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a  b  s  t  r  a  c  t

One  of  the  fundamental  problems  in public  health  is how  to allocate  a limited  set  of resources  to  have  the
greatest  benefit  on  the  health  of the  population.  This  often  leads  to difficult  value  judgements  about  bud-
get  allocations.  However,  one  scenario  that  is  directly  amenable  to mathematical  analysis  is  the  optimal
allocation  of a  finite  stockpile  of vaccine  when  the  population  is partitioned  into  many  relatively  small
cliques,  often  conceptualised  as households.  For  the  case  of  SIR  (susceptible–infectious–recovered)  dynam-
ics,  analysis  and  numerics  have  supported  the  conjecture  that an  equalising  strategy  (which  leaves  equal
numbers  of  susceptible  individuals  in  each  household)  is  optimal  under  certain  conditions.  However,
there  exists  evidence  that some  of  these  conditions  may  be  invalid  or unsuitable  in many  situations.  Here
ouseholds
etapopulation

we  consider  how  well  the equalising  strategy  performs  in  a range  of other  scenarios  that  deviate  from
the  idealised  household  model.  We  find  that  in  general  the  equalising  strategy  often  performs  optimally,
even  far  from  the idealised  case.  However,  when  considering  large  subpopulation  sizes,  frequency-
dependent  transmission  and  intermediate  levels  of  vaccination,  optimality  is often  achieved  through
more  heterogeneous  vaccination  strategies.

©  2015  The  Authors.  Published  by  Elsevier  B.V.  This  is  an open  access  article  under  the  CC  BY  license
ntroduction

Mathematical modelling has had a profound influence on pub-
ic health associated with infectious diseases; most public-health
ecisions are now supported by detailed mathematical predic-
ions that quantify the incremental costs and benefits of any new
olicy. This is particularly true for changes to vaccination pro-
rams (including the introduction of new vaccines) where there are
otentially many subtle non-linearities between the distribution of
accine and the public-health benefits (Anderson and May, 1983;
ansal et al., 2006; van Hoek et al., 2011). In principle the aim of
his modelling for vaccination is relatively simple: to find a strategy
hat produces the maximum reduction in cases (and in particular
evere health outcomes) for a given cost (Woodhall et al., 2009;

aguelin et al., 2010; Klepac et al., 2011; Brown and Jane White,
011). Yet despite this apparent simplicity, determining the opti-
al  policy is highly computationally intensive due to the vast range
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of strategies that can be investigated (Dushoff et al., 2007; Hall et al.,
2007; Keeling and White, 2011). In addition when there are mul-
tiple desirable outcomes, it is generally impossible to optimise all
of them simultaneously and a careful definition of the objective is
required (Hollingsworth et al., 2011).

The ground-breaking work of Ball et al. (1997), Ball and Lyne
(2002) is seen as offering one of the few explicit and rigorous results
in this complex field. In this work it was demonstrated that an
equalising strategy was  optimal for control of an SIR-type infec-
tion in a population segregated into households (or component
subpopulations) of just 2, 3 and 4 individuals. Further, it was conjec-
tured, supported by extensive numerics, that this result holds for
all subpopulation sizes. Here an equalising strategy is one which
leaves an equal number of individuals susceptible in each house-
hold (or subpopulation) irrespective of the size of the household
(e.g. all households of size 3 or more are left with just 3 sus-
ceptible individuals). However, the results are more precise and
constrained than usually appreciated (Ball et al., 1997; Ball and

Lyne, 2002). Firstly, they only strictly apply to density-dependent
transmission, which in the household context means that the risk of
transmission between any two members of the household is inde-
pendent of household size. However, data from detailed household

nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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tudies of influenza suggest that the rate of transmission between
ny two household members decreases monotonically with house-
old size (Cauchemez et al., 2004, 2009; House et al., 2012).
econdly, optimality refers to maximising the reduction in early
ousehold-to-household transmission (the between-household
eproductive number or R�) for a given supply of vaccine; equiv-
lently, this allows the calculation of the minimal amount of
rophylactic vaccine required to reduce the reproductive num-
er to one, and hence prevent a large-scale outbreak of infection.
herefore the equalising strategy does not necessarily hold for
n-going vaccination during an outbreak, nor does it necessarily
rotect the most people from infection when there is insufficient
esources to reach the elimination threshold (Hollingsworth et al.,
011).

