p < 0.05, 1 way ANOVA, Tukey, see Figure 4-6 & Figure 4-7). Similar to 

the cilia grading, there was no significant difference in inflammation severity for 

any inoculum following the addition of fungi (p>0.05, see Figure 4-3). 
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Figure 4-3 Histological grading according to sinus inoculum.  
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Figure 4-4 A. fumigatus inoculation - TEM 3400x showing normal cilial 
integrity 
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Figure 4-5 A. fumigatus / P. aeruginosa co-inoculation - TEM 3400x showing 
severely damaged cilia. 
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Figure 4-6 A. fumigatus inoculation - H&E stain 20x showing minimal 
mucosal inflammation. 
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Figure 4-7 A. fumigatus / P. aeruginosa co-inoculation - H&E stain showing 
severe inflammation with thickened epithelium and influx of inflammatory 
cells. 
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Figure 4-8 A. fumigatus inoculation CSLM - showing no fungal biofilm 
formation.   
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Figure 4-9 A. fumigatus / P. aeruginosa co-inoculation, CSLM showing florid 
fungal biofilm formation. 
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4.5 DISCUSSION 

This study examines the effect of induced cilial damage on the formation of 

sinonasal fungal biofilms. We have shown that bacterial biofilms of multiple 

species have the capacity to damage epithelia sufficiently to allow fungal biofilms 

to adhere and propagate. In the absence of cilia damage by cilia toxin or bacterial 

injury, fungal biofilms do not form in this model. This has significant implications 

for our understanding of potential mutualistic relationships between bacterial and 

fungal species in CRS. Controlling the factors, which lead to fungal biofilm 

formation, may allow us to better manage these difficult patients. 

 

The role of fungi in CRS is still a subject of vigorous debate in rhinology79,405. The 

complete spectrum of opinion exists; from a universal role of fungi in the 

pathogenesis of CRS60,90, to no role at all80,406. Despite this disparity, most 

rhinologists are familiar with a subset of their CRS patients, with medically and 

surgically recalcitrant disease, who have polyps, eosinophilic mucus and fungal 

elements filling the sinuses. These are some of the most symptomatic, and 

difficult to treat patients38,56, and can have debilitating consequences from their 

disease40.  

 

Studies reporting the presence of fungal biofilms on sinonasal mucosa from CRS 

patients show a prevalence of 22% in unselected CRS patients186, up to 100% in 

EMCRS patients187. Critically, both of these studies found a high correlation 
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between fungal and bacterial biofilms. Potential mutualistic relationships between 

bacteria and fungi may contribute to their persistence on sinonasal mucosa. 

 

We have shown that bacterial biofilms have the capacity to significantly damage 

sinonasal cilia, confirming the findings demonstrated in a recent study185. Multiple 

different bacterial species have been implicated, however the results of the latter 

study were based on conventional culture rather than organism specific biofilm 

detection techniques. Others have suggested that bacteria exhibiting the biofilm 

phenotype, damage or impair the function of cilia more than microbes in the 

planktonic phenotype407, although this requires further substantiation. S. aureus 

and P. aeruginosa have been implicated in CRS191,192,408 however, S. epidermidis 

is generally considered to be an organism associated with a favourable outcome 

in CRS408. Despite this, in the current study S. epidermidis biofilm was associated 

with similar degrees of cilia damage and fungal biofilm formation as the other 

species. In addition to cilial destruction, it is known that bacterial toxins from S. 

aureus and P. aeruginosa are capable of significantly impeding cilia beat 

frequency409,410, an additional factor which may promote both bacterial and fungal 

biofilm formation.  

 

In addition to bacterial co-inoculation we have employed a cilia toxin to examine 

the hypothesis that impaired cilia function promotes fungal biofilm formation. 

CAZS solution has been previously shown to significantly damage ciliated 

mucosal surfaces411,412, and similar results were observed in the current study. It 

was instructive that the addition of this solution to the sinus was sufficient to allow 

fungal biofilm proliferation, and suggests that the observed effect of bacteria on 
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fungal biofilm formation is, at least partly, due to cilial impairment. However, 50% 

of the CAZS treated sinuses also had bacterial biofilm formation, presumably 

seeded from endogenous organisms.  

 

The formation of fungal biofilms in the current study was observed in the majority 

of sinuses, which were co-inoculated with bacteria, except H. influenzae species. 

Examination for H. influenzae biofilm on these sinuses was also negative. Why 

we were unable to produce H. influenzae biofilms in the sheep model is obscure. 

It is known to be a fastidious organism with specific growth factor and 

environmental requirements413. It is also highly adapted to the human 

environment, and has no non-human hosts414. Despite this however, animal 

models of H. influenzae infection415 and biofilm formation416,417 have been 

reported. We were particularly interested in the effect of H. influenzae biofilms on 

fungal biofilm formation, as the species has been shown to portend a favourable 

clinical picture compared to S. aureus biofilms, particularly regarding pre-

operative disease severity, and post-operative course191. Despite it’s relatively 

benign status in CRS, three studies have shown significant impairment in cilia 

structure and function following infection with H. influenzae on primary respiratory 

epithelial culture418, and explant models419,420. This species has also been shown 

to elaborate certain factors, which rapidly inhibit ciliary activity in vitro409,419. 

Additionally, strains expressing certain surface proteins may have a more severe 

impact on cilia structure and function421.  

