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Abstract 24 

Aims: It is unknown whether cardiomyocyte hypertrophy and the transition to fatty acid 25 

oxidation as the main source of energy after birth is dependent on the maturation of the 26 

cardiomyocytes’ metabolic system, or on the limitation of substrate availability before birth. 27 

This study aimed to investigate whether intrafetal administration of a PPARγ agonist, 28 

rosiglitazone, during late gestation can stimulate the expression of factors regulating cardiac 29 

growth and metabolism in preparation for birth, and the consequences on cardiac contractility 30 

in the fetal sheep at ~140d gestation.  31 

 32 

Methods: The mRNA expression and protein abundance of key factors regulating growth 33 

and metabolism were quantified using qRT-PCR and Western blotting, respectively. Cardiac 34 

contractility was determined by measuring the Ca2+ sensitivity and maximum Ca2+ activated 35 

force of skinned cardiomyocyte bundles.  36 

 37 

Results: Rosiglitazone treated fetuses had a lower cardiac abundance of insulin signaling 38 

molecules, including IRβ, IRS-1, phospho-IRS-1(Tyr895), PI3K regulatory subunit p85, 39 

PI3K catalytic subunit p110α, phospho-PDPK-1(Ser241), Akt-1, phospho-Akt(ser273), 40 

PKCζ, phospho-PKC(Thr410), AS160, phospho-AS160(Thr642) and GLUT-4. Additionally, 41 

cardiac abundance of regulators of fatty acid β-oxidation, including AdipoR1, AMPKα, 42 

phospho-AMPKα(Thr172), phospho-ACC(Ser79), CPT-1 and PGC-1α was lower in the 43 

rosiglitazone treated group. Rosiglitazone administration also resulted in a decrease in 44 

cardiomyocyte size. 45 

 46 

Conclusions: Rosiglitazone administration in the late gestation sheep fetus resulted in a 47 

decreased abundance of factors regulating cardiac glucose uptake, fatty acid β-oxidation and 48 
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cardiomyocyte size. These findings suggest that activation of PPARγ using rosiglitazone does 49 

not promote the maturation of cardiomyocyte, rather, it may decrease cardiac metabolism and 50 

compromise cardiac health later in life.  51 

  52 

Key words: programming, insulin, fatty acid, glucose transporter, adiponectin, 53 

mononucleated, binucleated, contractility, fetus, pregnancy. 54 

55 
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Glossary: 56 

ACC  Acetyl CoA Carboxylase 57 

AdipoR1 Adiponectin Receptor 1 58 

Akt  Protein Kinase B 59 

AMPK  AMP-Activated Protein Kinase 60 

ANP  Atrial Natriuretic Peptide 61 

AS160  Akt substrate 160kDa 62 

BCA  Bicinchoninic Acid 63 

CDK-4  Cyclin Dependent Kinase 4 64 

CPT-1  Carnitine Palmitoyltransferase-1 65 

FAT/CD36 Fatty Acid Translocase 66 

FATP1  Fatty Acid Transport Protein 1 67 

GAPDH Glyceraldehyde-3-Phosphate Dehydrogenase 68 

GLUT-1 Glucose Transporter type-1 69 

GLUT-4 Glucose Transporter type-4 70 

HPRT1 Hypoxanthine Phosphoribosyltransferase 1 71 

IGF  Insulin-like Growth Factor 72 

IGF-1R Insulin-like Growth Factor 1 Receptor 73 

IGF-2R Insulin-like Growth Factor 2 Receptor 74 

IR  Insulin Receptor 75 

IRS-1  Insulin Receptor Substrate-1  76 

PDH  Pyruvate Dehydrogenase 77 

PDK-4  Pyruvate Dehydrogenase Kinase-4 78 

PDPK-1 3-Phosphoinositide-dependent Protein Kinase 1 79 
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PGC1α  PPARγ-coactivator 1 alpha  80 

PGK1  Phosphoglycerate Kinase 1 81 

PI3K  Phosphatidylinositol 3-Kinase 82 

PKCζ  atypical Protein Kinase C zeta 83 

PPARα Peroxisome Proliferator Activated Receptor alpha 84 

PPARγ  Peroxisome Proliferator Activated Receptor gamma  85 

PVDF  Polyvinylidene Difluoride 86 

qRT-PCR quantitative Real Time Reverse Transcription-PCR 87 

TBS-T  Tris-Buffered Saline with 1% Tween-20 88 

89 
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Introduction 90 

 91 

Early growth of the heart is associated with proliferation of mononucleated cardiomyocytes. 92 

In mid gestation, these mononucleated cells become binucleated cardiomyocytes, which 93 

contribute to increasing cardiac mass by hypertrophy (5, 17). In the human and sheep, the 94 

endowment of cardiomyocytes present in the adult heart is largely determined before birth 95 

(42). In the fetal heart, lactate and glucose areis the main sources of energy, while after birth, 96 

there is a switch to fatty acid β-oxidation (9, 21). It is not known whether the dominance of 97 

glucose as the main fuel source in the fetal cardiomyocyte is a consequence of the relatively 98 

limited availability of fatty acids in the fetal circulation or rather as a consequence of the 99 

immaturity of key enzyme systems present within the fetal cardiomyocyte. It is also unclear 100 

whether the maturation of cardiomyocytes is linked to cardiac metabolism, however several 101 

factors are known to impact on cardiac maturation and metabolism. For example, 102 

glucocorticoids are essential in the maturation of key fetal organ systems, including the lung, 103 

gut and heart in late gestation (10). In rats, glucocorticoid infusion increases the abundance of 104 

the transcription factor Peroxisome Proliferator Activated Receptor gamma (PPARγ) leading 105 

to increased ATP production (26). Additionally, PPARγ may regulate cardiac insulin 106 

signalling, as it has been shown that cardiac specific PPARγ knockout mice  have decreased 107 

phosphorylation of Protein kinase B (Akt), which is a key insulin signalling molecule (8). 108 

