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Patricia J Solomon1*, Jessica Kasza2, John L Moran3 and the Australian and New Zealand Intensive Care
Society (ANZICS) Centre for Outcome and Resource Evaluation (CORE)

Abstract

Background: The Australian and New Zealand Intensive Care Society (ANZICS) Adult Patient Database (APD) collects
voluntary data on patient admissions to Australian and New Zealand intensive care units (ICUs). This paper presents
an in-depth statistical analysis of risk-adjusted mortality of ICU admissions from 2000 to 2010 for the purpose of
identifying ICUs with unusual performance.

Methods: A cohort of 523, 462 patients from 144 ICUs was analysed. For each ICU, the natural logarithm of the
standardised mortality ratio (log-SMR) was estimated from a risk-adjusted, three-level hierarchical model. This is the
first time a three-level model has been fitted to such a large ICU database anywhere. The analysis was conducted in
three stages which included the estimation of a null distribution to describe usual ICU performance. Log-SMRs with
appropriate estimates of standard errors are presented in a funnel plot using 5% false discovery rate thresholds.
False coverage-statement rate confidence intervals are also presented. The observed numbers of deaths for ICUs
identified as unusual are compared to the predicted true worst numbers of deaths under the model for usual ICU
performance.

Results: Seven ICUs were identified as performing unusually over the period 2000 to 2010, in particular,
demonstrating high risk-adjusted mortality compared to the majority of ICUs. Four of the seven were ICUs in private
hospitals. Our three-stage approach to the analysis detected outlying ICUs which were not identified in a
conventional (single) risk-adjusted model for mortality using SMRs to compare ICUs. We also observed a significant
linear decline in mortality over the decade. Distinct yearly and weekly respiratory seasonal effects were observed
across regions of Australia and New Zealand for the first time.

Conclusions: The statistical approach proposed in this paper is intended to be used for the review of observed ICU
and hospital mortality. Two important messages from our study are firstly, that comprehensive risk-adjustment is
essential in modelling patient mortality for comparing performance, and secondly, that the appropriate statistical
analysis is complicated.
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Background
Comparing the performance of intensive care units (ICUs)
is important for health care provider accountability and
for ensuring public safety. In this paper, we compare
ICUs contributing to the Australian and New Zealand
Intensive Care Society (ANZICS) Adult Patient Database
(APD) from 2000 to 2010. The purpose of the comparison
is to identify ICUs with unusual performance as char-
acterised by risk-adjusted in-hospital mortality. Such a
characterisation of performance is not without contro-
versy, but we take the pragmatic view that comparisons
of mortality will be undertaken, and that it is impor-
tant the analysis be conducted in a statistically rigorous
manner. In-hospital mortality is the only widely avail-
able mortality measure for the ANZICS APD, as pop-
ulation mortality databases are maintained by separate
State and Territory jurisdictions in Australia and they
are not currently linked. In any case, the analysis of 30-
day mortality or patient survival is controversial in this
context, [1,2].

The ANZICS APD is one of the largest binational
databases in the world. In 2010, 124 of the eligible 157
ICUs contributed to the database which currently con-
tains more than one million intensive care patient submis-
sions collected from ICUs in Australia and New Zealand.
The ANZICS APD has been collecting data since 1987
on physiological and chronic health status variables at the
point of ICU admission and over the subsequent 24 hours,
[3]. The specific variables are primarily relevant to the
computation of hospital mortality probabilities for exist-
ing algorithms such as APACHE II and III, and SAPS II,
[4-6]. Mortality outcome is recorded at ICU and hospital
discharge.

Ours is the first comprehensive, risk-adjusted analysis of
mortality in the ANZICS APD covering such an extended
period and provides the most complete picture to date
of critical care outcomes in Australia and New Zealand.
Patient mortality is modelled using a risk-adjusted three-
level hierarchical logistic regression model which clusters
patients within years and years within ICUs. Hierarchi-
cal models are also known as multilevel models and the
three levels of the hierarchy are: between ICUs (level
three), between years within ICUs (level two, treating
years as independent random effects, which we refer to
as ICU-years) and between patients within ICU-years
within ICUs (level one). Such models capture the hier-
archical nature of the data and the fact that responses
within clusters are correlated. The use of hierarchical
models for the assessment of health care provider per-
formance has been recommended as best practice [7-9],
and is standard for the analysis of hospital outcomes data
[10-12]. However, hierarchical models appear much less
frequently in the critical care literature and ours is the
first application of a three-level hierarchical model to

ICU comparisons. Furthermore, our statistical approach
using a three-stage analysis includes the estimation of
a null distribution to describe ‘usual performance’. Our
analysis extends the work of Ohlssen et al. [13] from
a Bayesian to a classical (frequentist) framework using
empirical Bayes models, and from a two-level to a three-
level hierarchical model and application to longitudinal
data, [14].

