Fast and Unambiguous Direction Finding for Digital Radar Intercept Receivers

Peter Quoc Cuong Ly

A Thesis Submitted for the Degree of

Doctor of Philosophy

School of Electrical and Electronic Engineering The University of Adelaide Adelaide, South Australia

December 2013

For my wife, Joy

The Light of my Life

Contents

List of	f Figur	es	\mathbf{v}
List of	Table.	5	xiii
Abstra	ct		xv
Declar	ation		xvii
Acknow	wledge	ments	xix
Publice	ations		xxi
Acron	yms		xxiii
Notati	on		xxv
 Intr 1.1 1.2 1.3 1.4 1.5 1.6 	coducti Introd Electro The Ir 1.3.1 1.3.2 1.3.3 1.3.4 1.3.5 Proble 1.4.1 1.4.2 1.4.3 1.4.4 Organ Origin	on uction	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
2 Con 2.1 2.2	ntempo Spinni Ampli ⁻ 2.2.1 2.2.2 2.2.3	rary Direction Finding Techniques ng Antenna	13 13 14 15 15 15 16

	2.3	Frequency-Difference-of-Arrival	18
	2.4	Time-Difference-of-Arrival	19
	2.5	Interferometry	20
	2.6	Beamforming and Array Processing	20
	2.7	Summary	22
		v	
3	Inte	erferometry	25
	3.1	Introduction	25
	3.2	Signal Model	25
		3.2.1 Propagation Delays	26
		3.2.2 Narrowband Signal Model	28
	3.3	Interferometry	29
		3.3.1 Relationship to TDOA	29
	3.4	AOA Estimation in the Presence of Receiver Noise	30
		3.4.1 Maximum Likelihood Estimate	30
		3.4.2 Time-Domain Methods	31
		3.4.3 Cramér-Rao Lower Bound for a Two-Antenna Interferometer	32
		3.4.4 Performance Comparison	33
		3.4.5 RMS Error of an Interferometer	36
	3.5	Long Baseline Interferometry	36
	3.6	Ambiguity Resolution Using Independent Methods	42
		3.6.1 Amplitude Comparison	43
		3.6.2 Short Baseline	43
	3.7	Ambiguity Resolution Using Multiple Baselines	45
		3.7.1 The Chinese Remainder Theorem	45
		3.7.2 Non-Uniform Array Geometry	52
		3.7.3 Number of Baselines	55
		3.7.4 Maximum Likelihood Estimator	56
		3.7.5 Correlative Interferometers	58
		3.7.6 Common Angle Search	60
		3.7.7 Line Fitting	65
	3.8	Performance Comparison	69
		3.8.1 Cramer-Rao Lower Bound for a Non-Uniform Linear Array	69 =
		3.8.2 Array Geometry	70
	2.0	3.8.3 Monte Carlo Simulations	71
	3.9	Other Considerations	75
		3.9.1 Multiple Signals	75
		3.9.2 Optimal Linear Array Geometries	75
	9.10	$3.9.3 \text{F1eld-ol-V1ew} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	10
	3.10	Summary	80
4	Inte	erferometry Using Second Order Difference Arrays	83
-	4.1	Introduction	83
	4.2	SODA Interferometry	84
		4.2.1 Unambiguous AOA Estimation	84
		4.2.2 Correction for Ambiguous Phase Delay Measurements	85
		4.2.3 Algorithm Complexity	86
		4.2.4 Alternate Expressions for the SODA Baseline Constraint	86

		4.2.5 R	MS Error of the SODA Interferometer			87
		4.2.6 P	Performance Evaluation	• • •		89
	4.3	SODA-C	ued Ambiguity Resolution	•••		91
		4.3.1 S	ODA-Based Inference (SBI) Interferometer	•••		92
		4.3.2 S	ODA-Cued Correlative Interferometer	•••		93
		4.3.3 S	BI-Cued Correlative Interferometer	•••		94
	4.4	Performa	ance Comparison	•••		95
	4.5	Other Co	onsiderations	•••		99
		4.5.1 C	Other Linear Combinations of First-Order Phase Delays	•••		99
		4.5.2 N	Ion-Collinear SODA Interferometer	•••		101
		4.5.3 F	ield-of-View	•••		103
	4.6	Summar	y			103
5	Arr	av Proce	essing Using Second Order Difference Arrays			107
0	5.1	Beamfor	ming and Array Processing			107
	0.1	5.1.1 S	ignal Model			107
		5.1.2 C	Conventional Phaseshift Beamformer			109
		5.1.3 C	Detimal Beamformers and Super-Resolution Methods			113
		5.1.4 N	(ultiple Signal Classification (MUSIC)			113
	5.2	Sparse L	arge Aperture Arrays			114
	0.2	5.2.1 G	rid Search Resolution			118
	5.3	Array Pr	rocessing with SODA Geometries			124
	0.0	5.3.1 S	ODA-Cued Array Processing			124
		5.3.2 S	BI-Cued Array Processing			126
		5.3.3 S	ODA Array Processing			127
	5.4	Performa	ance Comparison			133
	0.1	5.4.1 A	rray Beampatterns			133
		5.4.2 G	Frid Search Resolutions			134
		5.4.3 N	Ionte Carlo Simulations			134
	5.5	Summar	у	•••		141
6	Cal	ibration				1/13
U	6 1	Introduc	tion			143
	6.2	Effect of	Channel Imbalances	•••		144
	0.2	621 P	Phase Frequency and Baseline Errors	•••		144
		622 G	ain Imbalance	•••		146
	6.3	Signal M	odels			148
	0.0	6.3.1 C	alibrated Signal Model			148
		6.3.2 U	Incalibrated Signal Model			149
	6.4	Calibrati	ion Methodology			150
	0.1	641 C	Calibration Tables	•••		150
		642 S	imple Calibration	•••		151
		6.4.3 J	oint Calibration and AOA Estimation		· · ·	151
	6.5	Short-Ba	seline Calibration		. 	151
	0.0	6.5.1 I	mplementation Using a 1-D Look-Up-Table		· · ·	156
	6.6	Long-Ba	seline Calibration		· · ·	156
		6.6.1 A	mbiguity Resolution Using Multiple Baselines and Unca	libr	ated	100
		Γ.	ata			161
						±01