Rosiglitazone, a PPARγ agonist, increases plasma adiponectin concentration, which is a key 109 

regulator of cardiac fatty acid β-oxidation (1). Rosiglitazone also upregulates  adiponectin 110 

mRNA expression in perirenal fat in sheep (29) and increases cardiac adiponectin and 111 

Adiponectin Receptor 1 (AdipoR1) in cultured cardiomyocytes from adult rats and mice (7, 112 

41). Furthermore, rosiglitazone administration in adult rats induces cardiac hypertrophy (8). 113 

Thus one possibility is that an upregulation of PPARγ in late gestation may induce changes in 114 
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factors that regulate insulin dependent cardiac glucose uptake, fatty acid β-oxidation and 115 

cardiac hypertrophy in fetal cardiomyocytes in preparation for the transition to extrauterine 116 

life.  117 

 118 

Cardiac glucose uptake in the fetus is maintained through the activity of the insulin 119 

independent Glucose Transporter type-1 (GLUT-1) (13). In postnatal life, however, cardiac 120 

glucose uptake is regulated by the insulin dependent (GLUT-4), through the activation of the 121 

Insulin Receptor (IR), Insulin Receptor Substrate-1 (IRS-1), Phosphatidylinositol 3-Kinase 122 

(PI3K), 3-Phosphoinositide-dependent Protein Kinase 1 (PDPK-1) and/or Akt. Activation of 123 

PDPK-1 results in the phosphorylation and activation of the atypical Protein Kinase C zeta 124 

(PKCζ), while phosphorylation of Akt results in the phosphorylation and activation of the 125 

Akt substrate 160kDa (AS160). Phosphorylated PKCζ and AS160 each play a major role in 126 

the translocation of the GLUT-4 to the plasma membrane to facilitate glucose uptake (38).  127 

 128 

Cardiac fatty acid uptake is facilitated by Fatty Acid Translocase (FAT/CD36) and Fatty 129 

Acid Transport Protein 1 (FATP1) (36). Fatty acid oxidation, however, is regulated by the 130 

activation of AdipoR1 by adiponectin binding, leading to the phosphorylation, and hence 131 

activation of AMP-Activated Protein Kinase (AMPK), which in turn phosphorylates Acetyl 132 

CoA Carboxylase (ACC) resulting in its inhibition (32, 34). ACC catalyses the production of 133 

malonyl CoA, which inhibits the action of Carnitine Palmitoyltransferase-1 (CPT-1) in 134 

facilitating fatty acid transport into the mitochondria (20). Fatty acid β-oxidation in the heart 135 

is also regulated by PGC1α and PPAR alpha (PPARα), which stimulate mitochondrial 136 

biogenesis and fatty acid β-oxidation by increasing the transcription of regulators such as 137 

CPT-1 (39). Pyruvate Dehydrogenase Kinase-4 (PDK-4) also plays a role in promoting 138 
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cardiac fatty acid β-oxidation by inhibiting glucose oxidation through inhibition of the 139 

Pyruvate Dehydrogenase complex (PDH) (37). 140 

  141 

Insulin-like Growth Factor-1 (IGF-1) and IGF-2, which act through the IGF-1 receptor (IGF-142 

1R), play an important role in cell growth and metabolism through activation of downstream 143 

signalling pathways (6). IGF-2 receptor (IGF-2R) is a clearance receptor, function to degrade 144 

IGF-2, therefore limiting its action on IGF-1R in normally grown fetuses (18). However, 145 

recent studies have shown that activation of IGF-2R signalling leads to pathological cardiac 146 

hypertrophy during late gestation in the sheep fetus (40), indicated by increased expression of 147 

the marker of hypertrophy,  Atrial Natriuretic Peptide (ANP) (30). Additionally, IGF-1 also 148 

regulates proliferation through the activation of the Cyclin Dependent Kinase 4 (CDK-4) and 149 

Cyclin D1 complex, which is inhibited by the CDK inhibitor, p27 (24). The expression of 150 

CDK-4 is stimulated by the transcription factor c-myc (15).  151 

 152 

We hypothesise that activation of PPARγ with intrafetal rosiglitazone infusion will stimulate 153 

cardiac insulin dependent glucose uptake and fatty acid β-oxidation, thus stimulating cardiac 154 

maturation and growth. In this study, we have therefore determined the effect of PPARγ 155 

activation using rosiglitazone infusion to the sheep fetus for ~16 days in late gestation on the 156 

mRNA expression and protein abundance of factors regulating cardiac glucose uptake, fatty 157 

acid β-oxidation, cardiomyocyte proliferation and hypertrophy, as well as cardiomyocyte 158 

parameters in late gestation at ~140d gestation. We have also determined both Ca2+ sensitivity 159 

and maximum Ca2+ -activated force in small bundles of chemically skinned cardiac muscle, 160 

as an indication of cardiac function. 161 

 162 
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Materials and methods 163 

 164 

Animals, surgery and rosiglitazone administration 165 

All procedures were approved by the Institute for Medical and Veterinary Science Animal 166 

Ethics Committee.  167 

 168 

Pregnancies were confirmed in 14 adult Merino ewes by ultrasound scanning in early 169 

gestation. Surgery was performed between 123 and 126d gestation using aseptic techniques. 170 

General anesthesia was induced by intravenous injection of sodium thiopentone (1.25g, 171 

Pentothal; Rhone Merieux, Pinkenba, Qld, Australia) and maintained with 1.5-2.5% 172 

isoflurane (Fluothane; ICI, Melbourne, Vic, Australia) in oxygen.  173 

 174 

Ethanol was diluted in water to make a sterile 15% ethanol (vol/vol) solution. Rosiglitazone 175 

