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Abstract

Killed avian influenza virus (AIV) vaccines have been used to control H5N1 infections in countries where the virus is endemic.
Distinguishing vaccinated from naturally infected birds (DIVA) in such situations however, has become a major challenge.
Recently, we introduced the recombinant ectodomain of the M2 protein (M2e) of H5N1 subtype as a novel tool for an ELISA
based DIVA test. Despite being antigenic in natural infection the monomer form of the M2e used in ELISA had limited
antigenicity and consequently poor diagnostic capability. To address this shortcoming, we evaluated the use of four tandem
copies of M2e (tM2e) for increased efficiency of M2e antibody detection. The tM2e gene of H5N1 strain from Indonesia (A/
Indonesia/CDC540/2006) was cloned into a pMAL- p4x expression vector and expressed in E.coli as a recombinant tM2e-
MBP or M2e-MBP proteins. Both of these, M2e and tM2e antigens reacted with sera obtained from chickens following live
H5N1 infection but not with sera from vaccinated birds. A significantly stronger M2e antibody reaction was observed with
the tM2e compared to M2e antigen. Western blotting also supported the superiority of tM2e over M2e in detection of
specific M2e antibodies against live H5N1 infection. Results from this study demonstrate that M2e tetramer is a better
antigen than single M2e and could be more suitable for an ELISA based DIVA test.

Citation: Hadifar F, Ignjatovic J, Tarigan S, Indriani R, Ebrahimie E, et al. (2014) Multimeric Recombinant M2e Protein-Based ELISA: A Significant Improvement in
Differentiating Avian Influenza Infected Chickens from Vaccinated Ones. PLoS ONE 9(10): e108420. doi:10.1371/journal.pone.0108420

Editor: Stephen Mark Tompkins, University of Georgia, United States of America

Received March 17, 2014; Accepted August 28, 2014; Published October 16, 2014

Copyright: � 2014 Hadifar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by Australian Centre for International Agricultural Research (ACIAR) fund (project number AH/2010/039) and the University of
Adelaide post graduate support fund. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: farhid.hemmatzadeh@adelaide.edu.au

Introduction

Outbreaks of highly pathogenic avian influenza (HPAI) subtype

H5N1 and its possible transmission to humans are of worldwide

concern [1,2]. A global spread of H5N1 began in 1997 in South

East Asia ultimately spreading to Africa, Europe and the Middle

East [3]. The ability of H5N1 to cause severe disease and death

among bird species is related to high virus growth, particularly in

tissues such as the heart and brain [4]. Moreover, transmission of

H5N1 virus from infected birds to humans has been frequently

reported resulting in severe disease and mortality [1,2,5,6].

Control of H5N1 infections in bird populations is widely

considered as an important factor for limiting human exposure to

this virus [7]. Utilization of the killed avian influenza virus (AIV) as

a vaccine has been widely practiced in H5N1 endemic countries.

Efficient AI vaccination can reduce the amount of H5N1 shed by

infected poultry into the environment and consequently exposure

of naı̈ve chickens [8–10]. Although vaccination can induce a

broad-spectrum immunity and protection against AIV, it also has

some disadvantages, including circulation and silent spread of field

AIV in vaccinated flocks [11–13]. Vaccinated birds cannot be

differentiated serologically from those naturally infected by

currently available diagnostic assays such as hemagglutination

inhibition (HI) test or ELISA. Therefore, differentiation between

vaccinated and infected birds (DIVA) is vital to achieve effective

control leading to eventual eradication of H5N1 [14,15].

Recently, the use of the extracellular domain of the matrix

protein 2 (M2e) has been suggested as an effective DIVA strategy

[15,16]. Matrix protein 2 (M2) is an structural viral protein with a

significant role in virus life cycle [17]. In comparison to the

hemagglutinin (HA) and neuraminidase (NA) proteins, the M2e is

not subject to strong immunological selection and is relatively

conserved across all subtypes of influenza A viruses [18,19].For

that reason the M2e protein has been considered as a possible

candidate for development of AIV vaccines with broad-spectrum

protection [9,19].

