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SUMMARY 23 

Autotransporters are a superfamily of virulence factors secreted by Gram negative bacteria. They 24 

are comprised of an N-terminal passenger domain that is translocated across the outer membrane, 25 

and a C-terminal domain that inserts into the outer membrane forming a β-barrel anchor. It is still 26 

poorly understood how the passenger is efficiently translocated in the absence of external energy 27 

inputs. Several mechanisms have been proposed in solution of this problem, yet due to the vast 28 

diversity of size, sequence, and function of the passenger, it is not clear how widely these 29 

mechanisms are employed. In this study we functionally characterize a conserved repeat found in 30 

many passengers which we designate the Passenger-associated Translocation Repeat (PATR). 31 

Using the autotransporter IcsA from the enteropathogen Shigella flexneri, we identified 32 

conserved PATR residues that are required for efficient translocation of the passenger during 33 

growth and infection. Furthermore, PATR-containing autotransporters are significantly larger 34 

than non-PATR autotransporters, with PATR copy number correlating with passenger size. We 35 

also show that PATR-containing autotransporters delineate a subgroup that associates with 36 

specific virulence traits. These results advance our understanding of autotransporter composition, 37 

and indicate that an additional modular mechanism of passenger translocation is in use in 38 

thousands of these proteins. 39 

 40 

 41 

 42 

 43 

 44 

 45 
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INTRODUCTION 46 

Gram negative bacteria coordinate infection and disease via a synergy of secreted virulence 47 

factors. As such, the secretion of these virulence factors across the double-membrane cell wall 48 

must be efficient for pathogenic fitness. The autotransporter (AT, or Type Va) secretion pathway 49 

is the most common solution to this problem (Henderson et al., 2004; Dautin et al., 2007; Leyton 50 

et al., 2012; Grijpstra et al., 2013). AT superfamily proteins have distinctive domain 51 

architecture; (i) an N-terminal signal sequence for Sec mediated passage of the inner membrane, 52 

(ii) a central passenger domain harboring the virulence properties of the protein, and (iii) a 53 

transmembrane β-barrel at the C-terminus. The β-barrel is required for the stages of outer 54 

membrane (OM) insertion, and the translocation of the passenger to the extracellular space. 55 

Depending on the virulence function of the AT, the passenger can remain attached to the 56 

bacterial surface or be released into the extra-bacterial milieu. Also, due to its functional 57 

diversity the passenger varies widely in its sequence and size (Celik et al., 2012). 58 

Despite rigorous investigation, the exact mechanism of OM β-barrel insertion and passenger 59 

translocation remains incompletely understood. In general, the β-barrel and passenger are 60 

inserted and translocated sequentially by a series of intricate events coordinated by the essential 61 

Barrel Assembly Machinery (BAM) (Jain et al., 2007; Rossiter et al., 2011; Roman-Hernandez 62 

et al., 2014) and by the β-barrel itself (Pavlova et al., 2013; Leyton et al., 2014). The BAM (a 63 

complex of integral and lipoproteins) interacts with both the β-barrel (Ieva et al., 2011) and 64 

passenger (Ieva et al., 2009) portions of the AT to assist β-barrel insertion. Structural analysis 65 

suggests that the local distortion of the OM at the lateral gate of the BamA component facilitates 66 

the seeding of the nascent β-barrel into the membrane (Noinaj et al., 2013; Noinaj et al., 2014). 67 
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The passenger is then translocated in a C- to N-terminal manner though the nascent β-barrel pore 68 

where it commonly folds into a β-helical stalk (Kajava et al., 2006).  69 

The energy source for passenger translocation also remains under debate. In the absence of 70 

external energy sources such as ATP, it has been proposed that C- to N-terminal β-helical folding 71 

could drive passenger translocation (Junker et al., 2006; Braselmann et al., 2012). In this model, 72 

the initially translocated C-terminal portion of the passenger has high stability and folds with 73 

high efficiency (Junker et al., 2006; Renn et al., 2008; Peterson et al., 2010). This folding action 74 

itself pulls the rest of the less stable N-terminal portion of the passenger through the β-barrel 75 

pore in a vectorial fashion. This type of sequential folding, although attractive in its simplicity, 76 

has only been implicated in a few model ATs (such as Petactin, EspP, and Pet (Renn et al., 2008; 77 

Junker et al., 2009; Peterson et al., 2010; Kang'ethe et al., 2013b)) and it is unknown how widely 78 

this model is adhered to by the AT superfamily which is large and diverse. Indeed, the AT YapV 79 

varies from the model as it lacks a C-terminal (Pertactin-like, PL) stable region but employs an 80 

unstable region at the extreme N-terminus for its secretion (Besingi et al., 2013). Furthermore, it 81 

has been recognized that the vast majority of ATs do not contain a PL region (Drobnak et al., 82 

2014) and the model may not apply to ATs that possess globular passengers (for instance EstA 83 

(van den Berg, 2010)). It has also been realized that passenger domains frequently have a net 84 

negative charge that may act to facilitate translocation, possibly by charge repulsion between the 85 

passenger and LPS molecules (Kang'ethe et al., 2013a). Consequently, it remains possible that 86 

mechanisms of passenger secretion are ‘mixed-and-matched’ depending on the size, fold-type, or 87 

function of the AT in question.  88 

To further our understanding of AT passenger secretion, we investigated a highly conserved, 89 

AT-associated, 32 amino acid repeat. Although models of this repeat had been deposited into 90 
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both TIGRFAM (Haft et al., 2003) (TIGR02601) and Pfam (Finn et al., 2014) (PF12951) 91 

databases, its function remained completely uncharacterized. This study revealed that the repeat 92 

is; (i) associated with the passengers of a large and district group of ATs, (ii) required for 93 

efficient passenger translocation, and (iii) connected with certain passenger domain architectures 94 

and functions. As such, in this study we refer to this repeat as the Passenger-associated 95 

Translocation Repeat (PATR). 96 

 97 

RESULTS 98 

PATR mutation disrupts steady-state passenger surface presentation. 99 

To uncover the function of the PATR in ATs, the well-studied AT IcsA was used as a model 100 

protein. IcsA is an essential virulence factor for the human enteric pathogen Shigella flexneri that 101 

enables spreading and lesion formation in infected intestinal epithelia (Makino et al., 1986; 102 

