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IMPROVING THE IMAGE SIMILARITY MEASURE

CHAPTER IV

Chapter 3 has proposed a spatial expansion method to improve the BoW repre-

sentation of the original query, where spatially related words are combined with

the query words and the images are ranked in the same way as the standard

retrieval system [130]. Therefore, the improvement relies on the refinement of

BoW representation of the query.

Image similarity plays an important role in a retrieval system. It determines

the distance of a dataset image to a given query. Compared to improving the image

representation, it is more challenging to improve the image similarity measure

because it should accurately describe the visual similarity between a pair of

query/dataset images with imperfect knowledge, e.g. the quantised visual words.

In this chapter, we aim to improve the image similarity measure in order that the

BoW model more accurately ranks dataset images. For a query image q and one of

the dataset image d, the standard method measures the similarity between them

by the normalised dot product of tf-idf vectors q and d vectors corresponding to:

Ψ(q, d) =
q · d

‖ q ‖2‖ d ‖2
(4.1)

However, Eq. (4.1) is based on the quantised visual word IDs, and is word-

to-word matching. Thus, only co-occurrence of the same visual word in both

images contributes to similarity, while different words are considered infinitely

distant even though they may be neighbors in feature space. Therefore, the

dot product similarity is intolerant to quantisation errors introduced by previous

retrieval modules (e.g. image representation or vocabulary building), as illustrated

in Figure 4.1:

• Relevant features maybe be located in different cluster centres.

• Irrelevant features maybe be located in the same cluster centres.
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(a) (b)

Figure 4.1: Example of quantisation errors in feature space: (a) Relevant features might
be located in different cluster centres. (b) Irrelevant features might be located in the
same cluster centres. The illustration of visual word quantisation in feature space is taken
from [63].

This causes inaccuracy in retrieval results. However, two factors have not been

well captured in Eq. (4.1):

• The importance of visual words. The tf-idf scheme weights each visual word

according to its frequency in the individual image as well as in the corpus.

However, tf-idf weights do not distinguish between word appearances in

the foreground or background of an image, and therefore can assign high

weights to words that are not informative when searching for an object, or

vice versa.

• The relatedness of visual words. In the standard BoW model, each feature

is mapped to its closest cluster centre (visual word) in the feature space.

However, the word similarity should be based not just on proximity in feature

space, but also on their association with the same object.

These properties are important in a similarity measure between two BoW

vectors, and lead to two enhanced visual distance measures for image features.

Firstly, we develop a word re-weighting scheme that is more directly based on

how often, and in what range of conditions, a word is correctly matched when it

appears as part of the foreground object (Section 4.1). This aims to address the

importance of visual word. The visual words occurring in the foreground usually

are robust matches between images. Under the standard tf-idf weighting, these

visual words are not necessarily weighted strongly – for example they may occur

in many images in the database, and therefore have a low idf weight. Intuitively,

these foreground visual words can be captured by an object-based thesaurus, as
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described in Chapter 3. We use entropy to measure the importance of a visual

word according to its spatial co-occurrence distribution, which has been recorded

in the object-based thesaurus. A re-weighting scheme is proposed to encourage

these foreground visual words (Section 4.1.1). The re-weighting scheme can

also combine with spatial expansion presented in Chapter 3, in order that the re-

weighting scheme not only considers the visual word importance but also includes

visual word relatedness (Section 4.2).

Secondly, visual words also need to incorporate relatedness of visual words,

because some matching features might be mapped to different visual words. We

use a cross-word matching component in the image similarity score. It is able

to consider inter-word distance measured by the enhanced visual word distance

(Section 4.3). The similarity measure is related to the Earth Mover’s Distance

(EMD), proposed in [67] in the context of image retrieval, but is computationally

simpler, reducing its query time overhead.

With these improved similarity measurements, the retrieval system is able to

more accurately rank the dataset images.

4.1 Visual word re-weighting based on an object-based the-

saurus

We show the framework of visual word re-weighting in Figure 4.2, which aims to

refine the tf-idf weighting (Section 4.1). After re-weighting, the similarity measure

is the same as the standard retrieval system (normalized dot product).

The standard tf-idf does not always capture the importance of visual words,

as shown in Eq. (4.1). In contrast, we investigate the importance of those

words by the spatial consistency information from an object-based thesaurus, as

introduced in Chapter 3. In order to examine word importance, our method uses

an information theory based measurement to re-weight the visual words that have

been detected as spatially consistent.

4.1.1 The visual word re-weighting scheme

As in Section 3.5, we use an object-based thesaurus to collect the foreground words

appearing as inliers WS. The re-weighting function α(wi) is applied to adjust the
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Figure 4.2: System framework of visual word re-weighting. This is the standard BoW
retrieval system with new steps (indicated in dash box) introduced by our method.

tf-idf weight τ(wi) of each inlier visual word wi ∈WS:

τ∗(wi) =

(

α(wi) ·τ(wi) if wi ∈WS

τ(wi) otherwise
(4.2)

Note that the similarity function Ψ(q, d) is calculated between all pairs of query

q and dataset image d. Therefore, the visual word re-weighting is applied to all

query/dataset pairs as well. We now describe the visual word re-weighting scheme

with different forms of prior knowledge: i)without prior knowledge; ii)with word

frequency; iii) with spatial neighbourhood; iv) with query words.

Re-weighting without prior knowledge Intuitively, the simplest re-weighting

function is to multiply the inlier visual words by a constant scale factor, α(wi) =

c, c > 1. This treats all inlier visual words as being equally important, and more

important than words that do not occur as inliers, but neglects the difference

among them.
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Re-weighting with word frequency Alternatively, each visual word can be re-

weighted according to the frequency with which it occurs as an inlier during the

training stage:

α(wi) = Pf (wi) =
# of wi is inliers

# of wi in training data
(4.3)

The intuition here is that a word that commonly occurs on an object of interest and

is correctly matched is likely to be a good indicator of the object. However, this fails

to detect words that commonly occur as inliers, but are largely redundant because

they are strongly associated with other inlier words. In this case, the object-based

thesaurus will include all such words in any query vectors that contains one of

them. Weighting all of these words strongly overestimates the confidence of the

match and can lead to false positives.

Re-weighting with spatial neighbourhood To avoid these cases, we devise a

measure to strongly weight those words that occur as inliers despite a wide variety

of words appearing in their spatial neighbourhood. This implies that the word

itself is a strong indicator of the presence of the object. In order to choose reliable

visual words in this way, we introduce an information theory based method to

measure the importance of a visual word based on its neighbourhood diversity,

which to our knowledge has not been studied in previous methods. As illustrated

in first row of Figure 3.8, it is hard to distinguish true from false results based

solely on word matches. Our method is motivated by the following observations

on spatial neighborhoods. Observation 1: Since the objects of interest are rigid,

the spatial structure of these objects are geometrically consistent across images—

for example, visual words on the objects satisfy a common epipolar constraint.

Observation 2: During the random sampling in RANSAC, mismatched features

are also likely to be selected as inliers. Such visual words are less informative, and

should not be weighted higher than the visual words observed above. As shown

in Figure 4.3, these words are often either isolated from other inliers (i.e. word D

has no neighbors) or, in the case of word C, co-occur with few neighbors in their

spatial neighbourhood.

As a result, the diversity of inliers occurring in their spatial neighborhood is

essential in measuring the importance of the inlier visual words. Note that we are

aiming to encourage visual words that have a diverse nearest neighbors in various

spatial region (Di) in the training data, while discouraging visual words that have
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Figure 4.3: Examples of the distribution of the neighborhood of visual words. The red
points show examples of the foreground words WS appears in the image domain. Three
cases of visual words are shown here. Words A and B: discriminative; Word C: redundant;
Word D: isolated. Words A and B are located on the corner of the window, while words C
and D are located on the wall of the building.

single or few nearest neighbors. Mathematically, the diversity of a distribution

can be characterized as entropy, which is a classical measurement of uncertainty

in information theory [61]. A higher entropy indicates that a variable is more

uniformly distributed. Such words occur as inliers despite a wide variety of spatial

neighbors, and are the ones we need to heavily weight. Figure 4.4 shows examples

of a visual word whose spatial neighborhood has a high entropy. As it occurs

frequently in the corpus, its tf-idf weight is low. However, in practice it is a reliable

visual word for matching.

To measure entropy, for each visual word wi ∈ WS, we obtain its nearest

neighbors Di, with Di ⊂WS. The diversity of the distribution of Di is measured by

a relative entropy H(Di):

H(Di) =−
∑

j

Pf (w j) log Pf (w j) (4.4)

where w j ∈ Di and Pf (w j) is the frequency that a visual word w j that occurs in a

fixed spatial region, similar to Eq. (4.3). As a result, the re-weighting function can

be defined as:

α(wi) =

(

1 if Di = ;
exp(δ ∗H(Di)) otherwise

(4.5)
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Figure 4.4: A visual word with a high entropy should be strongly weighted, as happens
in different images of All souls. The first row shows various features (indicated in yellow)
detected in neighbourhoods of a certain visual word (indicated in red). The second row
shows close-up of some nearest neighbors (identified by color), which form a diverse
nearest neighbor distribution. Note that all the visual words are found as inliers at least
once in the training stage.

where the scaling factor δ is used to control the influence of α(wi), δ ∈ (0,1) and

is fixed in the experiments. We use an object-based thesaurus to store the spatial

co-occurrence found during the training stage, and for further calculation of the

entropy H(Di).

The histograms in the object-based thesaurus indicate the co-occurrence of

inlier words. The histograms used in this section are slightly different from those

described in Section 3.5. We use a Gaussian mask to calculate the co-occurrence

of visual words in the thesaurus histogram hi ∈ H, in which each entry hi( j) is

incremented as follows:

hi( j) = hi( j) + exp(− ‖ loc(wi)− loc(w j) ‖ /σ) (4.6)

where w j ∈ Di, σ is the scaling function and the function loc(wi) recovers the (x,y)

location of feature assigned to visual word wi in image domain. Thus, the entropy

of each word wi ∈WS is calculated by the function H(Di), where Di can be found

from the thesaurus histogram hi.

Re-weighting with query words Furthermore, the inlier words in query are

essential in retrieval. We propose a query specification mechanism to encourage
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Algorithm 6 Visual word re-weighing scheme.
1: Input: Query words Q, the foreground words WS, query vector q and

candidate vector d.
2: Output: Re-weighted similarity score Ψ(q∗,d∗).

3: for all wi ∈ Q
⋂

WS do
4: Adjust the tf-idf score of wi according to Eq. (4.7).
5: q∗← q and d∗← d.
6: end for
7: Calculate the similarity score Ψ(q∗,d∗).

the words that appear both in the query words Q and the foreground words WS.

Such words are important for a query since they can be shared by other images in

the dataset, which also contain the same query objects. Thus, we slightly increase

the weights of such words in computing the similarity:

τ∗(wi) =







λ ·α(wi) ·τ(wi) if wi ∈ Q∗

α(wi) ·τ(wi) if wi ∈WS, and wi /∈ Q∗

τ(wi) otherwise

(4.7)

where Q∗ = Q
⋂

WS, λ is a scaling factor, and the re-weighting function α(wi)

is predefined. Since Q∗ is obtained online according to the given query, this

step requires a slight cost in similarity computation. Usually, the length of Q∗ is

much smaller than the length of query vector q. The computation complexity will

increase very little. Algorithm 6 describes the details of our re-weighting method.

4.1.2 Experimental results

In this section, we investigate the effects of visual word re-weighting on three

public datasets: Oxford 5K, Paris 6K and Oxford 105K datasets. We use F′15 in

building the object-based thesaurus, where the number of nearest neighbors is

fixed, the distance threshold ρ = 30 pixels and the scaling factor for Gaussian

mask σ = 15 (mentioned in Eq. (4.6)). The setting of object-based thesaurus

considers the wide variety of visual words co-occurring as inliers. The effects are

examined in the following aspects:
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Training data size mAP: Oxford 5K
# image pair # inliers α1 α2 α3 α4 α5

Baseline(0K) 0K 0.612 0.612 0.612 0.612 0.612
2.0%L 5K 0.620 0.623 0.622 0.622 0.622
5.0%L 14K 0.623 0.630 0.625 0.629 0.628
10%L 21K 0.626 0.624 0.632 0.635 0.636
20%L 35K 0.642 0.638 0.644 0.643 0.650
40%L 53K 0.643 0.644 0.651 0.652 0.659
60%L 68K 0.642 0.647 0.650 0.653 0.658
80%L 83K 0.639 0.639 0.651 0.653 0.657

100%L 96K 0.642 0.642 0.650 0.655 0.660

Table 4.1: Evaluation of different training data size on the Oxford 5K dataset. We compare
the results with different types of α. The total number of training pairs is L = 6.4K .

Training data size mAP: Paris 6K
# image pair # inliers α1 α2 α3 α4 α5

Baseline(0K) 0K 0.639 0.639 0.639 0.639 0.639
2.0%L 5K 0.644 0.649 0.645 0.647 0.650
5.0%L 9K 0.652 0.654 0.652 0.653 0.656
10%L 16K 0.658 0.658 0.662 0.663 0.664
20%L 31K 0.661 0.664 0.665 0.667 0.668
40%L 53K 0.661 0.660 0.671 0.673 0.673
60%L 67K 0.661 0.659 0.671 0.673 0.674
80%L 85K 0.660 0.659 0.671 0.674 0.674

100%L 102K 0.659 0.658 0.670 0.674 0.674

Table 4.2: Evaluation of different training data size on the Paris 6K dataset. We compare
the results with different types of α. The total number of training pairs is L = 7.6K .

Effects of training data size Tables 4.1 and 4.2 investigate the effects of training

data size on the Oxford 5K and Paris 6K datasets. To simplify the comparison, we

start with the re-weighting function as α(wi) = 2, and then generate training data

with the method presented in Section 3.5 in Chapter 3. After collecting 10% of

visual words from the vocabulary (detected as inliers), we stop the process of

training data generation. During this step, the mAPs for both the Oxford and Paris

datasets rise for small amount of training data, and then plateau if given more

training data, as the red dashed curves show in Figure 4.5. This is because our

method relies on the spatial correspondence between image pairs. Once there is

sufficient data to estimate this, retrieval performance is stable.

Effects of re-weighting function We examine the performance of visual word

re-weighting with five different re-weighting functions αi,i=1:5, which can be

SECTION 4.1—Visual word re-weighting based on an object-based thesaurus 81



0 0.2 0.4 0.6 0.8 1
0.61

0.62

0.63

0.64

0.65

0.66

0.67
Oxford

baseline
α1
α2
α3
α4
α5

training data size 

m
A

P

0 0.2 0.4 0.6 0.8 1
0.635

0.64

0.645

0.65

0.655

0.66

0.665

0.67

0.675

0.68
Paris

baseline
α1         
α2
α3
α4
α5

m
A

P

training data size 

(a) Oxford 5K (b) Paris 6K

Figure 4.5: Evaluation of the retrieval performance on the Oxford 5K and Paris 6K
datasets: i): training data size and ii) six different types of re-weighting function α(wi).

grouped into two categories: non-entropy (α1 and α2) and entropy (α3, α4 and

α5). These re-weighting functions incrementally introduce knowledge of the

foreground visual words.

• α1(wi) = 2, there is no difference between the importance of the foreground

words WS.

• α2(wi) = exp(Pf (wi)), the importance of each visual word wi ∈ WS is a

function of Pf (wi), the number of times it appears as inliers in the training

data, as a fraction of the total number of times it appears. Therefore,

Pf (wi) ∈ (0, 1] and α2 ∈ (1, e].

• α3(wi) = exp(δ · H(Di)), the importance of each visual word wi ∈ WS is

proportional to the entropy in its neighborhood word set Di.

• α4(wi) = exp(δ · Pf (wi)H(Di)), α4 incorporates the prior information into

the entropy. Thus, α4 is a weighted version of α3.

• α5: query specification on α4 (Section 4.1, Eq. (4.7)), it slightly increases the

weight of the words Q∗, based on the results of α4.

In our experiments, the scaling factor δ for the re-weighting functions is set

to 0.5. This is based on the highest entropy we observe from the experiment.

Ideally, the maximum entropy happens if a nearest neighbor Di include all the

words WS, and each word w j ∈ Di has the same probability to appear ( 1
m

, where

m= 105 is the size of the foreground words WS). Therefore, the maximum entropy
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Figure 4.6: Illustration of tf-idf score adaption. (a) The frequency of α4 re-weighting
scores assigned to visual words. (b) The visual words for which α5 > 4. Note that most
occur on the foreground object. The query specification is based on α4 shown in (a).

is H(Di) = −
m
∑

j=1

1
m
· log 1

m
= −m · 1

m
· log 1

m
= 5. The scaling factor λ for query

specification is set to 1.15. Note that these re-weighting functions start with no

spatial relationship (α1), to weak spatial information (α2), and to more strong

spatial information using entropy (α3, α4, and α5). The corresponding retrieval

performances of these re-weighting functions are reported in Figure 4.5. As is

seen in Figure 4.5, we obtain two groups of curve results, according to the non-

entropy functions and the entropy functions. The mAPs for all the re-weighting

functions rise rapidly for small amounts of training data (from zero to 20%L).

The entropy functions lead to superior results over the non-entropy functions

when the size of training data increases (from 20%L to 100%L). The mAPs

for the entropy functions can still rise after using more than 20% training data,

and then plateau with enough training data (about 40%L). On the contrary, the

retrieval performance of the non-entropy function does not significantly improve

after above 20% of the training data. The best results are obtained by α5, and this

will be used in the following experiments.

Effects of tf-idf score adaptation Figure 4.6 illustrates the distribution of re-

weighting scores across different visual words. Note that the tf-idf score adaption

does not need to be applied to all the visual words. Instead, it is applied to a subset

of visual words in the vocabulary (10% of the visual vocabulary that have occurred

in the training data). According to Figure 4.6 (a), many visual words in WS will
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be heavily weighted if they appear either in query and dataset image (computed

offline by α4). During the run time, query specification (α5) increases the tf-idf

scorer based on α4 to re-weight the visual words. These highly re-weighted visual

words (α5 > 4) are shown in Figure 4.6 (b), which mainly correspond to the

geometric information of the buildings. We also notice that the number of the

nearest neighbors influences the performance of visual word re-weighting, but the

difference is small.

4.1.3 Discussion

Figure 4.7 shows the top ranked retrieval results of the visual word re-weighting

method. With the refinement of weighting scheme, the standard similarity

measure (normalized dot product) is able to more accurately describe the visual

distance between a pair of query/dataset images. The retrieval accuracy is thereby

increased. The comparison to state-of-the-art will be discussed in next section,

together with an associated scheme of spatial expansion and visual word re-

weighting.

4.2 Spatially aware feature selection and re-weighting

In this section, we consider both relatedness and importance of the visual words

learnt from an object-based thesaurus. This is proceeded by two steps. Firstly, we

recover spatially related words from an object-based thesaurus online. This is the

spatial expansion method described in Chapter 3. Secondly, the weights of these

spatially related words, together with the query words, are adjusted according

to their importance learnt offline. The objective of each step is different. Like

query expansion, spatial expansion is designed to improve image representation

by adding extra relevant words to a query vector. The visual word re-weighting

is designed to improve the precision in image ranking. Both are based on

object-based thesaurus, the visual words to be expanded or re-weighted are from

foreground and thus reduce the error illustrated in Figure 3.8.

Therefore, we present a total association scheme to combine the benefits of

spatial expansion and visual word re-weighting. The total association scheme is

illustrated in Figure 4.8. It has two stages:
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Query Top retrieval results
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Figure 4.7: Top retrieval results of the visual word re-weighting method.

• offline: re-weight the visual words wi ∈ WS in all the documents according

to the entropy H(Di), as shown in Figure 4.8 (b).

• online: given a set of query words Q, it will be first expanded with latent

visual words to be Q′← [Q,WT] and then Q′ will be re-weighted according

to the entropy H(Di) as well, as shown in Figure 4.8 (a).

Algorithm 7 describes the outline of our method. The offline process aims

to collect foreground visual words and weights them in terms of their occurrence

in the whole dataset. In this stage, the weights of the visual words are adjusted

according to their importance in the images. The online process stage aims to
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Figure 4.8: Illustration of the total association scheme. Gray bins: original word weights.
Blue bins: refinement with spatial expansion. Red bins: refinement with visual word
re-weighting. (a): online re-weighting process. (b): offline re-weighting process. The
offline process firstly collects foreground words in an object-based thesaurus, as described
in Chapter 3. It then computes the re-weighting scores of all visual words. The online
process expands the given query words (in blue bins) and then re-weights them (gray and
blue bins together) to a higher weight in the vector space (red bins).

retrieve the relevant images by matching the visual words vectors. In this stage,

the query vector is expanded and re-weighted with the knowledge learned from

the offline stage. Figure 4.8 describes the work flow of our association method.

This combined scheme can cover more than one situation in which tf-idf based

image retrieval fails. Firstly, latent visual words can be added into query if they

are found; secondly, discriminative words can be weighted effectively.

4.2.1 Experimental results

We investigate the effects of total association on three public datasets: Oxford 5K,

Paris 6K and Oxford 105K as follows:
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Algorithm 7 Outline of total association method.
Require: Image dataset and queries.

Build an object-based thesaurus (offline)

1. Automatic training data collection via RANSAC [108] (Section 3.5).

2. Build an object-based thesaurus from the training data, which only considers the points
that were detected as inliers in RANSAC.

Visual word re-weighting (offline)

1. Calculate the entropy H from object-based visual thesaurus (Section 4.1).

2. Re-weight the visual words in dataset images according to their entropy (Section 4.1).

Spatial expansion based on object-based thesaurus (online)

1. Expand the query visual words from object-based thesaurus. The expansion is based on
frequent co-occurrence of visual words (Section 3.5.3).

2. Re-weight the expanded query words according to their entropy (Section 4.1).

3. Compute the similarity of dataset images to the query by the re-weighted BoW vectors.

return The retrieval results.

