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“An idea that is not dangerous is unworthy of being called an

idea at all."

— Oscar Wilde: The Critic as Artist



Abstract

This work explores the infrared behaviour of the strong running cou-

pling αs in Quantum Chromodynamics (QCD). We propose that αs runs

non-perturbatively to an infrared fixed point αIR for three light quark

flavours u , d , s . At the fixed point, we show that the quark conden-

sate spontaneously breaks scale and chiral SU (3)L ×SU (3)R symmetry.

Consequently, the low-lying spectrum contains nine pseudo-Nambu-

Goldstone bosons: π, K ,η and a scalar-isoscalar QCD dilaton σ. We

argue that σ may be identified with the f 0(500) resonance, a pole at a

complex mass with real part � mK . For low-energy expansions in αs

about αIR, we replace chiral SU (3)L ×SU (3)R perturbation theory with a

new model-independent theory χPTσ based on approximate scale and

chiral SU (3)L ×SU (3)R symmetry.

We examine the phenomenological consequences which arise from this

framework by constructing effective Lagrangians which simulate strong,

weak, and electromagnetic interactions. We also study the convergence

properties of the effective theory, wherein we find that χPTσ converges

much better than χPT3 in the presence of both scalar-isoscalar chan-

nels and O(mK ) extrapolations in momentum. We achieve this without

spoiling the successful leading order predictions of χPT3 elsewhere.

In our phenomenological investigations, we show that theΔI = 1/2 rule

for non-leptonic K -decays emerges as a consequence of χPTσ, with a

KSσ coupling fixed by data for γγ→ ππ and KS → γγ. This constitutes

our most important result.

We also apply the electromagnetic trace anomaly to QCD at the infrared

fixed point and obtain the estimate RIR ≈ 5 for the non-perturbative

Drell-Yan ratio R =σ(e+e− → hadrons)/σ(e+e− →μ+μ−) at αIR.
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Chapter 1

Prelude

There is nowadays a consensus of theoretical and experimental evidence that Quan-

tum Chromodynamics (QCD), the SU (3) gauge theory of coloured quarks and glu-

ons, may be regarded as the theory of the strong interactions. At energies much

higher than the scale of hadrons ∼ 1 GeV, the theory becomes asymptotically free

and perturbation theory in the strong running coupling αs = g 2/4π is applicable. In

this domain, QCD explains a wide range of phenomena including jets, scaling viola-

tions in deep inelastic scattering, and the production of vector bosons in Drell-Yan

processes. At low-energy scales μ � mt ,c ,b however, the situation is considerably

more complex: the theory becomes strongly coupled, the physical states (hadrons)

are comprised of quarks and gluons confined in the form of SU (3) colour singlet

states,1 and chiral symmetry for the light quarks u , d , s is believed to be sponta-

neously broken by the formation of a quark condensate 〈q̄q 〉vac �= 0. Under these

conditions, the relationship between the elementary degrees of freedom and the

physical spectrum cannot be discerned through perturbative expansions in αs , and

thus non-perturbative techniques are required.

One such technique (which will be analysed in Chapter 2 of this thesis) is chi-

ral SU (3)L ×SU (3)R perturbation theory χPT3, which is the relevant framework to

undertake a systematic analysis of the low-energy Green functions and scattering

amplitudes of QCD. As an effective field theory, χPT3 describes the interactions be-

tween the pseudoscalar octet of mesons π, K ,η, and is easily extended to include

1Furthermore, there are no thresholds for the excitation of coloured bound states of quarks and
gluons.
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1. Prelude

octet baryons. The light mass of these mesons — relative to some typical hadronic

scale like the mass of the ρ meson or proton — identifies π, K ,η as the pseudo-

Nambu-Goldstone bosons of spontaneously broken chiral SU (3)L×SU (3)R symme-

try. Consequently, low-energy amplitudes involving these states may be expanded

as an asymptotic series in powers of O(mK ) momentum and light quark masses

mu ,d ,s = O(m 2
K ), with mu ,d /ms held fixed. A convenient method to calculate the

terms in this series is to construct the most general effective Lagrangian consistent

with the underlying symmetries of QCD. This forms the starting point of χPT3 anal-

yses, and the method has made considerable progress in charting the low-energy

structure of QCD.

It has been observed [1] however, that χPT3 expansions are afflicted with a pe-

culiar malady, viz., they typically diverge whenever both the J PC = 0++ channel is

present and O(mK ) extrapolations in momentum are made. Well studied exam-

ples include the branching ratio B(KL → π0γγ), with a chiral one-loop prediction

[2] which is approximately a factor of three smaller than the measured value [3];

the cross-section for γγ → π0π0 with O(mK ) momentum, where the leading order

prediction [4, 5] of a linear rise in energy from threshold is not compatible with the

data from the Crystal Ball experiment [6]; and the dominance of ππ interactions

[7, 8] in the final-state of Ke 4 decays [9] and non-leptonic K [10, 11] and η [12, 13]

decays. The problem is that in order to obtain a good representation of the data,

the next-to-leading order amplitudes must be larger than the leading order predic-

tion — the hallmark of a diverging series. The discrepancy is extreme for KS → ππ,

where in order to explain the observed factor of 22 enhancement in the I = 0 chan-

nel (ΔI = 1/2 rule), a scalar amplitude generated at next-to-leading order must be

70 times the expected � 30% correction.

In this thesis, we solve the convergence problem of χPT3 expansions by mod-

ifying the leading order of the three-flavour theory [14]. Our solution is based on

an old idea [15, 16] that the chiral condensate 〈q̄q 〉vac �= 0 may also be a condensate

for scale transformations in the chiral SU (3)×SU (3) limit. In Chapter 3, we show

that this scenario can occur in QCD if at low-energies, heavy quarks t ,b , c decouple

and αs of the resulting three-flavour theory runs non-perturbatively to an infrared

fixed pointαIR. At the fixed point, the QCD β -function vanishes, so the gluonic term

∼G a
μνG aμν in the strong trace anomaly is absent at αIR. It follows that in the chiral

2



1. Prelude

SU (3)L ×SU (3)R limit, 〈q̄q 〉vac induces nine Nambu-Goldstone bosons: π, K ,η and

a 0++ QCD dilaton σ. With a mass set by the strange quark, the obvious candidate

forσ is the f 0(500) resonance, which arises as a pole of complex mass with real part

�mK [17, 18].

In Chapter 4, we discuss the construction of a model-independent chiral-scale

perturbation theory χPTσ for low-energy amplitudes expanded in αs about αIR. Its

effective Lagrangian summarises soft-{π, K ,η,σ}meson theorems for approximate

chiral SU (3)L×SU (3)R and scale symmetry, with results for strong interactions sim-

ilar to those found originally [15, 16]. Effective weak operators are then added to

simulate non-leptonic K -decays. The main result is a simple and (in our view) ap-

pealing explanation of the ΔI = 1/2 rule for kaon decays: In lowest order of χPTσ,

there is a dilaton pole diagram KS→σ→ππwhich accounts for the dominant I = 0

amplitude. This allows the direct 8 and 27 Kππ vertex amplitudes g 8 and g 27 to be

of similar magnitude.

We are also able to extract the σγγ coupling from γγ → π0π0 and relate it to

the electromagnetic trace anomaly [19, 20] at the QCD infrared fixed point αs =αIR.

Our conclusions for γγ→ π0π0 and KS → ππ with g 8 ∼ g 27 are consistent with the

standard explanation [21, 22] of KS→ γγ.

We conclude in Chapter 5 with a summary of results and a discussion on the

significance of the work and the limitations of χPTσ. Directions for future research

are presented.

3



Chapter 2

Chiral Perturbation Theory

In this chapter we discuss the salient features of chiral SU (3)L×SU (3)R perturbation

theory χPT3, with digressions to the SU (2)L ×SU (2)R theory χPT2 where required.

The intent is to establish our notation and conventions, and most importantly, ex-

amine the underlying principles upon which χPT3 is based. Section 2.1 is a review

of well known facts about chiral symmetry. In Section 2.2 we discuss the notion of

perturbing about a Nambu-Goldstone symmetry and note the connection to effec-

tive chiral Lagrangians. Section 2.3 reviews the construction of the lowest order La-

grangian for the strong interactions. The functional methods pioneered by Gasser

and Leutwyler [13] are reviewed in Section 2.4 and the next-to-leading order La-

grangian is presented. This is followed by a discussion on the scale which governs

the convergence of χPT3 expansions. We review the construction of the weak effec-

tive Lagrangian in Section 2.5 and emphasise the role of vacuum alignment in elimi-

nating |K 〉→ |vac〉 amplitudes in leading order. (This minimisation procedure plays

an important role in Chapter 4 where we present our original research.) The oldest

problem in particle physics — the ΔI = 1/2 puzzle in non-leptonic decays — is re-

viewed. We conclude in Section 2.6 with a discussion on the lightest scalar-isoscalar

resonance f 0(500) and draw attention to the fact thatχPT3 expansions diverge when

both this channel is present and O(mK ) extrapolations in momentum are made.

4



2. Chiral Perturbation Theory

2.1 Chiral Symmetry

Chiral symmetry plays an important role in making sense of QCD at low energy

scales μ�mt ,b ,c , where the three-flavour theory is described by the Lagrangian1

L=−1

4
G a
μνG aμν +

∑
q=u ,d ,s

q̄ (i /D −mq )q

=−1

4
G a
μνG aμν +

∑
q=u ,d ,s

�
q̄Li /DqL + q̄R i /DqR −mq (q̄LqR + q̄RqL)

�
. (2.1)

Here qL/R = 1
2
(1∓ γ5)q and [Dμ , Dν ] = i g G a

μνT a , where Dμ is the covariant deriva-

tive and {T a } generate the colour SU (3) gauge group. In the limit where the quark

masses vanish mq → 0, the left- and right-handed quark fields decouple from one

another

L→ �L=−1

4
G a
μνG aμν +

∑
q=u ,d ,s

�
q̄Li /DqL + q̄R i /DqR

�
, (2.2)

and thus QCD becomes invariant under the global SU (3)L×SU (3)R transformations

qL→ LqL , L ∈SU (3)L and qR → RqR R ∈SU (3)R . (2.3)

The conserved Noether currents associated with SU (3)L ×SU (3)R are

J iμ
L =

1
2
q̄Lγ

μλi qL , and J iμ
R =

1
2
q̄Rγ

μλi qR , i = 1, . . . , 8 , (2.4)

where λi are the Gell-Mann matrices with normalization Tr(λiλj ) = 2δi j . If we de-

fine the vector- and axial-vector currents V iμ and Aiμ through the linear combina-

tions

V iμ = J iμ
L + J iμ

R =
1
2
q̄γμλi q , (2.5)

Aiμ = J iμ
L − J iμ

R =
1
2
q̄γμγ5λ

i q , (2.6)

1Ghost and gauge-fixing terms are understood. We have also neglected to include the θ param-
eter associated with the strong-C P problem as this term is known to be extremely small |θ | < 10−10

from measurements of the electric-dipole moment of the neutron [23].

5



2. Chiral Perturbation Theory

then the chiral charges Qi
V =

∫
d3x V i 0 and Qi

A =
∫

d3x Ai 0 form a closed Lie algebra,

[Qi
V ,Q j

V ] = i f i j kQk
V , [Qi

A ,Q j
A] = i f i j kQk

V , [Qi
V ,Q j

A] = i f i j kQk
A . (2.7)

In the 1960s, these commutation relations were the cornerstone of current algebra

analyses [24] and were exploited along with general principles like partial conser-

vation of Aiμ (PCAC) at a time when there was no field theory of strong interac-

tions. Then as now, it was evident that the chiral symmetry generated by (2.7) is not

manifestly realised in the hadronic spectrum. The observed hadrons could be ar-

ranged into multiplets of approximate flavour SU (3)V symmetry, but the odd-parity

partners were (are) conspicuously absent. It was also noted that the octet of pseu-

doscalar mesons π, K ,η were much lighter than other hadrons like the ρ meson or

the proton.

To reconcile these empirical facts, one concludes that the axial transformations

generated byQi
A are not a symmetry of the ground state, and thus the chiral SU (3)L×

SU (3)R symmetry is spontaneously broken

SU (3)L ×SU (3)R →SU (3)V . (2.8)

In QCD, this pattern of spontaneous symmetry-breaking is understood to be due to

the formation of a quark condensate

lim
mq→0

〈[Qi
A , q̄γ5λ

i q ]〉vac ∝ 〈q̄q 〉vac �= 0 , q = u , d , s . (2.9)

Since there are eight broken axial charges, Goldstone’s theorem implies there

should be a massless SU (3)V octet of Nambu-Goldstone (NG) bosons with odd-

intrinsic parity and zero baryon number. The obvious candidates for these states are

π, K ,η, whose small but non-zero masses can be understood as due to an explicit

breaking of SU (3)L ×SU (3)R symmetry through the quark masses mu ,d ,s . Naturally,

all of this was well known to practitioners of current algebra, but the calculations

became prohibitively complex as the number of external legs or intermediate states

increased. It was clear that a method to analyse corrections to the low-energy theo-

rems was needed.

Such a method exists and is known as chiral SU (3)L ×SU (3)R perturbation the-

6



2. Chiral Perturbation Theory

ory1 χPT3. It is an effective field theory which describes the low-energy interactions

of π, K ,η in a systematic and precise manner. Despite the name, χPT3 is a non-

perturbative technique for it does not rely on expansions in the strong running cou-

pling αs = g 2/4π. Instead, the method relies on the notion of perturbation theory

about a NG-symmetry [30, 31, 32, 33], viz., low-energy scattering amplitudes and

matrix elements can be described by an asymptotic series2

A= {ALO+ANLO+ANNLO+ . . .} (2.10)

in powers and logarithms of O(mK )momentum and quark masses mu ,d ,s =O(m 2
K ),

with mu ,d /ms held fixed. The amplitudes may be calculated from an effective La-

grangian Leff, whose construction is guided by a “folk" theorem due to Weinberg

[34]:

Theorem. For a given set of asymptotic states, the most general Lagrangian

containing all terms allowed by the assumed symmetries will yield in per-

turbation theory the most general S-matrix elements consistent with an-

alyticity, perturbative unitarity, cluster decomposition and the assumed

symmetry principles.

A proof for the general SU (N f )L×SU (N f )R case has been provided by Leutwyler [35].

The remainder of this chapter concerns the construction of Leff for the low-energy

interactions of the Standard Model of particle physics.

2.2 Perturbations about a Goldstone Symmetry

A large part of this thesis is concerned with the structure of χPT expansions of the

type given by Eq. (2.10). The purpose of the present section is to review the main

ideas which give rise to the notion that NG-symmetries may be studied as pertur-

bations in some symmetry breaking parameter. Following Dashen and Weinstein

[32] (see also [25]) we consider the case of chiral SU (2)L ×SU (2)R symmetry in the

1For reviews see e.g. [25, 26, 27, 28, 29].
2Recall that a series

∑∞
n=0 a nϕn (x ) constructed from a sequence of functions {ϕn } gives an

asymptotic expansion of the function f (x ) if for every N , we have f (x )−∑N
n=0 a nϕn (x ) =O(ϕN+1) as

x → 0.

7



2. Chiral Perturbation Theory

isospin limit mu =md . (The generalisation to the SU (3)L ×SU (3)R case is straight-

forward.) In general, the QCD Hamiltonian is of the form

H=Hinv+ m̂H′ , (2.11)

where Hinv is SU (2)L ×SU (2)R invariant while the explicit symmetry-breaking term

H′ = ∫
d3x (ū u + d̄ d ) belongs to the (2, 2̄)⊕ (2̄, 2) representation. Since the explicit

breaking parameter m̂ = 1
2
(mu+md ) is small relative to the mass scale of (say) theρ

meson, we seek a perturbative expansion in m̂ about the chiral limit m̂ → 0. There is

however, a complication since the physical spectrum contains a triplet of massless

NG bosons π+,π0,π− in this limit. This is a problem because the Gell-Mann-Oakes-

Renner relation m 2
π ∝ m̂ [36] implies that the expansion parameter appears in ma-

trix elements involving the divergence of the axial-vector current ∂ μAi
μ =m 2

πFππ. As

a result, there is an ambiguity in the ordering of terms such as

m 2
πFπ

q 2−m 2
π

∼
�

O(m̂ ) for q 2�m 2
π ,

O(1) for 0<q 2�m 2
π .

(2.12)

Dashen and Weinstein [32] showed that by carefully removing the π-poles, one can

resolve this ambiguity, and thus construct a well defined perturbation theory. A

simple example [25, 32] suffices to show how such a procedure works. First, we

denote the Fourier transform of the axial-vector current and its divergence as

Ai
μ(q )≡

∫
d4x e iq ·x Ai

μ(x ) , and dAi (q )≡
∫

d4x e iq ·x∂ μAi
μ(x ) . (2.13)

Evidently, matrix elements between hadronic states α,β obey the relation

〈α|dAi (q )|β 〉=−iqμ〈α|Ai
μ(q )|β 〉 , (2.14)

both sides of which contain poles due to the pions,

〈α|dAi (q )|β 〉		
pole
=

i m 2
πFπ

q 2−m 2
π

〈α+πi (q )|S|β 〉 , (2.15)

〈α|Ai
μ(q )|β 〉

			
pole
=− qμFπ

q 2−m 2
π

〈α+πi (q )|S|β 〉 , (2.16)

8



2. Chiral Perturbation Theory

for scattering matrix S. Subtracting the poles from both sides of Eq. (2.14), one finds

for the remainder

Fπ〈α+πi (q )|S|β 〉=qμ 〈α|Ai
μ(q )|β 〉

			
rem.
+ 〈α|dAi |β 〉		

rem.
, (2.17)

and thus the second term on the right-hand side is O(m̂ )unambiguously. In general,

the matrix element 〈α|Ai
μ(q )|β 〉

			
rem.

may have an O(q−1) singularity as qμ→ 0, but the

prefactor of qμ ensures that this term is either calculable or vanishes in the m̂ → 0

limit. The result is a soft-π theorem,

lim
q→0
m̂→0

Fπ〈α+πa (q )|S|β 〉= {calculable}+O(q 2)+O(m̂ ) . (2.18)

As shown by Dashen and Weinstein [32], and later made systematic by Weinberg

[34] and others [13, 37], the above low-energy theorem (2.18) can also be obtained by

constructing the most general effective Lagrangian allowed by chiral SU (2)L×SU (2)R
symmetry up to the desired order in q 2 and m̂ , and computing the relevant ampli-

tude in the tree approximation. Because of its convenience, it is the latter approach

which has become the standard for performing calculations and is commonly re-

ferred to as chiral SU (2)L ×SU (2)R perturbation theory χPT2.

2.3 Effective Lagrangians for Strong Interactions

To examine the consequences of the assumed spontaneous symmetry-breaking pat-

tern

SU (3)L ×SU (3)R →SU (3)V , (2.19)

it is convenient to introduce an SU (3) field U = U (φ), where the octet of pseu-

doscalar NG bosons φi parametrise the coset space (SU (3)L ×SU (3)R )/SU (3)V with

group action

U → RU L† , where R ∈SU (3)R and L ∈SU (3)L . (2.20)

9



2. Chiral Perturbation Theory

For stable vacua 〈U 〉vac = I , the φi can be treated as field fluctuations, to wit U =

exp(iλiφi/Fπ), where Fπ � 93 MeV is the pion decay constant1 and

λiφi�
2
=

⎛⎜⎜⎜⎝
1�
2
π0+ 1�

6
η π+ K +

π− − 1�
2
π0+ 1�

6
η K 0

K − K̄ 0 −
 2
3
η

⎞⎟⎟⎟⎠ . (2.21)

In accord with the dictates of Weinberg’s theorem [34], one constructs the most

general effective Lagrangian Leff consistent with the symmetries of QCD. In χPT3,

this is achieved by arranging the terms in Leff in increasing powers of derivatives

∂ =O(mK ) and O(mq ) =O(m 2
K ) quark masses,2

Leff[U ,U †] =
∞∑

n=1

L2n =L2+L4+L6+ . . . . (2.22)

In the leading order (LO) of χPT3, the strong interactions of π, K ,η mesons are de-

scribed by

L2 =
F 2
π

4
Tr(∂μU∂ μU †)+Tr(MU †+UM †) , (2.23)

where the second term on the right-hand side belongs to the (3, 3̄)⊕ (3̄, 3) represen-

tation, M is proportional to the quark mass matrix

M = 1
2

F 2
π B0 diag(mu , md , ms ) , (2.24)

and the low-energy constant B0 is related to the quark condensate

− F 2
π B0 = 〈ū u 〉vac = 〈d̄ d 〉vac = 〈s̄ s 〉vac . (2.25)

From the chiral symmetry-breaking term in (2.23) follow a number of important

results, including the Gell-Mann-Oakes-Renner relations [36]which relate the quark

1As a low-energy constant, Fπ is not fixed by chiral symmetry. The quoted value is obtained from
the leptonic weak decay π+→μ+νμ.