Bernardini et al., 1989; Lett et al., 1989; Goldberg et al., 1995; Suzuki et al., 2002). It also has a 103 

previously reported (Dai et al., 2010), but uninvestigated, single copy of the PATR in its 104 

passenger domain at IcsA
526-557

 (see schematic Figure 1A). On inspection of the Pfam (PF12951) 105 

PATR model (see Figure 1B), the occurrence of four highly conserved glycines was observed at 106 

positions G
6
, G

8
, G

20
, and G

27
 that are present in IcsA (IcsA

G531
, IcsA

G533
, IcsA

G545
, and IcsA

G552
 107 

respectively). We hypothesized that the PATR glycine residues are important in biogenesis, and 108 

accordingly, glycine to alanine substitutions at these four sites were constructed in IcsA, along 109 

with a complete 32 amino acid deletion of the PATR. These mutants were constructed in a 110 

plasmid-borne icsA with a native PIcsA promoter (Morona et al., 2003c) and expressed in an IcsA 111 

and O-antigen deficient strain of S. flexneri (Van den Bosch et al., 2003) (see Table S1). This 112 
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allowed unhindered detection of IcsA surface levels (Morona et al., 2003a; Morona et al., 2003c; 113 

Morona et al., 2003b) making strains suitable for the following experiments (see further). 114 

First, to assess overall IcsA PATR mutant expression levels, total S. flexneri protein samples 115 

were analyzed by anti-IcsA (passenger) Western immunoblot (Figure 2A). No difference in total 116 

IcsA protein expression was observed, regardless of PATR mutation. Anti-IcsA 117 

immunofluorescence (IF) staining of these bacteria was also conducted (Figure 2B). Contrary to 118 

total protein levels, detectable passenger surface levels were visually reduced for IcsA PATR 119 

mutants relative to the wild-type protein. This was particularly true for IcsA
G531A

, IcsA
G545A

, 120 

IcsA
G552A

 substitutions, and IcsA
∆PATR

. IcsA fluorescence intensities of 250 bacteria (n = 5) were 121 

then measured for each PATR mutant and the wild-type protein (Figure 2C). This confirmed that 122 

IcsA
G531A

, IcsA
G545A

, IcsA
G552A

, and IcsA
∆PATR

 displayed significantly (α = 0.05) reduced surface 123 

levels (mean fractions of wild-type 0.58 ±0.20, 0.61 ±0.31, 0.61 ±0.17, and 0.62 ±0.08 124 

respectively). Although this experiment could not establish significance for IcsA
G533A

 (P = 125 

0.588), the trend of reduced surface detection was still observable. 126 

The reduction of detectable surface exposed passenger due to PATR glycine substitutions or 127 

deletion may have been due to a reduction of biogenesis towards the OM. To test this, OM 128 

protein (OMP) samples were extracted from S. flexneri expressing IcsA and IcsA PATR mutants 129 

using differential detergent treatment (see Materials and Methods). Coomassie Blue staining of 130 

SDS-PAGE separated OMP samples showed equivalent loading and excellent enrichment of 131 

major OMPs relative to a total cell protein control (Figure 2D). OMP enrichment was further 132 

shown by anti-BamA immunoblotting. Fractionation purity controls showed that periplasmic 133 

SurA, inner membrane Wzz, and cytoplasmic DnaK did not contaminate the OMP samples. 134 

Interestingly, there was no discernable difference in the amount of full length IcsA in the OM for 135 
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any of the IcsA PATR mutants relative to the wild-type protein. What was noticeable however, 136 

was an increase in OM-associated IcsA degradation products due to PATR mutation. This was 137 

observed for all IcsA PATR substitutions and deletion, but most clearly observed for IcsA
G545A

.  138 

The reduction in detectable IcsA on the S. flexneri surface (Figures 2B and C) despite 139 

equivalent cellular expression and OM localization (Figures 2A and D) indicated a defect in 140 

efficient passenger translocation due to either PATR glycine substitutions or deletion. This 141 

would also explain the increase in the degraded forms of IcsA in the OM (Figure 2D). If IcsA 142 

passenger translocation was reduced due to PATR glycine substitutions or deletion, then this 143 

would also be observed by a reduction of N-WASP recruitment by the bacterium upon infection 144 

of epithelial cells. Recruitment of host N-WASP is the intracellular function of IcsA that results 145 

in the formation of actin-based tails required for motility and pathogenicity (Egile et al., 1999; 146 

Suzuki et al., 2002). To test this, cultured HeLa cells were infected with S. flexneri expressing 147 

either the wild-type or PATR mutant forms of IcsA and stained for N-WASP, filamentous-actin, 148 

and DNA. As expected, wild-type IcsA recruited high levels of N-WASP resulting in commonly 149 

observed tail filaments (Figure 2E). However, dramatic reductions in N-WASP recruitment was 150 

observed for substitutions IcsA
G531A

, IcsA
G533A

, IcsA
G545A

, and IcsA
G552A

, and was completely 151 

abolished for IcsA
∆PATR

 indicating that portions of the passenger N-terminal to the deletion were 152 

completely misfolded. To confirm these observations, the N-WASP fluorescence intensity was 153 

measured for all bacteria per infected cell (n = 5) for each strain expressing the PATR mutants 154 

and the wild-type protein (Figure 2F). This confirmed that IcsA
G531A

, IcsA
G533A

, IcsA
G545A

, 155 

IcsA
G552A

, and IcsA
∆PATR

 all resulted in significant (α = 0.05) reductions in N-WASP recruitment 156 

(mean fractions of wild-type 0.50 ±0.12, 0.51 ±0.10, 0.35 ±0.06, 0.50 ±0.07, and 0.22 ±0.02 157 
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respectively). Also, N-WASP recruitment for IcsA
G545A

 and IcsA
∆PATR

 was not significantly 158 

different to the vector control (p = 0.174 and p = 0.873 respectively). 159 

 160 

PATR mutation decreases passenger translocation efficiency. 161 

Thus far, a role for the PATR in steady-state passenger surface presentation, in the context of 162 

both bacterial culture and infection, had been established. To more closely investigate the 163 

dynamics of IcsA passenger translocation, the same IcsA PATR glycine substitutions and 164 

deletion were constructed in the plasmid pBADIcsA which has the icsA gene controlled by the 165 

PBAD promoter (Guzman et al., 1995). Expression of these constructs in an IcsP protease 166 

deficient strain of S. flexneri (see Table S1) allowed reduced endogenous proteolysis permitting 167 

informative pulse-chase protease accessibility assays to be performed (Figure 3). Briefly, IcsA 168 

expression was momentarily pulsed by the addition of arabinose in culture, and the newly 169 

synthesized protein was chased by sampling over an hour time-course (see Materials and 170 