(30 mg, generously donated by GlaxoSmithKline, Brentford, UK) was dissolved in sterile 176 

15% ethanol (15 mg/ml) and then injected into a 2-ml Alzet osmotic pump (DURECT Corp., 177 

Cupertino, CA) under sterile conditions. Rosiglitazone was administered directly to the fetus 178 

with Alzet osmotic pumps, which were inserted subcutaneously over the scapula at surgery as 179 

previously described (29). Fetuses assigned to the control group (vehicle) also had Alzet 180 

osmotic pumps inserted containing 15% ethanol. The solution was released from the osmotic 181 

pumps at an average rate of 60μl/d for both rosiglitazone and control groups, according to the 182 

manufacturer’s specifications regarding the estimated flow rate of the pumps (DURECT 183 

Corp., Cupertino, CA). Based on this flow rate, and the amount of drug initially loaded into 184 

each pump,  This this regimen delivered aprovided an estimated dose of ~3.6mg/fetus/day of 185 

rosiglitazone. This resulted in  (calculated according to the amount of rosiglitazone loaded 186 

into the pumps and flow rate of the pumps), resulting in a plasma concentration of ~25ng/ml, 187 
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across  or 7.14ng/ml/kg (25ng/ml divided by average fetal sheep weight of 3.5kg) (3). This 188 

plasma concentration is comparable to those seen in adults treated with an oral dose of 189 

8mg/day, which results in a plasma concentration of ~598ng/ml or 7.97ng/ml/kg (598ng/ml 190 

divided by average adult weight of 75kg) (9) the infusion period and was sufficient to 191 

activate PPARγa target genes in adipose tissue, liver and skeletal muscle. Further, we have 192 

reported previously that this regime resulted in accumulation of rosiglitazone in the fetus 193 

throughout the infusion period (3). 194 

 195 

Blood sampling, post mortem and tissue collection 196 

Fetal arterial blood (0.5 ml) was collected daily from the time of surgery to post mortem for 197 

determination of fetal blood gases PO2 and PCO2 using an ABL 520 analyzer (Radiometer, 198 

Copenhagen, Denmark) (29). 199 

 200 

Between 137 and 140d gestation, ewes were humanely killed with an overdose of sodium 201 

pentobarbitone (Virbac Pty Ltd., Peakhurst, NSW, Australia). Timing of tissue collection was 202 

determined to allow rosiglitazone infusion for 16 ± 1d. Singleton and twin fetuses from the 203 

control (n=12) and rosiglitazone treated (n=9) groups were delivered by hysterectomy and 204 

weighed. All organs were dissected and weighed, and samples of heart muscle (left ventricle) 205 

were snap frozen in liquid nitrogen and stored at −80C. The remainder of the heart was 206 

perfused through the aorta with heparin and saturated potassium chloride, to prevent blood 207 

clotting and to arrest the heart in diastole. Cardiomyocytes were enzymatically isolated from 208 

the heart as previously described (27) and fixed in 1% paraformaldehyde (Table 1) and stored 209 

until determination of the percentage of mononucleated cardiomyocytes and cardiomyocyte 210 

size. 211 

 212 

Commented [a1]: This might be more helpful in the 
dicsusion? 
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Quantitative real-time RT-PCR (qRT-PCR) 213 

RNA was extracted from ~50mg of left ventricle tissue using Trizol reagent (Invitrogen) 214 

(Table 1). RNA was purified using the RNeasy Mini Kit (QIAGEN). cDNA was synthesised 215 

using the purified RNA and Superscript 3 reverse transcriptase (Invitrogen) with random 216 

hexamers. The expression of mRNA transcripts of glucose transporters (GLUT-1 and GLUT-217 

4), cardiac lipid metabolism factors (Adiponectin, AdipoR1, AdipoR2, CD36, FATP, 218 

PPARα, PGC1α and PDK-4), cardiac growth factors (IGF-1, IGF-2, IGF-1R and IGF-2R), 219 

proliferative factors (p27, Cyclin D1, CDK-4 and c-myc), cardiac hypertrophy markers 220 

(ANP) and the housekeeper genes Hypoxanthine Phosphoribosyltransferase 1 (HPRT1), 221 

Phosphoglycerate Kinase 1 (PGK1) and Glyceraldehyde-3-Phosphate Dehydrogenase 222 

(GAPDH) (33) was measured by quantitative Real Time Reverse Transcription-PCR (qRT-223 

PCR) using the Sybr Green system in an ABI Prism 7500 Sequence Detection System 224 

(Applied Biosystems, Foster City, CA, USA). Normalised expression of the target genes was 225 

calculated using DataAssist Software v3.0 (Applied Biosystems) (14). 226 

 227 

Primer sequences were validated for use in sheep in this (Table 2) or in prior studies (23, 28, 228 

29). Each amplicon was sequenced to ensure the authenticity of the DNA product and a 229 

dissociation melt curve analysis was performed after each run to demonstrate amplicon 230 

homogeneity. Each qRT-PCR reaction well contained: 5l Sybr Green Master Mix (Applied 231 

Biosystems), 2l primer (forward and reverse), 2l molecular grade H2O and 1l of cDNA 232 

(50ng/μl). The cycling conditions consisted of 40 cycles of 95C for 15min and 60C for 233 

1min.  234 

 235 

Quantification of protein abundance 236 
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The protein abundance of factors regulating cardiomyocyte proliferation and hypertrophy, 237 

glucose and fatty acid metabolism and cardiac contractility were determined using Western 238 