2The absence of odd-numbers of derivatives is a simple consequence of the intrinsic odd-parity
of the NG bosonsφi .

10



2. Chiral Perturbation Theory

and pseudo-NG boson masses,

m 2
π± = 2m̂ B0 , m 2

π0 = 2m̂ B0−ε+O(ε2) ,

m 2
K ± = (mu +ms )B0 , m 2

K 0 = (md +ms )B0 ,

m 2
η =

2
3
(m̂ +2ms )B0+ε+O(ε2) ,

(2.26)

where

m̂ = 1
2
(mu +md ) , ε=

B0

4

(mu −md )2

ms − m̂
. (2.27)

Evidently, in the chiral SU (3)L ×SU (3)R limit the meson masses vanish and π, K ,η

become genuine NG bosons. By combining Eq. (2.25) with the expression for m 2
π±

in (2.26), it is possible to relate the meson and quark masses directly to quark con-

densate [36]:

F 2
πm 2

π± =−m̂ 〈ū u + d̄ d 〉vac . (2.28)

Similarly, if we neglect the tinyO(ε) isospin-breaking effects in (2.26), the Gell-Mann-

Okubo sum rule [38, 39]

3m 2
η = 4m 2

K −m 2
π (2.29)

is obtained, which predicts the physical η mass to within 4% and provides a strin-

gent test on the mode of quark condensation [40].

2.4 Functional Methods and Gauge Interactions

The most convenient way to simulate electromagnetic (or weak semi-leptonic) in-

teractions inχPT3 is to make use of the background field method [41, 42]. Pioneered

in χPT3 by Gasser and Leutwyler [13, 37], this formalism has the added benefit of

providing a) the means to calculate Green functions and their associated Ward iden-

tities in a manifestly chiral invariant way, and b) a method to study higher-order

unitarity corrections in a systematic manner.

The starting point is to extend the chiral symmetric Lagrangian �L of Eq. (2.2) to

include Hermitian matrix-valued external fields vμ(x ), aμ(x ), s (x ), p (x ),

�L→Lext = �L+ q̄γμ(vμ+aμγ5)q − q̄ (s − i pγ5)q . (2.30)

11



2. Chiral Perturbation Theory

In the presence of these external fields, the generating functional Z [v, a , s , p ] is de-

fined in terms of the transition amplitude from the vacuum state in the asymptotic

past |Ωin〉 to the vacuum state in the asymptotic future |Ωout〉,

exp{iZ [v, a , s , p ]}= 〈Ωout|Ωin〉v,a ,p ,s ,

=

∫
[Dq ][Dq̄ ][DAμ]exp

�
i

∫
d4x Lext

�
. (2.31)

If one perturbs Z about the point vμ = aμ = s = p = 0, then Lext reduces to �L, and

thus the chiral-limit Green functions of QCD are obtained. On the other hand, it is

a simple matter to simulate non-zero quark masses and electroweak gauge interac-

tions by setting p = 0 and expanding about

rμ = vμ+aμ =−eQAμ+ . . . , (2.32)

lμ = vμ−aμ =−eQAμ− e�
2 sinθW

(W +
μ T+ +h.c.)+ . . . , (2.33)

s = diag(mu , md , ms )+ . . . , (2.34)

where Q is the quark-charge matrix and the relevant Cabibbo-Kobayashi-Maskawa

(CKM) matrix elements Vi j are included within T+:

Q =

⎛⎜⎜⎜⎝
2
3

0 0

0 − 1
3

0

0 0 − 1
3

⎞⎟⎟⎟⎠ , T+ =

⎛⎜⎜⎜⎝
0 Vu d Vu s

0 0 0

0 0 0

⎞⎟⎟⎟⎠ . (2.35)

Note that the external field formalism formally promotes SU (3)L ×SU (3)R to a

local symmetry, so that R , L become spacetime dependent matrices. Consequently,

the left- and right-handed gauge fields lμ and rμ transform non-covariantly under

SU (3)L ×SU (3)R ,

rμ→ RrμR†+ i R∂μR† , (2.36)

lμ→ LlμL†+ i L∂μL† , (2.37)

s + i p → R(s + i p )L† . (2.38)

12



2. Chiral Perturbation Theory

This leads to the introduction of a covariant derivative

∇μU = ∂μU − i rμU + iUlμ , ∇μU → R∇μU L† , (2.39)

and field strength tensors

f μνR = ∂
μr ν − ∂ νr μ− i [r μ, r ν ] , (2.40)

f μνL = ∂
μl ν − ∂ ν l μ− i [l μ, l ν ] . (2.41)

At low energies, the Green functions of QCD are expanded in powers of the ex-

ternal momenta and quark masses. In the path integral representation (2.31), this

is equivalent to expanding in derivatives of the external fields. It follows that the

low-energy representation of Z is given by [13]

e iZ =

∫
[DU ]exp

�
i

∫
d4x Leff

�
, (2.42)

and thus the generating functional factorises

Z =Z2+Z4+ . . . , (2.43)

where Z2 =
∫

d4x L2 denotes the classical action. The locally invariant Lagrangian

L2 is obtained from Eq. (2.23) by replacing ∂ →∇ and M →χ ≡ 1
2

F 2
π B0(s + i p ):

L2 =
F 2
π

4
Tr(∇μU∇μU †)+Tr(χU †+Uχ†) . (2.44)

Electromagnetic transitions can then be calculated in LO by simply expanding the

external fields in L2 about the physical point (2.34).

2.4.1 Next-to-Leading Order Effects

In the tree approximation, one can simply read off the scattering amplitudes A by

inspection of vertices contained in L2. However, these amplitudes are purely real

13



2. Chiral Perturbation Theory

and thus to preserve the unitarity of the theory

ℑmA∼ |A|2 , (2.45)

chiral loop diagrams are required at next-to-leading order (NLO) in the derivative

and quark mass expansion (2.22). Indeed, the non-renormalizable nature of Leff

manifests itself through the fact that at NLO, new vertices different from those of L2

are introduced into the effective theory. Therefore, the full theory requires an infi-

nite set of counterterms. Nevertheless, at a fixed-order in χPT3 the divergences can

be absorbed through appropriate counterterms, and the truncated theory renor-

malized. It is here that the functional methods described above become indispens-

able.

At NLO in χPT3, the generating functional Z receives contributions from the

following.

(a) One-loop graphs constructed from vertices in L2.

(b) The most general effective Lagrangian L4 in the tree approximation.

(c) The Wess-Zumino-Witten (WZW) construction of the chiral anomaly [43, 44].

The explicit form of contributions (a) and (b) have been calculated by Gasser and

Leutwyler [13], with the result for the latter given by

L4 = L 1Tr(∇μU∇μU †)2+ L 2Tr(∇μU∇νU †)Tr(∇μU∇νU †)

+ L 3Tr(∇μU∇μU †∇νU∇νU †)+ L 4Tr(∇μ∇μU †)Tr(χU †+Uχ†)

+ L 5Tr(∇μU∇μU †(χU †+Uχ†))+ L 6Tr(χU †+Uχ†)2

+ L 7Tr(χU †−Uχ†)2+ L 8Tr(Uχ†Uχ†+χU †χU †)

− i L 9Tr( f R
μν∇μU∇νU †+ f L

μν∇μU †∇νU )+ L 10Tr(U f L
μνU † f μνR )

+H1Tr( f R
μν f μνR + f L

μν f μνL )+H2Tr(χχ†) . (2.46)

The numerical values of the low-energy constants L i are not determined by chiral

symmetry alone and parametrize our limitations in solving the dynamics of QCD

directly. They have been determined either empirically [13], through models which

14



2. Chiral Perturbation Theory

resemble QCD [45], via meson-resonance saturation [46], or on the lattice [47]. The

external field terms involving Hi are of no physical relevance [13].

For a given amplitude with L loops and Nd vertices with d powers of O(mK )

momentum, it is convenient to keep track of the chiral dimension D [34],

D = 2L+2+
∑

d∈2�
2(d −2)Nd . (2.47)

This allows us to arrange the successive terms in Leff as follows,

D = 2 :
�

L = 0 , d = 2 , Z2 =
∫

d4x L2 ;

D = 4 :

�
L = 0 , d = 4 , Z tree

4 =
∫

d4x L4+ZW Z W ,

L = 1 , d = 2 , Z 1−loop
2 =

∫
d4x L1−loop

2 .

The effect of terms with D ≥ 6 is less important provided the momentum of a given

amplitude satisfies

{momentum}/χch� 1 , (2.48)

where the infrared mass scale χch ≈ 1 GeV is set by the chiral condensate 〈q̄q 〉vac.

This forms the basis behind the expectation that NLO corrections should be 30% at

most,

|ANLO/ALO|� 0.3 . (2.49)

From Eq. (2.47) we see that D increases with L, so to maintain a fixed mass dimen-

sion for a given amplitude, each loop comes with a factor of F−2
π . Combined with

the standard geometric loop factor (4π)−2, this leads to an estimate for the scale of

chiral symmetry-breaking [48, 49],

χch = 4πFπ � 1.2 GeV . (2.50)

Note that χch also sets the scale of hadrons which don’t belong to the NG sector

{π, K ,η}. For example, the Goldberger-Treiman relation for the nucleon mass M N ,

gπN N Fπ � g A M N , (2.51)

clearly shows that M N remains massive in the chiral SU (3)L ×SU (3)R limit. Given
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2. Chiral Perturbation Theory

this fact, it is odd that the scale ΛQCD ≈ 200 MeV for ultraviolet expansions in the

asymptotic free domain

{momentum}/ΛQCD� 1 , (2.52)

is commonly taken as the relevant scale for all applications of QCD. Although strong

gluon fields are presumably responsible for ΛQCD and χch, this does not imply that

the ratio

χch/ΛQCD ≈ 5 (2.53)

must be unity.

2.5 Effective Lagrangians for Weak Interactions

In the electroweak sector of the standard model, the strangeness-changing |ΔS|=1

non-leptonic transitions are induced by the current-current interaction1

LW (x ) =
GF�

2

∑
q=u ,c ,t

V ∗qs Vqd

∫
d4y Δ(y )T {(s̄ Lγ

μqL)x+y /2(q̄Lγμd L)x−y /2
�
+h.c. , (2.54)

where GF � 10−5M−2
p is the Fermi coupling, V is the CKM matrix, and

Δ(y ) =
1

(2π)4

∫
d4q e iq ·y 1

1−q 2/m 2
W

(2.55)

is the Lorentz-scalar part of the W -boson propagator in the ‘t Hooft-Feynman gauge.

The heavy states W, t , c ,b can be decoupled from the theory at low energies μ �
mt ,c ,b using operator product expansion techniques. The result is that the slightly

non-local interaction (2.54) is expanded in a set of local four-quark operators Oi

and scale dependent Wilson coefficients ci (μ),

LW (x )∼LΔS=1
eff (x ,μ) =

GF

2
�

2
V ∗u s Vu d

∑
i

ci (μ)Oi (x )+h.c. . (2.56)

The precise form of the ci (μ) and Oi (x ) is given in [51, 52, 53].

In terms of effective degrees of freedom π, K ,η, the chiral structure of the weak

1See e.g. [50, Sec. VIII-2] for a review.
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currents constrains the number of allowed operators. Consider for example [50]

the product (s̄ Lγμu L)(ū Lγμd L), which contains two SU (3)L octets of differing isospin

and hence the decomposition

SU (3)L : (8L ⊗8L)|sym = 8L ⊕27L , (2.57)

Isospin : 1⊗ 1

2
=

1

2
⊕ 3

2
. (2.58)

Other products in (2.56) have either the same chiral/isospin structure as above or

are pure octet and isospin- 1
2

. Thus LΔS=1
eff transforms in the (8L , 1R )⊕ (27L , 1R ) repre-

sentation of SU (3)L ×SU (3)R . These symmetry properties must also be reflected in

the effective weak Lagrangian of χPT3, to wit the LO expression

Lweak[U ,U †] = g 8Q8+ g 27Q27+Qm w +h.c. (2.59)

contains an octet operator [54]

Q8 =J13J21−J23J11 , Ji j = (U∂μU †)i j (2.60)

the U-spin triplet component [51, 55] of a 27 operator

Q27 =J13J21+ 3
2
J23J11 (2.61)

and a weak mass operator [56]

Qm w = Tr(λ6− iλ7)
�

g M MU †+ ḡ MUM †� . (2.62)

In general, the low-energy coefficients g i , g M and ḡ M are complex.

It is important to note that the weak mass operator Qm w introduces tadpole

graphs which destabilise the ground state |Ω〉 of the theory. Crewther [55] has em-

phasised that the correct procedure is to consider field fluctuations about the true

vacuum |vac〉, obtained by minimising the combined strong and weak interaction

potential

V[U ,U †] =−TrMU †−Qm w +h.c. . (2.63)
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At LO in GF , this is achieved by noting that the mass matrix

m =M +(g Mλ6−i 7+ ḡ ∗Mλ6+i 7)M = 1
2

F 2
π B0

⎛⎜⎜⎜⎝
mu 0 0

0 md 2g M

0 2ḡ ∗M ms

⎞⎟⎟⎟⎠ , (2.64)

can be diagonalised through a suitable chiral SU (3)L ×SU (3)R rotation [55],

m = L 0M R†
0+O(G 2

F M ) . (2.65)

As a result, the potential is given by

V =−Tr(mU †+Um †)

=−Tr(MŨ †+ŨM †)+O(G 2
F M ) , (2.66)

where Ũ is chirally rotated with respect to U ,

Ũ = L†
0UR0 . (2.67)

Evidently, it is the rotated field Ũ which satisfies 〈Ũ 〉vac = I and thus allows us to

adopt the parametrisation

Ũ (φ) = exp(iλiφi/Fπ) , where 〈φi 〉vac = 0 . (2.68)

Note that in the true ground state |vac〉, all trace of Qm w has been removed from V
at LO, i.e. one has the no-tadpoles theorem [55]

〈K |Hweak|vac〉=O(m 2
s −m 2

d ) . (2.69)

Thus, in the LO of χPT3 there are only two effective operators which contribute to

physical processes,

Lweak→ L̃weak[Ũ ,Ũ †] = g 8Q̃8+ g 27Q̃27+h.c. , (2.70)

where the tilde indicates that these operators are now functions of Ũ .
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2.5.1 TheΔI = 1/2 Puzzle

Starting from Eq. (2.70), one may study the rich phenomenology of K -mesons. There

is however a severe problem — so old that new solutions are rarely attempted — as-

sociated with the decays of the short- and long-lived states

KS→ππ , KL→πππ . (2.71)

Experimentally, there is a large enhancement of the isospin- 1
2

decays. This phe-

nomenon is particularly striking in the S-wave ππ mode, where the measured rates

[3] exhibit the ratios

γ+− =
Γ(KS→π+π−)
Γ(K +→π+π0)

� 463 , γ00 =
Γ(KS→π0π0)
Γ(K +→π+π0)

� 205 , (2.72)

which are in gross disagreement with the naive expectations γ+− ∼ O(1) ∼ γ00 from

perturbative electroweak calculations. It is useful to translate the above in terms of

isospin amplitudes AI for the ππ final-state. The I = 1 state is forbidden by Bose

symmetry and thus the transition amplitudes can be parametrized as [57]

A(KS→π+π−) = 2�
3

A0e iδ0 +

�
2

3
A2e iδ2 , (2.73)

A(KS→π0π0) =

�
2

3
A0e iδ0 − 2�

3
A2e iδ2 , (2.74)

A(K +→π+π0) =

�
3

2
A2e iδ2 , (2.75)

where theππ-scattering phase shiftsδI arise as a consequence of Watson’s theorem.

Comparison with the data in (2.72) leads to theΔI = 1/2 rule for kaons1

ℜe|A0/A2| � 22 , (2.76)

whose origin remains a mystery despite five decades of theoretical investigation.

In the leading order of χPT3, A0 and A2 are given by the coefficients g 8 and g 27

of Eq. (2.70) which are clearly not fixed by chiral symmetry. The problem then is to

1A similar rule is observed in the non-leptonic hyperon decays [58, 59].

19



2. Chiral Perturbation Theory

explain why

|g 8/g 27| � 22 (2.77)

is so large compared with simple quark-model estimates which work for ΔI = 3/2

amplitudes. It has been suggested [53] that penguin diagrams may be responsible

for this ‘octet dominance’. Other approaches to the problem make use of a variety

of techniques including the many colour Nc limit [60, 61, 62, 63, 64], QCD sum rules

[65, 66, 67, 68], and direct evaluation on the lattice [69, 70, 71], with varying degrees

of success.

2.6 The Lowest QCD Resonance: Problems with Chiral

SU (3)L×SU (3)R Expansions?

The indication that the hadronic spectrum may contain a light J PC = 0++ resonance

pre-dates QCD, and was originally introduced in the 1960s to improve the descrip-

tion of N N -scattering by models based on the ‘one boson exchange’ potential [72].

At the time, there were additional hints of a broad state ε(700) hiding in the S-wave

ofππ-scattering. The large width however, posed a serious technical difficulty in in-

terpreting the results from phase-shift analyses of the data. Determinations of the

0++ pole, deep in the complex s -plane, were either model-dependent or sensitive to

a chosen parametrisation of the data on the real axis [73, 74]. The ε(700) remained

in the PDG tables until 1974 [75], and as a result it became generally accepted that

the hadronic spectrum did not contain 0++ states below ≈ 1 GeV. In 1996, Törnqvist

and Roos [76] introduced the f 0(500) resonance (a reborn ε(700)), but it was still

clear that the interpretation of the data was model-dependent at best.

The situation changed dramatically in 2006, when Caprini et al. [17] observed

that the general principles of quantum field theory, viz., unitarity, analyticity, and

crossing symmetry, allow the Roy equations [77] to be complexified. As a result, the

mass and width of the f 0(500) resonance could be determined precisely. For ππ-

scattering, these requirements allow a representation of the S-matrix element1

SI
� =η

I
� exp(2iδI

� ) , (2.78)

1We have for isospin I and angular momentum �, the elasticity ηI
� and phase-shift δI

� .
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in terms of a twice-subtracted dispersion relation. The scattering amplitude is ana-

lytic in the s -plane except for cuts along the real axis:

�
Right-hand cut: 4m 2

π < s <∞ ,

Left-hand cut: −∞< s < 0 .
(2.79)

By projecting SI
� onto partial waves t I

� , one obtains a set of integral equations derived

by Roy [77], which for I = 0= � are given by

t 0
0 (s ) = a +(s −4m 2

π)b +
2∑

I=0

∞∑
�=0

∫ ∞

4m 2
π

ds ′K 0I
0� (s , s ′)ℑmt I

� (s
′) . (2.80)

The kernels K I ′I
�′� are known algebraic expressions of s , s ′ and mπ [17], and thus the

input into (2.80) is just the imaginary part of t I
� (determined from data) and the two

subtraction constants a and b . The latter can be related to the S-wave scattering

lengths

a = a 0
0 , b = (2a 0

0−5a 2
0)/12m 2

π , (2.81)

and are known fromχPT2 calculations to great precision [78]. With these inputs, the

solution to (2.80) gives the fullππ-scattering amplitude. As shown by Roy [77], (2.80)

is valid for real s in the interval −4m 2
π < s < 60m 2

π. The key insight by Caprini et al.

[17] was to note that the Roy equations may be analytically continued to complex

values of s , thereby evading the aforementioned difficulties in performing extrapo-

lations from the real axis. They made use of the fact that unitarity relates S-matrix

elements on the first I and second I I Riemann sheets,

S0
0(s )

I I = 1/S0
0(s )

I , (2.82)

and thus determined the f 0(500) pole by solving the Roy equations (2.80) subject

to the constraint S0
0(s )I = 0. Their model-independent results for the complex pole

mass and residue,

m f 0 = 441+16
−8 − i 272+9

−12.5 MeV , |g f 0ππ|= 3.31+0.35
−0.15 GeV , (2.83)

have been confirmed by subsequent analyses [18]which relax the chiral constraints
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2. Chiral Perturbation Theory

on a 0
0 and a 2

0. We note that in all determinations of this kind, the real part of m f 0 is

less than mK .