Although the equalising strategy and results in this paper are
enerally expressed in terms of household-based transmission, the
mplications are more wide ranging. Our findings apply to any pop-
lation that can be modelled in a metapopulation format: multiple
istinct relatively small subpopulations with strong transmission
ithin the subpopulations but weaker transmission between them.

he only other condition is that there must be a large number of
hese subpopulations such that we can take expectations of their
ehaviour. As such the models formulated here equally apply to
uman populations aggregated into schools, hospitals and local
ommunities, livestock aggregated into farms, or wildlife that can
e spatially aggregated into regions of suitable habitat. Therefore,
lthough for brevity and historical consistency, we refer to house-
olds throughout this paper the findings hold for any appropriate
rouping or subpopulation.

It is worth stressing that the equalising strategy and any
mprovements outlined in this paper make the simplifying assump-
ion that all individuals in the population are equal apart from their
ousehold composition. In practice, for human populations, both
ge and underlying health status dominate the consequences of
nfection and hence the need to protect by vaccination. Therefore
t should be stressed that strategies purely based on household
ize are idealisations and alternative targeting should often take
riority. However, there are at least two scenarios with this
nderstanding could be practically useful. Firstly, once the most
ulnerable or high risk members of the population are protected,
he equalising strategy may  provide a means of slowing or contain-
ng epidemic spread when the number of vaccine doses are limited.
econdly, for livestock infections individual-level heterogeneity is
enerally less of a consideration, so targeting based purely on ani-
al  numbers may  be effective especially when dealing with a costly

accine.
Here we examine both analytically and numerically the general-

ty of the equalising strategy. We  first review the previous work and
ethodology (Ball et al., 1997; Ball and Lyne, 2002) before consid-

ring the relevance of the equalising strategy for populations that
o not obey density-dependent transmission, while maintaining
he same condition for optimality. We  then numerically explore
he use of the equalising strategy under alternative optimisation
riteria.

he traditional equalising strategy

We  first define the stochastic SIR model in an infinitely large
opulation of households to set the nomenclature and parameters
f the system. Throughout this paper we formulate and simu-
ate models that are Markovian in nature (i.e. transitions occur as

tochastic rates that only depend on the current state of the system,
uch that there is no historical knowledge), whereas the original
ork on the equalising strategy held for any form of transmission
ynamics (Ball et al., 1997; Ball and Lyne, 2002). While this explicit
mics 11 (2015) 7–13

decision about the nature of the system is necessary to produce our
quantitative comparison of vaccination priorities, we  believe that
the qualitative findings will hold more generally. We  define the
model in terms of the transitions between states and the rates at
which these transitions occur. There are three possible transitions
within a household of size n:

External Infection

(S, I, R) → (S − 1, I + 1, R) Rate = ˛nĪS

Internal Infection

(S, I, R) → (S − 1, I + 1, R) Rate = ˇnIS

Recovery

(S, I, R) → (S, I − 1, R + 1) Rate = �nI

where S, I and R (S + I + R = n) refer to the number of suscepti-
ble, infectious and recovered/resistant individuals in a household,
while ˛,  ̌ and � capture the rates of external transmission,
internal transmission and recovery; Ī is  the proportion of the
population that is infected, which is calculated as the weighted
average over all households. We  further define hn to be the pro-
portion of households containing n individuals. Throughout we
make the natural assumptions that  ̨ and � are not dependent
on household size, although we  retain the dependence in the
equations as much as possible. We note here that the action
of vaccination is to successfully immunise susceptible individ-
uals, effectively turning them into recovered individuals; hence
as we are considering prophylactic vaccination (before an out-
break) we  assume the action of vaccination is to begin an epidemic
with a mixture of susceptible and recovered individuals in each
household.

Here we have allowed the fundamental rates to be functions
of the household size, n; this is in contrast to the earlier mod-
elling studies where these rates where assumed independent of
the household size (Ball et al., 1997; Becker and Starczak, 1997; Ball
and Lyne, 2002). We  now need to introduce some epidemiological
notation; when ˇn =  ̌ then transmission increases with the num-
ber of individuals in the household and such transmission is known
as density dependent (even though it arises when the parameter is
independent of population size), in contrast when ˇn is a function
of the household size n the transmission is referred to as frequency
dependent. The independence of parameters from household size
(and hence the assumption of density-dependent transmission)
made in previous work has an important epidemiological conse-
quence: the rate of transmission between susceptible and infected
individuals does not depend on the number of recovered indi-
viduals in the household. Therefore rather than considering the
behaviour of a household of type (S, I with R = n − S − I), in the
limited case where independence is assumed, it is sufficient to
consider a smaller household of size S + I without any recovered
individuals.