We have chosen the standardized mortality ratio (SMR)
as the performance indicator on which to base the ICU
comparisons. For each ICU, this is the ratio of the
observed to expected number of deaths, where a value of
one implies that the two numbers are in agreement under
the assumptions of the model. The SMR is widely used
in applications of provider comparisons and in mortality
studies generally, and has the attractive feature of incorpo-
rating both the observed and expected numbers of deaths.
Typically when hierarchical models are used to charac-
terise mortality, providers are compared using random
effects estimators. These estimators provide shrinkage
towards the overall mean and can be of substantial benefit
when incorporating low-volume providers in the analy-
sis. However, the estimates are also potentially biased,
[15]. Our study assumes a minimum annual volume
of 150 patient admissions to each ICU in each year,
thereby avoiding instability of estimation issues or poten-
tial bias due to excessive shrinkage. Bias can also arise
when patient characteristics are associated with provider
attributes and we expand on this further in the Discus-
sion. Our overall statistical approach avoids problems
apparently associated with simplistic (direct and indirect)
casemix adjustment methods [16] and mis-interpretation
which can arise when comparing hospitals using fun-
nel plots (again under artificially abridged assumptions)
with small observed numbers of deaths [17]. Recent sta-
tistical work in the social sciences has shown that large
numbers are required for valid inference at each level
of the hierarchies modelled, [18], a condition our study
of ICU performance in the ANZICS APD more than
satisfies.

Methods
Data
Patient data from 2000 to 2010 were extracted from
the ANZICS APD, [3,19]. The initial dataset contained
858, 758 admissions from 1, 354 ICU-year units from
161 ICUs. Exclusions were patients with: unknown hos-
pital outcome (18, 244); ICU length-of-stay (LOS) ≤ 4
hours (9, 607); age < 16 years (14, 752); coronary artery
bypass graft (CABG) (81, 166); ICU admissions for the
same and separate hospital admissions (123, 151); and
missing Acute Physiology and Chronic Health Evaluation
(APACHE) III score, age, ventilation status, diagnostic
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category, or ICU source (40, 507). Patients with CABG
and uncomplicated acute myocardial infarction are not
considered in the current dataset, and the exclusion of
patients with LOS ≤ 4 hours was an original APACHE
III requirement [5]. To ensure stability of estimation,
ICU-year units with fewer than 150 complete patient
records were excluded; this corresponds to three or
fewer admissions per week to an ICU in a year. The
final dataset consisted of records for 523, 462 patients
from 984 ICU-year units from 144 ICUs. Access to the
data was granted by the ANZICS Database Manage-
ment Committee in accordance with standing protocols.
The research was exempt from formal University of
Adelaide Human Research Ethics Committee approval
according to the Australian National Statement on
Ethical Conduct in Human Research, 2007 and local
hospital (The Queen Elizabeth Hospital, Adelaide)
Human Research Ethics Committee approval was
waived.

Statistical methods
Performance indicator
The performance indicator is the natural logarithm of
the standardised mortality ratio (log-SMR), where the
SMR is the ratio of the observed to expected numbers
of in-hospital deaths. We prefer the log to the raw SMR,
as it provides confidence intervals with better coverage
probabilities and is approximately normally distributed,
[14,20].

Identifying unusual ICUs
Stage 1: Risk-adjusted model The dataset was split
randomly into 80% training and 20% test datasets for
model building. Owing to the (very long) computing time
required to fit three-level models to such a large dataset,
the initial model selection was conducted using one-level
models and the logistic command in Stata™ (Version
12, 2011, [21]). Continuous (fixed) covariates included
APACHE III score, year of admission, and annual ICU
volume. The inclusion of Year as a fixed effect enabled
adjustment for a (systematic) trend in the response over
time. The patient severity score APACHE III is the third
revision of the Acute Physiology and Chronic Health Eval-
uation (APACHE III) score, which is computed using
the patient’s worst values during the first 24 hours post-
admission to the ICU, [5]. The APACHE III score is the
most referenced patient severity of illness score in the clin-
ical literature and is an important predictor of mortality,
[22]. It has a range 0 − 299, and in the original paper, [5],
the mean score was 50. A severely-ill patient would have
an APACHE III score of between 50−70. It is an important
(although not the sole) measure of patient illness, since it
combines several physiological and chronic health status

variables. Our previous work fitting random intercept and
random coefficient logistic regression models to the ANZ-
ICS APD demonstrated that APACHE III is the most
important predictor of mortality, [14,19]. In the present
study, APACHE III was fitted as a non-linear term (in
particular, a degree four polynomial) with the inclusion of
a random slope term for APACHE III as this significantly
improved the goodness of fit. Additional random terms
were not included to avoid increasing the complexity of
the model and the associated computing time. Age was
fitted as a grouped variable with six bins, which enabled
better prediction for very elderly patients. Fitting splines
or fractional polynomials, [23], did not improve the fit
of age or APACHE III. Descriptors of ICU-admission
primary-organ-system dysfunction and patient surgical
status (i.e., patient diagnostic category) were generated by
consolidating the diagnostic categories of the APACHE III
algorithm. ICU-level variables locality and hospital level
were also included in the model. The discrete explana-
tory variables were fitted as indicator variables. Increased
mortality during the winter months and at weekends has
previously been observed in the ANZICS APD [24,25].
This was modelled here by sine and cosine trigonometric
terms representing yearly and weekly periods and ini-
tially included harmonic terms at six months and 3.5
days, calculated from calendar day of admission, [26,27].
However, the harmonic terms at six months and 3.5 days
were not significantly associated with mortality and were
dropped from the final model. Interactions between the
periodic terms and locality were also included in the
model, together with other clinically meaningful two-
way interactions. Continuous explanatory variables were
centred for model fitting and variables were removed step-
wise if the estimated p-value was > 0.05, excepting the
pairs of sine and cosine terms which were always retained
together in the model. Annual volume was retained in
the final model because it is important, and Year squared
was included to allow for a (systematic) nonlinear trend
over time. Fitted models were compared using AIC (for
nested models only), BIC, area under the ROC curve,
and the Hosmer-Lemeshow test statistic (the latter used
with caution in this large dataset, [28]). Binned resid-
ual plots were used to assess both the covariate mod-
elling and the overall model fit and to help select a final
model, [29].

