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We exploit a method introduced recently to determine parton distribution amplitudes (PDAs) from
minimal information in order to obtain light-quark pseudoscalar and vector meson PDAs from the limited
number of moments produced by numerical simulations of lattice-regularised QCD. Within errors, the
PDAs of pseudoscalar and vector mesons constituted from the same valence quarks are identical; they
are concave functions, whose dilation expresses the strength of dynamical chiral symmetry breaking;
and SU(3)-flavour symmetry is broken nonperturbatively at the level of 10%. Notably, the appearance of
precision in the lattice moments is misleading. The moments also exhibit material dependence on lattice
volume, especially for the pion. Improvements need therefore be made before an accurate, unified picture
of the light-front structure of light-quark pseudoscalar and vector mesons is revealed.

© 2014 Published by Elsevier B.V. Open access under CC BY license. Funded by SCOAP3.
1. Introduction

A valence parton distribution amplitude (PDA) is a light-front
wave-function of an interacting quantum system. It provides a con-
nection between dynamical properties of the underlying relativis-
tic quantum field theory and notions familiar from nonrelativistic
quantum mechanics. In particular, although particle number con-
servation is generally lost in relativistic quantum field theory, ϕ(x)
has a probability interpretation. It can therefore translate features
that arise purely through the infinitely-many-body nature of rel-
ativistic quantum field theory into images whose interpretation
seems more straightforward [1–6]. For a meson, the argument of
the PDA, x, expresses the light-front fraction of the bound-state
total-momentum carried by the meson’s valence quark, which is
equivalent to the momentum fraction carried by the valence-quark
in the infinite-momentum frame; and momentum conservation en-
tails that the valence antiquark carries the fraction x̄ = (1 − x).

In the theory of strong interactions, the cross-sections for many
hard exclusive hadronic reactions can be expressed accurately in
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terms of the PDAs of the hadrons involved [7–13]. For example, in
the case of the electromagnetic form factor of light pseudoscalar
mesons [7–10]:

∃Q 0 > ΛQCD
∣∣ Q 2 F P

(
Q 2 ) Q 2>Q 2

0 ≈ 16παs
(

Q 2 ) f 2
P w 2

ϕ, (1)

wϕ = 1 

3

1∫
0

dx
1

x
ϕ P (x), (2)

where αs(Q 2) is the strong running coupling, f P is the meson’s
leptonic decay constant and ϕ P (x) is its PDA. Such formulae are
exact. However, the PDAs are not determined by the analysis
framework; and the value of Q 0 is not predicted. (N.B. Dynami-
cal generation of the mass-scale ΛQCD ∼ 0.2 GeV in QCD spoils the
conformal invariance of classical massless QCD [14–16] and is very
likely connected intimately with the emergent phenomena of con-
finement and dynamical chiral symmetry breaking (DCSB) [6].)

One may alternatively describe exclusive reactions in terms
of Poincaré-covariant hadron bound-state amplitudes (BSAs), ob-
tained from Bethe–Salpeter or Faddeev equations. This approach
has been used widely; e.g., [17–25]: in explaining reactions used
OAP3.
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to measure elastic and transition electromagnetic form factors, an-
other class involving strong decays of hadrons, and yet another
group relating to the semileptonic and nonleptonic weak decays
of heavy mesons. The BSAs are predictions of the framework and
the associated computational scheme is applicable on the entire
domain of accessible momentum transfers. However, truncations
must be employed in formulating the problem; and issues related
to the construction of veracious truncation schemes are canvassed,
e.g., in Refs. [23–25].

The two approaches are joined by the fact that the PDAs, which
are essentially nonperturbative, may be obtained as light-front pro-
jections of the hadron BSAs. Recent progress has established this
connection as a practical reality and thereby produced an effec-
tive synergy [4], which is highlighted by a prediction for the pion’s
elastic electromagnetic form factor [26]. These advances can be
summarised succinctly: it is now possible to compute bound-state
PDAs from Poincaré-covariant hadron BSAs and so place useful and
empirically verifiable constraints on both.

