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Inmost synthesis evaluation systems and decision-making systems, data are represented by objects
and attributes of objects with a degree of belief. Formally, these data can be abstracted by the form
(objects; attributes; P), where P represents a kind degree of belief between objects and attributes,
such that, P is a basic probability assignment. In the paper, we provide a kind of probability
information system to describe these data and then employ rough sets theory to extract probability
decision rules. By extension of Dempster-Shafer evidence theory, we can get probabilities of
antecedents and conclusion of probability decision rules. Furthermore, we analyze the consistency
of probability decision rules. Based on consistency of probability decision rules, we provide an
inference method to finish inference of probability decision rules, which can be used to decide the
class of a new object x′. The conclusion points out that the inference method of the paper not only
deals with precise information, but also imprecise or uncertain information as well.

1. Introduction

Processing uncertain or incomplete information may be placed in the sphere of artificial
intelligence. The term “reasoning with uncertain or incomplete information” in the narrow
sense means the way of representing a partial information that is available to a user about
a fragment of reality and the way of processing such an information. In the broader sense,
it is used to denote the interdisciplinary sphere of research concerned with the search
for methods of modeling uncertain or incomplete knowledge. Those methods can refer
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to any application domain and any level of knowledge; one seeks way of representing
both object-level knowledge and meta-level knowledge, the latter being the knowledge
about the former [1–5]. Nowadays, the main tools of processing uncertain or incomplete
information are fuzzy set theory, probability theory, possibility theory, Dempster-Shafer
evidence theory, and rough sets theory. The main advantage of fuzzy set theory is that the
fuzzy set framework provides a lot of combination operators, which allows the user to adapt
the processing scheme to the specificity of the data at hand [6–17]. The probabilistic theory
has solid mathematic theory, but its inference cannot model uncertain measurement [18–
20]. Numerical possibility distributions can encode special convex families of probability
measures. The connection between possibility theory and probability theory is potentially
fruitful in the scope of statistical reasoning, because variability of observations should be
distinguished from incomplete information [21, 22]. Dempster-Shafer evidence theory has
the ability to deal with ignorance and missing information [23]. In particular, it provides
explicit estimations of imprecision and conflict between information from different sources.
Indeed, probability theory may be seen as a limit of Dempster-Shafer evidence theory
when it is assumed that there is no imprecision, and that only certainty has to be taken
into account [24–27]. By using indistinguishability relations, rough sets theory can model
and handle incomplete information and uncertain knowledge discovered from information
system [2, 28–30].

In most synthesis evaluation and decision-making systems, data reflect the relation
between objects and attributes with a degree of belief, that is, an object has an attribute with
a degree of belief. Informally, the information system or decision tables with a degree of
belief are called probability information system or probability decision tables. In this paper,
we focus on probability decision tables, we analyze the consistency of probability decision
rules which are extracted from the probability decision tables, and provide an inference
method based on probability decision rules. The organization of this paper is as follows. In
Section 2, wemake briefly a review of extension of Dempster-Shafer evidence theory (DSEV).
In Section 3, we provide a kind of probability information system and probability decision
tables to represent objects and attributes with a degree of belief, and it is shown that our
probability information system is extension of classical information system and a special case
of interval-valued information system. In Section 4, we discuss how to extract probability
decision rules from a probability decision table. In Section 5, we discuss consistency of
probability decision rules. In Section 6, we provide a method to finish inference of probability
decision rules. We conclude in Section 7.

2. Extension of DSEV

In DSEV, probability masses are allocated to subsets of a frame of discernment in contrast to
Bayesian probability theory, in which only singletons are carrying probability masses. Such
subsets with positive mass are called focal elements, and the family of focal elements is said
to be the basic probability assignment. So, the DSEV can be seen to be generalization of the
classic probability theory. Formally, the DSEV concerns itself with belief structures, which
can be defined as follows: let X = {x1, x2, . . . , xn} be a finite set of elements, and let m be a
measure on the subsets of X such that (1) 0 ≤ m(A) ≤ 1 for each A ⊂ X; (2) m(∅) = 0; (3)
∑

A⊂X m(A) = 1. m is called a basic probability assignment function. Any subset A of X such
that m(A) > 0 is called a focal element. m and its associated values are called by a belief
structure. Two important functions play a significant role in DSEV: Bel(B) =

∑
A⊂B m(A)
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and Pl(B) =
∑

A∩B /= ∅ m(A) for any subsets B and A of X. Bel is called a belief function,
and Pl is called a plausibility function. Bel(B) measures the total amount of probability that
must be distributed amongst the elements of B, and Pl(B) measures the maximal amount of
probability that can be distributed among the elements in B. Denoted B is the complement of
B, then we have

(i) Pl(B) ≥ Bel(B),

(ii) Pl(∅) = Bel(∅) = 0, Pl(X) = Bel(X) = 1,

(iii) Pl(B) = 1 − Bel(B), Bel(B) = 1 − Pl(B),

(iv) Bel(B) + Bel(B) ≤ 1, Pl(B) + Pl(B) ≥ 1.

In the classical probability model, the probability mass function is a mapping P from X to
[0, 1], which indicates how the probability mass is assigned to the elements. Based on the
probability mass function P , the set mapping m′ : 2X → [0, 1] can be induced, where for
each A ⊂ X, we have m′(A) =

∑
x∈A P(x). Obviously, m′ is a belief structure; furthermore,

we have Pl(A) = Bel(A). However, in DSEV, we know probabilities of the focal sets instead
of probabilities of each element x ∈ X; hence, we are not able to calculate the probability
P(A) associated with the subsets ofX, but instead to use the two measures Bel(A) and Pl(A),
corresponding to a lower and upper bound on the unknown P(A), that is, Bel(A) ≤ P(A) ≤
Pl(A).

In [18], extending belief structure was proposed. Extending belief structure means
using a belief structure defined on one frame to obtain a belief structure on another frame.
Consider two frames X and Y , whose elements are possible answers to perhaps related
questions. We say that an element x ∈ X is compatible with an element y ∈ Y if it is possible,
relative to our knowledge and opinion, that x is the answer to the question considered by
the frame X, and y is the answer to the question considered by the frame Y . Denote this as
xRy. If for all x ∈ X and all y ∈ Y , we have xRy, then we say that the two questions are
independent.