Now that the existence of a light 0++ resonance has been established, can one

do away with the octet dominance hypothesis (2.77) and argue that the large I = 0

enhancement in KS → ππ is due to a dominant f 0-pole? This line of investigation

was considered long ago [79, 80, 81, 82] and the formalism of χPT3 was extended to

include a scalar field in a chiral invariant fashion. The problem remains [1] that low-

est order predictions from χPT3 are in general found wanting for amplitudes which

involve both a 0++ channel and O(mK ) extrapolations in momenta, i.e. χPT3 expan-

sions diverge. Notable processes where χPT3 expansions fail include the following.

1. The transition KL → π0γγ, with a chiral one-loop prediction for the rate [2]

which is approximately 1/3 the experimental value [3].

2. The cross-section for γγ → π0π0, where the lowest order prediction [4, 5] of

a linear rise in energy from threshold (Fig. 2.1) is incompatible with the data

from the Crystal Ball experiment [6].

Figure 2.1: Plot of the chiral one-loop prediction [4, 5] (dashed line) for the cross-
sectionσ(γγ→π0π0) as a function of the momentum transfer

�
s . Also shown is the

data from Crystal Ball [6], although we note that the data point at
�

s = 0.275 GeV is
not consistent with the available phase space.
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2. Chiral Perturbation Theory

3. K�4 decays [9] and non-leptonic K [10, 11] and η [12, 13] decays are known to

receive final-state ππ interactions [7, 8] which are important or even domi-

nant relative to purely chiral contributions [1, 7, 9, 10, 11, 12, 13]

To examine the problem in more detail, consider the process KL→π0γγ at NLO

in χPT3, with amplitude

A(KL→π0γγ) =
�ALO+ANLO

�
χPT3

. (2.84)

Since ALO predicts too small a rate, depending on the relative phase, a reasonable

fit to the data can be obtained if

|ANLO|χPT3
��2 |ALO|χPT3

. (2.85)

Clearly, (2.85) is at odds with the usual expectation (Sec. 2.4.1) that NLO corrections

in χPT3 are at most 30%,

|ANLO/ALO|χPT3
� 0.3 . (2.86)

The discrepancy is extreme for KS → ππ, where in order to explain the observed

factor of 22 enhancement in the I = 0 channel, a dominant f 0 amplitude generated

at NLO must be 70 times the expected � 30% correction.1

How are we to make sense of this? In any effective field theory, the validity of

a chosen perturbative expansion depends crucially on a clear separation of scales

between the heavy and effective degrees of freedom. The success of χPT3 then de-

pends on the distinction between the light pseudo-NG bosons π, K ,η and the non-

Goldstone sector { f 0,ρ,ω, K ∗, N ,η′, . . .}. Evidently, χPT3 expansions fail when the

0++ channel is present because f 0 sits right in the middle of {π, K ,η} (Fig. 2.2).

It is this problem which we seek to solve. In this thesis, we take the view that

the systematic failure of χPT3 expansions in the 0++ channel can and should be

corrected by modifying the lowest order of the three-flavour theory (with no change

to χPT2). As we discuss in the next chapter, our solution is closely connected to the

infrared behaviour of the strong running coupling αs .

1Provided |g 8| � |g 27| �O(1), as many calculations [60, 61, 62, 63, 64, 65, 66, 67, 68] indicate.
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2. Chiral Perturbation Theory

χPT3

0

(mass)2

π

f0

K η

ρ

NotNGbosons
0

NGbosons p·p′=O(m2
K)

(mass)2

Figure 2.2: Spectrum of hadrons in χPT3. Note that there is no scale separation
because the non-NG boson f 0(500) lies within the NG sector {π, K ,η}.
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Chapter 3

Asymptotia

This chapter reviews elements of the renormalization group, in particular, the no-

tion of an effective charge ᾱ in Quantum Electrodynamics (QED) (Section 3.1) and

its generalisation ᾱs in Quantum Chromodynamics (QCD) (Section 3.1.1). In the

latter case, we present a selection of definitions for ᾱs from the literature before ex-

tending our discussion in Section 3.2 to include non-perturbative definitions based

on lattice QCD or solutions to the Dyson-Schwinger equations. In Section 3.3, we

examine the theoretical evidence for “freezing" in the infrared, viz. the idea that

QCD possesses an infrared fixed point. This enables us to present the underlying

premise of this thesis that the strong coupling αs (μ) of three-flavour QCD may run

non-perturbatively to a nontrivial, stable fixed point in the infrared limit μ→ 0. The

implications arising from this scenario are briefly discussed, with a detailed discus-

sion reserved for Chapter 4.

3.1 Effective Charges

A well known feature of perturbative quantum field theory is the inherent ambiguity

associated with the definitions of the renormalized couplings and masses. For in-

stance, two different theorists may adopt different renormalization prescriptions R
and R′ for the same physics (described by the same Lagrangian L). At a fixed-order

in perturbation theory, the difference between R and R′ may arise because differ-

ent subtraction points are used for a given type of coupling constant, or the finite
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3. Asymptotia

parts of the counterterms may be different. Stückelberg and Peterman [83]were the

first to consider transformations of the kind R→R′ and called these mappings el-

ements of the renormalization group. Although it really has nothing to with group

theory, the name arose because R→R′ →R′′ implies that R→R′′ belongs to this

class of transformations. In this language, the requirement that physical observ-

ables be independent of a chosen prescription or scheme implies that L is renor-

malization group invariant.

As experiments grow ever more precise, the arbitrariness of the renormaliza-

tion procedure can cause serious confusion in the interpretation of results based on

truncated perturbative expansions. Take for instance QCD [84], where the choice of

renormalization scale μ in the strong running coupling αs (μ2) is the main source of

uncertainty in perturbative predictions for observables such as the Drell-Yan ratio

R(Q2) =
σ(e+e− → hadrons)
σ(e+e− →μ+μ−) . (3.1)

In any scale-setting procedure, one must guess the effect of the omitted higher-

order terms. Typically, this is done by setting μ=Q of order the momentum transfer

in the physical process and then varying the scale over some range of momenta.

The problem with this approach is that the resulting prediction is strongly sensitive

to the choice of renormalization-scheme (RS).

There is however, a way to reformulate perturbation theory in a RS-invariant

way, even though the theory is not solved to all orders. The price to be paid for

such a formulation is that results now become process dependent. The originators of

this approach were Gell-Mann and Low [85], who in a remarkably prescient paper

on the short-distance behaviour of Quantum Electrodynamics (QED), established

the relevance of the renormalization group to the asymptotic behaviour of physical

processes. A key part of their analysis was the introduction of a quantity known

as an effective charge, which is an all-order resummation of perturbation theory. In

general, effective charges provide a physical definition for the fundamental coupling

of a quantum field theory, and as such they possess the desirable properties of being

independent of the RS and analytic when defined relative to spacelike momentum

scales.

26



3. Asymptotia

For example, in QED the renormalization of the dressed photon propagator1

Πμν (q ) involves a function d (q 2;α, m ),

Πμν (q ) =−i
gμν

q 2+ iε
d (q 2;α, m )+qμqν terms , (3.2)

where α = α(μ2) = e 2(μ2)/4π and m = m (μ2) refer to the renormalized coupling

and electron mass.2 By summing the Dyson series of one-particle-irreducible (1PI)

insertions of the photon self-energy Π(q 2;α, m ), one obtains a definition of the ef-

fective charge ᾱ(q 2;α, m ) for the theory,

ᾱ(q 2;α, m )≡αd (q 2;α, m ) =
α

1−Π(q 2;α, m )
. (3.3)

This represents a physical coupling since ᾱ can be determined by measuring the

potential V (r ) (or rather, its Fourier transform) between two heavy test charges.

From the definition (3.3), we can show that ᾱ possesses the following important

properties [85]. Firstly, electric charge normalization Π(0;α, m ) = 0 implies that ᾱ

reproduces the fine-structure constant at zero-momentum,

lim
q 2→0

ᾱ(q 2;α, m ) =α� 1/137 . (3.4)

Secondly, since Π is gauge-invariant to all orders of perturbation theory, so too is ᾱ.

Thirdly, the QED Ward identity Z1 = Z2 for wave function renormalization implies

that the combination

αDμν (q ) =α0D0,μν (q ) (3.5)

is not renormalized. Thus ᾱ is also renormalization group invariant,

ᾱ(q 2;α, m ) =αd (q 2;α, m ) =α0d 0(q 2;α0, m0)

= independent of μ and scheme R. (3.6)

The existence of the massless theory — valid perturbatively, and assumed to be true

in the non-perturbative case — means that we may adopt with impunity a mass-

1Longitudinal terms∝qμqν can be eliminated by a gauge transformation, so they are unphysical.
2Bare quantities will be denoted e0, m0 etc.
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3. Asymptotia

independent scheme such as minimal subtraction (MS or MS) in dimensional reg-

ularization and hence obtain the ‘improved’ Callan-Symanzik equation due to ‘t

Hooft [86] and Weinberg [87]

�
μ2 ∂

∂ μ2
+β (α)

∂

∂ α
+γm (α)m

∂

∂ m

�
ᾱ(q 2;α, m ) = 0 , (3.7)

where the β -function and anomalous mass dimension γm ,

β (α) =μ2 ∂ α

∂ μ2
and γm (α) =μ2 ∂ ln m

∂ μ2
, (3.8)

are determined by the RS, but are independent of the physical quantity ᾱ. In the

Euclidean region, the asymptotic limit −q 2/m 2→∞ corresponds to massless QED,

and thus the asymptotic function ᾱas — obtained by subtracting terms of the form

(m 2/q 2) lnn (−q 2/m 2) at each order of perturbation theory — depends on only one

kinematical scale q ,

ᾱas = ᾱas(t ,α) , where t = ln(−q 2/μ2) . (3.9)

In this limit, the Callan-Symanzik equation (3.7) becomes

� ∂
∂ t
−β (α) ∂

∂ α

�
ᾱas(t ,α) = 0 , (3.10)

whose solution may be found by introducing a running coupling αt =αt (t ), defined

by

t = ln(−q 2/μ2) =

∫ αt

α

d z

β (z )
. (3.11)

It follows from the boundary condition αt (t = 0) = α, that the general solution to

(3.10)

ᾱas(t ,α) = ᾱas(0,αt (t )) , (3.12)

relates the effective charge to the running coupling in the asymptotic limit:

lim−q 2/m 2→∞ ᾱ(q
2;α, m ) =αt (t ) . (3.13)
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3. Asymptotia

As is well known, the β -function provides important information on the asymp-

totic behaviour of a theory in the ultraviolet and infrared regimes. It is however, a

RS-dependent quantity and thus it is often convenient to work with the renormal-

ization group invariant, but process dependent Gell-Mann-Low function Ψ,

Ψ(ᾱas) =q 2 ∂ ᾱas

∂ q 2
. (3.14)

3.1.1 Effective Charges for QCD

The Gell-Mann-Low method of effective charges described above has been gener-

alised to QCD by Grunberg [88, 89, 90]. To minimise the number of technical com-

plications, we shall restrict our discussion to massless QCD and we refer the reader

to [89, Sec. V] for the more general case. The details of the approach can be sum-

marised as follows.

By analogy with ᾱas, we consider a dimensionless physical (or renormalization

group invariant) quantity σ(Q2), which depends on only one kinematical scale Q2.

In general, QCD predictions forσ(Q2) at large Q2 have the form

σ(Q2) = A + Bαs (μ2)[1+σ1(Q2/μ2)αs (μ2)+σ2(Q2/μ2)α2
s (μ

2)+O(α3
s )] , (3.15)

where A and B are constants. The coefficientsσi (Q2/μ2) depend on both the defini-

tion of αs (μ2) and the scale-setting procedure for μ. Clearly, there is no ambiguity if

the right-hand side of Eq. (3.15) is calculated to all-orders. For all practical purposes

however, a truncation must be made and thus the prediction for σ(Q2) becomes

RS-dependent.

Grunberg observed that this dependence can be greatly simplified if one makes

use of the dimensional transmutation property of QCD [91], where αs (μ2) is related

to some low-energy scale Λ.1 The key idea is to consider a different asymptotic ex-

pansion of σ(Q2) = F (Q2/Λ2) in powers of 1/ ln(Q2/Λ2). Summing the leading loga-

1Note that Λ is not necessarily the scale ΛQCD ≈ 200 MeV extracted from perturbative expansions
of β in the asymptotically free regime. In general, Λ can be any mass scale which is generated dy-
namically, e.g. the proton mass or pion decay constant Fπ.
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3. Asymptotia

rithms via the renormalization group, one gets [89]

σ(Q2) = A + B

�
1

β1 ln(Q2/Λ2)

��
1+

σ1(1)+Cβ 2
1 −β2/β1 ln ln(Q2/Λ2)
β1 ln(Q2/Λ2)

�
(3.16)

where the QCD analogue of the β -function (3.8) reads

β (ρ) =μ2 ∂ ρ

∂ μ2
=−β1ρ

2−β2ρ
3+O(ρ4) , (3.17)

where ρ =αs (μ2)/4π and for N f quark flavours, the first two coefficients

β1 = 11− 2
3

N f , and β2 = 108− 38
3

N f , (3.18)

are scheme independent. The constant C is determined by the definition of Λ.

The important thing to note here is that all trace of αs (μ2) has vanished: the RS

dependence of σ(Q2) is now characterised in terms of a single number λ, which

parametrises the freedom to redefine Λ → Λ̄ = λΛ (or Q → Q̄ = Q/λ). By consid-

ering the expansion of the inverse function F−1(σ) =Q2/Λ2, the remaining scheme

dependence of Λ or Q can be eliminated by a simple rescaling. By definition, F−1(σ)

depends solely on the physical quantity considered, i.e.

F−1(σ) =RS-invariant, even when the series (3.16) is truncated. (3.19)

We now seek an appropriate expansion parameter for Q2/Λ2. Since σ(Q2) is RS-

invariant, Grunberg advocates for the particular choice where all higher-order cor-

rections can be absorbed into the definition of an effective charge ᾱs (Q2) associated

withσ(Q2):

σ(Q2) = A + B ᾱs (Q2) . (3.20)

As in the QED example, the prediction for ᾱs (Q2) can be obtained in terms of a gen-

eralised Gell-Mann-Low function β̄ , defined by

Q2 ∂ ρ̄

∂Q2
= β̄ (ρ̄) =−β1ρ̄

2−β2ρ̄
3− β̄3ρ̄

4+O(ρ̄5) . (3.21)

Note that the first two coefficientsβ1,2 coincide with those from the QCDβ -function
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3. Asymptotia

(Eq. (3.18)), but the higher-order ones βi≥3 depend on the quantity σ(Q2) consid-

ered. The exact solution to (3.21) is given by [89]

β1 ln
Q2

Λ2
=

1

ρ̄
+
β2

β1
ln(β1ρ̄)+K1+

∫ ρ̄

0

d z

�
1

z 2
− β2

β1

1

z
+

β1

β̄ (z )

�
, (3.22)

where K1 is a constant determined from the NLO correction to ρ̄(Q2) at μ2 = Q2.

Eq. (3.22) is the final necessary ingredient, which when compared with (3.20) yields

the required expression for F−1(σ). So we see that the problem of RS dependence

in perturbative QCD calculations can be overcome in a systematic manner. Instead

of focusing on the ‘best’ RS, the pertinent question now becomes: what is the ‘best’

choice of an effective charge in QCD? The answer is yet to be established and some

popular examples from the literature are given below.

(a) By close analogy with QED, one can define an effective charge αV (Q2) as the

coefficient in the static limit of the scattering potential between two infinitely

heavy quarks [92, 93]

V (Q2) =−4πCF
αV (Q2)

Q2
, (3.23)

where the momentum transfer is Euclidean Q2 = −q 2 > 0 and CF = 4/3 is the

Casimir operator in the fundamental representation of colour SU (3).

(b) A direct attempt to generalise the resummation procedure of 1PI graphs in the

photon propagator to the gluonic case is the pinch technique [94, 95, 96, 97, 98].

In QCD, the Ward identity result Z1 =Z2 does not hold and thus obtaining a RS-

and gauge-invariant result after Dyson-resummation is rather complicated. The

result from rearranging the contributions to scattering amplitudes is a struture

of the form

αpinch(Q2) =
αs

1− Π̂(Q2)
. (3.24)

(c) A physical coupling αR (Q2) can obtained directly from high precision measure-

ments of the Drell-Yan ratio at momentum transfer Q2,

Re+e−(Q2) =

�∑
i

Q2
i

��
1+

αR (Q2)
π

�
, (3.25)
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where the sum is over the charges Qi of the active quark flavours.

Similarly, for fixed values of the kinematical scale, hadronic τ-decays of the type

τ− → ντ + hadrons allow one to define an effective charge ατ [99] through the

ratio of the hadronic to leptonic decay channels

Rτ(m 2
τ′) =R0

τ

�
1+

ατ(m 2
τ′)

π

�
, (3.26)

where R0
τ is leading order QCD prediction and 0 < mτ′ < mτ refers to some

hypothetical τ mass.

While each of the above represents a perfectly well-defined, RS-invariant defini-

tion of the strong coupling, it is clear that in order to probe the infrared limit of QCD,

genuine non-perturbative techniques are required. The keywords in this domain

are lattice QCD and Dyson-Schwinger equations. Examples of both are discussed

below.

3.2 Non-perturbative Determinations of the Strong Run-

ning Coupling

3.2.1 Schrödinger Functional Scheme

The Schrödinger functional was proposed by Lüscher et al. [100, 101] as a means

to study the scaling properties of QCD in a Euclidean box of volume L4, and hence

obtain a strong running coupling αSF(L) = ḡ 2(L)/4π from numerical simulations on

the lattice.

In the context of QCD, much of the theoretical effort has been directed towards

the interpolation between the non-perturbative (large L) and perturbative (small

L) regimes of the theory, with the aim to express (say) αs (MZ ) entirely in terms of

low-energy quantities such as the string tension or Sommer scale [100, 101]. On the

other hand, the Schrödinger functional scheme has been used to explore the be-

haviour of strong-coupling extensions to the Standard Model such as technicolour,

with the aim to determine the critical number of fermion flavours in some repre-

sentation of SU (N )which induce a scale invariant phase of the theory [102]. Due to
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3. Asymptotia

computational limitations [103], it cannot be said that the deep infrared limit L→∞
has yet been probed in a realistic simulation of QCD with N f = 3.