Methods). S. flexneri samples were either untreated (PK-) or treated with Proteinase K (PK+), 171 

allowing assessment of passenger translocation rate due to protease accessibility. As a further 172 

control, samples were treated with chloroform to permeabilize the OM and allow periplasmic 173 

access to PK. Correct topological proteolysis was established in a mock pulse-chase (Figure 3A). 174 

This confirmed that digestion of periplasmic SurA only occurred after OM permeabilization. 175 

Additionally, the cytoplasmic protein DnaK was not affected by any treatment indicating that the 176 

inner membrane remained impermeable to PK under the conditions of this experiment.  177 

The protease accessibility chase for wild-type IcsA revealed an extremely fast rate of 178 

passenger translocation (Figure 3B and C, black trace) with a ‘burst’ of 93.10% (±2.0) 179 

translocation occurring in the first 1 to 5 minutes with the remainder still translocating (as 180 
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indicated by complete digestion after OM permeabilization). Wild-type IcsA translocation was 181 

totally completed between 20 to 40 minutes. This translocation rate is expected since it is 182 

consistent with the life-cycle of rapidly dividing S. flexneri that require sufficient surface 183 

exposed IcsA passenger in order to initiate motility and pathogenic viability in the host. The IcsA 184 

PATR glycine substitutions and deletion mutants however, displayed marked reductions in 185 

passenger translocation efficiency (Figure 3B and C). For instance, the initial bursts of 186 

translocation between the first 1 to 5 minutes were reduced by approximately half for IcsA
G531A

, 187 

IcsA
G533A

, and IcsA
G552A

, (27.80% ±6.7, 41.12% ±35.3, and 31.37% ±12.6 respectively) and 188 

59.39% ±25.73 for IcsA
G545A

. Furthermore all PATR glycine substitutions had increased their 189 

translocation percentage over the hour time-course, but none progressed to complete 190 

translocation. Interestingly, the PATR deletion mutant had decreased translocation by the first 5 191 

minutes (63.51% ±24.4), but also declined in translocation across the time-course. This may 192 

indicate a complete blockage in translocation where additional nascent IcsA
∆PATR

 is immediately 193 

blocked at the translocation stage with an accumulative effect. Finally, the mean translocation 194 

percentages over all time points were analyzed by repeated measures ANOVA and were found to 195 

be significantly lower than the wild-type passenger (mean differences of 66.59% ±7.3, 41.38% 196 

±9.2, 35.16% ±9.5, 52.23% ±8.3, and 65.11% ±14.1 relative wild-type for IcsA
G531A

, IcsA
G533A

, 197 

IcsA
G545A

, IcsA
G552A

, and IcsA
∆PATR

 respectively) (Figure 3D).  198 

These results show that PATR glycine substitutions or deletion caused a marked decrease 199 

(approximately halved) in passenger translocation over the initial 5 minutes and a continual lag 200 

in translocation thereafter. This provides an explanation for the reduced levels of surface exposed 201 

PATR mutant passengers observed for the steady-state circumstances (Figure 2). 202 

 203 
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Analysis of the PATR within the AT family. 204 

With knowledge of the function of the PATR established in vivo, we attempted to identify the 205 

wider importance of the PATR within the AT family. The PATR was identified in a large 206 

number of ATs, with examples shown aligned in Figure 4A. These include known subtilisin-type 207 

serine proteases such as the inflammatory EprS from Pseuodomonas aeruginosa (Kida et al., 208 

2013), and NalP, the processor of other ATs from Neisseria meningitidis (van Ulsen et al., 209 

2003). Also shown aligned is PATR9 from the fibronectin-binding host colonization factor ShdA 210 

of Salmonella enterica (ShdA contains an array of PATRs (Kingsley et al., 2000; Kingsley et al., 211 

2004) (see Figure S1)). The glycine residues investigated in this study, as well as other PATR 212 

residues, are highly conserved on a level not previously observed in AT passengers, especially 213 

between those of varied function.  214 

An analysis on all ATs within the UniProt Knowledgebase (7659 proteins) was also 215 

conducted by grouping unique ATs (InterPro (Hunter et al., 2012) AT β-barrel identifiers 216 

IPR005546 and/or IPR006315) based on the presence or absence of at least one annotated copy 217 

of the PATR (IPR013425). Remarkably, 29.2% of the unique representative ATs within the 218 

database (2240 proteins) had at least one copy of the PATR. This is similar to the abundance of 219 

the PL region which we found present in 37.4% of the unique representative ATs (2864 220 

proteins). There was a significant difference (p < 0.0001) in the representations of passenger 221 

domain virulence traits between PATR-positive and non-PATR ATs (Figure 4B). For example; 222 

lipase-like, as well as type S6 (SPATE-like (Rawlings et al., 2014; Ruiz-Perez et al., 2014)) 223 

serine proteases, and vacuolating cytotoxins were only present in non-PATR ATs. Conversely, 224 

ATs containing type 2 phosphatidic acid phosphatase (PAP2) domains, Polymorphic OM protein 225 

repeats (POMPs), and type S8 (subtilisin-type (Rawlings et al., 2014)) serine proteases were all 226 
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highly represented in PATR-positive ATs. Interestingly, ATs with a Pectin lyase-like region (an 227 

indicator of further β-helical wrapping) as the only other identifying passenger feature, were 228 

represented more than twice as high in PATR-type ATs relative non-PATR ATs. The inverse of 229 

this was true for ATs that also contained a PL region. Furthermore, the PATR was never 230 

observed in the passenger with the PL as an exclusive partnership (i.e.: PATR plus PL only 231 

passenger). This minimal overlap between the PATR and the PL is further shown via Venn 232 

diagram (see figure S2). Also noticed was a significant difference (P < 0.0001) in protein 233 

lengths, where the mean length of PATR-positive ATs was 503 a.a (± 13) longer than non-PATR 234 

ATs. This is seen as a positively skewed lengths distribution for ATs containing a PATR (Figure 235 

4C). Moreover, within the PATR-positive ATs there was a significant (P < 0.0001) correlation 236 

between increasing AT length and PATR copy number (Figure 4D).  237 

Together, these data suggests that the presence or absence of a PATR strongly impacts the 238 

probability of containing certain passenger virulence functions, the potential size of the protein, 239 

and delineates an important sub-group of PATR-type ATs. Surprisingly, none of the ATs with 240 

solved passenger structures appeared to contain the PATR when scrutinized by sequence 241 

analyses. Therefore, the tertiary structure of the PATR consensus sequence was modeled using I-242 

