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An Immunochip-based interrogation of
scleroderma susceptibility variants identifies a
novel association at DNASE1L3
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Wendy Stevens3, Joanne Sahhar4, Janet Roddy5, Peter Nash6, Kathleen Tymms7, Maureen Rischmueller8,
Sue Lester8, Susanna Proudman9 and Matthew A Brown2*
Abstract

Introduction: The aim of the study was to interrogate the genetic architecture and autoimmune pleiotropy of
scleroderma susceptibility in the Australian population.

Methods: We genotyped individuals from a well-characterized cohort of Australian scleroderma patients with the
Immunochip, a custom array enriched for single nucleotide polymorphisms (SNPs) at immune loci. Controls were
taken from the 1958 British Birth Cohort. After data cleaning and adjusting for population stratification the final
dataset consisted of 486 cases, 4,458 controls and 146,525 SNPs. Association analyses were conducted using logistic
regression in PLINK. A replication study was performed using 833 cases and 1,938 controls.

Results: A total of eight loci with suggestive association (P <10-4.5) were identified, of which five showed significant
association in the replication cohort (HLA-DRB1, DNASE1L3, STAT4, TNP03-IRF5 and VCAM1). The most notable
findings were at the DNASE1L3 locus, previously associated with systemic lupus erythematosus, and VCAM1, a locus
not previously associated with human disease. This study identified a likely functional variant influencing
scleroderma susceptibility at the DNASE1L3 locus; a missense polymorphism rs35677470 in DNASE1L3, with an odds
ratio of 2.35 (P = 2.3 × 10−10) in anti-centromere antibody (ACA) positive cases.

Conclusions: This pilot study has confirmed previously reported scleroderma associations, revealed further genetic
overlap between scleroderma and systemic lupus erythematosus, and identified a putative novel scleroderma
susceptibility locus.
Introduction
Systemic sclerosis (SSc) or scleroderma is a multisystem,
autoimmune disorder characterised by progressive vas-
cular, inflammatory and fibrotic dysfunction. Skin and
visceral complications of cardiac, pulmonary, gastro-
intestinal, muscle and renal disease can have devastating
effects on quality of life and life expectancy [1].
Scleroderma has a well-established genetic component

[2-4]. Most of the identified SSc susceptibility loci over-
lap with those of other autoimmune diseases, in particu-
lar the rheumatic disorders such as rheumatoid arthritis
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and systemic lupus erythematosus (SLE) [5]. For example,
Carmona et al. recently confirmed an association between
SSc and the SLE risk haplotype at the IRF5 locus [6] and
Martin et al. recently performed a pan-meta-analysis of
SSc and SLE to look at the susceptibility overlap between
the two diseases [7]. Using 6,835 cases and 14,274 controls
they identified a novel pleiotropic locus at KIAA0319L on
chromosome 1 and identified two SLE loci (near PXK and
JAZF1) that also contribute to SSc [7].
To identify further susceptibility loci and to explore

the genetic overlap with other antibody-mediated immune
diseases, we undertook an SSc association study using the
Immunochip, a custom array including SNPs of interest in
a wide variety of autoimmune disorders [8]. A replication
study was then performed using previously published case
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data from a genome-wide association study (GWAS) of
scleroderma [9], and control data from a GWAS of bone
density variation [10].

Methods
Samples
We selected 532 cases for genotyping from the Australian
Scleroderma Cohort Study (ASCS) [11]; a prospective study
of risk factors for clinically important outcomes in SSc.
They fulfilled either the American College of Rheumatology
(ACR) criteria for classification of SSc [12] or the Medsger
criteria for limited SSc (to enable broad representation of
the disease spectrum) [13]. The study was approved by the
Human Research Ethics Committee (Tasmanian) Network
and human research ethics committees of St. Vincent’s
Hospital and Monash Medical Centre, Melbourne, VIC;
Sunshine Coast Rheumatology, Maroochydore, QLD; Royal
Adelaide Hospital, Adelaide, SA; St George Hospital,
Sydney, NSW; Royal Perth Hospital, Perth, WA; and
Prince Charles Hospital, Brisbane, QLD. All patients
gave written, informed consent.