The M2e protein is expressed on the surface of naturally

infected cells in large amounts but killed AIV vaccines contain low

levels of the M2e protein [12]. Consequently, the M2e antibodies

are detectable only in infected but not vaccinated birds, providing

the foundation of M2e based DIVA tests [12,15,20]. Currently

M2e-DIVA are based on the use of monomeric M2e recombinant

protein either as a synthetic peptide or recombinant M2e-MBP

[15]. The major limitation with this test is that monomeric M2e

protein is not very antigenic [21–23]. To address this shortcoming,

increasing the number of M2e repeats was considered since
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theoretically, multimeric M2e could bind more antibodies than the

monomeric form [22].

The aim of this study was to improve antigenicity of the

recombinant M2e protein by expression of four copies of the M2e

29 amino acid long peptide, as a concatemer. This tetramer set of

M2e (tM2e), which sequence originated from an Indonesian

H5N1 isolate, was cloned into the pMAL-p4x expression vector

and expressed tM2e protein compared to the monomeric M2e in

ELISA and Western blotting.

Materials and Methods

Synthesis of the tM2e Gene and Cloning into the
Expression Vector

For generation of tM2e protein, the open reading frame of

external part of M2 protein (M2e) was selected based on multiple

alignment of the M2 genes of H5N1 sequences available in the

GeneBank (http://www.ncbi.nlm.nih.gov/). The selected se-

quence contained the first 72 nucleotides of M2 mRNA of A/

Indonesia/CDC540/2006 strain (accession number EU014132.1)

with amino acid sequence of ‘‘MSLLTEVETPTRNE-

WECKCSDSSD’’. The sequence was optimized for the expres-

sion in E. coli since the wild-type M2e gene contained rare codons

with a considerable frequency and several negatively cis-acting

motifs which might hamper its expression in E. coli. The

optimized gene was synthesized as a four tandem repeats of the

above sequence and cloned into the cloning vector pMA by

GENEART AG (Gewerbpark- Regensburg, Germany; www.

geneart.com). The cloned gene tM2e-pMA had SalI and BamHI

restriction endonuclease sites for cloning into pMAL-p4x expres-

sion vector (Supplementary S1).

Expression and Purification of Recombinant tM2e-MBP
Protein

TM2e-pMA cloning vector was transformed into the electro-

competent DH5a strain of E.coli (Bioline, UK) cells according to

Green and Sambrook (2012) protocol [24].After amplification, the

target plasmid from the transformed cells was isolated and digested

by both SalI and BamHI restriction enzymes (New England

Biolabs, MA, USA), according to the manufacturer instructions.

The digested DNA fragment was extracted using QIAquick gel

extraction kit (QIAGEN, USA) and cloned into pMAL-p4x

expression vector (New England Biolabs, MA, USA) containing a

malE gene which encodes maltose binding protein (MBP) as a

carrier protein for further purification. The obtained tM2e-pMAL

construct (Supplementary S1) was transformed into the DH5a
E.coli cells with the ligating reaction and were cultured on 5 mL of

26 Yeast Tryptone (2YT) glucose broth (16 g Tryptone, 5 g

NaCl, 10 g yeast extract and 0.1% D-Glucose per litre)

supplemented with ampicillin (100 mg/ml).

To verify the tM2e-pMAL construct, the isolated plasmid was

sequenced using vector specific primers. Positive clones from the

previous steps were tested for their ability to express recombinant

tM2e-MBP protein in DH5a E.coli cells as described previously

[15] after addition of 0.3 mM isopropyl b-D-1-thiogalactopyrano-

side (IPTG) (Sigma, St Louis, MO, USA). tM2e-MBP protein was

purified using amylose affinity resin column (New England

Biolabs, Beverly, Mass., USA). The first seven fractions were

collected and the protein concentration of each fraction was

measured by NanoDrop spectrophometer (Thermo Scientific, DE,

USA) at the wavelength of 280 nm. The fractions were then

pooled, desalted and concentrated by using Vivaspin size exclusion

columns with cut-off of 30 kilo Daltons (kD) (Sartorius Stedim

Biotech, Germany). The purified tM2e-MBP protein was aliquot-

ed and stored at 280uC [15].