CONTENTS

	6.7	Summary 165
7	The 7.1	Electronic Support Testbed 165 Introduction 165
	7.2	Hardware Design
		7.2.1 Design Objectives
		7.2.2 Sampling Architecture
		7.2.3 Hardware Components
		7.2.4 Data Encoding
	7.3	Data Alignment
		7.3.1 Sources of Data Misalignment
		7.3.2 Data Alignment Methodology
	7.4	Summary
8	Exp	erimental Results 179
	8.1	Introduction
	8.2	Experimental Setup
		8.2.1 Experiment Site
		8.2.2 Transmission Source
		8.2.3 Array Geometry
		8.2.4 Data Collection Methodology
	8.3	Calibration
		8.3.1 Correlative Calibration
		8.3.2 SODA Calibration
	8.4	Experimental Results
		8.4.1 Experimental Performance With Correlative Calibration 197
		8.4.2 Experimental Performance With SODA Calibration 199
	8.5	Summary
9	Con	cluding Remarks 205
	9.1	Summary
	9.2	Future Work
\mathbf{A}	Der	ivations 209
	A.1	Signal Model
	A.2	Maximum Likelihood Estimation
		A.2.1 Maximum Likelihood Estimator for a Non-Uniform Linear Array 210
		A.2.2 Maximum Likelihood Estimator for Two Antennas
	A.3	Cramér-Rao Lower Bounds
		A.3.1 Cramér-Rao Lower Bounds for a Non-Uniform Linear Array 213
		A.3.2 Cramér-Rao Lower Bounds for Two Antennas

iv

List of Figures

1.1	Block diagram of the typical functions performed by a radar intercept receiver.	2
$\begin{array}{c} 1.2 \\ 1.3 \end{array}$	Radar intercept receivers have a range advantage over the radar A typical pulsed radar signal has a well-defined leading and trailing edge.	7 9
2.1	A mechanical spinning antenna direction finding system	13
2.2	if it happens to be "looking away" from the radar	14
2.0	beampattern of two of mogonal loop antennas. The of mogonal sinusoidal beampatterns ensure a unique ratio between the measured power levels of each channel for each AOA	15
2.4	Beampattern of an Adcock array comprising of 4 dipole antennas with a radius of $\lambda/5$, where λ is the wavelength of the signal of interest. A linear combination of the omnidirectional beampatterns can produce two orthogonal, near-sinusoidal beampatterns that are comparable to the beam-	10
	patterns of two loop antennas.	16
2.5	Beampatterns of four cavity-backed spiral antennas with a squint angle	
0.0	of 90° between the antennas	17
2.6 2.7	A FDOA direction finding array comprising of K antennas A signal incident upon a pair of spatially separated antennas must travel a further distance to reach the second antenna after arriving at the first	18
	antenna	19
2.8	Array processors use AOA-dependent propagation time or phase delays to coherently sum the array output.	21
31	Relationship between the antenna separation and propagation delay of	
0.1	the signal arrival for a linear array	26
3.2	The geographical coordinate system.	27
3.3	The spherical polar coordinate system.	27
3.4	Comparison of the RMS errors of an interferometer as a function of SNR.	
	Simulation parameters: $\theta = 23.42^{\circ}, f = 18$ GHz, $d = 8.3333$ mm, $N =$	
	2048 samples, and $t_s = 750$ ps. A 2048-point FFT was used to calculate	~ (
0 5	the phase delays of the FFT-based MLE.	34
3.5	Comparison of the RMS errors of an interferometer as a function of SNR. Simulation parameters: $A = 22.42^{\circ}$, $f = 18$ CHz, $d = 8.2222$ mm. N	
	Simulation parameters: $\theta = 23.42$, $f = 16$ GHz, $u = 8.3333$ mm, $N = 2048$ samples and $t = 750$ ns. A 2050 point FFT was used to calculate	
	2046 samples, and $t_s = 750$ ps. A 2050-point FFT was used to calculate the phase delays of the EET-based MLE	3/1
	$\mathbf{H}_{\mathbf{h}} = \mathbf{H}_{\mathbf{h}} = $	04