Two significant features emerged in developing the connection
between BSAs and PDAs. The first is an appreciation that the so-
called asymptotic PDA; i.e.,

ϕasy(x) = 6xx̄, (3)

provides an unacceptable description of meson internal structure
at all scales which are either currently accessible or foreseeable
in experiments [4,5,25,26]. This should not be surprising because
evolution with energy scale in QCD is logarithmic.

The second important point is that at all energy scales, the
leading twist PDAs for ground-state light-quark mesons are con-
cave functions. This model-independent result originates in the
simple fact that for a system of two valence quarks the domi-
nant functions in the associated BSA decrease monotonically from
their maximum value. This knowledge eliminates the possibility of
“humped” distributions [27] and enables one to obtain a point-
wise accurate approximation to a meson’s valence-quark PDA from
a very limited number of moments [5], which is all that is avail-
able, e.g., from simulations of lattice-regularised QCD [28–30].

An effort has recently begun, focusing on computation of meson
PDAs directly from BSAs obtained using QCD’s Dyson–Schwinger
equations (DSEs) [23–25]. With the well-constrained kernels for
bound-state equations that are now available [31–34], these stud-
ies have a direct connection to QCD; and hence comparison of
their results with experiment will serve as meaningful tests of this
theory, as were previous computations of parton distribution func-
tions [20,35–37].

Independently, it is worth capitalising on the second observa-
tion above; i.e., to use extant results from numerical simulations
of QCD in order to obtain insights into the pointwise behaviour of
meson PDAs, as has already been tried for parton distribution func-
tions (PDFs) [38–40]. The results should be valuable in the analysis
and planning of experiments. They will also serve as a gauge by
which to measure attempts at the computation of meson PDAs,
including the DSE studies already mentioned but also results from
QCD sum-rules (e.g., Refs. [41–47]) and models (e.g., Refs. [48–52]).

2. Computing PDAs from moments

One should properly denote a meson PDA by ϕ(x;τ ). It is a
function of two arguments: x, the parton light-front momentum
fraction; and τ = 1/ζ , where ζ is the momentum-scale that char-
acterises the exclusive process in which the meson is involved. On
the domain within which QCD perturbation theory is valid, the
equation describing the τ -evolution of ϕ(x;τ ) is known and has
the solution [9,10]
ϕ(x;τ ) = ϕasy(x)

[
1 +

∞∑
j=1,2,...

a3/2
j (τ )C (3/2)

j (x − x̄)

]
, (4)

where {C (3/2)

j , j = 1,2, . . . ,∞} are Gegenbauer polynomials of or-

der α = 3/2 and the expansion coefficients {a3/2
j , j = 1,2, . . . ,∞}

evolve logarithmically with τ , vanishing as τ → 0. This result ex-
presses the fact that in the neighbourhood τΛQCD � 0, QCD is
invariant under the collinear conformal group SL(2;R) [53,54].
Gegenbauer-α = 3/2 polynomials are the irreducible representa-
tions of this group. A correspondence with the spherical harmon-
ics expansion of the wave functions for O (3)-invariant systems in
quantum mechanics is plain.

Nonperturbative methods in QCD typically provide access to
moments of the PDA; viz., the quantities

〈
(x − x̄)m〉τ

ϕ
=

1∫
0

dx (x − x̄)mϕ(x;τ ). (5)

Until recently it was commonly assumed that at any length-scale,
τ , an accurate approximation to ϕ(x;τ ) is obtained by using just
the first few terms of the expansion in Eq. (4); and hence that the
best use of a limited number of moments was to determine the
first few Gegenbauer coefficients, a3/2

j (τ ). We will call this Assump-
tion A. It leads to models for ϕ(x) whose pointwise behaviour is
not concave on x ∈ [0,1]; e.g., to “humped” distributions [27]. Fol-
lowing Ref. [4], one may readily establish that a double-humped
form for ϕ(x) lies within the class of distributions produced by
a meson BSA which may be characterised as vanishing at zero rela-
tive momentum, instead of peaking thereat. As indicated above, no
ground-state pseudoscalar or vector meson solution exhibits such
behaviour [34,55,56].