Genotyping
Cases were genotyped with the Immunochip, an Illumina
Infinium SNP microarray (Illumina Inc., San Diego, CA,
USA) [8], at the University of Queensland Diamantina
Institute, Brisbane, QLD, Australia. The Immunochip
contains 195,806 common and rare SNPs of interest in a
wide variety of autoimmune disorders. Control genotypes
were obtained from 4,537 samples from the 1958
British Birth Cohort [14]. Genotypes were called using
the Illumina GenTrain clustering algorithm. Cases and
controls were clustered separately.
For replication purposes, genotypes from 833 SSc cases

were obtained from dbGAP (dbGaP Study Accession:
phs000357.v1.p1) [9,15]. These samples were genotyped
with the Illumina Human610-Quad v1.0 BeadChip.
Control genotypes were obtained from 1,938 subjects
of white British ancestry genotyped as part of the
Anglo-Australasian Osteoporosis Genetics Consortium
program using either Illumina Infinium II HumHap300
or 370CNV chips [10].

Statistical analyses
Genotype data were analysed with PLINK [16] and R
[17]. There were no duplicate or closely related cases.
Case (n = 2) and control (n = 3) samples with call rates
less than 90% were excluded. SNPs were excluded based
on Hardy-Weinberg disequilibrium (P <10−6), call rates less
than 90%, fewer than two occurrences of the minor allele,
and significantly different rates of missingness (P <10−4)
between cases and controls. Eigenstrat [18] was run on a
pruned SNP set with default settings to exclude population
ancestry outliers and ensure cases and controls were
ethnically matched. Subjects lying more than six standard
deviations from the mean of any principal component were
excluded (Immunochip set 44 cases and 76 controls ex-
cluded; replication set 129 cases and 31 controls excluded).
Four-digit classical MHC allele dosages at HLA-A,

HLA-B, HLA-C, HLA-DRB1, HLA-DQA1 and HLA-DQB1
were imputed using HLA*IMP [19,20] in the Immunochip
dataset, and tested for association.
Logistic regression was used for all association analyses

using principal components derived from the Eigenstrat
analysis as covariates to control for population stratification.
A single principal component was used for the Immuno-
chip analysis and two principal components for the replica-
tion dataset; including further principal components for
either set did not reduce the genomic inflation factor
further. A negative control set of 2,805 SNPs outside the
major histocompatibility complex (MHC), associated with
reading and learning, schizophrenia and psychosis [19], was
used to estimate the genomic inflation factor and calculate
adjusted P values. Genotype intensity cluster plots were
manually examined for all suggestive associations with un-
adjusted P values less than 10–4.5, a threshold used in previ-
ous GWAS [21]. To test for secondary association signals
at each locus, genotypes at the most significant variant were
added to the logistic regression model as a covariate, and
all other variants at the locus were tested. To correct
secondary analyses for multiple testing, we estimated
the effective number of independent tests at loci using
the eigenvalues of the matrix of correlations between
SNPs [22], as implemented in SNPSpD [23].
For variants associated with SSc at the nominally

suggestive threshold (P <10-4.5), we also tested for differ-
ences in allele frequencies between patients with differ-
ent disease subtypes and MHC genotypes.
For replication, cases and controls genotypes were

imputed as implemented in IMPUTE2 [24] with the use
of the merged 1000 Genomes and UK10K reference data-
set. All SNPs we were attempting to replicate had an info
score of >0.7. Meta-analysis was performed using METAL
weighted by inverse variance [25]. Power was calculated
using the Genetic Power Calculator [26].