Effects of total association The full scheme combines spatial expansion and

visual word re-weighting. Table 4.3 reports the details of the mAP results of

the association scheme. As seen in Table 4.3, most queries have significant

improvement over baseline. However, it does not obtain further improvement in

retrieval accuracy (mAP) compared to the spatial expansion F′15. This is because

most of the benefit is from expansion of foreground words WS rather than adjusting

the weights of them. Figure 4.9 compares retrieval results of 55 individual

queries on the Oxford 5K dataset. The improvement of retrieval performance is

indicated by the points located above the diagonal. As seen in Figure 4.9 (a) and

(b), the object-based thesaurus F′15 makes the retrieval results of some queries

varied dramatically. As discussed in Section 3.5.3, this is because an object-based

thesaurus relies on spatial transform, which may associate foreground words to

multiple objects. The re-weighting scheme further adjusts the weights of these

foreground words. As seen in Figure 4.9 (b) and (c), the difference between total

association (after re-weighting) and spatial expansion F′15 is small. We illustrate

some detailed PR curves in Figure 4.10. As seen from these PR curves, spatial

expansion F′15 improves the retrieval accuracy compared to baseline (increased

area under the PR curves), while the further re-weighting (total association) has

less effects than expansion of foreground words WS. However, total association
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Oxford 5K mAP
Ground truth Baseline Total association
All Souls 0.544 0.750
Ashmolean 0.617 0.721
Balliol 0.563 0.362
Bodleian 0.456 0.938
Chri. Chur. 0.589 0.815
Cornmarket 0.584 0.548
Hertford 0.816 0.915
Keble 0.775 0.773
Magdalen 0.186 0.140
Pitt River 0.995 1.00
Radc. Camb. 0.609 0.723
Total 0.612 0.700

Paris 6K mAP
Ground truth Baseline Total association
Defense 0.419 0.459
Eiffel 0.463 0.506
Invalides 0.643 0.719
Louvre 0.380 0.378
Moulinrouge 0.607 0.523
Museedorsay 0.546 0.678
Notredame 0.807 0.900
Pantheon 0.920 0.957
Pompidou 0.916 0.898
Sacrecoeur 0.826 0.929
Triomphe 0.507 0.549
Total 0.639 0.682

Table 4.3: The retrieval results of total association on the Oxford 5K and Paris 6K dataset,
compared to the baseline method.
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Figure 4.9: Comparison of various spatial expansion to the baseline. Each point represents
an individual query of the 55 queries on the Oxford 5K dataset. (a) comparison of spatial
expansion F5 to the baseline. (b) comparison of spatial expansion F′15 to the baseline.
(c) comparison of total association to the baseline. The points above (below) the diagonal
illustrate the increase (decrease) of retrieval accuracy.

achieves further improvement on the large scale dataset (Oxford 105K), compared

to spatial expansion F′15, as reported in Table 4.7. This is because the object-based

thesaurus helps to avoid background information, which is more essential on large

scale dataset. Thus total association takes the advantage of both re-weighting and

expansion on the Oxford 105K dataset. We adopt total association as our proposed

method in the following experiments.

Comparison with post-processing methods Tables 4.4 and 4.5 compare the

accuracy and run time with commonly used post-process methods (spatial veri-

fication [106] and average query expansion (AQE) [37] methods). The retrieval
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Figure 4.10: Illustration of detailed precision-recall (PR) curves of total association.

results in Table 4.4 are reported in three groups (A-C): Group A compares each step

of our method (spatial expansion, visual word re-weighting and total association)

with the baseline results, respectively. At each step, our method can outperform

the baseline with some extra run time as reported in Table 4.5. The increase of

run time is at most double that of the baseline. In particular, using visual word re-

weighting alone requires very little extra computation time during query (almost

the same as the baseline). Group B reports our method jointly working with spatial

verification [106]. As seen in Tables 4.4 and 4.5, our method in Group A can

outperform spatial verification without the need for query time processing. We

can also jointly use spatial verification with each step of our method as shown in

Group B, and obtain further improvement on retrieval accuracy. Group C reports

our method jointly working with AQE [37], which requires a spatial verification

to refine the query model. This further improves retrieval results compared with

the results in Groups A and B. However, the performance gain of these combined

methods in this group is small. This is because AQE needs to examine spatial

consistency between features, which has already been exploited partly by an

object-based thesaurus offline. The accuracy of these top verified results is high

for all methods. Moreover, the collection of top verified results is expensive, as

reported in Table 4.5 it requires more than 2 seconds using spatial verification. In

contrast, our method learns the latent spatially relevant words offline, which is

much faster than AQE.
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Methods V R S TR Oxford 5K Paris 6K 105K
Baseline 0.612 0.639 0.515

A
Spatial expansion (F′15)

p
0.701 0.683 0.667

Visual word re-weighting
p

0.660 0.674 0.598
Total association

p p
0.700 0.682 0.680

B

Spatial verification [106]
p

0.649 0.655 0.571
Spatial expansion (F′15)

p p
0.719 0.689 0.704

Visual word re-weighting
p p

0.677 0.684 0.611
Total association

p p p
0.710 0.686 0.706

C

QE baseline [37]
p

0.708 0.736 0.679
AQE [37]

p p
0.800 0.769 0.767

Spatial expansion (F′15)
p p p

0.806 0.785 0.783
Visual word re-weighting

p p p
0.801 0.777 0.781

Total association
p p p p

0.804 0.785 0.774

Table 4.4: Comparison with methods requiring spatial consistency examination. S denotes
spatial verification used as a post processing, V denotes spatial expansion, R denotes
visual word re-weighting and TR denotes re-querying with AQE. Group A: comparison
with baseline. Group B: comparison with spatial re-ranking. Group C: comparison with
query expansion (AQE).

Method Oxford 5K Paris 6K Oxford 105K
Baseline [106] 0.107 0.140 1.67
Spatial expansion (F5) 0.144 0.209 1.93
Spatial expansion (F′15) 0.136 0.185 1.85
Visual word re-weighting 0.118 0.147 1.74
Total association 0.147 0.198 1.88
Spatial verification [106] 2.10 4.71 4.34
AQE [37] 2.43 5.47 8.19

Table 4.5: Average run time of retrieval methods, measured by CPU second.

Comparison with pre-processing methods Table 4.6 compares our methods

with those requiring training/learning stage as a pre-process. Methods without

prior training data collection (a-b) usually need to re-organize query words. For

example, method (a) needs to include more visual words than the baseline method

to expand the coverage of each individual word, while method (b) organizes visual

words into phrases. In contrast, methods with prior training data collection (c-f)

have the advantage of selecting a subset of visual words (features). These methods

(c-f) can retrieve the given query image almost as fast as the baseline methods.

Our method (e) can outperform the other pre-processing methods in terms of

retrieval accuracy, except method (f). This method (f) requires investigating the

relationship back to the raw feature level, while our method (e) only needs to

investigate visual word relationship.
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Method F Oxford 5K Paris 6K
a Soft-assignment [107] 0.673 0.660
b Geometry-Preserving [159] 0.696 N/A
c Descriptor learning (non-linear) [108]

p
0.662 0.678

d Visual word re-weighting
p

0.660 0.674
e Total association

p
0.700 0.682

f Fine vocabulary [96]
p

0.742 0.749

Table 4.6: Comparison of our methods to those that modify the baseline before the query
is executed. F denotes a training data collection needed before hand.

4.2.2 Discussion

Figure 4.11 shows some examples of top retrieved results returned by total

association of spatial expansion and visual word re-weighting. As seen in

Figure 4.11, the re-weighting of these spatially expanded words helps to remove

some false positives, for example Bodleian. As discussed in Chapter 3, spatial

expansion helps to find correlated visual words, while visual word re-weighting

helps to weight heavily the discriminative words. To achieve the improvement of

both precision and recall, the total association balances these two methods. Recent

work [149] has proposed a similar method to boost the discriminative ability in a

fixed spatial region (spatial contextual weighting). However, the method proposed

in [149] only focuses on boosting the precision, and applies to the feature space.

We compare our total association method to a number of state-of-the-art

methods in Table 4.7. Group A compares methods without post-processing. The

results show that total association can outperform many previous methods in

this group. Also, our method can outperform some re-ranking methods, e.g.

spatial verification, without a post-process. Group C illustrates our methods

jointly working with spatial verification and various query expansion methods. As

seen in Group C, the spatial verification can slightly further improve the retrieval

results, while the effects of joint work with AQE and DQE is not evident. For

example, total association with DQE achieves mAP scores as 0.816 on the Oxford

5K dataset, while individual DQE achieves mAP score as 0.798 on the same dataset.

This is because using an object-based thesaurus has already exploited this spatial

consistency information offline. As a result, the performance gain is little when

combining object-based thesaurus with AQE or DQE, where the effects of these

methods are redundant. Our methods with AQE and DQE also have similar

performance to other methods based on query expansion, e.g. Contextual synonym
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Query Top retrieval results

All souls
p p p p p p p p p p

Ashmolean
p p p p p p p p p p

Balliol
p p p p

×
p p

×
p

×

Bodleian
p p p p p p p p p p

Chri.chur.
p p p p p p p p p p

Cornmaket
p p p p p p p

× × ×

Figure 4.11: Top retrieval results of total association scheme.

dictionary [138], with minimal run time overhead. It is difficult, however,

to directly compare the improvement that is due to each of these methods as

they are based on different baseline implementations: the baseline BoW method

in [138] has approximately 10% higher mAP than the standard used in this thesis

and [106, 37, 108].

4.3 A cross-word matching measure via visual thesaurus

We have investigated several methods to improve the standard BoW retrieval

system: the spatial expansion refines the BoW representation of the query by
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Methods Oxford 5K Paris 6K Oxford105K
Baseline [106] 0.612 0.639 0.515

A

Visual word re-weighting 0.660 0.674 0.598
Descriptor learning (non-linear) [108] 0.662 [108] 0.678 [108] 0.541 [108]
Soft-assignment [107] 0.673 [107] 0.660 [107] N/A
Spatial expansion (F5, Chapter 3) 0.685 0.679 0.622
Geometry-Preserving [159] 0.696 [159] N/A 0.604 [159]
Total association 0.700 0.682 0.680
Spatial expansion (F′15, Chapter 3) 0.701 0.683 0.667
Fine vocabulary [96] 0.742 [96] 0.749 [96] N/A
AUG [142] 0.776 [9] N/A 0.711 [9]
SPAUG [9] 0.785 [9] N/A 0.723 [9]

B

Spatial verification [106] 0.649 0.655 0.571
QE Baseline [37] 0.708 0.736 0.679
iSP [34] 0.741 [34] 0.769 [34] 0.649 [34]
Local geometry [105] 0.788 [105] 0.634 [105] 0.725 [105]
AQE [37] 0.806 0.769 0.767
DQE [9] 0.798 0.783 0.809
Hello neighbors [114] 0.814 [114] 0.803 [114] 0.767 [114]
Total recall II [34] 0.827 [34] 0.805 [34] 0.767 [34]

C

Spatial expansion (F′15) 0.701 0.683 0.667
Spatial expansion+ Spatial verification 0.719 0.689 0.704
Spatial expansion+ AQE 0.806 0.785 0.783
Spatial expansion+ DQE 0.813 0.789 0.818
Visual word re-weighting 0.660 0.674 0.598
Visual word re-weighting + Spatial verification 0.677 0.684 0.611
Visual word re-weighting + AQE 0.801 0.777 0.781
Visual word re-weighting + DQE 0.811 0.782 0.787
Total association 0.700 0.682 0.680
Total association + Spatial verification 0.710 0.690 0.706
Total association + AQE 0.804 0.785 0.774
Total association + DQE 0.816 0.790 0.817
Contextual synonym dictionary + AQE [138] 0.811 [138] 0.791 [138] 0.797 [138]

Table 4.7: Comparison of the total association to the state-of-the-art methods. Group A:
retrieval results of methods that modify the baseline before the query is executed (pre-
process). Group B: retrieval results of methods that modify the baseline after the query
is executed (post-process). Group C: comparison of methods jointly working with spatial
verification and various query expansion methods. Note that we cite the retrieval results
of AUG [142] from literature [9].

introducing spatially related words (Chapter 3); the visual word re-weighting

improves the similarity measure by balancing the importance of visual words

(Section 4.1); and an association scheme to utilize both effects of these two

methods (Section 4.2); In these methods, the image similarity is the normalized

dot product of BoW vectors (Eq. (4.1)), which is a word-to-word matching. As

discussed at the start of this chapter, the standard dot product similarity measure

is efficient in matching the image vectors, but intolerant to the quantisation errors.

In this section, we propose a cross-word image matching method such

that similar features assigned to different visual words can contribute to the

similarity measure. More specifically, a cross-word matching aims to overcome

the quantisation errors by introducing nearest neighbors of a visual word, similar
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to the Earth Mover’s Distance (EMD) [117]. Thus, for a given query/dataset image

pair (q, d), we modify similarity measure as follows:

sim(q, d) = Ψ(q, d) + Γ(q, d) (4.8)

In Eq. (4.8), the dot product similarity Ψ(q, d) is a word-to-word matching as

defined in Eq. 4.1, which only contributes to the image similarity when features

are mapped in the same word ID. In contrast, the cross-word matching Γ(q, d)

contributes when features are not mapped in the same word ID but are close

in feature or image space. Therefore, the cross-word matching involves nearest

neighbors according to various distance measures, which can be (not limited to):

i) the Euclidean (L2) distance in the feature space; ii) a visual thesaurus in the

image space; iii) in the topic space, the visual word similarity should be based

not just on proximity in feature space, but also on their association with the same

object.

Our method is related to a couple of state-of-the-art methods in im-

proving the BoW retrieval system. Firstly, our method is an alternative of

soft-assignment [107]. Both cross-word matching and soft-assignment aim to

improve the BoW retrieval system by exploring inter-word relationships. The soft-

assignment method does this by mapping each feature to multiple visual word IDs

according to the L2 distance in feature space. In contrast, our method does not

need multiple visual word IDs for each feature representation, instead it utilizes

a cross-word matching during similarity calculation. Thus, our method is also

related to the Earth Mover’s Distance (EMD), proposed in [67] in the context of

image retrieval, but is computationally simpler, reducing its query time overhead.

Moreover, the new image similarity measure can be integrated with many other

proposed enhancements to the basic BoW retrieval method, with little cost in

terms of implementation or run time performance. For example, our method can

combine with the techniques such as spatial verification, and query expansion, and

we demonstrate that it can benefit the baseline implementation of each of these

techniques. The system framework of our cross-word similarity measure is shown

in Figure 4.12.
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Figure 4.12: System framework of cross-word matching. This is the standard BoW
retrieval system with new steps (indicated in dash box) introduced by our method.

4.3.1 A cross-word image similarity measure

The image ranking method in our method uses the cross-word matching to more

accurately sort the dataset images. This involves two issues: i) to explore multiple

correspondences of visual words, which requires nearest neighbor search of visual

words. ii) to optimize the weight for the one-to-multiple correspondences such

that the total cost is minimized.

In order to address the first issue, nearest neighbor search of visual words

considers various distance measures, which will be discussed in Section 4.3.2.

The second issue is an optimization problem, which aims to minimize the cost

of matching a query word to its near neighbors (if they exist in a dataset image).

Like a BoW retrieval system, we separate the optimization in two stages: offline

and online. The offline stage learns weights from static distance, while the online

stage only needs to calculate the matching.
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Visual word weights from distances (offline)

For each word wi ∈ W, we can find its T nearest neighbors {w i
t}

T
t=1 based on a

given visual distance Θ (the L2 word distance, the spatial co-occurrence distance

and the semantic distance, which will be discussed in Section 4.3.2). We propose

a global weight vector fi for each word wi ∈W such that the cost of moving wi to

its neighbors w i
t is minimised according to a visual distance Θ(wi, w i

t) computed

offline:
min

fi

∑T
t=1 fi tΘ(wi, w i

t)

s.t. fi t ≥ 0,
∑T

t=1 fi t = 1 (4.9)

The optimization problem is minimised when all components fi tΘ(wi, w i
t) are

equal, leading to a solution:

f ∗i t =

1
Θ(wi ,w i

t )
∑T

j=1
1

Θ(wi ,w i
t )

(4.10)

The optimized weights fi
∗ = ( fi1, fi2, · · · , fiT ) of word wi is therefore inversely

proportional to a visual distance between wi and its T neighbors. Therefore, the

weights are a function of a selected inter-word distanceΘm: f ∗mit where m indicates

an inter-word distance discussed below. Unlike the weighting method in [67], the

weights only need to be calculated once offline.

Cross-word matching similarity (online)

After obtaining the global weights f ∗i t offline, they are used to estimate the cross-

word matching between a query image q and a dataset image d. We only

calculate cross-word image distance based on foreground words collected by the

object-based thesaurus. This highly reduces the computation of cross-word image

distance to a small subset of visual words. For images q and d, one can obtain two

visual word subsets v′q = vq ∩WS and v′d = vd ∩WS, in which vq and vd are the

visual words contained in the images q and d, and WS is found in Section 4.3.2.

If a word wi occurs in both v′q and v′d , it already contributes to the dot product

image similarity measure. We therefore remove all such words from both v′q and

v′d , so the resulting sets are disjoint. The cross-word matching is then to estimate
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Algorithm 8 Image ranking with cross-word matching
Require: Image dataset and queries.

At the training stage (Section 4.3.2)

1. Calculate the tf-idf weight for each word wi ∈W (Eq. (2.8)).

2. Automatic training data collection: obtain the topics set K (Eq. (4.14)) and the subset of
visual words WS which appear as inliers .

3. Compute the visual distanceΘ inside the subset V′ (Eq. (4.12), Eq. (4.13) and Eq. (4.15)).

4. Use the visual distance to solve the visual weights fi
∗ for each word wi (Eq. (4.10)).

At query time

1. Calculate the word-to-word matching (dot product) Ψ(q, d) between two images [130]
(Eq. (4.1)).

2. Calculate the cross-word matching Γ(v′q,v′d) between two images (Eq. (4.11)).

3. Rank the images using both word-to-word matching and cross-word matching measures:
sim(q, d) = Ψ(q, d) + Γ(q, d) (Eq. (4.16)).

return The retrieval results.

the similarity between these disjoint sets.

For each word wi ∈ v′q, there are up to T nearest neighbours found in v′d with

visual distance measure Θ. The cross-word matching similarity between images q

and d can be computed as follows:

Γ(q, d) = 1
|v′q|

∑|v′d |
i=1

∑T
j=1 f ∗i jsi j (4.11)

in which fi
∗ is the visual word weights for wi and its neighbors, and si j is

the corresponding scaled tf-idf weight difference for pairwise images: si j =

exp(− ‖τ(wi)−τ(w j)‖
ρ

) where wi ∈ vq and w j ∈ vd and ρ is the scaling factor.

The framework of our method is described in Algorithm 8. Our method

is performed in two stages: the offline training stage and the online querying

stage. At the training stage, a collection of foreground words are collected by

an object-based thesaurus. At the query time, these visual words are used to

calculate the cross-word matching if exist in a pair of images. As seen in Eq. (4.10)

and Eq. (4.11), the visual distance Θ is essential to our cross-word method Γ. It

affects the global weight vector fi, as well as the cross-word matching similarity.

Therefore, it is important to define a visual word distance and use it to measure

how similar two visual words are.
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word distance is close

word distance is close

Figure 4.13: Example of the L2 word distance, which help to recover the relevance
between similar features assigned to different visual words in the feature space. The
illustration of quantisation in feature space is taken from [63].

4.3.2 Inter-word distance measure

We introduce three visual word distance measures to exploit the relevance of

different visual words in this section. We formulate the distance between image

features in several different spaces:

• Feature space, where the features are quantised as visual words;

• Image space, where each feature has an (x , y) location;

• Topic space, where the features are grouped according to their association to

a common object.

These associations are based on different feature attributes, and therefore con-

tribute to a more comprehensive image distance measure in the BoW model.

The L2 word distance

Firstly, we consider the distance measure in feature space, where the visual words

(cluster centres) are generated by AKM, as described in Section 2.2.2. A simple

distance measure between two words is the L2 distance between their locations in

feature space (commonly 128 D SIFT space):

Θ1(wi, w j) =‖ c(wi)− c(w j) ‖2 (4.12)
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where c(wi) is the corresponding feature vector of the word wi (cluster centre).

This distance measure has been used in soft assignment [107, 63], among

other methods to modify the quantisation error of hard assignment. As shown

in Figure 4.13, matched features that are incorrectly assigned into different

visual words considered relevant under the definition of the L2 word distance

(Eq. (4.12)). The L2 word distance is simple to compute and requires no pre-

process, but does not take into account any semantic information.

The spatial co-occurrence distance

The L2 word distance sometimes causes inaccuracy because of quantisation, as

noticed in [107]. This leads us to use other distance measures for an inter-word

distance. As noted in Chapter 3, word pairs associated with the same objects are

likely to co-occur in image regions where the object appears. Therefore, the spatial

co-occurrence frequency of words in images can be used as a cue to measure the

degree of association with a common object. This can be discovered by an object-

based thesaurus structure. Based on this we define a spatial co-occurrence distance

measure:

Θ2(wi, w j) = 1−
2×χ(i, j)

∑

mχ(i, m) +
∑

nχ( j, n)
(4.13)

where χ(i, j) is the co-occurrence frequency of word pair wi and w j in image space

within a fixed size neighborhood1. The co-occurrence distance Θ2 ranges from 0

to 1. This distance measure attempts to gauge semantic proximity information

between visual words through co-occurrence, at the cost of an additional pre-

processing step to generate the co-occurrence figures. However, the spatial

co-occurrence information between visual words may not always be caused by

association with the same object, so this is only an indirect measure of semantic

similarity.