 

Molecular & proteomics research has provided evidence that fungal organisms 

assuming the biofilm phenotype exhibit altered gene expression422,423, and protein 
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production424, as part of a complex, highly regulated process194. Fungal biofilms, 

like bacterial biofilms, have defined developmental phases that include arrival at 

an appropriate substrate, adhesion, colonization, matrix production, biofilm 

maturation and dispersal197-199. Filamentous growth is a fundamental feature of 

fungal proliferation, however germination of conidia (spores) is required, and 

conidial adhesion is essential to trigger germination196,200. Considered to be 

ubiquitous, the outdoor concentration of fungal spores can be as high as 1 x 106 

spores per m3, depending on ambient conditions, which is up to 1000x higher 

than the mean pollen concentration425. Clearly, the exposure of the sinonasal 

mucosa to fungal spores is great, however local immune defences, such 

mucociliary clearance, prevent adhesion and germination of inhaled fungal 

material. As we have shown, bacterial biofilms have the capacity to impair these 

local defenses, affording fungal material greater opportunity to adhere to mucosal 

surfaces and propagate.  

 

The interaction between fungal virulence factors (including biofilm formation), and 

host defense mechanisms plays a crucial role in determining if fungi are cleared 

from mucosal surfaces, or cause infection and inflammation. The high density of 

fungal organisms within a biofilm may present a challenge for the host. 

Furthermore, fungal biofilms have increased resistance to antifungal 

medications426. Clearly the role of cilia in mucosal defense is critical to 

maintaining a healthy sinus environment. Endoscopic sinus surgery is known to 

improve cilia structure and function in CRS patients427-429, however complete 

recovery may take between 3 and 6 months following mucosal injury or ESS430-

432. This may be a period of relative susceptibility to fungal biofilm formation, and 
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may explain early surgical failures in AFRS patients. Human epithelial defenses 

against fungal biofilms are poorly understood at present. In addition to 

mucociliary clearance, recent studies have implicated TLR2 and 4 mediated 

signaling as important innate anti-fungal defense mechanisms433,434. 

4.6 CONCLUSION 

This study has shown that bacterial biofilms can induce damage to the epithelial 

barrier, resulting in significant cilial destruction. A delicate balance exists at the 

level of the mucosa, which prevents significant fungal colonization of host 

surfaces. Innate host defenses, including the epithelial barrier and mucociliary 

clearance are important mechanisms. However, when these conditions get out of 

balance due to bacterial biofilm formation, heavy fungal colonization can occur. 

The importance of cilial function in antifungal defense, may explain the 

recalcitrance of fungal associated CRS to conventional medical and surgical 

treatments. It remains unknown if fungal biofilms are pathologically involved in 

rhinosinusitis, or whether they are saprophytic bystanders, which only colonize 

the sinuses of those with the most severe inflammatory disease, and mucociliary 

impairment. Further research into the complex interplay between sinonasal 

microorganisms, and their interactions with host immune mechanisms is critical to 

our understanding of this disease. 
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5.1 ABSTRACT 

Introduction: The importance of bacteria and fungi in CRS is increasingly 

recognized, but determining how the host interacts with these organisms is critical 

to our understanding. We have determined the presence of microorganisms using 

culture and biofilm detection, and compared this to organism specific immune 

responses, by measuring immunoglobulin E within the mucosa and serum of CRS 

patients and controls. 

Methods: The presence of Staphylococcus aureus, and four fungal species was 

determined by culture and a validated biofilm detection method in 48 CRS 

patients and 10 controls. Serum and mucosal tissue were collected for organism 

specific immunoglobulin E analysis. Correlations between microorganisms and 

specific host responses were examined. 

Results: Mucosal IgE levels to S. aureus and fungi were significantly higher in 

mucosa than serum in all patients. When fungi and S. aureus organisms were 

present on the mucosa in CRS patients with nasal polyps, specific IgE levels 

were significantly elevated. Interestingly, the presence of S. aureus on the 

mucosa also resulted in higher anti-fungal IgE levels. This relationship was only 

observed in nasal polyp patients. 

Discussion: This study has shown, using sensitive microbial detection 

techniques, the presence of certain microorganisms in nasal polyposis patients 

can result in higher mucosal IgE levels, suggesting these organisms have the 

capacity to interact with the host immune system, with potential to exacerbate 

mucosal inflammation in CRS. Mucosally based S. aureus organisms may also 

exacerbate disease by enhancing mucosal sensitization to inhaled fungal 

aeroallergens. 
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5.2 INTRODUCTION 

Chronic rhinosinusitis (CRS) is a heterogenous group of disorders commonly 

classified according to the presence or absence of polyposis. CRS with nasal 

polyps (CRSwNP) affects approximately 4% of the population435, and is 

characterized by complex inflammatory reactions including high levels of 

immunoglobulin E (IgE), predominance of T helper 2 (Th2) cytokines including 

interleukins 3, 5 and 13, and mucosal eosinophillia. The stimuli for ongoing 

mucosal inflammation are still unknown, however it is becoming clear that 

environmental exposure to microorganisms such as bacteria and fungi, and 

inhaled aeroallergens, engaged by a dysregulated host immune response, may 

perpetuate the pathological inflammation. Recent trials of the novel anti-IgE 

monoclonal antibody, omalizumab have shown promise for nasal polyposis in 

preliminary studies274-276, and suggest a critical role of IgE in the underlying 

pathogenesis of this disease. 