Assumption A is certainly valid on τΛQCD � 0. However, it is
incorrect at any energy scale accessible in contemporary or fore-
seeable experiments. This was highlighted in Ref. [5] and in Sec-
tion 5.3 of Ref. [25]. The latter used the fact [57–59] that ϕasy(x)
can only be a good approximation to a meson’s PDA when it is
accurate to write uv(x) ≈ δ(x), where uv(x) is the meson’s valence-
quark PDF, and showed that this is not valid even at energy scales
characteristic of the large hadron collider (LHC). Hence, realistic
meson PDAs are necessarily much broader than ϕasy(x). It follows
that an insistence on using just a few terms in Eq. (4) to represent
a hadron’s PDA must lead to unphysical oscillations; i.e., humps,
just as any attempt to represent a box-like curve via a Fourier
series will inevitably lead to slow convergence and spurious os-
cillations.

An alternative to Assumption A, proposed in Refs. [4–6,25], is to
accept that at all accessible scales, the pointwise profile of PDAs is
determined by nonperturbative dynamics; and hence PDAs should
be reconstructed from moments by using Gegenbauer polynomials
of order α, with this order – the value of α – determined by the
moments themselves, not fixed beforehand. In illustrating this pro-
cedure, Ref. [4] considered DSE results for the pion’s BSA, wrote1

ϕ(x;τ ) = Nα[xx̄]α−

[
1 +

js∑
j=2,4,...

aα
j (τ )C (α)

j (x − x̄)

]
, (6)

where α− = α − 1/2 and Nα = 1/B(α + 1/2,α + 1/2), and ob-
tained a converged, concave result for the PDA with js = 2. [N.B.

1 The leading term in Eq. (6) was used previously [60] as a simple means of esti-
mating the size of radiative corrections to the leading-order perturbative expression
for the pion form factor [9,10].
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Table 1
Meson PDA moments obtained using numerical simulations of lattice-regularised
QCD with N f = 2 + 1 domain-wall fermions and nonperturbative renormalisation
of lattice operators [30]: linear extrapolation to physical pion mass, MS-scheme at
ζ = 2 GeV, two lattice volumes. The first error is statistical, the second represents
an estimate of systematic errors, including those from the s-quark mass, discretisa-
tion and renormalisation.

Meson 〈(x − x̄)n〉 163 × 32 243 × 64

π n = 2 0.25(1)(2) 0.28(1)(2)
ρ‖ n = 2 0.25(2)(2) 0.27(1)(2)
φ n = 2 0.25(2)(2) 0.25(2)(1)
K n = 1 0.035(2)(2) 0.036(1)(2)
K ∗‖ n = 1 0.037(1)(2) 0.043(2)(3)
K n = 2 0.25(1)(2) 0.26(1)(2)
K ∗‖ n = 2 0.25(1)(2) 0.25(2)(2)

In the case of mesons in a multiplet that contains an eigenstate
of charge-conjugation, ϕ(x) = ϕ(x̄); and hence only even terms
contribute to the sum in Eq. (4).] Naturally, once obtained in this
way, one may project ϕ(x;τ ) onto the form in Eq. (4); viz., for
j = 1,2, . . . ,

a3/2
j (τ ) = 2

3

2 j + 3

( j + 2)( j + 1)

1∫
0

dx C (3/2)

j (x − x̄)ϕ(x;τ ), (7)

therewith obtaining all coefficients necessary to represent any
computed distribution in the conformal form without ambiguity or
difficulty. In this form, too, one may determine the distribution at
any τ ′ < τ using the ERBL evolution equations for the coefficients
{a3/2

j (τ ), i = 1,2, . . .} [9,10].
In connection with the challenge of reconstructing a distribu-

tion from moments, consider that since discretised spacetime does
not possess the full rotational symmetries of the Euclidean con-
tinuum, then, with current algorithms, at most two nontrivial mo-
ments of ϕ(x) can be computed using numerical simulations of
lattice-regularised QCD. In the case of mesons in a multiplet that
contains an eigenstate of charge-conjugation one has 〈x − x̄〉 ≡ 0,
which means that, on average, the valence-quark and -antiquark
share equally in the light-front momentum of the bound-state; and
hence only one nontrivial moment is accessible. Herein we propose
to follow Ref. [5] and use this limited information to reconstruct
PDAs from lattice-QCD moments using an analogue of Eq. (6) that
is also valid for mesons comprised from valence-quarks with non-
degenerate masses:

