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Abstract 

The Warburg effect is an explosive area of study within the cancer community in 

recent years. The expanding knowledge on the molecular basis of the Warburg effect 

has also led to a greater understanding of mammalian retinal metabolism, and at the 

same time has also motivated cancer researchers to target the Warburg effect as a 

novel treatment strategy for cancer. However, the key aspects of the molecular 

mechanism underlying the Warburg effect are likely conserved between the retina and 

cancer. Therefore, cancer treatments targeting the Warburg effect may potentially 

have serious adverse effects on retinal metabolism. Herein, we provide an updated 

understanding of the Warburg effect in mammalian retina. 
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Introduction   

In the 1920s, Otto Warburg and his team at the Kaiser Wilhelm Institute showed that 

cancer cells tend to convert glucose to lactate, despite the presence of oxygen. He 

called this phenomenon “aerobic glycolysis”, a term which is now synonymous with 

the “Warburg effect” (Fig. 1).  Warburg believed that this phenomenon was 

abnormal: a breach of the “Pasteur effect” where oxygen inhibits glycolysis, or 

conversely, hypoxia stimulates glycolysis.
2,3

 He further believed that the switch from 

oxidative phosphorylation (OXPHOS) to glycolysis caused cancer,
1
 a concept that 

was criticized during his lifetime, but that has recently had a resurgence. His team 

also noted that normal mammalian retinal explants displayed aerobic glycolysis.
4
 This 

finding however did not fit neatly with Warburg’s beliefs about cancer pathogenesis 

and was attributed as an experimental artifact. Several decades thereafter, other 

researchers confirmed that the mammalian retina indeed displays a strong Warburg 

effect.
5,6

  

 

In recent years, the Warburg effect has become an explosive area of study within the 

cancer research community, with many publications in the world’s leading scientific 

journals,
7-10

 resulting in a deeper understanding of the Warburg effect at the molecular 

level. This new knowledge has also led to better comprehension of the presence of the 

Warburg effect in mammalian retina.
11

 However, the fact that the retina also displays 

the Warburg effect is rarely acknowledged in the cancer literature. For example, the 

authors of a Nature Reviews Cancer publication incorrectly stated that “aerobic 

glycolysis is uniquely observed in cancer”. 
12

 But the Warburg effect is widely 

described in other cell types namely embryonic stem cells, human T lymphocytes, 

neutrophils, dendritic cells and macrophages. 
13,14
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With cancer researchers enthusiastically attempting to target the Warburg effect as a 

therapeutic strategy in cancer treatment, the misconception that it is unique to cancer 

could potentially lead to treatments that have serious adverse effects on these 

physiological tissues and cells. In this review we aim to provide an updated 

understanding of the Warburg effect in the mammalian retina. 

 

Aerobic Glycolysis 

Cellular metabolism and the Warburg effect 

All life on Earth uses adenosine triphosphate (ATP) to transfer energy. ATP is 

generated via two related metabolic pathways: OXPHOS and glycolysis.
15

 Glycolysis 

converts a single molecule of glucose into two molecules of pyruvate, generating 2 

ATP molecules.
16

 The final step requires pyruvate kinase (PK), which exists as 

several isoforms, notably PKM1 and PKM2.
17

 In the presence of oxygen, pyruvate is 

usually converted to Acetyl CoA, which then enters the Krebs cycle, forming electron 

donors for OXPHOS, generating approximately 32 net ATP molecules.
18

 When 

oxygen is scarce or falls short of demand, pyruvate is shunted away from OXPHOS 

and gets converted into lactate by lactate dehydrogenase (LDH) to regenerate 

nicotinamide adenine dinucleotide (NAD+).
18,19

 Each of the steps within the 

glycolytic pathway is catalysed by a specific enzyme or enzyme complex. 
15

 Some of 

these enzymes may have a role in transcription regulation, cell motility and apoptosis 

regulation.
20-22 

 

 

In tumours, proliferating tissue, and the mammalian retina, conversion of pyruvate to 

lactate occurs despite the presence of oxygen.
1,6,23

 This is the so-called Warburg 
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effect.
 