Let X and Y be two frames, and X × Y is their Cartesian product, which consists of
all pairs (x, y) with x ∈ X and y ∈ Y , then the compatibility relation R is a subset of X × Y
consisting of all pairs (x, y) for which xRy, that is, (x, y) ∈ R if xRy. Specially, if X and Y are
independent, then R = X × Y . Any compatibility relation R over X × Y can be represented
as a multivalued mapping: G : X → 2Y such that G(x) = {y | (x, y) ∈ R}, where R is a
compatibility relation. Assume that X and Y are two frames with a compatibility relation R
and associated multivalued mapping G. Let BelX be a belief function defined on the frame X.
The extension of BelX to Y as BelY can be defined as follows:

BelY (B) = BelX
({

x | (x, y) ∈ R =⇒ y ∈ B
})

= BelX({x | G(x) ⊂ B}). (2.1)

If {Ai} are the focal elements of BelX where mX(Ai) = ai, then {Bi}, where Bi =
⋃

x∈Ai
G(x),

are the focal elements of BelY and mY (Bi) =
∑

k ak, over all k such that Bk = Bi. Let H = {x |
G(x) ⊂ B}, then

BelY (B) =
∑

Bi⊂B
mY (Bi) =

i∑

⋃
x∈Ai

G(x)⊂B
mX(Ai),

BelY (B) = BelX(H) =
∑

Ai⊂H
mX(Ai).

(2.2)
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There exist two special cases of the extension: (1) assume that we know BelS×T , which is a
belief function defined on S × T , the marginal belief function of BelS×T on S (or T) is defined
as the extension of BelS×T to S (or T), denoted as BelS (or BelT ); (2) the extension of a belief
function on the frame S to the frame S × T . In (2.1), two extensions are expressed as follows.

(1) Let X = S × T and Y = S (or T), then we have a multivalued mapping

G : S × T −→ 2S or G : S × T −→ 2T , (2.3)

in which G((s, t)) = {s} or G((s, t)) = {t}. Thus, we have a belief function

BelY (B) = BelS×T({(s, t) | G((s, t)) ⊂ B}). (2.4)

Furthermore, {(s, t) | G((s, t)) ⊂ B} =
⋃

s∈B({s} × T) = B × T , or {(s, t) | G((s, t)) ⊂
B} =

⋃
t∈B(S × {t}) = S × B.

(2) The marginal belief function on S (or T) is

BelY (B) = BelS×T(B × T) or BelY (B) = BelS×T(S × B). (2.5)

If {Ai} are focal elements of BelS×T with mS×T (Ai) = ai, we get mS of BelS (or mT

of BelT ) as mS(Bi) = ai (or mT (Bi) = ai), where Bi =
⋃

(s,t)∈Ai
G((s, t)), that is, Bi is

projection of Ai onto S (or T).

Assume that BelS is a belief function on S, and let BelS×T be the extension of BelS onto
S × T that we know nothing about the answer on T . In this case, we call BelS×T the minimal
extension of BelS; in particular, we assume that every answer in T is compatible with any
answer in S; thus, compatible function is

G : S −→ 2S×T , G(s) = {(s, t) | ∀t ∈ T}. (2.6)

So, we have extension of BelS onto S × T as BelS×T(B) = BelS({s | G(s) ⊂ B}). Assume that
B = A × T , then as for all s ∈ A, we have G(s) ∈ B, and as for all s ∈ A, we have G(s) /⊆ B.
Hence, {s | G(s) ⊂ B} = A, and BelS×T (A × T) = BelS(A). Assume that B /=A × T , then
for all s ∈ S, G(s) = {s} × T /⊆ B; thus, {s | G(s) ⊂ B} = ∅, and BelS×T(B) = BelS(∅) = 0. If we
havemS(Ai) = ai, we can get BelS×T(Bi) = ai, where Bi =

⋃
s∈Ai

G(s). SinceG(s) = {s}×T , then
Bi = Ai × T , that is, Bi is the set consisting of each element inAi coupled with each element in
T .

Assume that we have two independent sources of evidence as the location of the
special element in X, which have associated belief structures m1 and m2, respectively. The
problem is to find a combined belief structure m over X reflecting the “ANDing” of the
two pieces of evidence. Let m1 and m2 be two belief structures on X with focal elements
A1, . . . , Ak and B1, . . . , Bp, respectively, then their combination, denoted by m = m1 ⊕m2, is a
belief structure overX such that (1)m(A/= ∅) =∑Ai∩Bj=A m1(Ai)m2(Bj)/(1−K); (2)m(∅) = 0;
(3) K =

∑
Ai∩Bj=∅ m1(Ai)m2(Bj). The focal elements of m are all sets A such that Ai ∩ Bj = A.

Because m satisfies commutativity and associativity, we have m = m1 ⊕ m2 ⊕ · · · ⊕ mr for r
belief structures on X. 1 −K indicates the normalization factor needed to assure

∑
m(A) = 1.
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If K = 0, then no normalization is required. If K = 1, then we cannot obtain m(A/= ∅) based
on the above method (1). In this case, the belief structures are completely conflicting, and we
need another method for combining evidence [18, 20].

3. Probability Information Systems

Information systems, sometimes called data tables, attribute value systems, condition action
tables, knowledge representation systems, and so forth are used for representing knowledge
and have been popularly used in artificial intelligence [2]. Formally, a pair Ω = (U,A) is
called information systems. Where U is a nonempty, finite set called the universe and A a
nonempty, finite set of attributes, that is, a : U → Va for a ∈ A, where Va is called the value set
of a, elements ofU are called objects and interpreted as cases, states, processes, patients, and
observations. Attributes are interpreted as features, variables, characteristic, and conditions.
As a special case of information systems, a decision table has the form Δ = (U,A ∪ {b}),
where b ∈ A is a distinguished attribute called decision (attribute). The elements of A are
called conditions (attributes).

The relation between an object x ∈ U and a value va ∈ Va of an attribute a ∈ A is
certain, that is, a : U → Va is a function, and either a(x) = va or a(x)/=va is true. In real
practice, the relation between objects and attribute values is uncertain, that is, a(x) = va with
a degree of belief p(a(x)=va) ∈ [0, 1]. If p(a(x)=va) = 1, it means that a(x) = va. If p(a(x)=va) = 0,
it means that a(x)/=va. If p(a(x)=va) ∈ (0, 1), it means that a(x) = va with uncertainty. In this
paper, we limit the degree of belief in probability of a(x) = va.

Definition 3.1. A triple Ω = (U,A, P) is called a probability information system, where U is a
nonempty, finite set called the universe, A a nonempty, finite set of attributes, and P = {Pa |
a ∈ A},Pa : U×A → [0, 1] such that for each x ∈ U,

∑
va∈Va

Pa(x, va) = 1,Pa(x, va) = p(a(x)=va)

means that object x has va of a with probability p(a(x)=va).

In Definition 3.1, for any fixed object x ∈ U, {Pa(x, va) | va ∈ Va} is a probability
density function on Va of a. Hence, a probability information system is also understood by an
information system with a probability density function on the value set of each attribute for
each object. An example of a probability information system is shown in Table 1, in which, for
object 1 and solar energy, (high, 0.2)means that object 1 has high solar energywith probability
0.2, that is, PS((1, high)) = 0.2. For object 1 and residual CO2, (high, 0) means that object 1
has not high residual CO2, that is, PR((1, high)) = 0. For object 3 and temperature, (low, 1)
means that object 4 has low value, that is, PT ((1, low)) = 1.