ϕ(x) = xα(1 − x)β/B(α,β). (8)

Eq. (8) is not a model.2 It is the leading term in an expansion of
the meson’s PDA in Jacobi polynomials, a complete, orthonormal
set; and the full expression is identical to Eq. (6) for α = β . We
have truncated the expression at this leading-order because the
moments listed in Table 1 are only sufficient to determine α, β . As
mentioned above, if one wishes to evolve the distribution obtained
to another momentum scale, τ ′ < τ , then this may be achieved
by projecting Eq. (8) onto the form in Eq. (4) using Eq. (7), and
subsequently employing the ERBL evolution equations [9,10].

3. Light pseudoscalar and vector mesons with equal-mass
valence-quarks

Consider now that a vector meson has two PDAs, one associ-
ated with light-front longitudinal polarisation, ϕV‖ , and the other

with light-front transverse polarisation, ϕV⊥ . Simulations of QCD

2 Numerous insights into the modelling of PDAs are provided elsewhere [61].
Table 2
Selection of computed quantities associated with the meson PDAs in Eqs. (10), (11),
(14), (15). xmax is the location of the PDA’s maximum, which lies at x = 1

2 for the
du case (ϕasy(xmax) = 1.5), and w is defined in Eq. (2). The fact that the n = 3,4
moments have values which are � 60% of their kindred lower moments highlights
the statements made in connection with Eq. (6); i.e., that any attempt to reconstruct
the PDA using Eq. (4) will converge very slowly.

163 × 32 243 × 64

ϕdu(xmax) 1.27+0.09
−0.08 1.16+0.08

−0.07

ϕsu(xmax) 1.28+0.09
−0.08 1.24+0.09

−0.08

〈(x − x̄)3〉su 0.019 0.020
〈(x − x̄)4〉su 0.13 ± 0.02 0.13 ± 0.02

〈(x − x̄)4〉du 0.125+0.019
−0.018 0.15 ± 0.02

wdu 1.33+0.32
−0.19 1.83+1.00

−0.41

wsu 1.20+0.26
−0.16 1.29+0.33

−0.19

performed thus far have produced τ2 = 1/ζ2, ζ2 = 2 GeV, moments
of ϕV‖ and ϕV⊥ which are equal within errors [29]. Similarly, it is
apparent in Table 1 that contemporary lattice-QCD cannot distin-
guish between ϕV‖ and ϕ P , where the latter is the PDA associated
with the vector meson’s pseudoscalar analogue.

We expect, however, that in reality these three PDAs are dif-
ferent. Indeed, since a vector meson’s electric radius is greater
than its magnetic radius, and the latter, in turn, is greater than
the charge radius of the pseudoscalar meson analogue [62,63], we
anticipate the following ordering at accessible energy scales:

ϕV‖ narrower-than ϕV⊥ narrower-than ϕ P , (9)

where “narrower” means pointwise closer to ϕ
asy
π (x). This expec-

tation requires confirmation by calculations within the same DSE
framework that delivered the stated ordering of radii.

The need for such a study is highlighted by the following ob-
servations. The pattern of Eq. (9) is seen in Refs. [42,51], which
report ϕV‖ a little narrower than ϕV⊥ , and both narrower than ϕ P .

In contrast, combining Refs. [49,52] one finds ϕV‖ (x) ≈ ϕ P (x) but

ϕ P much narrower than ϕV⊥ , whereas Ref. [50] produces ϕV‖ (x) ≈
ϕ P (x) but ϕV⊥ much narrower than ϕV‖ .

The inconsistency just described is unsatisfactory. So, absent a
well-constrained DSE study, herein we work with the contempo-
rary lattice-QCD result: ϕV‖ ≈ ϕV⊥ ≈ ϕ P =: ϕdu , and report PDAs
obtained from the pseudoscalar moments in Table 1. Using Eq. (8),
the two rightmost columns of this table yield:

163 × 32: αdu = βdu = 0.50+0.20
−0.16, (10)

243 × 64: αdu = βdu = 0.29+0.15
−0.13. (11)

The PDAs in Eqs. (10), (11) precisely reproduce the values of the
moments in Table 1 and predict the quantities listed in Table 2.