The biological drive that causes tumours and some other non-neoplastic cells to 

apparently forsake optimal ATP production remains somewhat speculative. Warburg 

initially hypothesised that the reliance on the glycolytic metabolism was secondary to 

development of mitochondrial defects within cancer cells, which impaired OXPHOS.
1
 

Albeit plausible, this hypothesis was rejected when subsequent studies demonstrated 

normal functioning mitochondria in most cancer cells.
24,25

 A more tenable explanation 

for the existence of the Warburg effect concerns the biosynthetic requirements of 

proliferating cells.
 

 

The metabolic requirements of tumour and proliferating cells 

Vander Heiden et al. publishing in Science, summarized a widely-accepted 

explanation for the existence of the Warburg effect in cancer. 
10

 In proliferating cells, 

glucose not only produces ATP, but also provides metabolic intermediates for 

biosynthesis (Fig. 1).
10

 Intracellular glucose can also be directed towards 

biosynthesis: into the pentose phosphate pathway (PPP) to generate nucleotides and 

NADPH (nicotinamide adenine dinucleotide phosphate, reduced), or to make the 

amino acids, serine and glycine, branching from glycolysis at phosphoglycerate.
10,26

 

The enzyme phosphoserine phosphatase (PSPT) is the final step in glucose-serine 

conversion  (Fig. 1).
27

  

 

Proliferating cells have the ability to increase glycolytic ATP production under 

hypoxic conditions, but provided glucose is abundant, in normoxia, they direct 

metabolic pathways away from OXPHOS towards biomass synthesis. The ability to 

oscillate between biosynthesis and energy production provides proliferating tissue 

with a powerful metabolic strategy known as the “metabolic budget system”,
28

 a 
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phenomenon which goes hand-in-hand with the Warburg effect (Fig. 1). This strategy 

can be viewed as the presence of the Warburg effect in a tissue using glucose for 

biosynthesis.
28

 Such a phenomenon, however, has not yet been reported in a non-

proliferating tissue, such as the retina.  

 

The metabolic reprogramming 

The programming of cellular metabolism involves the interplay of various growth 

factor signaling pathways.
29,30

 Many of these pathways including Jak STAT3,
32 

P13K/Akt,
31

 mammalian target of rapamycin (mTOR),
32,33

 the proto-oncogene and 

tumor suppressor genes 
34,38

 have been implicated in the mediation of the Warburg 

effect. However, the focus has recently converged on pyruvate kinase isoform M2 

(PKM2), as well as the hypoxia-inducible factor-1 (HIF-1), as key regulators of the 

Warburg effect.
35

 

 

HIF-1 is a dimeric transcription factor, comprised of an oxygen regulated alpha 

subunit (HIF-1) and a constitutive beta subunit HIF-1b, also known as Arnt), that is 

essential for driving cellular responses to hypoxia.
36

 When oxygen is sufficient, the 

expression and activity of HIF-1 are inhibited.
37

 In hypoxia HIF-1 is stabilised and 

transcriptionally active; it partners with HIF-1 to transactivate a large set of target 

genes leading to various changes in cellular processes including the upregulation of 

glycolysis and the inhibition of OXPHOS. 
36,37

 Interestingly, HIF-1 has been shown to 

be active in many cancers, even in normoxia, 
37

 where it plays a key role in driving  

the Warburg effect.  
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Pyruvate kinase (PK) is a glycolytic enzyme which catalyses the conversion of 

phosphoenolpyruvate (PEP) into pyruvate, generating one molecule of ATP in the 

rate-limiting final step of glycolysis.
38,39

 There are 4 isoforms of pyruvate kinase in 

mammals: L – liver, R – red blood cell, M1- adult (muscle and brain), M2 – 

embryonic and tumour.
40

 Uniquely, PKM2 has an allosteric pocket not present in the 

other isoforms, that permits binding to phosphotyrosine peptides and fructose 1,6 

biphosphate (FBP).
8,41

 This structural configuration renders PKM2 vulnerable to 

various regulatory inputs. Whilst PKM1 forms a stable, constitutively active tetramer, 