Blotting (31). Briefly, left ventricle samples (~50mg) (Table 1) were sonicated in 800μl lysis 239 

buffer (50mM Tris HCL pH 8.0, 150mM NaCl, 1% NP-40, 1mM Na3VO4, 30mM NaF, 240 

10mM Na4P2O7, 10mM EDTA, 1 protease inhibitor tablet) and centrifuged at 12,000g at 4oC 241 

for 15min to remove insoluble material. Protein content of the clarified extracts was 242 

quantified using micro Bicinchoninic Acid (microBCA) protein assay. Prior to Western Blot 243 

analysis, samples (10μg protein) were subjected to SDS-PAGE and stained with Coomassie 244 

blue reagent (Thermo Fisher Scientific, Rockford, IL, USA) to ensure equal loading of the 245 

proteins.  Equal volumes and concentrations of protein were subjected to SDS-PAGE. The 246 

proteins were transferred onto a PolyScreen® Polyvinylidene Difluoride (PVDF) 247 

hybridization transfer membrane (PerkinElmer, Waltham, MA, USA) using a semi-dry 248 

blotter (Hoefer Inc, Holliston, CA, USA). The membranes were blocked with 5% BSA in 249 

Tris-Buffered Saline with 1% Tween-20 (TBS-T) at room temperature for 1h  and then 250 

incubated overnight with primary antibody against IRβ, PKCζ, GLUT-1, PPARα, CPT-1 251 

(Santa Cruz Biotechnology, Santa Cruz, CA, USA); IGF-1R, phospho-IRS-1 (Tyr895), 252 

p110α, Akt1, Akt2, total phospho-Akt (Ser473), PDPK-1, phospho-PDPK1 (Ser241), 253 

phospho-PKCζ (Thr410), AS160, phospho-AS160 (Thr642), total AMPK, total phospho-254 

AMPK (Thr172), PGC1α, ACC, phospho-ACC (Ser79) (Cell Signalling, Danvers, MA, 255 

USA); IRS-1, p85 (Merck Milipore, Billerica, MA, USA); AdipoR1 (Epitomics, Burlingame, 256 

CA, USA); GLUT-4, PDK-4, ANP (Abcam, Cambridge, UK) and IGF-2R (BD Transduction 257 

laboratories, San Jose, CA, USA). Membranes were washed and bound antibody detected 258 

using anti-rabbit or anti-mouse (Cell Signalling) horseradish peroxidase-conjugated 259 

secondary IgG antibodies at room temperature for 1h. Enhanced chemiluminescence reagents 260 

SuperSignal® West Pico Chemiluminescent Substrate (Thermo Fisher Scientific) and 261 
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ImageQuantTM LAS 4000 (GE Healthcare, Rydalmere, NSW, Australia) was used to detect 262 

the protein:antibody complexes. AlphaEaseFC (Alpha Innotech Corporation, Santa Clara, 263 

CA, USA) was utilised to quantify the optical density of the specific bands of the target 264 

proteins (40). 265 

 266 

Determination of proportion of mononucleated cardiomyocytes and cardiomyocyte size  267 

Cardiomyocytes were stained with methylene blue (ProSiTech, Thuringowa, Qld, Australia) 268 

and examined using an Olympus VANOX-T microscope (Olympus Optical Co. Ltd, Tokyo, 269 

Japan). The relative proportion of mononucleated and binucleated cardiomyocytes was 270 

determined by counting a total of 300 cardiomyocytes. To determine cardiomyocyte size, the 271 

length and width of 50 mononucleated and 50 binucleated cardiomyocytes were assessed 272 

using AnalySIS software (Software Imaging System, Gulfview Heights, SA, Australia) (40).  273 

 274 

Cardiac contractility studies 275 

 276 

Bundle isolation: Under a dissecting microscope, small bundles of cardiomyocytes (Table 1) 277 

of ~300 m diameter were isolated from the left ventricle and then attached between a force 278 

transducer (AE801 Memscap, Skoppun, Norway) and stationary pin with fine suture silk. The 279 

bundle was then briefly immersed in a high-EGTA physiological solution (solution 1; see 280 

below). We have shown in a previous study that stretching bundles by 130% of the resting 281 

length resulted in the production of optimum force to Ca2+ activation consistent with the 282 

approach of other studies (35).  In this study, the bundle was therefore stretched by 120% of 283 

its slack length to produced ~90% of optimum maximum Ca2+-activated force. Bundles were 284 

then chemically skinned in solution 1 containing 2% Triton X-100 for 30min (35) (see 285 

below). The output of the transducer was acquired and digitized by a PowerLab/8Sp 286 
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(ADInstruments, Castle Hill, NSW, Australia) data-acquisition system and the subsequent 287 

force responses recorded onto both a paper chart recorder (Kipp Zonnen, Bohemia, NY, 288 

USA) and computer using PowerLab Chart v4.1 computer software (ADInstruments). 289 

 290 

Force-calcium relationship:  The standard composition of the skinned fibre solutions used 291 

were (mM): (a) Solution 1 - Hepes, 90; EGTA, 50; total Mg2+, 10.3; total ATP, 8; creatine 292 

phosphate (CP), 10; (b) Solution 2 - Hepes, 90; EGTA, 50; total Ca2+, 48.5; total Mg2+, 8.12; 293 

total ATP, 8; CP, 10; (c) Solution 3 - Hepes, 90; EGTA, 0.05; HDTA2- (1,6-diaminohexane-294 

N,N,N_,N_-tetraacetic acid), 50; total Mg2+, 8.6; total ATP, 8; CP, 10. All solutions contained 295 

(mM): K+, 126; Na+, 36; azide, 1; free Mg2+, 1 and the pH and osmolality were 7.10  0.01 296 

and 295 mmols kg-1, respectively. 297 

 298 

All bundles were chemically skinned in solution 1 containing 2% Triton-X 100 for 30min. 299 

This procedure destroys all membranes, leaving only the contractile apparatus intact. Skinned 300 

bundles were then washed in fresh solution 1 for 5min and then equilibrated in a weakly 301 

buffered (2 mM) EGTA solution by combining proportions of solutions 1 and 3. The force-302 

pCa relationship was then determined by activating each bundle in solutions of increasing 303 

free Ca2+, created by combining solutions 1 and 2 in various ratios (pCa = log10[Ca2+]; 7.3 to 304 