A three-level risk-adjusted hierarchical model based on
the best fitting one-level model was fitted to the dataset
using Stata™’s xtmelogit command and the Laplace
approximation, [21]. Preliminary investigations using
two-level hierarchical models and simulations demon-
strated that the parameter estimates (and their standard
errors) obtained using the Laplace approximation versus
seven-point Gaussian quadrature were almost the same.
If Yitj represents the in-hospital mortality outcome (1 for
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death, 0 otherwise) for patient j in year t in ICU i, and Pitj
is the binomial probability of in-hospital mortality for this
patient, the log odds of death is given by

logit(Pitj) = β0+
K∑

k=1
βkXitjk +Uit +Ui+Ui1 APACHE III,

(1)

where Xitjk contains the observed (fixed-effects) explana-
tory variables for patient j, Uit is the random intercept for
year t in ICU i, Ui is the random intercept for ICU i, and
Ui1 is the random coefficient for APACHE III score. The
indices range from i = 1, . . . , 144 ICUs, t = 1, . . . , ni years
within ICU i, and j = 1, . . . , nit patients within ICU-year
t. The level-three (ICU-level, or between ICUs) random
intercepts are assumed to be normally distributed with
zero mean and variance σ 2

I ; the APACHE III slopes are
also assumed normally distributed with variance σ 2

AP , and
there is a component of covariance, σI,AP, assumed at level
three. The level-two (ICU-year, or between years within
ICUs) random effects are assumed to be independently
normally distributed with variance σ 2

IY , independently
of the level-three random effects. The level-three ran-
dom intercepts represent (potentially unknown) differ-
ences between ICUs and the random slopes for APACHE
III allow the dependence of in-hospital mortality on
patient severity to vary between hospitals. The com-
ponent of covariance accommodates potential depen-
dence between the intercept and APACHE III slope
terms within ICUs. The normality assumptions for the
random effects were assessed using estimated gradient
graphs, [30].

Using approximate cross-validation, we assessed how
well the observed data from each ICU were fitted by the
final model, [14]. This involved estimating an approximate
p-value for each ICU from the three-level hierarchical
model as follows. To begin, random effects were simu-
lated from the fitted random effects distribution (1) 5, 000
times. Given the simulated random effects, the proba-
bility of death for patient j in ICU-year t in ICU i, P̃itj,
was calculated using the fitted model. Then Y k

itj, the cor-
responding outcome for iteration k = 1, . . . , 5, 000, was
simulated from a Bernoulli distribution with probability
of success P̃itj; so Y k

itj is equal to 0 or 1. Then the simu-
lated number of deaths for ICU i was calculated as Ek

i =∑ni
t=1

∑nit
j=1 Y k

itj. For each ICU, the proportion of times the
observed number of deaths, Oi, exceeded the simulated
number of deaths was calculated as

pi−approx = 1
5000

5000∑

k=1
IEk

i <Oi
,

where I is the indicator function. This gave an approx-
imate p-value for each ICU under the nominal null
hypothesis that the SMR is equal to one. Under this null
hypothesis, we would expect the simulated number of
deaths to exceed the observed number in approximately
half of the simulations, [14]. Thus p−approx measures
how well the estimated model predicts the observed
number of deaths for each ICU. We chose a nominal
20% significance level for this first stage of screening
for potential outliers. When p−approx < 0.1, an ICU
was assessed to be potentially over-performing (i.e., has
low mortality), and when p−approx > 0.9, a site was
potentially under-performing (i.e., has high mortality).
It may be helpful to plot a histogram of the p-values, or
transformed p-values, to detect the presence of outliers.
If the variability amongst the providers is very small
with no obvious outliers, one might decide on a much
lower nominal level of significance such as 5% or to
proceed with a different analysis for comparison, or no
analysis.

Stage 2: A null model The Stage 2 model was estimated
by excluding the potentially unusual ICUs identified in
Stage 1, then re-fitting the final model. This provided a
null ‘reference’ distribution for describing usual ICU per-
formance. Log-SMRs and their variances were again esti-
mated for each ICU, according to the methods described
in [14] and Additional file 1. The estimation of the vari-
ances of the log-SMRs is somewhat technical, but an
outline of the calculations to obtain the approximate
variance of the log-SMR for ICU i in year t is given
in Additional file 1. The uncertainty in estimating the
expected number of deaths for each ICU is therefore
accounted for in our analysis, whereas this is usually
treated as given. Treating the estimated expected number
of deaths as a constant in the calculations under-estimates
the true variance of the log-SMRs, so our analysis offers
an advantage over what is usually done. Note that the
potentially unusual ICUs were modelled without ran-
dom effects, so for each unusual ICU, a usual ICU was
randomly selected and the random effects predictions
from that ICU used to calculate the expected number of
deaths for the potentially unusual ICU. Extensive sensi-
tivity analyses demonstrated that randomly selecting the
random effects from the ‘usual’ distribution in this way
gave the same results as stratifying on ICU level, for
example.