In a probability information system, for any object x ∈ U and a ∈ A, we denote

Λx
a = {va ∈ Va | Pa((x, va))/= 0}. (3.1)

If |Λx
a| = 1 (|Λx

a| is cardinality ofΛx
a), then there exists unique va ∈ Va such that Pa((x, va)) = 1

due to
∑

va∈Va
Pa(x, va) = 1. In this case, the probability information system is reduced to

an information system because for each object x and a ∈ A, there exists only one va ∈ Va

such that a(x) = va. From this point of view, probability information systems are extension of
information systems. If |Λx

a| > 1, then the probability information system becomes an interval-
valued information system when all probabilities Pa((x, va))/= 0 are not considered, in such
case, for each object x and a ∈ A, we have a(x) = Λx

a. Hence, a probability information system
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Table 1: An example of probability information system.

Fact Solar energy (S) Volcanic activity (V ) Residual CO2 (R) Temperature (T)

1
(High, 0.2) (High, 0.6) (High, 0) (High, 0.8)

(Medium, 0.8) (Medium, 0.3) (Medium, 0.3) (Medium, 0.2)

(Low, 0) (Low, 0.1) (Low, 0.7) (Low, 0)

2
(High, 0.9) (High, 0.8) (High, 0.7) (High, 0.8)

(Medium, 0.1) (Medium, 0.2) (Medium, 0.3) (Medium, 0.1)

(Low, 0) (Low, 0) (Low, 0) (Low, 0.1)

3
(High, 0.1) (High, 0) (High, 0) (High, 0)

(Medium, 0.2) (Medium, 0.3) (Medium, 0.2) (Medium, 0)

(Low, 0.7) (Low, 0.7) (Low, 0.8) (Low, 1)

Table 2: A probability decision table.

U \A ∪ {b} a1 · · · am b

(v1
a1 , p

x1
a1 (v

1
a1)) · · · (v1

am , p
x1
am(v

1
am)) (v1

b
, px1

b
(v1

b
))

x1

...
...

...
...

(vr1
a1 , p

x1
a1 (v

r1
a1)) · · · (vrm

am , p
x1
am(v

rm
am)) (vs

b
, px1

b
(vs

b
))

...
...

...
...

...
(v1

a1 , p
xn
a1 (v

1
a1)) · · · (v1

am , p
xn
am(v

1
am)) (v1

b
, pxn

b
(v1

b
))

xn

...
...

...
...

(vr1
a1 , p

xn
a1 (v

r1
a1)) · · · (vrm

am , p
xn
am(v

rm
am)) (vs

b
, pxn

b
(vs

b
))

of Definition 3.1 is a special case of interval-valued information system. Deference between
them is a(x) = Λx

a in interval-valued information system, but a(x) = Λx
a with a probability

density function on Λx
a in probability information system.

Based on probability information system, probability decision tables have the form
Δ = (U,A ∪ {b}, P),A is called conditions, and b is called decision. Let P = {Pc | c ∈ A ∪ {b}},
Pc : U×(A∪{b}) → [0, 1] such that for each x ∈ U and c ∈ A∪{b},∑vc∈Vc

Px
c ((x, vc)) = 1. For

simplicity, denote Vc and Pc as Va and Pa, respectively, when c ∈ A, and Vc and Pc as Vb and
Pb when c = b. For any object x ∈ U and c ∈ A ∪ {b}, denote Λx

c = {vc ∈ Vc | Pc((x, vc))/= 0}.
If |Λx

c | = 1, then probability decision table is reduced to classical decision tables. If |Λx
a| > 1,

then probability decision table becomes interval-valued decision tables when all probabilities
Pa((x, va))/= 0 are not considered.

Let U = {x1, x2, . . . , xn} and A = {a1, . . . , am}. For each xi ∈ U and attribute value set
Vaj of attribute aj ∈ A, Vaj = {v1

aj , . . . , v
rj
aj}, denote Pxi

aj as a probability density function on
Vaj , and denote Pxi

b
as a probability density function on decision value set Vb = {v1

b
, . . . , vs

b
}.

Formally, a probability decision table is shown in Table 2.

In Table 2, pxi
aj (v

r ′j
aj ) is the probability of “xi that has the value v

r ′j
aj of aj”, where r ′j ∈

{1, 2, . . . , rj}, and for each xi,
∑rj

r ′j=1
pxi
aj (v

r ′j
aj ) = 1. For each xi and c ∈ A ∪ {b}, denote

pxi
aj

(

v
r ′j
aj

)

= max
{
pxi
aj

(
v1
aj

)
, pxi

aj

(
v2
aj

)
, . . . , pxi

aj

(
v
rj
aj

)}
. (3.2)
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Table 3: The maximum probability decision table of Table 2.

U \A ∪ {b} a1 a2 · · · am b

x1 (v
r ′1
a1 , p

x1
a1 (v

r ′1
a1)) (v

r ′2
a2 , p

x1
a2 (v

r ′2
a2)) · · · (vr ′m

am , p
x1
am(v

r ′m
am)) (vs′

b
, px1

b
(vs′

b
))

...
...

...
...

...
...

xn (v
r ′1
a1 , p

xn
a1 (v

r ′1
a1)) (v

r ′2
a2 , p

xn
a2 (v

r ′2
a2)) · · · (vr ′m

am , p
xn
am(v

r ′m
am)) (vs′

b
, pxn

b
(vs′

b
))

Then we can get a reduced probability decision table shown in Table 3, which is called
the maximum probability decision table in this paper.

4. Probability Decision Rules

In a decision tableΔ = (U,A∪{b}), decision rules can be extracted and formalized as follows:

τ −→ b = i, (4.1)

where τ is a formula, which is generated by some vi ∈ V finitely using connectives ∨ or ∧,
V =

⋃
a∈A Va, and i ∈ Vb. For more details about decision rules, reader can consult [2, 28–30].

In this section, we discuss some properties and formalization of probability decision rules
based on Table 3.

Firstly, we can use rough set theory to deal with the information of Table 3 without

considering probability pxi
aj (v

r ′j
aj ); for simplicity, denote

V ′
aj

=
{
vaj | ∃xi ∈ U,Pxi

aj

(
vaj

)
= max

{
Pxi
aj

(
v1
aj

)
, . . . , Pxi

aj

(
v
rj
aj

)}}
,

V ′
b =
{
vk
b | ∃xi ∈ U,Pxi

b
vk
b = max

{
Pxi

b

(
v1
b

)
, . . . , Pxi

b

(
vs
b

)}}
.