A semantic distance measure

Besides the low level distance measures discussed above, we consider high level

topic information. We now introduce a “semantic” distance measure that explicitly

1Same as defined in the object -based thesaurus in Chapter 3: up to 15 nearest neighbors
occurring within a radius of 50 pixels.
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Figure 4.14: Example visual words for the same topic (bridge of sighs) with varying
viewpoint. The features are mapped into different visual words, which are labeled by the
color. However, these visual word should be considered to have small semantic distance,
as they frequently happen on the same objects.

discovers several common objects in order to establish the underlying word-to-

object association. As shown in Figure 4.14, the visual vocabulary contains several

groups of words that are strongly associated with particular objects in the image

collection. These associated visual words can be explored by robustly estimating

a geometric transformation between image pairs via RANSAC [54]. Therefore,

we can learn the “topic" of the visual words (i.e., the object they belong to)

by clustering images according to their geometric consistency. As illustrated in

Figure 4.15, all the associated images contain the same building, Christ church,

but change significantly with viewpoint. In these images, some images are strongly

connected, while others have loose connection. By using this matching graph to

represent the images, we can convert the problem of topic discovery to that of

graph clustering.

More specifically, we extract the topics from the image collection using an

object-based thesaurus (as described in Section 3.5) and build a matching graph.

In previous works [109, 110, 111, 7], a matching graph is built on the whole

dataset. However, clustering the graph becomes expensive when the number of

nodes enlarges. In contrast, we select a subset of images by an object-based

thesaurus. Our scheme is composed of two modules: i) building a matching graph;

ii) partition the matching graph, which are described in detail as follows.

Building a matching graph Based on an object-based thesaurus, a subset of

visual words WS ⊂ W that occur as inliers are obtained from the dataset. Words

100 Improving the image similarity measure—CHAPTER IV



(a): built on the Oxford dataset

(b): built on the Paris dataset

Figure 4.15: Examples of the images transitively connected by the geometric information.
(a): images transitively connected by the geometric information. The images are from
Christ church change dramatically from viewpoint, but can be linked together. Note that
the number of images in the orange group is larger than what we have shown here. (b):
The images from Defense are linked together. The numbers of images in sub-graph are
larger than what we have shown here.

that only appear as outliers, or do not appear at all, are discarded. The matching

graph G is built on the basis of the spatial layout of visual words. The nodes of

G are the images from the training data. Any two nodes i and j are connected

if they are matched via RANSAC with a minimum number of verified inliers. Let

WG = (WG(i, j)) be the corresponding symmetrical matrix of G. The edge weight

WG(i, j) between nodes i and j is defined as the number of inliers, as proposed
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Figure 4.16: Examples of small connected component from the matching graph built on
the Oxford 5K dataset. In these cases, each component is treated as a topic.

in [110]. Note that the nodes of G need not contain all the dataset images, instead,

only the images detected from automatic training data collection are considered.

This significantly reduces the size of matching graph.

Partition the matching graph After building the graph G, the images can be

automatically grouped as a set of connected components C := {Ci}Mi=1 by using

a depth first search (DFS) strategy, where each component Ci is associated with

a weight matrix WGi obtained from WG. As shown in Figure 4.16, the smaller

components found by DFS have a very high probability to contain the same object

and this component will be associated with a topic. The larger components

often contain multiple objects2, so they are further partitioned by Normalized-

cut algorithm [125] into several sub-components, whose number is determined by

maximizing the average Newman Q measure [111, 99]:

max
Ki∈[1,|Ci |]

Q(Ci) =
1
Ki

∑Ki

l=1

�

XT
l WGiXl

1T WGi1
−
�

XT
l WGi1

1T WGi1

�2
�

(4.14)

in which 1 is |Ci| × 1 vector of all ones, and X is the indicator matrix with size

|Ci| × Ki. Figure 4.17 illustrates different choices of Ki on some large components

for the Oxford 5K and Paris 6K datasets. The results show that the buildings (Christ

church and Louvre) are naturally grouped by different canonical views.

The partition of the matching graph repeats on each connected component

Ci (if necessary), and the topics are obtained incrementally from each component:

2In our experiment, large components contain over 20 images

102 Improving the image similarity measure—CHAPTER IV



(a) 39 images, 3 sub-graphs

(b) 44 images, 2 sub-graphs

Figure 4.17: Partition the large components from the Oxford 5K and Paris 6K datasets.
Number of images contained in these two large components is shown in the bottom of the
pictures.

K = {K1, K2, . . . }. After obtaining all topics, we investigate the distribution of each

visual word in each topic as a vector: ui := {ui j}
|K|
j=1, where the entry ui j is the

normalized frequency of the visual word wi in topic j. The semantic distance

between word wi and w j can be computed as follows:

Θ3(wi, w j) =‖ ui − u j ‖2 (4.15)

Based on this distance measure, features, which belong to different images but the

same semantic topic, can be considered to be semantically “close". Figure 4.18

shows the distribution of topics in a pair of visual words (wi, w j) which have close

semantic distance.

As seen in Eq. (4.10), the visual word weights f ∗i t is defined by the nearest

neighbors, and depends on a selected distance measure. We illustrate the effects

of various distance measure individually in Eq. (4.10): f ∗mit , m = [1,2,3] (the

L2 word distance, the spatial co-occurrence distance and the semantic distance).
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Figure 4.18: Illustration of a pair of visual words close in the semantic distance measure.
Note that these two words have similarity topic distribution and thereby refer to the same
object.

For each word wi ∈ WS, we can find its Tm nearest neighbors {w i
t}

Tm
t=1 based on

the selected visual distance Θm. The cross-word similarity Γm(q, d) (Eq. (4.11))

is computed by the corresponding f ∗mit and Tm nearest neighbors. Because the

weights are computed offline, and only a subset of nearest neighbours within V′

are used in the distance measure, it is computationally efficient at query time. This

reduces the computation of cross-word matching while keeping the accuracy.

4.3.3 Experimental results

The experiments in this section are designed to investigate the effects of different

distance measurements on cross-word matching for ranking images. Each

visual distance measure proposed in Section 4.3.2 affects computation of the

visual weights f∗ (Eq.(4.10)) and therefore affects the cross-word matching Γ

(Eq.(4.11)). We test each distance measure in isolation, as well as combinations

of distance measures obtained by taking their geometric mean. In particular, we

evaluate:

• Γ1(q, d), using Eq.(4.11) with measure Θ1

• Γ2(q, d), using Eq.(4.11) with measure Θ2

• Γ3(q, d), using Eq.(4.11) with measure Θ3
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• Γ4(q, d), as Γ1/2
1 ·Γ

1/2
2 (Θ1 and Θ2)

• Γ5(q, d), as Γ1/3
1 ·Γ

1/3
2 ·Γ

1/3
3 (Θ1, Θ2 and Θ3).

This enables us to incrementally add information into the visual distance

model. Each visual distance is added to the standard dot product metric Ψ(q, d)

(Eq. (4.1)) to form the final image distance measure sim(q, d):

simm(q, d) = Ψ(q, d) + Γm(q, d), m= 1...5 (4.16)

The experiments are conducted on two groups of image datasets. The first

group of datasets are mainly buildings: Oxford [4] and Paris [4], Rome [128],

INRIA Holiday [62]. The second group of datasets contains less geometric

information than the first one, as examples shown in Figure 2.6.

Comparison of individual visual distance measures The image ranking con-

sists of two independent components: simi = Ψ+ Γi, i = [1...5], where Ψ is the

baseline dot product similarity and Γi is a distance measure. Table 4.8 reports

the detailed retrieval performance with these five types of visual distance on the

Oxford 5K, Paris 6K and Rome datasets, respectively, while Figure 4.19 shows the

performance gain of different visual distance measures (sim1-sim5). The individual

visual distance (sim1, sim2 and sim3) helps to improve the retrieval performance.

For example, the usage of semantic distance (sim3) alone leads to an increase in

the accuracy of 8.3% on the Oxford dataset, 10.8% on the Paris dataset, and 15.6%

on the Rome dataset, all compared to the baseline method. However, we obtain

some significant increases in mAP scores, e.g. All Souls, as well as some decrease,

e.g. Cornmarket and Pitt River. For example, sim2 almost doubles the mAP score for

Bodleian, but leads to more than 20% decrease in Cornmarket and Pitt River. This

is because the spatial information contains useful information when the object is

large in the image, but can be noisy when the object is small or the images contain

background clutter. Therefore, it is unstable to use individual visual distance.

An overall illustration of retrieval performance is shown in Figure 4.20,

where the below-diagonal and above-diagonal markers respectively represent

performance improvement and degradation. From the results in Figure 4.20 (a)-

(c), we obtain slight improvement of the individual distance measure compared to

the baseline. Therefore, we investigate combining the visual distance measures to
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Oxford 5K mAP
Ground truth Baseline sim1 sim2 sim3 sim4 sim5

All Souls 0.544 0.725 0.665 0.751 0.764 0.795
Ashmolean 0.617 0.666 0.777 0.760 0.765 0.778
Balliol 0.563 0.559 0.481 0.467 0.569 0.550
Bodleian 0.456 0.467 0.867 0.580 0.636 0.648
Chris. Chur. 0.589 0.678 0.754 0.689 0.777 0.771
Cornmarket 0.584 0.576 0.398 0.528 0.552 0.566
Hertford 0.816 0.864 0.906 0.886 0.918 0.915
Keble 0.774 0.782 0.854 0.862 0.830 0.856
Magdalen 0.186 0.194 0.176 0.164 0.201 0.198
Pitt River 0.995 0.995 0.715 0.961 0.977 0.986
Radc. Camb. 0.609 0.715 0.661 0.643 0.778 0.768
Total 0.612 0.662 0.659 0.663 0.706 0.712

Paris 6K mAP
Ground truth Baseline sim1 sim2 sim3 sim4 sim5

Defense 0.419 0.436 0.461 0.474 0.475 0.508
Eiffel 0.463 0.521 0.587 0.578 0.574 0.596
Invalides 0.643 0.719 0.777 0.791 0.766 0.786
Louvre 0.380 0.369 0.351 0.336 0.373 0.379
Moulinrouge 0.607 0.653 0.659 0.702 0.668 0.687
Museedorsay 0.546 0.546 0.632 0.646 0.590 0.622
Notredame 0.807 0.847 0.915 0.866 0.897 0.909
Pantheon 0.920 0.967 0.991 0.972 0.984 0.987
Pompidou 0.916 0.909 0.924 0.914 0.919 0.924
Sacrecoeur 0.826 0.910 0.946 0.945 0.937 0.953
Triomphe 0.507 0.586 0.560 0.569 0.584 0.585
Total 0.639 0.679 0.709 0.709 0.706 0.722

Rome mAP
Ground truth Baseline sim1 sim2 sim3 sim4 sim5

Arch 0.720 0.714 0.864 0.829 0.848 0.851
Castelsantangelo 0.328 0.362 0.565 0.463 0.513 0.526
Colosseum 0.533 0.510 0.658 0.673 0.612 0.652
Dome 0.915 0.908 0.963 0.978 0.944 0.973
Palazzosenatorio 0.932 0.898 0.967 0.946 0.924 0.934
Pantheon 0.674 0.871 0.915 0.824 0.938 0.933
Pope 0.649 0.686 0.763 0.758 0.757 0.776
Spiral 0.914 0.956 0.978 1.00 0.956 1.00
Trevifountain 0.695 0.730 0.787 0.794 0.804 0.815
Vittoriano 0.743 0.878 0.858 0.863 0.881 0.880
Total 0.680 0.726 0.807 0.786 0.793 0.810

Table 4.8: Retrieval performance evaluation for the Oxford 5K, Paris 6K and Rome building
landmarks, with five types of visual distance sim1, sim2, · · · , sim5.

improve robustness.
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Figure 4.19: Illustration of increase (decrease) amount in mAP scores on the Oxford 5K,
Paris 6K and Rome dataset. The vertical axis is the percentage of mAP changes compared
between the baseline method and each sim1, sim2, · · · , sim5. The horizontal axis is the
results grouped by different landmarks in each dataset.

Comparison of inter-word distance measures We consider multiple attributes

of features when calculating image similarity in a cross-word manner. Results in

Figures 4.19 and 4.20 show that the fused distances (Γ4, Γ5), are more robust than

the individuals ones (Γ1,Γ2,Γ3). It can bee seen in Figure 4.20 that almost all the

markers of sim4 (the combination of the first two visual components) are above

SECTION 4.3—A cross-word matching measure via visual thesaurus 107



(a) : sim1 (b) : sim2 (c) : sim3 (d) : sim4 (e) : sim5

Figure 4.20: Comparison of mAP scores on all the 55 queries on the Oxford 5K and
Paris 6K datasets, baseline versus our cross-word matching method. (a) − (c): the
individual visual distance components (sim1, sim2, sim3). (d) combination of the first
two components (sim4). (e) combination of all the components (sim5).

the diagonal; sim5 (the combination of all visual components) further improve

the results and has the highest overall mAP. As the results show in Table 4.8,

image ranking using sim5 attains the best overall retrieval results on all the three

datasets. Compared to the baseline method, the mAP score under sim5 increased

16.3% on the Oxford dataset, 13.0% on the Paris dataset, and 19.1% on the Rome

dataset, respectively. As a result, the use of visual distances based on multiple

attributes encodes more information, and hence reduces the disadvantage of

individual attribute distance to get the best results on all the datasets. Combining

all components of visual distance, sim5, attains the best overall results on all the

five datasets.

Specifically, Figures 4.21 and 4.22 show some selected precision-recall curves

in two groups: the baseline method and our method sim5. In these query examples,

almost all the precision-recall curves of our method move to the right corner of the

graph. Figure 4.20 (e) illustrates the mAP scores of all the 55 queries on the Oxford

5K and Paris 6K datasets, before and after using the cross-word matching (sim5).

Among the 55 query results (mAP), there are 44 query results of our method are

better than the baseline method on the Oxford 5K dataset, while 51 query results

on the Paris 6K dataset.

Moreover, it is observed that the dot product similarity Ψ degrades quickly.

As a result the highly ranked false positives are difficult to distinguish from the

true positive in the top ranking results. By including the cross-word matching Γ,
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(a) (b) (c)

Figure 4.21: Detail of retrieval results on queries of the Oxford 5K dataset. (a):
Precision-recall (PR) curves of dot product (baseline) on 5 queries of each landmark. (b):
Precision-recall (PR) curves using cross-word matching on 5 queries of each landmark,
with combination of visual distance sim5. The color in (a) and (b) indicates 5 individual
queries of each landmark. (c) Scores of dot product image ranking score (blue) and the
cross-word image ranking score (red) on one of the query image in (a) and (b). Both of
them have been scaled into the same range.

the true positives are more accurately ranked in the ranking lists, as shown in

Figures 4.21 and 4.22 (c). Based on these results, we use sim5 as the cross-word

image ranking method in our following experiments. Table 4.9 gives the retrieval

performance results of our method on all available datasets. Overall, our method
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Figure 4.22: Detail of retrieval results on queries of the Paris 6K dataset. Figures in
columns (a)-(c) are illustrated as in Figure 4.21.

leads to more than 10% improvement on the mAP scores on all the datasets. This

shows that it can work on a number different kinds of datasets. Among them,

the Rome dataset had the greatest increase in accuracy. In the second group,

the Caltech Categories obtains about 22% improvement in retrieval performance.

It improves mAP even under very challenging conditions, such as the ImageNet

datasets. The Oxford 5K + 1M dataset illustrates that our method can perform

on large scale dataset as well, due to the fact that we explore the visual distance

on a subset of images in the dataset. The retrieval accuracy decreases consistently

110 Improving the image similarity measure—CHAPTER IV



Dataset Baseline Our method
Oxford 5K 0.612 0.712
Paris 6K 0.639 0.722
Rome 0.680 0.810

Holiday 0.548 0.589
Caltech Categories 0.379 0.464

ImageNet (animals) 0.239 0.243
Oxford 5K+ 100K 0.515 0.601
Oxford 5K + 200K 0.499 0.592
Oxford 5K + 500K 0.472 0.566
Oxford 5K + 1M 0.449 0.541

Table 4.9: Results of the retrieval performance on the five datasets. For each dataset, we
approximately obtain 10% visual words from W for the cross-word matching WS during
training stage.

as the dataset size enlarges, because the Oxford 5K + 1M includes more FLICKR

images to search.

Alternate cross-word match measures In the previous experiments, the dot

product and cross-word distance measures were combined by addition, after

normalising each measure. This reflects our belief that they are measuring

largely independent properties of the image. Meanwhile, the multiple cross-word

measures in sim4 and sim5 are combined using the geometric mean, to compensate

for the different ranges they may attain (they are normalised after combination).

We now test these steps empirically, by comparing results obtained previ-

ously using sim5 to those obtained by combining Ψ and Γ by multiplication, and

by taking the arithmetic mean of the cross-word measures. Table 4.10 shows that

we consistently achieve the highest mAP result across multiple datasets when Γ

computed as the geometric mean and the ranking function as the sum of Ψ and Γ,

and thus we use this fusion method for the rest of the thesis.

4.3.4 Discussion

The top retrieval results by the cross-word matching are illustrated in Figure 4.23.

We compare our cross-word matching method to a number of state-of-the-art

methods in Table 4.11.
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Oxford 5K Ψ+Γ Ψ ∗Γ
∏L

m=1Γ
1/L
m 0.712 0.613

1/L
∑L

m=1Γm 0.666 0.620

Paris 6K Ψ+Γ Ψ ∗Γ
∏L

m=1Γ
1/L
m 0.722 0.641

1/L
∑L

m=1Γm 0.719 0.647

Caltech Categories Ψ+Γ Ψ ∗Γ
∏L

m=1Γ
1/L
m 0.464 0.379

1/L
∑L

m=1Γm 0.430 0.381

Table 4.10: Results of different distance measure fusion on the Oxford 5K, Paris 5K
and Caltech dataset. We compare two kinds of fused distance (

∏L
m=1Γ

1/L
m (q, d) and

∑L
m=1Γm(q, d) ) together with two ways of using distance functions Ψ and Γ. Note that Ψ

and Γ are scaled into the same range.

In Group A, the cross-word matching method can outperform most current

state-of-the-art methods, except methods using dataset-side feature augmentation,

e.g. AUG [142], and SPAUG [9]. Compared to these methods, our cross-word

matching is conducted on a small subset of the vocabulary and does not require re-

computing the features. We also notice that our method can get similar accuracy to

the soft-assignment method, when the cross-word matching relies on the L2 visual

distance, as expected. Compared with Table 4.8, the retrieval results (mAP) of Θ1

on the Paris dataset are better than the soft-assignment. However, the result on the

Oxford dataset is close to the results reported in [107], but still has a gap in the

accuracy. The accuracy depends on the assignment of features to multiple visual

words. Our method only uses about 10% of the visual words selected unsupervised

from the vocabulary to calculate the cross-word similarity. As a result, the online

improvement of similarity measure is efficient.

Group B and Group C compares to methods that use a post-process. Our

method can outperform the spatial verification [106] without a query time spatial

consistency examination. However, it is lower than various query expansion

methods as shown in Group B. In Group C, we jointly use our method with

standard post-processing methods, e.g. spatial verification and various query

expansion methods. For the spatial re-ranking, our method can achieve further

improvement on the retrieval performance For the query expansion methods, our
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Query Top retrieval results

All souls
p p p p p p p p p p

Ashmolean
p p p p p p p p p p

Balliol
p p p p p p p p p p

Bodleian ×
p p p p p p

× ×
p

Chri.chur.
p p p p p p p p p p

Cornmaket
p p p p p p p

× × ×

Figure 4.23: Top retrieval results of cross-word matching scheme.

method can be used in the shortlist generation. To improve AQE and DQE, our

cross-word matching provides more accurate target images. This leads to further

improvement on these post-processing methods. However, this improves the

retrieval accuracy slightly, similar to the results reported in Table 4.7. This is due

to the spatial information has been repeatedly used in cross-word similarity and

the query expansion methods (AQE or DQE). Compared to previous methods, e.g.

total association, the result when combined with post-processing mostly relies on

the correct retrieval images in the top places. Therefore, query expansion methods

dominate the performance gain in these combined work.
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Methods Oxford 5K Paris 6K Oxford105K
Baseline [106] 0.612 0.639 0.515

A

Visual word re-weighting (Section 4.1.1) 0.660 0.674 0.598
Descriptor learning (non-linear) [108] 0.662 [108] 0.678 [108] 0.541 [108]
Soft-assignment [107] 0.673 [107] 0.660 [107] N/A
Spatial expansion (F5,Chapter 3) 0.685 0.679 0.622
Geometry-Preserving [159] 0.696 [159] N/A 0.604 [159]
Total association (Section 4.2) 0.700 0.682 0.680
Spatial expansion (F′15, Chapter 3) 0.701 0.683 0.667
Cross word 0.712 0.722 0.604
Fine vocabulary [96] 0.742 [96] 0.749 [96] N/A
AUG [142] 0.776 [9] N/A 0.711 [9]
SPAUG [9] 0.785 [9] N/A 0.723 [9]

B

Spatial verification [106] 0.645 0.655 0.571
QE Baseline [37] 0.708 0.736 0.679
iSP [34] 0.741 [34] 0.769 [34] 0.649 [34]
Local geometry [105] 0.788 [105] 0.634 [105] 0.725 [105]
AQE [37] 0.806 0.769 0.767
DQE [9] 0.798 0.783 0.809
Hello neighbors [114] 0.814 [114] 0.803 [114] 0.767 [114]
Total recall II [34] 0.827 [34] 0.805 [34] 0.767 [34]

C

Spatial expansion (F′15, Chapter 3) 0.701 0.683 0.667
Spatial expansion+ Spatial verification 0.719 0.689 0.704
Spatial expansion+ AQE 0.806 0.785 0.783
Spatial expansion+ DQE 0.813 0.789 0.818
Visual word re-weighting 0.660 0.674 0.598
Visual word re-weighting+ Spatial verification 0.677 0.684 0.611
Visual word re-weighting+ AQE 0.801 0.777 0.781
Visual word re-weighting+ DQE 0.811 0.782 0.787
Total association 0.700 0.682 0.680
Total association+ Spatial verification 0.710 0.690 0.706
Total association+ AQE 0.804 0.785 0.774
Total association+ DQE 0.816 0.790 0.817
Cross word 0.712 0.722 0.604
Cross word + Spatial verification 0.723 0.726 0.647
Cross word + AQE 0.821 0.787 0.765
Cross word + DQE 0.828 0.793 0.797
Contextual synonym dictionary + AQE [138] 0.811 [138] 0.791 [138] 0.797 [138]

Table 4.11: Retrieval performance comparison with our cross-word distance measure
method. Group A: retrieval results of methods that modify the baseline before the query is
executed (pre-process). Group B: retrieval results of methods that modify the baseline after
the query is executed (post-process). Group C: comparison of methods jointly working
with spatial verification and various query expansion methods. Note that we cite the
retrieval results of AUG [142] from literature [9].