Stage 3: Unusual ICUs The funnel plot was constructed
as described previously, [14]. ICUs with log-SMRs lying
outside the funnel were identified as performing unusu-
ally, with either higher or lower mortality than usual. All
ICUs have been randomly allocated a random identity
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Table 1 Characteristics of the 523,462 ANZICS APD
patients analysed

Age (years) 60.6 (18.1)

APACHE III score 51.5 (28.6)

ICU mortality (%) 8.1

Hospital mortality (%) 12.7

n (%) mortality %

Ventilation

Not ventilated 314,987 (60.2) 7.4

Ventilated 208,475 (39.8) 20.6

Gender

Male 298,503 (57.0) 12.2

Female 224,959 (43.0) 13.0

ICU source

No transfer 478,130 (91.3) 12.1

Hospital transfer 45,332 (8.7) 18.7

ICU hospital level

Rural 71,828 (13.7) 11.5

Metropolitan 98,590 (18.8) 14.7

Tertiary 232,273 (44.4) 15.9

Private 120,771 (23.1) 5.6

ICU location

Northern Territory 8,965 (1.7) 12.5

New South Wales 153,362 (29.3) 13.2

Australian Capital Territory 15,815 (3.0) 10.1

South Australia 37,052 (7.1) 19.3

Victoria 137,876 (26.3) 12.8

Western Australia 5,493 (1.1) 11.7

New Zealand 27,835 (5.3) 15.6

Queensland 126,453 (24.2) 9.5

Tasmania 10,611 (2.0) 14.7

Age and APACHE III score are given as mean (sd).

number which is shown for those lying outside the thresh-
olds. Confidence intervals controlling the false coverage-
statement rate (FCR) at 5% were also constructed for the
ICUs identified as unusual, [31]. The FCR is the expected
proportion of false discovery rate (FDR) selected [32] con-
fidence intervals which do not cover their true parameter
values. FCR is a property of the set of confidence intervals
not covering zero and does not involve confidence inter-
vals for the non-selected parameters. However, all confi-
dence intervals may be plotted together by applying visual
impact to distinguish the two sets of intervals (selected
and non-selected) and we use bold lines to distinguish the
FDR-selected intervals. The remaining intervals have FCR
coverage of at most 0.05 for all parameters because the
FCR offers marginal coverage of at least 0.95. We further
evaluated the performance of the outlying ICUs by pos-
ing the question: is the worst ICU worse than expected,
given it has arisen from the null (usual) predictive dis-
tribution, [13]? This question is answered by simulating
the distribution of the predicted true worst number of
deaths and comparing it to the observed worst number of
deaths.

Results
Data
The mean(sd) for age was 60.6(18.8) years and for
APACHE III score, 51.5(28.6); 57.0% of patients were male
and 12.8% of patients died in hospital. Patient characteris-
tics for the entire dataset are given in Table 1. The number
of patient records increased each year from 20, 888 in 2000
to 74, 342 in 2010, and the number of contributing ICUs
increased from 44 to 122 over the same period. Hospi-
tal mortality declined steadily each year, from 17.3% in
2000 to 10.5% in 2010. New South Wales (NSW) had the
largest number of ICUs and patients, overall and in each
year. Patient characteristics by year are given in Table 2,

Table 2 Characteristics of ANZICS APD study patients by year, 2000-2010

Hosp. admit year n (%) Hosp. mort. (%) ICU mort. (%) APIII mean (sd) Age mean (sd) Vent. (%) Transfer (%)

2000 20,888 (4.0) 17.3 11.1 53.7 (30.9) 58.9 (19.3) 48.1 8.9

2001 26,353 (5.0) 15.8 10.1 52.6 (30.3) 59.6 (19.2) 44.0 9.6

2002 32,380 (6.2) 15.3 9.9 51.7 (29.7) 60.0 (18.9) 42.6 9.4

2003 37,082 (7.1) 14.4 9.2 51.5 (29.0) 60.4 (18.8) 41.0 9.1

2004 43,132 (8.2) 13.6 8.5 51.5 (28.4) 60.7 (18.6) 40.3 8.8

2005 49,093 (9.4) 12.9 8.2 50.9 (28.4) 60.6 (18.6) 40.1 8.8

2006 54,323 (10.4) 12.1 7.8 51.0 (28.2) 61.1 (18.8) 38.5 8.4

2007 57,187 (10.9) 12.0 7.8 51.0 (28.4) 61.0 (18.7) 37.6 8.5

2008 61,667 (11.8) 11.7 7.5 51.8 (28.7) 60.8 (18.8) 39.3 8.4

2009 67,015 (12.8) 11.3 7.3 51.8 (28.4) 60.8 (18.8) 39.3 8.4

2010 74,342 (14.2) 10.5 6.8 50.8 (27.6) 61.1 (18.8) 37.5 8.3
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Table 3 ICU characteristics by year and geographical locality of Australia, or New Zealand

Hosp. admit year NT NSW ACT SA VIC WA NZ QLD TAS Total ICUs

2000 543 (2) 7,454 (16) 754 (1) 1,784 (3) 5,622 (11) 0 0 4,367 (10) 364 (1) 44

2001 386 (1) 8,572 (18) 1,019 (2) 1,814 (3) 7,186 (16) 0 799 (2) 5,726 (12) 851 (2) 56