To see how ḡ 2(L) is defined in this approach, we follow Lüscher et al. [101] and

consider pure SU (3)Yang-Mills theory1 with gauge fields Aa
μ(x ) and Euclidean action

in the temporal gauge,

S[A] =− 1

4g 2
0

∫
d 4x G a

μνG aμν , (3.27)

where g 0 is the bare coupling and G a
μν = ∂μAa

ν − ∂νAa
μ + f ab c Ab

μAc
ν is the gluon field

strength. The Schrödinger functional refers to the path integral

Z[C ,C ′] =
∫

D[Aμ]e−S[A] , (3.28)

where periodic boundary conditions are imposed in all spatial directions and C , C ′

refer to fixed boundary values of Aa
μ(x ) at times t = 0 and t = T respectively. The

boundary values are chosen such that the gauge field configuration (or induced

background field) B a
μ (x ) which minimises (3.27) is stable, and unique up to gauge

transformations. In the presence of this background field, Z can be calculated at

weak coupling by using the saddle-point evaluation of the effective action Γ[B ] =

− lnZ about B a
μ (x ). The result is an asymptotic series

Γ[B ] = g −2
0 Γ0[B ]+Γ1[B ]+ g 2

0Γ2[B ]+ . . . , (3.29)

where the leading term is proportional to the action Γ0[B ] = g 2
0S[B ]. In general,

there are many ways to define ḡ 2(L) and most lattice studies choose B a
μ to depend

on a dimensionless parameter η. For practical reasons [101], this is usually imple-

mented by requiring that the boundary values of the background field are spatially

constant and diagonal,

Ck =
i

L

⎛⎜⎜⎜⎝
φ1 0 0

0 φ2 0

0 0 φ3

⎞⎟⎟⎟⎠ and C ′k =

⎛⎜⎜⎜⎝
φ′1 0 0

0 φ′2 0

0 0 φ′3

⎞⎟⎟⎟⎠ , k = 1, 2, 3 . (3.30)

1The inclusion of quarks in a lattice regularized Schrödinger functional is formally straightfor-
ward [104], but dependent on the way in which one simulates chiral fermions (see e.g. [102] for an
analysis with staggered fermions).
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The anglesφα andφ′α are constrained to be real and must sum to zero to ensure that

the matrices are elements of SU (3). A particular choice [105]which ensures that B a
μ

corresponds to a stable solution of the field equations is

φ1 =η−π/3 φ′1 =−η−π
φ2 =−η/2 φ′2 =η/2+π/3

φ3 =−η/2+π/3 φ′3 =η/2+2π/3

(3.31)

Subject to the boundary conditions specified above, the quantity

Γ′[B ] = ∂

∂ η
Γ[B ] =− ∂

∂ η
lnZ (3.32)

is renormalization group invariant and thus the renormalized coupling

k

ḡ 2(L)
=− ∂

∂ η
lnZ

				
η=0

(3.33)

depends only on the box size L, i.e. ḡ 2(L) (or equivalently, αSF(L)) defines a running

coupling. The constant of proportionality k = Γ0[B ] is chosen so that one recovers

ḡ 2 = g 0 in the leading order of perturbation theory. From the definition (3.33), a

β -function can be defined in the obvious manner

β (αSF) =−L
∂ αSF

∂ L
. (3.34)

An important consistency check of the SF coupling is that it can be perturbatively

related to other schemes, e.g. the MS scheme. If we define

αSF(Q) =
ḡ 2(L)

4π
, where Q = 1/L , (3.35)

then the relation between the two approaches is given by [105]

αMS =αSF+k1α
2
SF+O(α3

SF) , (3.36)

where both couplings are evaluated at the same momentum Q .
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3.2.2 Dyson-Schwinger Equations

In this approach, non-perturbative definitions ofαs are given by constructing renor-

malization group invariant quantities from two- and three-point functions of the

theory. The analytic expressions for these quantities (and hence αs ) are in turn ob-

tained by solving truncated systems of Dyson-Schwinger equations. A well studied

example is provided by the ghost-gluon (gh) vertex in Landau gauge SU (Nc ) Yang-

Mills theory [106, 107, 108]. Here the renormalized ghost and gluon propagators are

described in terms of the dressing functions G (p 2) and Z (p 2),

DG (p 2) =−G (p 2)
p 2

, Dμν (p 2) =
�
δμν − pμpν

p 2

�Z (p 2)
p 2

, (3.37)

where p refers to Euclidean momentum. The propagators DG and Dμν , and cou-

pling g are related to their bare counterparts through the multiplicative renormal-

ization constants

Z̃3DG =DG ,0 , Z3Dμν =D0,μν , Zg g = g 0 . (3.38)

In non-abelian gauge theories like QCD, the Ward identities must be replaced by

Slavnov-Taylor identities such as

Z̃1 =Zg Z̃3Z 1/2
3 , (3.39)

for the gh vertex. This identity defines a renormalized coupling αgh(μ) = g 2(μ)/4π,

α=α0

Z̃ 2
3Z3

Z̃ 2
1

. (3.40)

A running coupling can be defined by noting that the renormalized dressing func-

tions (3.37) are related to their bare counterparts through

G0(p 2) =G (p 2)Z̃3 ,

Z0(p 2) =Z (p 2)Z2 , (3.41)
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and thus in Landau gauge Z̃1 = 1, the quantity

αG 2(p 2)Z (p 2) =α0G 2
0 (p

2)Z0(p 2) (3.42)

is renormalization group invariant. By evaluating the left-hand side of (3.42) at μ2

and μ2 = p 2, one obtains from the gh vertex the definition [106],

αgh(p 2) =αgh(μ2)G 2(p 2,μ2)Z (p 2,μ2) . (3.43)

Similar definitions can be obtained for the three-gluon (3g ) and four-gluon (4g ) ver-

tices, whose dressing functions H 3g
1 and H 4g

1 each define a running coupling [108]:

α3g (p 2) =α3g (μ2)
�

H 3g
1 (p

2,μ2)
�2Z 3(p 2,μ2) , (3.44)

α4g (p 2) =α4g (μ2)
�

H 4g
1 (p

2,μ2)
�2Z 4(p 2,μ2) . (3.45)

3.3 Varieties of Asymptotic Behaviour

As we have seen above, there is a large number of suitable definitions for αs . How-

ever, once a particular definition is chosen, it is possible to formulate precise hy-

potheses about β (or β̄ ) for the whole theory. It is the purpose of this section to

examine the possibilities which may occur in QCD.

To be specific, we restrict our discussion to low energies μ�mt ,b ,c , where heavy

quarks t ,b , c are decoupled from the theory. There are then two logical possibilities1

for the resulting three-flavour theory (Fig. 3.1):

1. Growth without bound. If the integral2

∫ ∞

α0

d z

β (z )
(3.46)

1The analogous case for QED is discussed in [109].
2In a slight abuse of notation, we denote α0 ≡αs (μ2

0) for some reference scale μ0.
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3. Asymptotia

Figure 3.1: Varieties of asymptotic behavior for the QCD β -function with three light
quarks u , d , s . The dashed line shows the case when the running coupling αs (μ2)
undergoes continued growth with decreasing scaleμ (scenario (1) in text), while the
solid line shows αs (μ2) flowing to an infrared fixed point αIR (scenario (2)). For com-
pleteness, we also include the case where αs (μ2) diverges at a finite value of μ (dot-
ted line), but we emphasize that this scenario is of no physical relevance since it pro-
duces poles in Green’s functions in the spacelike momentum region (i.e. a tachyon
or “Landau ghost") [110, Chapter 6].

is divergent, then the solution to the renormalization group equation

lnμ2/μ2
0 =

∫ αs

α0

d z

β (z )
(3.47)

implies that as μ decreases, αs experiences continued growth, becoming infi-

nite in the infrared limit lnμ2/μ2
0→−∞.

2. Infrared fixed point at finite coupling. In this scenario, the integral

∫ αIR

α0

d z

β (z )
(3.48)

diverges because of a zero in β (z ) at z =αIR. As shown in Fig. 3.1, β is negative

in the physical region

0<αs <αIR , (3.49)

and positive thereafter. The finite value αIR is known as an infrared fixed
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3. Asymptotia

point1 since Eq. (3.8) dictates that as μ decreases, αs will increase in the phys-

ical region (3.49) and decrease for αs > αIR. In either case, αs runs to αIR in

the infrared limit μ→ 0. About this point, the β -function and the anomalous

dimension of the quark mass operator γm =μ2∂ ln mq/∂ μ2 may be expanded

in the series

β (αs ) = β ′(αIR)(αs −αIR)+O
�
(αs −αIR)

2� , (3.50)

γm (αs ) = γm (αIR)+γ
′
m (αIR)(αs −αIR)+O

�
(αs −αIR)

2� , (3.51)

where β ′ = ∂ β/∂ αs and γ′m = ∂ γm/∂ αs are evaluated at αIR.

It is worth emphasizing that it is unclear from the literature which scenario is

actually realized in QCD, and in particular, how sensitive the results are to the num-

ber N f of active quark flavours. Part of the problem resides in the fact that precise

knowledge of β (or β̄ ) is largely restricted to the perturbative domain where ex-

pansions about the ultraviolet fixed point αs = 0 converge sufficiently rapidly. For

instance, Banks and Zaks [112] have made the observation that if N f lies within the

‘conformal window’

8 1
19
<N f < 16 1

2
, (3.52)

then at two-loop order, β possesses a so-called perturbative infrared fixed point

α
2−loop
IR =−β1/β2 , (3.53)

where the coefficients βi are those of Eq. (3.18). The difficulty with this picture is

that for N f < 8 1
19

(i.e. QCD as currently understood), the infrared zero in β disap-

pears and a Landau pole is generated (Fig. 3.1). Nevertheless, there is a large body of

work [89, 95, 99, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122] based on perturba-

tive extrapolations of this type, which makes use of effective charges or alternative

schemes. Results from these approaches indicate (almost without exception) that

αs “freezes" in the infrared, i.e. QCD possesses an infrared fixed point as described

by scenario (2).

1Note that to be considered a fixed point, αIR must produce a sufficiently strong zero so that
(3.48) diverges. For example, a simple zero (as shown in Fig. 3.1) β (αs )∼ const.(αs −αIR) is sufficient,
but the weaker zero β (αs )∼ const.|αs −αIR|1/2 is not [111].
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3. Asymptotia

Naturally, a fully non-perturbative framework is required to settle the matter,

and thus running couplings of the type described in Sec. 3.2.2 become the rele-

vant objects of study. Unfortunately, the question about whether αs behaves like

scenario (2) or (1) is far from settled. Indeed, some results from the literature are

contradictory.

For instance, from the SF definition of αs , the result for N f = 0 shows that β be-

comes linear at large αs , i.e. the running coupling of pure Yang-Mills is unbounded

(scenario (1)). This is to be compared with the results from Dyson-Schwinger anal-

yses [108, 123] of the gh, 3g , and 4g vertices of Eqs. (3.43-3.45), all of which find that

αs is finite in the infrared limit p 2→ 0:

lim
p 2→0

αgh(p 2) =
c1

Nc
, lim

p→0
α3g (p 2) =

c2

Nc
, lim

p→0
α4g (p 2) =

c3

Nc
, (3.54)

where the ci are non-zero constants whose value depends on the definition of the

running coupling. Similarly, for N f �= 0, the conclusion from SF analyses [102] of

N f ≤ 8 is that there is no infrared fixed point. How can this be reconciled with the

N f = 3 Dyson-Schwinger analysis [124]which arrives at the opposite conclusion?

The origin of this conflict can be traced to the fact that a non-perturbative defi-

nition forαs must be chosen, and thus comparing results from different approaches

is rarely straightforward. Despite the lack of consensus, we take the view that an in-

frared fixed point in QCD (scenario (2)) should be taken seriously. The underlying

assumption which forms the basis of this thesis, is contained in the following state-

ment.

Proposal. There exists a physical definition of the strong running cou-

plingαs which is analytic, non-negative, and monotonic. At low-energies

μ�mt ,b ,c after heavy quarks have decoupled, the resulting three-flavour

αs runs non-perturbatively to a finite, non-trivial infrared fixed point

αIR.

The requirement of analyticity follows from the properties of physical amplitudes

at spacelike momentum. Monotonicity is required so that ‘false zeroes’ are avoided.

This refers to the disastrous case when αs runs to a value α∗ such that β (α∗) = 0,

before the infrared limit is reached. After α∗, a decrease in μ implies a decrease in the
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3. Asymptotia

strength of αs , reaching the ‘true’ fixed point at αIR ≡ αs (μ2 = 0). A simple example

is shown in Fig. 3.2.

0 2 4 6 8 10
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2 �

UV
ΑIR
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Figure 3.2: Plot of a strong running couplingαs (μ2) = 1/[(μ2−4)2+2]with the turning
point α∗ ≡ αs (μ2 = 4) giving rise to a ‘false zero’ in the QCD β -function. As the
scale μ2 is decreased from the ultraviolet (UV) region, αs increases in strength as it
approachesα∗, but switches and becomes weaker as it approaches the ‘true’ infrared
fixed point at αIR ≡αs (μ2 = 0).

In Chapter 4, we scrutinise the implications for low-energy phenomenology in

the proposed picture. The key observation is that the gluonic term∼G a
μνG aμν in the

trace anomaly of the energy-momentum tensor θμν [125, 126, 127, 128, 129],1

θμμ =
β (αs )
4αs

G a
μνG aμν +

�
1+γm (αs )

� ∑
q=u ,d ,s

mqq̄q (3.55)

is absent at the fixed point αIR and thus θμν becomes traceless in the chiral limit

θμμ

			
αs=αIR

=
�

1+γm (αIR)
�
(mu ū u +md d̄ d +ms s̄ s )

→ 0 , SU (3)L ×SU (3)R limit . (3.56)

Naively, one might consider this scenario a phenomenological disaster: does a trace-

1We have [Dμ , Dν ] = i g G a
μνT a where Dμ is the covariant derivative, {T a } generate the gauge

group, αs = g 2/4π is the strong coupling, and β = μ2∂ αs /∂ μ2 and γm = μ2∂ ln mq/∂ μ2 refer to a
mass-independent renormalization scheme with scale μ.

40



3. Asymptotia

less θμμ not imply invariance under scaling transformations ξ : x → e ξx and hence

a continuous mass spectrum? In QCD, the answer is in the negative since the at-

tendant strong gluon fields form a quark condensate 〈q̄q 〉vac �= 0. The notion that

〈q̄q 〉vac may also be a scale condensate in the scaling limit (3.56) can be deduced

from the fact that q̄q is not a singlet under scale transformations

i [D, q̄q ] = (3−γm (αIR))q̄q , (3.57)

where we have denoted D as the generator of the symmetry group. It follows that

for scale current Dμ = x νθμν , the time-ordered amplitude

Γμ(q ) =

∫
d4x e iq ·x T 〈Dμ(x )q̄q (0)〉vac , (3.58)

at αIR is non-vanishing in the zero momentum limit:

lim
q→0

qμΓμ(q ) = i 〈[D, q̄q ]〉vac

= (3−γm (αIR)〈q̄q 〉vac

�= 0 . (3.59)

In this limit, we see that Γμ(q ) has an O(q−1) singularity, viz., there is a massless 0++

QCD dilatonσ coupled to Dμ. This is nothing more than a statement of Goldstone’s

theorem and thus we conclude that at αIR, there are nine NG bosons: π, K ,η,σ.

The remainder of this thesis is devoted towards the development of an effective

field theory which describes the interactions of this alternate NG sector.
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Chapter 4

Chiral-Scale Perturbation Theory

about an Infrared Fixed Point

With this chapter, we present the bulk of original research in this dissertation. Our

intent is to examine in quantitative detail, the phenomenological consequences

which arise from our proposal in Chapter 3 for an infrared fixed point αIR in three-

flavour QCD. In Section 4.1, we review a part of the history regarding a dilaton σ

in the strong interactions and argue that, in our proposal, the f 0(500) resonance is

the most likely candidate for such a state. Section 4.2 introduces the combined ex-

pansion about the chiral SU (3)L ×SU (3)R and αs → αIR limits. We then review the

rules for constructing chiral-scale operators, which feature in the construction of

our subsequent effective Lagrangians.

In Section 4.3, we replace ordinary chiral SU (3)L ×SU (3)R perturbation theory

χPT3 with a new model-independent theory χPTσ based on approximate scale and

chiral SU (3)L × SU (3)R symmetry. In leading order and next-to-leading order, we

construct the most general effective Lagrangians for the strong interactions. The re-

lationship to theχPT3 expressions is discussed. We present the equations of motion

for χPTσ and apply them to construct the ‘improved’ energy-momentum tensor in

the effective theory. By extending the functional methods of Gasser and Leutwyler

[13] to include local scale invariance, we calculate a closed form expression for the

one-loop effective action.

Important low-energy constants of the new theory are fixed in Section 4.4, where
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4. Chiral-Scale Perturbation Theory about an Infrared Fixed Point

we derive expressions for theσ mass and effectiveσππ coupling. We show that the

quark mass anomalous dimension at αIR can be related to the πN sigma commu-

tator Σu d and comment on the apparent contradiction between the χPTσ estimate

for the strange sigma term Σs and lattice determinations. We then test the conver-

gence of our chiral-scale expansion by adding dilaton loop diagrams to the standard

analysis ofππ-scattering by Manohar and Georgi [48, 49]. We find that there are two

scales which govern the convergence of the chiral-scale expansion.

In Section 4.5, we derive an explicit relation between the non-perturbative Drell-

Yan ratio and the effective σγγ coupling. We then make use of dispersive analyses

of data on γγ→ π0π0 to obtain the prediction RIR ≈ 5. To our knowledge, this is the

very first determination of RIR in a fully non-perturbative framework of QCD.

Section 4.6 concerns the weak interactions in χPTσ. We construct the leading

order Lagrangian and show that vacuum alignment induces an effective KSσ cou-

pling. By making use of data on γγ → π0π0 and KS → γγ we determine the value

of this coupling and discover that the ΔI = 1/2 rule emerges as a consequence of

χPTσ. We believe that our proposed explanation for this long standing problem

stands as our most important result.

4.1 Historical Overview and Modern Developments

The idea that scale invariance may be an approximate symmetry of the low-energy

strong interactions is certainly not new. Before the formulation of QCD, there was

some interest in the scale symmetric counterpart of PCAC, partially conserved di-

latation current (PCDC), and its phenomenological consequences. It could be com-

bined with existing techniques such as current algebra and low-energy effective La-

grangians, and hence the validity of a particular framework or model tested against

experiment.

Naturally, chiral symmetry featured prominently in these investigations and con-

siderable effort was directed towards the development of models which combined

both symmetries in a consistent formalism. In this regard, the manner in which

chiral symmetry was realized — that is, in the Wigner-Weyl or NG mode — led to

important observable differences, for it is not possible for both modes to be real-

ized simultaneously [130].
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4. Chiral-Scale Perturbation Theory about an Infrared Fixed Point

The starting point of this thesis lies in an approach [15, 16] which considered

the possibility that 〈q̄q 〉vac �= 0 may also be a condensate for scale transformations

in the chiral SU (3)L ×SU (3)R limit. The resulting dilaton1 σ was associated with the

ε(700) resonance whose mass and width could — by analogy with π, K ,η mesons

— conceivably originate from the u , d , s current quark masses. Approximate chiral

and scale invariance [15, 16] implied a dominant derivativeσππ coupling

LpreQCD
σππ = F−1

σ σ
�|∂ π|2+O(m 2

π)|π|2� (4.1)

consistent with a broad 0++ resonance yet with a small effect onππ scattering in the

SU (2)L ×SU (2)R limit ∂ =O(mπ), as observed. Here Fσ is the coupling of σ to the

vacuum via the energy momentum tensor θμν , ‘improved’ [137] when spin-0 fields

are present:

〈σ(q )|θμν |vac〉= (Fσ/3)
�
qμqν − gμνq 2� . (4.2)

Subsequently it was shown [19, 20] that, given the Drell-Yann ratio

R(Q2) =
σ(e+e− → hadrons)
σ(e+e− →μ+μ−) , (4.3)

there is a trace anomaly2 (Rα/6π)FμνF μν , and hence aσγγ coupling

LpreQCD
σγγ =

Rα

6πFσ
σFμνF μν . (4.4)

Interest in dilatons waned when QCD arrived in 1972-73: there had to be a glu-

onic version ∼G a
μνG aμν of the trace anomaly and hence (it seemed) no scale invari-

ant limit and no dilaton. The all-orders formula for QCD followed a few years later

[125, 126, 127, 128, 129],

θμμ =
β (αs )
4αs

G a
μνG aμν +

�
1+γm (αs )

� ∑
q=u ,d ,s

mqq̄q (4.5)

1To avoid confusion with the linear σ-model [131], we reserve the term dilaton and notation σ
for a NG boson due to exact scale invariance in some limit. Furthermore, we are not talking about
scalar gluonium [132, 133, 134, 135], or “walking gauge theories” [136] where β is small but never
zero.

2For electromagnetic field strength Fμν and fine-structure constant α� 1/137.
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O

β Nf = 3 proposal

αs
αIR

Figure 4.1: Proposed three-flavour β function with an infra-red fixed point αIR.

by which time, the ε(700) resonance had faded away.

Nowadays however, the situation is rather different. The lowest QCD resonance

has been reinstated in the PDG tables as f 0(500) and its existence is now generally

accepted.1 As noted in Chapter 2, this change of fortune is largely due to the first-

principles determination of its pole on the second sheet at [17, 18]

m f 0 = 441− i 272 MeV . (4.6)

Consequently, precise knowledge of m f 0 has allowed the radiative coupling of f 0

to two photons to be determined with similar accuracy. Dispersive analyses [139]

applied to data [6] on γγ→π0π0 allow one to extract the two photon width, with the

updated determination [140] given by

Γ( f 0→ γγ) = 1.98+0.30
−0.24 keV . (4.7)

These developments surrounding f 0 and its effect in non-leptonic decays [81],

provide the motivation on our part to propose the existence of an infrared fixed

point αIR in the three-flavour β function. As noted in Chapter 3, this conclusion

refers to low energies, where for N f = 3 light flavours (Fig. 4.1):

β
�
αIR

�
= 0 , N f = 3 . (4.8)

1Although for some controversy on this interpretation, see [138].
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4. Chiral-Scale Perturbation Theory about an Infrared Fixed Point

At the fixed point, Eq. (4.5) implies

θμμ

			
αs=αIR

=
�

1+γm (αIR)
�
(mu ū u +md d̄ d +ms s̄ s )

→ 0 , SU (3)L ×SU (3)R limit (4.9)

and hence a dilaton due to quark condensation, as in the pre-QCD theory [15, 16].

