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Sterols play vital roles in plant growth and development, as components of membranes and
as precursors to steroid hormones. Analysis of Arabidopsis mutants indicates that sterol
composition is crucial for cellulose biosynthesis. Sterols are widespread in the plasma
membrane (PM), suggesting a possible link between sterols and the multimeric cellu-
lose synthase complex. In one possible scenario, molecular interactions in sterol-rich PM
microdomains or another form of sterol-dependent membrane scaffolding may be criti-
cal for maintaining the correct subcellular localization, structural integrity and/or activity of
the cellulose synthase machinery. Another possible link may be through steryl glucosides,
which could act as primers for the attachment of glucose monomers during the synthesis
of β−(1 → 4) glucan chains that form the cellulose microfibrils. This mini-review examines
genetic and biochemical data supporting the link between sterols and cellulose biosynthe-
sis in cell wall formation and explores potential approaches to elucidate the mechanism of
this association.
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INTRODUCTION
In plants, cellulose functions as a major component of the cell wall
to provide mechanical support and structural integrity to various
tissues. Cellulose consists of glucose molecules arranged in parallel
hydrogen-bonded β-(1 → 4) glucan chains that form microfibrils
of 2–4 nm in diameter and up to several micrometer in length
depending on their origin (Mutwil et al., 2008; Fernandes et al.,
2011). Cellulose microfibrils function in scaffolding other cell wall
polymers such as hemicelluloses and pectins.

Cellulose is synthesized at the plasma membrane (PM) by ter-
minal complexes organized as six-lobed rosettes in higher plants
(Kimura et al., 1999). Current models suggest that the rosettes are
organized as tetramers (Endler and Persson, 2011) or hexamers
(Fernandes et al., 2011) consisting of multiple cellulose synthase
catalytic subunits (CESA) arranged with a sixfold symmetry. Each
CESA subunit has a predicted topology of eight transmembrane
helices for anchorage in the PM (Delmer, 1999). Although much
progress has been made in the identification of proteins involved in
cellulose formation, our understanding of the biosynthetic process
is far from complete (Guerriero et al., 2010). One major dif-
ficulty is to determine the precise composition of the cellulose
synthase complex (CSC) and to solve its structure. This has proven
extremely challenging using biochemical approaches because of
the instability of the complex, and molecular genetics have pro-
vided only partial and essentially indirect answers to some of the
most fundamental questions related to cellulose formation.

Several pieces of evidence suggest that the lipid environment
of the CSC is crucial for its proper structural organization and
function at the PM. In metazoans, sterols act as components
of membranes, molecular ligands, or as precursors of steroid

hormones. However, in plants, much less is known about the roles
of sterols. They predominantly occur in the PM (Grebe et al., 2003)
and are abundantly synthesized during the early stages of seed
development, coincident with intense cell division and expansion
(Schrick et al., 2011). Below we describe the genetic and biochem-
ical evidence that support a link between sterols and cellulose
biosynthesis, and we discuss experimental approaches to decipher
the molecular mechanisms that underlie this connection.

THE ROLES OF STEROLS IN HIGHER PLANTS
Compared to vertebrates, in which mainly cholesterol synthesis
occurs, higher plants synthesize a complex mixture of sterols, com-
monly referred to as phytosterols (Benveniste, 2004). In Arabidop-
sis seedlings, sitosterol is the major sterol, followed by campesterol,
stigmasterol, and over 20 minor sterols, many of which are biosyn-
thetic intermediates (Schrick et al., 2000, 2002). Sitosterol and
stigmasterol play major roles as PM components and are criti-
cal for membrane fluidity and permeability (Schuler et al., 1991;
Grandmougin-Ferjani et al., 1997). Campesterol is a precursor
of the brassinosteroids which stimulate stem elongation and cell
division, and are the only plant steroids known to act as hormones
(Clouse, 2011).