Analysis of purified tM2e-MBP Protein by SDS-PAGE
The purified proteins were run on SDS-PAGE with 11%

concentration of acrylamide. Protein molecular weight markers

(New England Biolabs.Inc, Beverly, USA) were also included and

gels stained with Coomassie Brilliant Blue R250.

Serum Samples
Positive Sera. M2e antibody positive sera (No = 32) were

produced as described previously [15]. In brief chicks were

inoculated with commercial inactivated AI vaccine (Medivac-AI,

PT Medion, Bandung, Indonesia), one to three times, followed by

challenge two weeks after the last vaccination with live H5N1

strain (A/chicken/West Java/Sbg-29/2007 or A/Chicken/West

Java/PWT-WIJ/2006). All challenge experiments were carried

out in the Biosecurity level 3 (BLS3) facilities at Indonesian

Research Centre for Veterinary Science, Bogor, Indonesia. All of

the positive samples (N = 32) run in tM2e ELISA test.

Negative sera. (a) Sera (No = 32) were obtained from chicks

vaccinated in the laboratory with commercial Medivac-AI,

vaccine but not challenged as described above. (b) 119 sera from

commercial broilers and layers obtained from flocks in Indonesia

which were vaccinated with commercial AI vaccines antibody and

(c) 349 sera from non-infected and non-vaccinated field samples

from commercial broiler and layer flocks in Australia which were

confirmed to be AIV antibody free by an IDEXX AIV antibody

test (IDEXX Laboratories, Inc). (d) One SPF chicken also served

as a negative control.

Western Blotting of M2e-MBP and tM2e-MBP proteins
Purified tM2e-MBP and tM2e-MBP, was produces for this

study and both M2e-MBP (contains singe molecule of M2e co

expressed with MBP) and MBP (were produced previously) were

run on an 11% SDS-PAGE, transferred to a nitrocellulose

membrane and blocked by immersing in 10% bovine serum

albumin (BSA) in PBS for 2 hours at room temperature. After

rewashing, the membranes were cut into strips and each strip

incubated in a 1:500 dilution of test sera as primary antibody for

1 hour at room temperature. Each strip was then incubated with

the dilution of 1:1000 of anti-chicken IgG conjugated to Horse-

radish peroxidase (Promega, Madison, USA). After washing with

PBS-T, the antigen-antibody complex was developed using

diaminobenzidine (DAB) (Sigma-Aldrich Pty. Ltd) as described

previously [15].

Optimization of Recombinant M2e-MBP and tM2e-MBP
ELISA

M2e-MBP, tM2e-MBP and MBP proteins, at the concentra-

tions of 10 mg/ml were diluted in 0.1 M carbonate–bicarbonate

buffer (pH 9.6) and used to coat a 96-well (150 ml/well) flat bottom

microtitre plate (Sarstedt, Nümbrecht, Germany). After blocking

with 5% BSA in PBS, the positive (live challenge chicken sera) and

negative (vaccinated and non-vaccinated chicken sera) sera were

diluted (log2 steps, starting dilution 1:100) ELISA buffer (0.5 M

NaCl, 0.1 M Tris pH 7.4, 1 mM Na2EDTA, 2% w/v BSA, 3%

w/v Triton X-100, 3% w/v Tween 20), and 100 ml added to the

antigen coated wells and incubated at room temperature for

1 hour. After washing, 100 ml of anti-chicken IgG conjugated to

horse-radish peroxidase, diluted 1:1000 in ELISA buffer, was

added and incubated for 1 hour at room temperature. The plate

was then washed and 100 ml of the substrate solution (100 mg/ml
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of 3,39,5,59-tetramethylbenzidine substrate) (Sigma, St Louis, MO,

USA) added to each well and the reaction allowed to proceed for

10 minutes. The reaction was stopped by adding 50 ml of 0.16 M

sulfuric acid, and optical density (OD) at 450 nm determined.