Results
After sample and SNP exclusions, in the Immunochip
dataset genotypes were analysed at 145,921 autosomal
SNPs in 486 cases and 4,458 controls, with a genomic
inflation factor of 1.02 (Q-Q plot, Figure S1 in Additional
file 1). Eighty-six percent of the cases were female, mean
age was 60 years and mean disease duration 14 years.
Twenty-five percent of cases had diffuse disease, 72%
limited pattern, and 3% were intermediate; 43% were anti-
centromere antibody (ACA) positive and 15% anti-Scl-70
antibody positive. Considering the replication set, 700
scleroderma cases and 1,899 controls remained after
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quality control. Of the replication cases, 36% had diffuse
disease, 64% limited pattern; 32% were ACA positive.
The genomic inflation factor for the replication set was
1.045. The Immunochip study has 80% power to detect
associations at P <10-4.5 for a variant with minor allele
frequency (MAF) of 0.3 with D’ = 0.8 with a SNP with
heterozygote odds ratio (OR) of 1.65.
We detected suggestive associations in the Immunochip

data (uncorrected P <10–4.5) at eight loci (Table 1), five of
which showed association in the replication cohort (HLA-
DRB1, DNASE1L3, STAT4, TNPO3-IRF5, and VCAM1)
(Table 1, Manhattan plot Figure 1). There was also evi-
dence of association at the previously reported genome-
wide significant CD247 SNP [9] (rs2056626, OR = 0.76,
P = 1.1 × 10−4), but no evidence of association at the
genome-wide significant TNIP1 locus [27] (rs2233287,
P = 0.94). The overlap between previously reported
genome-wide significant SSc loci (outside the MHC) and
our data, at an unadjusted P <0.01, is shown in Table 2.
Not all previously associated SSc loci could be investigated
owing to the limitations of markers available on the array.
The strongest SNP association (Table 1) was with

rs2857130 in the MHC. Testing imputed MHC alleles
for association, the strongest signal was for DRB1*11:04
(Table 3). There was also a protective association with
DRB1*07:01, but no other alleles or SNPs showed evi-
dence of association after conditioning on these two. In
particular, there was little evidence of association with
the rare DRB1*11:03 allele, which only differs from
DRB1*11:04 at one site encoding part of a hypervariable,
Table 1 SNPs associated with SSc (P <10–4.5) in an analysis of
replication cohort of 700 SSc cases (220 ACA positive) and 1,

Chr Location range
(base pairs, hg18)

Best SNP MAF
cases

MAF
controls

Immunochip
OR

6 32,039,116-32,888,448 rs2857130 0.293 0.389 0.68

1 101,009,225 Novel SNP 0.024 0.008 3.31

3 58,158,676-58,289,303 rs35677470 0.122 0.083 1.63

3 58,158,676-58,289,303 rs35677470 0.174 0.083 2.36

7 128,372,852-128,499,110 rs34381587 0.158 0.113 1.53

16 73,863,956-74,046,823 rs11149824 0.469 0.391 1.35

2 43,775,459-43,784,213 rs13403030 0.384 0.318 1.36

2 191,608,694-191,641,499 rs13426947 0.253 0.191 1.42

1 61,883,642 rs2886326 0.249 0.195 1.41

#Gene annotation is based on the location of the most significant SNP; ^ACA-positiv
ACA, anti-centromere antibody; Chr, chromosome; MAF, minor allele frequency; OR
peptide-binding region (R71E; OR 1.46, P =0.35), and a
model with DRB1*11:03 and DRB1*11:04 dosage com-
bined does not fit as well as a model with DRB1*11:04
dosage alone.
Consistent with previous findings, DRB1*11:04 is a

particularly strong risk factor for Scl70-positive SSc [28]
(Table 3). However, compared to controls the frequency
of this allele is also elevated in ACA-positive cases and
in cases negative for both antibodies. The protective effect
of DRB1*07:01 is strongest against ACA-positive disease,
and there was no evidence that this allele protects against
anti-Scl70 antibody-positive disease.
The most significant STAT4 locus association was at