2002 586 (2) 9,390 (20) 1,412 (3) 2,040 (4) 9,075 (19) 0 1,018 (2) 7,874 (17) 985 (3) 70

2003 884 (2) 10,149 (21) 1,479 (3) 1,623 (3) 11,195 (19) 0 1,565 (4) 9,123 (20) 1,064(3) 75

2004 1,119 (2) 11,331 (24) 1,460 (3) 2,328 (5) 12,912 (23) 162 (1) 1,987 (5) 11,081 (22) 752 (2) 87

2005 997 (2) 12,555 (26) 1,650 (3) 2,937 (6) 13,638 (24) 530 (2) 3,214 (6) 12,452 (25) 1,120 (3) 97

2006 954 (2) 14,917 (29) 1,723 (3) 4,369 (6) 14,746 (25) 511 (2) 3,050 (7) 12,903 (25) 1,150 (3) 102

2007 945 (2) 16,908 (33) 1,861 (3) 4,957 (6) 14,665 (24) 295 (1) 3,554 (8) 13,057 (25) 945 (2) 104

2008 819 (2) 17,728 (33) 1,272 (2) 4,989 (7) 15,554 (27) 1,101(1) 3,687 (8) 15,420 (29) 1,097 (2) 111

2009 808 (2) 20,551 (36) 1,536 (2) 5,253 (6) 15,607 (27) 1,423 (2) 3,702 (7) 16,895 (31) 1,240 (3) 116

2010 924 (2) 23,807 (38) 1,649 (2) 4,958 (6) 17,676 (29) 1,471 (2) 5,259 (10) 17,555 (31) 1,043 (2) 122

Total 8,965 (2) 153,362 (46) 15,815 (3) 37,052 (9) 137,876 (34) 5,493 (3) 27,835 (11) 126,453 (33) 10,611(3) 144

The total number of patients in the dataset for each year/locality pair is given, followed by the number of ICUs for each pair in brackets.

and Table 3 sets out the ICU characteristics by year and
geographical locality.

Identifying unusual ICUs
Stage 1: Risk-adjusted model The final model took 5.7
days to converge on a 6-core computer with 3.30 GHz
CPU. The ROC AUC was equal to 0.90 and the H-L statis-
tic was equal to 0.003 (p > 0.40). There were 150 fixed
effects parameters estimated as log odds which are set out
in Additional file 2. Estimates of the four components of
variance and covariance (with their standard errors) are
given in Table 4. There were no model convergence issues.
As would be expected in such a large dataset, the nor-
mality assumptions were valid according to the estimated
gradient graphs shown in Additional file 3. A significant
linear decline in mortality over the decade was observed
(the log odds of death for Year decreased by −0.06 per
year, 95% CI (−0.078, −0.036)). Indeed, excepting Annual
volume and Year squared, all the explanatory variables
and interactions in Additional file 2 are statistically sig-
nificantly associated with the log odds of death. Note that

Table 4 Components of variance and covariance from the
Stage 1 and Stage 2 models

Stage 1 Stage 2

ICU-level intercept 0.077640 0.034902
(0.012262) (0.006669)

APIII slope 0.027744 0.027451
(0.004727) (0.005093)

Cov(ICU-level intercept, APIII) -0.023946 -0.021549
(0.006197) (0.004955)

ICU-year-level intercept 0.019852 0.020039
(0.002474) (0.002650)

Estimated standard errors are given in brackets.

the table in Additional file 2 includes all the explanatory
variables fitted in the final model. ICUs in private sec-
tor hospitals are observed to have a significantly lower
log odds of death compared to tertiary (usually large,
teaching) hospitals. The seasonal terms are significantly
associated with geographical locality, and Figure 1 shows
risk-adjusted yearly and weekly seasonal effects for Aus-
tralian and New Zealand respiratory diseases in 2010.
Interactions were estimated relative to the largest state,
New South Wales (NSW), continuous covariates were
assumed at their average values, and categorical variables
have been taken at baseline. Figure 1 shows that ICU mor-
tality in the Australian Capital Territory (ACT) peaked
significantly later in the year than NSW (August com-
pared to June) whereas Queensland (QLD) peaked signifi-
cantly earlier in March. The Northern Territory (NT) had
no apparent annual seasonal effect. Note that some of the
estimated standard errors (not shown) are large. There
were also differences in weekly peak mortalities across
jurisdictions. NSW, ACT and the NT peaked on Saturday
admissions, whereas QLD had a statistically significant
peak on Mondays, and Tasmania (TAS) on Wednesdays.
New Zealand had peaks in May and on Wednesdays but
the differences are not statistically significant. Note that
the cycles correspond to day of admission. We also note
that this risk-adjusted approach to modelling seasonality
is an advance over the methods employed in [33].