3.6	Comparison of the RMS errors of an interferometer as a function of AOA.	
	Simulation parameters: $\eta = 15$ dB, $f = 18$ GHz, $d = 8.3333$ mm, $N =$	
	2048 samples, and $t_s = 750$ ps. A 2048-point FFT was used to calculate	
	the phase delays of the FFT-based MLE.	35
3.7	Unambiguous phase delays as a function of AOA for a short and long	
	baseline interferometer. Simulation parameters: $f = 18$ GHz, $\lambda = 16.67$	
	mm. $d_{\text{chart}} = \lambda/2$ and $d_{\text{long}} = 5\lambda$.	38
38	Peak error in the AOA estimation for a short and long baseline interfer-	00
0.0	ometer due to a peak phase error is $\delta \psi_{real} = \pm 5^{\circ}$ Simulation parameters:	
	$\theta = 0^{\circ}$ $f = 18$ GHz $\lambda = 16.67$ mm $d_{\rm chart} = \lambda/2$ and $d_{\rm hart} = 5\lambda$	38
39	This plot shows that a short baseline interferometer obtains unambiguous	00
0.5	AOA estimates However the estimation errors (as indicated by the	
	widths of the triangles) are also larger. In this plot $\theta = 23.42^{\circ}$ f = 18	
	$CH_z d_z = \frac{1}{2}$ and the peak phase error is $\delta d_z = \pm 5^\circ$	30
3 10	This plot shows that a long baseline interferometer has lower estimation	39
3.10	arrors (as indicated by the widths of the triangles) but are ambiguous. In	
	this plot $A = 23.42^{\circ}$ $f = 18$ CHz $d_{\odot} = -5$ and the peak phase error is	
	this plot, $b = 25.42$, $f = 10$ GHz, $a_{\text{long}} = 5\lambda$ and the peak phase error is $\delta_{ab} = -\pm 5^{\circ}$	20
2 1 1	$\phi_{\text{peak}} = \pm 5 \dots \dots$	39
0.11	Antibiguous phase delays as a function of AOA for a short and long base- line interferometer. Simulation parameters: $f = 18$ CHz $\rightarrow = 16.67$	
	mine interferometer. Simulation parameters. $f = 10$ GHz, $\lambda = 10.07$	
	AOAs that correspond to an ambiguous phase delay measurement of	
	$\sqrt{h} = -4.56^{\circ}$	/1
2 1 9	$\psi = -4.50$	41
0.12	tolorance as a function of the aporture	19
2 1 2	Successful ambiguity resolution using an independent method requires	42
0.10	that the coarse AOA estimate has a BMS error that satisfies $\delta \theta_{\rm DMG}$	
	that the coarse AOA estimate has a revisient that satisfies $00_{\text{RMS, coarse}} \leq \delta \theta$	/13
3 1/	Λ short baseline interferometer can be used to successively resolve the	40
0.14	ambiguities of the longer baselines. In this figure, the width of the trian-	
	gles indicate the BMS errors associated with the interferometer baselines	
	The BMS error improves as the coarse $\Delta \Omega A$ estimation method succes-	
	sively received the ambiguities of the longer baselines	45
2 1 5	Sivery resolves the ambiguities of the longer baselines. \dots	40
0.10	noiseless signal produces quantized estimates. Simulation parameters:	
	holseless signal produces quantised estimates. Simulation parameters. $d = 2 \frac{1}{2} \frac{d}{d} = 7 \frac{1}{2} \frac{f}{d} = 18 \frac{GHz}{GHz} = 16.67 \text{ mm}$	50
2 16	$a_1 = 3\lambda/2, a_2 = 1\lambda/2, j = 10$ GHz, $\lambda = 10.07$ mm	52
5.10	For interferometers with non-uniform antenna spacings, there will only be one AOA that is common among the ambiguities of the long baselines	52
3 17	A simple set of interferometer baselines comprising of 4 antennas	55
3.17	A simple set of interferometer baselines comprising of 4 antennas	55
3.10 2.10	The correlative interferometer searches for the set of true phase delays	55
5.19	that host match the measured ambiguous phase delays	58
3.20	Example of the cosine and least squares cost functions for a correlative	00
0.20	interformator. These cost functions have been normalized to the same	
	scale for visual comparison	60
2 91	Example of the cost function for the exhaustive CAS algorithm	69
ე.⊿⊥ ვეე	Example of the cost function for the exhlaustive CAS algorithm	03
J.22	The or the unambiguous phase delays of the a_2 baseline against the a_1	61
	Dasenne	04

3.23 3.24	Plot of the ambiguous phase delays of the d_2 baseline against the d_1 baseline. Look-up-table representation of Figure 3.23. Each entry in the look- up-table represents the corresponding ambiguity number for ρ_2 for a given combination of ambiguous phase delay measurements, $\tilde{\psi}_1$ and $\tilde{\psi}_2$. Note that the row address is counted upwards and the column address is	66
3.25	counted rightwards	68 70
3.26	RMS error performance of each algorithm as a function of SNR. Simula- tion parameters: $K = 3$ antennas, $\theta = 23.42^{\circ}$, $f = 9410$ MHz, $\varphi = 0^{\circ}$, N = 2048 samples $t = 750$ ps and $Q = 10,000$ realisations. The "Opt"	
	label indicates that Newton's Method optimisation has been performed.	73
3.27	RMS error performance of each algorithm as a function of SNR. Simula-	
	tion parameters: $K = 3$ antennas, $\theta = 23.42^{\circ}$, $f = 9410$ MHz, $\varphi = 0^{\circ}$,	=0
2 28	$N = 2048$ samples, $t_s = 750$ ps and $Q = 10,000$ realisations	73
J .20	tion parameters: $K = 4$ antennas, $\theta = 23.42^{\circ}$, $f = 9410$ MHz, $\varphi = 0^{\circ}$.	
	$N = 2048$ samples, $t_s = 750$ ps and $Q = 10,000$ realisations. The "Opt."	
	label indicates that Newton's Method optimisation has been performed.	74
3.29	RMS error performance of each algorithm as a function of SNR. Simula-	
	tion parameters: $K = 4$ antennas, $\theta = 23.42^{\circ}$, $f = 9410$ MHz, $\varphi = 0^{\circ}$, $N = 2048$ samples $t_{e} = 750$ ps and $Q = 10,000$ realisations	74
3.30	Comparison of the FOV of an interferometer as a function of SNR at	
	various error tolerances. Simulation parameters: $f = 18$ GHz, $d = \lambda/2$,	
	$\lambda = 16.67 \text{ mm}, N = 2048 \text{ samples, and } t_s = 750 \text{ ps.} \dots \dots \dots \dots$	78
3.31	Comparison of the FOV of an interferometer as a function of frequency at various error tolerances. Simulation parameters: $n = 15$ dB, $d = \lambda/2$.	
	$\lambda = 16.67 \text{ mm}, N = 2048 \text{ samples, and } t_s = 750 \text{ ps.} \dots \dots \dots \dots$	78
3.32	Comparison of the FOV of an interferometer as a function of the array aperture with various error telerances. Simulation parameters: $n = 15$	
	dB, $f = 18$ GHz, $N = 2048$ samples, and $t_S = 750$ ps	79
3.33	Linear arrays are unable to distinguish between signals arriving from the	
	"front" or "back" hemispheres due to the geometric symmetry.	79
3.34	Multiple independent linear arrays are required to obtain a 360° field-of-	00
3 35	A circular array geometry	80 81
0.00		01
4.1	A collinear array with three antennas.	84
4.2 4-3	A SODA interferometer effectively creates a virtual short-baseline inter-	85
т.0	ferometer from a sparse antenna array	87
4.4	Comparison of the AOA estimation performance of the SODA inter- ferometer and the equivalent first-order interferometer as a function of AOA. Simulation parameters: $\eta = 15$ dB, $f = 18$ GHz, $\lambda = 16.67$ mm, $d_{21} = 3\lambda/2$, $d_{32} = 7\lambda/2$, $N = 2048$ samples, $t_s = 750$ ps, and $Q = 10,000$ realisations	00
	realisations.	