 

There is an emerging body of evidence implicating S. aureus as a prominent 

disease modifying agent in CRS191. In certain geographical regions, it is the most 

commonly cultured bacteria in CRSwNP patients436, and has been detected in 

biofilm form in 50 – 70% of CRS patients174,186,192.  S. aureus is known to produce 

enterotoxins (SAE) - a class of secreted proteins capable of stimulating potent 

mitogenic expansion of T lymphocytes260,314. It is recognized that bacterial 

products, such as superantigens, can activate the adaptive immune system via 

Th2 predominant pathways, with B cell activation and class switching, resulting in 



Microorganisms and host immunoglobulin E responses in chronic rhinosinusitis 

S Boase, L Baker, A Foreman, LW Tan, H Pant, PJ Wormald 

 

 179 

IgE production315,316,437. Additionally, the presence of S. aureus biofilm has been 

associated with Th2 biased inflammation, independent of superantigen 

presence375. Additionally, SAE specific IgE in nasal polyps has been associated 

with a significant increase in eosinophil-related markers such as IL-5 and 

ECP372,436. SAE can also enhance inflammatory airway responses in models of 

asthma and allergic rhinitis320,438. S. aureus colonization also increases the 

sensitization to inhaled aero-allergens in asthmatic patients267. These studies 

suggest a role for S. aureus as a disease-modifying agent, with the potential to 

exacerbate IgE mediated sensitization to inhaled aero-allergens in susceptible 

individuals. This mechanism has not been explored in CRS to date and is 

addressed in the current study. 

 

Unequivocal evidence for a role of fungi in CRS pathogenesis has remained 

debatable79,80. The reported prevalence of systemic fungal sensitivity (allergy) in 

CRS patients varies significantly. Collins reported no difference in inhalant allergy 

between CRSwNP patients and controls, although fungal allergy was significantly 

higher in the polyp group351.  In the current study we examine the prevalence of 

fungal allergy systemically, and locally within the mucosa, and examine the 

relationship between these. We also investigate the capacity of colonizing fungi to 

stimulate the production of specific IgE within the sinonasal mucosa.  

 

An integral step in understanding the pathogenesis of CRS and the relative 

contribution of microorganisms, is to scrutinize the host and it’s relationship with 

the environment. Specifically, by analyzing the microorganisms which reside at 

the mucosal interface, and correlating these to organism specific immune 
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responses in the host. We describe the first quantitative analysis of S. aureus 

enterotoxin and fungal IgE within the mucosa and serum of polypoid and non-

polypoid CRS patients and controls. It is also the first study to examine for the 

presence of these organisms on the sinonasal mucosa, using conventional 

culture and biofilm analysis, to determine if colonizing organisms can act as 

antigen sources for IgE production. Additionally, we examine the impact of S. 

aureus organisms on mucosal sensitization to fungal aero-allergens. 
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5.3 MATERIALS AND METHODS 

Patient Selection 

This prospective study was undertaken in the tertiary referral rhinology practice of 

the senior author (PJW), at the academic hospitals, Adelaide, South Australia. 

The study was approved by the Human Ethics Committee and all patients 

provided informed consent to participate in the study. The cohort consisted of 58 

consecutive CRS patients who met the definition of CRS as defined by the 

rhinosinusitis taskforce376 and have failed medical therapy necessitating the need 

for endoscopic sinus surgery (ESS). A control group consisted of 15 patients who 

had no clinical or radiological evidence of sinus disease. These patients were 

undergoing transnasal endoscopic procedures including trans-sphenoidal 

hypophysectomy for non- functioning adenomas, optic nerve decompression, and 

CSF leak repair. Patients were excluded if less than 18 years of age, were 

immunocompromised, or had mucociliary dysfunction due to disorders such as 

cystic fibrosis and Kartagener’s syndrome. Other exclusion criteria included 

inadequate mucosa for analysis, no culture taken, and antibiotic or systemic 

corticosteroid used in the three weeks preceding surgery. 10 CRS and 5 controls 

patients were excluded due to either insufficient mucosal tissue available for 

analysis, or bacterial and fungal cultures were not performed during surgery. 

 

All patients had serum collected for allergy testing to moulds, grasses, house dust 

mite & animal dander, as well as total IgE using an automated fluorescent 

enzyme immunoassay (FEIA) on a Phadia 250 Immunocap system (Phadia AB, 
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Uppsala, Sweden). Pre-operative data was collected including medical history, 

allergies, aspirin sensitivity, cigarette smoking, asthma, and sinonasal symptom 

scoring. CT scans were scored using the Lund-Mackay439 staging system. All 

patients had blood drawn before anesthetic induction, and collected in a lithium-

heparin tube. Blood was centrifuged at 3500 rpm for 10 minutes. Serum was 

collected and stored at -80oC to be used for specific IgE analysis.  

 

CRS patients had sinus mucosal tissue harvested from the maxillary or ethmoid 

sinuses during routine sinus procedure. Control patients had mucosa harvested 

from the posterior ethmoid and sphenoid required to access relevant skull base 

pathology. Tissue was immediately stored in Dulbecco’s modified Eagle medium 

(Gibco, Invitrogen Corp., Grand Island, NY) without antibiotic or antimycotic, and 

transported on ice to the laboratory for further analysis. Mucus was harvested for 

histopathological examination, and for routine bacterial and fungal culture. In the 

absence of mucus, a middle meatal swab was taken for bacterial and fungal 

culture.  

Biofilm Analysis 

Fluorescence in-situ hybridization was performed as previously described186. Two 

probes were utilized on separate pieces of mucosa - a S. aureus specific 

sequence conjugated to Alexa-488 probe, and a pan-fungal Alexa-488 probe. 