Identifying potentially unusual ICU performance: Over
the period of observation, 27 ICUs were identified as
potentially unusual. There were 14 over-performing ICUs
with p−approx < 0.1 and 13 under-performing ICUs
with p−approx > 0.9; the results are set out in Table 5.
More than half (16) of these ICUs were in private hos-
pitals; note that the site numbers are random, not APD
site IDs. Figure 2 shows a kernel density plot of total ICU
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Figure 1 Yearly and weekly respiratory seasonal effects across Australia and New Zealand in 2010. Estimated annual cycle from 1 January
(day 1) to 31 December (day 365) and weekly cycle Saturday to Friday, for Australian States and Territories and New Zealand. The seasonal effects are
for 2010 respiratory patients, conditional on the estimated Stage 1 model. Queensland (QLD) and the Australian Capital Territory (ACT) have
significantly earlier (March) and later (August) peak mortalities compared to New South Wales (NSW), which peaks in June. QLD and Tasmania (TAS)
have weekly peak mortalities associated with admissions on Mondays and Wednesdays respectively, compared to NSW which has weekly peak
mortality associated with Saturday admissions. No other cycles differ significantly from NSW. Legend: NT, Northern Territory; SA, South Australia; VIC,
Victoria; WA, Western Australia; NZ, New Zealand.

volume over 2000 − 2010. The potentially unusual ICUs
are indicated by large tick marks and the plot shows that
their volumes are reasonably evenly distributed over the
entire volume range, and therefore not confounded with
performance.

Stage 2: A null model The concern is that the poten-
tially unusual ICUs are inflating the estimates of the

random effects distribution at Stage 1. The 27 poten-
tially unusual ICUs identified in Stage 1 were therefore
excluded from the Stage 2 analysis, which resulted in
n = 430, 049 patients in 816 ICU-years from 117 ICUs.
The three-level hierarchical logistic regression model was
then re-fitted to the reduced dataset. This resulted in
good agreement between the fixed effects parameter esti-
mates from both Stages as shown in Additional file 2.
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Table 5 Hospital level and locality for the 27 ICUs identified as unusual at Stage 1

Random ID Hospital Level Locality Years p−approx

100 Private New South Wales 2006-10 0.002

57 Private New South Wales 2007-10 0.008

116 Private New South Wales 2005-08 0.010

79 Metropolitan Queensland 2004-10 0.015

131 Metropolitan New South Wales 2000-02 0.017

18 Private Queensland 2003-06, 08-10 0.023

72 Rural Victoria 2008-10 0.025

120 Private Australian Capital Territory 2001-07 0.027

108 Private New South Wales 2000-10 0.030

49 Metropolitan Victoria 2001, 04, 08-10 0.038

66 Tertiary South Australia 2000-10 0.045

24 Private Queensland 2001-10 0.058

112 Rural Victoria 2002-10 0.065

19 Private New South Wales 2002-10 0.080

54 Tertiary South Australia 2000-10 0.915

2 Tertiary New South Wales 2008-10 0.917

89 Private South Australia 2005-06, 08-10 0.928

129 Private New South Wales 2010 0.938

95 Private Victoria 2001-06, 09 0.942

134 Metropolitan Victoria 2003-08 0.942

81 Private Victoria 2009-10 0.950

104 Metropolitan Queensland 2000-10 0.953

44 Private Queensland 2002-10 0.953

16 Private Queensland 2001-10 0.972

93 Private Queensland 2009-10 0.978

91 Metropolitan New South Wales 2008-10 0.987

140 Private Victoria 2000-02 0.997

14 ICUs with p-approx less than 0.1 are over-performers (low mortality) and 13 ICUs with p−approx greater than 0.9 are under-performers (high mortality). The Years
column gives the years the ICU contributed to the dataset.

However, the variance component estimate correspond-
ing to the Stage 2 ICU-level random intercept was reduced
by more than half from Stage 1, as shown in Table 4.
The ICU-year intercepts variance component estimates
were little changed between the two stages, and similarly
for the between-ICU APACHE III slope variance compo-
nents estimates. The estimated component of covariance
between the ICU-level intercept and slope was slightly
reduced at Stage 2, and remained rather small (−0.022,
Table 4). This indicates that the ICU-level random inter-
cepts are representing unexplained differences between
ICUs, whereas differences between-years within-ICUs are
similar across sites. The approach used here to attenuate
the effects of the potentially unusual ICUs differs from
that in [14] where all ICUs contributed to the estimation
of the fixed effects component of the model, and has been
taken primarily for computational reasons. As discussed

below, the results here are in excellent agreement with
those obtained previously.

Stage 3: Unusual ICUs Figure 3 displays the funnel
plot of the estimated log-SMR versus its estimated pre-
cision for each ICU. Controlling the FDR at 5%, seven
ICUs (140, 16, 93, 104, 44, 134, 54) were identified as hav-
ing unusually poor performance over the study period.
No ICUs were identified as having unusually good per-
formance at the 5% FDR level of significance. Using the
classical limits (not adjusted for multiple comparisons),
15 ICUs were identified as having unusually good or poor
performance. ICUs 89 and 129 were also identified as per-
forming poorly, whereas ICUs 57, 66, 79, 108, 116 and 131
were identified as performing well, with low mortality.
The 5% Bonferroni thresholds are shown on the funnel
plot for comparison, to demonstrate that controlling the
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Figure 2 Kernel density plot of total ICU volume over 2000-2010.
Large tick-marks indicate volumes of ICUs deemed to be potentially
unusual at Stage 1 of the analysis.

family-wise error rate makes it harder to identify unusual
performance in this setting.

Figure 4 presents an alternative, confidence interval
display of the results using the FCR. The seven FDR-
selected ICUs are distinguished visually by vertical bold
lines on the left-hand-side of the plot; this is to empha-
sise that the selected parameters have the correct FCR
coverage of 0.05. The FCR is a property of the set of con-
fidence intervals not covering zero. The remaining confi-
dence intervals have FCR coverage of at most 0.05 for all

parameters because the FCR offers marginal coverage of at
least 0.95.