Each ELISA test was repeated three times. For each serum

sample, the mean OD450 for MBP (as carrier protein) was

subtracted from the mean OD450 of antigen coated wells (tM2e-

MBP or M2e-MBP) and the OD450 designated ‘‘corrected

OD450’’. Each serum sample was run in triplicate at three

different times and the mean corrected OD450 used for statistical

analysis.

Application of tM2e ELISA on Selected Positive Serum
Samples

The goal of this experiment was to evaluate the robustness of

recombinant tM2e-MBP ELISA using different serum samples.

Seven positive sera (Table 1) at the dilution of 1/200 were used to

compare the performance of tM2e versus M2e at the same dilution

of coating antigen (10 mg/ml) in ELISA. As described in Table 1,

the differences between sera used were the number of vaccination

before challenge, The test were ran three times for each sample

and mean corrected ODs of each serum were used for comparison

between different test groups.

Evaluation of tM2e-ELISA field serum samples
In order to evaluate the application of tM2e-MBP ELISA as a

DIVA test in field condition 532 serum samples (described above)

were tested in an indirect ELISA. Test sera were diluted 1:200 in

dilution buffer (DB) and run in duplicate in tM2e-MBP ELISA

test. Positive and negative controls were included in all assays in

quadruplicate. The test ran at the same condition described at the

previous step. Corrected ODs (450 nm) of each serum in

recombinant tM2e ELISA were recorded individually and

compared between different test groups. ANOVA and mean

comparison using Tukey’s test was used to evaluate the ability of

tM2e-based ELISA as a DIVA test to distinguish infected sera

from the vaccinated and non-vaccinated sera. The cut off value for

field serum samples were calculated using the two-graph receiver

operating characteristic (TG-ROC) analysis [25].

Statistical Analysis
Two-way analysis of variance (ANOVA) was used to compare

the OD450 obtained in ELISA with recombinant tM2e-MBP and

Table 1. Positive serum samples used in the study*.

Name of Sera 1 time vaccinated 2 times vaccinated 3 Time vaccinated

D10a ! - -

B47a ! ! -

B38a ! ! -

B1a ! ! -

B2a ! ! -

PL80b ! ! -

A17a ! ! !

* Birds were immunized once (D10), twice (B47, B38, B1, B2, PL80) or three times (A17) with a commercial H5N1 vaccine, at four weekly intervals. Two weeks after the
last immunization, birds were challenged with H5N1 strains a A/chicken/West Java/Sbg-29/2007 or b A/Chicken/West Java/PWT-WIJ/2006. Two weeks after the
challenge, sera were collected for assay in haemagglutination inhibition test and M2e and tM2e ELISA.
doi:10.1371/journal.pone.0108420.t001

Table 2. ANOVA and mean comparison by Tukey’s method of ELISA OD values of positive, SPF and sera from vaccinated chicks.

Mean Comparison

Test group Number* Mean SE Mean Grouping

tM2e+Challenged 9 1.46 0.186 A

M2e+Challenged 9 0.62 0.173 B

tM2e+Vaccinated 9 0.06 0.029 C

M2e+Vaccinated 9 20.13 0.065 C

tM2e+SPF 9 0 0.002 C

M2e+SPF 9 0 0.001 C

Two Way ANOVA

Source of Variation Degree of Freedom F-value P-value

Test group 5 33.98 0.00

Dilution 8 1.27 0.28

Error

R-Square = 75.91

* From each positive, vaccinated and SPF groups, three samples were tested in triplicate in both tM2e-MBP and M2e-MBP ELISAs.
doi:10.1371/journal.pone.0108420.t002
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M2e-MBP proteins and M2e antibody positive and negative sera.