(AdvanDx, Woburn, MA). The manufacturer’s protocol was followed. Samples 

were analyzed on a Leica TCS SP5 Confocal Scanning Laser Microscope (Leica 

Microsystems, Wetzlar, Germany). An excitation of 488nm with emission range of 

495 – 540nm was used to detect S. aureus and fungus. The entire sample was 

systematically scanned for biofilm elements. Axial Z stacks (0.5µM) were 



Microorganisms and host immunoglobulin E responses in chronic rhinosinusitis 

S Boase, L Baker, A Foreman, LW Tan, H Pant, PJ Wormald 

 

 183 

recorded of representative areas to construct a three dimensional virtual image of 

the tissue, overlying mucus and biofilm.   

Mucosal Lysate Preparation 

Mucosal lysates for immunoglobulin analysis were prepared from 200mg of snap 

frozen mucosa using the Bio-Plex Cell Lysis Kit according to the manufacturer’s 

directions (Bio-Rad Laboratories, Hercules, CA). The supernatant was collected 

and stored at -20oC.  

Immunoglobulin E Analysis 

Analysis of specific IgE in mucosal lysates and serum was performed using an 

ImmunoCAP 100 instrument and reagents (Phadia AB, Uppsala, Sweden). 

Mucosal lysates and serum were centrifuged at 1500rpm prior to undiluted 

supernatant analysis. Curve controls and calibrators were used for the assay as 

per the manufacturer’s instructions. Fluorescence signals emitted from the 

sample were compared to known standards, and expressed as the concentration 

of specific IgE in kUnit/L. Seven serum and lysate samples were analyzed in 

duplicate immediately following collection (fresh) and subsequently following 

storage at -80oC and -20oC respectively, to determine inter-assay variability and 

confirm the stability of the cryopreservation protocol. In addition, each 

immunoCAP assay included an internal control of pooled sera from a volunteer 

with known allergy to domestic cats, which was analyzed for specific IgE to Felis 

domesticus (e1). All experimental sera and mucosal lysate samples were 

analysed for the following organism specific immunoglobulin E: Alternaria 

alternata (m6), Aspergillus fumigatus (m3), Penicillium chrysogenum (m1), 

Aspergillus flavus (m228), Staphylococcus aureus enterotoxin (SAE) A (m80), 
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SAE-B (m81), SAE-C (m223), and SAE-TSST(m226). Data were analysed using 

ImmunoCAP Information Data Manager (IDM) software (Phadia AB, Uppsala, 

Sweden). 

STATISTICS 

The Kruskal-Wallis test was used to compare multiple groups with non-parametric 

data with Dunn’s post hoc test. The Mann-Whitney U test was used for 

continuous data. Fisher’s exact test and chi-square test for independence were 

used for dichotomous data. Pearson product-moment correlation coefficient (r) 

was used as a measure of the strength of linear dependence between two 

variables. GraphPad Prism software (San Diego, CA) was used for statistical 

analysis, and a p-value of < 0.05 was considered significant.  
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5.4 RESULTS 

 

Table 5.1 Patient characteristics 

  CRSwNP CRSsNP Controls 

Number 33 15 10 

Age* 46 (37-55) 44 (35-51) 42 (32-52) 

Male / Female 18/15 5/10 3/7 

Lund-MacKay CT Score* 18 (15-22) 16 (15-20) 0 

Symptom Scores* 18 (16-20) 18 (16-19) 0 

Revision Surgery (%) 21 (64%) 9 (60%) 0 

Smoking 2 (6%) 2 (13%) 1 (10%) 

Aspirin Sensitivity 3 (9%) 0 0 

Asthma 9 (27%) 3 (20%) 0 

Co-existent Medical Conditions DM (2) HT(4) 

HC(1), GERD 

(2), RA (1) 

DM (1), 

GERD(1), 

IBS (1) 

DM(1) RA(1) 

Serum Allergy Screening    

House Dust Mix 15 (45%) 4 (27%) 2 (20%) 

Mold Mix 20 (61%) 2 (13%) 0 

Grasses 18 (55%) 3 (20%) 1 (10%) 

Animal Dander 5 (15%) 0 1 (10%) 

Pollen mix 9 (27%) 1 (7%) 0 

Total – any allergen† 24 (73%) 7 (47%) 2 (20%) 

 

DM = diabetes mellitus, RA = rheumatoid arthritis, GERD = gastro-esophageal 

reflux disease, IBS = irritable bowel syndrome, HT = hypertension, HC = 

hypercholesterolemia. * = mean (interquartile range – 25 – 75%). † Denotes total 

number of patients with positive serum allergy test to 1 or more tested allergens.  
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Aspirin sensitivity and asthma were both more common in CRSwNP patients than 

the other groups but this was not statistically significant (χ2, P>0.05). Age and 

gender were not significantly different between groups (χ2, P>0.05, Mann-

Whitney U test P>0.05, respectively).  Both CRS groups were similar with respect 

to symptom and radiological severity (Mann-Whitney U test P>0.05). The high 

revision rate for both CRS groups indicates the tertiary referral nature of the 

practice. The rate of systemic allergy (all tested antigens), displayed no 

significant difference between polyp and non-polyp patients, however there was a 

significantly higher rate of systemic allergy in polyp patients vs controls (Fisher’s 

exact test, p<0.05).  Examining systemic fungal allergy specifically, the CRSwNP 

group had significantly higher rates of fungal allergy (61%) compared to CRSsNP 

patients (13%) and controls (0%) (Fisher’s exact test, p<0.05). Based on this 

systemic IgE analysis, patients are herein referred to ‘fungal allergic’ or non-

fungal allergic’ 