PKM2 oscillates between the active tetrameric and the inactive dimeric (or 

monomeric) forms.
28,42

 The dimeric form has a low affinity for the substrate PEP, and 

lower activity than the tetrameric form.
42

 When the dimeric form dominates, PEP 

conversion becomes inefficient, and as a consequence glycolytic intermediates 

upstream of PEP accumulate and are available for biomass synthesis and cell 

proliferation.
28

 As the glycolytic intermediate, FBP accumulates, the reaction favours 

conversion of the dimeric form back to the tetrameric form and pyruvate is produced 

efficiently again. 
28,42

 These regulations of PKM2, labelled as the “metabolic budget 

system”, are proposed to control the anabolic biosynthesis versus energy production 

in tumour metabolism.
28

 PKM2 activities are also susceptible to other post-

translational modifications.
43,44

  

 

Although it was initially assumed that the switch from expression of physiological 

PKM1 to PKM2 is responsible for the Warburg effect in tumour cells, 
8
 subsequent 

experiments demonstrated PKM2 as the predominant pyruvate kinase isoform in both 

tumour and normal tissues. 
4546, 47

. PKM2 was also proposed to act as a co-activator of 

HIF-1 in the mediation of the Warburg effect in cancer cells, and PKM2 is also a 
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direct target gene of HIF-1. 
9,48

Other experiments have reported non-metabolic 

functions of PKM2 such as the ability to function as protein kinase, which may confer 

additional benefits in the promotion of the Warburg effect.
45, 46 

 

More recent studies however unfolded several sobering findings.
43,49,50

 Cortés-Cros et 

al observed that PKM2 knockdown did not affect the growth of established tumour.
49

 

In addition, the authors highlighted ongoing pyruvate production along with increased 

serine and glycine biosynthesis in dual PKM1 and PKM2 knockdown tumour cells.
49

 

One explanation would involve the shunting of accumulated upstream glycolytic 

intermediates into the serine synthetic pathway, in which serine is produced and 

subsequently converted into pyruvate.
26

 The existence of alternative glycolytic 

pathways involving not yet characterised enzymes had also been proposed.
51

 Israelsen 

et al then reported paradoxical acceleration of tumour growth with the loss of PKM2 

in mouse model of breast cancer.
50

 Similarly, Anastasiou et al demonstrated that high 

pyruvate kinase activity impedes xenograft tumour growth.
43

  

 

Collectively, these results highlighted two interesting points. Firstly, PKM2 

expression is not entirely essential in tumour growth. Secondly, overall high pyruvate 

kinase activity actually hinders tumour growth. This paradigm in fact fit snugly with 

the “metabolic budget system”, that high pyruvate kinase activity leads to depletion of 

glycolytic intermediates available for biosynthesis and therefore impairs cellular 

proliferation and growth. 
10, 28,43

 Because the activities of PKM2, determined by its 

conformation in either the highly active tetramer or the inactive dimer, are highly 

malleable to various regulatory inputs, preferential PKM2 expression confers an 
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advantageous metabolic flexibility to the differential metabolic needs of proliferating 

cells and tumours through various proliferative phases.
50

  

 

 

Mammalian retinal metabolism 

 

Glycolysis in mammalian retina 

The retina requires a high level of metabolism even in the resting state, attributable to 

the continuous energy-demanding processes that are required to maintain the neurons 

in an excitable state for phototransduction and neurotransmission, in addition to the 

maintenance of normal cellular function.
52

 The initial discovery of the high level of 

lactate production from explanted retina by Warburg and team sparked the 

unprecedented impetus for huge interest in the metabolism of mammalian retina.
1
 

Numerous experiments have subsequently reinforced Warburg’s original findings and 

demonstrated the role and the importance of glycolysis in mammalian retina. 
5,52-54

 

 

In year 1951, Noell WK demonstrated the direct dependence of mammalian (rabbits 

and cats) retina function on glycolysis.
5
 The visual functions in these mammals as 

measured by electroretinogram (ERG), resisted the effect of anoxia but were highly 

susceptible to iodoacetate inhibition of glycolysis.
5
 Iodoacetate is an agent that 

selectively inhibits glycolysis whilst preserving mitochondrial OXPHOS.
5,53

 Loss of 

electrical activity and selective disappearance of the rod photoreceptor cells were 

observed following iodoacetate inhibition.
53

 In another in vivo study, Tornquist and 

Alm measured the arterio-venous differences in glucose, oxygen and lactate levels for 

both choroidal and retinal blood in pigs.
55

 The data recorded high concentration of 
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lactate in the venous blood. 
55