Figure 5 shows the results of simulating from the null
predictive and the true worst null predictive probabil-
ity density functions, for the seven unusually performing
ICUs. The plots demonstrate that the observed numbers
of deaths for these ICUs do not sit within the null predic-
tive distributions for usual performance. Figure 6 displays
time-plots for the yearly estimated log-SMRs with esti-
mated 95% confidence intervals for the seven unusual
ICUs identified.

Discussion
Seven ICUs were identified with unusually high mortality
by our analysis. ICUs 16, 44 and 93 have been previously
identified in an analysis of data from 2009−2010, [14], and
the present longitudinal study confirms those findings.
ICU 81 was also identified with unusually high mortality
in [14], and was labelled as potentially unusual at Stage
1. We note that ICUs 16, 44 and 93 are in private hospi-
tals in Queensland. A total of 23% of patient admissions
were to private sector ICUs which cover most areas of care
(medical and surgical) and includes end-of-life care. A
recent study comparing conventional risk-adjusted fixed
and random effects models analysing the 2009−2010 data
was unable to detect any outliers (Moran and Solomon,
preprint submitted for publication, 2014).

The ‘Swiss cheese’ nature of the ANZICS APD is
apparent from Figure 6, which shows that several ICUs
contribute data in some years only. This effect is
partly compounded by the minimum 150 patient-volume
requirement, and we discuss below issues of missing data
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Figure 3 Funnel plot of log-SMRs versus effective sample size for each ICU from Stage 2 of the analysis. The funnels correspond to 95%
classical limits (dashed lines) not adjusted for multiple testing, the Bonferroni limits controlling the FWER at 5% (dotted lines), and limits controlling
the FDR at 5% (solid lines). Potentially unusual ICUs are marked with their random identifying numbers. The effective sample size is the estimated
variance of the log-SMR as a fraction of the total variance. Legend: SMR: standardised mortality ratio. FDR: false discovery rate. FWER: family-wise
error rate.
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Figure 4 Five percent false coverage-statement rate confidence interval estimates for all 144 ICUs. The seven 5% FDR-selected ICUs
identified as unusual are highlighted in bold on the left; these ICUs have confidence intervals with the correct FCR rate of 0.05. The remainder have
FCR coverage of at most 0.05 for all parameters because the FCR offers marginal coverage of at least 0.95. The ICUs are ordered from those with the
smallest to the largest p-values. Legend: FDR: false discovery rate. FCR: false coverage-statement rate.

and data quality with regard to the particular ICUs iden-
tified as unusual. We note that it is by no means assured
that the 144 ICUs analysed in this study are represen-
tative of the entire adult ICU experience in Australia
and New Zealand, and it is likely that the ability to sus-
tain the effort of continuous (and complete) contribution
is concentrated in larger, well-resourced ICUs. However,
smaller peripheral units are encouraged to participate in
the database, and future longitudinal analyses using an

instrumental variables approach to participation will help
address this issue. Generally, problems with missing data
in large observational databases have received a great deal
of attention in the literature, and multiple imputation (MI)
is the primary technique for handling missing data. How-
ever, little of this literature is directed towards MI in the
context of hierarchical models, and by way of a caution,
a recent simulation study by Twisk et al. showed that MI
applied to mixed models may be misleading, [34]. Given
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Figure 5 Predicted distributions of the ‘true worst’ numbers of deaths for each of the seven unusual ICUs. Each subplot shows the
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Figure 6 Yearly estimated log-SMRs plotted over time for the seven unusual ICUs. In each case, the yearly log-SMRs are shown by bullets
joined by solid lines with ± (plus and minus) two standard errors marked by open circles joined by dashed lines. The ICUs are presented in
random-identity number order.
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these observations, the complete case-record analysis we
have undertaken is a reasonable way to proceed as a first
analysis.

ICUs with unusual casemix, and data quality
ICU 140 had a very low proportion of ventilated patients
compared to comparable ICUs during the three years it
contributed data to the ANZICS APD (3.2% versus 32.4%,
p-value < 0.0001), and the lowest proportion of ventilated
patients of all ICUs in 2000 and 2001. Given ventilation
is associated with increased mortality risk, the large log-
SMR is associated with the small proportion of ventilated
patients. This (historical) outcome could be related to data
quality: since ventilation is only inferred from documen-
tation of ventilation at the time an arterial blood gas is
taken, there may have been ventilated patients with no
blood gas measurement, but we do not know. ICU 54 had
the highest proportion of deaths in each year in South
Australia. This ICU had a significantly higher proportion
of non-surgical patients compared to the other two South
Australian tertiary ICUs (72.5% versus 51.1%, p-value <

0.0001) and a higher proportion of deaths amongst non-
surgical patients (30.0% versus 22.1%, p-value < 0.0001).
However, ICU 54 also had a high proportion of patients
with missing APACHE III scores during 2004 − 2006, and
the log-SMRs in 2004 and 2005 were high compared to
later years, as shown in Figure 6. ICU 134 also had a high
proportion of patients with missing APACHE III scores.
It is possible that poor record keeping and high mor-
tality are common causes, for example, of poor ‘process
of care’. No association between mortality and important
covariates, including APACHE III, could be established at
these sites however. Of the remaining ICUs identified with
poor performance in our analysis, none had identifiable
anomalous casemix, missing data, or other data quality
issues. ANZICS CORE analyses outcomes data from ICUs
contributing to the APD in a given year using a sim-
ple predictive mortality model, based exclusively on the
APACHE III algorithm. ICUs identified as outliers by this
process are normally followed up according to the Outlier
Management Policy [35].