Comparison of systemic and mucosal IgE to fungi & SAE 

We analyzed specific IgE levels to 4 individual fungal antigens (Alternaria 

alternata, Aspergillus fumigatus, Penicillium chrysogenum, and Aspergillus 

flavus) in both serum and mucosa of all patient groups. The choice of fungal 

species was based on the published frequency of culture from CRS patients60, 

and the concentration of fungal spore counts from worldwide aero-biologic 

surveys357. There was a significant correlation between serum and mucosal anti-

fungal IgE in CRSwNP patients, which was not observed in CRSsNP patients, or 

controls. (Pearson correlation, r = 0.79, see Figure 5-1). The level of mucosal IgE 

in fungal allergic patients was frequently elevated to all 4 fungal antigens tested. 
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However, fungal specific IgE in serum was significantly higher for A. fumigatus 

and A. alternata, than for P. chrysogenum and A. flavus (Kruskall-Wallis test, 

Dunns pos-hoc comparison: p<0.05). In contrast to fungal IgE, there was no 

relationship between systemic and mucosal levels in any of the subgroups for the 

staphylococcal enterotoxin IgE (Pearson correlation, see Figure 5-2). Regardless 

of the presence of a statistically significant correlation between them, both anti-

SAE and anti-fungal IgE levels were significantly higher in the mucosa than 

serum across all patient groups (Mann-Whitney U test, p<0.05, see Figure 5-1 & 

Figure 5-2).
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Figure 5-1 Correlation between serum and mucosal anti-fungal IgE levels 
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Figure 5-2 Correlation between serum and mucosal anti-SAE IgE levels 
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Specific Immunoglobulin E responses to microorganisms 

The level of organism specific IgE in the mucosa was measured in all patients 

and compared to the presence of specific microorganisms. “Presence” of an 

organism was defined as either positive biofilm (FISH) analysis, or identification 

using conventional bacterial and fungal culture techniques (see Table 5.2). 

CRSwNP patients had S. aureus present more commonly than CRSsNP patients 

but the difference was not significant (Fisher’ exact test p>0.05).  

 

Table 5.2 Biofilm & Culture Results 

 CRSwNP 

N=33 

CRSsNP 

N=15 

Controls 

N=10 

Total Mucosal S. aureus 

present 

22 (67%) 7(47%) 1(10%) 

S. aureus Biofilm  18 (55%) 7(47%) 0 

S. aureus Culture 11(33%) 3(20%) 1(10%) 

Total Mucosal Fungi Present 8(24%) 0 0 

Fungal Biofilm 6(18%) 0 0 

Fungal Culture 7(21%) 0 0 

 

The level of mucosal SAE IgE was significantly higher in CRSwNP patients when 

S. aureus was isolated on the sinus mucosa (Mann-Whitney U test, P<0.05 -see 

Figure 5-3). Interestingly, this phenomenon was only observed in CRSwNP 

patients – with no association between S. aureus organisms and mucosal SAE 

IgE levels in CRSsNP patients or controls.  
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8 patients had evidence of fungi present on their sinonasal mucosa (see table 3). 

7 of these patients were identified using standard laboratory culture techniques 

hence species information was available. Aspergillus fumigatus was the most 

common (3/7) followed by A. alternata (1/7) and P. chrysogenum(1/7), 

Trichosporon(1/7), Candida (1/7). 6 patients were positive based on fungal biofilm 

identification by CSLM. One patient was positive for fungi only on microscopic 

analysis of histological preparations (Gomori methenamine silver stain). 

Interestingly, all specimens classified as fungal positive were from CRSwNP 

patients, and had histological evidence of eosinophilic mucus. Additionally, 7/8 

(88%) of these fungal positive patients had systemic fungal allergy. Further 

examination of the five patients who grew fungal species for which specific IgE 

analysis was available (A. fumigatus, A. Alternata and P. chrysogenum), showed 

that the species specific IgE was elevated, but not significantly more so than the 

IgE levels for the other antigens tested (Kruskall-Wallis test, Dunns pos-hoc 

comparison: p>0.05). Of the patients who had fungi in the sinuses, 5/8 (63%) also 

had allergy to non fungal aero-allergens by FEIA analysis. 5 of the 8 (63%) had 

concurrent S. aureus biofilm present. An additional 12 CRSwNP patients had 

serum evidence of fungal allergy without detectable fungi in the sinuses.  

 

When analyzing mucosal anti-fungal IgE levels to assess if these correlated with 

the presence of fungal organisms on the mucosa, we compared this group to the 

group of fungal organism negative patients who had systemic fungal allergy, 

because of the observed correlation between systemic and mucosal anti-fungal 

IgE levels, which may have been a potential confounding factor. Similar to S. 

aureus, there was a significant association between the presence of mucosal 
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fungi, and anti-fungal IgE levels in the mucosa of CRSwNP patients. (Mann-

Whitney U test, P<0.05 – see Figure 5-4). 
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Figure 5-3 The relationship between the presence of S. aureus and mucosal 
anti-SAE IgE in CRSwNP patients 
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Figure 5-4 The relationship between the presence of fungal organisms and 
mucosal anti-fungal IgE in fungal allergic CRSwNP patients 
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The effect of sinonasal S. aureus organisms on mucosal fungal 

allergy 

Fungal organisms are often detected on mucosal surfaces associated with S. 