(4.2)

Then attributes of Table 3 can be represented as follows:

aj : U −→ V ′
aj , aj(xi) = vaj ,

b : U −→ V ′
b, b(xi) = vk

b .
(4.3)

We can define an equivalence relation onU as follows:

xi ∼ x′
i iff aj(xi) = aj

(
x′
i

)
. (4.4)

Then lower and upper approximation, reduction of attributes, decision rules, consistent
decision tables, and so on can be discussed. However, in the paper, the problem that we
need to deal with is how to get probability of every decision rule. By using rough set theory,
we can get decision rules as follows:

τk −→ b = vk
b , (4.5)
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where νkb ∈ V ′
b, τk = ∧q

l=1va′
l
, va′

l
∈ V ′

a′
l

, a′
l and a′

l ∈ {a1, . . . , am}. LetUτk ⊆ U is the equivalence

class decided by τk, Uvk
b
⊆ U is the equivalence class decided by vk

b . for all xi ∈ Uτk and

for all va′
l
∈ τk, Pxi

a′
l

(v
r ′
l

a′
l

) is the probability of “xi has v
r ′
l

a′
l

of a′
l
”. Let |Uτk | = T , then we have T

independent sources of evidence overUτk×Va′
l
, and belief structure of each source of evidence

is as follows:

ms

(
Uτk , v

1
a′
l

)
= Pxs

a′
l

(
v1
a′
l

)
, . . . , ms

(
Uτk , v

rl
a′
l

)
= Pxs

a′
l

(
vrl
a′
l

)
, (4.6)

where s = 1, . . . , T . Based on (4.6), we can obtain a combined belief structurem overUτk ×Va′
l
,

that is, m = m1 ⊕ · · · ⊕mT as follows [19]:

P
a′
l

Uτk
= ⊕xs∈Uτk

Pxs

a′
l

, (4.7)

P
a′
l

Uτk

(
v
r ′
l

a′
l

)
=

∏
xs∈Uτk

Pxs

a′
l

(
v
r ′
l

a′
l

)

1 −K
, (4.8)

1 −K =
∑

v
r′
l
a′
l

∈Va′
l

∏

xs∈Uτk

Pxs

a′
l

(
v
r ′
l

a′
l

)
.

(4.9)

For attribute a′
l
, Pxs

a′
l

(va′
l
) is the maximum probability that xs has the value va′

l
of a′

l
, so, for

all v
r ′
l

a′
l

∈ Va′
l
and for all xs ∈ Uτk , P

xs

a′
l

(va′
l
) ≥ Pxs

a′
l

(v
r ′
l

a′
l

), that is,

∏

xi∈Uτk

Pxi

a′
l

((
xi, va′

l

))
≥
∏

xi∈Uτk

Pxi

a′
l

((
xi, v

r ′
l

a′
l

))
. (4.10)

This means that P
a′
l

Uτk
(va′

l
) is the maximum possibility of all P

a′
l

Uτk
(v

r ′
l

a′
l

). Similarly, we can get

the probability of each vk′
b
as follows:

Pb
U

vk
b

= ⊕xi∈Uvk
b

Pxi

b
, (4.11)

Pb
U

vk
b

(
vk′
b

)
=

∏
xs∈Uvk

b

Pxs

b

(
vk′
b

)

1 −K
, (4.12)

1 −K =
∑

vk′
b
∈Vb

∏

xs∈Uvk
b

Pxs

b

(
vk′
b

)
, (4.13)

where Pb
U

vk
b

(νk
b
) is the maximum possibility of Pb

U
νk
b

(νk
′

b
).

According to (4.8) and (4.12), we can get a probability decision rule as follows:

(
τk, Pτk

Uτk

)
−→ b =

(

vk
b , P

b
U

νk
b

(
vk
b

))

, (4.14)
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where (τk, Pτk

Uτk
) = ∧q

l=1(va′
l
, P

a′
l

Uτk
(va′

l
)), q ≤ m. The decision rule (4.5) is a special case of the

probability decision rule (4.14), that is, if every P
a′
l

Uτk
(va′

l
) = 1 and Pb

U
νk
b

(vk
b
) = 1. Obviously, for

every a′
l
∈ A,

rl∑

r ′
l
=1

P
a′
l

Uτk

(
v
r ′
l

a′
l

)
= 1,

s∑

k′=1

Pb
U

νk
b

(
vk′
b

)
= 1. (4.15)

Theorem 4.1. Let xi ∈ Uτk if P
xi

a′
l

((xi, va′
l
)) = 1, then P

a′
l

Uτk
(va′

l
) = 1.

Proof. By Pxi

a′
l

((xi, va′
l
)) = 1, we know that for all v

r ′
l

a′
l

∈ Va′
l
, v

r ′
l

a′
l
/=va′

l
, Pxi

a′
l

((xi, v
r ′
l

a′
l

)) = 0, so 1−K =
∑

v
r′
l
a′
l

∈Va′
l

∏
xi∈Uτk

Pxi

a′
l

((xi, v
r ′
l

a′
l

)) =
∏

xi∈Uτk
Pxi

a′
l

((xi, va′
l
)), by (4.8),

P
a′
l

Uτk

(
va′

l

)
=

∏
xi∈Uτk

Pxi

a′
l

((
xi, va′

l

))

1 −K
= 1. (4.16)

Theorem 4.2. Let x′ be a new object, then

∑

v
r′
j

a′
l

∈Va′
l

(

Px′
a′
l

(
va′

l

)
− Px′

a′
l

(

v
r ′j
a′
l

))

P
a′
l

Uτk

(

v
r ′j
a′
l

)

< 0
(4.17)

if and only if P
a′
l

Uτk∪{x′}(va′
l
) < P

a′
l

Uτk
(va′

l
).