TASSER (Roy et al., 2010; Xu et al., 2011) and then structurally aligned to all the solved AT 243 

passengers using TM-Align (Zhang et al., 2005). The PATR was predicted to form a right-244 

handed β-helical triangular wedge with all PATR glycines clustered at each vertex (Figure 4E). 245 

Remarkably, upon alignment to passenger structures, we identified putatively degenerate PATR 246 

sites in Ag43, Hap, and IgA1P (see Figures 4F, S3, and Table S2 for additional sites). The 247 

alignment shows the positions of the conserved glycines characterized in this study. The ‘velcro-248 

like’ Ag43 (Heras et al., 2014) of pathogenic E. coli had the highest alignment score with 249 
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clustering of the glycines at the G
6
/G

8
/G

27
 PATR apex (Ag43 glycines G

499
, G

501
, G

520
 250 

respectively). Identification of degenerate PATRs indicate an even wider distribution of this site 251 

in ATs than can be identified by sequence motif recognition alone. 252 

 253 

DISCUSSION 254 

This study reveals the importance of a previously underappreciated and uncharacterized 255 

passenger feature which we have termed here, the Passenger-associated Translocation Repeat 256 

(PATR). Strikingly, ~30% of the unique AT representatives analyzed contain a PATR. This is 257 

comparable to the abundance of the Pertactin-like (PL) region which we found here to be ~37% 258 

(slightly more than previous estimates (Drobnak et al., 2014)). Through alanine substitution of 259 

conserved PATR glycines (as well as a complete PATR deletion) within the PATR-type AT 260 

IcsA, we have shown in vivo that the PATR is required for efficient translocation of the 261 

passenger during the initial few minutes of secretion. This resulted in significantly decreased 262 

(approximately half that of wild-type) steady-state levels of surface exposed IcsA passenger 263 

which was further observed as a significant decrease in N-WASP recruitment levels by 264 

intracellular S. flexneri. Furthermore, PATR mutants also displayed substantial lags in 265 

translocation over an extended time, also suggesting that the passenger was exposed to the 266 

periplasmic topology for a prolonged period. This would increase the likelihood of proteolysis by 267 

known proteases (for instance, DegP (Jong et al., 2007; Purdy et al., 2007)) and may explain the 268 

observed increase in degraded forms of PATR mutants in the OM. 269 

The knowledge that the PATR is required for efficient translocation of the passenger begs 270 

the question – by what mechanism? Structural modeling suggests that the PATR prescribes a 271 

minimal right-handed triangular β-helix with the conserved glycines clustered spatially at the 272 
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three vertices. We found a translocation deficiency effect arising from glycine-alanine 273 

substitutions at two of these three putative vertices. It is likely that these glycines are required for 274 

the flexibility of stable PATR folding at the corners, and that substitution disrupts the space 275 

requirements for this folding. Sequential folding as a mode of translocation is a well-studied 276 

notion in other ATs (Junker et al., 2006; Renn et al., 2008; Junker et al., 2009; Peterson et al., 277 

2010). Drawing from this, it is conceivable that proper sequential folding of the PATR is also 278 

required for the translocation of PATR-type ATs, similarly to what is observed for Pertactin and 279 

PL ATs. Certainly, it is intriguing that the presence of a PL region corresponds with a lower 280 

potential for the presence of a PATR and vice versa. Further, the PATR was never observed with 281 

the PL as an exclusive partnership in the passenger – an additional region (such as the Pectin 282 

lyase-like region) must also be present for the PATR and PL to be in the same AT. Although 283 

care must be taken when attributing a folding function to PL regions (Drobnak et al., 2014), it 284 

appears that both these regions have overlapping (but not equivalent) conserved functions in 285 

passenger biogenesis. This rationale needs to be investigated further through in vitro biophysical 286 

and structural characterization of the PATR before it is validated. However, we have observed 287 

that PATR-type ATs are significantly larger (by 503±13 a.a.) than non-PATR ATs, and that the 288 

size of the AT correlates with PATR copy number. We propose that the PATR acts as a 289 

dispersed module for folding stability where some larger ATs (for instance ShdA) may require 290 

multiple PATR modules for the efficient translocation of larger passengers.  291 

Besides the PL region, there was a striking association between passenger virulence 292 

attributes and the presence or absence of the PATR. The PATR was not found in lipase-like 293 

passengers, which is consistent with our modeling of the PATR as a minimal β-helical fold 294 

(since lipases are not β-helix based (van den Berg, 2010)). Subtilistin-type (S8) serine proteases 295 
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were also commonly PATR-type ATs, whereas SPATE (serine protease ATs of the 296 

enterobacteriacea)-like (S6) serine proteases generally excluded the presence of a PATR. The 297 

reasons behind these observations are unknown, but we speculate that the export requirements of 298 

a passenger with S8-type regions may be more amenable to a PATR-type mechanism as opposed 299 

to the requirements for S6-type passengers. It is also possible that the difference in representation 300 

reflects variances in the usage of the PATR between the enterobacteriacea and other families. In 301 

support of this we also observed an increased association of the PATR with passengers 302 

containing the POMP repeat which is highly conserved in the Pmp adhesin ATs of the 303 

Chlamydiaceae (Henderson et al., 2001). Together, these results implicate the PATR as a 304 

convenient building block in passengers, providing scaffolding for other functional regions. 305 

Indeed, it has been previously proposed that small sequences have been incorporated into 306 

passenger architectures to enable niche specialization of ATs during evolution (Celik et al., 307 

2012).  308 

In conclusion, this study has uncovered the importance of a previously uncharacterized 309 

repeat that plays a role in AT secretion. The PATR delineates a further subtype of ATs and is 310 

present in many passengers. These results stimulate the need for further investigation to expose 311 

the exact mechanism of PATR mediated translocation, to establish biophysical characteristics of 312 

this repeat, and to uncover its phylogenic origin and diversity within Gram-negative bacteria. 313 

Finally, it should be noted here that we identified that the PATR was also present in ~700 unique 314 

proteins that did not contain an identifiable AT β-barrel. Although it must be further established, 315 

this may indicate a role for the PATR in other Type V secretion systems – namely, the Two-316 

partner pathway. Nevertheless, this work has highlighted the notion that passenger compositions 317 

are ‘mixed-and-matched’ to suit precise secretion and function requirements.  318 
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 319 