the SNP rs13426947 (Table 1). This was one of 15 asso-
ciated intronic SNPs in STAT4 (P <3 × 10−4), all corre-
lated with rs13426947 (r2 > 0.55, MAF 0.19 to 0.26).
These included the top-ranked SNP at this locus from a
previous SSc GWAS (rs3821236, P = 2.6 × 10−5, r2 = 0.97
with rs13426947) [9]. No SNPs in this region were sig-
nificantly associated with SSc (P <0.01) after condition-
ing on rs13426947. rs13426947 also showed association
in the replication set (P = 5.4 × 10−3), and in the com-
bined analysis (P = 6.1 × 10−7).
At the IRF5/TNPO3 locus, there was a group of 23

associated SNPs (P <5 × 10−5) highly correlated with the
top-ranked SNP rs34381587 (r2 > 0.90, MAF 0.11 to
0.13), including the top-ranked SNP reported previously
(rs10488631, P = 2.4 × 10−5, r2 = 0.998 with rs34381587)
[9]. There was some evidence of association with a rare
SNP between the two genes (128,379,270 base pairs,
Immunochip genotypes for 486 cases and 4,458 controls,
889 controls, and combined

Immunochip
P value

Replication
OR

Replication
P value

Combined
analysis

Gene
annotation#

2.8 × 10−7 0.81 0.003 1.3 × 10−8 Intergenic
(HLA region)

1.8 × 10−6 2.49 0.031 1.9 × 10−7 Intergenic
(VCAM1)

3.4 × 10−6 1.27 0.027 1.2 × 10−6 DNASE1L3
(coding)

2.3 × 10−10 1.74 3.0 × 10−4 8.71 × 10−13 DNASE1L3
(coding)^

1.2 × 10−5 1.38 8.7 × 10−4 5.2 × 10−8 IRF5/TNPO3
(intron)

1.4 × 10−5 1.054 0.442 3.2 × 10−4 CFDP1
(intron)

1.5 × 10−5 0.92 0.242 0.027 PLEKHH2
(intron)

1.8 × 10−5 1.25 5.4 × 10−3 6.1 × 10−7 STAT4 (intron)

2.0 × 10−5 0.96 0.606 7.4 × 10−3 Intergenic
(TM2D1)

e cases only. SNP, single nucleotide polymorphism; SSc, systemic sclerosis;
, odds ratio.
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MAF 0.028, OR 1.83, P = 6.0 × 10−4; P = 0.05 after correc-
tion for the 83 independent tests). rs34381587 also showed
association in the replication set (P = 8.7 × 10−4), and near
genome-wide significance in the combined analysis (P =
5.2 × 10−8).
Association was observed and replicated at chromo-

some 3p14, spanning DNASE1L3 to AXOX2 (including
PXK; Figure 2), a region that has previously been associ-
ated with both SLE [29] and SSc [7]. While the peak
association with SLE was originally identified at an
intronic SNP rs6445975 in PXK (a PX domain contain-
ing serine/threonine kinase), the strongest association
with SSc on the Immunochip was at a missense SNP
rs35677470 (R206C) in DNASE1L3 (deoxyribonuclease
I-like 3); 187 kb distal of rs6445975. Linkage disequilibrium
between the two SNPs is modest (r2 = 0.13), and there is
weak evidence of a secondary association with rs6445975
in our data after conditioning on rs35677470 (OR = 1.19,
P = 0.03). No other associations at this locus are significant
after correction for multiple testing. The association with
rs35677470 is confined to ACA-positive cases (estimated
OR 2.36, P = 2.3 × 10−10), with no association in ACA-
negative cases (P = 0.76). rs35677470 also showed associ-
ation in the replication set (P =0.027), and in the combined
analysis (P = 1.2 × 10−6). As in the Immunochip analysis, in
Table 2 Association finding for previously reported loci achie
and overall datasets

SNP Chr Location
(hg18; bp)