Proof. According to (4.7), we know that P
a′
l

Uτk∪{x′} = ⊕xi∈Uτk∪{x′}P
xi

a′
l

= (⊕xi∈Uτk
Pxi

a′
l

) ⊕ Px′
a′
l

= P
a′
l

Uτk
⊕

Px′
a′
l

. So, we have

P
a′
l

Uτk∪{x′}
(
va′

l

)
− P

a′
l

Uτk

(
va′

l

)
=

P
a′
l

Uτk

(
va′

l

)
Px′
a′
l

(
va′

l

)

∑

v
r′
j

a′
l

∈Va′
l

P
a′
l

Uτk

(

v
r ′j
a′
l

)

Px′
a′
l

(

v
r ′j
a′
l

) − P
a′
l

Uτk

(
va′

l

)

= P
a′
l

Uτk

(
va′

l

)

⎛

⎜
⎜
⎜
⎜
⎝

Px′
a′
l

(
va′

l

)

∑

v
r′
j

a′
l

∈Va′
l

P
a′
l

Uτk

(

v
r ′j
a′
l

)

Px′
a′
l

(

v
r ′j
a′
l

) − 1

⎞

⎟
⎟
⎟
⎟
⎠
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= P
a′
l

Uτk

(
va′

l

)

∑v
r′
j

a′
l
/=va′

l

v
r′
j

a′
l

∈Va′
l

(

Px′
a′
l

(
va′

l

)
− Px′

a′
l

(

v
r ′j
a′
l

))

P
a′
l

Uτk

(

v
r ′j
a′
l

)

∑

v
r′
j

a′
l

∈Va′
l

P
a′
l

Uτk

(

v
r ′j
a′
l

)

Px′
a′
l

(

v
r ′j
a′
l

)

= P
a′
l

Uτk

(
va′

l

)

∑

v
r′
j

a′
l

∈Va′
l

(

Px′
a′
l

(
va′

l

)
− Px′

a′
l

(

v
r ′j
a′
l

))

P
a′
l

Uτk

(

v
r ′j
a′
l

)

∑

v
r′
j

a′
l

∈Va′
l

P
a′
l

Uτk

(

v
r ′j
a′
l

)

Px′
a′
l

(

v
r ′j
a′
l

) ,

(4.18)

and this means that if P
a′
l

Uτk∪{x′}(va′
l
) < P

a′
l

Uτk
(va′

l
), then

P
a′
l

Uτk

(
va′

l

)

∑

v
r′
j

a′
l

∈Va′
l

(

Px′
a′
l

(
va′

l

)
− Px′

a′
l

(

v
r ′j
a′
l

))

P
a′
l

Uτk

(

v
r ′j
a′
l

)

∑

v
r′
j

a′
l

∈Va′
l

P
a′
l

Uτk

(

v
r ′j
a′
l

)

Px′
a′
l

(

v
r ′j
a′
l

) < 0, (4.19)

that is,
∑

v
r′
j

a′
l

∈Va′
l

(Px′
a′
l

(va′
l
) − Px′

a′
l

(v
r ′j
a′
l

))P
a′
l

Uτk
(v

r ′j
a′
l

) < 0. Converse is obvious.

Corollary 4.3. If Px′
a′
l

((x′, va′
l
)) = max

v
r′
j

a′
l

∈Va′
l

{Pxi

a′
l

((xi, v
r ′j
a′
l

))}, then

P
a′
l

Uτk∪{x′}
(
va′

l

)
≥ P

a′
l

Uτk

(
va′

l

)
. (4.20)

According to the maximum possibility, Corollary 4.3 means that the more the elements
of Uτk are, the more the probabilities of va′

l
of τk are. Intuitively, the elements of Uτk reflect

the degree of belief of a decision rule; the more the elements of Uτk are, the more the degree
of belief of a decision rule is. Theorem 4.2 means that, sometimes, adding an element to
Uτk can make the degree of belief of a decision rule decrease. According to the condition
of Theorem 4.2, one can see that Px′

a′
l

(va′
l
) is not the maximal probability. From the probability

point of view, x′ may not be inUτk ; if x′ is forced inUτk , then the degree of belief of a decision
rule will decrease.

5. Consistency of a Probability Decision Rule

From the logic point of view, if there exists a valuation v such that v(a) = 1 and v(b) = 1, then
a → b is satisfiable, otherwise, a → b is not satisfiable. We discuss consistency of probability
decision rule similar to satisfiability of a → b.
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Definition 5.1. In probability decision rule (4.14), for a new object x′, if for all va′
l
, l = 1, . . . , q,

x′ is such that

P
a′
l

Uτk∪{x′}
(
va′

l

)
≥ P

a′
l

Uτk

(
va′

l

)
, Pb

U
vk
b
∪{x′}
(
vk
b

)
≥ Pb

U
vk
b

(
vk
b

)
, (5.1)

then there exists consistency between x′ and the probability decision rule, and we also call
antecedents and conclusion of the probability decision rule consistent. If there does not exist
such x′, then we call antecedents and conclusion of the decision rule inconsistent.

By Theorem 4.2, we know that

∑

v
r′
j

a′
l

∈Va′
l

(

Px′
a′
l

(
va′

l

)
− Px′

a′
l

(

v
r ′j
a′
l

))

P
a′
l

Uτk

(

v
r ′j
a′
l

)

≥ 0,
s∑

s′=1

(
Px′
b

(
vk
b

)
− Px′

b

(
vs′
b

))
Pb
U

vk
b

(
vs′
b

)
≥ 0

(5.2)

if and only if (5.1) is satisfied. Obviously, if Px′
a′
l

(va′
l
) and Px′

b (vk
b ) are maximum probability

assignments, respectively, that is, if they satisfy the condition of Corollary 4.3, then (5.1)
is true. So, using maximum probability assignments to get a probability decision rule,
its antecedents and conclusion are consistent, and for a new object x′ and its probability
assignments on Vaj , if we use maximum probability assignment to decide the class of x′, then
x′ and the probability decision rule are consistent. However, sometimes, there exists a case: for
a new object x′, according to maximum probability assignment, we get each attribute value

v
r ′
j′

a′
l

and vk′
b
, but there does not exist decision rule such that its antecedents and conclusion

match v
r ′
j′

a′
l

and vk′
b , respectively. In this case, using (5.2), we can choose a probability decision

rule such that x′ and the probability decision rule are consistent. If there exist more than one
decision rule, then x′ is included in the decision rule such that its conclusion is ∨Pb

U
vk
b
∪{x′}(v

k
b
).

Corollary 5.2. A new object x′ and decision rule (4.14) are consistent if and only if the probability
assignments of x′ are such that (5.2).

Theorem 5.3. For a new object x′, let
s∑

s′=1

Px′
b

(
vs′
b

)
Pb
U

vk
b

(
vs′
b

)
= α

∑

v
r′
j

a′
l

∈Va′
l

P
a′
l

Uτk

(

v
r ′j
a′
l

)

Px′
a′
l

(

v
r ′j
a′
l

)

(5.3)

if α ≤ Px′
b (vk

b )/P
x′
a′
l

(va′
l
) and P

a′
l

Uτk∪{x′}(va′
l
) ≥ P

a′
l

Uτk
(va′

l
), then Pb

U
vk
b
∪{x′}(v

k
b ) ≥ Pb

U
vk
b

(vk
b ).