4.5	Comparison of the AOA estimation performance of the SODA interfer-	
	ometer and the equivalent first-order interferometer as a function of fre-	
	quency. Simulation parameters: $\eta = 15$ dB, $\theta = 70^{\circ}$, $\lambda = 16.67$ mm,	
	$d_{21} = 3\lambda/2, d_{32} = 7\lambda/2, N = 2048$ samples, $t_s = 750$ ps, and $Q = 10,000$	
	realisations.	90
4.6	The angular accuracy of a SODA interferometer is independent of the	
	physical first-order baselines.	91
4.7	The unambiguous second-order phase delay can be used to successively	
	resolve the ambiguities of the longer first-order baselines	92
4.8	The SODA AOA estimate can be used to reduce the search range of the	
	correlative interferometer.	94
4.9	RMS error performance of each algorithm as a function of SNR. Simula-	
	tion parameters: $K = 3$ antennas, $\theta = 23.42^{\circ}$, $f = 9410$ MHz, $\varphi = 0^{\circ}$,	
	$N = 2048$ samples, $t_s = 750$ ps and $Q = 10,000$ realisations	97
4.10	RMS error performance of each algorithm as a function of SNR. Simula-	
	tion parameters: $K = 3$ antennas, $\theta = 23.42^{\circ}$, $f = 9410$ MHz, $\varphi = 0^{\circ}$,	
	$N = 2048$ samples, $t_s = 750$ ps and $Q = 10,000$ realisations	97
4.11	RMS error performance of each algorithm as a function of SNR. Simula-	
	tion parameters: $K = 4$ antennas, $\theta = 23.42^{\circ}$, $f = 9410$ MHz, $\varphi = 0^{\circ}$,	
	$N = 2048$ samples, $t_s = 750$ ps and $Q = 10,000$ realisations	98
4.12	RMS error performance of each algorithm as a function of SNR. Simula-	
	tion parameters: $K = 4$ antennas, $\theta = 23.42^{\circ}$, $f = 9410$ MHz, $\varphi = 0^{\circ}$,	
	$N = 2048$ samples, $t_s = 750$ ps and $Q = 10,000$ realisations	98
4.13	A 3-antenna non-linear array can be considered as a triangular array	102
4.14	d_{21} baseline rotation angle, α , vs the array aperture for $d_{\Delta} = \lambda/2$	104
4.15	Virtual array rotation angle, Θ , vs the d_{21} rotation angle, α , for $d_{31} = 50\lambda$	
	and $d_{\Delta} = \lambda/2$.	104
5.1	Array processing algorithms exploit the propagation delays in a coherent	
0.1	manner	108
5.2	Beampattern of an 8-antenna uniform linear array with a $\lambda/2$ antenna	200
•	spacing and steered at $\theta_s = 0^\circ$	110
5.3	Array output of the CBF algorithm using an 8-antenna uniform linear ar-	-
	ray with a $\lambda/2$ antenna spacing when $\theta = 23.42^{\circ}$. Simulation parameters:	
	$\eta = 15 \text{ dB}, f = 16 \text{ GHz}, N = 2048 \text{ samples, and } \Delta \theta = 0.01^{\circ}.$	110
5.4	Array output of a MUSIC array processor using an 8-antenna uniform	
	linear array with a $\lambda/2$ antenna spacing when $\theta = 23.42^{\circ}$. Simulation	
	parameters: $\eta = 15$ dB, $f = 16$ GHz, $N = 2048$ samples, $W = 1$ snapshot,	
	and $\Delta \theta = 0.01^{\circ}$.	115
5.5	Beampattern of an 8-antenna uniform linear array with a uniform antenna	
	spacing of 7.1429 λ (50 λ aperture).	116
5.6	CBF array output using an 8-antenna uniform linear array with a uniform	
	antenna spacing of 7.1429 λ (50 λ aperture) when $\theta = 23.42^{\circ}$. Simulation	
	parameters: $\eta = 15 \text{ dB}, f = 16 \text{ GHz}, N = 2048 \text{ samples}, W = 1 \text{ snapshot},$	
	and $\Delta \theta = 0.01^{\circ}$.	117