Following the work of Ball et al. (1997), Ball and Lyne (2002),
the following statements must hold for the equalising strategy to
be optimal:

(i) given two households of size n and two  doses of vaccine, it is
better to vaccinate one individual in each household rather than
two individuals in a single household, for all n; and,

(ii) given a household of size n, a household of size n + 1, and single
dose of vaccine, it is better to vaccinate an individual in the
household of size n + 1, for all n.
Here, ‘better’ and ‘optimal’ are defined with respect to min-
imising the expected number of secondary households infected.
To generate the mathematics equivalent to these two verbal condi-
tions, requires us to consider the household reproductive number,
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� – defined as the expected number of secondary households
nfected by an average infected household early in the outbreak
Ball et al., 1997; Ross et al., 2010). The fact that we  are considering
arly outbreak dynamics means that it is reasonable to assume that
ach household has experienced at most one external transmission
vent as Ī is small. The household reproductive number (R�) is a sum
ver all household sizes:

� =
∑

n

(
˛nnhn∑

k˛kkhk

)
�n. (1)

he first term in this summation is the probability that an externally
nfected individual resides in a household of size n (where hk is
he distribution of household sizes). The second term (�n) is the
verage number of external secondary cases generated by a newly
nfected household of size n, and is proportional to the expected
umber of cases within the household Zn (House et al., 2012):

n =
∑

k˛kkhk∑
kkhk

Zn. (2)

or notational convenience, we also define R� =
∑

nRn
� , where:

n
� =

(
˛nnhn∑

k˛kkhk

)
�n

s the size-biased contribution to R� of a household of size n.
Using the implications that parameters are independent of

ousehold size, and the definition of R� above, it can be shown that
oth of the verbal conditions (i) and (ii) are satisfied if:

n ≡ n�n − 2(n  − 1)�n−1 + (n − 2)�n−2 ≥ 0 ∀n.

hat is, if n�n is an increasing convex function of n. When  ̌ is inde-
endent of n, this has been proven for small subpopulations and
onjectured to hold for all subpopulation sizes (Ball et al., 1997; Ball
nd Lyne, 2002). Therefore, in the case where all epidemiological
arameters (˛,  ̌ and �) are independent of n, the equalising strat-
gy is conjectured to hold; in which case, equalising susceptibility is
ptimal for reducing R� and therefore also optimal for determining
he lowest number of vaccine doses required to achieve elimination
r prevent invasion, which both occur at R� = 1.

he equalising strategy and alternative forms of
ithin-household transmission

We  now allow ˇn to depend on the household size, and in partic-
lar consider transmission of the form ˇn ∝ (n − 1)−q, so that pure
requency-dependent transmission q = 1 as well as alternative scal-
ngs with household size can be included. (Note that q = 0 refers to
he case of density-dependent transmission discussed in Section
The traditional equalising strategy”). We  retain the assumption
hat the vaccine confers perfect immunity; the impact of imperfect
accines have already been shown to break the equalising strategy
Ball et al., 2004). In this case the two verbal conditions neces-
ary for the equalising strategy to hold require slight modification
eading to a change in the associated mathematical conditions.
n contrast to the model with density-dependent transmission
utlined above, when frequency-dependent transmission (or any
ransmission with q > 0) is assumed then recovered (or vaccinated)
ndividuals play a key role in blocking the within-household trans-

ission; as ˇn reduces with household size, therefore recovered
ndividuals increase household size without playing an active role
n transmission. It is therefore no longer true that a household
ith recovered individuals can be treated as a smaller household
ithout recovered individuals.