4.4 Conclusion

In this chapter, we have demonstrated three kinds of enhanced visual similarity

measure and show their effects on object retrieval. All of the measures aim

to overcome the quantisation errors that can not be addressed by the standard

dot product similarity measure. The first method is a re-weighting scheme. It

adjust the importance of visual words that are associated with foreground objects.

The second method considers both recall and precision boosting, by combing the

spatial expansion and visual word re-weighting. The third method is a cross-
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word matching scheme. It modifies the distance metric by combing various visual

distance measures. All of the methods are built on an object-based thesaurus,

which captures the foreground visual words. The experimental results show that

our methods outperform most the state-of-the-art methods, and can be combined

with other techniques for retrieval performance improvement.

The methods proposed in this chapter, as well as spatial expansion proposed

in Chapter 3 rely on exploiting of foreground information embedded in dataset

images. Therefore, these methods have limitation when foreground information

is insufficient or hard to discover. As a result, these methods are suitable for rigid

object retrieval. In order to improve the retrieval results regardless of foreground

information, we study result re-ranking methods from next chapters.
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CONTEXT BASED RE-RANKING FOR OBJECT
RETRIEVAL

CHAPTER V

In previous Chapters 3 and 4, we have proposed several methods for improving

retrieval performance by modification of the BoW representation and similarity

measure. We have shown that these methods can jointly work with a number

of post-processing methods, e.g. spatial verification and various query expansion

methods. Note that these methods need to exploit foreground information in

a learning stage before online query. As a result, they work well on datasets

containing rigid objects, but lack effectiveness when the foreground information

can not be extracted from the dataset.

In this chapter, we pay attention to refining the initial ranking scores

according to contextual information embedded in the retrieval results. As

discussed in Chapter 2, the fundamental problem of a retrieval system is to rank

images according to the similarity of their visual content to the query. In the

standard BoW retrieval system, dataset images are ranked according to their dot

product similarity to the query vector. Thus, each image’s rank is independent,

i.e. only based on a one-to-one comparison with the query, and therefore ignores

information from other images in the dataset.

In contrast to the one-to-one comparison used in dot product similarity, the

ranking function in a retrieval system should also consider contextual information

from other dataset images. As illustrated in Figure 5.1, dataset images containing

the same object or scene are grouped together. We define “contexts” as collections

of images having common visual properties (objects). In this chapter, we introduce

contextual information to the refinement of object retrieval results. For object

retrieval, the ranking score of each image is not only determined by their individual

similarity to the query, but also influenced by the ranks of other images belonging

to the same context. As illustrated in Figure 5.1, images in a context should be

encouraged in ranking scores if they support each other, i.e. have similar ranks,
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Figure 5.1: Illustration of context based re-ranking. The initial retrieval results (sorted by
similarity Ψ) contain both true and false positives. However, visually similar images are
more likely to group together (context A) than those are not (context B), and thus should
be moved towards the query. The numbers above images are rank orders, before or after
context based re-ranking. After context based re-ranking, images in context A (context B)
are ranked highly (lowly).

and ranked highly (context A). In contrast, images are discouraged if they have

conflicting ranks in a context (context B). Therefore in this chapter, we aim to

improve the retrieval results by contextual information obtained online and show

its usage in efficiently re-ranking the initial results.

Typically, contexts are obtained by clustering the image dataset. Traditional

methods, e.g. k-means, are unable to cluster the BoW vectors efficiently and

effectively, because the BoW vectors are very sparse and high dimensional. We

utilize these properties of the BoW vectors to simplify the clustering: the sparsity

results in effectiveness of partition along randomly chosen dimensions; the high

dimensionality leads to efficiency because only a small number of dimensions

are needed. Based on these observations, we propose a random space partition

method, by which the dataset is clustered into groups of images after repeated

partitions by random dimensions. Once the image groups are available, the initial

dot product scores can be refined by analysis of the rankings in each image group.

Each image group generates a context score according to the association of image
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Figure 5.2: System framework of context based re-ranking. This is the standard BoW
retrieval system with new steps (indicated in dash box) introduced by our context based
re-ranking method. The offline process is unchanged.

ranks in the context, and then each dataset image is re-ranked by the context scores

of the groups it belongs to. In our method, contexts are created and analysed at

query time, and have minimal computational and storage cost. The place of re-

ranking module in the pipeline is illustrated in Figure 5.2.

Query expansion also focuses on refining the similarity measure or re-

ranking an initial set of search results, as discussed in Section 2.4. Alternatively,

reciprocal similarity [114] can be used to partition search results into near and far

sets. The reciprocal similarity is discovered by the k-reciprocal nearest neighbor

structure built offline. High level semantic information is helpful in improving

the similarity measure, but it requires expensive learning stage to exploit latent

relationship between dataset images, as discussed in Section 2.4.5. In contrast,

our method softly adjusts the similarity scores at run time by the contextual

information. It needs no prior knowledge about the dataset images.

5.1 Context based re-ranking

The standard BoW retrieval system ranks images based on sorting the dot product

similarity [130] between the tf-idf vectors q and d, corresponding to query image

q and each dataset image d (Eq. (4.1)). Each dataset image d then obtains a

rank order rd under Ψ(q, d), for which top ranks are probably relevant to query

while bottom ranks are effectively random. The ranking is efficient, but neglects

contextual information linking the returned results as it only measures similarity
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Algorithm 9 Context based re-ranking.
1: Input: Query image q, number of random dimensions D.
2: Output: Retrieval results.

3: Rank dataset images by sorting dot product similarity Ψ (Eq. (4.1)) and obtain initial ranks of
dataset images

4: Select D dimensions (Eq. (5.3)).
5: Generate image groups C := {ck}Dk=1 from inverted file (Eq. (5.2)).
6: Compute the context score W (q,ck) for each image group (Eq. (5.5)).
7: Compute context factor Ω(q, d) for each dataset image d (Eq. (5.6)).
8: Adjust image similarity and re-rank (Eq. (5.1)).
9: Return: Re-ranked results.

between the query and each dataset image in isolation.

In order to discover this contextual information, the dataset is clustered into

small groups. We propose a random space partition method, which is a simplified

clustering method for the high dimensional data, to approximately separate the

dataset (Section 5.1.1). These contexts are scored based on the ranks of result

images belonging to them (Section 5.1.2). The contextual ranking information is

used to adjust the dot product similarity Ψ online:

Φ(q, d) = Ψ(q, d) · exp(Ω(q, d)) (5.1)

where Φ(q, d) is the refined image similarity. The context factor Ω(q, d) in Eq. (5.1)

indicates positive or negative context score learnt from image groups. Our method

is outlined in Algorithm 9 and described further below.

5.1.1 Random space partition

As before, a visual vocabulary is composed of N visual words: W := {wi}Ni=1,

where N = 106 in our implementation. An image dataset can be represented as a

collection of visual word vectors: S = {d j}Vj=1, in which V is number of images and

d j is the corresponding tf-idf image vector. The goal of our method is to cluster S
into a set of groups: C := {ck}Dk=1, where each group ck is a context that contains

a small number (nk) of dataset images.

The clustering of S involves two issues: i) scalability: the clustering is

conducted on high dimensional vectors S , for which standard k-means methods

or graph cut of the image dataset [110] are not feasible. ii) efficiency: as it runs at
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Figure 5.3: (a): Image vector separation by partition of a random dimension. (b):
Illustration of random space partition method by using an inverted file.

query time, the partition should have low computation and memory requirements.

In order to address these issues, we present a random space partition method,

described as follows.

Firstly, the image vectors S are very sparse. For example, there are on

average 2500 non-zero entries in the 106 dimensional vector of the Oxford 5K

dataset. The high sparsity simplifies the partitioning of S . As illustrated in

Figure 5.3 (a), S is separated into two groups by a random dimension of the

image vectors, according to whether each vector exceeds a threshold t in this

dimension. Note that each dimension i of image vectors corresponds to one visual

word wi, so the images can be quickly accessed by an inverted file, which maps

each visual word to images it appears in. Thus, each “column” of the file (as it

is shown in Figure 5.3 (b)) corresponds to a visual word wi and forms an image

group ck:

ck = {d j}
nk
j=1 if υ j(wi)> t (5.2)

where υ j(wi) is the number of occurrences of wi in image j (tf) and t is a threshold.

Scalable clustering ofS is achieved by repeated random partitions. As the inverted

file is already used for the calculation of tf-idf weights, this involves almost no extra

computation or storage beyond the standard BoW pipeline.

Secondly, the efficiency of our method is achieved by performing only D

(D � N) data partitions to generate groups C . According to Eq. (5.2), a dataset
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image d might appear in a context or not. Thus, we index each dataset image d

by a set of D indicators {Idk}
D
k=1, where Idk = {0, 1} indicates whether d appears in

ck or not. Obviously, it is inefficient to use all dimensions (visual words) because

only a small number of them are informative, as discussed in Chapter 3. These are

usually the query words Q and their relevant words S (Q,S ⊂ W). The query-

relevant words S can be discovered offline or online by methods presented in

previous chapters, and will be discussed in the next paragraph. We randomly

choose a subset of dimensions (visual words) in which Q and S are given a

higher probability of selection than those that are not relevant (not in Q and

S). This is done by associating visual words to random hash keys under f :

[ f (w1), f (w2), · · · , f (wN)]:

f (wi) =







a · x if wi ∈ Q

b · x if wi ∈ S\(Q∩ S)

x otherwise

(5.3)

where wi ∈ W, x is a random variable from uniform distribution U(0, 1) and the

parameters a, b are the weights to give priority to query words Q and their relevant

words S over others. The D dimensions used for partition are then selected in

decreasing order of f (wi). The scheme of random dimension selection is similar

to [38]. Note that both of the parameters a, b are equal or greater than 1.

We define three cases based on values of a, b: i) Random selection: a = 1,

b = 1: each visual word has uniform probability of being selected. ii) Query-

dependent selection: a > 1, b = 1: words in the given query Q are more likely to

be selected. iii) Query-expansion selection: a > 1, b > 1: words in the query Q

and the query-relevant set S are more likely to be selected than others.

Query-relevant words S can be generated as follows: i) offline: build a

general thesaurus structure offline and obtain S via spatial expansion online

(Chapter 3). In this case, these are spatially related words of the original query

used in spatial expansion (WT ). ii) online: obtain S by query expansion [37].

These words are also spatially related to the original query, but examined by a

spatial consistency test online, which has been used for average query expansion

(AQE). After obtaining D dimensions (visual words), image groups C := {ck}Dk=1

are used to estimate the context score for re-ranking, as discussed below.
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5.1.2 Context factor for re-ranking

Our context based re-ranking method proceeds in two steps. Firstly, our context

based re-ranking method aims to learn a query-specific context score W (q,ck) for

each image group ck, according to Eq. (5.5). Secondly, a dataset image d will

be assigned a context factor Ω(q, d), which is learnt from nd image groups it has

been mapped to (Eq. (5.6)). In this scheme, the first step aims to measure how

and whether images in a context are close to the query, i.e. in the top ranked

results. Thus, the context score is a signed real value to indicate this property. The

second step utilizes these context scores to design a context factor for each dataset

image d. As a result, it makes the retrieval system consider not only one-to-one

comparison of image similarity, but also contextual influence of groups related to

each result images. Thus the dataset image d is re-ranked by the similarity score

refined by the context factor (Eq. (5.1)). Details of these two steps are described

below.

Compute context score Each image group is assigned a context score W (q,ck),

which indicates whether and how the image ranks in this group are close to the

top/bottom in the ranked result of query q. This is measured by two factors:

i) The association of image ranks in ck:

ck =
1

n2
k

nk
∑

j=1

nk
∑

s=1

K(
r j − rs

ρ
) (5.4)

where r j and rs are the image ranks in ck, nk is the group size, K is a

Gaussian kernel and ρ is its bandwidth. In this way, the association of a

context ck is measured by its corresponding association of image ranks in ck.

Note that the parameter ρ can be automatically tuned. Eq. 5.4 can be written

as: 1
nk

nk
∑

j=1

1
nk

nk
∑

s=1
K(

r j−rs

ρ
), in which 1

nk

nk
∑

s=1
K(

r j−rs

ρ
) is the kernel density estimator of

a context image j, measured by its rank samples rs in the ranking list. Thus,

parameter ρ can be tuned based on estimating the standard deviation of the input

image ranks of the context [17]. As a result, image groups, which are distributed

widely in the ranking list will have less association and will not be weighted

strongly.

ii) The number of top (bottom) image ranks:
tq(ck ,H)−bq(ck ,H)

nk
, where functions
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tq(ck, H) and bq(ck, H) count the number of members ck in the top and bottom-H

places, respectively. This indicates whether the contexts are close to query q or

not.

The context score of group ck is estimated by both of these two factors:

W (q,ck) =





1

n2
k

nk
∑

j=1

nk
∑

s=1

K(
r j − rs

ρ
)



 ·
tq(ck, H)− bq(ck, H)

nk
(5.5)

Re-ranking based on context score The re-ranking utilizes these context scores

to improve the similarity score of a dataset image d. As each image is assigned to

multiple contexts, the context factor is defined as the average score for all contexts

it belongs to:

Ω(q, d) =
1

D
∑

k=1
Idk

·
D
∑

k=1

IdkW (q,ck) (5.6)

Images are re-ranked by sorting Φ(q, d) = Ψ(q, d) · exp(Ω(q, d)) (Eq. (5.1)). As a

result, the initial similarity of images having negative context factors (Ω(q, d)< 0)

will be decreased, while those having positive context factors (Ω(q, d)> 0) will be

increased.

5.2 Experimental results

The retrieval experiments are conducted on three public object retrieval datasets:

two small-scale datasets: Oxford 5K and Paris 6K; and a large scale dataset: Oxford

105K.

5.2.1 Parameter setting

Firstly, we evaluate the effects of various parameter settings on our method.

Randomly chosen dimension number D Figure 5.4 (a) reports the retrieval

accuracy for increasing D dimensions selected to generate random partition. As

illustrated in Figure 5.4 (a), the accuracy improves as D increases, and then

plateaus above a threshold, e.g. D = 7 × 104 on both Oxford 5K and Paris 6K

dataset. This illustrates that the retrieval performance of our method becomes
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Figure 5.4: (a): Retrieval results comparison with increasing dimensions D. (b): Retrieval
results comparison with increasing top/bottom-H.

Methods Oxford 5K Paris 6K
Baseline 0.612 0.639

Spatial verification 0.645 0.653
a = 1, b = 1 f1 0.644 0.674

a > 1, b = 1
f2 0.670 0.690
f3 0.674 0.690

a > 1, b > 1

f4 0.676 0.691
f5 0.684 0.697
f6 0.701 0.700
f7 0.692 0.700

Table 5.1: Retrieval performance with different weighting functions used in ordering the
visual words. Total number of visual words selected: 3× 104.

stable when there are enough contexts used to calculate the context factor Ω.

Moreover, the number of visual words (dimensions) needed to achieve the stability

is far less then the vocabulary size (D� N). Table 5.4 shows the average CPU time

as D increases. Intuitively, the re-ranking needs more CPU times as D increases.

By considering both accuracy and run time, we set D = 3× 104.

Weighting parameters a, b Table 5.1 illustrates the effects of weighting param-

eters a, b (Eq. (5.3)) on the retrieval results. Firstly, parameter b is fixed (b = 1)

such that Table 5.1 investigates the effect of query word weighting (parameter a)

in the following manners: i) ( f1): a = 1, visual words (dimensions) are randomly

selected. ii) ( f2): a = 10, query words are 10× more likely to be selected. iii)

( f3): a = t f , query words are more likely to be selected, which is similar to f2 but
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Datasets Baseline Spatial verification t1 t2 t3

Oxford 5K 0.612 0.645 0.701 0.693 0.645
Paris 6K 0.639 0.653 0.700 0.700 0.669

Table 5.2: Retrieval performance with different threshold, where the ordering function is
f6. The thresholds are set as: t1 = 0, t3 is the mean of visual word frequency in image and
t2 =

t3

2
.

a is proportional to the term frequency of the query word, rather than constant

as in f2. As seen in Table 5.1, the results of f2 and f3 are more accurate than f1.

However, the difference between f2 and f3 is negligible when a is large. Thus, we

use f2 in the following experiments because it heavily weights query words and

its implementation is simpler than f3. Secondly, we fix a = 10 ( f2) and vary the

weighting of query-relevant words (parameter b): i) f4: b = 10
8

; ii) f5: b = 10
4

;

iii) f6: b = 10
2

; iv) f7: b = 10. The query-relevant words are collected by offline

visual thesaurus, as described in Section 5.1.1. In this way, we aim to investigate

the effects of increasing weights of query-relevant words in random dimension

partition. As reported in Table 5.1, the retrieval performance increases when the

weight of b enlarges. It plateaus when b is large enough, i.e. b = 10
2

, indicating

that there are enough query-relevant words included. Therefore, we set b = a
2

( f6) by default in the following experiments as it achieves the best performance on

both datasets.

Partition threshold t Table 5.2 investigates the effects of threshold t in partition-

ing the dataset (Eq. (5.2)) by comparison of different thresholds. The threshold t,

as shown in Figure 5.3, is used to generate context groups, which will affect the

re-ranking performance. As seen from Table 5.2, t = 0 achieves the best retrieval

performance and will be used in the rest of the experiments.

Range of top/bottom H Figure 5.4 (b) reports the retrieval accuracy with

increasing top/bottom-H. The parameter H indicates the maximum number of

top/bottom images to be considered in the context factor calculation. It can

neither be too small (the context factor can not detect any top/bottom ranking

information) or be too large (the context factor takes the whole dataset). As

seen from Figure 5.4 (b), we obtain stable retrieval accuracy when H exceeds

a threshold, H = 200, in which H is far less than the dataset size. Thus, we set
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Datasets System
System- Offline Online Off+online
baseline expansion expansion expansion

Oxford 5K
S1 0.612 0.701 0.696 0.703
S2 0.645 0.700 0.703 0.706
S3 0.806 0.814 0.825 0.830

Paris 6K
S1 0.639 0.700 0.705 0.705
S2 0.653 0.704 0.709 0.709
S3 0.769 0.770 0.777 0.773

Table 5.3: Performance for S obtained by online and offline expansion. S1: Baseline [106],
S2: Spatial verification [106], S3: AQE [37]. The offline expansion is computationally
cheaper compared to online expansion, while its performance is close to online expansion.

Methods Oxford 5K Paris 6K Oxford 105K
Baseline 0.107 0.140 1.67

Spatial verification 2.10 4.71 4.34

f2

D = 1× 104 0.030 0.034 0.44
D = 3× 104 0.039 0.043 0.48
D = 5× 104 0.045 0.052 0.51
D = 7× 104 0.054 0.060 0.54

Table 5.4: Computational cost comparison of spatial verification and context based re-
ranking. Note that we only calculate the run time of re-ranking with spatial verification
and our method, while do not include the CPU time spent on baseline.

H = 200 as default.

5.2.2 Effects of query expansion

Secondly, we evaluate the selection of query expansion methods. The effects of

the query-relevant words S are evaluated in Table 5.3. In addition to the baseline

tf-idf similarity (S1), we also test the re-ranking applied to results obtained by

spatial verification (S2) [106] and average query expansion (S3) [37]. Firstly, the

retrieval accuracy is 14.5% (9.5%) higher than the baseline system (S1) on the

Oxford 5K (Paris 6K) dataset, when S is formed by offline expansion. Online

expansion is performed by including in S only spatially verified words (AQE

in [37]). The difference between the retrieval results is minor, e.g. 0.701 v.s. 0.696

on the Oxford 5K dataset. Moreover, combining offline and online expansion leads

to small improvement of mAP scores for S1, S2 and S3. Therefore, we use the

computationally cheaper offline expansion in the experiments.
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Figure 5.5: Top retrieval results of context based re-ranking method.

5.3 Discussion

We show some top retrieval results in Figure 5.5. The context based re-ranking

is useful in filtering false positives, compared to the results shown in Figure 2.7

(baseline). Moreover, we compare the accuracy and computation cost of our

method to the state-of-the-art methods that also requires a re-ranking process.

Computational cost As our context based re-ranking method makes use of an

inverted file, it requires no more memory usage than baseline tf-idf matching. The
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run time of our method is reported in Table 5.4. Firstly, we evaluate the run time

by increasing D. This results consistent increase in CPU time, while improving

the retrieval results as shown in Figure 5.4. In order to trade-off the effectiveness

and efficiency, we set D = 3× 105 as shown in Table 5.4. Secondly, we compare

our method (D = 3× 105) with the spatial verification method [106]. As seen in

Table 5.4, our method is faster than spatial verification because it does not need

spatial consistency examination, which is known to be expensive (costs 2.1 CPU

seconds on the Oxford 5K dataset).

Comparison to the state-of-the-art methods We compare our method to other

state-of-the-art re-ranking methods (Group B) in Table 5.5, including spatial

verification [106], and query expansion methods [37, 34, 9]. Firstly, our

re-ranking method outperforms standard spatial verification, both in retrieval

accuracy and run time. It also achieves similar retrieval accuracy to QE baseline,

but does not outperform other query expansion methods. Secondly, our method

can also work with various query expansion methods: the initial retrieval results

are re-ranked by our method and then applied with query expansion. As shown

in Group C, this leads to further improvement of retrieval performance. The

context based re-ranking method can also jointly work with methods proposed

in previous chapters: total association and cross-word matching, as reported in

Group D. Finally, we show some precision-recall (PR) curves of query examples

from the Oxford 5K dataset, which compares the baseline, spatial verification, and

our method in Figure 5.6.

Note that our context based re-ranking method, unlike spatial verification,

aims to refine the similarity measure instead of truncating the top ranked results

by number of inliers. Therefore, our method is not reliable for verification of true

(false) positives. The verification of true (false) positives, however, is essential in

many applications of retrieval results. In next chapter, we will discuss the usage of

ranking information in verification of the initial retrieval results.