5.7	MUSIC array output using an 8-antenna uniform linear array with a	
	uniform antenna spacing of 7.1429 λ (50 λ aperture) when $\theta = 23.42^{\circ}$.	
	Simulation parameters: $\eta = 15$ dB, $f = 16$ GHz, $N = 2048$ samples,	
	$W = 1$ snapshot, and $\Delta \theta = 0.01^{\circ}$	117
5.8	An 8-antenna non-uniform linear array.	118
5.9	Beampattern of a 8-antenna non-uniform linear array with a 50λ aperture	
	at 16 GHz.	119
5.10	CBF array output using an 8-antenna non-uniform linear array with a 50λ	
	aperture when $\theta = 23.42^{\circ}$. Simulation parameters: $\eta = 15$ dB, $f = 16$	
	GHz, $N = 2048$ samples, $W = 1$ snapshot, and $\Delta \theta = 0.01^{\circ}$.	120
5.11	MUSIC array output using an 8-antenna non-uniform linear array with	
	a 50 λ aperture when $\theta = 23.42^{\circ}$. Simulation parameters: $\eta = 15$ dB,	
	$f = 16$ GHz, $N = 2048$ samples, $W = 1$ snapshot, and $\Delta \theta = 0.01^{\circ}$.	120
5.12	CBF array output using an 8-antenna non-uniform linear array with a 50λ	
	aperture when $\theta = 23.42^{\circ}$. Simulation parameters: $\eta = 15$ dB, $f = 16$	
	GHz, $N = 2048$ samples, $W = 1$ snapshot, and $\Delta \theta = 1.146^{\circ}$.	122
5.13	MUSIC array output using an 8-antenna non-uniform linear array with	
	a 50 λ aperture when $\theta = 23.42^{\circ}$. Simulation parameters: $\eta = 15$ dB,	
	$f = 16$ GHz, $N = 2048$ samples, $W = 1$ snapshot, and $\Delta \theta = 1.146^{\circ}$.	122
5.14	CBF array output using an 8-antenna non-uniform linear array with a 50λ	
	aperture when $\theta = 23.42^{\circ}$. Simulation parameters: $\eta = 15$ dB, $f = 16$	
	GHz, $N = 2048$ samples, $W = 1$ snapshot, and $\Delta \theta = 0.573^{\circ}$	123
5.15	MUSIC array output using an 8-antenna non-uniform linear array with	
	a 50 λ aperture when $\theta = 23.42^{\circ}$. Simulation parameters: $\eta = 15$ dB,	
	$f = 16$ GHz, $N = 2048$ samples, $W = 1$ snapshot, and $\Delta \theta = 0.573^{\circ}$.	123
5.16	The SODA AOA estimate can be used to reduce the search range of the	
	conventional beamformer.	125
5.17	The second-order differences between the physical antenna positions of a	
	sparse large aperture array can be used to synthesise the baselines of an	
	unambiguous virtual uniform linear array	128
5.18	The antenna positions of a virtual uniform linear array formed from the	
	second-order differences of the physical antenna positions	128
5.19	Beampattern of a 7-antenna virtual uniform linear array derived from an	
	8-antenna physical SODA geometry with a 50 λ aperture	130
5.20	Comparison of the first-order and second-order array outputs for a 8-	
	antenna SODA geometry using the CBF algorithm. Simulation param-	
	eters: $\theta = 23.42^{\circ}$, $\eta = 15$ dB, $f = 16$ GHz, $N = 2048$ samples, $W = 1$	
	snapshot, $\Delta \theta_{\text{first-order}} = 0.573^{\circ}$ and $\Delta \theta_{\text{second-order}} = 9.736^{\circ}$.	132
5.21	Comparison of the first-order and second-order array outputs for a 8-	
	antenna SODA geometry using the MUSIC algorithm. Simulation pa-	
	rameters: $\theta = 23.42^{\circ}$, $\eta = 15 \text{ dB}$, $f = 16 \text{ GHz}$, $N = 2048 \text{ samples}$, $W = 1$	
	snapshot, $\Delta \theta_{\text{first-order}} = 0.573^{\circ}$ and $\Delta \theta_{\text{second-order}} = 9.736^{\circ}$.	132
5.22	Array beampatterns for the physical and virtual arrays using the 3-	
	antenna array geometry at $f = 9410$ MHz	135
5.23	Array beampatterns for the physical and virtual arrays using the 4-	
	antenna array geometry at $f = 9410$ MHz	135
5.24	Array beampatterns for the physical and virtual arrays using the 8-	
	antenna array geometry at $f = 9410$ MHz	136