We now define two new terms �n,s and Rn,s
� which correspond

o the definitions above, but assume that only s out of n individuals
mics 11 (2015) 7–13 9

in the household are susceptible. This is to account for vaccination
shifting susceptibles to the immune class. Therefore, �n,s is the
expected number of external secondary cases (outside the house-
hold) generated by a newly infected household of size n when
s individuals are initially susceptible, assuming all individuals
outside the household are susceptible. Rn,s

� is the size-biased
contribution to R� from a household of size n (with s susceptibles);
and is comparable to our earlier definition but accounting for
both household size and the number of susceptibles. Again, we
make the simplifying assumption throughout our numerical
investigations that transmission outside the household is inde-
pendent of household size (that is ˛n = ˛); however we retain the
notation in the initial formulae to indicate how this heterogeneity
would enter the conditions. The two  necessary conditions for the
equalising strategy to be optimal for all levels of vaccination now
become:

(i) given two households of sizes n and m with S susceptibles in
each and two  doses of vaccine, it is better to vaccinate one indi-
vidual in each household rather than two individuals in a single
household, ∀(S, n, m).  Mathematically this can be expressed as:

Rn,S−1
� + Rm,S−1

� =
(

˛nnhn

A

)(
S − 1

n

)
�n,S−1 +

(
˛mmhm

A

)(
S − 1

m

)
�m,S−1

≤
(

˛nnhn−1

A

)(
S

n

)
�n,S +

(
˛mmhm

A

)(
S − 2

m

)
�m,S−2 = Rn,S

� + Rm,S−2
�

where A =
∑

k˛kkhk. Hence we require ES,n,m ≥ 0, where

ES,n,m = (S)�n,S + (S − 2)�m,S−2 − (S − 1)�n,S−1 − (S − 1)�m,S−1

(ii) given two households of sizes n and m with S susceptibles in one
and S + 1 susceptibles in the other, and a single dose of vaccine,
it is better to vaccinate an individual in the household with S + 1
susceptibles ∀(S, n, m).  Writing this mathematically:

Rn,S
� + Rm,S

� =
(

˛nnhn

A

)(
S

n

)
�n,S +

(
˛mmhm

A

)(
S

m

)
�m,S

≤
(

˛nnhn

A

)(
S − 1

n

)
�n,S−1 +

(
˛mmhm

A

)(
S + 1

m

)
�m,S+1

= Rn,S−1
� + Rm,S+1

�

Hence our second condition becomes FS,n,m ≥ 0, where

FS,n,m = (S − 1)�n,S−1 + (S + 1)�m,S+1 − (S)�n,S − (S)�m,S

We now consider a simple limit (one household becoming large)
to demonstrate a case where the equalising strategy must fail. It is
intuitive that whenever we  move away from the linear density-
dependent transmission (q = 0) and set q > 0, then for finite S but
household size m tending to infinity the expected number of cases
in the household tends to one (that is no within-household trans-
mission occurs), and hence �m,S tends to a constant �* = �1,1.
Considering the case where n = S > 2 and m→ ∞ and examining con-
ditions (i) and (ii) it is clear that En,n,m = − Fn,n,m and hence in this
limit it is impossible to satisfy both criteria and the equalising strat-
egy fails.

Given that we know the equalising strategy fails when house-
holds are allowed to become infinitely big (for q > 0), it is natural to
assess the parameter range for which the strategy holds when there

is an upper bound on the household size. Given that solution of the
two conditions is not analytically tractable, we rely on fast numer-
ics to evaluate E and F across a range of parameters (Ross et al.,
2010; House et al., 2012). Numerical investigation shows that it is
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f  ˛; although  ̨ should be sufficiently large that an outbreak occurs in an unvacci-
ated population (Throughout we  set �n = 1, and assume Markovian dynamics for
omputational simplicity).

ufficient to consider ES,S,nmax and FS,nmax,S for all S ≤ nmax, where
max is the largest household size.

In Fig. 1, we assume that ˇn = ̂̌(n − 1)−q (in addition to ˛n = ˛
nd �n = 1), and investigate when both E and F are positive (and
ence the equalising strategy always holds) for a range of ̂̌

 and
 values and a range of maximal household sizes, nmax. We  note
hat our findings are independent of the value of  ̨ and � , although
e require  ̨ sufficiently large and � sufficiently small to allow

ransmission to be sustained before vaccination. We  consistently
nd that the equalising strategy holds for smaller household sizes
nmax), larger within-household transmission rates (̂̌) and smaller
xponents (q). As an example, if we assume pure frequency-
ependent transmission (q = 1), and state that the largest household
ize is nmax = 10, then the equalising strategy holds and is optimal
nly if ̂̌