EXPERIMENTAL PROCEDURES 320 

Bacterial strains and plasmids. Lists of strains and plasmids utilized in this study are included 321 

in the Supporting Information (see Table S1) which includes details of their construction (see 322 

Text S1) and oligonucleotides used (see Table S3). S. flexneri colonies were grown on Congo 323 

Red agar for confirmation of virulence plasmid presence before routine growth in Luria-Bertani 324 

(LB) media at 37˚C with shaking. For all experiments, bacteria were sub-cultured (1:50 or 1:100) 325 

to a log-phase OD600 reading of 0.5 before use. When required, broths were supplemented with 326 

the following additives at respective concentrations; 0.2 % (w/v) glucose, 0.2 % (w/v) arabinose, 327 

tetracycline (10 µg/mL), kanamycin (50 µg mL
-1

), chloramphenicol (25 µg mL
-1

) and ampicillin 328 

(50 µg mL
-1

). 329 

 330 

Antibodies. Polyclonal rabbit anti-IcsA (passenger) and polyclonal rabbit anti-N-WASP were 331 

produced and validated as described previously (Van den Bosch et al., 1997; May et al., 2008). 332 

Polyclonal rabbit anti-SurA was a generous gift from Carol Gross (University of California, 333 

USA). Polyclonal rabbit anti-Wzz was produced as described previously (Daniels et al., 1999). 334 

Polyclonal rabbit anti-BamA was a generous gift from Thomas Silhavy (Princeton University, 335 

USA). Mouse anti-DnaK monoclonal antibody was from Enzo Life Sciences. 336 

 337 

Total bacterial protein samples. 5 x 10
8
 of log-phase bacteria were collected by centrifugation 338 

(16000 x g, 1 min, 4 ˚C), resuspended in 100 µL of SDS-PAGE loading buffer (Lugtenberg et 339 

al., 1975), and heated to 100 ˚C for 10 min. Replicate total cell samples were pooled 1:1 before 340 

analysis. 341 
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 342 

Bacterial IcsA labeling. Immunofluorescence microscopy and fluorescence quantitation was 343 

conducted as described previously (Tran et al., 2013). All solutions used were filtered through a 344 

0.2 µm nitrocellulose filter. 10
8
 of log-phase bacteria were harvested from a 1:50 sub-culture by 345 

centrifugation (16000 x g, 2 min, 20 ˚C), resuspended in 3.7 % (v/v) formaldehyde solution 346 

(Sigma) in phosphate buffered saline (PBS), and incubated at 20 ˚C for 20 min. Fixed bacteria 347 

were washed twice in PBS before resuspension in 100 µL of PBS. 5 µL of the bacteria were 348 

spotted onto sterile round coverslips (at the bottom of a 24-well tray) that were previously treated 349 

with 10 % (v/v) poly-L-lysine solution (Sigma) in PBS. Bacteria were centrifuged (775 x g, 5 350 

min, 20 ˚C) and then incubated for 2 h with anti-IcsA diluted 1:100 in PBS containing 10 % (v/v) 351 

fetal calf serum (FCS). Bacteria were washed three times with PBS and then incubated for 30 352 

min at 37 ˚C with donkey anti-rabbit Alexa Fluor 488 antibody (Invitrogen) diluted 1:100 in PBS 353 

containing 10 % (v/v) fetal calf serum (FCS). Bacteria were washed three times with PBS before 354 

mounting with 20 % Mowiol 4-88 (Calbiochem), 4 mg ml
-1

 p-phenylenediamine.  355 

 356 

Cell infection and N-WASP/F-actin/DNA labeling. Infection of semi-confluent HeLa cell 357 

monolayers with S. flexneri was conducted as described (Teh et al., 2012). HeLa cells were 358 

grown on sterile round coverslips at the bottom of 24-well trays. Log-phase bacteria were 359 

harvested from a 1:50 sub-culture by centrifugation (16000 x g, 2 min, 20 ˚C) and diluted to 3 x 360 

10
8
 bacteria/mL in Dulbecco’s PBS (D-PBS). HeLa Cells were washed with 10 % (v/v) FCS in 361 

minimal essential medium (MEM) and then 80 µL of bacteria were added before centrifugation 362 

(500 x g, 5 min, 20 ˚C) to assist invasion. After incubation at 37 ˚C with 5 % CO2 for 1 h, cells 363 

were washed three times with D-PBS, and incubated a further 1.5 h with 500 µL of MEM 364 
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supplemented with 10 % (v/v) FCS and 40 µg mL
-1

 gentamycin. Cells were then washed three 365 

times with D-PBS, fixed for 15 min with 3.7 % (v/v) formaldehyde solution (Sigma) in PBS, and 366 

washed twice with PBS. Before staining, cells were incubated with 50 mM NH4Cl in D-PBS for 367 

10 min, washed with PBS, permeablized with 0.1 % (v/v) Triton X-100 in PBS for 5 min, and 368 

washed with PBS. Cells were blocked with 10 % (v/v) FCS in PBS for 20 min, before aspiration 369 

and addition of anti-N-WASP diluted at 1:100 in PBS containing 10 % (v/v) FCS for 30 min at 370 

37 ˚C. Cells were washed three times with PBS, and then incubated for 1 h at 37 ˚C with donkey 371 

anti-rabbit Alexa Flour 594 antibody (Invitrogen) and Alexa Flour 488 phalloidin (Invitrogen) 372 

diluted to 1:100 and 1:200 respectively in PBS containing 10 % (v/v) FCS. After three washes 373 

with PBS, DNA was stained with 10 µg mL
-1

 DAPI for 1 min, washed three times with PBS, and 374 

mounted for microscopy as described above. 375 

 376 

Microscopy. All images of stained bacteria or infected HeLa cells were captured using an 377 

Olympus IX-7 Microscope and MetaMorph software (Molecular Devices) with a phase contrast 378 

100 x oil immersion objective and a 1.5 x enlarger. For fluorescence imaging an X-Cite 120Q 379 

lamp was used set at high intensity. All bacterial IcsA fluorescence images were acquired with 380 

100 millisecond exposures. All N-WASP fluorescence images were acquired with 500 381 

millisecond exposures. Fluorescence images for background correction were taken for each 382 

experiment. IcsA and N-WASP fluorescence images for presentation were recolored using the 383 

ICA LUT using ImageJ such that the full intensity spectrum can be easily observed. MetaMorph 384 

region measurement tools were used to quantitate fluorescence intensities for individual bacteria. 385 