5.5); the precise pCa in each activation ratio was subsequently measured by using an Orion 305 

Ca2+-sensitive electrode. Bundles were maximally activated by exposure to solution 2 (pCa 306 

~4.5). The maximum Ca2+-activated force responses in bundles were normalized to the cross-307 

sectional area of the bundle (mN/mm2) for comparison. Cross-sectional area was determined 308 

by the equation area r2, assuming the muscle bundle had a cylindrical form and taking the 309 

average diameter across the fiber bundle. Submaximal force relative to the maximum Ca2+-310 

activated force was used in determination of the force-pCa relationship. For each fiber 311 
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bundle, the relative force produced for each free [Ca2+] was plotted by use of GraphPad Prism 312 

v4.01 (GraphPad Software, San Diego, CA, USA) and a sigmoidal dose-response curve (Hill 313 

equation: Y=min + (max - min)/(1 + 10((LogEC50 - X) x n))) was fitted. Parameters Max (pCa 4.5) 314 

and Min (pCa 7.0) of the fitted curve were set to 100 and 0%, respectively. From each 315 

resulting curve the pCa required to produce 50% (pCa50) of maximum Ca2+-activated force 316 

and the Hill coefficient (n) were measured and averaged as reported in previous studies (35). 317 

 318 

Statistical Analyses 319 

All data are presented as mean  SEM. Two-way ANOVA was performed using the 320 

Statistical Package for the Social Sciences Software (SPSS Inc, Chicago, IL, USA), and 321 

showed no effect of fetal number, thus data from singletons and twins were combined and 322 

Student’s unpaired t-tests was used to determine the effects of rosiglitazone compared to 323 

controls on cardiac mRNA expression and protein abundance and to compare contractility 324 

parameters.  A probability level of 5% (P<0.05) was considered significant. 325 

 326 

Results 327 

 328 

There was no effect of rosiglitazone administration on fetal weight at ~140d gestation 329 

(control, 4.65±0.15kg; rosiglitazone, 4.83±0.17kg). There was also no effect of rosiglitazone 330 

administration on mean fetal arterial PO2 (control, 22.5±0.6mmHg; rosiglitazone, 331 

21.5±1.0mmHg) and PCO2 (control, 49.9±0.7mmHg; rosiglitazone, 49.5±0.5mmHg) in late 332 

gestation. 333 

 334 

Impact of rosiglitazone on the mRNA expression and protein abundance of factors 335 

regulating cardiac glucose uptake in late gestation 336 
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Rosiglitazone administration during late gestation decreased the cardiac protein abundance of 337 

IRβ (P<0.05), IRS-1 (P<0.05), phospho-IRS-1 (Tyr895) (P<0.05), PI3K (p85) (P<0.05), 338 

PI3K (p110α) (P<0.05) , phospho-PDPK-1 (Ser241) (P<0.05), Akt1 (P<0.05), phospho-Akt 339 

(Ser273) (P<0.001), PKCζ (P<0.05), phospho-PKCζ (Thr410) (P<0.01), AS160 (P<0.05), 340 

phospho-AS160 (Thr642) (P<0.05) and GLUT-4 (P<0.01) (Table 3). The cardiac abundance 341 

of GLUT-1, however, was increased (P<0.05) in rosiglitazone treated fetuses compared to 342 

controls (Table3). The protein abundance of PDPK-1 (Table 3) and mRNA expression of 343 

GLUT-1 and GLUT-4 were not different in rosiglitazone treated fetuses compared to controls 344 

(Table 3). 345 

 346 

Impact of rosiglitazone on the mRNA expression and protein abundance of factors 347 

regulating cardiac fatty acid β-oxidation in late gestation 348 

The cardiac protein abundance of AdipoR1 (P<0.01), AMPK (P<0.05), phospho-AMPK 349 

(Thr172) (P<0.05), ACC (P<0.01), phospho-ACC (Ser79) (P<0.05), CPT-1 (P<0.05), PDK-4 350 

(P<0.05) and PGC-1α (P<0.05) (Table 4) was decreased in rosiglitazone treated fetuses 351 

compared to controls. There were no differences, however, in the mRNA expression of 352 

cardiac PPARγ, adiponectin, AdipoR1, AdipoR2, CD36, FATP1, PPARα and PGC1α 353 

between groups (Table 4). 354 

 355 

Impact of rosiglitazone on the mRNA expression and protein abundance of factors 356 

regulating cardiac proliferation and hypertrophy and cardiac parameters in late 357 

gestation 358 

There was no effect of rosiglitazone on the mRNA expression of cardiac IGF-1, IGF-2, IGF-359 

1R, IGF-2R, c-myc, CDK-4, Cyclin D1, p27 and ANP (Table 5). There was also no 360 

difference in the protein abundance of IGF-1R, IGF-2R and ANP in the rosiglitazone treated 361 
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fetuses compared to controls (Table 5). There was, however, a decrease in the absolute length 362 

of the mononucleated (P<0.05) and binucleated (P<0.05) cardiomyocytes (Table 6). The 363 

absolute and relative heart weight and absolute width of the mononucleated and binucleated 364 

cardiomyocytes, as well as the percentage of mononucleated cardiomyocytes were not 365 

changed in rosiglitazone treated fetuses compared to controls (Table 6). 366 

 367 

Impact of rosiglitazone on cardiac contractility parameters in late gestation 368 

There was no difference in the Ca2+ sensitivity of the contractile apparatus (Figure 1) and 369 

maximum Ca2+-activated force between control and rosiglitazone groups (Table 7). 370 

 371 

Discussion 372 

In this study, we aimed to determine whether activation of PPARγ with intrafetal 373 

rosiglitazone infusion could stimulate cardiac insulin dependent glucose uptake and fatty acid 374 