 > 4.51�; however when the maximum household size is
ssumed to be nmax = 6, then the strategy is necessarily optimal for
ll ̂̌ > 1.29� . (Note, ̂̌ = 1.29� corresponds to the situation where
he probability of transmission between an infected-susceptible
air of individuals within a household are approximately 56%, 39%,
0%, 24% and 21% in households of size 2–6 respectively, and is
omparable with parameters estimated for influenza House et al.,
012)

From the general behaviour of Fig. 1, we conclude that for
ny two of the three parameters (nmax > 2, ̂̌ > 0, q > 0) a value of
he remaining parameter can be found for which the equalising
trategy does not necessarily hold. However, for relatively small
ouseholds, there are substantive regions of epidemiologically
ealistic parameters for which the equalising strategy is optimal
n reducing between household transmission.

he optimal strategy for minimising R�
The equalising strategy seeks to minimise the household repro-
uctive number R� for a given level of immunisation. We  note that
� depends linearly on the number of households in a given state
mics 11 (2015) 7–13

and hence the question of optimal vaccination (or minimising R� for
a fixed level of vaccination) becomes a linear programming prob-
lem, which can be solved with considerable efficiency (Becker and
Starczak, 1997; Ball and Lyne, 2002). Assuming an infinite number
of households, this problem is expressed as:

minimise

hn,s
R� =

∑
n

∑
s

(
˛nnhn∑

k˛kkhk

)(
s

n

)
�n,s

(
hn,s

hn

)
such that

∑
s

hn,s = hn, ∀ n∑
n

∑
s

(
n − s

n

)
hn,s ≤ v

hn,s ≥ 0, ∀ (n, s)

(3)

where the decision variables are hn,s (the number of households of
size n vaccinated such that s individuals remain susceptible); and
v is the proportion of the population for which vaccine is available,
that is the vaccination coverage. We  solve this linear program using
linprog in MATLAB®, and assess the performance relative to the
equalising strategy.

Fig. 2 shows a detailed comparison between the true optimal
vaccination strategy, the equalising strategy and random vacci-
nation, in terms of their effect on the household reproductive
number, R�. Two  particular illustrative examples are chosen: a rel-
atively rapidly transmitted infection in human households (using
household size distributions from 2001 U.K. Census Office for
National Statistics, 2001) and a livestock-based infection transmit-
ted within and between cattle farms (using cattle numbers from
the 2007 U.S.D.A. agricultural census United States Department of
Agriculture, 2007). In both cases pure frequency-dependent trans-
mission (q = 1) is assumed to hold, and parameters correspond to
a region where the equalising strategy does not hold for all levels
of vaccination. It is clear that in both cases the equalising strategy
produces a substantial drop in R� in comparison to random vac-
cination. (We  note that if q is substantially greater than one, then
scenarios exist where random vaccination produces a lower R� than
the equalising strategy; however such values of q are unlikely to be
epidemiologically realistic.) For the small household sizes associ-
ated with human infections, the true optimal distribution of vaccine
is only a marginal improvement over the equalising strategy, reduc-
ing R� by less than one percent. However, for the larger aggregated
subpopulations associated with livestock farming, the percentage
improvement can be substantive suggesting that it would be advan-
tageous to consider optimising prophylactic vaccination strategies
for livestock outbreaks.

The equalising strategy and other measures of optimality

The equalising strategy is defined as optimal in terms of min-
imising the household reproductive number, R�, and hence is
the strategy that prevents a major epidemic (R� < 1) for the least
amount of vaccine. Therefore in terms of purchasing sufficient vac-
cine to prevent a major future outbreak, the equalising strategy
(when it holds) provides an optimal distribution of vaccine.

However, in many scenarios the converse problem holds, there
is an existing stockpiled supply of vaccine, which must be used
optimally to protect the population. Here the challenge is to deter-
mine a strategy (distribution of vaccine between households) that
minimises the total number of cases (known as the final epidemic
size, R∞) for a fixed number of vaccine doses. Unfortunately, no
simple set of strategic rules appears to be optimal in this context,

and we  need to exhaustively consider the outcomes of the many
potential distributions of vaccine numerically. Therefore, for ease of
numerical tractability, in this study we restrict our focus to homo-
geneous populations where all individuals exist in households of
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Fig. 2. Comparison of random vaccination (red dashed), equalising strategy (blue circles) and optimal vaccination (black dots) for minimising R� , as determined by linear
programming (3); the dynamics are assumed Markovian for computational simplicity. The left-hand graphs give the value of the household reproductive number, R� , for
the  three strategies, while the right-hand graphs show the relative improvement of the true optimal distribution of vaccination (opt) compared to the equalising strategy
(ES):  (RES