aureus440, including in CRS patients186. An animal study has suggested a synergy 

between sinonasal fungal and S. aureus biofilms402. Furthermore, there is 

evidence in some atopic diseases that the presence of S. aureus exacerbates 

disease severity and potentiates allergen sensitivity. We sought to determine the 

effect of S. aureus organisms on the level of anti-fungal IgE in the mucosa. Due 

to the observed correlation between systemic and local fungal IgE levels, patient 

groups were analyzed separately according to presence or absence of systemic 

fungal allergy. In CRSwNP patients, we observed the presence of S. aureus on 

the sinonasal mucosa resulted in significantly greater levels of anti-fungal IgE in 

the mucosa (Mann-Whitney U test, P<0.05). This relationship was found in both 

fungal allergic, and non allergic patients (see Figure 5-5 & Figure 5-6). However, 

this relationship was not seen in non-polyp patients.  
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Figure 5-5 The relationship between S. aureus organisms and mucosal anti-
fungal IgE levels in non fungal allergic CRSwNP patients 
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Figure 5-6 The relationship between S. aureus organisms and mucosal anti-
fungal IgE levels  
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5.5 DISCUSSION 

S. aureus and fungi are often implicated in the pathogenesis of CRS but their role 

remains incompletely understood. The interaction of resident microorganisms 

with the host immune system has important implications for our understanding of 

CRS, and the clinical management of these patients. This study is the first of its 

kind to investigate the relationship between both S. aureus and fungi with 

organism specific host immune responses. We have shown that the presence of 

S. aureus and fungi on sinonasal mucosa is associated with a greater organism 

specific IgE response in CRSwNP patients. This is one potential mechanism 

through which these organisms can contribute to the chronic mucosal 

inflammation seen in these patients. Additionally we have shown that CRSwNP 

patients who have systemic fungal allergy, are likely to have greater anti-fungal 

IgE in the mucosa, regardless of the presence of viable fungi in the sinuses. 

Exposure to colonizing fungi, or inhalation of ubiquitous fungal aero-allergens 

may contribute to mucosal inflammation in these patients. Finally, the presence of 

S. aureus on the mucosa is associated with increased anti-fungal IgE in CRSwNP 

patients, suggesting that the bacteria can act to potentiate inhalant allergy. S. 

aureus may modulate the local response to fungal antigens, which highlights the 

important role of S. aureus as a disease modifying agent in CRS. 

Systemic IgE in CRS 

The role of systemic allergy in the pathogenesis of CRS has divided opinion in 

the rhinology research community primarily due to the large number of CRS 

patients who do not show systemic sensitivity to commonly tested allergens. In 
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diseases such as allergic rhinitis, allergen specific IgE in serum correlates well 

with symptoms348, however in CRS, some authors advocate that atopic status 

has no bearing on symptom scores, or surgical revision rate349. Others have 

shown that systemic atopy has no effect on the cellular content of nasal polyps 

compared to non atopic polyp patients350. It has also been argued that nasal 

polyps are not more frequent in atopic individuals351,352. On the contrary however, 

there is evidence to suggest that allergy rates are higher in polyp patients than 

the general population354,355. Analyzing fungal allergy more specifically, some 

studies have found similar rates of fungal allergy in CRS patients and healthy 

controls90, however others have found evidence of higher rates of fungal specific 

allergy in CRS patients354,355 than the general population357. In the current study 

we found significantly higher rates of allergy in CRSwNP patients compared to 

controls. Allergy to fungus was the most common of the allergen groups tested.  

Mucosal IgE in CRS 

The role of local IgE production in the mucosa, in the absence of elevated 

systemic IgE has been postulated as a potential mechanism for inflammation in 

CRS366,441. We observed significantly higher mucosal levels of IgE specific for 

both fungi and SAE in CRSwNP patients compared to non-polyp patients and 

controls, consistent with other studies. Anti-fungal IgE levels in polyp patients 

were frequently 10 times that of the anti-SAE levels within the mucosa. We 

subsequently analyzed the local mucosal levels of IgE with respect to the serum 

levels. We observed a significant correlation between systemic and local anti-

fungal IgE in CRSwNP patients, but not in CRSsNP or controls.  Wise et al, 

investigated local production of IgE in allergic fungal rhinosinusitis (AFRS – a 

subset of CRSwNP) compared to CRSsNP and controls, finding elevated levels 
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of IgE to fungi and other non fungal antigens in ARFS patients392. AFRS patients 

have, by definition, systemic fungal allergy53, and the high mucosal levels of anti-

fungal IgE in this group is in agreement with our findings. The results from the 

current study suggest that examining for systemic fungal allergies in CRSwNP 

patients, through serum testing, is a useful measure of mucosal IgE based 

sensitivities, as is the practice in allergic rhinitis management. Those patients 

who test positive for allergy are likely to have elevated mucosal anti-fungal IgE – 

a potential mechanism for perpetuating mucosal inflammation. This may be an 

important mechanism in AFRS patients where fungal antigens are produced 

locally by colonizing fungi, however these patients formed a small proportion of 

CRSwNP patients in this study. More importantly, CRSwNP patients with 

systemic fungal allergy who do not have fungi in the sinuses (non-AFRS) may 

have exacerbated mucosal responses to inhaled fungal aero-allergens which are 

ubiquitous425.  

The relationship between sinonasal organisms and local IgE 

production 

Infecting or colonizing organisms may provide antigenic sources for the local 

production of IgE in the sinonasal mucosa. When the presence of organisms 

(biofilm or culture) was related to the production of specific IgE in the mucosa of 

CRSwNP patients, both S. aureus and fungi showed a statistically significant 

relationship. These important findings support a link between mucosal-based 

organisms and specific host immune responses, suggesting they may contribute 

to inflammatory processes within the mucosa. Interestingly, there was no such 

relationship in non-polyp patients, despite detecting S. aureus organisms in 47%. 
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In these patients there may be non-IgE immune responses to SAE, which were 

not analyzed in this study, or perhaps mucosal immune tolerance to these 

organisms. The overall rate of fungal culture and biofilm positivity was low, and it 

is unlikely that fungi contribute to a significant proportion of CRS through 

colonization or infection.  Fungal organisms were only detected in patients at the 

more severe of the CRS disease spectrum, with nasal polyps and eosinophilic 

mucus.  