5.4 Conclusion

In this chapter, we has proposed a simple yet effective image re-ranking method,

which can be used in any retrieval system built on the BoW model. In contrast
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Figure 5.6: Examples of precision-recall (PR) curves of context based re-ranking: baseline,
spatial verification and context based re-ranking.

to standard re-ranking methods, our method analyses the image ranks in terms of

shared context rather than expensive spatial consistency examination. We explore

the contextual information in two steps. Firstly, we use random space partition

method to cluster the dataset into a large number of image groups. Secondly, the

approximate image groups are used to refine the image similarity score. Images
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Methods Oxford 5K Paris 6K Oxford 105K
Baseline [106] 0.612 0.639 0.515

A

Visual word re-weighting (Chapter 4) 0.660 0.674 0.598
Descriptor learning (non-linear) [108] 0.662 [108] 0.678 [108] 0.541 [108]
Soft-assignment [107] 0.673 [107] 0.660 N/A
Geometry-Preserving [159] 0.696 [159] N/A 0.604 [159]
Total association (Chapter 4) 0.700 0.682 0.680
Spatial expansion (F′15, Chapter 3) 0.701 0.683 0.667
Cross word (Chapter 4) 0.712 0.722 0.604
Fine vocabulary [96] 0.742 [96] 0.749 [96] N/A
AUG [142] 0.776 [9] N/A 0.711 [9]
SPAUG [9] 0.785 [9] N/A 0.723 [9]

B

Spatial verification [106] 0.649 0.655 0.571
Context based re-ranking 0.701 0.700 0.585
QE Baseline [37] 0.708 0.736 0.679
iSP [34] 0.741 [34] 0.769 [34] 0.649 [34]
Local geometry [105] 0.788 0.634 0.725
DQE [9] 0.798 0.783 0.809
AQE [37] 0.806 0.769 0.767
Hello neighbors [114] 0.814 [114] 0.803 [114] 0.767 [114]
Total recall II [34] 0.827 [34] 0.805 [34] 0.767 [34]

C
Context based re-ranking 0.701 0.700 0.585
Total association+ Context based re-ranking 0.704 0.711 0.636
Cross word+ Context based re-ranking 0.735 0.720 0.648

D
Context based re-ranking + AQE [37] 0.814 0.770 0.757
Context based re-ranking + DQE [9] 0.832 0.793 0.790

Table 5.5: Comparison of context based re-ranking to the state-of-the-art methods. Group
A: retrieval results of methods that modify the baseline before the query is executed
(pre-process). Group B: retrieval results of methods that modify the baseline after the
query is executed (post-process). Group C: retrieval results of combining context based
re-ranking with our proposed methods. Group D: retrieval results of combining context
based re-ranking with query expansion methods. Note that we cite the retrieval results of
AUG [142] from literature [9].

having positive (negative) context factors are ranked towards top (bottom).

The experimental results illustrate that the context based re-ranking can

improve the baseline method and some improvement methods that modify the

baseline before the query is executed (Table 5.5 Group C). However, it does not

outperform other re-ranking methods which are more computationally expensive,

e.g. AQE and DQE. Compared to other methods in Table 5.5 Group B, our context

based re-ranking method is more efficient in re-ranking process and is simple to

implement. Therefore, it is useful for fast re-ranking of the retrieval results when

required.
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RANKING CONSISTENCY FOR IMAGE MATCHING AND
OBJECT RETRIEVAL

CHAPTER VI

The standard BoW retrieval system applies fast computation of similarity measure

between query/dataset image pairs, i.e. dot product similarity, but lacks robustness

to varied image conditions: scale, viewpoint, lighting and partial occlusion of

objects, as shown in Figure 1.2. In Chapter 5, we addressed this issue by

applying contextual information to re-ranking retrieval results. In this chapter, we

investigate the ranking consistency between image ranks. Similar to context based

re-ranking presented in Chapter 5, we begin with the initial ranking results and

re-rank them without any prior knowledge learnt from the dataset. In contrast to

context based re-ranking, the re-ranking method proposed in this chapter is based

on a fast verification method to remove false positives from the initial retrieval

results.

We propose a ranking consistency examination, which is an alternative to

previous methods relying on spatial consistency. It is observed that consistency in

ranked results indicates that the corresponding query images are likely to contain

similar content. An example is shown in Figure 6.1, in which similar images have

common results in the top ranked results when they are used as queries, while

results from dissimilar images have no intersection. Based on this observation, we

propose to refine the image retrieval results with ranking consistency information,

while retaining efficiency and not relying on low-level information, e.g. spatial or

geometric feature information. The system framework is illustrated in Figure 6.2.

We also show a number of applications using object retrieval results.

Firstly, we propose a simple yet effective image similarity criterion, named

ranking consistency, in which the similarity between two images is measured by

the similarity of the ranked lists that result from using them as queries. The usage

of ranking consistency in the image domain is motivated by the ranking result

comparison used in information retrieval. Figure 6.1 illustrates our key idea with
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Figure 6.1: Ranking consistency overview. The examples are top ranked results of All souls
1, where the input images A and B are relevant, but both of them are irrelevant to image C .
Our method generates some top ranked results for each image by list-wise min-Hash. The
similarity between images is measured by the similarity between their top ranked results.
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Figure 6.2: System framework of ranking consistency. Modules need to be changed are
indicated in blue dash boxes. The offline process is unchanged.

some top retrieved results by similar query images A and B, and dissimilar images

A and C. Note that image C is a highly ranked false positive result of query A.

The retrieved results using image C as a query are completely different from the

results of images A and B, supporting the fact that images with similar contents are

consistent in their top retrieval results. The observation motivates us to use ranking

consistency as a verification method: images whose content matches a query can be

inferred on the basis of their ranking consistency. The ranking consistency criterion

can work with any retrieval system, as it only requires ranks of images. In addition,

our ranking consistency criterion does not require the comparison of any geometric

information, unlike [106].

Secondly, we propose an efficient image re-ranking method, ranking ver-

ification, to re-rank an initial set of retrieved results by the embedded ranking
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consistency information. The ranking verification requires online computation of

query results for a fixed number of top ranked images (typically K = 200 in our

implementation). Therefore, the re-ranking process is either inefficient using the

standard normalized dot product vector comparison [130, 106] or less accurate

if we use the approximate similarity comparison [38]. Instead, we use list-wise

min-Hash to generate rapid approximate ranking lists of each image vector, whose

consistency is then measured to evaluate the final image result ranking. The

effectiveness of our method is due to two factors. First, our final ranking is

the result of multiple min-Hash queries, so errors in individual queries can be

tolerated. Second, we take into account multiple words from each hash function,

which increases the average recall of the approximate method.

The ranking verification requires little extra computational cost per image.

We only need to store the hash keys for each image instead of information about

each feature which is required for spatial verification. The ranking consistency

similarity can be intrinsically used in many image retrieval related problems, e.g.

expansion of the query model, as an alternative to spatial verification. We also

illustrate a graph structure of dataset images built on ranking consistency, which

is useful for object mining in large image sets.

There has been a great deal of research to increase the accuracy of image

retrieval by measuring the spatial consistency between the query and result

images [106, 159, 35], as discussed in Chapter 2. However, these methods

highly rely on the spatial or geometric information between pairwise images,

and thus are less effective when the dataset images lack geometric information.

In contrast, information retrieval has used the ranking information to enhance

retrieval systems for many years. These methods consider ranking information in

the following ways: i) learning to rank with relevance feedback; ii) re-ranking

with results consistency.

Relevance feedback: Relevance feedback aims to refine the ranking model by

some labeled data which is relevant or irrelevant to the query. This is known as the

relevance feedback problem in information retrieval [120]. Relevance feedback is

also used in some image retrieval systems to refine the ranking functions. These

methods can be categorised into two groups. The first group of methods focus on

formulation of a new query to take into account the relevant features to the original

query. For example, query expansion [37] adds more relevant features from an
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automatic scheme of sampling selection; Bayesian relevance feedback [47] needs

users to identify retrieved images as being relevant or not, and then adjusts the

query by Bayesian decision theory; Trademark retrieval [39] dynamically improves

both the query formation and similarity measure with relevance feedback. The

second group of methods usually use a pairwise ranking method, e.g. Ranking

SVM [68] to sort the documents (or images) for given query [56, 73]. In order

to train a ranking classifier, these methods need to know either some ranking

preference in advance [56], or user provided information [73].

Results consistency: Results consistency uses the relevance of ranked results

to improve retrieval performance as a post-processing step. There are a large

number of ranking similarity measures, e.g. Spearman’s ρ [134] and Kendall’s

τ [71]. The similarity measurement scores documents sharing many common

results highly, which indicates the ranking consistency in these documents. The

consistency of ranking has been considered in a number of image retrieval

methods, such as [81, 102, 52]. In these works, the initial retrieved results

are processed with some high level information, i.e. a relevance model to

evaluate the linked text search results for similarity measurement [81]; a distance

matrix defined by the similarity of ranking lists to take into account contextual

information [102, 52]. However, these methods require expensive post-process.

Our ranking verification method is partly inspired by the neighborhood

connection method [114], which also uses nearest neighbor results of dataset

images to construct a network and thus dataset images are separated into close

and far set for re-ranking. Conversely, our method is built on a collection of

truncated ranking lists, as described in Section 6.1. In addition, our method

uses hash-based search method to find similar images. To find the similar images

efficiently, a similar hash-based method is proposed in [75], with inter and intra

query expansion. The method needs to index each feature to the hash table,

and compare the query features with all the features (millions to billions) in the

dataset, which is very expensive in memory usage as noticed in [63]. However, our

method hashes each image (as a BoW vector) which is more efficient than [75].

Furthermore, our method needs not rely on the geometric information.
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6.1 Ranking consistency similarity

In this chapter, we introduce a ranking verification scheme which can efficiently

and effectively re-rank the initial retrieved results returned by any retrieval system.

The scheme is illustrated in Figure 6.2. Firstly, we describe how pairwise image

similarity is measured by calculating the consistency of the image ranks that result

from using each image as a query over a fixed dataset (Section 6.1.1). Secondly,

this similarity measure leads to a method for re-ranking retrieval results which

places the query-relevant images higher than the irrelevant images (Section 6.1.2).

In the interest of efficiency, we produce approximate ordered results with list-wise

min-Hash method (Section 6.1.3).

6.1.1 Ranking consistency measures

We use ranking consistency information to measure how similar two images are.

As observed in Figure 6.1, images sharing common top ranked results also often

share similar visual content, such as images A and B in Figure 6.1. This is

known as the ranking consistency in information retrieval. Compared to spatial

consistency [106], ranking consistency is more tolerant to image variations due

to viewpoint or occlusion, and does not rely on the existence of a dominant rigid

transform between matching objects in the images.

The ranking consistency criterion measures the similarity between a pair of

images using the similarity of their ranked results, a.k.a. ranking lists, when each

image is used as a query. Typically, the most salient members of ranking lists are

those at the top, while lower ranked results are irrelevant. This means that we

need only compare top ranked results. For any image i used as a query, its ranking

list is a permutation of the dataset images sorted by descending similarity score,

and truncated to a list of length h:

r(i)1:h := [r(i)1 , r(i)2 , · · · , r(i)h ] (6.1)

where h is the window size h � V , and V is the dataset size 1. As a result, the

image similarity is measured by the truncated ranking list similarity.

1Note that our method can be applied in any retrieval system as a post-process. In this thesis,
the retrieval system is built on the BoW model. Therefore, the default ranked results are sorted
by the descend normalized dot product similarity between tf-idf vectors.
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Ranking list similarity has several standard solutions, which can be either

top-weighted or not. The retrieval results contribute equally in the non top-

weighted similarity, while the high ranked results are weighted more heavily

in the top-weighted similarity. The widely used non top-weighted similarity in

information retrieval includes Kendall’s τ [71] and Spearman’s ρ [134]. However,

the top of the ranking list is more significant than the bottom in many real

ranking cases. Therefore, top-weighted methods, e.g. , Yilmaz’s τAP [157] and

Melucci’s τ∗ [91], are better suited. We use two similarity measurements from the

information retrieval literature to compare the truncated results.

The Jacarrd similarity The Jacarrd similarity between two ranking lists of

images i and j is defined as the size of intersection divided by union:

J(i, j, h) =
|r(i)1:h ∩ r( j)1:h|

|r(i)1:h ∪ r( j)1:h|
(6.2)

Note that J(i, j, h) ranges from 0 (disjoint) to 1 (identical). The Jacarrd similarity

does not include order information, and thus is non top-weighted similarity.

The rank biased overlap similarity Let Xd be the size of intersection of lists r(i)

and r( j) to depth d (top-d ranked results):

Xd(r
(i), r( j)) = |r(i)1:d ∩ r( j)1:d | (6.3)

The rank biased overlap (RBO) similarity [150] for a truncated ranking list is

defined as:

R(i, j, p, h) = (1− p)
h
∑

d=1

pd−1 ·
Xd

d
(6.4)

where parameter p determines how steeply the weight declines. The smaller p is,

the more highly top results are weighted (p ∈ [0,1]).

The effects of these two similarity measurements are illustrated in Figure 6.3

on two queries All souls and Ashmolean. The Jacarrd similarity relies heavily on

the window size h, where it changes dramatically within range [0, 50]; when h is

larger than the number of true positive results (i.e. when h= 3000), the similarity

scores of positive results are close to or even higher than the ones of negative

results. This is because most of the intersecting images between the ranking lists
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(a) All souls. # of ground truth images : 78. (b) Ashmolean. # of ground truth images : 25.

Figure 6.3: Examples of similarity scores computed by Jacarrd similarity and RBO
similarity on various queries. The scores reflect the similarity between results from a query
and a true (blue) / false (red) positives, where h ranges from 0 to 50 or h ranges from 0 to
the full size of dataset. The true positive images present the object clearly, while the false
positive images do not contain the target object. Note that the true / false positives are
chosen from top-50 ranked results returned by the baseline.

are query-unrelated images. On the other hand, the RBO similarity score increases

monotonically: h2 > h1⇒ R(i, j, p, h2)≥ R(i, j, p, h1). As h increases, the similarity

scores of true positives are always higher than the ones of false positives. In the

following experiments, we set h = [.005 × V ] by default for both the Jacarrd

and RBO similarity measures unless mentioned. As seen in Figure 6.3, the RBO

similarity is more suitable as a ranking list similarity measure than the Jacarrd

similarity, because it weights the top ranked results more strongly than lower

results. The weight is set as p = 0.9 for RBO similarity, as shown in Figure 6.4.

6.1.2 Result re-ranking using ranking consistency

Given a query image, the top-K retrieval results returned by a retrieval system

might include some false positives. Our ranking verification method post-processes

the top-K results such that highly ranked false positives are moved lower in the

list.

The process is conducted by iteratively choosing the most similar images

from the top results to the given query. First, we collect the top-K ranked results

for the query image. We then use each result as a query to generate K ranking lists.

After collecting K ranking lists, we conditionally select images into list S := {sk}Kk=1,
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Figure 6.4: Examples of ranking consistency similarity for a particular query All souls
1. The ranking consistency similarity is measured by RBO similarity. (a) Retrieval results
before re-ranking, where images are ordered by dot product similarity. (b) Retrieval results
after re-ranking, where images are re-ordered by ranking verification. The similarity score
in (a) and (b) is illustrated as ranking consistency similarity. The similarity matrix of
ranking consistency similarity after re-ranking: (c) The similarity matrix of size 100×100
as the window size h= [.005× 5K] and p = 0.3. (d) The corresponding similarity matrix
of (c) when p = 0.9.

where k is the order after re-ranking of each element sk. Given the first selection

S := {s1} (usually the query itself), the second image (s2) is chosen as that whose

ranking list is maximally similar to the ranking list of s1. Once chosen, the image

is eliminated from the following selection. The remaining images are selected

conditionally in the same way:

sk = argmax
x∈{x i}Ki=1\{s j}k−1

j=1

∏k−1
j=1 sim(x , s j) (6.5)

where sk is decided by the previous selected elements {s j}k−1
j=1 . The similarity score

sim(x , s j) can be the Jacarrd similarity or RBO similarity, but is not limited to these

two measurements. This process continues until K images have been selected. The

top results are re-ranked by the order in S.

As shown in Figure 6.4 (a), there is highly ranked false positives in the

initial ranked results. This is because the dot product similarity is inaccurate in

measuring these query/dataset image pairs. The ranking consistency similarity is
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able to distinguish the false positive by comparing their ranking lists. As seen in

Figure 6.4, the ranking consistency similarity of the false positives is close to zero,

while the ranking consistency similarity of true positives is relatively high. After

re-ranking, highly ranked false positives are ranked down while the true positives

remain at the top. The similarity of the corresponding re-ordered ranking lists are

shown in Figure 6.4 (c) and (d), for RBO with different parameter p. As seen in

Figure 6.4, p should be set large as to consider lower ranked results.

6.1.3 Fast approximate ranking list computation with list-wise min-Hash

The ranking verification involves computation of K ranking lists. By default, each

ranking list is usually created by the normalized dot product similarity between

tf-idf weighted BoW vectors [130]. This measure is widely used by many retrieval

systems and is generally efficient enough for real time operation when it is only

calculated once per query. However we now need to calculate it K times (typically

K = 200). An accelerated method for ranking similar images is therefore necessary,

such that the computation time for ranking lists is significantly reduced while the

ranking list similarity is not materially affected.

In order to meet these requirements, we propose a list-wise min-Hash

method to generate approximate ordered results of a given query. Our method

is based on min-Hash, which is a popular hashing method for approximate near

neighbor search. The min-Hash method is originally proposed to detect duplicate

web pages [19]. In the image domain, it is applied for near duplicate image

detection [36, 38] with particular design for the high dimensional BoW vector.

It produces a random permutation of each visual word in the vocabulary as a hash

function f . The hash key is extracted from each image i as the smallest element of

the visual word set vi under the permutation generated by a hash function f :

m( f ,vi) = argmin
wk∈vi

f (wk) (6.6)

By repeating the hash function M times, each dataset image obtains a set of M

hash keys. The similarity between two images (i, j) can be approximated by the

number of collisions divided by M :

sim(vi,v j) =
1

M

M
∑

k=1

|m( fk,vi) = m( fk,v j)| (6.7)
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where M is the total number of min-Hash functions. This method successfully

reduces the run time of ranking list generation, when M � N . However, it has

limited effectiveness in near neighbor search because min-Hash considers subset

of words in each image and thus is not robust to image condition changes. In order

to improve recall in the near neighbor search, list-wise min-Hash uses multiple

hash keys for the same hash function. The hash keys in our method are extracted

from each image i as the v smallest elements of the visual word set vi under the

permutation generated by a hash function f :

mv( f ,di) = { f (wk)}vk=1, wk ∈ di (6.8)

where f (w1) < f (w2) < · · · f (wk) < · · · < f (wv), v is the hash induced ordering.

Therefore, each hash function maps to v (dependent) hash keys, so the collision

between matching images is more likely in the face of varying image conditions.

With M independent hash functions F , the collisions embedded in the similarity

measure can be calculated in the following ways:

simv(vi,v j) =























1
M

∑M
k=1 |m

v( fk,vi)∩mv( fk,v j) 6= ;| Binary

1
M

∑M
k=1 J(mv( fk,vi), mv( fk,v j), v) Jacarrd

1
M

∑M
k=1 R(mv( fk,vi), mv( fk,v j), p, v) RBO

(6.9)

where f ∈ F . In Eq. (6.9), a simple Binary collision measures two list-wise min-

Hashes by the times that the intersection is not empty for M hash functions. Two

ranking list comparison methods, the Jacarrd similarity (Eq. (6.2)) and the RBO

similarity (Eq. (6.4)), are also suitable to measure pairwise list-wise min-Hashes.

Our method captures more collisions among visually similar images than

the standard min-Hash method. In the standard min-Hash method (v = 1), the

higher number of common visual word in two images, the higher probability of

them to have same min-Hash values. This is a hard match, where each hash

function, i.e. a hash function f only contributes to the similarity measure between

pairwise images when the smallest elements of both ordered word sets are same.

It is alleviated by cross-matching in list-wise min-Hash (v > 1). During the

list-wise min-Hash generation, the hash keys extracted from each hash function

are different visual word ordered by the same random permutation. A hash
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Figure 6.5: Comparison of random collisions inf standard min-Hash (v = 1) and list-
wise min-Hash (v = 5) in generating the ranking lists. The number of hash functions is
M = 512.

function f contributes to the similarity measure between pairwise images when

any intersection happens in the top v smallest elements, as shown in Eq. (6.8).

Therefore, the cross-word matching of the similarity measure for v > 1 increases

recall in varied image conditions compared to the standard (v = 1). Although this

also has the potential to reduce precision, in practice this is not observed as the

hash results are aggregated over several lists.

Figure 6.5 demonstrates the effects of list-wise min-Hash by measuring the

similarity between top-200 results and the original query All souls. The standard

min-Hash (v = 1) leads to unstable hits, e.g. a false positive obtains 4 collisions,

which is higher than two true positives (Figure 6.5 (a)). The list-wise min-Hash

(v = 5) is more accurate, where the false positive images accumulates less min-

Hash overlap than the other true positives (Figure 6.5 (b)-(d)). Moreover, the

overlap measure (B, J , R) has little effects on similarity scores as illustrated in the

curves in Figure 6.5, because v is a small number. We set Eq. (6.9) with Jacarrd

similarity by default unless mentioned otherwise. The retrieval accuracy of other

overlap measures in Eq. (6.9) is further explored in Section 6.2.1.

Algorithm 10 briefly describes the full retrieval system of ranking verification

with list-wise min-Hash. In summary, our ranking verification method can be

separated into two processes: offline and online. The offline process extracts

hash keys from each dataset images, while the online process re-orders the dataset

images by selecting whose result rankings are consistent with the query image.
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Algorithm 10 Ranking verification with list-wise min-Hash
1: Input: Dataset images and query image q.

Offline process:
2: Feature extraction and tf-idf weighting for all images (Section 2.2.3).
3: Represent dataset images as the BoW vectors: {di}Vi=1.
4: For ∀ f ∈ F , generate v min-Hash values for each di (Section 6.1.3, Eq. (6.8)).