For IcsA quantitation, 50 bacteria were routinely measured for each experiment. For N-WASP 386 

recruitment, all bacteria within an infected cell were measured for each experiment. 387 
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 388 

OMP extraction. OMPs were isolated using differential Sarkosyl treatment (Hobb et al., 2009). 389 

5 x 10
10

 log-phase bacteria were collected from a 1:50 sub-culture by centrifugation (3000 x g, 390 

20 min, 4 ˚C), resuspended in 15 mL of 10 mM HEPES, pH 7.5, and lysed by sonication. Debris 391 

was removed by centrifugation (10000 x g, 10 min, 4 ˚C) and supernatant ultracentrifuged 392 

(149000 x g average, 1 h, 4 ˚C). Whole membrane pellets were homogenized in 15 mL of 10 393 

mM HEPES, pH 7.5, re-ultracentrifuged (as above), homogenized in 15 mL of 1 % (w/v) 394 

Sodium N-lauroylsarcosinate, 10 mM HEPES, pH 7.5, and incubated at 37 ˚C for 30 min with 395 

inversion. OMPs were collected by ultracentrifugation (as above), homogenization in 15 mL of 396 

10 mM HEPES, pH 7.5, ultracentrifuged a final time (as above), and homogenization in 250 µL 397 

of 10 mM HEPES, pH 7.5. OMPs were diluted in 10 x SDS-PAGE loading buffer and heated to 398 

100 ˚C for 10 min before analysis. 399 

 400 

S. flexneri pulse-chase proteolysis assay. The arabinose/glucose (on/off) expression switch of 401 

the vector pBAD30 (Guzman et al., 1995) was utilized for controlled expression essentially as 402 

described by (Leyton et al., 2014). 1:100 sub-cultures of S. flexneri harboring pBADIcsA and 403 

derivatives (see Table S1) were grown to log-phase in 100 mL of LB supplemented with glucose 404 

before collection by centrifugation (4000 x g, 4 min, 4 ˚C). Bacteria were washed with LB, 405 

resuspended in media containing arabinose, and incubated (5 min, 25 ˚C) for IcsA production 406 

(pulse). Bacteria were collected (as above), resuspended in 30 mL of media containing glucose, 407 

and placed on a 25 ˚C block for 60 min (chase). During the chase, four 1 mL aliquots were taken 408 

at times 0 (resuspension), 1, 5, 10, 20, 40, and 60 mins. The protein from the first aliquot was 409 

precipitated with 12 % (w/v) final concentration of trichloroacetic acid (TCA) on ice. The second 410 
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aliquot was treated with a final concentration of 10 µg mL
-1

 Proteinase K (PK) on ice for 10 min. 411 

Proteolysis was then stopped by addition of 4 mM final concentration of phenylmethanesulfonyl 412 

fluoride (PMSF) before TCA precipitation (as above). Bacteria from the third aliquot were 413 

collected (16000 x g, 1 min, 4 ˚C), treated with 20 µL of chloroform to permeablize the OM 414 

(Ames et al., 1984; Wagner et al., 2009), and then PK treated, stopped, and precipitated as 415 

described for the second aliquot. All precipitated samples were washed with acetone, dried, and 416 

resuspended with 50 µL of SDS-PAGE loading buffer per 1 OD600 unit (measured using the 417 

fourth aliquot). Samples were heated to 100 ˚C for 10 min before analysis. The ‘relative 418 

translocation’ was determined by the formula: Relative Translocation=100-100(PK+/PK-) after 419 

densitometric analysis using ImageJ. 420 

 421 

Database analysis. To generate AT annotation lists, the UniProt knowledgebase (Jain et al., 422 

2009; Magrane et al., 2011) (uniprot.org) was used due to its extensive architecture annotation of 423 

protein entries by InterPro (Hunter et al., 2012). Lists which were pruned to exclude fragments. 424 

A list of ATs that were PATR exclusive (-PATR) was generated by searching for entries 425 

including InterPro cross-references for the AT β-barrel (IPR005546/IPR006315) but not the 426 

PATR (IPR013425). Note that IPR013425 incorporates both PFAM (Finn et al., 2014) 427 

(PF12951) and TIGRFAM (Haft et al., 2003) (TIGR02601) PATR models. A list of ATs that 428 

were PATR inclusive (+PATR) was generated by searching for entries including both the β-429 

barrel and the PATR. This yielded 14518 -PATR entries and 4961 +PATR entries. To remove 430 

redundancy, each list was clustered into UniRef100 sequence clusters (Suzek et al., 2007) which 431 

groups identical sequences and represents each group with a representative entry. This produced 432 

non-redundant -PATR and +PATR lists of 5419 and 2240 representatives respectively. Each 433 
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group was further analyzed based on other InterPro annotations, protein length, and PATR copy 434 

number.  435 

 436 

PATR structural modelling and identification of degenerate PATR. Modeling of the PATR 437 

sequence (PF12951 consensus) was achieved using I-TASSER which uses threading and ab 438 

initio modeling (zhanglab.ccmb.med.umich.edu/I-TASSER) (Roy et al., 2010; Xu et al., 2011). 439 

The model had a high C-score of -0.43 (possible range is -5 to 2 were higher values signifies 440 

higher confidence in the model), a TM-score of 0.66±0.13 (>0.5 indicates correct topology, 441 

<0.17 indicates random similarity. The following templates contributed to the model: Hap (PDB 442 

3SYJ), Ag43 (PDB 4KH3), WlbB (PDB 3MQG), PCSK9 (PDB 2QTW), and KalataB1 (PDB 443 

1JJZ). TM-Align was used to identify degenerate PATR from solved passenger structures 444 

(zhanglab.ccmb.med.umich.edu/TM-align) (Zhang et al., 2005). SCOP/CATH protein folds are 445 

shared when TM-score > 0.5. All alignment sites are detailed in Table S2. 446 

 447 
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 699 

FIGURE LEGENDS 700 

Figure 1: The passenger of IcsA has a single conserved PATR.  701 

A scaled schematic of the AT IcsA (Q7BCK4) is shown (A) indicating the signal sequence 702 