5.25	RMS error performance of each algorithm as a function of SNR. Simula-	
	tion parameters: $K = 3$ antennas, $\theta = 23.42^{\circ}$, $f = 9410$ MHz, $\varphi = 0^{\circ}$,	
	$N = 2048$ samples, $W = 1$ snapshot, $t_s = 750$ ps and $\mathcal{Q} = 10,000$	
	realisations.	138
5.26	RMS error performance of each algorithm as a function of SNR. Simula-	
	tion parameters: $K = 3$ antennas, $\theta = 23.42^{\circ}$, $f = 9410$ MHz, $\varphi = 0^{\circ}$,	
	$N = 2048$ samples, $W = 1$ snapshot, $t_s = 750$ ps and $Q = 10,000$	
	realisations.	138
5.27	RMS error performance of each algorithm as a function of SNR. Simula-	
	tion parameters: $K = 4$ antennas, $\theta = 23.42^{\circ}$, $f = 9410$ MHz, $\varphi = 0^{\circ}$,	
	$N = 2048$ samples, $W = 1$ snapshot, $t_s = 750$ ps and $Q = 10,000$	
	realisations.	139
5.28	RMS error performance of each algorithm as a function of SNR. Simula-	
	tion parameters: $K = 4$ antennas, $\theta = 23.42^{\circ}$, $f = 9410$ MHz, $\varphi = 0^{\circ}$,	
	$N = 2048$ samples, $W = 1$ snapshot, $t_s = 750$ ps and $Q = 10,000$	100
F 00	realisations.	139
5.29	RMS error performance of each algorithm as a function of SNR. Simula-	
	tion parameters: $K = 8$ antennas, $\theta = 23.42^{\circ}$, $f = 9410$ MHz, $\varphi = 0^{\circ}$,	
	$N = 2048$ samples, $W = 1$ snapsnot, $t_s = 750$ ps and $Q = 10,000$	140
	realisations.	140
6.1	AOA bias error due to a 5° bias error in the phase delay estimate. The	
	signal frequency is assumed to be $f = 18$ GHz and the antenna separation	
	is $d = \lambda/2$.	147
6.2	AOA bias error due to a 1 MHz bias error in the frequency estimate. The	
	signal frequency is assumed to be $f = 18$ GHz and the antenna separation	
	is $d = \lambda/2$	147
6.3	AOA bias error due to a 1 mm bias error in the interferometer baseline.	
	The signal frequency is assumed to be $f = 18$ GHz and the antenna	
	separation is $d = \lambda/2$.	147
6.4	A simple calibration method. The signals are calibrated prior to AOA	
	estimation.	151
6.5	The AOA estimation algorithms can be modified to allow AOA estimation	
	directly from the uncalibrated data.	152
6.6	Example of a constant phase delay error of 50°	154
6.7	The relationship between the uncalibrated phase delays and the AOA	
	remains unique when there is a constant phase delay error	154
6.8	Example of a monotonically decreasing phase delay error arising from a	
0.0	shorter than expected interferometer baseline.	155
6.9	The relationship between the uncalibrated phase delays and the AOA	
	remains monotonic and unique and so unambiguous AOA estimation can	1
6 10	Example of a monotonically increasing these delay such as the	199
0.10	Example of a monotonically increasing phase delay error arising from a	1
6 1 1	The relationship between the superliberts defined and the second	157
0.11	main monotonic but is not unique and so unau-him and the AOA re-	
	mains monotonic but is not unique, and so unambiguous AOA estimation	157
6 19	Example of a non-monotonic phase delay arror	150
0.12	Example of a non-monotonic phase delay error.	199

6.13	Relationship between the uncalibrated phase delays and the AOA is am-	150
6.14	A look-up-table can be used to map the uncalibrated phase delays to the	100
	AOA	159
7.1	Simplified block diagram of a bandpass sampling architecture	167
7.2	An appropriately selected sampling rate can shift a signal centred at f_c	
- 0	to $f_s/4$ without an explicit frequency shift operation	168
7.3	Hardware architecture for the multi-channel ES Testbed	170
7.4	Typical data stream of one channel from the ES Testbed	172
7.0	Encoding of the ADC data.	172
7.0		172
8.1	The Gemini Trial was conducted at St Kilda, South Australia (Marker A) in July 2011.	180
8.2	Location of the transmitting and receiving sites at St Kilda	181
8.3	Instantaneous frequency of a linear FM chirp signal with a chirp rate of	
	510 MHz per 2.5 ms	183
8.4	The average frequency of each observation period is plotted against the	
	instantaneous frequency of the chirp	183
8.5	The frequency error in the approximation of the centre frequencies of each	
	observation period by the average instantaneous frequencies	185
8.6	AOA bias error due to a 0.3133 MHz frequency error introduced by ap-	
	proximating the slow-changing linear FM chirp signal as a sequence of	105
07	Arrowband, single-tone signals.	185
8.1	Array geometry for the Gemini Irial	180
8.8 8.0	Calibration values as a function of azimuth	101
0.9 8 10	Calibration values as a function of the ambiguous uncellibrated phase	100
0.10	delays	180
8 11	Plot of the uncalibrated ambiguous phase delays as a function of AOA	103
0.11	for each baseline	190
8.12	Calibrated phase delays using correlative interferometry.	191
8.13	Residual phase delay offsets after calibration using correlative interferom-	101
	etry	192
8.14	Look-up-table for SODA AOA estimation using the uncalibrated SODA	
	phase delays.	193
8.15	Calibrated phase delays using SODA interferometry.	195
8.16	Residual phase delay offsets after calibration using SODA interferometry.	196
8.17	RMS errors of the AOA estimation with correlative calibration using the	
	3-antenna array geometry. The angular values in the labels represent the	
	total RMS error for the algorithms	202
8.18	RMS errors of the AOA estimation with correlative calibration using the	
	4-antenna array geometry. The angular values in the labels represent the	
	total RMS error for the algorithms.	202
8.19	RMS errors of the AOA estimation with SODA calibration using the 3-	
	antenna array geometry. The angular values in the labels represent the	000
	total KMS error for the algorithms.	203

8.20	RMS errors of the AOA estimation with SODA calibration using the 4-	
	antenna array geometry. The angular values in the labels represent the	
	total RMS error for the algorithms	203