The first genetic evidence for the role of sterols in plant
growth and development came from the identification of three
Arabidopsis sterol biosynthesis mutants: fackel (fk; Jang et al.,
2000; Schrick et al., 2000), cephalopod/sterol methyl transferase 1
(cph/smt1; Diener et al., 2000; Schrick et al., 2002), and hydra1
(hyd1; Schrick et al., 2002; Souter et al., 2002). These mutants
exhibit cell division and expansion defects, as well as embry-
onic patterning defects, and correspond to sterol C-14 reductase,
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C-24 sterol methyltransferase, and sterol C-8,7 isomerase, respec-
tively. The discovery that all three affect enzymes upstream of
brassinosteroid DWARF (DWF) steps, coupled with the inability
to rescue the mutants by brassinosteroids, led to the hypothesis
that sterols participate in novel signaling pathways (Lindsey et al.,
2003). Although such pathways have not been revealed to date,
this idea is further supported by the characterization of smt2/cvp1
and smt3 double mutants of C-24 sterol methyltransferases that
exhibit homeotic floral transformations and other developmental
defects (Carland et al., 2010).

IMPACT OF MUTATIONS IN STEROL BIOSYNTHETIC
ENZYMES ON CELLULOSE FORMATION
In addition to embryonic defects, fk, cph/smt1, and hyd1 mutants
display a striking deficiency in cellulose content, a phenotype that
can be mimicked by the sterol biosynthesis inhibitors fenpropi-
morph and 15-azasterol (Schrick et al., 2004). As is typical for
cellulose deficiency, the mutants exhibit characteristic symptoms
such as cell wall gaps, multiple nuclei, and aberrant cell wall thick-
enings with ectopic deposition of callose and lignin. Other cell
wall components such as pectins are not reduced, arguing against
a general defect in cell wall biogenesis. The decrease in cellulose
content in the fk, cph/smt1, and hyd1 mutants is comparable to
that observed in several cellulose biosynthesis mutants (Table 1).
In contrast, brassinosteroid mutants exhibit mild or no cellulose
deficiency (Table 1) although CESA genes are transcriptionally
up-regulated by brassinolides (Xie et al., 2011). It is intriguing
that dwf1/dim mutants which display normal cellulose content
are deficient in campesterol, the precursor to brassinosteroids,
while abnormally accumulating 24-methylenecholesterol, a mem-
brane sterol (Klahre et al., 1998; Choe et al., 1999). Recently, a
tomato mutant with a hyper-cracking fruit phenotype coupled
with pericarp cell division and expansion defects and reduced cel-
lulose levels was shown to correspond to a 3-β-hydroxysteroid
dehydrogenase/C-4 decarboxylase (3-betaHSD/D) (Jocelyn Rose,
personal communication). A multienzyme complex containing
3-betaHSD/D is required for removal of two methyl groups at C-4,

rendering sterols functional as membrane constituents (Rahier
et al., 2006). Taken together, these observations suggest that mem-
brane sterols, and not brassinosteroids, are critical for cellulose
accumulation.

It is striking that sterol composition differs considerably
between the fk, cph/smt1, and hyd1 mutants despite their similar
cellulose deficiencies. In particular, fk mutants accumulate Δ8,14

sterols and exhibit a reduction in both sitosterol and campesterol
(Schrick et al., 2000), while hyd1 mutants are similarly reduced
in these sterols, but they accumulate stigmasta-monoen-3β-ol
(Schrick et al., 2002). In contrast, cph/smt1 mutants abnormally
accumulate both cycloartenol and cholesterol, and are reduced in
sitosterol but not in campesterol (Schrick et al., 2002). Consis-
tent with the possibility that accumulation of abnormal sterols,
such as biosynthetic intermediates, contributes to cellulose defi-
ciency, fk mutants are not rescued by exogenous application of
sterol end-products (Schrick et al., 2000). Even subtle changes in
membrane sterol composition may disrupt the functional require-
ments for cellulose biosynthesis, since simple structural variations
in the acyl chain alter membrane protein function in vitro (Litman
and Mitchell, 1996). In mouse, the accumulation of cholesterol
precursors results in embryonic defects although the cholesterol
content is normal, suggesting that the build-up of precursors inter-
feres with sterol function (Engelking et al., 2006). In this system,
the drug lovastatin, which inhibits an early step leading to sterol
biosynthesis (HMG-CoA reductase), was used to effectively block
the accumulation of sterol intermediates and restore function.
Therefore, it may be informative to prevent the accumulation of
abnormal sterols in fk, hyd1, or cph/smt1 by application of lovas-
tatin, and then to observe whether the cellulose defects can be
complemented by application of sterol end-products.