� − Ropt
� )/RES

� . The top row of graphs correspond to influenza-like parameters  ̌ = 2(n − 1)−1,  ̨ = 1, � = 1 and household size distributions for the U.K. in 2001 (Office
for  National Statistics, 2001). The lower row of graphs use lower transmission parameters  ̌ = (n − 1)−1,  ̨ = 0.5, � = 1 and distributions for the number of cattle on livestock
farms  in the USA (United States Department of Agriculture, 2007). In both cases pure frequency-dependent transmission (q = 1) is assumed within the household or farm.
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 fixed size, and vary four key quantities: the within-household
ransmission parameter, ̂̌ (the type of transmission, frequency or
ensity dependent is irrelevant here as we are considering a sin-
le household size); the household reproductive number (R�); the
upply of vaccine; and the number of individuals in a household, n.
ig. 3 shows the maximal reduction in the final epidemic size (R∞)
or any distribution of vaccine compared to the equalising strat-
gy; the final epidemic size is calculated using machine-precision
arkov Chain methods (House et al., 2012).
From this analysis we find that parameter space naturally splits

nto three regimes dependent upon the amount of available vac-
ine, v. When there are sufficient doses of prophylactic vaccine
vailable, the infection cannot generate a large-scale epidemic
nd multiple distributions of vaccine will all lead to negligible
nal epidemic sizes (white regions in Fig. 3). For levels of vac-
ine that are just below the critical amount needed to prevent
n epidemic (coloured grey) the equalising strategy is optimal, for
he simple reason that it minimises the household reproductive
umber to a value just above one and hence generates a rela-
ively small epidemic size. These regions of parameter space in
hich the equalising strategy is optimal are greatest: for lower

alues of the household reproductive number (R�), for lower
ithin-household transmission rates (̂̌) and for smaller house-

old sizes (n). For other regions (coloured blue to red in Fig. 3)
he optimal prophylactic vaccine distribution that minimises the
nal epidemic size is heterogeneous – protecting some house-
olds while leaving others unvaccinated or poorly protected,
 the web  version of this article.)

even though all households are identical. More precisely, in this
case of a single fixed household size, in extensive numerical
searches all optimal strategies have been found to take a par-
ticular form: a proportion p of households have v1 individuals
vaccinated while the remaining 1 − p of households have v2 indi-
viduals vaccinated, where p, v1 and v2 are parameters that need
to be determined, although as expected for optimality all the vac-
cine doses will be used generating a relationship between the three
parameters (v = pv1 + (1 − p)v2). These findings compare well with
deterministic two-population models (Keeling and Shattock, 2012)
and again suggest that when the aggregated subpopulations
(households) are sufficiently large there is good reason to con-
sider optimal deployment of vaccination beyond the equalising
strategy.

Using the UK household sizes as given in the 2011 national
census when 80% of households are occupied by three people or
less, limits the strategy space and allows a numerical investiga-
tion. For plausible epidemiological rates (ˇn = ̂̌(n − 1)−q, ̂̌ ≤ 5,
q ≤ 1, R� ≤ 5), our numerical investigations suggest that many future
human pandemics are likely to lie within the regions of parame-
ter space where the equalising strategy is optimal. That is, for any
available level of vaccine coverage, the equalising strategy will both
minimise the early between-household transmission and minimise

the total number of future cases. However, for larger aggregations
of susceptible hosts, such as farms, schools, or large social cliques
we expect there to be substantial savings in optimally targeting
vaccination.
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Fig. 3. A large sweep over parameter space showing the maximal improvement in the final epidemic size (R∞) that can be gained over the equalising strategy by choosing
an  optimal prophylactic distribution of vaccine. The x-axis gives the available stockpile of vaccine in terms of the proportion of the population that can be vaccinated at
the  start of the outbreak, the y-axis is the size of household, while the different panels refer to different within and between household transmission. Regions coloured
white  correspond to sufficient vaccine to eliminate the infection. Grey regions are where the equalising strategy is optimal in minimising the final epidemic size. For regions
coloured blue to red we  show the reduction in final epidemic size relative to the final epidemic size for the equalising strategy: (RES