β-oxidation. Interestingly, we have shown that rosiglitazone administration during late 375 

gestation resulted in decreased protein abundance of key insulin signalling molecules (Figure 376 

2), which may lead to a decrease in cardiac glucose uptake in postnatal life.  This finding is in 377 

contrast to the known effect of rosiglitazone in improving whole body insulin sensitivity and 378 

glucose uptake in the heart and skeletal muscle in adult humans and mice with type 2 diabetes 379 

(12, 19, 25). In addition, rosiglitazone treated fetuses also had a decrease in the protein 380 

abundance of key regulators of cardiac fatty acid β-oxidation,  (Figure 3), which may have a 381 

detrimental effect in postnatal life, as the cardiomyocytes are more reliant on fatty acid β-382 

oxidation to produce energy. This finding is in contrast to studies in adults in human, rats and 383 

mice, whereby rosiglitazone increased cardiac adiponectin and AdipoR1 expression (1, 7, 384 

41). However, rosiglitazone resulted in similar decrease in the mRNA expression of AdipoR1 385 

and protein abundance of GLUT-4 and phospho-AMPK (Thr172) in diabetic rats treated with 386 
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3mg/kg/day of rosiglitazone compared to untreated diabetic rats (11). Our findings showed 387 

that rosiglitazone administration in late gestation fetuses resulted in a different effect than in 388 

adults, but similar to when administered to adult diabetic rats. Furthermore, iIt is interesting 389 

that we found a decrease in the abundance of the insulin signalling and fatty acid β-oxidation 390 

molecules in this study despite no change in the maternal and fetal glucose and free fatty acid 391 

concentration in this cohort of animals, shown in the previous study (29). . We have 392 

previously shown that intrafetal infusion of rosiglitazone resulted in decreased plasma insulin 393 

concentrations in late gestation (29), and it is therefore possible that this resulted in the 394 

observed decrease in the abundance of the insulin signalling factors. We speculate that the 395 

decrease in the abundance of the cardiac regulators of fatty acid β-oxidation may be a 396 

consequence of limited availability  of fatty acids in utero and/or as a negative response to the 397 

increased adiponectin expression in the fetal perirenal adipose tissue, which is the main 398 

source of plasma adiponectin (29). We have previously shown that intrafetal infusion of 399 

rosiglitazone resulted in decreased plasma insulin concentration (29), and this may lead to the 400 

observed decrease in the abundance of the insulin signalling factors.  401 

 402 

We have also shown that rosiglitazone administration did not change the Ca2+ sensitivity of 403 

the contractile apparatus and maximum Ca2+-activated force. There was, however, increased 404 

cardiac GLUT-1 protein abundance in rosiglitazone treated fetuses. This finding shows that 405 

the decrease in the abundance of insulin signalling and fatty acid β-oxidation molecules may 406 

not affect cardiac function in late gestation fetuses, which is consistent with the knowledge 407 

that fetal cardiomyocytes are dependent on glycolysis (21) from glucose uptake facilitated by 408 

GLUT-1. Interestingly, rosiglitazone treated fetuses had reduced absolute mononucleated and 409 

binucleated cardiomyocyte length, in the absence of any differences in absolute or relative 410 

heart weight. This finding is in contrast to a study in adult rats administered with 411 
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rosiglitazone, which resulted in cardiac hypertrophy (8), but consistent with reports of the 412 

antihypertrophic effect of PPARγ in PPARγ knockout mice (22). Furthermore, rosiglitazone 413 

and pioglitazone interact with numerous ‘off-target’ proteins involved in lipid and glucose 414 

metabolism (16). Additionally, administration of  thiazolidinediones (TZDs) in adult mice 415 

limits cardiac lipid accumulation following a high fat diet, but with a decrease in PPARγ 416 

expression and other factors regulating cardiac fatty acid β-oxidation (2). This finding leads 417 

the authors to speculate that TZDs may exert this effect through a cardiac PPARγ 418 

independent mechanism. Findings from this and other studies (2, 16) and the opposing effect 419 

between the impact of rosiglitazone administration and PPARγ knockout on hypertrophy in 420 

adult rats and mice (8, 22), therefore raise the possibility that the effect of rosiglitazone on 421 

cardiomyocyte growth and metabolism may be a consequence of indirect binding or the ‘off 422 

target’ effects of rosiglitazone. Furthermore, these findings raise concerns regarding the 423 

specificity of TZDs such as rosiglitazone as PPARγ ‘specific’ agonist. 424 

 425 

In addition, a decrease in cardiomyocyte length in the absence of a reduction in absolute or 426 

relative heart weight may suggest an increase in the number of cardiomyocytes in the heart. 427 

This hypothesis is consistent with the increase in GLUT-1 abundance, which may result in 428 

increased substrate availability for glycolysis, which is the major source of energy for 429 

proliferating cardiomyocytes (21). However, we were not able to measure cardiomyocyte 430 

number in this cohort because the tissue was not collected appropriately for non-biased 431 

assessment of this parameter (4). Another limitation of this study is the gender bias in theWe 432 

also cannot exclude the possibility that there were differences in the cardiac response to 433 

rosiglitazone exposure between males and females, and as such the small differences in the 434 

relative number of males and females between the protein quantification assay (controls and 435 

rosiglitazone treated groups used in) protein quantification assay and the contractility assays 436 
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(Ca2+ activated force; rosiglitazone treated group), which is male dominateneeds to be 437 

considered when interpreting the results. d. Therefore, iIt is possible, therefore, that the 438 

decrease in the abundance of the insulin signalling and fatty acid β-oxidation molecules 439 

found in this study is only applicable for males and the lack of change in the contractility 440 