Locus MAF cases MAF
controls

OR

rs2056626 1 165,687,049 CD247 0.359 0.428 0.76

rs3821236 2 191,611,003 STAT4 0.255 0.194 1.41

rs10168266 2 191,644,049 STAT4 0.249 0.190 1.40

rs7574865 2 191,672,878 STAT4 0.286 0.225 1.35

rs2176082 3 58,306,226 PXK 0.343 0.296 1.31

rs4728142 7 128,361,203 TNP03-IRF5 0.497 0.449 1.23

rs10488631 7 128,381,419 TNP03-IRF5 0.156 0.114 1.50

rs12531711 7 128,404,702 TNP03-IRF5 0.156 0.113 1.51

rs1378942 15 72,864,420 CSK 0.379 0.319 1.27

Chr chromosome; bp, base pairs; MAF, minor allele frequency; OR, odds ratio.
the replication set association was much stronger in the
ACA-positive group (P = 3.0 × 10−4), and overall (P =
8.71 × 10−13). Association was particularly significant in
limited scleroderma (P = 3.36 × 10−9 in overall dataset)
compared with diffuse scleroderma (P = 0.57), consistent
with the association of ACA antibody status with limited
disease. The non-synonymous DNASE1L3 variant is
predicted to be deleterious to the protein product using in
silico functional prediction tools including both SIFT [30]
and PolyPhen [31]. Apart from the DNASE1L3 locus, no
other associations showed evidence of heterogeneity by
antibody status, or between limited and diffuse SSc.
A novel intergenic SNP in VCAM1 achieved suggestive

association with SSc overall in Immunochip cases (OR =
3.31, P = 1.8 × 10−6). Association was seen with both
limited (P = 1.8 × 10−4), and diffuse disease (8.9 × 10−5).
The findings for overall and limited disease were supported
in the replication dataset (P = 0.031 and 3.1 × 10−3 respect-
ively) but not with diffuse disease (P = 0.7). A combined
meta-analysis gave P values of 1.9 × 10−7 for all cases, 1.9 ×
10−6 for limited and 4.3 × 10−4 for diffuse disease.

Discussion
The major novel finding of this study is the significant as-
sociation of a functional SNP (rs35677470) in DNASE1L3
ving P <0.01 in Immunochip, with findings in replication

Unadjusted
P value

Replication OR Replication
P value

Combined
analysis

References

1.1 × 10−4 0.84 0.007 3.9 × 10−6 [6,7,11]

2.6 × 10−5 1.24 0.008 1.2 × 10−6 [6,7]

4.1 × 10−5 1.30 0.001 1.9 × 10−7 [11]

1.2 × 10−4 1.15 0.066 5.7 × 10−5 [7]

2.6 × 10−4 1.15 0.046 7.2 × 10−5 [16]

3.2 × 10−3 1.23 0.002 2.1 × 10−5 [6,11]

2.4 × 10−5 1.36 0.001 1.6 × 10−7 [6,7,11]

2.1 × 10−5 1.38 0.001 8.6 × 10−8 [11]

8.7 × 10−4 1.17 0.023 7.8 × 10−5 [11]



Table 3 Association testing results for MHC alleles DRB1*11:04 and DRB1*07:01

Results for DRB1*11:04 Results for DRB1*07:01

Group Mean allele dosage OR (95% CI) P value Mean allele dosage OR (95% CI) P value

Controls (n =4458) 0.037 1 (ref) 0.287 1 (ref)

Cases (n =486) 0.105 3.07 (2.00 − 4.71) 2.8 × 10−7 0.167 0.58 (0.46 − 0.74) 1.4 × 10−5

ACA-positive (44% of cases) 0.080 2.46 (1.28 − 4.73) 0.105 0.34 (0.22 − 0.53)

ACA-negative (56% of cases) 0.118 3.62 (2.13 − 6.16) 0.19* 0.213 0.79 (0.59 − 1.07) 0.002*

Scl70-positive (16% of cases) 0.174 8.22 (3.74 − 18.1) 0.294 1.28 (0.79 − 2.06)