∞ − Ropt
∞ )/RES
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onclusion

The equalising strategy was proposed by Ball et al. (1997) and
as demonstrated to minimise the between-household reproduc-

ive number when the within-household transmission is density
ependent (i.e. transmission scales linearly with the number of sus-
eptible and infectious individual in the household, q = 0). Here we
ave extended this concept and shown that while the equalising
trategy holds in many epidemiologically important scenarios, it
oes not necessarily hold true in all cases of interest. For popu-

ations with a heterogeneous mix  of household sizes and for a
ange of frequency-dependent transmission relations (q > 0), we
ere able to examine whether the equalising strategy was optimal

n terms of reducing the between household reproductive number
as in Ball et al., 1997). Large maximal household sizes or small
ithin-household transmission rates combined with frequency-
ependent transmission break the optimality of the equalising
trategy (Fig. 1). When our optimisation criterion is to minimise
he final outbreak size following vaccination we were only able to
onsider populations with a single fixed household size; here the
qualising strategy proves to be sub-optimal for large household
izes and high within and between household transmission. In all

ases where the equalising strategy fails, the optimal strategy is
ecessarily more heterogeneous with a proportion of households
ell protected while the remainder receiving less vaccine, despite

he fact that all households are identical. Intuitively this arises from
tion; panels from top to bottom show increasing within-household transmission
; note that the colour-scale changes between top and bottom sets of panels). (For

 web  version of this article.)

the non-linear impact of vaccination, such that the gains from addi-
tional protection in some households is greater than the losses for
leaving others unprotected. What these results show is that in many
situations careful targeting of vaccination could result in substan-
tial increases in efficacy of control. However, both theoretical and
practical questions remain.

When the equalising strategy fails there is no simple rule for
determining the optimal distribution of vaccine. If we are inter-
ested in minimising the between-household reproductive number
then highly efficient linear programming can be utilised to find the
true optimum (Fig. 2), and in certain circumstances the form of
the optimal policy may  be determined explicitly (Ball and Lyne,
2002). However, if we  wish to minimise a more complex quantity,
such as the final epidemic size or early growth rate of infection,
then the numerics become far more computationally demanding.
When minimising final epidemic size for households of a fixed size
(Fig. 3), determining the optimal strategy is matter of scanning
over a two-dimensional parameter space, which is numerically
intensive but remains computationally feasible. However, in popu-
lations of mixed household sizes the task of finding the true optimal
distribution becomes far more challenging due to the increased
number of plausible strategies that need to be explored. Using

the U.K. household-size distribution, from the 2011 census, we
found that for any available level of vaccine coverage, the equalis-
ing strategy will both minimize the early growth rate and minimize
the final epidemic size. However, for populations with larger
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Woodhall, Sarah C., Jit, Mark, Cai, Chun, Ramsey, Tina, Zia, Sadique, Crouch, Simon,
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ggregations of susceptible hosts, for example when considering
arms and schools, considerable benefit may  come from determin-
ng the optimal allocation strategy.

Finally, and of more applied importance, is the key question of
ow such results could be used in practice. Obtaining the precise
egree of targeted vaccination, within and between households,
s required to reach optimality is clearly unworkable; although
roxy measures, such as vaccinating children, may  provide close
pproximations (House and Keeling, 2009). In addition, for human
nfections considerations such as age-structured mixing and risk
actors for severe illness are also major contributing factors (Keeling
nd White, 2011), such that the aim is often to maximise vaccina-
ion of such high-risk groups. However, the findings of this paper

ay  be of considerable benefit once these high-risk individuals are
rotected, suggesting optimal patterns of vaccination to slow the
pread of infection until sufficient vaccination is produced to fully
ontrol an outbreak. Alternatively, these optimality results may
ave greater applicability when attempting to control outbreaks
f livestock infections. With a limited stock-pile of vaccine – such
s those held by the National Veterinary Stockpile in the USA or
y International Governmental Vaccine Banks – the targeting of
accine during the early stages of an outbreak may be highly advan-
ageous in terms of maintaining control. In particular this work
uggests that careful allocation of vaccine stocks for prophylaxis
ased on animal numbers within a region could provide significant
enefits to the livestock industry.
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