With the explicit breaking term in (4.9) dominated by the strange quark, the obvi-

ous candidate for this state is f 0 and its interactions with π, K ,η are described by a

chiral-scale perturbation theory χPTσ, based on expansions in αs about αIR. This

proposed replacement forχPT3 possesses some desirable features, the foremost be-

ing:

1. Since f 0 is a broad flavour singlet coupled strongly to π, K ,η mesons, f 0 pole

terms dominate low-energy scattering of these mesons, including ππ scat-

tering with1 O(mK ) momenta. We argued in Chapter 2 that in this respect,

χPT3 fails because it classifies these pole terms as non-leading. That prob-

lem is solved in χPTσ because f 0 = σ is part of the NG sector and thus con-

tributes in the leading order (LO) of χPTσ expansions (Fig. 4.2). Note that this

is achieved without upsetting successful LO χPT3 predictions for amplitudes

which do not involve the 0++ channel; that is because the χPT3 Lagrangian

equals the σ→ 0 limit of the χPTσ Lagrangian. In NLO, new chiral loop dia-

grams involvingσ need to be checked.

2. TheΔI = 1/2 rule for K -decays emerges as a consequence of the effective the-

ory, with a dilaton pole diagram (Fig. 4.3) accounting for the large I = 0 am-

plitude in KS→ππ. Here vacuum alignment of the effective potential induces

KS-σ mixing, with an effective coupling g KSσ
fixed by data on π0π0→ γγ and

KS→ γγ.

3. The γγ channel constrains the radiative σ coupling, and hence by employing

results such as (4.7), one obtains a prediction for the non-perturbative Drell-

1But not for O(mπ)momenta in our scheme, because the σππ coupling turns out to be mostly
derivative, as in Eq. (4.1). Ordinary chiral SU (2)L ×SU (2)R perturbation theory χPT2, with pions as
NG bosons and no dilaton, remains valid. Because of the relatively large term ms s̄ s in Eq. (3.55) for
θ
μ
μ , χPT2 is not sensitive to the behaviour of β .
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χPT2
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scale
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Figure 4.2: Scale separations between Nambu-Goldstone (NG) sectors and other
hadrons for each type of chiral perturbation theory χPT discussed in this thesis.
Note that scale separation in the two-flavour theory χPT2 (chiral SU (2) × SU (2),
top diagram) is ensured by limiting extrapolations in momenta p , p ′ to O(mπ) (not
O(mK )). In conventional three-flavour theory χPT3 (middle diagram), there is
no scale separation: the non-NG boson f 0(500) sits in the middle of the NG sec-
tor {π, K ,η}. Our three-flavour proposal χPTσ (bottom diagram) for O(mK ) ex-
trapolations in momenta implies a clear scale separation between the NG sector
{π, K ,η,σ= f 0} and the non-NG sector {ρ,ω, K ∗, N ,η′, . . .}.

Yan ratio at αIR:

RIR ≈ 5 . (4.10)

There are however, a number of subtleties involved in both the construction of

χPTσ and the derivation of results such as those listed above. Given the broad width

of f 0, can one define a sensible power-counting scheme in the effective theory? If

so, what sets the chiral symmetry-breaking scale of the theory? How is the gluonic

anomaly incorporated? The purpose of this chapter is to answer precisely these

questions and present a detailed exposition on the construction of χPTσ.

We shall also use χPTσ to explore phenomenological implications beyond KS→
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+K0
S

π

π

g8,27

σ

gσππgKSσ

Figure 4.3: Role of a QCD dilaton σ = f 0 in KS → ππ with couplings g KSσ
and gσππ

derived from the effective theory χPTσ.

K0
S

γγ

π±, K±

Figure 4.4: Example of leading orderπ±, K ± loop graphs for KS→ γγ, which are finite
in the chiral limit [21, 22].

ππ. For example, in the two-photon channel, we encounter the surprising property

that charged π, K loops — in KS→ γγ (Fig. 4.4) for example — are finite at one-loop,

and thus enter at the same order asσ-pole diagrams. These graphs do not affect the

electromagnetic trace anomaly at αIR, but the pre-QCD result (4.4) for the effective

σγγ coupling must be amended by the replacement RIR→ RIR− 1
2

:

gσγγ =
(RIR− 1

2
)α

3πFσ
. (4.11)

We present a derivation of this result in Sec. 4.5.1.

4.2 Broken Scale Invariance

Our first step is to construct a chiral-scale perturbation theory χPTσ for low-energy

amplitudes expanded about the combined limit

mu ,d ,s ∼ 0 and αs �αIR . (4.12)
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This is the relevant infrared regime where amplitudes are expanded in powers and

logarithms of the external momentum,

O(mK ) {momentum}�χch . (4.13)

Recall that in χPT3, χch is 4πFπ; a similar result is derived for χPTσ in Sec. 4.4.3.

To calculate the terms in the perturbation series, we need to construct the most

general effective Lagrangian consistent with approximate scale and chiral SU (3)L ×
SU (3)R symmetry. This is achieved by employing a set of rules [16, 141, 142] which

generate chiral-scale effective Lagrangians from chiral invariant operators. (Explicit

symmetry-breaking terms are easily accommodated within the formalism.) These

rules were developed long ago and are based on the formal theory of conformal

invariance [130, 141, 143, 144]; in particular, the use of the non-linear realization to

study spontaneous symmetry breaking.1

Scale transformations (or dilatations) correspond to changes in the spacetime

coordinates,

ξ : xμ→ e ξxμ , ξ∈� , (4.14)

under which particle fields ϕ(x ) transform as follows

ξ :ϕ(x )→ e ξdϕ(e ξx ) , (4.15)

where d is the scale dimension ofϕ. If we denote D as the dilatation generator, then

the infinitesimal version of (4.15) reads

δξϕ = i [D,ϕ] = (d +x · ∂ )ϕ . (4.16)

For Lagrangian operators of dimension d , the above transformation law generalizes

in the obvious way:

δξLd = ∂ μ(xμLd )+ (d −4)Ld , (4.17)

and thus we recover the well known result that — up to a total divergence — only

d = 4 operators are allowed in a scale-invariant theory. Note that in these theories,

1For an elegant exposition, see [145, Chapter 3].
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scale invariance of the free-field massless Lagrangians

1
2
∂μφ∂

μφ and i
2
ψ̄
←→
/∂ ψ (4.18)

becomes manifest if one assigns dφ = 1 and dψ = 3
2

for the boson and fermion fields

respectively.

To obtain dynamical information on (exact or broken) scale symmetry we need

the corresponding current. It is well known that the energy-momentum tensor is

not uniquely defined in a quantum field theory. Callan, Coleman, and Jackiw [137]

advocated for a redefinition, or so-called ‘improvement’, of the symmetric Belin-

fante tensor which allows one to define a dilatation current

Dμ(x ) = x νθμν (x ) . (4.19)

The advantage of this procedure is that the divergence of Dμ is given purely by a

sum of scale-breaking d �= 4 Lagrangian operators Ld

∂ μDμ(x ) = θμμ (x ) =
∑

d

(d −4)Ld . (4.20)

Notice that the connection between exact scale invariance and a vanishing trace θμμ

is now manifest. Furthermore, note that the added terms required to obtain the

‘improved’ θμν do not contribute to space integrals of moments like θ0μ and hence

leave the Poincaré generators and their commutation relations intact [146].

The situation when the right-hand side of (4.20) is non-zero forms the basis for

what is known as the PCDC hypothesis [146, 147]. By analogy with PCAC, one as-

sumes that θμμ acts as an interpolating field for f 0, with θμμ matrix elements domi-

nated by the 0++ pole. Many of the pre-QCD results [15, 16] involving dilatons were

derived under this hypothesis.

In non-linear realizations of scale symmetry, a chiral invariant field σ appears

as terms ∼ ∂ σ in covariant derivatives. It transforms as

ξ :σ→σ+ Fσ log |det(∂ x ′/∂ x )| (4.21)

under conformal transformations x → x ′. The infinitesimal transformation law is
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then given by

δξσ= Fσ+x · ∂ σ , (4.22)

and thus the field exp(σ/Fσ) transforms covariantly with d = 1:

δξ[exp(σ/Fσ)] = (1+x · ∂ )exp(σ/Fσ) . (4.23)

By combining powers of eσ/Fσ with chiral Lagrangian operators such as

K[U ,U †] = 1
4

F 2
πTr(∂μU∂ μU †) , (4.24)

or the dilaton kinetic energy Kσ = 1
2
∂μσ∂ μσ, chiral-scale operators of the desired

dimension are formed. For example, these operators become scale invariant with

d = 4 after the rescaling

K→Ke 2σ/Fσ and Kσ→Kσe 2σ/Fσ . (4.25)

Note that σ and φi do not have conventional scaling properties. Indeed, by

(4.21), σ scales inhomogeneously, while the dimension of φi (and hence U ) must

be zero to ensure that the chiral charge algebra of Eq. (2.7) remains consistent un-

der scale transformations1 [16, 142].

4.3 Chiral-Scale Lagrangian

We would now like to construct an effective field theory of approximate scale and

chiral SU (3)L ×SU (3)R symmetry in the physical region

0<αs <αIR . (4.26)

In the infrared regime αs � αIR, the most general effective Lagrangian is composed

of three pieces

L[σ,U ,U †] = :Ld=4
inv +Ld>4

anom+Ld<4
mass : , (4.27)

1Alternatively, if one considers the general transformation law ξ : φi (x )→ e ξdφi (e ξx ), then for
d �= 0, the dilatation current is not chiral invariant [148].
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where each term is characterised by the manner in which they preserve or break

chiral and scale symmetry, and the colons refer to normal ordered operators. Here

Linv is an SU (3)L ×SU (3)R singlet and carries dimension d = 4, while Lmass contains

the quark mass matrix (2.24)

M = 1
2

F 2
π B0diag(mu , md , ms ) , (4.28)

and hence belongs to the (3, 3̄)⊕ (3̄, 3) representation. The operator dimension of

Lmass satisfies 1≤ d mass < 4 as in the pre-QCD theory1 [15, 16] but with

d mass = 3−γm
�
αIR

�
, (4.29)

as a result of expanding about αIR (cf. Eq. (3.51)). The term Lanom simulates the

gluonic anomaly, whose dimension is found by noting that the operator insertion of

G a
μνG aμν corresponds to the β∂ /∂ αs term in the Callan-Symanzik equation

�
μ
∂

∂ μ
+β (αs )

∂

∂ αs
+γm (αs )

∑
q

mq
∂

∂ mq

�
A= 0 (4.30)

for renormalization-group invariant QCD amplitudes A. Taking ∂ /∂ αs , we find

�
μ
∂

∂ μ
+β (αs )

∂

∂ αs
+β ′(αs )

� ∂A
∂ αs

=−∑
q

mq
∂ 2{γm (αs )A}
∂ mq∂ αs

, (4.31)

so for αs �αIR, Lanom has a positive anomalous dimension equal to the slope of β at

the fixed point:

d anom = 4+β ′
�
αIR

�
> 4 . (4.32)

As αs → αIR, the gluonic anomaly vanishes, however this does not uniquely deter-

mine the chiral-scale power counting of terms in Lanom. In principle, we could have

constructed a chiral-scale perturbation theory with mσ and mK as independent ex-

pansion parameters, but that would make sense only if there were a fourth light

quark or different low-energy scales for chiral and scale expansions. Fig. 4.2 pro-

1The upper bound on d mass is required so that PCAC holds when SU (3)L ×SU (3)R symmetry is
spontaneously broken; the lower bound is a consequence of the Källén-Lehmann spectral represen-
tation of the two-point function [149].
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vides clear confirmation that the choice mσ =O(mK ) is sensible.

The above considerations, combined with the machinery developed in Sec. 4.2,

lead to an explicit formula for the χPTσ Lagrangian (4.27) in LO:

Ld=4
inv, LO =

�
c1K+ c2Kσ+ c3e 2σ/Fσ

�
e 2σ/Fσ ,

Ld>4
anom, LO =

�
(1− c1)K+(1− c2)Kσ+ c4e 2σ/Fσ

�
e (2+β

′)σ/Fσ ,

Ld<4
mass, LO = Tr(MU †+UM †)e (3−γm )σ/Fσ , (4.33)

where β ′ and γm are the anomalous dimensions β ′(αIR) and γm (αIR) of Eqs. (4.32)

and (4.29). Note that in the limit σ→ 0, (4.33) reduces to L2 of Eq. (2.23), and thus

LO predictions for χPT3 without a 0++ channel are preserved. (As claimed.)

Characteristically of effective field theories, the low-energy constants ci are not

fixed a priori by symmetry arguments alone. However, the requirement of a stable

vacuum in the σ direction (no tadpoles) implies that c3 and c4 depend on how the

fieldσ is chosen. For expansions aboutσ= 0, all terms linear inσ must cancel:

4c3+(4+β ′)c4 = (γm −3)
�

Tr(MU †+UM †)
 

vac

= (γm −3)F 2
π

�
m 2

K +
1
2

m 2
π

�
. (4.34)

Because of our requirement Lanom =O(∂ 2, M ), both c3 and c4 are O(M ).

4.3.1 Local Scale Invariance

We are now in the position to extend the functional methods of χPT3 to include the

additional invariance under scaling transformations (4.14). This can be achieved by

noting that under local resizings, the particle fields ϕ(x ) and (flat) metric1 gμν obey

the following transformation laws (see e.g. [150])

ϕ(x )→ e dξ(x )ϕ(x ) , g μν → e 2ξ(x )g μν , (4.35)

1Our metric signature is (+−−−).
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where d is the scale dimension (or conformal weight) and ξ(x ) the conformal factor.

The local nature of (4.35) implies the introduction of a covariant derivative

Dμϕ = ∂μϕ+dSμϕ , (4.36)

which transforms as Dμϕ→ e dξ(x )Dμϕ provided the vector field Sμ transforms as

Sμ→Sμ− ∂μξ(x ) . (4.37)

In the case of QCD, we then need to extend the chiral symmetric Lagrangian �L of

Eq. (2.2) to include the additional external field Sμ,

Lext = �L+ q̄γμ(vμ+aμγ5)q − q̄ (s − i pγ5)q +SμDμ , (4.38)

so that the generating functional Z [v, a , s , p ,S] is now defined through the path in-

tegral

exp{iZ [v, a , s , p ,S]}= 〈Ωout|Ωin〉v,a ,p ,s ,S

=

∫
[Dq ][Dq̄ ][DAμ]exp

�
i

∫
d4x Lext

�
. (4.39)

Expanding about the point vμ = aμ = s = p =S = 0 then gives us the Green functions

of QCD in the chiral-scale limit (4.9). For the low-energy representation, it is very

convenient to introduce the field

X = Fσeσ/Fσ , (4.40)

so that DμX = (∂μ+Sμ)X tranforms covariantly with weight d = 1. Note that the chi-

ral SU (3)L×SU (3)R covariant derivative∇μ associated with the U fields is unchanged

by (4.35) since U is a singlet under scale transformations.

Just like the external fields rμ and lμ contained in ∇μ, the external field Sμ is

counted as O(∂ =mK ) in chiral-scale power counting, with field strength

Sμν = ∂μSν − ∂νSμ . (4.41)
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The low-energy representation of Z is then given by

e iZ =

∫
[DU ][DX ]exp

�
i

∫
d4x Leff

�
, (4.42)

and thus the generating functional factorises in the same fashion as χPT3,

Z =Z2+Z4+ . . . . (4.43)

In this formalism, the scale dimension of a given operator can be deduced by

explicitly writing out the metric contractions; for example, the O(∂ 2) terms (DμX )2

and Tr(∇μU∇μU †) have conformal weight 4 and 2 respectively,

(DμX )2 = g μν︸︷︷︸
d=2

DμX︸︷︷︸
d=1

DνX︸︷︷︸
d=1

, Tr(∇μU∇μU †) = g μν︸︷︷︸
d=2

Tr(∇μU︸︷︷︸
d=0

∇νU †︸ ︷︷ ︸
d=0

) . (4.44)

A simple rescaling of the low-energy coefficients c1, . . . , c4 appearing in Lstr

z 1 =
c1

F 2
σ

, z 2 = c2 , z 3 =
c3

F 4
σ

,

z 4 =
1− c1

F 2+β ′
σ

, z 5 =
1− c2

F β ′
σ

, z 6 =
c4

F 4+β ′
σ

, z 7 =
1

F 3−γm
σ

, (4.45)

allows us to rewrite the σ dependence in terms of X , to wit the LO Lagrangian of

local scale and chiral SU (3)L ×SU (3)R symmetry is

Ld=4
LO = z 1KX 2+ z 2

1
2
(DμX )2+ z 3X 4 , (4.46)

Ld>4
LO = z 4KX 2+β ′ + z 5

1
2
(DμX )2X β ′ + z 6X 4+β ′ , (4.47)

Ld<4
LO = z 7Tr(χU †+Uχ†)X 3−γm . (4.48)

4.3.2 Equations of Motion

The equations of motion for the U and X (orσ) fields play a useful role in construct-

ing the trace of θμν in the effective theory and also in applications of the background

field method. Here we simply list the results; a derivation is provided in Appendix
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B. For the U field we get at LO (noting the additional term involving ∂μX ),

0= [(∇μ∇μU )U †−U (∇μ∇μU †)][z 1X 2+ z 4X 2+β ′]

+
4

F 2
π

z 7[Uχ†−χU †+ 1
3

Tr(χU †−Uχ†)]X 3−γm

+[(∇μU )U †−U (∇μU †)][2z 1X +(2+β ′)z 4X 1+β ′]∂μX , (4.49)

while the X field satisfies

0= (DμDμX )[z 2+ z 5X β ′]+β ′z 5
1
2
(DμX )2X β ′−1−K[2z 1X +(2+β ′)z 4X 1+β ′]

−4z 3X 3− (4+β ′)z 6X 3+β ′ − (3−γm )z 7Tr(χU †+Uχ†)X 2−γm . (4.50)

4.3.3 Trace Anomaly in the Effective Theory

Because of Eqs. (4.20) and (4.32), the critical exponent β ′ normalises the gluonic

term in the trace of the effective energy-momentum tensor,

θμμ

			
eff
= :β ′Ld>4

anom− (1+γm )Ld<4
mass : (4.51)

We derive the explicit expression for (4.51) by adapting the prescription of Coleman

et al. [137] to nonlinear realizations of scale symmetry. Consequently, derivative

terms in the canonical energy-momentum tensor are scaled by the factors

ψ1 = z 1X 2+ z 4X 2+β ′ and ψ2 = z 2+ z 5X β ′ , (4.52)

while the ‘improvement’ term for spin-0 fields takes the form

Iμν [X ] = 1

6
(gμνD2−DμDν )

�
z 2X 2+

2

2+β ′ z 5X 2+β ′
%

. (4.53)

The coefficients in Iμν are fixed by the requirement that the trace be expressed in

terms of explicit scale-breaking operators (Eq. 4.20). By combining these factors in

the appropriate manner, we arrive at the LO expression for the ‘improved’ energy-
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momentum tensor

θμν
		

eff
= :

� 1
2

F 2
πTr(∇μU∇νU †)− gμνK�

ψ1− gμνTrz 7(χU †+Uχ†)

+Iμν + �
DμX DνX − gμν

1
2
(DαX )2

�
ψ2− gμν

�
z 3+ z 6X β ′�X 4 : , (4.54)

with the trace obtained via the X equations of motion:

θμμ

			
eff
= :β ′Ld>4

anom− (1+γm )Ld<4
mass :

= :β ′
�

z 4KX 2+β ′ + z 5
1
2
(DμX )2X β ′ + z 6X 4+β ′�

− (1+γm )z 7Tr(MU †+UM †)X 3−γm : . (4.55)

4.3.4 The Next-to-Leading Order Lagrangian

The technique used to obtain Eq. (4.33) from χPTσ also works for O(∂ 4, M∂ 2, M 2)

terms in L (and in Lweak below). At next to leading order, the most general effective

Lagrangian

LNLO[U ,U †, X ] =:Ld=4
NLO+Ld>4

NLO+Ld<4
NLO : (4.56)

contains 38 distinct terms, where Ld=4
NLO is assigned unprimed low-energy constants

{l i , hi , si }, Ld>4
NLO primed {l ′i , h ′i , s ′i }, and Ld<4

NLO double-primed {l ′′i , h ′′i , s ′′i }. To keep
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track of the scale dimensions we write out the metric factors for each term:

Ld=4
NLO = l 1[g μνTr(∇μU∇νU †)]2+ g μαg νλ�l 2Tr(∇μU∇νU †)Tr(∇αU∇λU †)

+ l 3Tr(∇μU∇αU †∇νU∇λU †)
�
+ g μν�l 4Tr(∇μU∇νU †)Tr(χU †+Uχ†)

+ l 5Tr(∇μU∇νU †(χU †+Uχ†))
�

X 2+
�

l 6Tr(χU †+Uχ†)2

+ l 7Tr(χU †−Uχ†)2+ l 8Tr(Uχ†Uχ†+χU †χU †)
�

X 4

− g μαg νλ�i l 9Tr( f R
μν∇αU∇λU †+ f L

μν∇αU †∇λU )− l 10Tr(U f L
μνU † f R

αλ)

−h1Tr( f R
μν f R

αλ+ f L
μν f L

αλ)
�
+h2Tr(χχ†)X 4+h3 g μαg νλSμνSαλ

+h4 g μαg νλSμνTr( f R
αλ+ f L

αλ)+ s1 g μνDμX DνX Tr(χU †+Uχ†)

+ s2 g μαg νλSμνTr(∇αU∇λU †) , (4.57)

Ld>4
NLO = X β ′Ld=4

NLO

			{l i ,hi ,si }↔{l ′i ,h ′i ,s ′i }
, (4.58)

Ld<4
NLO = X 1−γm

�
l ′′4 Tr(∇μU∇μU †)Tr(χU †+Uχ†)

+ l ′′5 Tr(∇μU∇μU †(χU †+Uχ†))
�
+X 3−γm

�
l ′′6 Tr(χU †+Uχ†)2

+ l ′′7 Tr(χU †−Uχ†)2+ l ′′8 Tr(Uχ†Uχ†+χU †χU †)+h ′′2 Tr(χχ†)
�

. (4.59)

The requirement that the NLO expression above reduces to the χPT3 result [13]

in the σ → 0 limit (or equivalently X → Fσ) implies that the coefficients are not

totally independent. By comparison with L4 from Eq. (2.46), we find

l i + l ′i F β ′
σ = L i , i = 1, 2, 3, 9, 10 , (4.60)

h1+h ′1F β ′
σ =H1 , (4.61)

l i + l ′i F β ′
σ + l ′′i F 1−γm

σ = L i , i = 4, . . . , 8 , (4.62)

h2+h ′2F β ′
σ +h ′′2 F 1−γm

σ =H2 . (4.63)

Note that to the extent allowed by data for soft-σ amplitudes, O(∂ 4) coefficients can

be predicted by saturation by non-Goldstone resonances — like χPT3 [46], but with

f 0 excluded.
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4.3.5 The One-Loop Effective Action

We now extend the method of Gasser and Leutwyler [13] so that the effective ac-

tion is computed by expanding about spacetime-dependent solutions Ū (x ) = u 2(x )

and X̄ (x ) to the classical equations of motion (4.49-4.50). In χPTσ, we consider the

expansion in terms of fluctutation fields ξ= ξiλi and ρ,

U = u e iξu = u (1+ iξ− 1
2
ξ2+ . . .)u , (4.64)

X = X̄ e ρ = X̄ (1+ρ+ 1
2
ρ2+ . . .) , (4.65)

where cubic or higher order terms in the fluctuation fields are not shown explicitly.