Online process:
5: Return top-K ranked result of query q: {x i}Ki=1 (Section 2.2.3).
6: Using each x i as a query, obtain K result lists by list-wise min-Hash similarity (Section 6.1.3,

Eq. (6.9)).
Re-ranking the top-K results (Section 6.1.2):

7: S := {s1}, s1 is the query image q.
8: for k = 2 to K do
9: Select sk according to the chosen images (Section 6.1.2, Eq. (6.5)).

10: S = S ∪ sk.
11: end for
12: Return: Re-ranked results S.

6.2 Experiments

The experiments in this section show that our ranking verification method can be

used to improve the initial retrieval results as a post-process stage. Furthermore,

the ranking consistency similarity is used as an image similarity measure for both

query expansion and unsupervised dataset mining. The experiments are organized

as follows: i) re-ranking the top-K retrieval results, such that false positive results

are ranked lower (Section 6.2.1); ii) shortlist generation for query expansion,

such that quality query-relevant images can be added to the original query model

(Section 6.3); iii) weights between images in building a dataset graph, which aims

to cluster the images into different topics (Section 6.4). The experiments of issue

i) are reported and discussed in this section; while the experiments of issues ii)

and iii) will be described in Sections 6.3 and 6.4, respectively.

6.2.1 Experimental results of ranking verification

We show that ranking verification, as described in Section 6.1.2, can act as a

substitute for spatial verification, but with greater efficiency and flexibility, as it

does not rely on the presence of a strong geometric relation between the images.

Table 6.1 lists the methods that will be compared. R0 is the baseline retrieval

system in which images are ranked by dot product similarity; R1 is a standard

144 Ranking consistency for image matching and object retrieval—CHAPTER VI



R0 Baseline Scoring: Dot product similarity of tf-idf weight
vectors [130]. No post-process.

R1 Spatial verification Scoring: R0 is re-ranked by the number of inliers
detected by spatial verification [106].

R2 Ranking consistency Scoring: R0 is re-ranked by ranking consistency
similarity. Ranking list similarity: The Jacarrd
similarity (Eq. (6.2)). Ranking List: normalized dot
product.

R3 Ranking consistency Scoring: R0 is re-ranked by ranking consistency
similarity. Ranking list similarity: The RBO similarity
(Eq. (6.4)). Ranking List: normalized dot product.

R4 Ranking consistency Scoring: R0 is re-ranked by ranking consistency
similarity. Ranking list similarity: The RBO similarity
(Eq. (6.4)). Ranking lists: list-wise min-Hash similarity
v = 5.

Table 6.1: Summary of various ranking list generation.

Dataset R0 R1 R2 R3 R4

A
Oxford 5K 0.612 0.645 0.668 0.674 0.654
Paris 6K 0.639 0.653 0.655 0.653 0.652

B
Caltech categories 0.379 0.381 0.397 0.397 0.403

ImageNet (animals) 0.239 0.239 0.241 0.240 0.240

C
Oxford 105K 0.515 0.571 0.609 0.591 0.595
Oxford 1M 0.455 0.524 0.553 0.543 0.527

Table 6.2: Retrieval performance comparison on five datasets (top-200). The window
size for ranking consistency is set as h = [.005 × H], except on the Caltech categories
(h= [.03×H] for a large number of recalls.).

implementation of spatial verification to re-rank the initial top-K results from R0;

R2, R3 and R4 are novel, each using a different implementation of our ranking

consistency measure to re-rank the initial top-K results obtained by R0. Among

them, R2 and R3 compute the ranking list similarity between ranked results

returned by dot product similarity. In the case of R4, list-wise min-Hash is used

to retrieve approximate ranked results for ranking list comparison. In this case,

the min-Hash scheme obtains the hash keys by one of the distance measure:

set similarity, weighted set similarity or approximate histogram intersection as

described in [36, 38]. In our experiments, the distance measure is defined as set

similarity [38] by default in both Eq. 6.6 and Eq. 6.8. The comparison is organized

as follows:
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Oxford 5K Paris 6K
Depth K R1 R2 R3 R1 R2 R3

K = 0 0.612 0.612 0.612 0.639 0.639 0.639
K = 100 0.641 0.652 0.660 0.645 0.647 0.645
K = 200 0.645 0.668 0.674 0.653 0.655 0.653
K = 400 0.645 0.687 0.691 0.655 0.665 0.657

K = FULL 0.646 0.711 0.717 0.655 0.702 0.690

Table 6.3: Retrieval performance with different number of re-ranked images (depth K) on
the Oxford 5K and Paris 6K datasets. The window size (R2 and R3) is set as h= [.005×H].
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Figure 6.6: Retrieval accuracy with approximate near neighbor search. We compare the
accuracy of different list-wise min-Hash: v = 2, 5,10 to the standard min-Hash method
v = 1.
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Figure 6.7: Accuracy after re-ranking with various list-wise (v) min-Hash compared to
baseline. (a) compares the re-ranking accuracy by the Binary similarity (B), the Jacarrd
similarity (J) and the RBO similarity (R) used to measure the list-wise min-Hash overlap.
The number of re-ranking images is fixed to K = 100. (b) and (c) compare the re-ranking
accuracy with increasing number of re-ranked results, where the min-Hash overlap is
measured by the Jacarrd similarity (J).

Performance with different ranking list similarity measure (R2 v.s. R3) :

Tables 6.2 and 6.3 compare two kinds of ranking list similarity measurements,

the Jacarrd similarity (R2, Eq. (6.2)) and the RBO similarity (R3, Eq. (6.4)) in
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selection of the top-K results. The comparison is conducted in two steps. Firstly,

we fix the number of images to re-rank (top-200 images) and evaluate the retrieval

accuracy of R2 and R3 on different datasets (Table 6.2, R2 v.s. R3). As seen in

Table 6.2, there is less than 7% variation in the mAP scores for all datasets. On

the large scale datasets (Group C in Table 6.2), R3 performs slightly worse than

R2. This is because the initial ranked results contain many errors at top ranks,

while the RBO similarity (Eq. (6.4)) is top weighted. As a result, it causes the

re-ranking performance slightly worse than using Jacarrd similarity, which is non

top-weighted.

Secondly, the retrieval results of R2 and R3 both improve as the number of

re-ranked images increases, as shown in Table 6.3. Therefore, both of the similarity

measurements are effective in ranking verification. However, as described in

Section 6.1.1, the Jacarrd similarity (R2) needs to choose the parameter h carefully,

and thus we prefer the RBO similarity (R3) in the following experiments.

Performance with different number of re-ranking images (K) : Table 6.3

shows the retrieval accuracy after applying ranking verification with various

verification list generation methods (R1, R2 and R3) on the top-K results. As K

increases, the improvement of spatial verification (R1) is small, i.e. the difference

of mAP scores is invisible when K increases from 200, 400 and all images. This

is because spatial verification cannot determine true positives when there are

few spatially consistent feature matches between the low ranked images and

query. In contrast, our ranking consistency methods (R2 and R3) can improve

the retrieval results when K enlarges and achieve better performance than the

spatial verification. For example, R2 obtains 9.2% increase in mAP score while the

spatial verification obtains 5.4% on the Oxford 5K dataset when both re-ranking

the top-200 images. To be consistent with the number of re-ranking results in

spatial verification [106], we apply re-ranking to the top-200 results in our ranking

verification method.

Performance of list-wise min-Hash (v) : We illustrate the accuracy of list-wise

min-Hash applied in approximate near neighbor search, which is examined in the

following aspects: i) Retrieval accuracy. Figure 6.6 examines the accuracy of list-

wise min-Hash search on the 55 queries of Oxford 5K dataset. Note that the dataset

images are sorted by the sum of list-wise overlap (Eq. (6.9)), instead of normalized
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<v = 1, M = 256> <v = 1, M = 512> <v = 1, M = 1024>
0.621 0.633 0.657

<v = 2, M = 256> <v = 2, M = 512>
0.645 0.648

<v = 4, M = 256>
0.658

Table 6.4: Re-ranking accuracy with varying number of hash functions M and list-wise
min-Hash v.

dot product similarity. Compared to the standard min-Hash (v = 1), list-wise min-

Hash is more accurate when v enlarges. As seen in Figure 6.6 (c), almost all the

query results (v = 10) move above the diagonal, which indicates that list-wise min-

Hash (v = 10) produces more accurate ranking lists than the standard (v = 1). ii)

Re-ranking accuracy. Figure 6.7 illustrates the accuracy of various list-wise min-

Hash measures used to re-rank top-K retrieved results. Figure 6.7 (a) illustrates

the effectiveness of the three overlap measures in Eq. (6.9) with increasing v,

compared to the R0 and R3. Each measure shows the same overall pattern: a slight

improvement for 1 < v < 15 which is then negated for larger values of v as the

list-wise min-Hash becomes less distinctive. Note that the re-ranking accuracy by

approximate ranking list is higher than the baseline R0, but lower than the results

of R3. Figure 6.7 (b) and (c) reports the re-ranking accuracy with the increasing

number of re-ranking results K . The retrieval accuracy increases continuously with

K , but at higher computational cost. Therefore, we set v = 5 and K = 200 in our

experiments by default.

Table 6.4 illustrates the accuracy with various numbers of hash function (M)

and list-wise min-Hash overlap sizes (v) used in re-ranking the top-200 results. It

tests the trade off between numbers of hash function (M) and list-wise min-Hash

overlap sizes (v). It is observed in Table 6.4 that we can obtain similar retrieval

accuracy with higher value of v but fewer hash functions M . Table 6.2 summarises

the re-ranking performance of R0-R4, which shows that ranking verification with

approximate ranking lists (R4) can keep the retrieval accuracy of the results of

R2-R3, and is close to spatial verification R1.

Performance of different distance measures used in min-Hash: Table 6.5

illustrates the effects of various distance measures used in min-Hash scheme as

proposed in [36, 38]: i) set similarity (sims), ii) weighted set similarity (simw)

and iii) approximate histogram intersection (simh), for both standard min-Hash
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Oxford 5K Paris 6K
# of phrase v sims simw simh sims simw simh

v = 1 0.633 0.636 0.649 0.649 0.648 0.645
v = 5 0.654 (R4) 0.650 0.661 0.652 (R4) 0.652 0.651

Table 6.5: Comparison of various similarity measures used in min-Hash scheme. Number
of hash functions: M = 512 and depth K = 200. The similarity measures are: set similarity
(sims), weighted set similarity (simw) and approximate histogram intersection (simh), as
proposed in [38].

bits R0
Re-ranking

R1 R3 R4 [105]
f Word IDs 20

p p p p p

f Geometry
160 −

p
− − −

24 − − − −
p

f tf-idf weight 32
p p p p p

h Hash key 13 − − −
p

−
Total (KB) : 16.25 66.25 16.25 20.41 23.75

Table 6.6: Average memory usage per image on the Oxford 5K dataset. f : bits per feature.
h: bits per hash function. Our experiment generates (average) 2.5K features and M = 512
hash functions for each image.

Ranking list generation
Oxford 5K Paris 6K Oxford 105K

Run time mAP Run time mAP Run time mAP
List-wise min-Hash (v = 1) 0.28 0.633 0.30 1.16 0.513
List-wise min-Hash (v = 5) 0.38 0.654 0.52 0.652 2.39 0.595

Dot product 27.21 0.674 31.66 0.653 ' 10min 0.591

Spatial verification 2.10 0.668 4.71 0.655 4.34 0.571

Table 6.7: Average run time of re-ranking the top-200 results of a query on three datasets,
measured by CPU second. Note that the results are computed sequentially.

(v = 1) and list-wise min-Hash (v = 5). As reported in Table 6.5, the re-ranking

accuracy is close in each group. This is also similar to retrieval results reported

in Table 6.2, where ranking lists are generated by dot product similarity (R2 and

R3). As seen in these experiments, our ranking verification method can make use

of several min-Hash variations.

Computational cost : We illustrate the computational cost of our ranking

verification method in re-ranking the top-200 results, with comparison to the

widely used spatial verification method. Memory usage: Table 6.6 summarises

the average memory cost for each image. Note that Table 6.6 compares various
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re-ranking methods outlined in Table 6.1, except R2. This is because R2 is too

expensive to run online. As seen in Table 6.6, spatial verification (R1) is the

most expensive method in terms of memory requirement, because it needs to

keep geometric information for each feature. Perd’och at el [105] shows that the

geometry per feature can be minimized to 24 bits without dropping the spatial

verification accuracy. Our ranking verification methods, R3 and R4, have less

memory cost than the minimized geometry [105]. Compared to the baseline R0,

the usage of hash keys to index images (R4) requires little additional memory

usage per image. Run time: We compare the run time of re-ranking top-

200 ranked results with ranking verification and spatial verification. In ranking

verification, the majority of run time is spent on generating 200 ranking lists,

which are obtained sequentially by the exact near neighbor search (dot product)

or the approximate nearest neighbor search (list-wise min-Hash). In spatial

verification, the majority of run time is spent on homography estimation between

pairwise images. Therefore, the total run time depends the number of images to

be examined and number of query relevant image can be found, instead of dataset

size. As demonstrated in Table 6.7, the list-wise min-Hash method takes less than

a second to compute 200 ranking lists, while the dot product requires about half

a minute. The gap becomes larger on the Oxford 105K dataset, in which it is no

longer feasible to calculate the ranking lists by dot product similarity. As a result,

we use R4 by default in our ranking verification method.

6.2.2 Discussion

This section discusses ranking verification compared to other improvement meth-

ods. Firstly, Table 6.8 Group B compares the state-of-the-art re-ranking methods.

Compared to them, our method performs better than spatial verification [106]. It

does not outperform methods equipped with a query expansion step, e.g. AQE and

DQE, which achieve high accuracy by a re-querying. However, our method requires

less computation cost as well as no need of any prior knowledge about the dataset.

Secondly, Table 6.8 Group C reports experimental results of ranking verification

jointly working with methods presented in previous Chapters. The re-ranking helps

to further improve the retrieval results. Finally, our ranking verification method

can be embedded in AQE and DQE to obtain an effective shortlist as shown in

Group D. In this Group, we show that ranking verification is also able to truncate
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Methods Oxford 5K Paris 6K Oxford 105K
Baseline [106] 0.612 0.639 0.515

A

Visual word re-weighting (Chapter 4) 0.660 0.674 0.598
Descriptor learning (non-linear) [108] 0.662 [108] 0.678 [108] 0.541 [108]
Soft-assignment [107] 0.673 [107] 0.660 N/A
Geometry-Preserving [159] 0.696 [159] N/A 0.604 [159]
Total association (Chapter 4) 0.700 0.682 0.680
Spatial expansion (F′15, Chapter 3) 0.701 0.683 0.667
Cross word (Chapter 4) 0.712 0.722 0.604
Fine vocabulary [96] 0.742 [96] 0.749 [96] N/A
AUG [142] 0.776 [9] N/A 0.711 [9]
SPAUG [9] 0.785 [9] N/A 0.723 [9]

B

Spatial verification [106] 0.649 0.655 0.571
Ranking verification 0.654 0.652 0.595
Context based re-ranking (Chapter 5) 0.701 0.700 0.585
QE Baseline [37] 0.708 0.736 0.679
iSP [34] 0.741 [34] 0.769 [34] 0.649 [34]
Local geometry [105] 0.788 [105] 0.634 [105] 0.725 [105]
AQE [37] 0.806 0.769 0.767
DQE [9] 0.798 0.783 0.809
Hello neighbors [114] 0.814 [114] 0.803 [114] 0.767 [114]
Total recall II [34] 0.827 [34] 0.805 [34] 0.767 [34]

C

Context based re-ranking (Chapter 5) 0.701 0.700 0.585
Total association+ Context based re-ranking 0.704 0.711 0.636
Cross word+ Context based re-ranking 0.735 0.720 0.648
Ranking verification 0.654 0.652 0.595
Total association+ Ranking verification 0.708 0.687 0.682
Cross word+ Ranking verification 0.738 0.720 0.658

D

Context based re-ranking+ AQE [37] 0.814 0.770 0.757
Context based re-ranking+ DQE [9] 0.832 0.793 0.790
Ranking verification + AQE [37] 0.764 0.755 0.742
Ranking verification + DQE [9] 0.727 0.776 0.745

Table 6.8: Comparison of ranking verification to the state-of-the-art methods. Group A:
retrieval results of methods that modify the baseline before the query is executed (pre-
process). Group B: retrieval results of methods that modify the baseline after the query
is executed (post-process). Group C: retrieval results of combining ranking verification
with our proposed methods. Note that we cite the retrieval results of AUG [142] from
literature [9].

Group D: retrieval results of combining context-based re-ranking or ranking verification with query expansion methods.

the ranking lists, similar to a spatial verification. Note that in these methods,

ranking verification + AQE (DQE), the verification step is replaced by our ranking

verification methods. As a result, the retrieval accuracy decreases simultaneously,

compared to AQE or DQE using a spatial verification to truncate the ranking lists.

More details will be discussed in next section.

6.3 Application I: Query expansion with ranking verification

Given a single query sample, query expansion (QE) methods refine the query

model by adding more relevant features from its shortlist images. For example, QE

baseline [37] adds visual words from the top-5 retrieved results (without spatial
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Query Method Shortlist images # verified images

All soul
Spatial verification

... 
24

Ranking verification

...

16

Magdalen
Spatial verification 4

Ranking verification

...

7

Table 6.9: Example of shortlist images generated by spatial verification (R1) and our
ranking verification (R4). Note that ranking verification does not require a user-specified
bounding box, and thus the verified results are not able to specify the location of the object.

verification); AQE [37] adds visual words from (up to) top-50 retrieved results,

which are located in the corresponding regions matched to the query with spatial

verification; DQE [9] treats the BoW vectors collected in AQE [37] as positive

samples, and trains a linear classifier such that query-relevant images will be

weighted more highly than others. Therefore, these QE methods rely heavily on

the shortlist images because unrelated images will corrupt the expanded query

model.

6.3.1 Shortlist generation and query expansion models

Usually, the shortlist is generated by spatial verification as proposed in AQE and

DQE2. It sets a minimum number of inlier correspondences between each dataset

image x i and the query q. As discussed above, spatial verification is difficult to

perform on widely separated images. Furthermore, it requires a bounding box to

specify the query object, which is unavailable in some cases. We show that ranking

verification provides a quality shortlist, in which query-relevant images can be

selected by the ranking consistency instead of spatial consistency, and without the

need for a bounding box. Let the shortlist initialized as empty U := ;. Similarly

to spatial verification, we set a threshold t for the ranking list similarity between

each dataset image x i and the original query q. A potential dataset image is added

2The shortlist used in QE baseline are the top retrieved results. We treat this method as baseline
in comparison of QE methods.
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U := U ∪ {uk}, uk = x i, if the similarity score sim(q, x i)> t, and we stop when the

length of shortlist is greater than 50.

6.3.2 Experimental results

We illustrate the effects of shortlist generated by our ranking verification on

various query expansion (QE) methods. Firstly, the shortlist should contain query-

relevant images. Table 6.9 shows some examples of shortlist images generated

by these two kinds of verification methods. Compared to spatial verification, our

ranking verification method is less sensitive to visual changes of target images.

For instance, there are only 4 spatially verified results found for query Magdalen

because the object contains few inliers for geometric matching. In contrast, the

number of verified results enlarges when using our ranking verification method

for query Magdalen . Figure 6.8 investigates the number of images verified by

increasing thresholds: t ∈ (0, 0.5] for ranking verification and up to 26 inliers for

spatial verification. As the threshold enlarges, the proportion of true positives is

close to 1 in the shortlist images found by both verification methods. Therefore,

both of the methods can guarantee that the images collected are all true positives if

the thresholds are high enough, but ranking verification collects, on average, more

true positive results. The threshold for ranking verification is t = 0.1, i.e. any

dataset images having lower ranking consistency score than 0.1 will be rejected

in the verification process. Similarly, the threshold for spatial verification is the

number of inliers returned by the RANSAC estimation. We reject dataset images

having less than 10 inliers consistent to the original query in spatial verification.

Secondly, we show that ranking verification can act as a substitute of spatial

verification in many techniques needing a verification process to obtain shortlist.

Table 6.10 combines AQE [37], DQE [9] with our ranking consistency method.

We replace the shortlist generated by spatial verification with that generated by

ranking verification, as shown in Table 6.9. As we do not use a bounding box

to specify object in the target images, it is difficult to surpass the performance

of AQE and DQE with R1 (spatial verification). The retrieval performance is

slightly lower on Oxford and Paris datasets, where the queries are rigid objects.

However, our ranking verification method has advantage in dataset containing

less geometric information, for example, the Caltech Categories dataset. As seen

from Table 6.2 ranking verification can improve the retrieval performance in cases
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Figure 6.8: Illustration of the number of verified images v.s. the number of true positives
obtained by ranking verification and spatial verification. The ranking verification helps to
find more true positives for a fixed threshold.

dataset
QE baseline [37] AQE [37] DQE [9]

R0 R1 R4 iSP [34] R1 R4
Oxford 5K 0.708 0.806 0.764 0.825 [34] 0.798 0.727
Paris 6K 0.736 0.769 0.755 0.722 [34] 0.783 0.776
Caltech Categories 0.497 0.447 0.519 N/A 0.313 0.520
Oxford 105K 0.679 0.767 0.742 0.761 [34] 0.809 0.745

Table 6.10: Retrieval performance of query expansion (QE) combined with ranking
consistency method. We report the results of QE baseline [37], AQE [37] and DQE [9]
from our implementation, which have slight difference in baseline results compared to
these papers. The results of incremental spatial verification (iSP) is cited from Total Recall
II [34]. Note that our method does not need to use a bounding box to specify the object,
and thereby collect all the visual words appearing in the shortlist in AQE and DQE.

where spatial verification can not identify objects in the target images, on the

Caltech Categories dataset. Consistently, both the performance of AQE and DQE

with R4 can outperform R1 in those datasets depicting objects with less rigid

spatial structure. Therefore, ranking verification is more adaptive to various image

datasets, and we show its further usage in image dataset mining below.
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6.4 Application II: Discovery of dataset images

Unsupervised topic discovery in image datasets is an active area of research. This is

usually conducted on a matching graph, which is built on the dataset images, such

that one can apply graph-based methods to segment the graph, and thus obtain

the visual content of the whole dataset. A relational graph, G = (R,E,W) with

nodes R, edges E and weights W, is constructed on the basic of similarity between

pairwise dataset images. Each dataset image is treated as a node, two nodes i and

j are linked by a weighted edge according to the similarity between i and j. As a

result, the graph G relies heavily on the similarity measurement of images.