(IcsA
1-52

) cleaved at the open arrow, the passenger (IcsA
53-758

), and the β-barrel (IcsA
759-1102

). 703 
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The black arrow indicates the site of specific low efficiency cleavage by IcsP. The passenger has 704 

a single copy of the PATR (IcsA
526-557

, red) shown aligned with the PATR sequence (PF12951 705 

consensus) with the PATR Hidden Markov Model in (B) (pfam.xfam.org/family/PF12951). The 706 

positions of four conserved glycines are outlined (orange) and are completely conserved in the 707 

model (yellow). 708 

 709 

Figure 2: PATR mutations lower surface presentation of IcsA.  710 

(A) An anti-IcsA immunoblot of total cell samples from log-phase S. flexneri expressing IcsA 711 

and IcsA-PATR mutants. (B) The same bacteria subjected to anti-IcsA immunofluorescence 712 

microscopy (IFM). Representative bacteria are shown in phase (top) and fluorescence (bottom) 713 

images (4 x 4 µm). IcsA fluorescence was quantitated in (C) for n = 5 (where 50 bacteria were 714 

measured for each experiment) and analyzed by ordinary one-way ANOVA (Dunnett’s, α = 715 

0.05). (D) OM protein was also extracted from these bacteria using sarkosyl and analyzed by 716 

Coomassie Blue staining and immunoblotting. Coomassie staining shows equivalent loading and 717 

enrichment of major OMPs. BamA serves as both a positive control for OMP enrichment and a 718 

loading control. SurA, Wzz, and DnaK serve as periplasmic, inner membrane and cytoplasmic 719 

controls respectively. Total = total bacterial protein sample of S. flexneri expressing IcsA. * = 720 

degraded IcsA products. (E) To indirectly assess intracellular IcsA surface levels, N-WASP 721 

recruitment and F-actin accumulation was also tested in infected HeLa cells by IFM. Overlay 722 

images are shown (top) for bacterial nucleoids and eukaryotic nuclei detected with DAPI (blue) 723 

and actin labelled with phalloidin (green). N-WASP fluorescence images are shown below (20 x 724 

20 µm). N-WASP levels were also quantitated in (F) for n = 5 (where all bacteria were measured 725 

per infected cell for each experiment) and analyzed by ordinary one-way ANOVA (Dunnett’s, α 726 
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= 0.05). All experiments were conducted using an IcsA and O-antigen deficient strain of S. 727 

flexneri (RMA2043) expressing IcsA and IcsA-PATR mutants from PIcsA (see Table S1). All 728 

fluorescence images are scaled equally relative to each other. WT = wild type, SEM = standard 729 

error of the mean, ns = not significant, * = p < 0.05, ** = p < 0.01, *** = p < 0.001. 730 

 731 

Figure 3: PATR mutations decrease the efficiency of IcsA passenger translocation.  732 

Dynamics of passenger translocation was measured by pulse-chase proteolysis assays on live S. 733 

flexneri expressing IcsA and IcsA-PATR mutants from an arabinose / glucose PBAD switch (see 734 

Table S1). 60 minute chase time-courses are shown where bacteria were treated with Proteinase 735 

K (PK+), PK and chloroform  (PK+/CHCl3+), or not treated (PK-). All experiments were 736 

conducted using an IcsA and IcsP deficient strain of S. flexneri (RMA4378). (A) A mock chase 737 

with pBAD30 only. Immunoblot of periplasmic SurA shows proteolysis occurring only after OM 738 

permeabilization by CHCl3 treatment. Immunoblot of cytoplasmic DnaK indicates treatments did 739 

not result in cytoplasmic protein proteolysis. (B) Passenger translocation was chased for IcsA 740 

and IcsA-PATR mutants and means quantitated between 5 and 60 min time-points in (C). The 741 

means of the relative translocations for IcsA and IcsA-PATR mutants (time-point independent) 742 

are shown in (D) and analyzed by repeated measures ANOVA (Dunnett’s, α = 0.05). SEM = 743 

standard error of the mean, n = 2, * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 744 

0.0001. 745 

 746 

Figure 4: The importance of the PATR within the AT family.  747 

(A) Alignment of the PATR sites of IcsA and five other ATs; EprS (Q9HY75), ShdA (Q9XCJ4), 748 

subtilisin-type serine protease PrtS (P09489) from Serratia marcescens (Shikata et al., 1992), 749 
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subtilisin-type serine protease BmaA1 (H6T4K9) of Haemophilus parasuis (Pina-Pedrero et al., 750 

2012), and NalP (Q8GKS5). Accessions are UniProtKB. Black arrows indicate glycines 751 

investigated in this study. Additional PATR sites for ShdA are shown in Figure S1. (B) ATs 752 

within the UniProt Knowledgebase were grouped by the presence (+PATR) or absence (-PATR) 753 

of detectible PATR and further analyzed by InterPro ID domain annotation combinations. The 754 

dependency of domain combination on the presence or absence of the PATR is significant (p < 755 

0.0001, chi-square). IPR IDs = PectinLyase/P22-like; 012332, 011050, 012334, Pertactin-like 756 

(PL); 004899, 003991, 003992, PAP2; 000326, PbH1 (parallel β-helix); 006626, POMP; 757 

003368, PeptidaseS8; 000209, 022398, 023828, 015500, 023827, 017318, PeptidaseS6; 000710, 758 

Peptidase S1; 018114, 001254, Lipase; 017186, 001887, 008265, 013831, Vacuolating 759 

Cytotoxin; 003842, 004311. Note, the ordering of the domains does not indicate their position 760 

within the primary structure, others = all combinations that were < 2 % represented in both 761 

groups, No ID = entries that are yet to be annotated. The minimal overlap between the PATR and 762 

PL is shown further in Figure S2. (C) Lengths frequency histogram. The mean lengths are 763 

significantly different (949.9±5.367 and 1453±15.24 for the -PATR and +PATR groups 764 

respectively) as tested by two-tailed t-test (p < 0.0001). (D) PATR copy number per AT (AT) 765 

correlates significantly with length (two-tailed p < 0.0001, Pearson). (E) I-TASSER generated 766 

tertiary structure of the PATR. Orientation is a top-down cross-section from N- to C-terminus. 767 

The PATR is a predicted triangular wedge with all glycines (red) clustered at the three apexes. 768 

To find degenerate PATR this model was spatially aligned to all the solved AT passenger 769 

structures using TM-align. Identified degenerate PATR are aligned in (F) with the highest 770 

scoring site from Ag43 (Q8CVR0) shown below. Spatially conserved glycines (red) between the 771 
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PATR (blue) and Ag43 (grey) are indicated. For full lists and structure alignments see Table S2 772 

and Figure S2. 773 
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Figure 1: The passenger of IcsA has a single conserved PATR.  
 