OTHER EFFECTS OF STEROL BIOSYNTHESIS MUTATIONS IN
PLANTS
In addition to effects on cellulose synthesis, abnormal sterol
composition is associated with other physiological and cellu-
lar processes related to membranes, such as plastid biogenesis

Table 1 | Summary of cellulose contents for cellulose and steroid mutants of Arabidopsis.

Mutant Description of corresponding protein and/or predicted

function

Tissue analyzed % Cellulose reduction

from WT

Reference

rsw1 CESA1 (temperature sensitive allele) Shoot of seedling 56 (5) Arioli et al. (1998)

rsw1-2 CESA1 (strong allele) Embryo 77 (1) Gillmor et al. (2002)

asw1 KORRIGAN (temperature sensitive allele), β-(1 → 4) glucanase Shoot 60 (3) Sato et al. (2001)

kob1 KOBITO1, plasma membrane protein Seedling 37 (6) Pagant et al. (2002)

cob COBRA, glycophosphatidylinositol (GPI)-anchored protein Root of seedling 33 (6) Schindelman et al. (2001)

fk FACKEL, sterol C-14 reductase Seedling 47 (11) Schrick et al. (2004)

hyd1 HYDRA1, sterol C-8,7 isomerase Seedling 38 (11) Schrick et al. (2004)

cph/smt1 CEPHALOPOD/SMT1, C-24 sterol methyl transferase Seedling 28 (6) Schrick et al. (2004)

dwf1 DWARF1, sterol C-24 reductase Seedling 0 (6) Schrick et al. (2004)

bri1 BRI1, brassinolide receptor Stem 8 (2) Xie et al. (2011)

det2 DEETIOLATED2, steroid 5α-reductase Stem 12 (1) Xie et al. (2011)

Average percent cellulose reduction from a wild-type (WT) control is indicated with SD in parentheses. While sterol biosynthesis mutants (fk, hyd1, and cph/smt1)

exhibit cellulose deficiencies that are similar to other characterized cellulose mutants (rsw1, asw1, kob1, and cob) brassinosteroid mutants (dwf1, bri1, and det2)

exhibit mild or no cellulose deficiency.
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(Babiychuk et al., 2008) and the regulation of reactive oxygen
species (Pose et al., 2009). Sterol biosynthesis takes place at the
endoplasmic reticulum (Benveniste, 2004). At steady state, sterols
are found in the Golgi membranes and endocytic compartments,
although they accumulate mostly at the PM (Grebe et al., 2003).
Several studies incorporating sterol biosynthesis mutants have
shown that sterols play critical roles in cell polarity through their
requirement for clathrin-mediated endocytosis of PIN proteins,
which are presumptive auxin efflux carriers (Boutte and Grebe,
2009). The molecular mechanism is not clear nor is it known
how specific this effect is, since the cytokinesis-specific syntaxin
KNOLLE was shown to also require sterol-dependent endocyto-
sis for proper localization (Boutte et al., 2010). More recent work
suggests that isoprenoids and sterols are crucial for microRNA
processing in providing the correct membrane composition for
ARGONAUTE1 membrane association and function (Brodersen
et al., 2012). Collectively, these findings indicate that sterol biosyn-
thesis mutations can perturb membrane structure and protein
trafficking.

