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Annya, Otw = Otways, Gra = Grampians, MtE = Mt Eccles, Hot = Hotpur, Str = 
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The distribution of 14 N. geoffroyi and N. gouldi study sites across Victoria and South 
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Results of spatial autocorrelations preformed in GENALEX illustrating mean r (
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Thesis Abstract 

 

Habitat fragmentation represents one of the greatest threats to biodiversity, yet for the second 

largest mammalian order Chiroptera we have only just begun to assess the impacts of this 

threatening process on population connectivity and genetic diversity.  Many aspects of 

chiropteran ecology remain unknown due to their cryptic lifestyle and difficulties in applying 

traditional observational and field-based techniques.  At the time of this PhD project‘s 

conception there were no published studies utilising genetic techniques to address the 

influence of habitat fragmentation on any chiropteran species.  Since that time two studies 

have been published, in 2009 and 2011.  I add to this new body of literature by conducting 

genetic analyses to assess population connectivity and genetic diversity in two congeneric 

vespertilionids, Nyctophilus gouldi and N. geoffroyi.  The study was conducted in western 

Victoria and south-eastern South Australia across a landscape comprising continuous and 

fragmented regions of native habitat.  Populations within continuous forest provided a 

benchmark for parameters including gene flow, genetic diversity and social structure, for 

comparison with forest fragments.  This thesis also capitalises on the underutilised potential 

of molecular techniques for the study of chiropterans.  I applied molecular approaches to 

assess dispersal strategies and social structure in both species offering novel ecological 

insights.  Four data chapters covering these topics are outlined below. 

 

Chapter 2 describes the isolation and characterisation of 16 microsatellite markers developed 

to facilitate this research.  I utilised next generation sequencing technology (454) to generate a 

microsatellite DNA library and employed Multiplex Ready Technology (MRT) as a flexible 

and cost effective method to test primers and design marker panels for screening.  DNA was 

isolated from N. gouldi resulting in 15 loci, while cross amplification in N. geoffroyi produced 

7 reliable loci. 

 

Chapter 3 addresses the impact of habitat fragmentation on the forest and woodland specialist 

N. gouldi, which is listed as endangered in South Australia.  Based on roosting requirements, 

rarity in the agricultural landscape and limited dispersal ability I predicted that N. gouldi 

populations would display reduced gene flow and signs of isolation as a result of habitat 

fragmentation.  This prediction was confirmed by my analyses which identified reduced 

population connectivity, decreased genetic diversity, elevated measures of relatedness and 
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inbreeding, and altered demography within fragmented populations isolated by ≥27km of 

agricultural land.  Agricultural distances <2km did not influence population connectivity 

providing a benchmark for habitat restoration to improve connectivity and mitigate population 

isolation in this species.  Management recommendations include the enhancement of 

population connectivity between threatened SA populations, and recognition of a unique 

Management Unit at the Grampians National Park. 

 

The forth chapter investigates the influence of habitat fragmentation on N. geoffroyi for 

comparison with N. gouldi.  In contrast to N. gouldi, N. geoffroyi is a habitat generalist that 

occupies a diverse range of ecosystems and which is commonly recorded within agricultural 

landscapes.  N. geoffroyi‘s presence in modified habitat coupled with plastic ecology and 

roosting requirements led to the prediction that the species would display limited impacts 

from habitat fragmentation.  My analyses again confirmed this prediction with N. geoffroyi 

displaying virtually no response to habitat fragmentation and a panmictic population structure 

across the study region.  The comparison between N. geoffroyi and N. gouldi provided an 

opportunity to test the merit of several proposed predictors of bat vulnerability to habitat 

fragmentation, in particular wing morphology, matrix tolerance, specialisation and geographic 

range.  The much touted predictor wing morphology failed to predict differing responses from 

the two species while the following three predictors listed above received further support 

from this study.  I conclude that wing morphology may still be a useful predictor of bat 

vulnerability to habitat fragmentation when coupled with other indicators such as matrix 

tolerance and habitat specialisation. 

 

The fifth and final data chapter utilises molecular analyses to assess several previously 

unknown aspects of N. gouldi and N. geoffroyi ecology, dispersal strategies, mating systems 

and social structure.  N. gouldi displayed patterns consistent with female natal philopatry, 

male biased dispersal and a polygynous mating system, while no such evidence was found for 

N. geoffroyi.  Results for N. geoffroyi may have been influenced by larger population sizes 

which, coupled with higher dispersal rates, may have masked any evidence of sex-biased 

dispersal.  Both species displayed significant numbers of relatives at the population level, 

with N. gouldi displaying particularly high levels of related females.  N. geoffroyi displayed 

higher numbers of relatives at the roost level indicating that kin selection may play an 

important role in social structure and cooperative roosting.  Despite significant numbers of 

related N. geoffroyi at the roost level, the vast majority of pairwise comparisons indicated no 
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relationship between individuals suggesting that the dominant driver of sociality and 

cooperative behaviour may not be solely based on relatedness.  Nevertheless, high incidence 

of related females at the population level for N. gouldi, and at the roost level for N. geoffroyi, 

suggests that the bonds between related females are an important aspect of Nyctophilus 

behavioural ecology and social structure. 
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