To quadratic order in ξ and ρ, the following Lagrangian operators read (where d is

some scale dimension)

Tr(∇μU∇μU †)X d = Tr(∇μŪ∇μŪ †)X̄ d + i LξX̄ d +dρTr(∇μŪ∇μŪ †)X̄ d

+ i dρLξX̄ d +QξX̄ d + 1
2

d 2ρ2Tr(∇μŪ∇μŪ †)X̄ d , (4.66)

Tr(χU †+Uχ†)X d = Tr(χŪ †+Ūχ†)X̄ d + i Tr(ξΣ−)X̄ d

+dρTr(χŪ †+Ūχ†)X̄ d + i dρTr(ξΣ−)X̄ d − 1
2

Tr(ξ2Σ+)X̄ d

+ 1
2

d 2ρ2Tr(χŪ †+Ūχ†)X̄ d , (4.67)

1
2
(DμX )2X d = 1

2
(DμX̄ )2X̄ d +(2+d )ρ 1

2
(DμX̄ )2X̄ d +(DμρDμX̄ )X̄ d+1

+ 1
2
(d +2)2ρ2 1

2
(DμX̄ )2X̄ d +(2+d )ρ(DμρDμX̄ )X̄ 1+d

+ 1
2
(Dμρ)2X̄ 2+d , (4.68)

where we have defined the following,

Σ± = uχ†u ±u †χu † ,

Lξ = Tr(∇μŪ †∇μ(uξu ))−Tr(∇μ(u †ξu †)∇μŪ ) , (4.69)

Qξ = Tr(∇μ(u †ξu †)∇μ(uξu ))− 1
2

Tr(∇μŪ †∇μ(uξ2u ))− 1
2

Tr(∇μŪ∇μ(u †ξ2u †)) .

(4.70)

The terms linear in ξ and ρ vanish from the lowest order action by the equations of

motion; see Appendix C. However, one must keep track of the mixed terms of O(ξρ).
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Collecting each of the quadratic pieces gives

S
		
ξ2 =

∫
d4x

�
1
4

F 2
πQξ(z 1X̄ 2+ z 4X̄ 2+β ′)− z 7

1
2

Tr(ξ2Σ+)X̄ 3−γm

�
, (4.71)

S
		
ξρ
=−i

∫
d4x ρ

�
1
4

F 2
πLξ(2z 1X̄ 2+(2+β ′)z 4X̄ 2+β ′)+ (3−γm )z 7Tr(ξΣ−)X̄ 3−γm

�
,

(4.72)

S
		
ρ2 =

∫
d4x

�− 1
2
ρDμDμρ(z 2X̄ 2+ z 5X̄ 2+β ′)+ 1

2
ρ2�K̄(4z 1X̄ 2+ z 4(2+β ′)2X̄ 2+β ′)

+16z 3X̄ 4+(4+β ′)2z 6X̄ 4+β ′ − 1
2
(DμDμX̄ )(2z 2X̄ +(2+β ′)z 5X̄ 1+β ′)

+ 1
2
(DμX̄ )2(2z 2+(2+β ′)z 5X̄ β ′)+ (3−γm )2Tr(χŪ †+Ūχ†)X̄ 3−γm

��
=

∫
d4x

�− 1
2
(z 2X̄ 2+ z 5X̄ 2+β ′)ρDμDμρ+ 1

2
Λρρ2

�
, (4.73)

where Λρ denotes the coefficient of the quadratic term in ρ which does not involve

any derivatives. Following [13], we can write the expressions (4.71-4.72) in a more

compact formalism by introducing the anti-hermitian matrices

Γμ = 1
2
[u †,∂μu ]− 1

2
i u †rμu − 1

2
i u lμu † , (4.74)

Δμ = 1
2

u †∇μŪu † =− 1
2

u∇μŪ †u , (4.75)

and defining a covariant derivative for ξ:

dμξ= ∂μξ+[Γμ,ξ] . (4.76)

In this notation, one finds

Lξ =−4Tr(Δμd μξ) , (4.77)

Qξ = Tr(dμξd μξ− [Δμ,ξ][Δμ,ξ]) , (4.78)
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and by shifting the derivative dμ through integration by parts, we find

S
		
ξ2 =−

∫
d4x

�
1
4

F 2
πTr(ξd μdμξ+[Δμ,ξ][Δμ,ξ])(z 1X̄ 2+ z 4X̄ 2+β ′)

+ z 7
1
2

Tr(ξ2Σ+)X̄ 3−γm − 1
8

F 2
πTr(ξ2)

�
(2z 1+(2+β ′)(1+β ′)z 4X̄ β ′)(∂μX̄ )2

− (2z 1X̄ +(2+β ′)z 4X̄ 1+β ′)∂ μ∂μX̄
��

, (4.79)

S
		
ξρ
=−i

∫
d4x ρ

�
F 2
πTr(Δμd μξ)(2z 1X̄ 2+(2+β ′)z 4X̄ 2+β ′)

− (3−γm )z 7Tr(ξΣ−)X̄ 3−γm

�
. (4.80)

By writing out the components ξi

ξ= ξiλi , Tr(λiλj ) = 2δi j , (4.81)

and defining

Ai jξj =
F 2
π

4
(z 1X̄ 2+ z 4X̄ 2+β ′)d μdμξ

i +Λi jξj , (4.82)

Λi j =
F 2
π

8

�
Tr([λi ,Δμ][λj ,Δμ])(z 1X̄ 2+ z 4X̄ 2+β ′)+

z 7

F 2
π

Tr({λi ,λj }Σ+)X̄ 3−γm

−2δi j �(2z 1+(2+β ′)(1+β ′)z 4X̄ β ′)(∂μX̄ )2

− (2z 1X̄ +(2+β ′)z 4X̄ 1+β ′)∂ μ∂μX̄
��

, (4.83)

B = (z 2X̄ 2+ z 5X̄ 2+β ′)DμDμρ−Λρ , (4.84)

C i =−2(3−γm )z 7Tr(λiΣ−)X̄ 3−γm , (4.85)

Diμ = 2F 2
πTr(Δμλi )(2z 1X̄ 2+(2+β ′)z 4X̄ 2+β ′) , (4.86)

the quadratic terms in ξ and ρ can be collected in the formal expression

S1−loop =− 1
2

∫
d4x

�
ξi Ai jξj +ρBρ+ iρ[ξi C i +Diμdμξ

i�� , (4.87)
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where C i and Diμ are vectors which are independent of ξ and ρ. Collecting the

fluctuation fields into a vector v ᵀ = (ξa ,ρ) further simplifies the action,

S1−loop =− 1
2

∫
d4x v ᵀO v , O =

&
Ai j iC i

i D jμdμ B

'
. (4.88)

Now, the 1-loop effective action Z 1−loop is in terms of a generating functional,

e iZ1−loop =

∫
[Dξ][Dρ]exp

�− 1
2

i

∫
d4x v ᵀO v

�
, (4.89)

so Wick rotating and performing the Gaussian integral gives the formal result

Z 1−loop = 1
2

i ln detO , (4.90)

thereby reducing the analysis to calculating the eigenvalues of O .

We have not been able to regularize detO . The standard heat kernel method is

typically applied to polynomial field theories, without the added complication aris-

ing from the off-diagonal terms in O . One possible way forward is to block expand

the determinant, i.e.

detO = B det Ai j +D jμdμdetC i , (4.91)

and then isolate the divergences from detAi j and detC i through standard methods.

Clearly this warrants further investigation.

4.4 Strong Interactions

In phenomenological applications of χPTσ presented in this thesis, we either work

in the tree approximation or study one-loop amplitudes which are finite in the chiral-

scale limit. Consequently, either (4.33) or (4.46-4.48) may be used, although we feel

that the former description makes the NG nature of σ rather clear. For this reason,

we shall adopt (4.33) as the starting point in all the phenomenological analyses we

discuss.

To that end, we take Lstr and expand eσ/Fσ to collect terms quadratic in σ and
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thus obtain the dilaton mass

m 2
σF 2

σ = F 2
π (m

2
K +

1
2

m 2
π)(3−γm )(1+γm )−β ′(4+β ′)c4 . (4.92)

Note that at αIR, σ becomes a true Goldstone boson in the SU (3)L × SU (3)R limit

because of our requirement that c4 =O(M ). Similarly, we find for the effective gσππ

coupling

Lσππ =
��

2+(1− c1)β ′
�|∂ π|2− (3−γm )m 2

π|π|2�σ/(2Fσ) . (4.93)

Both (4.92) and (4.93) resemble pre-QCD results [15, 16, 142, 151] but have extra glu-

onic terms proportional to β ′. Precluding any accidental fine-tuning in the theory,

we assume that the unknown coefficient 2+(1− c1)β ′ in Eq. (4.93) does not vanish.

This preserves the key feature of the original work, thatLσππ is mostly derivative: for

soft ππ scattering (energies∼mπ), the dilaton pole amplitude is negligible because

theσππ vertex is O(m 2
π), while theσππ vertex for an on-shell dilaton

gσππ =−�2+(1− c1)β ′
�

m 2
σ/(2Fσ)+O(m 2

π) (4.94)

is O(m 2
σ), consistent withσ being identified with the broad resonance f 0.

4.4.1 Sigma Terms

It is instructive to examine how the decomposition of the nucleon’s mass differs

between χPT3 and χPTσ. In χPT3, there is no infrared fixed point and thus no limit

in which the gluonic piece of the trace anomaly may be considered small. This fact

underlies the widely held belief that the gluonic anomaly is responsible for most of

the nucleon’s mass,

M N = 〈N |θμμ |N 〉 =χPT3

β (αs )
4αs

〈N |G a
μνG aμν |N 〉+O

�
m 2

K

�
. (4.95)

Note that this interpretation relies on the implicit assumption that f 0(500) pole am-

plitudes∼ 1/m 2
f 0

provide a negligible contribution to M N . Since the f 0 mass is much

lighter than other members of the non-Goldstone sector, a negligible effect can be

obtained only if f 0 couples weakly to the operators G a
μνG aμν and q̄q . On the other

hand, we have seen in Chapter 2 that the small f 0 mass means that χPT3 has no
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θμμ

N N

σ

gσNN

Figure 4.5: Dominantσ-pole diagram in χPTσ for 〈N |θμμ |N 〉.

scale separation, which is a problem because f 0 couples strongly to other particles.

Now consider the relation between hadronic masses and θ
μ
μ in χPTσ. Since

β (αs ) is small near αIR, the gluonic trace anomaly is small as an operator, but it can

produce large amplitudes when coupled to dilatons. For example, consider how M N

arises in χPTσ (Fig. 4.5). From Eq. (4.2) we see that like other pseudo-NG bosons,σ

couples to the vacuum via the divergence of its symmetry current ∂ μDμ = θ
μ
μ ,

〈σ|θμμ |vac〉=−m 2
σFσ =O(m 2

σ) , mσ→ 0 . (4.96)

The nucleon remains massive in the scaling limit because theσN N coupling

LσN N = gσN NσN̄ N (4.97)

and crossing symmetry imply that the mσ dependence in (4.96) is cancelled by a

σ-pole at zero momentum transfer (Fig. 4.5). Explicitly, we have

M N = 〈N |θμμ |N 〉= 〈N N |θμμ |vac〉
� 〈N N |σ〉 i

q 2−m 2
σ

				
q 2=0

〈σ|θμμ |vac〉
�= 0 , mσ→ 0 . (4.98)

This corresponds to the well known analogue

− FσgσN N �M N (4.99)

of the Goldberger-Trieman relation (2.51).

Now consider contributions to Eqs. (4.96) and (4.99) from the gluonic anomaly
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and the quark mass term in Eq. (3.55) for θμμ . In general, there are two independent

low-energy constants FG 2 and Fq̄q , defined by

β (αs )
(
(4αs )〈σ|G a

μνG aμν |vac〉=−m 2
σFG 2

{1+γm (αs )}
∑

q=u ,d ,s

mq 〈σ|q̄q |vac〉=−m 2
σFq̄q . (4.100)

Evidently, both constants can contribute to

Fσ = FG 2 + Fq̄q �= 0 (4.101)

and hence to

M N � FG 2 gσN N + Fq̄q gσN N (4.102)

in the chiral-scale limit (3.56). That is because m 2
σ is O(m 2

K ) =O(mq ) in χPTσ.

In χPTσ, we can relate the ratio FG 2

(
Fq̄q to the mass dimension

d mass = 3−γm
�
αIR

�
, (4.103)

and the πN sigma term

Σu d = 〈N |�mu ū u +md d̄ d
�|N 〉conn . (4.104)

The explicit formula is found by noting that the state |σ〉 in Eq. (4.100) approximates

an SU (3)V singlet

〈σ|ū u |vac〉 ≈ 〈σ|d̄ d |vac〉 ≈ 〈σ|s̄ s |vac〉 , (4.105)

so for LOσ-pole amplitudes, we find

Fq̄q gσN N ≈ �
1+γm (αIR)

��
1+ms/2m̂

�
Σu d , (4.106)

and hence
M N�

1+ms/2m̂
�
Σu d

≈ �
1+γm (αIR)

��
1+ FG 2

(
Fq̄q

�
. (4.107)

Note that in χPTσ, the range of estimates of Σu d from lattice QCD [152, 153]

30 MeV�Σu d � 75 MeV (4.108)
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constrain the right-hand side of Eq. (4.107):

1� �
1+γm (αIR)

��
1+ FG 2

(
Fq̄q

�� 2.5 , (4.109)

Since 0 ≤ 1+ γm < 3, Eq. (4.109) would appear to support χPTσ in that the ratio

F 2
G /Fq̄q is not large, indicating that 〈q̄q 〉vac sets the scale of the chiral-scale expan-

sion.

We note however, that lattice methods have not yet been able to isolate the

f 0(500) resonance [154, 155]. The difficulty is due to the reliance on phase-shift

analyses of lattice data, which as we have seen in Chapter 2 is complicated by the

f 0’s broad width. That may explain why lattice estimates∼ 50 MeV [152, 153] for the

strange sigma term1

Σs = 〈N |ms s̄ s |N 〉conn (4.110)

contradict the χPTσ expectation that Σs be rather large. It is likely that the SU (3)V
singlet f 0 plays an important role in this matrix element. It may also explain why it

is hard to obtain conclusive results for the three-flavour β -function. So we do not

believe that current lattice results provide evidence either for or against χPTσ.

4.4.2 Determining Fσ

To make quantitative predictions from χPTσ, we need (like Fπ in χPT3) an estimate

for the low-energy constant Fσ. The simplest way to do this is to compare N N -

scattering with the relation (4.99)

− FσgσN N ≈M N . (4.111)

The best analysis to date is due to Calle Cordon and Ruiz Arriola [156, 157], who

combine the ‘one boson exchange’ potential with large-Nc arguments. They find

from the N N -scattering data a mean value gσN N ≈ 9 and hence Fσ ≈−100 MeV, but

with an uncertainty which is either model dependent or very large (≈ 70%). That

1We note that the distinction between ‘sea’ and ‘valence’ quarks is a parton concept which is only
valid in the ultraviolet region (2.52) where the relevant scale is ΛQCD.
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accounts for the large uncertainty in

1 1
2
� |2+(1− c1)β ′|� 6 (4.112)

when we compare Eq. (4.94) with |gσππ|= 3.31+0.35−0.15 GeV [18] and mσ ≈ 441 MeV.

4.4.3 The Scale of the Chiral-Scale Expansion

For any effective field theory, the validity of the perturbative expansion depends

crucially on a clear separation of scales between the effective and heavy degrees of

freedom. We have seen in Chapter 2 that for χPT3 expansions, the series diverges

whenever the f 0 is present with O(mK )momenta because this state is not part of the

NG sector. This is to be compared with χPTσ (Fig. 4.2), where the rules for counting

powers of mK are changed: f 0 = σ pole amplitudes are promoted to LO (NLO in

χPT3). This fixes the LO problem for amplitudes involving 0++ channels and O(mK )

extrapolations in momenta. At the same time, χPTσ preserves the LO success of

χPT3 elsewhere.

We can test the convergence of our chiral-scale expansion by adding σ-loop di-

agrams to the standard analysis [13, 48, 49] for χPT3. These involve the (as yet)

undetermined constants β ′,γm , c1...4: for example, corrections to gσππ involve the

σσσ and σσππ vertices derived from Eq. (4.33). However, when we apply the di-

mensional arguments of Manohar and Georgi [13, 48, 49] to our scheme, we find

that there are two χPTσ scales χπ = 4πFπ and χσ = 4πFσ, which are numerically

similar (Fσ ∼ Fπ).

The calculation is a straightforward analysis of ππ-scattering at NLO, which in

χPTσ involves one-loop graphs of the type shown in Fig. 4.6. Approximate chiral

and scale symmetry ensures that any quadratic divergences arising from the loop

amplitudes simply renormalize the low-energy constants c1...4 in L. There are also

logarithmic corrections to consider, with each diagram in Fig. 4.6 contributing a
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π

ππ

π

π,K
σ

Figure 4.6: Example of next-to-leading graphs for ππ-scattering in the chiral-scale
expansion of χPTσ. Each vertex is generated by L in leading order. There are ad-
ditional diagrams (not shown) involving the self-energy of the σ propagator, and
internal σ-lines which connect one external π-leg to another. Similar diagrams are
found for the t - and u -channels.

factor of order1

p 4

F 4
π

1

(4π)2
log

)
Λ2

μ2

*
,

p 4

F 2
πF 2

σ

1

(4π)2
log

)
Λ2

μ2

*
,

p 4

F 4
σ

1

(4π)2
log

)
Λ2

μ2

*
, (4.113)

where Λ is some ultraviolet cutoff which preserves chiral symmetry, μ is the renor-

malization scale, and the 4π are geometric factors associated with loop integrals.