STEROL-RICH PM MICRODOMAINS MAY BE CRITICAL FOR
MAINTAINING THE STRUCTURAL INTEGRITY AND ACTIVITY
OF CELLULOSE SYNTHASE
As for many integral membrane complexes, biochemical analy-
sis of cellulose synthase has proven to be a major challenge. The
enzyme complex is highly unstable, and PM extractions typically
result in loss of cellulose synthase activity (Delmer, 1999; Bessueille
and Bulone, 2008). In vitro synthesis of cellulose from plant cell-
free extracts is sensitive to detergents that facilitate the isolation
of intact complexes (Lai-Kee-Him et al., 2002; Colombani et al.,
2004; Cifuentes et al., 2010), suggesting that cellulose synthase
requires a specific lipid environment. Consistent with this idea,
its activity has been identified in detergent-resistant membranes
(DRMs) that exhibit biochemical properties similar to sterol-rich
PM microdomains (Bessueille et al., 2009).

In the past 15 years, a model for the organization of the PM has
emerged in which sterol and sphingolipid rich microdomains also
known as lipid rafts coexist with more fluid domains containing
phospholipids and unsaturated hydrocarbon chains (Simons and
Ikonen, 1997). Lipid rafts, to which specific classes of proteins are
associated, play a role in many biological processes, including cell
polarity, protein trafficking, and signal transduction. While lipid
rafts are defined by their composition and distribution in vivo,
DRMs are biochemically characterized by their insolubility in the
non-ionic detergent Triton X-100 at 4˚C (Mongrand et al., 2004;
Borner et al., 2005). The relationship between DRMs and lipid
rafts is debated since the experimental conditions used for DRM
isolation may artificially induce their formation (Lichtenberg et al.,
2005; Tanner et al., 2011). Despite this consideration, extractions
of DRMs could reflect differential affinities of resident membrane
proteins to various lipid environments.

Plant lipid rafts are thought to exhibit unique structural fea-
tures, owing to the greater molecular diversity of plant sterols
and sphingolipids compared to animal or yeast counterparts.
Plant-derived DRMs contain multiple sterol molecules such as 24-
methylcholesterol, sitosterol, and stigmasterol (Mongrand et al.,
2004), instead of primarily cholesterol as in mammals, and two

distinct classes of sphingolipids, inositol phosphorylceramides,
and glucosylceramides (Markham et al., 2006). Methylcyclodex-
trin, a chaotropic agent that extracts sterols from membranes, can
serve as a tool to purify DRM sub-populations that rely on sterol
function (Kierszniowska et al., 2009). In oomycetes, β-(1 → 3)-
glucan synthase is released from DRMs by methylcyclodextrin,
while chitin synthase is not (Briolay et al., 2009). Analogously,
methylcyclodextrin might be applied to study the dependency of
cellulose synthase activity on sterol-rich membrane environments
in DRM preparations.

It is intriguing that lipid rafts and the CSC are formed in the
same compartment before they emerge at the PM. In yeast and
mammalian cells, it was shown that sterols and sphingolipids are
enriched at the trans-Golgi network from where they are sorted via
Golgi-derived vesicles to the PM (Klemm et al., 2009). Although
rosettes have been visualized in the Golgi apparatus (Haigler and
Brown, 1986), they appear to be non-functional in this compart-
ment. Rosettes could assemble on the Golgi stacks followed by
transport to the PM on Golgi-derived vesicles.

STEROLS MIGHT PROVIDE DIRECT STRUCTURAL
SCAFFOLDING FOR CELLULOSE SYNTHASE
Alternatively or in addition to their function in lipid rafts, sterols
may interact directly with cellulose synthase by providing a scaf-
fold to assist in proper structural conformation of the enzyme
or to stabilize the complex (Figure 1). According to the original
fluid-mosaic model (Singer and Nicolson, 1972), a small fraction
of lipids may interact specifically with membrane proteins. It was
recently shown that specific structural lipids are bound to the
intact integral membrane complex ATPase within the membrane
rotors (Zhou et al., 2011). Sterols could similarly directly bind the
CESA subunits and/or other proteins associated with the CSC,
thus enabling and/or stabilizing the function of the complex.