Proof. By P
a′
l

Uτk∪{x′}(va′
l
) ≥ P

a′
l

Uτk
(va′

l
), we know that

∑

v
r′
j

a′
l

∈Va′
l

(

Px′
a′
l

(
va′

l

)
− Px′

a′
l

(

v
r ′j
a′
l

))

P
a′
l

Uτk

(

v
r ′j
a′
l

)

≥ 0.
(5.4)
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On the other hand,

Pb
U

vk
b
∪{x′}
(
vk
b

)
− Pb

U
vk
b

(
vk
b

)
= Pb

U
vk
b

(
vk
b

)
⎛

⎜
⎝

Px′
b

(
vk
b

)

∑s
s′=1 P

x′
b

(
vs′
b

)
Pb
U

vk
b

(
vs′
b

) − 1

⎞

⎟
⎠

= Pb
U

vk
b

(
vk
b

)

⎛

⎜
⎜
⎜
⎜
⎝

Px′
b

(
vk
b

)

α
∑

v
r′
j

a′
l

∈Va′
l

P
a′
l

Uτk

(

v
r ′j
a′
l

)

Px′
a′
l

(

v
r ′j
a′
l

) − 1

⎞

⎟
⎟
⎟
⎟
⎠

= Pb
U

vk
b

(
vk
b

)

∑

v
r′
j

a′
l

∈Va′
l

(

Px′
b

(
vk
b

)
/α − P

a′
l

Uτk

(

v
r ′j
a′
l

))

Px′
a′
l

(

v
r ′j
a′
l

)

∑

v
r′
j

a′
l

∈Va′
l

P
a′
l

Uτk

(

v
r ′j
a′
l

)

Px′
a′
l

(

v
r ′j
a′
l

) .

(5.5)

By α ≤ Px′
b (vk

b )/P
x′
a′
l

(va′
l
), get Px′

b (vk
b )/α ≥ Px′

a′
l

(va′
l
), so we have

∑

v
r′
j

a′
l

∈Va′
l

(Px′
b (vk

b )/α −

P
a′
l

Uτk
(v

r ′j
a′
l

))Px′
a′
l

(v
r ′j
a′
l

) ≥ ∑

v
r′
j

a′
l

∈Va′
l

(Px′
a′
l

(va′
l
) − Px′

a′
l

(v
r ′j
a′
l

))P
a′
l

Uτk
(v

r ′j
a′
l

) ≥ 0, that is, Pb
U

vk
b
∪{x′}(v

k
b ) ≥

Pb
U

vk
b

(vk
b
).

6. Inference of Probability Decision Rules

Inspired by inference method of Zadeh [13], we provide an inference method of probability

decision rules in this section, where the decision rule has the form ∧q

l=1(va′
l
, P

a′
l

Uτk
(va′

l
)) → b =

(vk
b
, Pb

U
vk
b

(vk
b
)). Assume that we have a new element x′ shown in Table 4, we infer a probability

density function on Vb and decide the class of x′ and its degree of belief. The inference process
can be rewritten as follows:

p :
q∧

l=1

(
va′

l
, P

a′
l

Uτk

(
va′

l

))
−→ b =

(

vk
b , P

b
U

vk
b

(
vk
b

))

,

q : give Table 4,

c :
(
vs′
b , P

s′
x′,b

)
.

(6.1)

In (6.1), the probability decision rule p has the universes of Uτk of antecedent and Uvk
b
of

conclusion. In (6.1), p can be rewritten as “if the degree of belief of va′1 is P
a′
l

Uτk
(va′

l
) and . . . and

the degree of belief of va′q is P
a′q
Uτk

(va′q), then the degree of belief of vk
b is Pb

U
vk
b

(vk
b ),” q can be

rewritten as “the degree of belief of attribute values of x′ is Table 4”; the conclusion is “how
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many are the degrees of belief of decision attribute values vs′
b of x′.” The single condition

probability decision rule of p has the form:

p :
(
va′

l
, P

a′
l

Uτk

(
va′

l

))
−→ b =

(

vk
b , P

b
U

vk
b

(
vk
b

))

,

q :
rl∑

i=1

pi
x′,a′

l
= 1,

c :
(
vs′
b , P

s′
x′,b

)
.

(6.2)

In the paper, domains of antecedents and conclusion of p are {(Uτk , v
′
a′
l

) | v′
a′
l

∈ Va′1} and

{(Uvk
b
, v′

b) | v′
b ∈ Vb}, respectively. We rewrite probability density functions as follows:

f̃ a′1
Uτk

:
{(

X, v′
a′
l

)
| v′

a′
l
∈ Va′1

}
−→ [0, 1], f̃ a′1

Uτk

(
X, v′

a′
l

)
= P

a′
l

Uτk

(
va′

l

)
,

f̃ b
U

vk
b

:
{(

X, v′
b

) | v′
b ∈ Vb

} −→ [0, 1], f̃ b
U

vk
b

(
X, v′

b

)
= Pb

U
vk
b

(
v′
b

)
,

f̃ a′
l
x′ :
{(

X, v′
a′
l

)
| v′

a′1
∈ Va′

l

}
−→ [0, 1], f̃ a′

l
x′

(
X, v′

a′
l

)
= p

v′
a′
l

x′,a′
l

.

(6.3)

Then, (6.1) and (6.2) can be modified as

p :
q∧

l=1

f̃ a′
l
Uτk

−→ f̃ b
U

vk
b

,

q :
q∧

l=1

f̃ a′
l
x′ ,

c : f̃ b
x′ ,

(6.4)

p : f̃ a′1
Uτk

−→ f̃ b
U

vk
b

,

q : f̃ a′
l
x′ ,

c : f̃ b
x′ .

(6.5)

Let f̃ a′1
Uτk

= P
a′
l

Uτk
(v1

a′
l

)/(X, v1
a′
l

) + · · · + P
a′
l

Uτk
(vrl

a′
l

)/(X, vrl
a′
l

) and f̃ b
U

vk
b

= Pb
U

v1
b

(v1
b)/(X, v1

b) + · · · +

Pb
Uvs

b

(vs
b
)/(X, vs

b
), then the logical combinations of f̃ a′1

Uτk
and f̃ b

U
vk
b

are given as follows:

f̃ a′1
Uτk

⊕ f̃ b
U

vk
b

= min{1, Pa′
l

Uτk
(v

r ′
l

a′
l

) + Pb
U

vk
b

(vs′
b
)}/(vr ′

l

a′
l

, vs′
b
), f̃ a′1

Uτk
→ f̃ b

U
vk
b

= min{1, 1 −

P
a′
l

Uτk
(v

r ′
l

a′
l

) + Pb
U

v1
b

(vs′
b
)}/(vr ′

l

a′
l

, vs′
b
), f̃ a′1

Uτk
× f̃ b

U
vk
b

= min{Pa′
l

Uτk
(v

r ′
l

a′
l

), Pb
U

vk
b

(vs′
b
)}/(vr ′

l

a′
l

, vs′
b
), and
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(f̃ a′1
Uτk

)′ = (1 − P
a′
l

Uτk
(v

r ′
l

a′
l

))/(X, v
r ′
l

a′
l

) . Then, we can get the following relations on {(X, v′
a′
l

) |
v′
a′
l

∈ Va′1} × {(X, v′
b
) | v′

b
∈ Vb}:

R1 = f̃ a′1
Uτk

× f̃ b
U

vk
b

, (6.6)

R2 =
(

f̃ a′1
Uτk

× f̃ b
U

vk
b

)

∨
((

f̃ a′1
Uτk

)′
×
(

f̃ b
U

vk
b

)′)
, (6.7)

R3 =
((

f̃ a′1
Uτk

)′
⊕ f̃ b

U
vk
b

)

∧
(

f̃ a′1
Uτk

⊕
(

f̃ b
U

vk
b

)′)
, (6.8)

R4 = f̃ a′1
Uτk

−→ f̃ b
U

vk
b

, (6.9)

R5 =
(

f̃ a′1
Uτk

−→ f̃ b
U

vk
b

)

∨
((

f̃ a′1
Uτk

)′
−→
(

f̃ b
U

vk
b

)′)
. (6.10)

The inference for (6.5) can be expressed as follows:

f̃ b
x′ =

˜
f
a′
l

x′ ◦ Ri
, (6.11)

where “◦′′ operator is “max-min.′′ According to (6.11), we can obtain f̃ b
x′ = P̃ b

x′(v1
b)/(X, v1

b) +

· · · + P̃ b
x′(vs

b
)/(X, vs

b
); generally, maybe P =

∑s
s′=1 P̃

b
x′(vs′

b
)/= 1, however, every P̃ b

x′(vs′
b
) (s′ =

1, 2, . . . , s) of f̃ b
x′ can be normalized as follows:

Pb
x′

(
vs′
b

)
=

P̃ b
x′

(
vs′
b

)

P
,

(6.12)

where P is normalized factor. By (6.12), we can get the probability density function on
{(x′, vs′

b ) | vs′
b ∈ Vb},

fb
x′ =

Pb
x′
(
v1
b

)

(
x′, v1

b

) + · · · + Pb
x′
(
vs
b

)

(
x′, vs

b

) . (6.13)

According to the maximum probability of (6.13), we can decide in which class x′ is included
and its degree of belief.



Mathematical Problems in Engineering 15

Table 4: The information of x′.

a1 · · · am b

x′
(v1

a1 , p
1
x′ ,a1

) · · · (v1
am , p

1
x′ ,am

)
...

...
...

...
(vr1

a1 , p
r1
x′ ,a1

) · · · (vrm
x′ ,am

, prmx′ ,am
)

Theorem 6.1. In (6.11), if Ri = R1, P
a′
l

Uτk
(va′

l
), Pb

U
vk
b

(vk
b
), and P

va′
l

x′,a′
l

are maximum probabilities,

respectively, then Pb
x′(vk

b
) = min(P

va′
l

x′,a′
l

, P
a′
l

Uτk
(va′

l
), Pb

Uvk
b

(vk
b
)) is the maximum probability of (6.13).

Proof. By (6.6) and (6.11), we know that Pb
x′(vk

b
) = max{min(P

vm
a′
l

x′,a′
l

, min(P
a′
l

Uτk
(vm

a′
l

), Pb
U

vk
b

(vk
b
))) |

vm
a′
l

∈ Va′1} = max{min(P
vm
a′
l

x′,a′
l

, P
a′
l

Uτk
(vm

a′
l

), Pb
U

vk
b

(vk
b
)) | vm

a′
l

∈ Va′1} = min(P
va′

l

x′,a′
l

, P
a′
l

Uτk
(va′

l
), Pb

U
vk
b

(vk
b
)).

Obviously, for all vm
a′
l

∈ Va′1 and for all vs′
b
∈ Vb,

min
(

P
va′

l

x′,a′
l

, P
a′
l

Uτk

(
va′

l

)
, Pb

U
vk
b

(
vk
b

))

≥ min

(

P
vm
a′
l

x′,a′
l

, P
a′
l

Uτk

(
vm
a′
l

)
, Pb

U
vs

′
b

(
vs′
b

)
)

, (6.14)

so we have Pb
x′(vk

b ) ≥ Pb
x′(vs′

b ), that is, P
b
x′(vk

b ) is the maximum probability of (6.13).

According to Corollary 4.3, Theorem 6.1 shows that the inference conclusion can make
x′ and decision rule p consistent. For simplicity, in the rest of this section, we always assume

that P
a′
l

Uτk
(va′

l
), Pb

U
vk
b

(vk
b ), and P

va′
l

x′,a′
l

are maximum probabilities, respectively.

Theorem 6.2. If Ri = R2, P
a′
l

Uτk
(va′

l
) ≥ 0.5, and Pb

U
vk
b

(vk
b ) ≥ 0.5, then Pb

x′(vk
b ) =

min(P
va′

l

x′,a′
l

, P
a′
l

Uτk
(va′

l
), Pb

U
vk
b

(vk
b )) is the maximum probability of (6.13).

Theorem 6.3. If Ri = R3, then Pb
x′(vk

b
) = min(P

va′
l

x′,a′
l

, 1 − P
a′
l

Uτk
(va′

l
) + Pb

U
vk
b

(vk
b
), 1 + P

a′
l

Uτk
(va′

l
) −

Pb
U

vk
b

(vk
b
)) is the maximum probability.

Theorem 6.4. If Ri = R4, then Pb
x′(vk

b ) = min(P
va′

l

x′,a′
l

, 1 − P
a′
l

Uτk
(va′

l
) + Pb

U
vk
b

(vk
b )) is the maximum

probability of (6.13).

Proof. By (6.9) and (6.11), we know that Pb
x′(vk

b ) = max{ρm,k = min(P
vm
a′
l

x′,a′
l

,min(1, 1−Pa′
l

Uτk
(vm

a′
l

)+

Pb
U

vk
b

(vk
b ))) | vm

a′
l

∈ Va′1} = max{ρm,k = min(P
vm
a′
l

x′,a′
l

, 1, 1 − P
a′
l

Uτk
(vm

a′
l

) + Pb
U

vk
b

(vk
b )) | vm

a′
l

∈

Va′1} = max{ρm,k = min(P
vm
a′
l

x′,a′
l

, 1 − P
a′
l

Uτk
(vm

a′
l

) + Pb
U

vk
b

(vk
b )) | vm

a′
l

∈ Va′1}. When vm
a′
l
/=va′

l
, by

P
a′
l

Uτk
(vm

a′
l

) ≤ 0.5, we know that 1 − P
a′
l

Uτk
(vm

a′
l

) + Pb
U

vk
b

(vk
b
) ≥ 1, so ρm,k = P

vm
a′
l

x′,a′
l

≤ ρk = min(P
va′

l

x′,a′
l

, 1 −
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P
a′
l

Uτk
(va′

l
) + Pb

U
vk
b

(vk
b )) = Pb

x′(vk
b ). For all s

′ /= k, ρs′ = min(P
va′

l

x′,a′
l

, 1 − P
a′
l

Uτk
(va′

l
) + Pb

U
vk
b

(vs′
b )) and

ρm,s′ = min(P
vm
a′
l

x′,a′
l

, 1 − P
a′
l

Uτk
(vm

a′
l

) + Pb
U

vk
b

(vs′
b )) = P

vm
a′
l

x′,a′
l

. obviously, ρk ≥ max{ρs′ , ρm,s′ } = Pb
x′(vs′

b ),

and Pb
x′(vk

b ) is the maximum probability.