Scl70-negative (84% of cases) 0.088 2.47 (1.52 − 4.02) 0.021* 0.145 0.49 (0.37 − 0.65) 0.0012*

ACA & Scl70-negative (40% of cases) 0.095 2.61 (1.36 − 5.00) 0.144 0.66 (0.46 − 0.96)
*These P values are tests of heterogeneity, comparing allele dosages in cases positive and negative for the two antibodies. Mean dosage =mean expected
number of copies of alleles carried by individuals in group. OR (odds ratio) = increase in odds of being a case for each 1-unit increase in allele dosage. MHC, major
histocompatibility complex; CI, confidence interval; ACA, anti-centromere antibody.
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with ACA-positive SSc (P = 2.3 × 10−10). This locus has
been previously reported in a SLE GWAS [29] and meta-
analysis [32], however the peak associations were reported
for SNPs in the nearby gene PXK. While the PXK and
DNASE1L3 associations may be independent, no SNPs on
the Illumina HumanHap300 chip used in the SLE GWAS
are good tags for the missense SNP in DNASE1L3 (max-
imum r2 of 0.21). More recently, a functional variant in
DNASE1L3 was implicated in a familial form of SLE [33],
and a pan-meta-analysis of SLE and SSc also confirmed
the locus near PXK, but in particular for ACA-positive
SSc (rs2176082 [7]; P = 1.4 × 10−4 in our data) strengthen-
ing the evidence that this locus plays a role in both
diseases. These findings were independently identified in a
study published whilst the current manuscript was in
review [34].
The associated missense DNASE1L3 variant in our

data, (rs35677470 encoding R206C) affects a highly con-
served residue and there is very strong evidence that this
Figure 2 Locus zoom plot of chromosome 3p14 region associated wi
results in loss of function of the protein [35]. DNASE1L3
encodes a member of the DNase family and functions as
an endonuclease capable of cleaving DNA, mediating the
breakdown of DNA during apoptosis. Al-Mayouf et al.
[33] hypothesised that, in the context of SLE, dysfunction
of this gene may lead to impaired DNA breakdown and
clearance from apoptotic cells, resulting in the formation
of self-directed DNA-specific antibodies and immune com-
plexes. Since the same kinds of DNA-driven immune com-
plexes (such as anti-nuclear and ACA antibodies) are also
characteristic of SSc, this hypothesis is also applicable.
Suggestive association was also observed between a novel

SNP in VCAM1 and overall scleroderma and in limited
disease cases, both of which were also associated in the rep-
lication dataset. VCAM1 has not previously been reported
to be associated with scleroderma or SLE. VCAM-1 is a
member of the Ig superfamily and encodes a cell surface
sialoglycoprotein expressed by cytokine-activated endothe-
lium. It mediates leukocyte-endothelial cell adhesion and
th scleroderma.
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signal transduction. VCAM-1 levels have previously been
shown to be elevated in early, inflammatory-phase sclero-
derma [36] and in limited scleroderma [37].
There were no stand-out functional variants at the

STAT4 and IRF5/TNPO3 loci. These associations included
many highly correlated SNPs, indicating that larger
sample sizes and/or functional studies will be needed to
understand and dissect these associations. It would, how-
ever, be prudent to investigate any functional variation at
these loci identified in related autoimmune diseases,
particularly SLE. The other novel associations are merely
suggestive and require confirmation in additional datasets.

Conclusions
There is a significant association of a functional SNP in
DNASE1L3 with anti-centromere antibody-positive SSc,
previously reported in SLE. There is strong evidence for
a loss of function of the protein. A novel association was
also observed and replicated with an intergenic SNP in
VCAM1.
This study serves to highlight that, even with a small

but well-characterised disease cohort, significant associa-
tions can be obtained by tools such as the Immunochip,
which are targeted towards analysis of disease-relevant
and occasionally functional variation.

Additional file

Additional file 1: Figure S1. Q-Q plot considering reading and learning
disability, psychosis and schizophrenia SNPs, excluding the MHC.
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