List of Tables

3.1	Possible candidates for b_1	47
3.2	Possible candidates for b_2	47
3.3	Possible combinations of ρ_1 and ρ_2	63
3.4	Relative execution times for the conventional ambiguity resolution algo- rithms. The "Opt." label indicates that Newton's Method optimisation	
	has been performed	75
4.1	Relative execution times for the SODA-based algorithms	99
5.1	Antenna positions for an 8-antenna SODA geometry with $d_{\Delta} = \lambda/2$, $u_{\tau} = 0$ and $u_{0} = 3.1420$)	198
5.2	$u_1 = 0$ and $u_2 = 5.1429\lambda$	120
0.2	algorithms.	141
7.1	Data masks used in the encoding of the ES Testbed data	172
7.2	Parameters for the control signal used for data alignment	175
8.1	Experimental performance of the AOA estimation algorithms using cor- relative calibration at 5 dB SNB [†] The fourth auxiliary antenna is unused	
	by this algorithm.	199
8.2	Experimental performance of the AOA estimation algorithms using SODA	100
	calibration at 5 dB SNR. [†] The fourth auxiliary antenna is unused by this	
	algorithm.	200

 xiv

Abstract

This thesis considers the problem of angle-of-arrival (AOA) estimation in the context of its application to electronic surveillance systems. Due to the operational requirements of such systems, the AOA estimation algorithm must be computationally fast, accurate and will need to be implemented using sparse, large aperture arrays.

Interferometry is proposed as a suitable algorithm that meets the operational requirements of electronic surveillance systems. However, for sparse array geometries, phase wrapping effects introduce ambiguities to the phase measurements and so unambiguous AOA estimation requires the use of computationally intensive ambiguity resolution algorithms using three or more antennas.

Beamforming and array processing techniques are another class of AOA estimation algorithms that can unambiguously estimate the AOA using sparse, large aperture arrays. While these techniques generally offer better AOA estimation performance than interferometric techniques, they are also comparatively more computationally intensive algorithms. Furthermore, by virtue of using very sparse arrays, high sidelobes in the array beampattern may cause incorrect AOA estimation.

This thesis will introduce the concept of using second-order difference array (SODA) geometries which allow unambiguous AOA estimation to be performed in a computationally efficient manner. In the context of interferometry, the so-called "SODA interferometer" will be shown to synthesise the equivalent output of a smaller virtual aperture to allow unambiguous AOA estimation to be performed at the expense of a coarser estimation performance compared to the physical aperture of the array. It will also be shown that the coarse SODA AOA estimate can be used to cue the conventional ambiguity resolution algorithms to provide higher accuracy in a computationally efficient manner. This thesis will also show that the creation of virtual arrays from SODA geometries can be generalised to a larger number of antennas to allow conventional array processing techniques to perform unambiguous AOA estimation in a computationally fast manner.

The AOA estimation performance of each algorithm is compared through simulations and also verified using experimental data. This thesis will show that the SODA interferometer, SODA-cued ambiguity resolution algorithms and so-called "second-order array processors" can be used to obtain high accuracy AOA estimates in a more computationally efficient manner than the conventional algorithms.

xvi

Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Peter Quoc Cuong Ly 3 December 2013

xviii

Acknowledgements

I would like to thank my university supervisor, Professor Doug Gray, for encouraging me to enter the field of signal processing. It was under your mentorship during my final years as a undergraduate student that sparked my interest in a career in signal processing research. Thank you for all of your time, effort and patience over the last ten years. Without your support and encouragement, the completion of this thesis would not have been possible.

I would also like to thank my DSTO supervisor, Dr Stephen Elton, for bringing this PhD to fruition. This thesis would not have been possible without your tireless efforts in negotiating the agreement between the university and DSTO. Your friendship and unwavering support both academically and personally during this candidacy has been an invaluable source of encouragement.

I would also like to thank my co-supervisor, Professor Bevan Bates, for helping me navigate through the necessary administration at the university and DSTO and also for allowing me to join in on a number of experiments to collect experimental data to support this PhD research.

I am grateful for the support of my DSTO superiors, Dr Len Sciacca, Dr Jackie Craig, Dr Warren Marwood, Dr Peter Gerhardy and Brian Reid, for providing me with the opportunity to undertake this PhD research as part of my DSTO working arrangements. I am also grateful for the support from my DSTO colleagues, including but not limited to Simon Herfurth, John Quin, Phil Wandel, Jarrad Shiosaki, Andrew Evans and Songsri Sirianunpiboon for their assistance with the hardware development and experimental trials.

I would like to express my gratitude to my family for their unconditional love and support. I would like to thank my parents for instilling in me the appreciation of academic excellence and the value of persistence. I would also like to thank my sister for grounding me in reality.

Finally, I thank my wife, Joy, for being my rock during the last seven years. Not only do you deserve credit for helping me academically, but your unwavering support, patience and faith in me helped me get through some of my darkest times. You are my light.

XX

Publications

Some parts of this thesis have been published for presentation at conferences. The following list is the bibliographic information pertaining to these preliminary presentations.

- Ly, P. Q. C., Elton, S. D., Li, J. & Gray, D. A., "Computationally Fast AOA Estimation Using Sparse Large Aperture Arrays for Electronic Surveillance," in *Proceedings of the IEEE International Conference on Radar (RADAR 2013)*, 2013. Accepted.
- Ly, P. Q. C., Elton, S. D., Gray, D. A., & Li, J., "Unambiguous AOA Estimation Using SODA Interferometry for Electronic Surveillance," in *Proceedings of the IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM 2012)*, pp. 277–280, 2012.
- Ly, P. Q. C., Gray, D. A., Elton, S. D., & Bates, B. D., "A Digital Interferometric Testbed for ES/ELINT Research," in *Proceedings of the Seventh Direction Finding and Geolocation Symposium*, 2008.