Variance components
The variance component estimates demonstrate that the
staged modelling approach has appropriately accom-
modated the effects of outliers. The reduction in the Stage
2 ICU-level variance component indicates that the pres-
ence of potentially unusual ICUs is inflating the variance
component at Stage 1. This component of variance repre-
sents differences between ICUs, and the fact that we can-
not explain the high mortality for all of the identified ICUs
by unusual casemix or other known factors, indicates that
there are unexplained differences in mortality between
ICUs. At Stage 1, the estimated component of correlation

is −0.52. The direct interpretation of this modest cor-
relation is that lower mortality ICU-intercepts are asso-
ciated with higher APACHE III slopes. This observation
is reflecting the fact that the overall average APACHE
III score in this dataset increased over the decade at
the same time as mortality decreased; a correlation of
0.8 was observed in a normal model of APACHE III on
year. Note too that the fitted model, which was estimated
using xtmelogit in Stata, allowed for an unstructured
covariance matrix and would have detected any important
correlations in the random effects distribution. We also
note that random effects models are often self-consciously
deployed in the literature, and variance components typ-
ically treated as nuisance parameters, which they are not
here.

Seasonal effects
Using our Stage 1 mixed model, we have demonstrated
for the first time yearly and weekly seasonal effects across
Australian jurisdictions. Since it was not the primary
purpose of the present paper to study seasonal effects,
we have restricted our attention to a comparison condi-
tional on the model baseline variables and baseline patient
diagnostic category (i.e., respiratory disease) which is of
interest in its own right. Note that the mortality cycles
estimated refer to the day of admission, so for exam-
ple, NSW, the ACT, the NT, VIC, SA and WA all have
higher mortality associated with weekend admissions.
Tasmania is the only state which has a statistically sig-
nificant different peak on Wednesday but we do not
have an explanation for this yet. New Zealand also has a
weekly Wednesday admissions peak, but this was not sta-
tistically significantly different from NSW. Interestingly,
New Zealand is geographically most similar in climate to
Tasmania. Not surprisingly, peak mortalities also tend to
occur in the southern hemisphere winter months, which
are June, July and August in south-eastern Australia.
The tropical Northern Territory has little or no apparent
annual seasonal respiratory cycle, and Queensland has a
much earlier annual peak mortality. Queensland is a large
geographically-diverse state, being tropical in the north
and temperate (similar to NSW) in the south. The ACT on
the other hand, is located inland, and elevated. It has an
annual peak mortality which is later in the year (in August)
than anywhere else in Australia.

Conclusions
The ICUs identified with unusual performance may merit
consideration in any future analysis, albeit the observa-
tion period studied here is historical. The distinct seasonal
mortality patterns identified across regions in Australia
undoubtedly warrant further study, from both policy and
planning viewpoints. The statistical methods proposed
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are intended for reviewing and monitoring the perfor-
mance of ICUs contributing to the ANZICS APD but
are appropriate for application to comparable mortality
databases. Two key messages from our analysis are firstly,
that comprehensive risk-adjustment for patient casemix
and factors such as hospital level and locality is essen-
tial, and secondly, that the appropriate statistical analysis
is complicated.

Additional files

Additional file 1: Variance of the log-SMR. The file SE-logSMR.pdf
outlines the calculations required to obtain an expression for the
approximate variance of the log-SMR for ICU i in year t. The approximate
standard error of the log-SMR is obtained by taking the square root of the
variance and is used in the time-plots in Figure 6.

Additional file 2: Table of Stage 1 and Stage 2 model parameter
estimates. Stages 1 and 2.pdf presents all fixed effects parameter
estimates (as log odds) from the three-level hierarchical logistic regression
models fitted in Stages 1 and 2 of the analysis. The interpretation for the
categorical variables is the increase in log-odds of the in-hospital mortality
relative to the baseline level (given in brackets). The p-value in each case
gives the two-sided probability of observing the estimate, or one that is
more extreme, under the null hypothesis that the log odds ratio equals
zero. Corresponding estimated 95% confidence intervals are also given.

Additional file 3: Estimated gradient function plots. GradFct.pdf
displays the estimated gradient functions for the random effects from the
Stage 1 hierarchical model, with point wise confidence intervals in grey,
[30]. These plots assess the assumptions of normality made in the model.
Normality is assumed to be reasonable if the estimated function (solid line
in each case) is close to one (horizontal dotted line) within the limits of the
observed data as represented by the vertical dashed lines in each sub-plot.
If the estimated gradient function is significantly different from one, the
assumption of normality is not valid. The subplots shown in order are for
the level-three intercepts, the level-three APACHE III random slopes,
and the ICU-year intercepts. As would be expected for such a large dataset
as the ANZICS APD, the normality assumptions are satisfied here. Note that
a simplifying assumption has been made for the plots presented, in
particular, that the random intercepts and random slopes are independent
at level-three (ICU-level) of the model.
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