Mean comparison was also carried out by Tukey’s test using

MINITAB 16 package (www.minitab.com) (Table 2). The positive

and negative sera (as detailed above) were assumed as treatments (test

groups). The serum dilutions were considered as replications (blocks).

Regression modeling of ELISA OD450 with different dilutions of

M2e-MBP and tM2e-MBP was performed using Microsoft Office

Excel 2010. Model selection was carried out based on R-square

statistics. For applicability experiment, T test (MINITAB 16

package) was used to compare the OD450 of tM2e-MBP versus

M2e-MBP with different positive serum samples. Analysis of

variance and mean comparison using Tukey’s test were used to

compare the effects of infected, negative and vaccinated field sera

based on corrected OD450.

Ethics statement
All animal work was performed at the Indonesian Research

Centre for Veterinary Science, Bogor, Indonesia and experimental

procedures were approved by its Research Committee.

The experimental chickens were managed by a veterinarian

who specializes in animal studies based on the guidelines of the

National Health and Medical Research Council of Australia. The

birds were monitored daily for clinical signs, morbidity, and

mortality. All birds were bled via brachial vein and by cardiac

puncture at the terminal step just after CO2 euthanasia.

Results

Characterization of Recombinant tM2e-MBP by
SDS-PAGE and Western Blotting

tM2e-MBP protein was expressed in DH5a strain of E.coli and

subsequently purified. SDS-PAGE analysis of seven different

fraction of the purified tM2e-MBP protein showed a band of

molecular weight of 52.9 kD that included 42.5 kD of MBP and

10.4 kD of tM2e protein (molecular weight of each M2e monomer

was 2.6 kD) (Figure 1).

Western blotting showed that tM2e-MBP reacted with positive

(live challenge) sera in the same manner as M2e-MBP, which was

included as a control. Negative sera from SPF and vaccinated

chicks did not react with either tM2e-MBP or M2e-MBP antigens

(Figure 2). This result indicated that the tM2e-MBP was antigenic

and recognized by M2e antibodies and therefore could be suitable

for developing a DIVA test.

Figure 1. SDS-PAGE analysis of purified tM2e-MBP recombinant protein. Lane M: Molecular weight markers. Lanes 1 to 7: Fractions of
purified recombinant tM2e-MBP protein with molecular weight of 52.9 kD (arrow).
doi:10.1371/journal.pone.0108420.g001

Figure 2. Western blotting of recombinant tM2e-MBP and M2e-
MBP proteins with positive, SPF and sera from vaccinated
chicks. Lane M: Molecular weight markers. Lane 1–3: Reaction of tM2-
MBP with positive serum (live virus challenge), SPF, and sera from
vaccinated chicks, respectively. Lane 4–6: Reaction of M2e-MBP with
positive serum, SPF and sera from vaccinated chicks, respectively.
doi:10.1371/journal.pone.0108420.g002
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Recombinant tM2e-MBP is better DIVA antigen than
monomeric M2e-MBP

Western blotting indicated that tM2e-MBP and M2e-MBP were

antigenic. Both antigens were compared in ELISA and reacted

with positive sera, but improved reactivity was observed with tM2e

as compared to M2e at the same protein concentration (Figure 2).