In previous work [111, 109, 142], the weight between a pair of nodes in

the graph is proportional to the number of inliers detected by spatial verification

between these two images. In this section, we show that nodes can be connected

with ranking consistency similarity. The edge weight W (i, j) ∈W between node i

and j is defined as: W (i, j) = sim(x i, x j), where sim(x i, x j) is the RBO similarity

between the ranking lists of x i and x j, sim(x i, x j) ∈ [0,1]. After building the graph

G, we apply Hierarchical Authority Shift (HAS) [32] to automatically cluster the

nodes R. The clustering does not require pre-defined number of clusters.

6.4.1 Experimental results

We adopt the Oxford dataset where each image has been manually labeled

according to its visual quality: “good”, “ok”, “junk”, and “unseen”. We build

up the graph G on a collection of images which include all ‘’good”, “ok’, “junk”

images containing the buildings and the rest of them are random “Unseen” image,

as illustrated in Table 6.11. Every image in the corpus is treated as a query,

which results in an edge between the query and its verified retrieval results if

exist. After building the graph, we apply Hierarchical Authority Shift (HAS) [32]

to cluster the dataset, such that each image will be assigned to one of the clusters.

Figure 6.9 shows some clustering results of the Oxford dataset, each of them

describes different major views of the buildings.

To quantify the clustering performance, we calculate the average coverage

of cluster results on different graphs, which are built on spatial verification and

ranking verification, respectively. That is, for each cluster, we count the number

of images belonging to different labels: “good”, “ok”, “junk”, or “unseen”. The
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Figure 6.9: Clustering results of the Oxford dataset. The graph data includes “good”, “ok”
and “junk” images. Note that we show parts of the results in some clusters that are too
large to display.

# image
Ranking verification Spatial verification

# clusters avg. rate # clusters avg. rate
good + ok 567 51 0.975 28 0.977

good + ok + junk 845 103 0.950 46 0.973
good + ok + junk + unseen (500) 1345 165 0.900 59 0.915

good + ok + junk + unseen (1000) 1845 232 0.886 76 0.826

Table 6.11: The average coverage of dataset images via different graphs built on spatial
verification and ranking verification.

coverage of one cluster is the fraction of the number of matching images to the

total number of images contained in this cluster. Note that we ignore the clusters if

they are mainly “unseen” images. The overall score for the dataset clustering is the

average of these coverage scores which can be used to judge the overall connection

of the graph. Detailed results are reported in Table 6.11, where the graph built

on spatial verification performs well on segmentation of relatively clear images.

However, its accuracy drops dramatically when there is increasingly noisy data, as

shown in Figure 6.10. The graph built on ranking verification is less sensitive to

the image condition changes, as it is not easily disturbed by noisy data.
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Figure 6.10: The average coverage of dataset images via different graphs built on spatial
verification and ranking verification, corresponding to Table 6.11.

6.5 Conclusion

In this chapter, we have proposed an image matching framework by using ranking

consistency, which aims to explore the underlying ranking relationships among

images. The proposed image matching framework introduces ranking consistency

into the process of ranked results verification, leading to a more robust similarity

measure as well as retrieval results. To ensure the efficiency of ranking consistency,

a list-wise min-Hash scheme is developed to accomplish the task of an approximate

similarity ranking for large scale image datasets. Because of its efficiency and

effectiveness as a retrieval post-process, our ranking consistency method is easily

integrated into various retrieval-related applications (e.g. query expansion and

scene summarization). Experimental results have shown the flexibility and efficacy

of the proposed image matching framework while retaining the computational

efficiency.
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OBJECT RETRIEVAL WITH GROUP-QUERY

CHAPTER VII

In previous chapters, we have discussed a number of methods built on the

BoW model to improve the retrieval accuracy. These methods make use of

several auxiliary steps to improve the image representation or similarity measure.

Chapter 3 has illustrated the improvement of the BoW representation by a spatial

expansion, in which a visual thesaurus is proposed to collect spatially related visual

words offline. Chapter 4 has presented enhancements for the standard image

similarity measure. These methods use an offline learning stage to collect visual

word correlation and importance, and improve the query model online. Chapters 5

and 6 discuss the improvement of image similarity used for ranking dataset with

embedded rank information obtained online. These two methods do not need to

change the offline stage.

Despite encouraging results, these methods have difficulty in capturing the

diverse distribution of possible appearances of the query object, leading to a strong

dependence on query image quality. As shown in Figure 7.1, the performance

when retrieving the same building object varies dramatically: the retrieval case

with front viewpoint (I) in Figure 7.1 has significantly higher accuracy than

the other cases (the right side viewpoint (I I) and left side viewpoint (I I I) in

Figure 7.1). In the cases of (I I) and (I I I), query expansion [37] usually fails

because there are not enough true positives detected by spatial verification, as

investigated in [34].

Standard object retrieval is a query-by-example problem, in which image

similarity is examined between a simple query and dataset images. Less common

is the use of multiple query images to specify a single object. For example, image

sharing websites such as FLICKR or Facebook group images into communities

containing the same or similar subjects. Typically, each community contains images

of the same object from varying viewpoints. We define a group-query as a small

collection of images, such that the target object (used for query) is depicted as a
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Figure 7.1: Illustration of group object retrieval method, using 3 query images of the same
object but taken from different viewpoints. Individual query results are mined for positive
and negative examples, which are then used to train a boosted classifier. The classification
function is then used to rank image results. Typically, it obtains higher accuracy than is
possible from any individual query.

variety of images containing it.

Based on this, we introduce a group-query based object retrieval method

(illustrated in Figure 7.1), which uses a small group of images of a query object

to reflect its appearance variation (e.g. different viewpoints). The aim of group-

query is to find all images in the dataset that contain the same object. Intuitively,

group-query more accurately describes the target object than retrieval with a single

query. However, it involves two issues: i) the description of the input group-

query; ii) the ranking function to sort the dataset images. We address the first

issue by an automatic collection of relevance feedback, as discussed in Section 7.1.

The second issue is more complicated, because the query includes more than one

instance image. This can be done by two types of ranking function: the standard

ranking function with an average query vector or a discriminative function with a

set of query vectors. Section 7.2 discusses the group-query retrieval by averaging

the image vectors, which has been detailed in [37, 8] 1. Section 7.3 discusses our

discriminative ranking function used for ranking the dataset images, which is built

on previous methods [115, 9].

In this chapter, we prefer the discriminative function because it is more

flexible to various query instances. The outline of our discriminative method is

1We did the similar work [30] of group-query with [8] at the same period.
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Figure 7.2: System framework of BoW based retrieval system, focusing on group-query
and ranking function (offline process). Modules need to be changed are labeled in dash
box. The offline process is unchanged.

described as follows (also see Figure 7.1):

1. A group-query is defined as the set Q = {qi}Mi=1, where each instance qi is

represented as a tf-idf vector and M is the number of query instances.

2. Let R = {ri}Mi=1 denote the corresponding set of ranking lists, where each

ranking list ri is obtained by performing pairwise dot product based image

matching between the query qi and the dataset images.

3. Organize training samples T , which contain positive and negative image

samples selected from R .

4. Train a discriminative ranking function F(d) with the training samples T .

5. Re-rank the dataset images according to the weights given by the discrimi-

native ranking function F(d).

Among these steps, we pay attention to designing an effective and efficient

ranking function for capturing the underlying affinity relationships betweenQ and

the database images, such that relevant images are highly ranked while irrelevant

images are lowly ranked. Figure 7.2 shows the modules proposed in this chapter.

Related work: One of the few previous works to exploit the group-

query information is [115], where users input multiple query images as positive

samples of a class, along with negative images that do not contain the object.
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Using these positive and negative samples, a discriminative classification model

is learnt to rank all images in the dataset. Consequently, the learnt ranking

model [115] is independent of the retrieval database, and requires a large

number of predetermined positive images (provided by users) and negative images

(collected offline) for high retrieval accuracy. Alternatively, a target object in the

dataset can be matched by a discriminative relevance evaluation, where positive

and negative queries are used to obtain the mutual information score [92]. A

discriminative ranking criterion is well suited to the use of multiple query images

as it models the set of positive samples non-parametrically, and can therefore

accommodate a diverse set of image views. It also naturally benefits from the

addition of extra positive and negative samples.

7.1 Forming a group-query and training samples

We form a group-query Q = {qi}Mi=1 as a set of related images containing the

same object, as examples shown in Figure 7.1. The standard ranking function

compares image similarity by one-to-one comparison in the query-by-example

methods. However, the group-query needs to consider the similarity between a

dataset image and a small collection of images. We process the group-query by

two kinds of ranking functions: i) average the group-query, such that the ranking

function is the same as the standard retrieval system (dot product similarity),

which is discussed in Section 7.2. ii) treat the group-query as a whole, and train a

classifier to separate the dataset images, which is discussed in Section 7.3.

Both of these methods require training samples to be collected in advance.

Initially, we obtain training samples T = {(di, yi)}Ki=1 where di is the tf-idf

vector and yi ∈ {1,−1} indicates whether the corresponding image contains

the object. Images (tf-idf vectors) with at least n matches to any query image

are provided as positive examples and images with the lowest ranked non-zero

similarity scores are taken as negative examples. There are many ways to collect

positive samples from query instances, for example spatial verification [106] or

ranking verification presented in Chapter 6. These methods are able to collect

reliable query relevant images from the retrieval results. In this chapter, we firstly

adopt spatial verification in training data collection, same as [9], in Section 7.2.

Section 7.4.3 will discuss the retrieval results with ranking verification.
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For each query instance qi, we use spatial verification [106, 37] to collect

positive training samples that have a minimum number (≥ 10) of spatially

consistent matches and select the lowly ranked samples in ri as negative training

samples, as done in [9].

7.2 Average group-query retrieval

The averaging function directly uses the image vectors contained in Q to form

a new query vector. The dataset images are sorted by the standard dot product

similarity between query/dataset images. It can be conducted in two ways as

described below:

• Averaging group-query: Using the group-query Q = {qi}Mi=1, we are able to

represent the object by averaging tf vectors ofQ, similar to the average query

expansion (AQE) [37] (Eq. (2.13)). The averaged vector is used to query the

dataset, and the retrieval process is the same as the standard method.

• Averaging positive training data: The query instances in Q are sometimes

not sufficient to describe an object, thus we expand them with positive

training data samples T = {(di, yi = 1)}Ki=1 obtained by spatial verification.

This is useful when the input images can not well describe the target object.

The retrieval process is the same as the standard method.

Either method described above is effective when the query images are clear

and related. However, the input query might contain noisy instances from different

buildings, e.g. there is one instance Ashmolean (highlighted in red) that does

not belong to All souls as shown in Figure 7.3. Note that the averaging function

assumes all query images are similar and treats each of them as the same. The

retrieval results therefore highly depend on the number of quality query instances

can be collected in the training samples. As shown in Figure 7.3, the top retrieval

results contain a couple of images of Ashmolean. These images are removed from

the top ranked results after averaging with the positive training data, which are

mostly of All souls, as shown in Figure 7.4.
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Figure 7.3: Retrieval results of noisy group query. The group-query contains one instance
that is different from others (highlighted in red). The retrieval results are calculated by
averaging group-query.

Figure 7.4: Retrieval results of noisy group query. The group-query contains one instance
that is different from others (indicated in red). The retrieval results are calculated by
averaging positive training data.

7.3 Discriminative group-query retrieval

In this section, we discuss the discriminative ranking function for group-query

retrieval. In contrast to the averaging ranking function, dataset images are sorted

by weights learnt from positive and negative training data. This involves a training

stage to obtain a decision boundary between positive and negative samples, and

thus the discriminative ranking function should be efficient during run time. In

this section, we apply a linear SVM and a non-linear boosting classifier.

7.3.1 Discriminative ranking function with linear SVM

Using the training data samples T = {(di, yi)}Ki=1, we are able to train a

discriminative model to separate the positive and negative data, as illustrated in
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Figure 7.5: Example of multiple samples used as query All souls. A discriminative classifier
is trained by linear SVM, in which the positive data is collected from the shortlist of these
samples.
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Figure 7.6: Illustration of training data separation by a linear SVM classifier.

Figure 7.5. The group-query, All souls, is now described by 5 images with different

views of the building. A linear SVM classifier is efficient and effective in solving

this problem, as used in DQE [9]. Our method, following DQE, trains a linear SVM

using these positive and negative BoW vectors to obtain a weight vector w. The

mathematical formulation of learning a linear SVM classifier is given as follows:

min
w,b,ξ

1
2
wT w+ C

∑

i ξi

s.t. yi(wT di + b)≥ 1− ξi, ξi ≥ 0
(7.1)

where C is a trade-off control factor.
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After learning the weight vector w, the ranking score between a dataset

image and the group-query is the signed distance to the decision boundary, as

illustrated in Figure 7.5. Mathematically, the ranking score can be measured by

value wT d, where d is the BoW vector of a dataset image. However, a linear

separation is unable to capture non-linear discriminative information, as illustrated

in Figure 7.6. As a result, we propose a non-linear classifier to rank the dataset

images but still keep the efficiency of a linear SVM.

7.3.2 Discriminative ranking function with boosting

In this section, we learn a ranking function that aims to capture non-linear

discriminative information from the training data samples. Linear SVM classifiers

are adopted as weak learners in a boosting framework [45, 147] due to their

simplicity and efficiency. Using ensemble learning, these linear SVM classifiers can

be adaptively combined to generate a strong classifier. In each boosting iteration, a

linear SVM classifier is learned over a subset of T , which is obtained by weighted

random sampling over T . Instead of simple linear SVM ranking functions

used in [9], our boosting-like ranking function effectively captures nonlinear

discriminative information by constructing a nonlinear decision boundary using

an additive linear approximation, as illustrated in Figure 7.7. To cope with the

nonlinear classification problem, non-linear kernel SVM is an alternative, but

prediction is usually computationally expensive, making it impractical for scalable

object retrieval. Therefore, our ranking function is more suitable because it can

not only improve the retrieval effectiveness but does so with low computational

complexity as [9]. Algorithm 11 provides the details of constructing the boosting

framework.

Moreover, as most computation of Algorithm 11 is spent on training linear

SVMs, its run time can be reduced by parallelising SVM training before boosting

iteration, similar to [76]. We do this by collecting a weak classifier pool of linear

SVM before boosting from random positive and negative samples from T . In effect,

steps 5 and 6 in Algorithm 11 are executed in parallel before the boosting iteration

begins. After training the discriminative ranking function, an approximate ranking

function F(d) is formed to fit the data by selecting from these weak classifiers

during each boosting iteration: F(d) =
∑T

t=1αt · ft(d). By applying the ranking

function F , each dataset image d will be assigned a signed ranking score. The new
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Algorithm 11 Ranking function learning using Adaboost-LinearSVM
1: Input: Training samples T = {(di , yi)}Ki=1, maximum number of boosting iteration T .
2: Output: Ranking function F(d).

3: Initialize: Data distribution: D1(i) =
1
K

, ∀i and t ← 1.
4: while t < T do
5: Weighted random sampling positive and negative data from T with distribution Dt .
6: Train a linear SVM ft(d) on the training set.
7: Calculate the training error: εt =

∑K
i=1 Dt(i)I(yi 6= ft(di)), where I is the indicator function.

8: Calculate the weight: αt =
1
2

ln (1−εt )
εt

.

9: Update the distribution Dt+1(i) =
Dt (i)exp(−αyi ft (di))

Zt
, where Zt is a normalization factor.

10: t ← t + 1.
11: end while
12: Return: Ranking function F(d) =

∑T
t=1αt · ft(d).

Positive training data

Negative training data
F(x): boosting

Figure 7.7: Illustration of training data separation by a boosting classifier.

ranking list is sorted by F(d).

In contrast to the averaging function, the discriminative function trains a

weighted vector to rank the dataset images, instead of treating each query instance

as the same. This helps to overcome the sensitiveness of averaging ranking

function, as examples illustrated in Figures 7.3 and 7.4. More specifically, when

M = 1, our group-query method degenerates to a single query method similar

to the DQE method in [9], but with an additional boosting step as described in

Section 7.3.2. We use the same query instances in Figures 7.8 and 7.9, but rank

dataset images as their distance to a weighted vector trained by a linear-SVM. As

shown in Figures 7.8 and 7.9, the top ranked results contain both images of All

souls and Ashmolean.

As shown in Figure 7.1, a group-query helps to overcome the limitation of
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Figure 7.8: Retrieval results of noisy group query. The group-query retains one instance
that is different from others (indicated in red). The retrieval results are calculated by
discriminative group-query. The positive training samples are these four query instance,
while the negative training samples are their bottom ranked results.

Figure 7.9: Retrieval results of noisy group query. The group-query is the same as used
in Figure 7.8. The retrieval results are calculated by discriminative positive training data.
The positive training samples are top verified results returned by these four query instance,
while the negative training samples are their bottom ranked results.

individual query. For example, All souls and Radcliffe camera from the Oxford

dataset have average precision (AP) scores 0.96 and 0.97 by using the linear-SVM,

respectively. The boosting-like ranking function attains slightly higher results, with

AP scores being 0.98 and 0.97 on the same clear landmarks. The boosting-like

framework is useful in dealing with some lower quality data, i.e. objects are

unclear in the query instance. For example, the retrieval performance with the

linear SVM ranking function degrades greatly in the cases of lower quality object

landmarks, e.g., Magdalen and Keble with the AP score being 0.288 and 0.692,

respectively. In contrast, using boosting enables the retrieval accuracy (mAP) to

reach 0.407 and 0.870 on Magdalen and Keble. For an intuitive understanding,

Figure 7.10 shows the top ranked results of using two different ranking functions

with respect to Magdalen. As is seen in Figure 7.10, the top ranked results of

our boosting-like ranking function is better than those of the linear SVM ranking
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Linear SVM

Our method

Figure 7.10: Top-6 retrieved results of using the linear SVM ranking function and our
boosting-like ranking function with respect to the object landmark Magdalen (illustrated
in Figure 2.7). The highlighted images correspond to false positive samples.

function (containing a few false positive samples) because query is poor quality.

7.4 Experiments

The retrieval experiments are conducted on three public object retrieval datasets:

two small scale datasets (Oxford 5K and Paris 6K) and a large scale dataset Oxford

105K.

7.4.1 Experimental setup

The training sample collection builds sets of positive examples (spatial verified

results) and negative examples (from the bottom of R with lowest nonzero

similarity scores). In each boosting iteration, we randomly select (up to) 50 and

200 tf-idf vectors as positive and negative examples, respectively. The linear SVM

classifier is trained using the LIBSVM tool [24]with C = 1 as in [9]. The maximum

iteration number T in boosting learning is set to 20. The run time for a single linear

SVM is 0.28s.

Group query instances are provided online. These can be any images of

a particular object. In our experiments, we utilize annotated image collections

to organize query instances Q which are varied but contain the same object

landmark. The annotation of the Oxford and Paris datasets [4] has been provided.

Both of the datasets contain 11 building landmarks for evaluation, with four

kinds of visual condition (as described in Section 2.3): “good”, “ok”, “junk” or

“unseen”. The query instances are organized as follows: i) we randomly select the

same number of images from “good” and “ok” collection as high quality query to
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Landmark M = 4 M = 1 Landmark M = 4 M = 1

All souls 0.980 0.746 Hertford 0.895 0.801
Ashmolean 0.805 0.418 Keble 0.870 0.844
Balliol 0.867 0.200 Magdalen 0.407 0.439
Bodleian 0.799 0.774 Pitt river 0.852 0.974
Chri. chur. 0.864 0.762 Radc. came. 0.965 0.326
Cornmarket 0.711 0.657

Table 7.1: Comparison of (maximum) individual and group-query retrieval performance
on the Oxford 5K dataset.

evaluate the effect of group-query (Table 7.1-7.4 and Figure 7.12). ii) similarly,

images from “ok” and “junk” are treated as low quality query to evaluate the

discriminative ranking function (Table 7.2 and Figure 7.13). iii) To compare with

the state-of-the-art methods, we use the 55 queries with bounding boxes defined

in [4] (Table 7.5).

7.4.2 Experimental results

We illustrate the effects of our group-query method as follows:

Effects of using group-query Table 7.1 compares the mAP score obtained for

each landmark on the Oxford 5K dataset, using individual query images (M = 1)

and groups of 4 query images (M = 4). The individual query results are obtained

by running each of the 4 queries in the group separately, and storing the maximum

result. The query groups are sampled using the “high quality” strategy. It is clear

from Table 7.1 that the group-query improves retrieval performance for 9 out of

11 queries, and by an average of 29.9%. Note that our method fails in the cases

of (Magdalen, Pitt river) due to a lack of quality positive samples. Figure 7.11

illustrates that the group-query can result in significantly higher precision-recall

performance than any individual query, using the object landmark.

Evaluation of query instance number M We investigate the effects of varying

the numbers of query instances. Firstly, Figure 7.12 investigates the effects of

increasing number of instance in high quality query. As seen in Figure 7.12, the

retrieval accuracy increases as M enlarges and plateaus when M = 10. This

indicates that our method only needs a small number of high quality query
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Figure 7.11: Precision-recall (PR) curves of individual query v.s. group- query. Group
query obtains higher retrieval accuracy than any individual query.
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Figure 7.12: Retrieval performance with different numbers of high query quality instances.

instances. As M increases, the computational cost increases linearly, due to

the repetition of the dot product ranking and spatial verification for each query

instance. In order to balance effectiveness and efficiency, M is set to 4 high quality

query in the experiments below. Similarly, Figure 7.13 investigates the retrieval

accuracy with increasing number of low quality query images. The retrieval

accuracy fluctuates as M enlarges but plateaus 0.8 when M is greater than 6.