 Additionally, the total amount of oxygen extracted from 

choroidal and retinal blood flow combined only accounted for complete oxidation of 

37% of all the extracted glucose, reflecting the high glycolytic activities. 
55

 The 

majority of the glycolytic substrate was derived from the choroidal circulation, 

indicating greater metabolic activity in the outer retina. 
55

 

 

In 1975, Barry Winkler reported the capability of isolated rat retina to support 

electrical activity in the photoreceptors anaerobically, if significantly high glucose 

concentrations was provided, a level high enough to sustain maximal lactate 

production.
56

 Of note, the electrical activity was maintained at 80% for 30 minutes of 

anoxia but inevitably dropped to 40% of the aerobic value when a glucose 

concentration equivalent to that of rat retina in vivo was used.
56

 The results clearly 

showed the reliance of mammalian retina on glycolysis and its high metabolic 

adaptability whereby it can be driven into “overdrive” glycolytic mode to maintain 

near normal physiological functions in anoxia, provided that glucose is unlimited. 

Winkler expanded his experiments in rat retinas to analyse the aerobic versus the 

anaerobic effect on retinal lactate production, ATP content and electrophysiological 

recordings.
6
 These rat retinas demonstrated an obvious Pasteur effect, whereby 

increased glycolysis was observed in the anaerobic state, employed to maintain the 

portion of ATP which is otherwise generated via aerobic OXPHOS.
6
 Also perplexing 

were the findings of disproportionate reduction of lactate production by 50% when 

glucose concentration was decreased by 80% whilst the ATP level was maintained.
6
 

Interestingly, both ATP and lactate production plateaued after optimal oxygen and 

glucose concentrations were reached. 
6,57

 The paucity in the rise of both ATP and 
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lactate production might indicate that either the retinal metabolic capacity was 

exceeded, or the shunting of glucose catabolism into biomass synthesis occurred.  

 

The fact that glycolysis within mammalian retina occurs predominantly in the aerobic 

setting was substantiated by Wang et al which showed the lack of effect from induced 

hyperoxia in rabbit retina on the lactate production and glucose consumption.
58

 In 

Winkler’s elaborate, in vitro study of glucose metabolism in both normal and 

dystrophic rat retinas, 90% of the glucose utilized aerobically was used in 

glycolysis.
59

 Furthermore, an Ames et al experiment in isolated rabbit retina 

documented corresponding changes in the lactate level with neurotransmission, 

independent of oxygen consumption.
52

 The author postulated that neurotransmission 

through the inner retina was highly dependent on glycolysis. 
52

   

 

 

Higher glycolytic activities in the outer retina 

Vast majority of the aerobic glycolysis reportedly takes place in the outer retina, 

mainly in the photoreceptors.
60-63

 Graymore observed a greater than 50% reduction in 

the glycolytic activities within dystrophic rat retinas lacking photoreceptor cells when 

compared to normal rat retinas.
60,61

 Strong evidence was also described by Wang et al 

who ascertained the glucose consumptions in pig retina in vivo by measuring the 

arteriovenous differences in the glucose concentrations.
62,63

 The inner retina 

metabolised 21% of glucose via glycolysis, and 69% via oxidative metabolism in 

contrast to the outer retina which metabolised 61% of glucose via glycolysis and only 

12% via oxidative metabolism. 
62,63

 These results are consistent with the differential 

oxygen consumption reported in mammalian retina. 
64-66

 The deep inner plexiform 
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layer, the outer plexiform layer and the inner segments of photoreceptor have much 

higher oxygen consumptions as opposed to the outer segments of the photoreceptors 

and the outer nuclear layers in vascularized mammalian retina.
64-66

 

 

Relative contribution of glycolysis versus OXPHOS in relation to retinal functioning  

All metabolic evidence for the Warburg effect in the retina comes from experiments 

on whole retinas, with no discrimination between the different retinal layers. 
5,52-54