It is worth remarking that there are two extremes for the
PDA: ϕdu = ϕpoint = constant, which describes a point-particle; and
ϕdu = ϕasy, which is the result in conformal QCD. This means that
the second moment is bounded as follows:

1

2
= 〈

(x − x̄)2〉
ϕasy �

〈
(x − x̄)2〉

ϕ
�

〈
(x − x̄)2〉

ϕpoint = 1

3
. (12)

Therefore, instead of using an absolute scale, the accuracy of, and
deviations between, the moments in Table 1 should be measured
against these bounds. Consequently, the difference between the
central values of the π – n = 2 entries in the second row of the
table corresponds to a mismatch of 23%. This explains the marked
differences between Eqs. (10) and (11). The analogous bounds on



16 J. Segovia et al. / Physics Letters B 731 (2014) 13–18
Fig. 1. PDA for pseudoscalar and vector mesons constituted from equal mass
valence-quarks, reconstructed using Eq. (8). Upper panel – solid curve and associated
error band (shaded region labelled “B”): Eq. (10), obtained from the 163 × 32-lattice
moments in Table 1; and lower panel – solid curve and associated error band
(shaded region labelled “C”): Eq. (11), obtained from the 243 × 64-lattice moments
in Table 1. The dashed curve “A” in both panels is the DSE prediction in Eq. (13).

the fourth moment are given by 3/35(= 0.086) < 〈(x − x̄)4〉 < 1/5
and should be borne in mind when reflecting upon Table 2.

Region B in the upper panel of Fig. 1 displays the result in
Eq. (10), with the interior solid curve marking αdu = 0.50; and Re-
gion C in the lower panel of Fig. 1 depicts the result in Eq. (11),
with the interior solid curve marking αdu = 0.29. The dashed curve
labelled “A” in both panels is the DSE prediction for the chiral-limit
pion:

ϕπ(x;τ2) = 1.81
[
x(1 − x)

]a[
1 + ã2C a+1/2

2 (2x − 1)
]
, (13)

a = 0.31, ã2 = −0.12, which was obtained elsewhere [4] us-
ing modern symmetry-preserving kernels for the gap and Bethe–
Salpeter equations that are currently available [32]. These ker-
nels incorporate essentially nonperturbative effects associated with
DCSB, which are omitted in the leading-order (rainbow-ladder)
truncation and any stepwise improvement thereof [31]. They have
exposed an important role played by the dressed-quark anomalous
chromomagnetic moment [64] in determining observable quanti-
ties; e.g., clarifying a causal connection between DCSB and the
splitting between vector and axial-vector mesons [32]. If one
chooses to approximate Eq. (13) via Eq. (8), then it corresponds
to α = β = 0.50, which is also the value associated with the mod-
els described in Refs. [41,49].

Overlaying the two panels of Fig. 1, one finds that the PDAs
obtained from the two different lattice spacings have overlapping
error bands. Notwithstanding this, the differences are material,
something which may be illustrated by considering the “1/x” mo-
Fig. 2. Solid curve and associated error band (shaded region labelled “D”): PDA in
Eq. (15), describing sū pseudoscalar and vector mesons, reconstructed using Eq. (8)
and obtained from the 243 × 64-lattice configurations. The result obtained from the
163 × 32-lattice moments in Table 1 is not materially different. The dashed curve
“A” is the DSE prediction for the pion’s PDA in Eq. (13).

ment of the PDAs that, according to Eqs. (1), (2), sets the large-Q 2

magnitude in the perturbative QCD formulae for a pseudoscalar
meson’s elastic form factor. These moments are presented in Ta-
ble 2. The DSE prediction is wdu = (1/3)〈x−1〉 = 1.53, a result
compatible with that obtained using the PDAs of Refs. [41,49]; and
a QCD sum rules analysis produces [43] wdu = 1.1 ± 0.1. These
continuum-QCD results are compatible with experiment. It ap-
pears, therefore, that the 243 × 64 lattice configurations produce
a form of ϕdu(x) that is too broad.