Staphylococcus aureus organisms exacerbate mucosal fungal 

sensitization 

In this study we have shown that the presence of S. aureus organisms on the 

mucosa of CRSwNP patients is associated with an increased mucosal anti-fungal 

IgE response.  This observation may be due to immunomodulatory effects of the 

bacterium itself, or a response to secreted superantigen (SAE). Whilst this is the 

first CRS study to report this phenomenon, it has been described in other 

diseases with atopic associations. In a study of atopic dermatitis patients, a 

disease with greater than 90% colonization rates with S. aureus269, S. aureus 

enterotoxins have been shown to upregulate IgE synthesis in the peripheral 

blood270. Pollen specific IgE production has also been significantly enhanced in 

the presence of S. aureus enterotoxins in sera of atopic dermatitis patients271. 

Furthermore, S. aureus has been shown to potentiate the sensitization to inhaled 

aero-allergens in bronchial asthma267 
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5.6 CONCLUSION 

A significant research effort is underway worldwide to uncover the pathogenesis 

of CRS. Many different potential mechanisms for the perpetuation of inflammation 

have been discovered, highlighting the complex interplay between environment 

and host in this disease cluster. We have shown that both fungi and S. aureus 

are capable of inciting specific, humoral immune stimulation in the sinonasal 

mucosa, which may contribute to local inflammation in nasal polyposis. 

Additionally, we have discovered a novel role for S. aureus organisms in nasal 

polyposis, by exacerbating mucosal sensitization to fungal antigens. This may 

enhance the mucosal inflammation to viable fungi within the sinuses, where S. 

aureus is often co-habiting. Additionally, the enhanced sensitivity to ubiquitous 

fungal aero-allergens may contribute to mucosal inflammatory processes in those 

patients without viable fungi within the sinuses. This additional pro-inflammatory 

function of S. aureus highlights the emerging role of this organism as a prominent 

disease modifying agent in CRS. 
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Thesis Synopsis 

 

This thesis has examined many aspects of CRS pathogenesis following an 

extensive examination of the literature. CRS is a complex disease, with a 

multiplicity of factors, which may contribute to produce symptomatic disease, but 

no single factor has been conclusively attributed. Indeed it may be that inherited 

or acquired defects in host defense mechanisms lead to exaggerated 

inflammatory responses to otherwise innocuous environmental factors. However, 

there is also evidence to suggest that microorganisms may play an active role in 

exacerbating inflammation in the susceptible host. It is the interplay between the 

environment and the host, which forms the central theme of this thesis. This work 

is based on the hypothesis that some of the inflammation observed in CRS 

results from an aberrant immune response to microorganisms such as host and 

fungi. Microorganisms may interact with the host at many levels of the immune 

defense, from the epithelial barrier, and innate immune functions, to the humoral 

immune response and alteration of hypersensitivities. Essential to any study of 

organism-host interactions is the accurate characterization of the organisms. 

 

Contemporary understanding of polymicrobial populations and their interactions 

with host surfaces in other diseases at the host-environment interface includes 

novel concepts such as mutualism and functional equivalence. We know that 

abiding by single organism paradigms have limited our understanding of disease. 

To completely understand the role of microbes in pathogenesis we must 

characterize the flora completely so the complex inter-relationships and symbiotic 
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associations can be studied. Despite this impetus, there is much confusion and 

contention in the rhinological literature regarding the microbial flora of CRS. The 

majority of studies are based on cultivation-based techniques, which have a 

myriad of limitations when characterizing complex, polymicrobial populations. Not 

only do such techniques polarize results, selecting for rapidly growing organisms 

at the expense of those which are slower growing, or more fastidious. But they 

also require that the investigator pre-select which media to use to cultivate the 

appropriate microbes. In the polymicrobial environments of mucosal surfaces, 

which occur at the host-environment interface, there are a plethora of 

microorganisms, each with specific growth requirements. Removing these from 

their niche results in dramatic environmental changes, which inevitably limits their 

capacity to thrive, and hence be detected. To provide ideal conditions for all of 

the microorganisms using culture based techniques would be exhaustive, if not 

impossible. Adding to this dilemma, bacterial and fungal biofilms have been 

discovered on sinonasal mucosa of CRS patients, which are notoriously difficult 

to culture using conventional techniques. Polymerase chain reaction techniques 

have been developed to overcome some of the limitations of culture detection, 

and have great utility when detecting two or three microbes in a mixed population. 

However these techniques still require a priori selection of microbial targets, and 

can only detect a limited number of species per sample. Many of the CRS 

microbial studies that have been performed using these detection techniques 

have either not assessed control tissue, or have selected control tissue using 

criteria, which does adequately exclude diseased tissue.  
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In an attempt to overcome these limitations, we have employed a sensitive, broad 

based molecular detection method for the characterization of fungal and bacterial 

populations on sinonasal mucosa. The Ibis T5000 biosensor uses broad based 

PCR, followed by electrospray ionization to divide DNA strands and inject them 

into a mass spectrometer, which accurately determines the base pair composition 

and compares this to a proprietary database to determine species present. In this 

way we can determine the entire cohort of microbes without having to pre-select 

microbial targets. Importantly, we have also determined the relative abundance of 