 For 

these reasons, it has been fairly difficult to correlate the retinal metabolism to the 

cellular processes, and the exact contribution of glycolysis versus OXPHOS in retinal 

functioning remains estimative. Variations also exist across different mammalian 

species and with different experimental designs. 
52,54,62,67 

Reported contributions of 

aerobic glycolysis to retinal glucose metabolism range from 40-80% in rabbit,
52,54

 

60% in pig,
 65

 90% in rat,
59

 to 99% in cultured human retinal Müller cells.
71 

 

The highly glycolytic mammalian retina also confers protection against short-term 

anoxia, through upregulation of glycolysis, provided that glucose is abundant.
5,6,53,56

 

Noell demonstrated that retinal ganglion cells (RGCs) are susceptible to hypoxia and 

are the “weakest link in the chain” of visual perception when oxygen is scarce.
68

 The 

neuroprotective effect of glucose was supported by our previous research which 

indicated that an elevated vitreal glucose level at the time of acute
69

 or chronic retinal 

ischaemia
70

 or experimental glaucoma
71

 provides robust protection to the RGCs.  We 

recently demonstrated that, in vitro, this is predominantly due to glycolytic ATP 

production.
72

 The protective effect is abolished if the vitreous glucose is elevated post 

ischaemia.
73

 These results suggest that the RGCs can upregulate glycolysis during 

ischaemia to generate ATP (the Pasteur effect). Winkler et al. attempted to determine 
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whether cultured RGCs displayed the Pasteur effect,
74

 but unfortunately their 

methodology was flawed because they used an RGC-5 cell line, which was later 

recognized to be of photoreceptor origin.
75,76

 Hence, information about the Pasteur 

effect in RGCs remains incomplete. 

 

Nevertheless, experimental evidences have indicated that neither OXPHOS nor 

glycolysis are dispensable for optimal retinal metabolism and functioning.
6,52

 The 

essentiality of mitochondrial OXPHOS in mammalian retina functioning is seen in 

retinitis pigmentosa model.
77

 The IDH3B gene encodes for the B-subunit of NAD-

specific isocitrate dehydrogenase (NAD-IDH) which is required to catalyse the 

oxidation of isocitrate to alpha-ketoglutarate in the citric acid cycle of mitochondrial 

OXPHOS. IDH3B mutations in familial retinitis pigmentosa result in the impairment 

of mitochondrial OXPHOS. This may, in part, contribute to progressive rod and cone 

photoreceptor degeneration, characteristic of the disease.
77

 The notion of 

mitochondrial dysfunction and associated oxidative stress in retinitis pigmentosa is 

also supported by other experiments.
78-80

  

 

Explanation for the Warburg effect in mammalian retina 

We have recently published a teleological explanation for the presence of the 

Warburg effect in the mammalian retina: Even though the adult mammalian retina is 

non-proliferative, it shares similar biosynthesis requirements to neoplastic tissue due 

to the prodigious turnover of the opsin protein in the disc membranes of the 

photoreceptor outer segments.
11

 Each mammalian rod outer segment (ROS) consists 

of a stack of ~1500 distinct discs enclosed by the plasma membrane.
81,82

 

Approximately 60% of the dry weight of the disc membrane is protein, and opsin 
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comprises 90% of the protein content.
83

 Hence, rhodopsin forms a large structural 

component of the rod disc membrane. Rhodopsin, retinal-bound opsin, is a G protein-

coupled receptor comprising 348 amino acids, with a rich glycine and serine 

component.
84

  

 

In a landmark experiment using radioactively labelled methionine and 

radioautography tracing, Richard Young showed that rhodopsin was constantly 

renewed as the disc membranes moved in a sclerad direction along the ROS towards 

the retinal pigment epithelium in mouse, rat and frog retinas. 
85

 The rhodopsin 

turnover rate as measured by the position of radioactive band displacement, was 

notably faster in rats than in frogs. 
85

  Thus, the reason that the Warburg effect has 

evolved in the mammalian retina is simply because it has similar metabolic 

requirements to a proliferating tissue, owing to the constant rhodopsin turnover. The 

rhodopsin turnover rate parallels the degree of aerobic glycolysis found in different 

species.
85

 Furthermore, the relatively low rate of photoreceptor turnover in lower 

vertebrates is temperature dependent, increasing at higher temperatures,
85

 reflecting 

the temperature-dependent Warburg effect. 
4
 

 