The preceding analysis emphasises anew that information is
gained using the procedure advocated in Refs. [4–6,25] but not
lost. It has enabled an informed analysis of the lattice results, pro-
viding context and highlighting possible shortcomings.

4. sū pseudoscalar and vector mesons

When reconstructing a PDA for sū mesons, we choose to focus
on the pseudoscalar meson moments in Table 1 because they show
the least sensitivity to lattice volume and possess the smallest er-
rors. Using the procedure described in association with Eq. (6),
they yield

163 × 32: αsu = 0.56+0.21
−0.18, βsu = 0.45+0.19

−0.16, (14)

243 × 64: αsu = 0.48+0.19
−0.16, βsu = 0.38+0.17

−0.15. (15)

These PDAs precisely reproduce the values of the moments in Ta-
ble 1; and the positive value of the first moment indicates that,
on average, the s-quark carries more of the bound-state’s momen-
tum than the ū-quark. In addition, the PDAs predict the quantities
listed in Table 2.

The positive value of 〈(x − x̄)〉su is responsible for the shift
in position, relative to the peak in the pion’s PDA, of the max-
imum in ϕsu(x); viz., from x = 0.5 to x = 0.55, which is appar-
ent in Fig. 2. This 10% increase is a measure of nonperturbative
SU(3)-flavour-symmetry breaking. It is comparable with the 15%
shift in the peak of the kaon’s valence s-quark PDF, sK

v (x), rela-
tive to uK

v (x) [37]. By way of context, it is notable that the ratio of
s-to-u current-quark masses is approximately 28 [65], whereas the
ratio of nonperturbatively generated Euclidean constituent-quark
masses is typically [66] 1.5 and the ratio of leptonic decay con-
stants f K / fπ ≈ 1.2 [65]. Both latter quantities are equivalent order
parameters for dynamical chiral symmetry breaking (DCSB); and it
is therefore apparent that the flavour-dependence of DCSB rather
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Fig. 3. Solid curve (labelled “E”) is ERBL evolution to ζ10 = 10 GeV of kaon PDA
defined by Eq. (15) (dashed curve, labelled “D” to match the same PDA in Fig. 2).
Dotted curve (labelled “F”) is ϕasy(x) in Eq. (3).

than explicit chiral symmetry breaking is measured by the shift in
peak location.

Using the information above one can also report a lattice-QCD-
based estimate for the ratio of kaon-to-pion elastic electromag-
netic form factors at Q 2 = 4 GeV2 via Eqs. (1), (2). Let us first,
however, provide some background. Owing to charge conserva-
tion, F K (Q 2 = 0)/Fπ (Q 2 = 0) = 1; and in the conformal limit,
F K /Fπ = f 2

K / f 2
π = 1.50. Moreover, given that rπ/rK > 1, we antic-

ipate that the ratio F K (Q 2)/Fπ (Q 2) grows monotonically toward
its conformal limit because anything else would indicate the pres-
ence of a new, dynamically generated mass-scale. This expectation
is supported by DSE form factor predictions [67], which produce
F K (ζ 2

2 )/Fπ (ζ 2
2 ) = 1.13.

Using Eqs. (1), (2) and the results in Table 2, one has

163 × 32 243 × 64

F K (ζ 2
2 )/Fπ (ζ 2

2 ) 1.21+1.22
−0.62 0.74+1.20

−0.51

(16)

The central value of this ratio obtained from the 163 × 32 lat-
tice is consistent with expectations and the DSE prediction; but
the large errors on wP ; i.e., the (1/x)-moment, diminish the sig-
nificance of this outcome. Regarding the result obtained from the
243 × 64 lattice, the central value suggests that this larger lattice
produces a pion PDA which is too broad, consistent with the dis-
cussion in the penultimate paragraph of Section 3.

5. ERBL evolution

With decreasing τ = 1/ζ , all meson PDAs shift pointwise to-
ward ϕasy in Eq. (3). This evolution was canvassed elsewhere for
the symmetric pion PDA [5,25]. It is therefore interesting to elu-
cidate the effect of evolution on the skewed kaon distribution
associated with the moments produced by lattice-QCD.