Investigation of using linear SVM v.s. Adaboost-LinearSVM Table 7.2 com-

pares the retrieval performance using two types of classifiers used in the discrim-

inative ranking function: the linear SVM (referred to as R1) and the AdaBoost-

LinearSVM (referred to as R2). The comparison experiment is conducted on

two types of group query, that is, retrieval with high quality query instances
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Figure 7.13: Retrieval performance with different numbers of low quality query instances.

(“good" and “ok" images in Groups A, B and C) and retrieval with low quality

query instances (“ok" and “junk" images in Groups C, D and E). As is seen in

Table 7.2, the discriminative ranking function with AdaBoost-LinearSVM always

performs better than linear SVM. The superiority of the boosting-like ranking

function is more evident in the low quality query. For example, in Group E the

retrieval performance using boosting-like ranking function (R2) is 3.7% (5.9%)

higher on the Oxford 5K (Paris 6K) datasets than the results using linear SVM

ranking function (R1). Moreover, Table 7.3 illustrates the re-ranking CPU time

of different discriminative ranking functions. From Table 7.3, we see that our

method achieves the best retrieval accuracy with high efficiency. By parallelising

SVM training (Section 7.3.2), we reduce the re-ranking time at a slight cost to mAP

because the linear-SVM classifiers are pre-trained in a pool.

Comparison with query expansion Similar to our method, average query

expansion (AQE) [37] also applies spatial verification to top ranked retrieval

results and collect a number of true positives. However, it uses query averaging

of the visual words collected in the positive images, while our method trains

a discriminative ranking function with the same positive images and additional

negative images, as discussed in Section 7.2. Table 7.4 compares our group-query

method with average query expansion (AQE) [37] in the following aspects: i)

the best (maximum mAP socre) of AQE for each individual query. ii) AQE on all

positive examples collected by the group-query. As is seen in Table 7.4, our group-

query method can outperform AQE in different experimental configurations, even
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Method M Oxford 5K Paris 6K

A R1 2 0.789 0.772
high R2 2 0.813 0.780

B R1 4 0.809 0.857
high R2 4 0.834 0.871

C R1 10 0.833 0.864
high R2 10 0.846 0.875

D R1 2 0.668 0.701
low R2 2 0.676 0.714
E R1 4 0.755 0.682

low R2 4 0.783 0.722
F R1 10 0.756 0.791

low R2 10 0.791 0.824

Table 7.2: Retrieval performance with different discriminative ranking functions: R1:
group-query with linear SVM [9], R2: group-query with boosting. M denotes the
maximum number of queries in Q. Both high and low quality queries are tested, as
indicated in the table. The number of query instances is up to M.

Method mAP re-ranking CPU time (s)

linear SVM 0.809 0.37
Adaboost-linearSVM 0.834 1.12

RBF-kernel SVM 0.815 12.26
Adaboost-linearSVM (parallelised) 0.830 0.49

Table 7.3: Average re-ranking CPU time for different classifiers used in the discriminative
ranking function: linear SVM, Adaboost-linearSVM, and non-linear SVM (RBF-kernel). The
group-query (M = 4) is conducted on the Oxford 5K dataset.

Method A B Oxford 5K Paris 6K

tf-idf + dot product (maximum) 4 0.631 0.605
AQE (maximum)

p
4 0.742 0.657

AQE (positive examples)
p

4 0.743 0.809
Group-query

p
4 0.834 0.871

Table 7.4: Retrieval results comparison between group-query and query expansion
methods, applied to both individual and group queries. A denotes use of spatial
verification. B denotes the maximum number of queries in Q.

when given the same images.

Comparison with the state-of-the-art methods We compare our method with

several state-of-the-art methods, as listed in Table 7.5 Group B focuses on query

model refinement with post-processes. The instances Q used for group-query
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Methods Oxford 5K Paris 6K Oxford 105K
Baseline [106] 0.612 0.639 0.515

A

Visual word re-weighting (Chapter 4) 0.660 0.674 0.598
Descriptor learning (non-linear) [108] 0.662 [108] 0.678 [108] 0.541 [108]
Soft-assignment [107] 0.673 [107] 0.660 N/A
Geometry-Preserving [159] 0.696 [159] N/A 0.604 [159]
Total association (Chapter 4) 0.700 0.682 0.680
Spatial expansion (F′15, Chapter 3) 0.701 0.683 0.667
Cross word (Chapter 4) 0.712 0.722 0.604
Fine vocabulary [96] 0.742 [96] 0.749 [96] N/A
AUG [142] 0.776 [9] N/A 0.711 [9]
SPAUG [9] 0.785 [9] N/A 0.723 [9]

B

Spatial verification [106] 0.649 0.655 0.571
Ranking verification (Chapter 6) 0.654 0.652 0.595
Context based re-ranking (Chapter 5) 0.701 0.700 0.585
QE Baseline [37] 0.708 0.736 0.679
iSP [34] 0.741 [34] 0.769 [34] 0.649 [34]
Local geometry [105] 0.788 [105] 0.634 [105] 0.725 [105]
DQE [9] 0.798 0.783 0.809
AQE [37] 0.806 0.769 0.767
Hello neighbors [114] 0.814 [114] 0.803 [114] 0.767 [114]
DQE + Boosting (single query) 0.823 0.782 0.818
Total recall II [34] 0.827 [34] 0.805 [34] 0.767 [34]
DQE + Boosting (Group-query) 0.896 0.856 0.890
DQE + Boosting (Group-query with ground truth) 0.901 0.852 0.890

C

Context based re-ranking (Chapter 5) 0.701 0.700 0.585
Total association+ Context based re-ranking 0.704 0.711 0.636
Cross word+ Context based re-ranking 0.735 0.720 0.648
Ranking verification (Chapter 6) 0.654 0.652 0.595
Total association+ Ranking verification 0.708 0.687 0.682
Cross word+ Ranking verification 0.738 0.720 0.658
Group-query 0.901 0.852 0.890
Total association+ Group-query 0.904 0.852 0.893
Cross word+ Group-query 0.909 0.856 0.901

Table 7.5: Comparison of group-query to the state-of-the-art methods. Group A: retrieval
results of methods that modify the baseline before the query is executed (pre-process).
Group B: retrieval results of methods that modify the baseline after the query is executed
(post-process). Group C: combination of pre-process and post-process. In this group,
Group-query refers to DQE + Boosting (Group-query with ground truth) in Group B. Note
that we cite the retrieval results of AUG [142] from literature [9].

in Table 7.5 Group B are high quality query (M = 1) for “DQE + Boosting

(single query)” and high quality query (M = 4) for “DQE + Boosting (Group-

query)”, respectively. The instances Q are the 5 ground truth files defined

in [4] of each landmark for “ DQE + Boosting (Group-query with ground truth)”.

As seen in Group B, all group query methods can outperform the state-of-the-

art. In particular, when only a single query instance is available, our method

“DQE+Boosting (single query)” can outperform DQE [9] (using linear SVM

ranking function instead). In cases where multiple query instances are available,

boosting group retrieval with a small number of query instances can significantly

improve the retrieval results. In Table 7.5 Group C, “Group-query” refers to

DQE+Boosting with 5 ground truth files of each landmark in Oxford 5K and

174 Object retrieval with group-query—CHAPTER VII



Group query: All souls

Group query: Ashmolean

Group query: Balliol

Group query: Hertford

Figure 7.14: Illustration of group-query retrieval results, with M = 4 high quality query
instance, corresponding to the precision-recall curves shown in Figure 7.11.

Paris 6K datasets. Combining with total association and cross-word matching

can further improve the retrieval results. However, the performance gain is small

because the retrieval results are trained weights according to positive (negative)

samples. The positive samples are collected by spatial verification, whose

information has already partly been exploited by an object-based thesaurus used in

total association and cross-word matching. Finally, we show retrieval examples by

high and low quality query in Figure 7.14 and Figure 7.15, respectively. Retrieval
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Group query: All souls

Group query: Ashmolean

Group query: Balliol

Group query: Hertford

Figure 7.15: Illustration of query retrieval results, with M = 4 low quality query instances
used as group-query.

with high quality query images can lead to accurate retrieval performance. The

performance is slightly affected if the quality of query images become low, but not

as badly as a single low quality query.

176 Object retrieval with group-query—CHAPTER VII



Dataset
QE Baseline [37] AQE [37] DQE [9] Group-query

R0 R1 R4 iSP [34] R1 R4 R1 R4
Oxford 5K 0.708 0.806 0.764 0.825 [34] 0.798 0.727 0.901 0.760
Paris 6K 0.736 0.769 0.755 0.722 [34] 0.783 0.776 0.852 0.871
Caltech Categories 0.497 0.447 0.519 N/A 0.313 0.520 0.333 0.720
Oxford 105K 0.679 0.767 0.742 0.761 [34] 0.809 0.745 0.890 0.840

Table 7.6: Retrieval performance of group-query with ranking verification, and other
query expansion methods. The ranking verification methods R1 and R4 are consistent
to Table 6.1.

7.4.3 Group-query with ranking verification

In this section, we show that group-query can also work with verification results

returned by ranking verification proposed in Chapter 6. Similar to spatial

verification, ranking verification is able to determine a set of reliable true positives.

However, it does not require geometric information from raw features and thus is

not restricted to rigid objects, e.g. Oxford buildings.

Table 7.6 reports the results of group-query combined with ranking verifica-

tion. We use the 5 queries provided by [4] for each landmark as an object. Similar

to the results of DQE (R1 and R4), ranking verification (R4) works effectively when

the objects in target images can not be detected by spatial verification (R1). This

is more evident in the Caltech Categories, where the various methods, including

AQE, DQE and group-query with spatial verification (R1), perform worse than the

QE baseline. These results illustrate that our ranking verification is an alternative

verification method, that is especially useful when the target objects are not rigid

among dataset images.

7.5 Conclusion

In this chapter, we have introduced the notion of a group-query, and shown

its effectiveness for object retrieval. The group-query can be input manually,

or automatically gathered from a single query image. We proposed a boosted

discriminative ranking function to refine the group-query model. The proposed

ranking function captures nonlinear discriminative information on the retrieved

data samples effectively and efficiently. Experimental results show that our method

can achieve higher performance than competing methods.

Moreover, our ranking verification method can operate as an alternative to
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spatial verification to generate reliable positive and negative training data. The

experimental results show that our method is more flexible than spatial verification

on various datasets at little extra cost.
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CONCLUSION
CHAPTER VIII

This section summarizes the contributions of this thesis, and discusses several

directions of future research for object retrieval.

8.1 Contributions

Throughout this thesis we have developed a number of methods to improve the

retrieval performance of a BoW retrieval system. It has been shown that there

are three main issues affecting the retrieval performance: i) image representation;

ii) image similarity measure and iii) re-ranking retrieval results. The methods in

this thesis have addressed all these issues. Their performance, together with the

state-of-the-art methods, are summarized in Table 8.1.

In Chapter 3, we propose a visual thesaurus structure to store spatial

relatedness of visual words and a spatial expansion method to improve the image

representation of query. There are two ways to organize these visual words: based

on a general thesaurus (F) or an object-based thesaurus (F′). We prefer object-

based thesaurus (F′) in object retrieval because it only considers foreground words

WS, thus avoids background information.

In Chapter 4, we focus on issue ii). We improve the standard tf-idf

weight scheme such that foreground words will be weighted heavily. An

association of spatial expansion and re-weighting is then proposed to consider

both relatedness and importance of visual words. We also present a cross-word

matching similarity between a pair of query/dataset images, such that matching

features can contribute to the similarity even if they are mapped to different visual

words. Because a learning stage is required, we have noticed that there is some

limitation of the retrieval performance improvement in the methods proposed

in Chapters 3 and 4. The object-based thesaurus mostly works effectively on

retrieving rigid objects, as it relies on spatial transform to detected foreground.
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From Chapter 5, we pay attention to issue iii) in the retrieval system.

Our goal is to refine the initial retrieval results only with the ranking informa-

tion. Chapter 5 presents a re-ranking method that considers contextual ranking

information, such that relevant images are ranked based on other images in a

context. Chapter 6 proposes a ranking consistency examination, leading to a

more robust retrieval performance. Both methods are also easily integrated into

various retrieval-related applications. Compared to other post-processing methods

(Table 8.1, Group B), our methods presented in Chapters 5 and 6 rely neither

on geometric information of raw features nor on a re-querying process as used in

query expansion. Instead, these re-ranking methods only take account of ranking

information returned by the initial retrieval results. Therefore, our re-ranking

methods are more flexible on various image datasets.

In Chapter 7, we define the image retrieval based on a group-query, and

rank the dataset images by trained weights. We construct a nonlinear ranking

model using an ensemble of linear SVM that are adaptively weighted by boosting.

This outperforms other state-of-the-art methods on the standard retrieval datasets.

8.2 Summary

The full comparison of the state-of-the-art methods to our proposed methods is

listed in Table 8.1.

As seen in Table 8.1 Group A, the retrieval accuracy (without re-ranking)

on Oxford 5K dataset has increased incrementally in recent years, i.e. from

0.612 (Philbin et al. [106], 2007) to 0.785 (Arandjelović and Zisserman [9],

2012). These methods take account of increasing information about the dataset

images. The retrieval accuracy benefits from the enriched query model. Visual

word re-weighting (Chapter 4) and descriptor learning [108] are two methods

that do not need to expand the query words. Thus, their retrieval accuracy is

relatively low, compared to other methods in Group A. The expansion of query

words, e.g. soft-assignment [107], spatial expansion (F5 and F′15, Chapter 3) and

total association (Chapter 4), achieves about 10% increase in accuracy compared

to the baseline. However, the expansion costs extra computational time during

query. Other methods exploit the feature relatedness and use them to improve the

similarity measures, e.g. geometry-preserving [159], fine vocabulary [96], cross-
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Methods Oxford 5K Paris 6K Oxford 105K
Baseline [106] 0.612 0.639 0.515

A

Visual word re-weighting (Chapter 4) 0.660 0.674 0.598
Descriptor learning (non-linear) [108] 0.662 [108] 0.678 [108] 0.541 [108]
Soft-assignment [107] 0.673 [107] 0.660 N/A
Spatial expansion (F5, Chapter 3) 0.685 0.679 0.622
Geometry-Preserving [159] 0.696 [159] N/A 0.604 [159]
Total association (Chapter 4) 0.700 0.682 0.680
Spatial expansion (F′15, Chapter 3) 0.701 0.683 0.667
Cross word (Chapter 4) 0.712 0.722 0.604
Fine vocabulary [96] 0.742 [96] 0.749 [96] N/A
AUG [142] 0.776 [9] N/A 0.711 [9]
SPAUG [9] 0.785 [9] N/A 0.723 [9]

B

Spatial verification [106] 0.649 0.655 0.571
Ranking verification (Chapter 6) 0.654 0.652 0.595
Context based re-ranking (Chapter 5) 0.701 0.700 0.585
QE Baseline [37] 0.708 0.736 0.679
iSP [34] 0.741 [34] 0.769 [34] 0.649 [34]
Local geometry [105] 0.788 [105] 0.634 [105] 0.725 [105]
AQE [37] 0.806 0.769 0.767
DQE [9] 0.798 0.783 0.809
Hello neighbors [114] 0.814 [114] 0.803 [114] 0.767 [114]
DQE + Boosting (Chapter 7) 0.823 0.782 0.818
Total recall II [34] 0.827 [34] 0.805 [34] 0.767 [34]
DQE + Boosting (group) (Chapter 7) 0.896 0.856 0.890

Table 8.1: Retrieval results summary. Group A: retrieval results of methods that modify the
baseline before the query is executed (pre-process). Group B: retrieval results of methods
that modify the baseline after the query is executed (post-process). Note that we cite the
retrieval results of AUG [142] from literature [9]. Our methods presented in this thesis
are highlighted.

word (Chapter 4), AUG [142] and SPAUG [9]. These methods are more efficient

than expansion of query words, especially AUG [142] and SPAUG [9], and can

outperform other methods in Group A. However, their effects highly rely on the

feature information collected offline and are limited to rigid objects. In summary,

the effects of methods in Group A depend on the amount of embedded information

recovered from dataset.

Table 8.1 Group B shows that a result re-ranking process is useful in

improvement of retrieval accuracy. Most methods need a spatial consistency

examination, e.g. spatial verification [106, 105, 34], query expansion [37, 9, 114,

34] and group-query (Chapter 7). Therefore, the retrieval performance mostly

benefits from information collected during spatial consistency examination rather

than the original query model. Again, these methods have limited effects, as
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Methods Oxford 5K Paris 6K Oxford 105K
Baseline [106] 0.612 0.639 0.515

C

Spatial expansion (F5, Chapter 3) 0.685 0.679 0.622
Spatial expansion+ Spatial verification 0.716 0.689 0.676
Spatial expansion+ AQE 0.815 0.778 0.773
Spatial expansion+ DQE 0.810 0.785 0.798
Spatial expansion (F′15, Chapter 3) 0.701 0.683 0.667
Spatial expansion+ Spatial verification 0.719 0.689 0.704
Spatial expansion+ AQE 0.806 0.785 0.783
Spatial expansion+ DQE 0.813 0.789 0.818
Visual word re-weighting (Chapter 4) 0.660 0.674 0.598
Visual word re-weighting+ Spatial verification 0.677 0.684 0.611
Visual word re-weighting+ AQE 0.801 0.777 0.781
Visual word re-weighting+ DQE 0.811 0.782 0.787
Total association (Chapter 4) 0.700 0.682 0.680
Total association+ Spatial verification 0.710 0.690 0.706
Total association+ AQE 0.804 0.785 0.774
Total association+ DQE 0.816 0.790 0.817
Cross word (Chapter 4) 0.712 0.722 0.604
Cross word+ Spatial verification 0.723 0.726 0.647
Cross word+ AQE 0.821 0.787 0.765
Cross word+ DQE 0.828 0.793 0.797

D

Context based re-ranking (Chapter 5) 0.701 0.700 0.585
Total association+ Context based re-ranking 0.704 0.711 0.636
Cross word+ Context based re-ranking 0.735 0.720 0.648
Ranking verification (Chapter 6) 0.654 0.652 0.595
Total association+ Ranking verification 0.708 0.687 0.682
Cross word+ Ranking verification 0.738 0.720 0.658
Group-query (Chapter 7) 0.901 0.852 0.890
Total association+ Group-query 0.904 0.852 0.893
Cross word+ Group-query 0.909 0.856 0.901

Table 8.2: Summary of retrieval results combination.

they mostly work on rigid object retrieval. Our methods, ranking verification

(Chapter 6) and context based re-ranking (Chapter 5), only need to know the

ranking information of initial retrieval results, thus are more flexible. Both of them

can achieve close re-ranking accuracy with spatial verification. They can work with

a number of pre-processing methods as listed in Table 8.2 Group D. Furthermore,

ranking verification can work with various query expansion methods, as illustrated

in Chapter 6, without a spatial consistency examination.

Table 8.2 Group C illustrates the effects of combination of our proposed

methods and query expansion (AQE and DQE). As seen from Group C, the

performance gain is small compared to results using query expansion individually.

This is because an object-based thesaurus (required by total association and cross-

word matching) already exploits spatial consistency between features offline.

The online query expansion, which also needs a spatial consistency examination,

therefore has limited effects.

Table 8.2 Group D reports the retrieval results of various improvement
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Figure 8.1: Summary of our proposed methods in the BoW based retrieval system. The
proposed methods are indicated in dashed boxes.

methods discussed in this thesis. We combine three kinds of re-ranking methods

proposed in this thesis with total association and cross-word similarity methods,

respectively. As shown in Figure 8.1, these method are placed in different steps

in the retrieval pipeline. Therefore, we combine methods that are not located in

the same step in Group D. The retrieval accuracy reported in Group D is varied

according to the type of combination. As seen in Group D and discussed in

previous chapters, the effectiveness of the combination depends on the amount of

information provided by each component methods. For example, total association

(cross-word similarity) and group query gets little to improve because spatial

consistency information is used in both components.

8.3 Future work

The BoW retrieval system has attracted interest in many related areas: computer

vision, information retrieval, and machine learning in recent years. However, it is

still far from a solved problem.
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Adaptive visual vocabulary The most computationally expensive module in a

BoW retrieval system is to build a discriminative vocabulary. Current methods, e.g.

AKM and HKM, are approximate in measuring the feature distance. Therefore,

they can not capture the diversity and richness of high dimensional descriptors.

Also, the vocabulary building is not adaptive when the dataset images are updated.

The proper solution is to make the visual vocabulary distributed, dynamic and

adaptively transferred. Recent work [10] has proposed a vocabulary adaptation

method based on VLAD descriptors. It aims to address the problem of vocabulary

sensitivity, such that the visual vocabulary trained in one dataset can be used

to represent another dataset. The vocabulary adaptation is also similar to the

problem of transfer learning [101]. Transfer learning is useful when training and

test data is drawn from different feature spaces. As a result, we can also deem

vocabulary adaptation as a transfer learning problem: the vocabulary is built on

images different from those need to be searched. However, it needs to carefully

scale the transfer learning methods to a large scale vocabulary.

Convergence of retrieval and classification The difference between object

retrieval and classification has shrunk in recent years. Typically, the goal of

object retrieval is to, given a query image depicting an object, return a list of

images containing that same object. It usually requires fast search from large scale

dataset, but with little focus on learning the dataset images. Object classification

aims to characterize objects with some prior defined classes (labels). It usually

needs to learn a classifier with expensive computational cost, and depends heavily

on machine learning methods. Recent years have seen convergence of these

two problems. Some object retrieval techniques learn a classifier for querying

images [9, 30]. Similar to the adaptive visual vocabulary problem, classification

techniques used in object retrieval also need to be scale to large dataset, e.g.

a linear-SVM classier [9] or boosting framework [30]. Conversely, object

classification problem recently also pays attention to scalability and efficiency

because the availability of large scale dataset, e.g. ImageNet. The convergence

(divergence) of these two kinds of method will depend on the scalability of these

techniques such that object retrieval can borrow them from classification, and vice

versa.
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