(Ca2+ activated force) study may be due to the male dominance in the rosiglitazone treated 441 

group. Furthermore, it is worth noting that there was a variation of 3 days in the timinge 442 

during gestational age at which of when the rosiglitazone was administeredexposure 443 

commenced. It is possible that this. This disparity may have an effect on theimpacted on the 444 

response of the cardiomyoctes to magnitude of the rosiglitazone treatment, as the 445 

cardiomyocytes are rapidly maturing during late gestation since the period of rosiglitazone 446 

exposure may have coincided with subtly different stages in their development (5, 17). 447 

Although, we have previously shown that there was no difference in the percentage of 448 

mononucleated cardiomyocytes between 132-134d and 137-141d gestation (27). Therefore, 449 

this disparity in the timing of rosiglitazone administration may cause a variation within the 450 

data sets, however it is unlikely to alter the findings in this study. 451 

 452 

Perspective and significance 453 

Rosiglitazone administration during late gestation resulted in decreased abundance of cardiac 454 

insulin signalling molecules and regulators of fatty acid β-oxidation, as well as a decrease in 455 

cardiomyocyte size, with no effect on measures of cardiac contractility. These findings 456 

suggest that stimulation of PPARγ using rosiglitazone in late gestation is not adequate to 457 

stimulate cardiac insulin-dependent glucose uptake and fatty acid β-oxidation, but it may 458 

result in adverse effects for cardiac health in later life. However, it is important to note that 459 

findings from this and other studies (2, 8, 16, 22) also suggest that rosiglitazone and other 460 
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TZDs may not specifically act as PPARγ agonists, and that the potential adverse 461 

cardiometabolic effects may not necessarily due to the activation of cardiac PPARγ. 462 
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Figure captions 600 

 601 

Figure 1. Representative traces of the force-pCa relationship from chemically skinned 602 

bundles of fetal cardiomyocytes from the left ventricles of control () and rosiglitazone 603 

treated () animals.  The pCa and Hill coefficients respectively for control fetuses were 6.19 604 

and 1.80 and for rosiglitazone treated fetuses were 6.24 and 1.31. 605 

 606 

Figure 2. Summary diagram of the impact of rosiglitazone administration on protein 607 

abundance of factors regulating cardiac glucose uptake in late gestation sheep fetus. 608 

 609 

Figure 3. Summary diagram of the impact of rosiglitazone administration on protein 610 

abundance of factors regulating cardiac lipid metabolism in late gestation sheep fetus. 611 

612 
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Table 1. Number of animals from each treatment group used in each set of analyses. 613 

Measurements 
Control 

n=12 

Rosiglitazone 

n=9 

Cardiomyocyte measures 
7 

 males = 4, females = 3 

5 

males = 3, females = 2 

mRNA expression 
5 

males = 5, females = 0 

7 

males = 5, females = 2 

Protein abundance 
5 

males = 5, females = 0 

7 

males = 5, females = 2 

Contractility  

(Ca2+ activated force) 

7 

males = 3, females = 4 

7 

males = 5, females = 2 

Contractility  

(Ca2+ sensitivity) 

10 

males = 6, females = 4 

7 

males = 4, females = 3 

614 

Formatted Table
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Table 2. Primer sequences for qRT-PCR. 615 

Gene name Sequence Accession no. 

HPRT1 F: 5' GCTGAGGATTTGGAGAAGGTGT 3' NM_001034035.1 

 
R: 5' GGCCACCCATCTCCTTCAT 3' 

 
PGK1 F: 5' ACTCCTTGCAGCCAGTTGCT 3’ NM_001034299 

 
R: 5' AGCACAAGCCTTCTCCACTTCT 3' 

 
GAPDH F: 5' CCTGGAGAAACCTGCCAAGT 3' DQ152956.1 

 
R: 5' GCCAAATTCATTGTCGTACCA 3' 

 
p27 F: 5' AAACCCAGAGGACACGCATTTGGT 3' NM_001100346.1 

 
R: 5' TTTGAGGAGAGGAATCATCTGCGG 3' 

 
Cyclin D1 F: 5' GCCGAGAAGCTGTGCATTTAC 3' NM_001046273.1 

 
R: 5' CCAGGACCAGCTCCATGTG 3' 

 
CDK-4 F: 5' AGGCTTGCCAGTGGAGACCATAAA 3' NM_001037594.1 

 
R: 5' GGTGAACGATGCAGTTGGCATGAA 3' 

 
c-myc F: 5' CTACAGATGCCCACAATCTGCACT 3' NM_001174109.1 

 
R: 5' TGGTATGGTTTCATCTGGGAAGGC 3' 

 
ANP F: 5' ATCACCACGAGCTTCCTCCTCTTT 3' NM_001160027.1 

 
R: 5' ATACTTGTGAGGGCACAGCCTCAT 3' 

 
AdipoR1 F: 5' ACACTCCCTGGGCAATAAACTCCA 3' BC102259 

 
R: 5’ TTCTGAAGTCCCAGTCCATCGCTT 3’ 

 
AdipoR2 F: 5' TCTCATGGCTGTTCCACACAGTCT 3' BC110019 

 
R: 5' AGCAAGGTTGCGGGTTACAGTAGA 3' 

 
CD36 F: 5' TGGTGTGCTAGACATTGGCAAATG 3' BC103112.1 

 
R: 5' TGTTGACCTGCAGCCGTTTTGC 3' 

 
FATP1 F: 5' AGCCTGGTCAAGTTCTGTTCTGGA 3' NM_001033625.2 

 
R: 5' AGAAGAGTCGATCATCCATGCCCT 3' 

 
PDK-4 F: 5' GCACCAACGCCTGTGATGGATAAT 3' NM_001101883.1 

 
R: 5' AGCATCAGTTCCGTATCCTGGCAA 3' 