PROBING THE FUNCTION OF STEROLS IN CELLULOSE
BIOSYNTHESIS
The cellulose-deficient sterol biosynthesis mutants and/or phar-
macological inhibitors may serve as tools to investigate the role
of sterols and plasma PM microdomains in subcellular targeting,
structural integrity and/or activity of the CSC. In leek seedlings
treated with the sterol biosynthesis inhibitor fenpropimorph,
recovery of DRMs from the Golgi, but not from the PM, has been
reported (Laloi et al., 2007). Moreover, raft protein contents are
altered in mammalian cells by the sterol biosynthesis inhibitor
AY9944 (Keller et al., 2004). These observations suggest that
sterol composition is critical for the transport and organization
of membrane microdomains.

Live imaging of fluorescently tagged CESA subunits in sterol
biosynthesis mutants may be used to determine whether normal
sterol composition is needed for correct localization of the CSC.
In wild-type Arabidopsis, subcellular localization of CESA6 and
CESA3 subunits reveals their presence at the Golgi and in the
PM (Paradez et al., 2006; Crowell et al., 2009; Gutierrez et al.,
2009). In sterol biosynthesis mutants, this localization might be
shifted toward the Golgi if the translocation of DRMs to the PM is
altered. If it is found that the CSC is properly targeted to the PM,
the next step will be to investigate whether the DRMs and/or lipid
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FIGURE 1 | Schematic representation of potential associations

between sterols and the cellulose biosynthetic machinery in higher

plants. The cellulose synthase complex (CSC) is embedded in the
phospholipid bilayer of the plasma membrane (PM), and catalyzes
production of a cellulose microfibril, a major constituent of the plant cell
wall. In the upper model (A), steryl glucosides (SGs) comprised of
sitosterol (molecule shown in boxes) prime the synthesis of glucan chains
as proposed by Peng et al. (2002). The lower model (B) depicts molecular
interactions whereby sterols (in red) are necessary for the correct targeting,
structural integrity and/or catalytic activity of the CSC. The proposed
molecular interactions between sterols and the CSC may occur in PM
microdomains, also known as lipid rafts, or via another form of molecular
scaffolding. Note that the proposed models are not mutually exclusive.
Figure is not drawn to scale.

rafts of sterol biosynthesis mutants lack cellulose synthase activity.
Such experiments could resolve the possible mechanism by which
sterols and/or sterol-rich PM microdomains or another type of
sterol-dependent membrane scaffolding affects CSC function.

THE ROLES OF STEROL GLYCOSIDES IN PLANT CELLS
In probing the potential functions of sterols in cellulose biosyn-
thesis, the role of conjugated sterols should not be overlooked.
An abundant portion of sterols in plant membranes form steryl
glycoside (SG) conjugates and the most commonly observed SG
contains glucose as a sugar moiety (Grille et al., 2010). It is not clear
why some sterols are glucosylated in vivo while others remain as
free sterols, except that glucosylation requires end-product sterols
and does not occur on intermediates. SGs have been found to
be prevalent in DRM preparations from Arabidopsis and leek,
suggesting their presence in lipid rafts (Laloi et al., 2007).

Steryl glycosides are synthesized by UDP-glucose:sterol gluco-
syltransferases (UGTs) that catalyze the glycosylation of the C3-
hydroxyl of the sterol (Warnecke et al., 1997, 1999). In Arabidopsis,
two genes code for the related UGT80 enzymes, UGT80A2 and
UGT80B1 (DeBolt et al., 2009). Consistent with their predicted
UGT functions, ugt80A2,B1 T-DNA insertion double mutants
exhibit a significant reduction in SGs in various plant tissues exam-
ined (DeBolt et al., 2009) including seeds (Schrick et al., 2012).