Remark 6.5. According to (5.2), if Px′
a′
l

(va′
l
) and Px′

b
(vk

b
) are maximum probability assignments,

respectively, then the probability decision rule is consistent. Theorems 6.1–6.4 show that we
obtain maximum probability. Hence, using R1 − R4 ensures the consistency of decision rule.

Theorem 6.6. If Ri = R5, then Pb
x′(vk

b
) = min(P

va′
l

x′,a′
l

, max(1−P
a′
l

Uτk
(va′

l
) +P b

U
vk
b

(vk
b
), 1+P

a′
l

Uτk
(va′

l
)−

Pb
U

vk
b

(vk
b ))) is the minimum probability of (6.13).

Proof. By (6.10) and (6.11), we know that Pb
x′(vk

b ) = max{ρm,k = min(P
vm
a′
l

x′,a′
l

,max(min(1, 1 −
P
a′
l

Uτk
(vm

a′
l

) + Pb
U

vk
b

(vk
b )),min(1, 1 + P

a′
l

Uτk
(vm

a′
l

) − Pb
U

vk
b

(vk
b )))) | vm

a′
l

∈ Va′1}. By P
a′
l

Uτk
(vm

a′
l

) ≤ 0.5, we

know that min(1, 1 − P
a′
l

Uτk
(vm

a′
l

) + Pb
U

vk
b

(vk
b )) = 1, so ρm,k = P

vm
a′
l

x′,a′
l

. ρk = min(P
va′

l

x′,a′
l

, max(1 −

P
a′
l

Uτk
(va′

l
) + Pb

U
vk
b

(vk
b ), 1 + P

a′
l

Uτk
(va′

l
) − Pb

U
vk
b

(vk
b ))), so we have Pb

x′(vk
b ) = ρk. For Pb

x′(vs′
b ), by 1 +

P
a′
l

Uτk
(va′

l
)−Pb

U
vk
b

(vs′
b ) ≥ 1, we get for all s′ /= k, Pb

x′(vs′
b ) = P

va′
l

x′,a′
l

≥ ρk = Pb
x′(vk

b ), P
b
x′(vk

b ) is minimal

probability of (6.13).

Remark 6.7. According to (5.2), if Px′
a′
l

(va′
l
) and Px′

b (vk
b ) are maximum probability assignments,

respectively, then the probability decision rule is consistent. If we use R5, Theorem 6.6 show
that we obtainminimal probability. Hence, usingR5 cannot ensure the consistency of decision
rule.

7. Conclusion

In this paper, we provide a kind of probability information system and probability decision
tables to represent a degree of belief of “objects have attributes,” formally, the kind of
probability information system is extension of classical information system and a special case
of interval-valued information system. Based on rough set theory, we discuss extraction of
probability decision rules. Then we analyse consistency of probability decision rules. Finally,
we provide a method to finish inference of probability decision rules.

Appendices

A. The Proof of Theorem 6.2

Proof. By (6.7) and (6.11), we know that Pb
x′(vk

b ) = max{ρm,k = min(P
vm
a′
l

x′,a′
l

,

max(min(P
a′
l

Uτk
(vm

a′
l

), Pb
U

vk
b

(vk
b
)),min((1 − P

a′
l

Uτk
(vm

a′
l

)), (1 − Pb
U

vk
b

(vk
b
))))) | vm

a′
l

∈ Va′1}, where index
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k of ρm,k shows the k column of R2, when vm
a′
l

= va′
l
, noted by ρk. By P

a′
l

Uτk
(va′

l
) ≥ 0.5,

Pb
U

vk
b

(vk
b ) ≥ 0.5, we get min(P

a′
l

Uτk
(va′

l
), Pb

U
vk
b

(vk
b )) ≥ min((1 − P

a′
l

Uτk
(va′

l
)), (1 − Pb

U
vk
b

(vk
b ))). So,

ρk = min(P
va′

l

x′,a′
l

, P
a′
l

Uτk
(va′

l
), Pb

U
vk
b

(vk
b )). By for all vm

a′
l
/=va′

l
, we have P

a′
l

Uτk
(vm

a′
l

) ≤ P
a′
l

Uτk
(va′

l
) ≤

1 − P
a′
l

Uτk
(vm

a′
l

), and P
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l

Uτk
(vm

a′
l

) ≤ Pb
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vk
b

(vk
b
), so ρm,k = min(P

vm
a′
l

x′,a′
l

,max(P
a′
l

Uτk
(vm

a′
l

), 1 − Pb
U

vk
b

(vk
b
))) and

obviously, ρk ≥ ρm,k. So, we have Pb
x′(vk

b
) = min(P

va′
l

x′,a′
l

, P
a′
l

Uτk
(va′

l
), Pb

U
vk
b

(vk
b
)). By for all vs′

b /=vk
b
,

we have Pb
x′(vs′

b
) = max{ρm,s′ = min(P

vm
a′
l

x′,a′
l

,max(min(P
a′
l

Uτk
(vm

a′
l

), Pb
U
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′

b

(vs′
b
)),min((1 − P

a′
l

Uτk
(vm

a′
l
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U
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′

b
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b
))))) | vm
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l
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a′
l

Uτk
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l
), Pb

U
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′
b

(vs′
b
)) = Pb

U
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′
b
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b
), min((1−Pa′
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l
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U
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′

b
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l
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l
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l
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U

vs
′

b
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b ), 1 − P
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l

Uτk
(va′

l
))). Because

for all vm
a′
l
/=va′

l
, min(P

a′
l

Uτk
(vm

a′
l

), Pb
U

vs
′

b

(vs′
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l

Uτk
(vm
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U
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′

b
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l
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l
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b
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), that is, Pb

x′(vk
b
) is the maximum probability of (6.13).

B. The Proof of Theorem 6.3

Proof. By (6.7) and (6.11), we know that Pb
x′(vk

b ) = max{ρm,k = min(P
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a′
l

x′,a′
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