These contributions are to be compared against the amplitudes generated from

higher derivative operators (4.59) such as

l 1Tr(∇μU∇νU †∇μU∇νU †) and l ′4Tr(∇μU∇μU †)Tr(χU †+Uχ†)e β
′σ/Fσ (4.114)

where the coefficients l 1 ∼ F 2
π/χ

2
π and l ′4 ∼ 1/χ2

σ are suppressed by two independent

mass scales χπ and χσ. These operators yields diagrams such as those in Fig. 4.7,

with amplitudes of order

p 4

F 2
πχ

2
π

and
p 4

F 2
σχ

2
σ

. (4.115)

By the arguments of Georgi and Manohar [48, 49], changes inμ can be compensated

by a redefinition of the couplings (F 2
π/χ

2
π) or (1/χ2

σ). For example, an O(1) change in

μ is accompanied by a change of order (4π)−1 in (F 2
π/χ

2
π). Thus, we find the following

relations

4πFσ =χσ , and 4πFπ =χπ , (4.116)

1In general, one must also take into account powers of m 2
K . To streamline the argument however,

we will concentrate on just the momentum dependence.
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π π

ππ

σ

Figure 4.7: Amplitudes generated by next-to-leading Lagrangian operators such as
(4.114), with a small square labelling the O(p 4) vertex from LNLO.

which are numerically similar,

4πFσ ≈ 4πFπ � 1 GeV , (4.117)

and hence χPTσ possesses a suitable separation of scales between mσ and the non-

NG sector.

It is important to note that the small value of Fσ�χπ,σ implies aσ width

Γσππ ≈ |gσππ|
2

16πmσ

∼ m 3
σ

16πF 2
σ

∼ 250 MeV (4.118)

which is numerically misleading: Γσππ is O(m 3
σ) and hence non-leading relative to

the mass mσ. So tree diagrams produce the leading order of χPTσ, as in χPT2 and

χPT3. Beyond leading order, and in degenerate cases like the KL–KS mass differ-

ence, methods used to estimate corrections at the Z 0 peak [158, 159, 160, 161, 162,

163] and the ρ resonance [164]may be necessary.

4.5 Electromagnetic Interactions

As in χPT3, electromagnetic interactions can be studied in χPTσ by setting the ex-

ternal fields lμ and rμ to the values in Eq. (2.34). In the absence of semi-leptonic

weak interactions, the covariant derivative becomes

∇μU = ∂μU + i e Aμ[Q ,U ] . (4.119)
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4.5.1 The Electromagnetic Trace Anomaly

It has been shown [19, 20] that there is an anomalous Ward identity which relates

the three-point vertex

Δαβ (p ,−p ) =

∫
d4x

∫
d4y e i p ·x T 〈Jα(x )Jβ (0)θμμ (y )〉vac (4.120)

to the photon vacuum polarisation

Παβ (p ,−p ) = i

∫
d4x e i p ·x T 〈Jα(x )Jβ (0)〉vac , (4.121)

where Jα is the electromagnetic current. The existence (or absence) of an infrared

fixed point does not affect the calculation of the anomaly [19, 20],

θμμ

			
strong+e′mag

= θμμ +
Rα

6π
FμνF μν , (4.122)

but it does alter the precise relationship between RIR and gσγγ. The purpose of this

section is to derive the correct result (4.11) for χPTσ.

We begin by defining the effectiveσγγ coupling by the interaction Lagrangian1

Lσγγ = 1
2

gσγγσFμνF μν . (4.123)

As in the pre-QCD calculation, we can expect that the quantities RI R and gσγγ are

related via the matrix element

〈γ1,γ2|θμμ (0)|vac〉= (ε1 ·ε2k1 ·k2−ε1 ·k2ε2 ·k1)F (s ) , (4.124)

where s = (k1+ k2)2 is the usual Mandelstam variable. Our task is to calculate both

sides of this expression in the limit of zero momentum transfer. The expression for

1The sign of Lσγγ must be chosen to be consistent with the positivity of the form factors which
arise in deep-inelastic scattering [109]. In our conventions, the relation 〈σ|θμμ (0)|0〉 = −m 2

σFσ is
negative, hence the difference in sign between our interaction Lagrangian and that of [20].
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θμμ

θμμ

σ

π±, K±

π±, K±

(a)

θμμ θμμ θμμ θμμ

θμμ θμμ θμμ

(b) (c) (d) (e)

(f) (g) (h) (i)

γ γ

Figure 4.8: Leading order contributions to 〈γ1,γ2|θμμ (0)|vac〉 in χPTσ. Diagram (a)
represents the contact term proportional to gσγγ, while diagrams (d), (e), (h), and
(i) are each accompanied by an additional crossed amplitude (not shown). The ver-
tices for the θμμ insertions are derived from Eq. (4.55) and given in Appendix A.

the form factor F (s ) is known [19, 20],

F (0) =−1

3
πα

∫
d4x

∫
d4y (x · y )T 〈J β (x )Jβ (0)θμμ (y )〉vac

=
2Rα

3π
, (4.125)

where Jμ is the electromagnetic current. Note that like other observables in χPTσ,

the right-hand side of (4.125) reduces to 2RIRα/3π in the infrared regime as a result

of expanding in αs about αIR. The remaining calculation of 〈γ1,γ2|θμμ (0)|vac〉 follows

by considering each the following contributions shown in Fig. 4.8:

1. A contact term forσ→ γγ.

2. 12 one-loop diagrams (6 for both π± and K ±) coupled to a σ-pole at zero-

momentum. These graphs sum to a finite value in the chiral-scale limit.

3. Similarly, the 12 one-loop diagrams coupled directly to the vacuum via θμμ

sum to a finite answer.
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In the first two cases, θμμ acts on |vac〉 to create an on-shellσ, and thus the amplitude

due to theσ-pole factorises,

〈γ1,γ2|σ(s )〉
� i

s −m 2
σ

�〈σ(s )|θμμ (0)|vac〉 . (4.126)

The contact term contributes an amplitude

(ε1 ·ε2k1 ·k2−ε1 ·k2ε2 ·k1)(−2i gσγγ) (4.127)

to the matrix element 〈γ1,γ2|σ(s )〉, while the loop graphs coupled toσ and θμμ share

a similar Lorentz structure. Loop graphs of this type have been considered in χPT3

for processes such as KS → γγ [21, 22], KL → π0γγ [2], and π0π0 → γγ [4, 64]. The

techniques employed therein are readily extended toχPTσ and thus our calculation

is of a similar nature. By explicitly calculating the diagrams (b)-(e) from Fig. 4.8 (see

Appendix D), we find

Aμν
φ =

�
g μνk1 ·k2−k μ

2 k ν
1

�
Gφ(s ) , (4.128)

where forφ =π±, K ±, the scalar part is

Gφ(s ) =
iα

πFσ

�
m 2

φ[1−γm − (1− c1)β ′]
��1+2Iφ

s

�
. (4.129)

Here Iφ is the integral over Feynman parameters,

Iφ =

∫ 1

0

d z 1d z 2θ (1− z 1− z 2)
m 2

φ − z 1(1− z 1)k 2
1 − z 2(1− z 2)k 2

2

2z 1z 2(k1 ·k2)+ z 1(1− z 1)k 2
1 + z 2(1− z 2)k 2

2 −m 2
φ + iε

,

(4.130)

whose solution is given in [4]. From a completely analogous calculation of the am-

plitudes in diagrams (f)-(i) we find

Bμν
φ =

�
g μνk1 ·k2−k μ

2 k ν
1

�
G̃φ(s ) , (4.131)

where

G̃φ(s ) =
α

2π

�
2m 2

φ[1−γm − (1− c1)β ′]−4m 2
φ

��1+2Iφ
s

�
. (4.132)

The final step is to relate Gφ(s ) and G̃φ(s ) to (4.125). This is achieved by Taylor ex-
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panding the integrand of Iφ for small s ,

1+2Iφ =− s

12m 2
φ

+O(s 2) , (4.133)

and noting that each of the π± and K ± contributions sum to give

Gπ+K (0) =− iα

6π

�
1−γm − (1− c1)β ′

�
Fσ

,

G̃π+K (0) =− α

12π

�
2[1−γm − (1− c1)β ′]−4

�
. (4.134)

Comparison with Eq. (4.127) yields

〈γ1,γ2|θμμ (0)|vac〉= (ε1 ·ε2k1 ·k2−ε1 ·k2ε2 ·k1)

× �
G̃π+K (0)+ (Gπ+K (0)−2i gσγγ)(i m 2

σ)
−1(−m 2

σFσ)
�

= (ε1 ·ε2k1 ·k2−ε1 ·k2ε2 ·k1)
�
α/3π+2gσγγ

�
= (ε1 ·ε2k1 ·k2−ε1 ·k2ε2 ·k1)2RIRα/3π , (4.135)

and hence the desired result

gσγγ =
α

3πFσ

�
RIR− 1

2

�
. (4.136)

4.5.2 The Drell-Yan Ratio in the Infrared Limit

A prediction for RIR can be obtained by considering dispersive analyses of data which

involve f 0 → γγ. Currently, the most precise data comes from a measurement of

the γγ → π0π0 cross-section by the Crystal Ball Collaboration [6]. Unfortunately,

the broad width of f 0(500)makes a direct determination of the width Γγγ from this

experiment (and others) either unfeasible or subject to large model-dependent un-

certainties (see “Note on Scalar Mesons Below 2 GeV" in [3]). Instead, one must

combine the narrow width formula for the scattering amplitude Aγγ

Γγγ =
|Aγγ|2

32πmσ

, (4.137)
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with precise knowledge from ππ-scattering [17, 18] to predict the residue at the f 0-

pole in γγ→ π0π0 [139, 140, 165]. The most precise determination via this method

is [140]

Γγγ = 1.98+0.30
−0.24 keV . (4.138)

As noted in Eq. (4.118), the width Γσππ is O(m 3
σ) and thus NLO. So in the LO ofχPTσ,

the narrow width approximation of Eq. (4.137) is valid.

We shall use these results to estimate RIR. The relevant diagrams for Aγγ are

essentially those shown in (a-e) of Fig. 4.8, but withσ treated as an asymptotic state.

Evidently, the results in Eqs. (4.129) and (4.127) provide us with Aγγ,

Aγγ = (ε1 ·ε2k1 ·k2−ε1 ·k2ε2 ·k1)(Gπ(s )+GK (s )−2i gσγγ) . (4.139)

Although this expression contains four unknown parameters γm ,β ′, c1, and gσγγ,

the first three appear only in the contribution from the π±, K ± loops, in the combi-

nation

C = 1−γm − (1− c1)β ′ = 3−γm︸ ︷︷ ︸
1≤d mass<4

−(2+(1− c1)β ′) . (4.140)

It should be possible to match the Lagrangian vertices which give rise to these terms

to dispersive analyses of data on γγ→π0π0. Presumably, the dispersive effects from

the π±, K ± loops are damped relative to the contact term involving gσγγ and hence

may be neglected. It is left as further investigation to establish this quantitatively.

To proceed, we note that — provided the sign of (2+ (1− c1)β ′) is positive — these

dispersive contributions are consistent with zero by Eq. (4.112), and so we shall as-

sume C � 0. This allows us to extract gσγγ via determinations of Γγγ. From (4.138),

the result is

|gσγγ|= 0.034±0.003 GeV−1 , (4.141)

where the uncertainties have been added in quadrature. Within the large uncer-

tainty due to that in Fσ, we find:

RIR ≈ 5 . (4.142)

Note that this constitutes a fully non-perturbative prediction at αIR and should not
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be compared against the free-field formula for N f = 3

R(αs = 0) =Nc

∑{quark charges}2 = 2 (4.143)

in the ultraviolet asymptotic limit (Fig. 4.9).

β

αs

αIR

RUV = 2 RIR ≈ 5

Nf = 3

Figure 4.9: Proposed β -function with comparison between determinations of the
Drell-Yan ratio in the ultraviolet RUV and infrared RIR regimes. Since each quantity
is calculated in the respective asymptotic limit, the two predictions are in no way
related.

4.6 Weak Interactions

As for the strong interactions, we obtain the weak Lagrangian in LO by adjusting the

operator dimensions of Q8, Q27, and Qm w (from Eqs. (2.60-2.62)) by powers of eσ/Fσ ,

Lweak =Q8

∑
n

g 8n e (2−γ8n )σ/Fσ + g 27Q27e (2−γ27)σ/Fσ

+Qm w e (3−γm w )σ/Fσ +h.c , (4.144)

noting that Q8 represents quark-gluon operators [53] with differing dimensions at

αIR. In χPT3, we saw that although Qm w is a pure isospin- 1
2

operator, it cannot con-

tribute to KS → ππ due to vacuum alignment. In χPTσ, the outcome is entirely dif-

ferent. The key point is that the scaling dimension (3−γm w ) of Qm w is not the same

as the dimension (3− γm ) of Lmass, so the σ dependence of Qm w e (3−γm w )/Fσ cannot
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K0
S

σ

γ γ

π±, K±

Figure 4.10: Leading order diagrams for KS → γγ in χPTσ, including finite loop
graphs [21]. The grey vertex contains π±, K ± loops as in the four χPT3 diagrams to
the right. An analogous set of diagrams contributes to γγ→π0π0.

be eliminated by a chiral rotation. Instead, after aligning the vacuum, we find

Lalign
weak = Q̃8

∑
n

g 8n e (2−γ8n )σ/Fσ + g 27Q̃27e (2−γ27)σ/Fσ

+Q̃m w
�

e (3−γm w )σ/Fσ − e (3−γm )σ/Fσ
�
+h.c. , (4.145)

where the tilde indicates that the 8 and 27 operators are now functions of the rotated

field Ũ . As before, it is this rotated field which satisfies 〈Ũ 〉vac = I and allows us to

treat the NG fields φi as perturbations about the ground state. Consequently, there

is a residual interaction LKSσ = g KSσ
K 0

Sσ which mixes KS andσ in leading order

g KSσ
= (γm −γm w )Re{(2m 2

K −m 2
π)ḡ M −m 2

πg M }Fπ/2Fσ (4.146)

and produces theΔI = 1/2 amplitude Aσ-pole of Fig. 4.3.

An estimate for this coupling can be obtained by comparing Eq. (4.141) with

KS → γγ (Fig. 4.10). Clearly, this vertex can be used to extract g KSσ
from KS → γγ,

where the scalar part of the amplitude

Aμν = (gμνs −2k2μk1ν )A(s ) (4.147)

receives three contributions

A(s ) =Atree
σ +Aloop

σ +Aloop
π,K . (4.148)
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The explicit expressions are

Atree
σ = i

g KSσ
gσγγ

s −m 2
σ+ iε

,

Aloop
σ =−i

αC
πFσ

g KSσ

s −m 2
σ+ iε

�
m 2

π(1+2Iπ)+m 2
K (1+2IK )

s

�
,

Aloop
π,K =−i

α

πF 3
π

(g 8+ g 27)

�
m 2

π(1+2Iπ)+m 2
K (1+2IK )

s

�
. (4.149)

where C = 1− γm − (1− c1)β ′ as in Eq. (4.140). Note that unlike our determination

of RIR, we can fix g KSσ
without making any assumptions about the value of C. This

is because Atree
σ +Aloop

σ is proportional to the combination

Gπ(s )+GK (s )−2i gσγγ (4.150)

of Eq. (4.139) which can be determined directly from data on Γγγ (Eq. (4.137)). From

Eq. (4.138), we find

|Gπ(m 2
σ)+GK (m 2

σ)−2i gσγγ|= 0.068±0.006 GeV−1 , (4.151)

and thus estimate

|g KSσ
| ≈ 4.4×103 keV2 (4.152)

to about 30% precision, where we have neglected the contributions involving g 8,27.

Thus, to the extent that gσN N and hence Fσ can be determined, we find

		Aσ-pole

		≈ 0.34 keV . (4.153)

This accounts for the large I = 0 ππ amplitude A0 [3]

|A0|expt. = 0.33 keV (4.154)

compared with A2. So we conclude that the observed ratio |A0/A2| � 22 is mostly due

to the dilaton-pole diagram of Fig. 4.3, that g 8 =
∑

n g 8n and g 27 may have similar

magnitudes as simple calculations indicate, and that only g 27 can be fixed precisely

(from K +→π+π0).
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Consequently, the leading order of χPTσ solves the ΔI = 1/2 problem for kaon

decays. The chiral Ward identities which relate the on-shell K → 2π and K →π am-

plitudes have extra terms due to σ poles, but the no-tadpoles theorem (Eq. (2.69))

is still valid:

〈K |Hweak|vac〉=O
�

m 2
s −m 2

d

�
, K on shell . (4.155)
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Chapter 5

Discussion and Directions for Further
Research

5.1 Summary of Results

In this thesis, we have explored the conditions under which the low-energy struc-

ture of QCD may be considered to be approximately scale and chiral SU (3)L×SU (3)R
invariant. We put forth the proposal that such a scenario may conceivably occur in

QCD if the strong running coupling αs for the three light quarks u , d , s runs non-

perturbatively to an infrared fixed point αIR. As noted in Chapter 3, the theoretical

evidence for this picture is (as yet) unclear due to the technical challenges associ-

ated with comparisons between different approaches in defining αs . What is clear

however, is that to avoid the introduction of theoretical artifacts, non-perturbative

definitions are required: extrapolations based on fixed-order perturbation theory

are afflicted with unphysical features like Landau singularities.

Taken as a working hypothesis, we showed that the absence of the gluonic term

in the trace anomaly at αIR does not necessarily imply that QCD becomes scale in-

variant in the Wigner-Weyl mode, as commonly assumed in discussions on fixed

points in quantum field theory. The underlying dynamics must always be taken into

consideration. In QCD we know with some degree of confidence that strong gluon

fields are responsible for setting the infrared mass scale χch ≈ 1 GeV through the

formation of a quark condensate 〈q̄q 〉vac. As argued in Chapter 3, we are unaware

of any physical reason why the same should not occur at αIR. Since the operator
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q̄q is not a singlet under scale transformations, we concluded that scale and chi-

ral SU (3)L ×SU (3)R symmetry is spontaneously broken in the infrared αs → αIR and

massless limit mq → 0. It was then a simple application of Goldstone’s theorem to

show that in this limit there are nine Nambu-Goldstone bosons: π, K ,η and a 0++

QCD dilatonσ.

We argued that the small explicit breaking of scale invariance due to the quark

mass term mqq̄q — in particular, that of the strange quark — is responsible for most

of the σ’s mass. It was then natural for us to identify σ with the lowest QCD reso-

nance f 0(500), whose O(mK )mass and width are now known rather precisely.

For low-energy amplitudes, we constructed in Chapter 4 a chiral-scale pertur-

bation theory χPTσ based on expansions in αs about αIR. At leading and next-

to-leading order in the expansion, we constructed the most general effective La-

grangians for strong interactions ofπ, K ,η,σ consistent with approximate scale and

chiral SU (3)L×SU (3)R symmetry. We achieved this by making use of well established

techniques which abstract chiral-scale effective operators from those found in the

chiral Lagrangians of χPT3. In leading order, we found that compared to χPT3, the

χPTσ Lagrangian contains an additional seven low-energy constants c1,...,4, Fσ,β ′,γm ,

of which we were only able to fix Fσ ≈ 100 MeV from analyses of N N -scattering.

We extended our scope to include background fields whose presence, subject to

appropriate transformation properties, rendered QCD (and hence χPTσ) formally

invariant under local scale and chiral SU (3)L × SU (3)R symmetry. In this formal-

ism, we obtained expressions for the equations of motion and the effective trace

anomaly in the leading order of χPTσ. Through a simple extension of the back-

ground field method applied by Gasser and Leutwyler [13] to χPT3, we were able to

calculate a closed form expression for the one-loop effective action.

The convergence of χPTσ expansions was tested by extending the arguments of

Manohar and Georgi [48, 49] to account for the enlarged symmetry group. Since Fσ

and Fπ are a priori independent of each other, it was found that there are two scales

χσ and χπ which govern the rate of convergence. Since Fσ ≈ Fπ numerically, we

concluded that inχPTσ there is a clear separation of scales between {π, K ,η,σ= f 0}
and its non-Goldstone sector {ρ,ω, . . .}.

Through an analysis of the electromagnetic trace anomaly, we derived a rela-

tionship between the effective σγγ coupling and the non-perturbative Drell-Yan
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ratio RIR at αIR.

In the weak interaction sector, we constructed the leading order effective La-

grangian and showed that unlike χPT3, vacuum alignment does not remove the

weak mass operatorQM . We showed that as a consequence, KS mixes withσ through

an effective coupling g KSσ.

Regarding phenomenological applications of χPTσ, we showed that in leading

order, a dominant σ-pole in KS → ππ accounts for the ΔI = 1/2 rule. Using our

result from the electromagnetic trace anomaly, we also obtained the estimate RIR ≈
5.