Acronyms

Acronym	Description
ADC	Analogue to Digital Converter
AOA	Angle of Arrival
CAS	Common Angle Search
CBF	Conventional Phaseshift Beamforming
COS	Correlative Interferometry using the Cosine Cost Function
CRLB	Cramér-Rao Lower Bound
CW	Continuous Wave
DOA	Direction of Arrival
DF	Direction Finding
DFT	Discrete Fourier Transform
DSTO	Defence Science and Technology Organisation
ELINT	Electronic Intelligence
ES	Electronic Support
ESM	Electronic Support Measures
EW	Electronic Warfare
\mathbf{FFT}	Fast Fourier Transform
FMCW	Frequency Modulated Continuous Wave
FOV	Field of View
FPGA	Field Programmable Gate Array
GSPS	Giga-Samples Per Second, 1×10^9 Samples Per Second
LPI	Low Probability of Intercept
LS	Correlative Interferometry using the Least Squares Cost Function
MSPS	Mega-Samples Per Second, 1×10^6 Samples Per Second
MLE	Maximum Likelihood Estimator
MSE	Mean Square Error
MUSIC	Multiple Signal Classification
POI	Probability of Intercept
PRI	Pulse Repetition Interval
RMS	Root Mean Square
RMSE	Root Mean Square Error
RWR	Radar Warning Receiver
SBI	SODA-Based Inference
SNR	Signal to Noise Ratio
SODA	Second Order Difference Array
TDC	Time to Digital Converter
TDOA	Time Difference of Arrival
ТОА	Time of Arrival
TOB	Time of Burst

xxiv

Notation

Symbols

The following symbols will be used throughout this thesis:

Symbol	Description
η	Signal to Noise Ratio
A	Peak Amplitude of the Signal
f	Carrier Frequency of the Signal
λ	Wavelength of the Signal's Carrier Frequency
φ	Initial Phase of the Signal
θ	Azimuth Component of the Signal's Angle of Arrival
ϕ	Elevation Component of the Signal's Angle of Arrival
t_s	Sample Interval
f_s	Sampling Rate (or Sampling Frequency)
τ	Propagation Time Delay Between Two Antennas
ψ	Propagation Phase Delay Between Two Antennas
d	Distance Between Two Antennas (or Interferometer Baseline)
t	Time Instance
s(t)	Continuous Time-Varying Signal Without Noise
x(t)	Continuous Time-Varying Signal With Noise
$\epsilon(t)$	Continuous Time Additive Gaussian Noise
s[n]	Discrete Time-Varying Signal Without Noise
x[n]	Discrete Time-Varying Signal With Noise
$\epsilon[n]$	Discrete Time Additive Gaussian Noise
$\beta(\theta)$	Phase Error due to Channel Imbalance
N	Number of Samples
K	Number of Antennas
M	Number of Interferometer Baselines
D	Set of Interferometer Baselines
Υ	Set of Potential Ambiguity Numbers for a Single Baseline
Ω	Set of Ambiguity Number Combinations from all Baselines
σ	Standard Deviation of Noise
$v(\theta)$	Propagation Delay for a Single Baseline
$oldsymbol{v}\left(heta ight)$	Propagation Delay Vector for all Baselines
$ \Delta \theta$	Azimuth Grid Search Resolution
BW _{NN}	Null-to-Null Beamwidth

Scripts and Accents

Scripts and accents will be used to confer additional meaning to the above symbols.

- A single letter subscript specifies that the associated parameter belongs to a specific hardware channel. For example, A_k and f_k refers to the peak amplitude and carrier frequency of the k-th receiver channel. A single letter subscript can also specify that the parameter belongs to a particular interferometric baseline. For example, ψ_m and d_m refers to the phase delay and baseline of the m-th interferometer baseline. When only a single letter subscript is used, it is generally implied that the specified parameter refers to an arbitrary interferometer baseline.
- A double letter subscript specifies the parameter of a particular channel with respect to another channel. For example, ψ_{kl} and d_{kl} refers to the phase delay and interferometer baseline of the k-th antenna relative to the l-th antenna. When a double letter subscript is used, it is generally implied that the specified parameter refers to a specific interferometer baseline.
- The subscript $_s$ specifies a steered parameter that is under the control of the radar intercept receiver. For example, θ_s refers to the steered AOA of a grid search algorithm for AOA estimation.
- The superscript u specifies an uncalibrated parameter that is subject to channel imbalances.
- The superscript c specifies a calibrated parameter free of channel imbalances.
- The tilde accent $\tilde{}$ specifies a measured parameter. In particular, when specifying the phase delay measurement, ψ refers to the unwrapped, unambiguous phase delay, however, $\tilde{\psi}$ refers to the measured, ambiguous phase delay that is constrained to the interval $[-\pi, \pi]$.
- The hat accent `specifies an estimated parameter.
- Plain typeface symbols, e.g. $v(\theta)$, are used to denote scalar variables.
- Bold type face symbols in lower case characters, e.g. $\boldsymbol{v}\left(\boldsymbol{\theta}\right),$ are used to denote vector variables.
- Bold type face symbols in upper case characters, e.g. ${\boldsymbol R},$ are used to denote matrix variables.

Mathematical Operators

Operator	Description
round $[a]$	Rounds the scalar a to the nearest integer.
$\lceil a \rceil$	Rounds the scalar a upwards to the next integer.
$\lfloor a \rfloor$	Rounds the scalar a downwards to the next integer.
\odot	Cartesian product.
\boldsymbol{a}^T or \boldsymbol{A}^T	Transpose of the vector, \boldsymbol{a} , or matrix, \boldsymbol{A} .
a^H or A^H	Hermitian (complex conjugate) transpose of the vector, \boldsymbol{a} , or matrix, \boldsymbol{A} .

Units

All parameters are assumed to adhere to the International System of Units (or SI units).

The units of phase-related values, such as the phase delay and angle-of-arrival, are assumed to be expressed in radians for all mathematical expressions. However, for readability, the phase-related values will often be expressed in degrees in the text and figures.