A scaled schematic of the AT IcsA (Q7BCK4) is shown (A) indicating the signal sequence (IcsA1-52) cleaved 
at the open arrow, the passenger (IcsA53-758), and the β-barrel (IcsA759-1102). The black arrow indicates 
the site of specific low efficiency cleavage by IcsP. The passenger has a single copy of the PATR (IcsA526-

557, red) shown aligned with the PATR sequence (PF12951 consensus) with the PATR Hidden Markov Model 
in (B) (pfam.xfam.org/family/PF12951). The positions of four conserved glycines are outlined (orange) and 

are completely conserved in the model (yellow).  
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Figure 2 - PATR mutations lower surface presentation of IcsA.  
 

(A) An anti-IcsA immunoblot of total cell samples from log-phase S. flexneri expressing IcsA and IcsA-PATR 
mutants. (B) The same bacteria subjected to anti-IcsA immunofluorescence microscopy (IFM). 

Representative bacteria are shown in phase (top) and fluorescence (bottom) images (4 x 4 µm). IcsA 
fluorescence was quantitated in (C) for n = 5 (where 50 bacteria were measured for each experiment) and 
analyzed by ordinary one-way ANOVA (Dunnett’s, α = 0.05). (D) OM protein was also extracted from these 
bacteria using sarkosyl and analyzed by Coomassie Blue staining and immunoblotting. Coomassie staining 

shows equivalent loading and enrichment of major OMPs. BamA serves as both a positive control for OMP 
enrichment and a loading control. SurA, Wzz, and DnaK serve as periplasmic, inner membrane and 

cytoplasmic controls respectively. Total = total bacterial protein sample of S. flexneri expressing IcsA. * = 
degraded IcsA products. (E) To indirectly assess intracellular IcsA surface levels, N-WASP recruitment and F-

actin accumulation was also tested in infected HeLa cells by IFM. Overlay images are shown (top) for 
bacterial nucleoids and eukaryotic nuclei detected with DAPI (blue) and actin labelled with phalloidin 

(green). N-WASP fluorescence images are shown below (20 x 20 µm). N-WASP levels were also quantitated 
in (F) for n = 5 (where all bacteria were measured per infected cell for each experiment) and analyzed by 

ordinary one-way ANOVA (Dunnett’s, α = 0.05). All experiments were conducted using an IcsA and O-
antigen deficient strain of S. flexneri (RMA2043) expressing IcsA and IcsA-PATR mutants from PIcsA (see 

Table S1). All fluorescence images are scaled equally relative to each other. WT = wild type, SEM = 
standard error of the mean, ns = not significant, * = p < 0.05, ** = p < 0.01, *** = p < 0.001.  
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Figure 3: PATR mutations decrease the efficiency of IcsA passenger translocation.  
 

Dynamics of passenger translocation was measured by pulse-chase proteolysis assays on live S. flexneri 

expressing IcsA and IcsA-PATR mutants from an arabinose / glucose PBAD switch (see Table S1). 60 minute 
chase time-courses are shown where bacteria were treated with Proteinase K (PK+), PK and 

chloroform  (PK+/CHCl3+), or not treated (PK-). All experiments were conducted using an IcsA and IcsP 
deficient strain of S. flexneri (RMA4378). (A) A mock chase with pBAD30 only. Immunoblot of periplasmic 

SurA shows proteolysis occurring only after OM permeabilization by CHCl3 treatment. Immunoblot of 
cytoplasmic DnaK indicates treatments did not result in cytoplasmic protein proteolysis. (B) Passenger 

translocation was chased for IcsA and IcsA-PATR mutants and means quantitated between 5 and 60 min 
time-points in (C). The means of the relative translocations for IcsA and IcsA-PATR mutants (time-point 

independent) are shown in (D) and analyzed by repeated measures ANOVA (Dunnett’s, α = 0.05). SEM = 
standard error of the mean, n = 2, * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001.  
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Figure 4: The importance of the PATR within the AT family.  
 

(A) Alignment of the PATR sites of IcsA and five other ATs; EprS (Q9HY75), ShdA (Q9XCJ4), subtilisin-type 

serine protease PrtS (P09489) from Serratia marcescens (Shikata et al., 1992), subtilisin-type serine 
protease BmaA1 (H6T4K9) of Haemophilus parasuis (Pina-Pedrero et al., 2012), and NalP (Q8GKS5). 

Accessions are UniProtKB. Black arrows indicate glycines investigated in this study. Additional PATR sites for 
ShdA are shown in Figure S1. (B) ATs within the UniProt Knowledgebase were grouped by the presence 
(+PATR) or absence (-PATR) of detectible PATR and further analyzed by InterPro ID domain annotation 

combinations. The dependency of domain combination on the presence or absence of the PATR is significant 
(p < 0.0001, chi-square). IPR IDs = PectinLyase/P22-like; 012332, 011050, 012334, Pertactin-like (PL); 
004899, 003991, 003992, PAP2; 000326, PbH1 (parallel β-helix); 006626, POMP; 003368, PeptidaseS8; 

000209, 022398, 023828, 015500, 023827, 017318, PeptidaseS6; 000710, Peptidase S1; 018114, 001254, 
Lipase; 017186, 001887, 008265, 013831, Vacuolating Cytotoxin; 003842, 004311. Note, the ordering of 
the domains does not indicate their position within the primary structure, others = all combinations that 

were < 2 % represented in both groups, No ID = entries that are yet to be annotated. The minimal overlap 
between the PATR and PL is shown further in Figure S2. (C) Lengths frequency histogram. The mean lengths 
are significantly different (949.9±5.367 and 1453±15.24 for the -PATR and +PATR groups respectively) as 
tested by two-tailed t-test (p < 0.0001). (D) PATR copy number per AT (AT) correlates significantly with 
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length (two-tailed p < 0.0001, Pearson). (E) I-TASSER generated tertiary structure of the PATR. Orientation 
is a top-down cross-section from N- to C-terminus. The PATR is a predicted triangular wedge with all 

glycines (red) clustered at the three apexes. To find degenerate PATR this model was spatially aligned to all 
the solved AT passenger structures using TM-align. Identified degenerate PATR are aligned in (F) with the 

highest scoring site from Ag43 (Q8CVR0) shown below. Spatially conserved glycines (red) between the PATR 
(blue) and Ag43 (grey) are indicated. For full lists and structure alignments see Table S2 and Figure S2.  
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