5.2 Implications of this Work

In this thesis we have presented a serious proposal to explain theΔI = 1/2 rule in K -

decays, a puzzle of almost 60 years standing. While this is certainly our most impor-

tant result, there is a sense in which it may be considered a special case of our more

general idea to include f 0 = σ in the Nambu-Goldstone sector {π, K ,η,σ} so that

f 0 amplitudes contribute in the leading order of low-energy expansions with O(mK )

extrapolations. Despite a seemingly radical change to the structure of low-energy

QCD, our proposal is in fact rather conservative: we modify χPT3 only where it fails

and preserve its successful leading order predictions elsewhere. We have shown that

χPTσ is the appropriate model-independent framework to study the low-energy

strong, weak, and electromagnetic interactions of these mesons, and it is the gener-

ality of the method which we consider to be our most significant achievement.

The proposed replacement for χPT3 relates amplitudes in the physical region

0<αs <αIR to high-energy quantities like γm (αIR) and RIR characteristic of massless

QCD at αIR. This may imply that QCD simplifies in that limit and, unlike QED [166,

167], allows β ′ �= 0 at the fixed point.

We also note that in attempts to extend the AdS5/CFT (or “gauge-gravity") dual-

ity to QCD [168, 169], the infrared mass scale χch is typically introduced through a

hard IR cutoff on the string modes in the radius of AdS5. This procedure however,

implicitly assumes that scale condensates like 〈q̄q 〉vac are absent. If our view is cor-

rect, the construction and application of gauge-gravity models may be subject to
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modification.

5.3 Limitations of the Theory

While χPTσ has some clear advantages over χPT3, we must acknowledge that there

are new challenges associated with the proposed theory.

The large number of low-energy constants inχPTσ place practical limitations on

the theory’s predictive power. This problem is particularly acute at next-to-leading

order, where the effective Lagrangian (4.59) containsO(40)parameters whose values

are unknown a priori. The scant data on processes such as f 0 f 0-scattering means

that the empirical determination of many of these couplings is likely to remain out

of reach for the foreseeable future.

A related problem is one of computational complexity. At one-loop order, the

number of graphs to calculate is considerably larger in χPTσ compared with χPT3.

Take for instance the classic example of ππ-scattering in the s -channel. In χPT3

there is a single one-loop graph to calculate. On the other hand, in χPTσ there are

O(20) diagrams which must be evaluated! Clearly, this limits the degree of precision

one may hope to achieve in observables of interest.

Another limitation is that while χPTσ works for non-leptonic K -decays, our

analysis does not shed any light on the failure of heavy baryon χPT [170] (or stan-

dard χPT [171]) to simultaneously explain the S- and P-wave data of the hyperon

sector.

5.4 Directions for Future Research

Despite the aforementioned limitations, there is a rich phenomenological vista to

be explored in χPTσ. Some potentially fruitful areas of investigation include the

following.

1. An investigation of other reactions where f 0 is present would be worthwhile.

In particular, it would be interesting to examine the decays KL → π0γγ, K +→
π+π−e+νe , and η→ πππ, where the leading order predictions from χPT3 are
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known to fall short of the experimental data by a factor of 2 or more in the rate

[172, 173].

2. With octet dominance not required in χPTσ (see Sec. 4.6), a number of C P

violating observables associated with the decay modes of K -mesons need to

be re-examined. This provides an important testing ground on the internal

consistency of the theory and furthermore, offers the exciting possibility to

make progress beyond the predictions of χPT3. Reactions where the σ-pole

is important include KL → ππ, KL → 3π, and rare K decays with two leptons

in the final state.

3. A related line of research would be to examine the predictions of χPTσ for the

C P violation parameters ε and ε′. This involves the calculation of quantities

such as the KL-KS mass difference Δm = mL −mS , the phase shifts δI from

ππ-scattering with O(mK ) momentum, and the isospin amplitudes AI from

K → ππ. The χPTσ predictions for these quantities will differ from those of

χPT3, and it would be worthwhile establishing whether progress can be made

in calculating ε and ε′ from the new effective field theory.

4. The existing calculations [174, 175, 176, 177] of the scalar exchange contri-

bution to hadronic light-by-light scattering require the use of models whose

precise connection to f 0 is unclear. Can χPTσ do better in this regard? Pre-

sumably so, since the model dependence in this picture is strictly limited to

the form factors Fσγγ∗ and Fσγ∗γ∗ , not on the underlying dynamics of the f 0

resonance.

5. By analogy with π, K ,η, it should be possible (in principle) to test our hy-

pothesised Nambu-Goldstone interpretation of f 0 on the lattice. Naturally,

the technical complications associated with f 0’s broad width must be over-

come (extrapolations based on phase shift analyses will be model-dependent

at best). This raises the following question. Can the Roy equations, analyti-

cally continued to complex momenta, be implemented in lattice simulations?

An answer in the affirmative should allow one to isolate the elusive f 0, and

irrespective of the view presented in this thesis, test its effect in KS→ππ.
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Appendix A: Feynman Rules

Here we provide for reference, the Feynman rules for the σφφ and σγγ vertices

obtained from χPTσ and used extensively in Chapter 4. Given an interaction vertex

LI , our convention is to define the Feynman rule by i 〈LI 〉, where the brackets imply

that the fields are to be omitted. The relevant expressions are shown in Fig. 1.

φ1

φ2

= −i[(2 + (1− c1)β
′)p1 · p2 + (3− γm)m

2
φ]/2Fσ

σ

γ1

γ2

σ
= −2igσγγ(g

μνk1 · k2 − kμ2k
ν
1)

Figure 1: Feynman rules for vertices involvingσ with all momenta flowing inwards.
In our notation, γi = γ(εi , ki ) represents a photon with polarization εi and momen-
tum ki , whileφi representsπ± or K ± with momentum pi . The flow of electric charge
is indicated by the arrows.

Furthermore, we provide the amplitudes for the θμμ insertions which arose dur-

ing our treatment of the electromagnetic trace anomaly in Chapter 4. The explicit

expressions are given in Fig. 2.
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= −e(p+ − p−)μ(1− c1)β
′

φ+

θαα

= −[(p+ · p−)(1− c1)β
′ −m2

φ(1 + γm)]

φ−

γ

γ

= 2e2gμν(1− c1)β
′

φ+

φ−

θαα

φ+

φ−

θαα

γ

Figure 2: Amplitudes for insertions of the effective θμμ operator in amplitudes involv-
ing photons γ and charged φ = π, K mesons. The flow of momentum and electric
charge is indicated by the arrows.
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Appendix B: Equations of Motion

We obtain the equations of motion for the U and X fields1 by the standard method,

i.e we look for stationary points of the action integral

S[U ,U †, X ] =

∫
d4x L[U ,U †, X ] . (1)

For reference, we reproduce the LO expression for L,

Ld=4
LO = z 1KX 2+ z 2

1
2
(DμX )2+ z 3X 4 , (2)

Ld>4
LO = z 4KX 2+β ′ + z 5

1
2
(DμX )2X β ′ + z 6X 4+β ′ , (3)

Ld<4
LO = z 7Tr(χU †+Uχ†)X 3−γm , (4)

where K= 1
4

F 2
πTr(∇μU∇μU †), X = Fσeσ/Fσ , and χ = 1

2
F 2
π B0(s + i p ). Under variations

in U we get

δUS =

∫
d4x

�− F 2
π

4
Tr(∇μδU∇μU †+∇μU∇μδU †)(z 1X 2+ z 4X 2+β ′)

+ z 7Tr(χδU †+δUχ†)X 3−γm

�
, (5)

1The equations of motion for χPT3 are derived in [29].
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where the derivatives ∇μ can be shifted via integration by parts (taking care to in-

clude the X contribution) to get,

∴δUS =

∫
d4x

�F 2
π

4
Tr(−δU (∇μ∇μU †)− (∇μ∇μU )δU †)(z 1X 2+ z 4X 2+β ′)

+ z 7Tr(χδU †+δUχ†)X 3−γm

− F 2
π

4
Tr(δU∇μU †+(∇μU )δU †)(2z 1X +(2+β ′)z 4X 1+β ′)∂μX

�
. (6)

For infinitesimal variations, δU = iΔiλiU , whereΔi (x ) are real functions and λi are

the Gell-Mann matrices. Combined with δU † = −U †δUU †, the condition δUS = 0

yields for i = 1, . . . , 8,

0= Tr
�
λi�[(∇μ∇μU )U †−U (∇μ∇μU †)][z 1X 2+ z 4X 2+β ′]

+ [(∇μU )U †−U (∇μU †)][2z 1X +(2+β ′)z 4X 1+β ′]∂μX
�

+
4

F 2
π

z 7[Uχ†−χU †]X 3−γm

�
. (7)

Since any 3×3 matrix A can be decomposed as

A = 1
3

Tr(A)I3×3+ 1
2

8∑
i=1

Tr(λi A)λi , (8)

the above can be expressed as an operator equation

0= [(∇μ∇μU )U †−U (∇μ∇μU †)][z 1X 2+ z 4X 2+β ′]

+
4

F 2
π

z 7[Uχ†−χU †+
1

3
Tr(χU †−Uχ†)]X 3−γm

+[(∇μU )U †−U (∇μU †)][2z 1X +(2+β ′)z 4X 1+β ′]∂μX . (9)
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Similarly, for the X equations of motion we find the variations

∂ L
∂ (DμX )

= z 2DμX + z 5(DμX )X β ′ , (10)

∂ L
∂ X
= 2z 1KX +4z 3X 3+(2+β ′)z 4KX 1+β ′ +β ′z 5

1
2
(DμX )2X β ′−1

+(4+β ′)z 6X 3+β ′ +(3−γm )z 7Tr(MU †+UM †)X 2−γm , (11)

from which one immediately obtains

0= (∂ μ∂μX )[z 2+ z 5X β ′]+β ′z 5
1
2
(DμX )2X β ′−1−K[2z 1X +(2+β ′)z 4X 1+β ′]

−4z 3X 3− (4+β ′)z 6X 3+β ′ − (3−γm )z 7Tr(MU †+UM †)X 2−γm . (12)
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Appendix C: Tadpole Cancellation in

the Background Field Method

To ensure that the background fields Ū and X̄ are stable solutions to the classical

field equations, it is necessary that terms linear in the fluctuation fields ξ and ρ

vanish (no tadpoles). First we consider the O(ξ) terms in the notation of Sec. 4.3.5,

to wit

S
		
ξ
= i

∫
d4x

�F 2
π

4
Lξ(z 1X̄ 2+ z 4X̄ 2+β ′)+Tr(ξΣ−)X̄ 3−γm

�
, (13)

where we reproduce the expressions

Lξ = Tr(∇μŪ †∇μ(uξu ))−Tr(∇μ(u †ξu †)∇μŪ ) , (14)

Σ± = uχ†u ±u †χu † . (15)

We can show that the right-hand side of (13) vanishes by first using integration by

parts to shift the derivative in Lξ,

∫
d4x LξX̄ d =−

∫
d4x

�
Tr
�
(∇μ∇μŪ †)(uξu )− (u †ξu †)∇μ∇μŪ

�
X̄ d

+d Tr
�
(∇μŪ †)(uξu )− (u †ξu †)∇μŪ

�
X̄ d−1∂μX̄

�
. (16)
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By inserting appropriate factors of u †u = I , we obtain the desired result,

S
		
ξ
= i

F 2
π

4

∫
d4x

�
Tr
�

uξu †[(∇μ∇μŪ )Ū †−Ū (∇μ∇μŪ †)]
�
(z 1X̄ 2+ z 4X̄ 2+β ′)

+Tr
�

uξu †[(∇μŪ )Ū †−Ū (∇μŪ †)]
�
(2z 1X̄ +(2+β ′)z 4X̄ 1+β ′)∂μX̄

+
4

F 2
π

z 7Tr(uξu †[Ūχ†−χŪ †])
�

= 0 , (17)

since Ū satisfies the classical equations of motion (Eq. (4.49)). Similarly, the O(ρ)

terms

S
		
ρ
=

∫
d4x

�
ρK(2z 1X̄ 2+(2+β ′)z 4X̄ 2+β ′)+ z 2[ρ(DμX̄ )2+(DμρDμX̄ )X̄ ]

+4z 3ρX̄ 4+(4+β ′)z 6ρX̄ 4+β ′ +(3−γm )ρTr(χŪ †+Ūχ†)X̄ 3−γm

+ z 5[(2+β ′)ρ 1
2
(DμX̄ )2X̄ β ′ +(DμρDμX̄ )X̄ 1+β ′]

�
, (18)

can be shown to vanish through a judicious use of integration by parts

∫
d4x [ρ(DμX̄ )2+(DμρDμX̄ )X̄ ] =−

∫
d4x ρX̄ DμDμX̄ , (19)∫

d4x [(2+β ′)ρ 1
2
(DμX̄ )2X̄ β ′ +(DμρDμX̄ )X̄ 1+β ′]

=−
∫

d4x ρ[β ′ 1
2
(DμX̄ )2X̄ β ′ + X̄ 1+β ′DμDμX̄ ] . (20)
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Making use of the X equations of motion, we get

S
		
ρ
=

∫
d4x ρ

�− X̄ (DμDμX̄ )(z 2+ z 5X̄ β ′)−β ′z 5
1
2
(DμX̄ )2X̄ β ′

+K(2z 1X̄ 2+(2+β ′)z 4X̄ 2+β ′)+4z 3ρX̄ 4

+(4+β ′)z 6ρX̄ 4+β ′ +(3−γm )ρTr(χŪ †+Ūχ†)X̄ 3−γm

�
= 0 . (21)
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Appendix D: Cancellation of UV

Divergences in the γγ Channel

In this appendix we show how the ultraviolet divergences are cancelled in the γγ

channel with charged π, K loops, leaving a finite answer. Our case example is the

calculation of diagrams for the matrix element 〈γ1,γ2|θμμ |vac〉 in χPTσ. We recall

these contributions were part of our derivation for the effective σγγ coupling. As

noted in Chapter 4, the one-loop amplitudes in Fig. 3 share a similar Lorentz struc-

ture. In particular, one can combine into a single expression the diagrams

(b) with (c) , (d) with (e) , (f) with (g) , (h) with (i) .

This can be seen as follows. We label the loop momenta for graphs (f-i) as shown in

Fig. 4, and introduce the notation

λ1 = (1− c1)β ′(αIR) and λ2 = 1+γm (αIR) . (22)

The explicit expressions for the amplitudes are then given by
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θμμ

θμμ

σ

π±, K±

π±, K±

(a)

θμμ θμμ θμμ θμμ

θμμ θμμ θμμ

(b) (c) (d) (e)

(f) (g) (h) (i)

γ γ

Figure 3: Leading order contributions to 〈γ1,γ2|θμμ (0)|vac〉 in χPTσ. Diagram (a) rep-
resents the contact term proportional to gσγγ, while diagrams (d), (e), (h), and (i) are
each accompanied by an additional crossed amplitude (not shown).

Lμνf = (−i e 2 g μν )

∫
d 4�

(2π)4

�
2λ1� · (�+k1+k2)+2λ2m 2

φ

�
[�2−m 2

φ + iε][(�+k1+k2)2−m 2
φ + iε]

,

Lμνg = (2i e 2 g μν )

∫
d 4�

(2π)4
λ1

�2−m 2
φ + iε

,

Lμνh1+h2
= (i e 2)

∫
d 4�

(2π)4

� �
λ1(�−k1) · (�+k2)+λ2m 2

φ

�
(2�−k1)μ(2�+k2)ν

[�2−m 2
φ + iε][(�+k2)2−m 2

φ + iε][(�−k1)2−m 2
φ + iε]

+ (k1,μ)↔ (k2,ν )

%
,

Lμνi 1+i 2
= (−i e 2)

∫
d 4�

(2π)4

�
λ1(2�−k1)μ(2�−k1)ν

[�2−m 2
φ + iε][(�−k1)2−m 2

φ + iε]
+ {k1↔ k2}

%
. (23)

To combine the various amplitudes we make use of the shift symmetry in dimen-

sional regularization. For example, to combine (f) with (g), we first shift the mo-
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k1, μ k2, ν

θμμ




(f)


− k1 − k2

θμμ

(g)




θμμ

(h2)





+ k1
− k2

θμμ

(h1)





+ k2
− k1

θμμ

(i2)

θμμ

(i1)





− k1




− k2

Figure 4: Flow of loop momenta for one-loop graphs (f-i) in Fig. 3.

mentum �→ �−k2 and rewrite the resulting numerator in (f) as1,

2λ1(�−k2) · (�+k1) =λ1
�
[(�+k1)2−m 2

φ]+ [(�−k2)2−m 2
φ]+2m 2

φ

�
. (24)

We then shift the momentum in (g) so that2

Lμνg = (i e 2 g μν )λ1

∫
μ

d n�

(2π)n

�
1

(�+k1)2−m 2
φ + iε

+
1

(�−k2)2−m 2
φ + iε

%

= (i e 2 g μν )λ1

∫
μ

d n�

(2π)n

�
[(�+k1)2−m 2

φ + iε]+ [(�−k2)2−m 2
φ + iε]

[(�+k1)2−m 2
φ + iε][(�−k2)2−m 2

φ + iε]

%
, (25)

1For simplicity, we consider on-shell photons: k 2
1 = 0= k 2

2 . Keeping them off-shell does not affect
the final result.

2In our notation for dimensionally regularized integrals,
∫
μ
≡μ4−n

∫
.
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from which we immediately deduce that the divergent terms cancel between (f) and

(g). The combined result is,

Lμνf +g = (i e 2)2m 2
φ(λ1−λ2)

∫
μ

d n�

(2π)n
g μν

[(�+k1)2−m 2
φ + iε][(�−k2)2−m 2

φ + iε]
. (26)

To combine (h) with (i), we first factor out 1/2 from the amplitude and rewrite the

terms in the numerator,

2λ1(�−k1) · (�+k2) =λ1
�
[(�−k1)2−m 2

φ]+ [(�+k2)2−m 2
φ]+2m 2

φ

�
, (27)

with a similar expression for (h2). We then halve each (i1,2) term and shift appropri-

ately, i.e.,

Lμνi 1
=− i e 2

2

∫
μ

d n�

(2π)n

�
λ1(2�−k1)μ(2�−k1)ν

[�2−m 2
φ + iε][(�−k1)2−m 2

φ + iε]
+ {�→ �+k1}

%
,

Lμνi 2
=− i e 2

2

∫
μ

d n�

(2π)n

�
λ1(2�−k2)μ(2�−k2)ν

[�2−m 2
φ + iε][(�−k2)2−m 2

φ + iε]
+ {�→ �+k2}

%
. (28)

Combining the terms with common denominators yields the integrals,

Ih1+i 1 =−(k1+k2)ν
∫
μ

d n�

(2π)n
(2�−k1)μ

[�2−m 2
φ + iε][(�−k1)2−m 2

φ + iε]
,

Ih1+i 2 = (k1+k2)μ
∫
μ

d n�

(2π)n
(2�+k2)μ

[�2−m 2
φ + iε][(�+k2)2−m 2

φ + iε]
,

Ih2+i 1 = (k1+k2)ν
∫
μ

d n�

(2π)n
(2�+k1)μ

[�2−m 2
φ + iε][(�+k1)2−m 2

φ + iε]
,

Ih2+i 2 =−(k1+k2)μ
∫
μ

d n�

(2π)n
(2�−k2)μ

[�2−m 2
φ + iε][(�−k2)2−m 2

φ + iε]
,

(29)

95



Appendix D: Cancellation of UV Divergences the γγ Channel

all of which are odd in � (and hence vanish) under the shift symmetry. Thus the only

surviving terms are combined to form,

Lμνb+d =−(i e 2)2m 2
φ(λ1−λ2)

×
∫
μ

d n�

(2π)n
(2�+k1)μ(2�−k2)ν

[�2−m 2
φ + iε][(�+k1)2−m 2

φ + iε][(�−k2)2−m 2
φ + iε]

, (30)

and the complete matrix element reads,

Lμνφ = (i e 2)2m 2
φ(λ1−λ2)

×
∫

d 4�

(2π)4
g μν (�2−m 2

φ + iε)− (2�+k1)μ(2�−k2)ν

[�2−m 2
φ + iε][(�+k1)2−m 2

φ + iε][(�−k2)2−m 2
φ + iε]︸ ︷︷ ︸

I μν

. (31)

The (finite) integral I μν can now be calculated with standard techniques,

I μν =

� −i

16π2

�
(g μν (k1 ·k2)−k μ

2 k ν
1 )

k1 ·k2
(1+2Iφ). (32)

An analogous approach for the diagrams (b-e) in Fig. 3 yields the expression

N μν
φ =−

� e 2

Fσ

�
2m 2

φ(λ1−λ2+2)I μν , (33)

which when combined with the PCDC relation leads to a cancellation of the terms

proportional to (1−γm +(1− c1)β ′).
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