While ugt80A2 mutants display only minor effects on growth,
ugt80B1 mutants exhibit an array of phenotypes in the seed, such
as transparent testa, defects in flavonoid deposition, loss of the
cuticle, and a decrease in aliphatic suberin and cutin-like poly-
mers (DeBolt et al., 2009). The findings suggest a role for SGs in
trafficking lipid polyester precursors in seeds.

A PROPOSED FUNCTION FOR SITOSTERYL GLUCOSIDE IN
CELLULOSE BIOSYNTHESIS
Sitosteryl glucoside (SSG) has been proposed to act as a primer
for cellulose biosynthesis based on the evidence that SSGs can be
used by cellulose synthase as a glucose acceptor in vitro (Figure 1;
Peng et al., 2002). Using crude membranes from cotton fibers,
radioactive sterol cellodextrins were synthesized upon incubation
of sitosterol-[14C]glucoside and non-radioactive UDP-glucose.
Membranes from yeast heterologously expressing a cotton CESA
subunit were shown to catalyze the same reaction. These data
provide evidence that SSGs can be used by cellulose synthase
as an acceptor in vitro, but whether SSGs are primers for cel-
lulose biosynthesis in vivo remains an open question. The idea
that in higher plants polymerization of cellulose chains may be
initiated on lipid acceptors by cellulose synthase is consistent
with models proposed for bacterial systems in which polyiso-
prenes and their phosphorylated forms are acceptor molecules
for a transglycosylase enzyme (Matthysse et al., 1995).

To test the hypothesis that SGs play a critical role in cellu-
lose biosynthesis in vivo, cellulose content was examined in the
Arabidopsis ugt80 mutants (DeBolt et al., 2009). Although the
ugt80A2,B1 double mutants exhibit a slow growth phenotype cou-
pled with elongation defects in embryos, no cellulose deficiency
was observed (DeBolt et al., 2009). It is possible that the low lev-
els of SGs in the ugt80A2,B1 mutants can fulfill a role in priming
cellulose biosynthesis. In ugt80A2,B1, residual SG levels indicate
that additional plant enzymes are able to catalyze steryl glucosyla-
tion. One candidate for this function is glucosylceramide synthase
(GCS), encoded by At2g19880 in Arabidopsis, which shares a low
level of sequence similarity with UGT80 enzymes. A predicted
GCS enzyme from cotton was shown to produce SGs in yeast
(Hillig et al., 2003), consistent with the possibility that it cat-
alyzes steryl glucosylation in planta. BLAST searches with UGT80
protein sequences reveal another candidate enzyme encoded by
At5g24750, which has thus far not been characterized. Investi-
gations of mutants corresponding to these and other candidate
enzymes are expected to reveal the putative functions of SGs in
cellulose biosynthesis.

CONCLUDING REMARKS
Several studies point toward an involvement of sterols in cellulose
biosynthesis of higher plants, but investigations on this specific
fundamental question are still at their infancy. In particular, the
mode of interaction of sterols with the cellulose synthase machin-
ery, either direct or indirect, remains to be determined (Figure 1).
The in-depth analysis of cellulose formation in mutants affected
in sterol biosynthesis represents a promising strategy to address
this basic question. Multiple experimental approaches need to
be developed to (i) determine the impact of mutations in sterol
biosynthesis enzymes, or other manipulations of sterol content,
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on the catalytic activity of cellulose synthase, both in vitro and
in vivo; (ii) analyze the impact of these perturbations on cellulose
synthase subcellular localization, lipid and protein composition
of membrane microdomains, and stability of the cellulose syn-
thase machinery; (iii) quantify the effect of sterol depletion on the
structural properties of cellulose microfibrils; and (iv) evaluate
the importance of SGs in priming cellulose biosynthesis or in any
other step of cellulose formation. This emerging topic of research
in the plant cell wall field is poised to advance our mechanistic

understanding of cellulose biosynthesis, and may lead to novel
insights in the dynamic interplay between sterols and proteins in
membranes systems.
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