Also in accordance to this postulation, was the observation by Agathocleus et al 

which reported facultative aerobic glycolytic nature of developing Xenopus laevis 

frog and zebrafish retinas, to match the biosynthetic requirements.
86

 Glycolysis 

inhibition resulted in cellular apoptosis but OXPHOS interference had no deleterious 

consequence.
86

 Nevertheless, a switch to greater reliance of OXPHOS was noted in 

mature retina.
86
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An alternate hypothesis to the high glycolytic process in the photoreceptors may 

involve the highly compartmentalized cellular configurations, with the confinement of 

mitochondria to the inner segment, while absent from the outer segment. 
82,87

 The 

dense aggregation of mitochondria in the ellipsoid region of the inner segment reflects 

the considerable reliance of this portion on oxidative energy.
87-89

 Supporting this was 

the finding of high concentration of malate dehydrogenase (an enzyme involved in 

OXPHOS) in the monkey photoreceptor inner segment, 30 times higher than that in 

the outer segment.
90

 On the contrary, measured LDH was significantly lower in the 

inner segment as compared to the outer segment. 
90

 The exclusion of mitochondria 

from the photoreceptor outer segment possibly necessitates its reliance on glycolysis 

for cellular energy.
90

 

 

Aerobic glycolysis and lactate from Müller Cells 

In addition to the biosynthetic requirements of the photoreceptors, aerobic glycolysis 

and lactate production from Müller cell cultures has also been described. 
67

 The 

Müller cells are the predominant glial cells of the retina, and have been proposed as 

the primary storage sites for glycogen.
91

 The human Müller cells (HMC) metabolize 

glucose primarily via aerobic glycolysis, accounting for 99% of total glucose 

metabolism and the remaining 1% undergoes mitochondrial OXPHOS.
67

 This 

observation is consistent with the so-called astrocyte neuronal lactate shuttle 

hypothesis (ANLSH) in the brain.
92

 The ANLSH asserts that brain neurones use 

astrocyte-derived lactate as a primary energy source and that the delivery of lactate is 

calibrated by neuronal activity.
92

 There is evidence for and against this hypothesis and 

the matter remains highly controversial.
93

 Conceivably, a similar phenomenon exists 

in the retina with the Müller cells taking the place of the astrocytes.  
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Experimental findings also unveiled the multipotent differentiative capability of the 

adult HMC, whereby it can undergo differentiation into retinal neurons, astrocytes, 

oligodendrocytes
94

 and also rod photoreceptors.
95

 Reportedly, the differentiation into 

rod photoreceptors is six-fold faster than conventional pluripotent stem cells. 
95

 The 

unique capability of adult HMC to proliferate and differentiate likely explains its 

inherent metabolic preference for aerobic glycolysis, which is better suited for this 

role. Recent evidence indicates that Müller cell ablation in a transgenic model causes 

photoreceptor degeneration related to loss of neurotrophic support.
96

 Whether the 

mechanisms driving lactate production in Müller cell cultures also involve PKM2 is 

completely unknown. 

 

Lactate dehydrogenase in cancer and the retina 

Lactate dehydrogenase (LDH) is a tetrameric enzyme comprising two major subunits 

A and/or B, (encoded by the Ldh-A and Ldh-B genes) resulting in five isoenzymes 

(A4, A3B1, A2B2, A1B3, and B4) that catalyse the forward and backward conversion 

of pyruvate to lactate. LDHA (LDH-5, M-LDH, or A4), which is the predominant 

form in skeletal muscle, kinetically favours the conversion of pyruvate to lactate.
97,98

 