In a titration ELISA, the reactivity of tM2e-MBP and M2e-

MBP was compared against positive, SPF and vaccinated sera

(Figure 3). It has been reported previously that some serum

samples from both infected and vaccinated birds may contain

some anti-MBP antibodies [15]. MBP is a carrier protein for both

tM2e-MBP and M2e-MBP antigens, therefore any background

caused by cross reactivity of anti-MBP antibodies to the test

Figure 3. Reaction of tM2e-MBP and M2e-MBP recombinant proteins with positive, vaccinated and SPF sera in ELISA. Each serum
sample run in triplicate at three different times and the mean corrected OD is presented as error bar.
doi:10.1371/journal.pone.0108420.g003

Figure 4. Boxplot of ODs obtained with tM2e-MBP and M2e-MBP with positive, vaccinated and SPF sera showed in table 2. The
asterisks represent small number of the cases which are far from common ranges of plus and minus standard deviation (6SD).
doi:10.1371/journal.pone.0108420.g004
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samples needed to be subtracted. We removed the MBP

background by subtracting the OD of MBP from the OD of each

individual serum. Corrected OD are presented in Figure 3.

Positive serum reacted strongly with tM2e-MBP and M2e-MBP

proteins, while sera from vaccinated and SPF birds did not react

(Figure 3). Notably, reaction of positive serum to the tM2e-MBP

protein was significantly higher in comparison to the reaction with

the M2e-MBP (Figures 3 and 4). Regression analysis of the

reactivity of tM2e-MBP antigen with positive serum in ELISA

followed a polynomial (power 2) regression model (R-

square = 90.14%) indicating the strong reactivity of tM2e even at

low antigen concentrations. In contrast, M2e-MBP produced a

linear trend with positive serum (R-square = 90.26%), with a sharp

decrease in reactivity at lower concentrations.

The superiority of tM2e-MBP over M2e-MBP as a DIVA

antigen is apparent in the dilution response (Figure 3). The

reactivity of M2e-MBP with positive serum (challenged) started to

decrease at the 1/200 dilution with the endpoint titer of 1/3200.

In contrast, this loss in reactivity was only visible with tM2e-MBP

at dilutions of sera of 1/1600 and the end point titer was at 1/

Figure 5. Reaction of tM2e-MBP and M2e-MBP proteins with positive sera in ELISA. The positive sera are described in Table 1. Pared T test
highlighted the statistically higher reactivity (p = 0.05) of tM2e-MBP compared to M2e-MBP.
doi:10.1371/journal.pone.0108420.g005

Figure 6. Two-graph receiver operating curve (TG-ROC) analysis of tM2e-MBP ELISA OD for field (vaccinated or non-vaccinated)
and challenged (positive) sera. The cut-off value was chosen to be at 95% sensitivity and 95% specificity.
doi:10.1371/journal.pone.0108420.g006
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25,600. In other words, the tM2e-MBP can efficiently detect M2e

antibodies when present at the low concentration. ANOVA

analysis confirmed that the difference between tM2e-MBP and

M2e-MBP proteins in reactions with M2e positive sera were

statistically significant (p = 0.05). Mean comparison by Tukey’s

method also showed that tM2e-MBP antigen has significantly

higher OD (p = 0.01) with positive serum in ELIS compared to

monomeric M2e antigen (Table 2).

Optical densities obtained from the ELISA of tM2e-MBP and

M2e-MBP against a range of positive sera (listed at Table 1) and

negative sera are presented as boxplot in Figure 4. It shows high

reactivity of recombinant proteins particularly tM2e-MBP in

distinguishing sera from live H5N1 infection from vaccinated and

negative (not vaccinated not infected) sera.

Comparison of Reactivity Response of tM2e-MBP and
M2e-MBP on Selected Positive and Negative Serum
Samples

Using an ELISA test, we evaluated the reactivity of tM2e-MBP

and M2e-MBP proteins with a range of positive sera (PL80, B38,

B2, B47, A17, D10 and B1). As indicated in Figure 5, all seven

sera produced significantly higher OD with the tM2e-MBP

compared to M2e-MBP. OD of M2e-MBP ranged from 0.24 (in

B1 serum) to 1.40 (in PL80). In contrast for tM2e-MBP, OD

ranged from 0.45 (B1) to 1.67 (PL80). Pared T test highlighted the

statistically higher reactivity (p = 0.05) of tM2e-MBP compared to

M2e-MBP.