The solid curve (labelled “E”) in Fig. 3 is the 243 × 64-lattice
kaon PDA, defined by the central values of α,β in Eq. (15), evolved
to τ10 = 1/ζ10, ζ10 = 10 GeV, using the leading-order ERBL equa-
tions. The evolved distribution is described by

243 × 64(τ2→τ10): αsu = 0.62+0.15
−0.13, βsu = 0.53+0.14

−0.12, (17)

and has a central-value peak-location shifted just 2.4% closer to
x = 1

2 . It is apparent in Fig. 3 that PDA evolution is slow.
The slow pace of evolution is readily quantified. Consider

the moment 〈x − x̄〉su , which measures the average excess of
momentum carried by the valence s-quark in the meson. As
Fig. 4. Solid curve – Leading-order evolution of 〈x − x̄〉su with scale, ζ , computed
from the PDA defined by the central values in Eq. (15). The vertical dashed line
marks ζ = ζ100. The horizontal dotted line marks 50% of this moment’s ζ = ζ2 value.
It is not reached until the energy scale ζ = e8.2ζ2 = 7.3 TeV.

noted above, this moment is a measure of the magnitude and
flavour-dependence of DCSB. It is zero in the conformal limit. The
ζ -evolution of 〈x − x̄〉su is depicted in Fig. 4. Plainly, the s-quark
momentum-excess remains more than 50% of its ζ2-value until
energy scales exceeding those generated at the LHC. Hence, con-
sistent with similar analyses of ϕdu , nonperturbative phenomena
govern the pointwise behaviour of ϕsu at all energy scales that
are currently conceivable in connection with terrestrial facilities.
(Higher-order evolution [68,69] does not materially affect these re-
sults or conclusions.)

Finally, we return to the ratio in Eq. (16) and consider the im-
pact of ERBL evolution. Working with the 163 × 32 lattice, which
produces the more reasonable value, the ratio becomes

F K
(
ζ 2

10

)
/Fπ

(
ζ 2

10

) = 1.29+0.61
−0.42. (18)

Subtracting the unit Q 2 = 0 value, guaranteed by charge conserva-
tion, Eq. (18) describes a 38% increase in the central value of the
ratio. Notably, the error band has narrowed along with the dis-
tributions. At ζ100 = 100 GeV; i.e., Q 2 = 10 000 GeV2, the central
value of the ratio is 1.34, which is a further increase of 17%. How-
ever, one still remains at only 68% of the pertinent conformal limit
value.

6. Epilogue

Light-front parton distribution amplitudes (PDAs) have numer-
ous applications in the analysis of hard exclusive processes but
predictive power is lacking unless they can be calculated. Many
nonperturbative methods for the estimation of nonperturbative
matrix elements in QCD produce moments of the PDAs, instead
of the pointwise behaviour directly. Therefore, in order to make
progress, one needs an effective means by which to reconstruct
the PDA from its moments.

The method introduced in Refs. [4–6], which is founded in
Bayesian analysis, enables one to obtain a pointwise accurate ap-
proximation to meson PDAs from limited information. We em-
ployed it to extract the PDAs of light-quark pseudoscalar and vec-
tor mesons from the restricted number of moments made available
by numerical simulations of lattice-regularised QCD. At all energy
scales currently accessible to terrestrial experiments, the resulting
PDAs are concave functions whose dilation and asymmetry, when
the latter is present, express the strength of dynamical chiral sym-
metry breaking.
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Notably, within errors, the lattice moments indicate that, when
constituted from the same valence quarks, the PDAs of pseu-
doscalar and vector mesons are identical. Some studies in contin-
uum QCD support an approximate equality between these ampli-
tudes; but there is significant disagreement between methods and
models. In addition, whilst the lattice moments seem precise, our
analysis showed this appearance to be misleading because the er-
rors on the moments admit an error band on a given PDA which is
effectively large. Moreover, especially for the pion, the lattice mo-
ments exhibit material dependence on lattice volume. We judge,
therefore, that improvements must be made in both continuum-
and lattice-QCD before we arrive at an accurate picture of the
light-front structure of pseudoscalar and vector mesons constituted
from light-quarks.
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