the detected microorganisms. We have shown that S. aureus is the most 

common bacterium on sinonasal mucosa of our CRS patient cohort. It is also 

frequently present on control tissue but in reduced abundance. S. epidermidis 

was also frequently detected on both diseased and control mucosa, but the 

relative abundances were similar. Clearly, not only presence, but also their 

specific population densities are essential when comparing disease and control 

flora. We have shown that fungi are present in a small proportion of CRS cases, 

but are found in the more severe disease states with eosinophilic mucus and 

nasal polyps. In addition to molecular analysis, we also performed conventional 

culture and fluorescence in situ hybridization (FISH) to determine the specificity 

and sensitivity of these techniques. We have shown that conventional culture is 

adequate at detecting the majority of rapidly growing organisms such as 

Staphylococci and Pseudomonas species, however the detection of more 

fastidious species, and anaerobes was poor. FISH has greater sensitivity and 

specificity for microbial detection than culture, and is particularly effective at 

detecting microorganisms in the biofilm form. Both culture and FISH detection 
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thresholds were related to microbial abundance as determined by the Ibis 

biosensor. 

 

We were particularly interested in the role of fungi in CRS as it appears to be 

related to the severe disease spectrum, and had recently been discovered in 

biofilm form in CRS patients. However, very little was known about the factors 

involved in fungal proliferation in sinuses. Type I hypersensitivity to fungi had 

been proposed as an important aspect of allergic fungal rhinosinusitis, but the 

exact role was obscure. We developed an animal model of sinusitis in sheep. 

Using fungal antigens we successfully sensitized 45% of sheep, evidenced by 

positive skin prick testing. We then inoculated the occluded frontal sinuses of the 

sheep with the same fungal species to which they were sensitized. We analyzed 

the mucosa using specialized staining and microscopy techniques but were 

unable to establish fungal biofilms in the sinuses. A review of our clinical 

experience, and the common occurrence of fungi and S. aureus together in 

human CRS patients, directed us to co-inoculate the two organisms into the same 

sinuses. The result was significant fungal biofilm formation. Hypersensitivity to the 

fungi had no bearing on inflammation, secretory hyperplasia, or fungal biofilm 

formation in this model. We observed that the inflammation was greater when S. 

aureus was inoculated, however this was no greater when fungi was co-inoclated. 

There are many reasons why S. aureus may enhance fungal biofilm formation, 

including synergistic actions relating to adhesion and attachment sites, metabolic 

assistance, and environmental modification. We hypothesized that cilial damage 

may be contributing and designed the subsequent project to investigate this. 
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In the third project we again used the sheep model, and chose four bacterial 

species commonly detected in CRS patients to co-inoculate with fungi. To 

determine the effect of cilia on fungal proliferation in isolation, we also co-

inoculated fungi with a cilia toxin. We used transmission electron microscopy to 

grade cilia damage. All bacterial species formed bacterial biofilms within the 

sinuses except H. influenzae. Bacterial biofilm formation was significantly 

associated with cilial destruction. Sinuses with highly damaged cilia showed florid 

fungal biofilm development. Cilia toxin treated sinuses also formed fungal 

biofilms, however 50% of these sinuses also formed bacterial biofilms from 

endogenous seeding. It is likely that the impaired epithelial defenses allow slow 

growing fungi to adhere, germinate and proliferate. Relating these findings to the 

clinical forum, the impaired cilial function, which is seen following endoscopic 

surgery, may provide ideal conditions for fungal proliferation, and may explain 

early surgical failure in AFRS patients. The relationship between bacterial and 

fungal virulence also has implications for our understanding of medical 

treatments, and may help to explain the limited role of antifungal therapies in 

these patients. Improving cilial function may be a critical target to improve 

treatment outcomes. 

 

The final step in this research was to analyze these microorganisms in the 

context of CRS, and examine host immune responses to these. In order to 

determine if the host response was directed towards these microbes, we needed 

to measure a host immune molecule with organism specificity. We chose to 

measure microorganism specific IgE in serum and mucosa as it fulfilled this 
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criterion, and also allowed us to analyze hypersensitivity responses in the human 

host, following our interesting results from the first animal study.  

 

We performed a prospective study of 48 CRS patients and 10 controls, analyzing 

sinus mucosa for the presence of S. aureus and fungi using conventional culture 

and FISH. We also measured organism specific IgE in the serum and mucosa of 

these patients and correlated these with organism presence to determine 

relationships. We established that the presence of both S. aureus and fungi on 

the mucosa was associated with elevated mucosal IgE levels in CRSwNP 

patients. This is one of the only published studies, which demonstrates that these 

microorganisms are actively interacting with the host, and not merely colonizing 

the surface. By interacting with mucosal IgE, these microbes may be contributing 

to the mucosal inflammation evident in CRS patients.  

 

Finally we showed evidence for a novel role of S. aureus in CRS pathogenesis. 

We demonstrated that mucosal fungal hypersensitivity, was significantly 

increased in the presence of S. aureus organisms on the mucosa. This 

phenomenon has been reported in other allergy-associated diseases such as 

asthma and atopic dermatitis but this is the first description in CRS patients. This 

has important implications in CRSwNP patients, as the antigenic stimuli for such 

exaggerated mucosal reactions are inhaled with every breath. We speculated that 

this may be a function of staphylococcal superantigen activation of allergic 

pathways, but further research is required to substantiate this. It is clear that 

management of Staphylococcal colonization, and allergy management may be 

critical to benefit these patients. 
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This thesis has made a significant contribution to our understanding about the 

relevant environmental and host factors in CRS patients, and how they may 

interact to impact disease. However, the more we learn, the more we realize how 

much farther we have to go, to gain enough insight into CRS pathogenesis to 

provide sustained relief to our patients. 
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