Evaluation of field sera in tM2e-MBP ELISA
The tM2e-MBP ELISA as a DIVA test was evaluated using

three groups of sera, challenged (positive), vaccinated and non-

vaccinated birds. All 32 positive serum samples were positive in the

tM2e-MBP ELISA (OD ranged from 0.396 to 1.471 mean). Of

151 vaccinated sera, 6 were positive with OD values ranging from

0.410 to 0.649 (specificity 96.15%). Two out of 349 sera of non-

vaccinated and non-infected sera were positive with the OD values

of 0.422 and 0.537 (specificity 99.43%) (Figure 6).

Based on the two-graph receiver operating curve (TG-ROC)

analysis, the cut off values were calculated as an intermediate

range between 0.390 and 0.430, corresponding to 95% sensitivity

and specificity (Figure 7). These results demonstrate high applica-

bility of tM2e-MBP ELISA as DIVA test in field samples with the

sensitivity of 100% and the specificity of (98.43%) in all tested

samples. ANOVA and Tukey’s tests showed statistically higher

(p = 0.01) reactivity of infected (positive) compared to vaccinated

and (negative) sera.

Figure 7. Evaluation of tM2e-MBP ELISA using sera from infected (challenged), non-vaccinated, and vaccinated chickens. ANOVA
and mean comparison using Tukey’s test highlighted significant results in samples from infected birds compared to negative and vaccinated birds at
p = 0.01. ANOVA and Tukey’s tests showed statistically higher (p = 0.01) reactivity of infected (positive) compared to vaccinated and (negative) sera.
doi:10.1371/journal.pone.0108420.g007
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Discussion

Vaccination is one of the effective measures for the control of

HPAI in poultry in endemic countries. The important component

of this approach is a need to distinguish between vaccinated and

naturally infected poultry. Recently, two M2e based ELISAs have

been described for possible use as DIVA test to fulfil this need

[10,15].

In this study, we attempted to increase the efficiency of the

previously described M2e ELISA by using the four tandem repeats

of the M2e (tM2e) instead of single M2e peptide, as an antigen.

Sequence analysis based on hydrophobicity plotting and multiple

alignment of M2e genes of available H5N1 sequences showed that

the selected sequence (A/Indonesia/CDC540/2006, H5N1) had

higher levels of homology with circulating strains in poultry farms

in Indonesia and also possesses the greatest homology to the

selected strains for the challenge experiment. Additionally, the

selected peptide for expression has the highest hydrophobicity and

stronger antigenicity.

Using tM2e as a recombinant protein with MBP, a higher signal

and lower background was obtained than when M2e-MBP was

used at the same concentration. This is likely because of a higher

copy number of M2e present in the coated protein and

consequently higher binding capacity for any M2e-specific

antibodies. Also with the tM2e-MBP antigen there was less

variability in the background OD obtained with vaccinated sera,

increasing the test specificity.

Compared to the previous study [15], the tM2e-MBP ELISA

test shows higher sensitivity and specificity to discriminate M2e

antibodies in sera of infected birds from vaccinated or non-

vaccinated birds. On the other hand, two-graph receiver operating

curve (TG-ROC) analysis on field and challenged serum samples

provided a suitable range of cut off points for obtaining better

performance when we expect maximum sensitivity for the test.

We believe that the tM2e-MBP ELISA could be a useful DIVA

test in sero-monitoring of poultry farms that practice vaccination

in regions where H5N1 is endemic. The larger size of tM2e-MBP

protein provides another opportunity for enzymatic digestion of

the recombinant protein followed by double purification of the

target peptide increases the purity of the antigen and decreases

non-specific reactions in DIVA-ELISA tests. This enhanced

sensitivity of the tM2e DIVA-ELISA test shows higher applica-

bility than M2e when tested against a range of positive and

vaccinated sera.
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