LDHB (LDH-1, H-LDH, or B4), which is found in heart muscle, converts lactate to 

pyruvate that is further oxidized in mitochondria.
97,98

 Cancers also utilize the LDHA 

form, (even when oxygen is abundant); hence, the quantification of LDHA in cancer 

has become a routine surrogate marker of the Warburg effect, providing diagnostic 

and prognostic clinical information.
99
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The mammalian retina also expresses relatively high levels of LDHA, typical of a 

tumour.
100-102

 Saavedra et al reported the exceptionally high amount of LDHk 

(synonymous with LDH-5) activity in rat, mouse, guinea pig retina, equivalent to the 

level measured in human cancer cells.
101,102

 Lower vertebrates such as turtle, toad and 

frog that do not display the Warburg effect, have correspondingly much lower LDH-5 

activities.
102

 Graymore, publishing in Nature in 1964, noted that the expression of the 

LDHA isoenzyme in the retina was reduced in rats with inherited “retinitis 

pigmentosa”, characterized pathologically by loss of the photoreceptors.
100

 This 

observation indicated that the photoreceptors were principally responsible for the 

retinal lactate production and also supported evidence that the photoreceptors were 

particularly susceptible to glycolytic inhibition.
5
  

 

 

PKM2 and HIF-1α in mammalian retina 

We have recently found an evidence for the presence of PKM2 and constitutive 

expression of low level HIF-1α in the rat retina (unpublished data). Hughes et al have 

earlier reported the presence of stabilized HIF-1α in normal physiological human and 

rat retinas.
103

. The presence of PKM2 in mouse retina was demonstrated by 

Morohoshi et al using purified IgG specific for the M2 isoform from individuals with 

age-related macular degeneration (ARMD).
104

 The authors proposed that PKM2 may 

correlate with the severity and progression of ARMD.
104

 Conceivably, the presence of 

PKM2 antibodies in ARMD has a causal relation but, to our knowledge, remains 

untested.  These important findings of the coexpression of PKM2 and HIF-1α in 

normal mammalian retina suggest that these molecular factors likely play a role in 

driving the Warburg effect in this tissue in a similar manner to how they do in cancer. 
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Anti cancer therapy targeting glycolysis and the Warburg effect 

Advances in the understanding of the molecular mechanism of the Warburg effect in 

cancer have motivated countless efforts to develop targeted therapies as novel cancer 

treatment.
105-113

 Variable successes have been reported with PKM2 modulation in 

vitro and in vivo animal studies. 
43,50,111-113

 Besides targeting PKM2, many other drugs 

that target different stages of glycolysis are also under preclinical development. 
105-110

 

However, the extent of toxicities of these drugs towards normal, metabolically active 

tissues utilizing glycolysis in humans is largely unknown.  

 

The obligatory reliance of mammalian retinal metabolism and functioning on 

glycolysis as highlighted in this review raises a huge concern on the potential 

toxicities of these therapies towards the retina, especially the photoreceptors. Any 

disruption to the key metabolic pathway essential for physiological maintenance of 

continuous photoreceptor renewal, energy production, phototransduction and 

neurotransmission will likely result in significant cellular disturbance or irreversible 

cell death within the retina. Also, the key aspects of the molecular mechanism 

underlying the Warburg effect are likely conserved between the retina and cancer.
114

  

 

Ongoing research endeavours are therefore vital to continue to fill the gaps in our 

knowledge and guide us towards a better understanding of retina biology and 

metabolism. Such progresses may hopefully lead to breakthrough findings in the 

treatment of various retinal diseases and also aid clinicians to predict the potential 

adverse effects to the retina of cancer treatments targeting the Warburg effect. At the 
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same time, the notion of targeting the Warburg effect and PKM2 as a therapeutic 

strategy for cancer should proceed cautiously. 
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Figure 1

 

 

Fig. 1 Metabolic budget system and the Warburg effect. PKM2 exists as an active 

tetrameric form and an inactive dimeric form. Its transition is found to be regulated by 

fructose 1,6 biphosphate, serine, reactive oxygen species and phosphotyrosine 

peptide. PKM2 is also a co-activator and a target gene of HIF-1α. We propose that 

glucose-derived amino acids are required for rhodopsin synthesis, and that the 

Warburg effect is HIF-dependent.  

PPP = pentose phosphate pathway; PEP = phosphoenolpyruvate 

PKM2 = pyruvate kinase M2; HIF-1α = hypoxia-inducible factor-1alpha; LDHA = 

lactate dehydrogenase A; PDH = pyruvate dehydrogenase; PDK1 = pyruvate 

dehydrogenase kinase 1; PSPT = phosphoserine phosphatase; FBP = fructose 1,6 

biphosphate; ROS = reactive oxygen species. 
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