 
616 
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Table 3. Impact of rosiglitazone on the mRNA expression and protein abundance of 617 

factors regulating glucose uptake in heart muscle in late gestation. 618 

Gene expression (MNE) Control Rosiglitazone 

GLUT-1 0.050 ± 0.002 0.051 ± 0.006 

GLUT-4 0.14 ± 0.02 0.13 ± 0.01 

   

Protein abundance (Au x 102)   

IRβ 848 ± 91 572 ± 44* 

IRS-1 384 ± 63 239 ± 23* 

phospho-IRS-1 (Tyr895) 1018 ± 57 860 ± 88* 

PI3K (p85) 199 ± 9 158 ± 11* 

PI3K (p110α) 456 ± 9 355 ± 32* 

PDPK-1 628 ± 93 475 ± 65 

phospho-PDPK-1 (Ser241) 301 ± 29 207 ± 23* 

Akt1 253 ± 25 169 ± 21* 

phospho-Akt (Ser273) 1818 ± 228 234 ± 55*** 

PKCζ 1004 ± 101 696 ± 72* 

phospho-PKCζ (Thr410) 952 ± 106 337 ± 71** 

AS160 216 ± 38 105 ± 19* 

phospho-AS160 (Thr642) 253 ± 9 76 ± 30** 

GLUT-4 245 ± 17 185 ± 18* 

GLUT-1 50 ± 8 76 ± 6 * 

Data presented as mean ± standard error of mean. MNE, mean normalised expression; Au, 619 

arbitrary units. * P<0.05, ** P<0.01, *** P<0.001. Immunoblots of proteins with altered 620 

abundance shown in Supporting Figure.621 
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Table 4. Impact of rosiglitazone on the mRNA expression and protein abundance of 622 

factors regulating lipid metabolism in heart muscle in late gestation. 623 

Gene expression (MNE) Control Rosiglitazone 

PPARγ 0.016 ± 0.003 0.015 ± 0.002 

Adiponectin 0.005 ± 0.001 0.004  ± 0.001 

AdipoR1 0.32 ± 0.10 0.20 ± 0.02 

AdipoR2 1.40 ± 0.51 0.75 ± 0.13 

CD36 4.52 ± 0.46 4.32 ± 0.46 

FATP1 0.13 ± 0.02 0.13 ± 0.02 

PPARα 0.22 ± 0.06 0.18 ± 0.03 

PGC1α 0.81 ± 0.19 0.63 ± 0.06 

   

Protein abundance (Au x 102)   

AdipoR1 477 ± 89 191 ± 16** 

AMPK 570 ± 35 445 ± 31* 

phospho-AMPK (Thr172) 432 ± 88 193 ± 42* 

ACC 279 ± 31 172 ± 16** 

phospho-ACC (Ser79) 310 ± 54 193 ± 23* 

CPT-1 99 ± 12 59 ± 10* 

PDK-4 157 ± 38 66 ± 13* 

PGC1α 304 ± 45 112 ± 41* 

Data presented as mean ± standard error of mean. MNE, mean normalised expression; Au, 624 

arbitrary units. * P<0.05, ** P<0.01. Immunoblots of proteins with altered abundance shown 625 

in Supporting Figure. 626 

627 
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Table 5. Impact of rosiglitazone on the mRNA expression and protein abundance of 628 

factors regulating proliferation and hypertrophy, and markers of hypertrophy in heart 629 

muscle in late gestation. 630 

Gene expression (MNE) Control Rosiglitazone 

IGF-1 0.12 ± 0.01 0.09 ± 0.02 

IGF-2 12.0 ± 1.4 13.3 ± 1.6 

IGF-1R 0.58 ± 0.05 0.57 ± 0.04 

IGF-2R 1.8 ± 0.1 1.8 ± 0.2 

p27 0.31 ± 0.06 0.30 ± 0.02 

Cyclin D1 0.021 ± 0.003 0.018 ± 0.003 

CDK-4 0.18 ± 0.04 0.16 ± 0.03 

c-myc 0.23 ± 0.03 0.23 ± 0.03 

ANP 0.32 ± 0.09 0.27 ± 0.07 

   

Protein abundance (Au x 102)    

IGF-1R 540 ± 74 377 ± 48 

IGF-2R 529 ± 14 565 ± 76 

ANP 167 ± 18 161 ± 10 

Data presented as mean ± standard error of mean. MNE, mean normalised expression; Au, 631 

arbitrary units. 632 

 633 

634 
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Table 6. Impact of rosiglitazone on heart and cardiomyocyte growth in heart muscle in 635 

late gestation. 636 

Heart and cardiomyocyte measures Control Rosiglitazone 

Absolute heart weight (g/kg) 32.9 ± 1.4 34.0 ± 1.9 

Relative heart weight (g/kg) 7.1 ± 0.3 6.9 ± 0.2 

Percentage of mononucleated cardiomyocytes (%) 50.5 ± 1.4 54.1± 4.0 

Mononucleated cardiomyocyte length (mm) 60.3 ± 1.7 53.2 ± 1.0* 

Mononucleated cardiomyocyte width (mm) 10.0 ± 0.6 10.8 ± 0.4 

Binucleated cardiomyocyte length (mm) 77.7 ± 2.3 68.0 ± 1.2* 

Binucleatedcardiomyocyte width (mm) 10.8 ± 0.6 11.6 ± 0.4 

Data presented as mean ± standard error of mean. * P<0.05. 637 

638 
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Table 7. Impact of rosiglitazone on the contractile apparatus of small bundles of fetal 639 

sheep heart tissue. 640 

 pCa50 Hill Coefficient 

Force/cross 

sectional area 

(mN/mm2) 

Control 6.07 ± 08 1.92 ± 0.17 7.10 ± 1.57 

Rosiglitazone 6.12 ± 0.1 1.50 ± 0.14 5.60 ± 0.90 

Data presented as mean ± standard error of mean.  641 

 642 


