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Abstract

Berries of the cultivated grapevine Vitis vinifera are notably responsive to temperature, which can influence fruit qual-
ity and hence the future compatibility of varieties with their current growing regions. Organic acids represent a key 
component of fruit organoleptic quality and their content is significantly influenced by temperature. The objectives 
of this study were to (i) manipulate thermal regimes to realistically capture warming-driven reduction of malate con-
tent in Shiraz berries, and (ii) investigate the mechanisms behind temperature-sensitive malate loss and the potential 
downstream effects on berry metabolism. In the field we compared untreated controls at ambient temperature with 
longer and milder warming (2–4 °C differential for three weeks; Experiment 1) or shorter and more severe warming 
(4–6  °C differential for 11  days; Experiment 2). We complemented field trials with control (25/15  °C) and elevated 
(35/20  °C) day/night temperature controlled-environment trials using potted vines (Experiment 3). Elevating maxi-
mum temperatures (4–10  °C above controls) during pre-véraison stages led to higher malate content, particularly 
with warmer nights. Heating at véraison and ripening stages reduced malate content, consistent with effects typi-
cally seen in warm vintages. However, when minimum temperatures were also raised by 4–6 °C, malate content was 
not reduced, suggesting that the regulation of malate metabolism differs during the day and night. Increased NAD-
dependent malic enzyme activity and decreased phosphoenolpyruvate carboxylase and pyruvate kinase activities, as 
well as the accumulation of various amino acids and γ-aminobutyric acid, suggest enhanced anaplerotic capacity of 
the TCA cycle and a need for coping with decreased cytosolic pH in heated fruit.
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Introduction

Fruits are specialized sinks that accumulate numerous com-
pounds significant for organoleptic quality such as sug-
ars, organic acids (Kliewer, 1965), pigments (Takos et  al., 
2006), volatile aromas (Song and Bangerth, 1996; Dunlevy 
et  al., 2010), and flavonoids (Hanlin and Downey, 2009). 
The occurrence and proportion of such compounds within 
fruit tissues in the cultivated grapevine Vitis vinifera depend 

on genotype and environment (including management prac-
tices), and the interaction between genotype and environment 
(Kliewer, 1967; Jackson and Lombard, 1993; Downey et al., 
2006; Deluc et al., 2007). Although vine and fruit growth and 
development can be partially controlled through horticul-
tural practices, environmental conditions represent an uncon-
trollable source of variation in quality that can exhibit effects 
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over subsequent seasons (Sadras and Moran, 2013). Many 
studies have linked increases in temperature to earlier pheno-
logical events in grape berry development, with the potential 
to greatly affect fruit and wine characteristics (Duchene and 
Schneider, 2005; Petrie and Sadras, 2008; Ramos et al., 2008; 
Webb et al., 2011). One of the clearest relationships between 
temperature and fruit quality occurs with grape berry acid-
ity, whereby high temperatures reduce the concentration of 
organic acids (Kliewer, 1973).

Developing grapes display distinct patterns of organic 
acid accumulation and degradation, as reviewed by Ford 
(2012). Tartrate and malate are predominant at all stages 
of development and represent the most significant influ-
ences on the acidity and pH of the juice (Morris et al., 1983). 
Grapes accumulate malate until berries undergo a metabolic 
shift at véraison, making it available as a potential source 
of carbon for respiration, gluconeogenesis, and other path-
ways during ripening (Ruffner, 1982). The net loss of malate 
reduces fruit titratable acidity (Kliewer, 1965) and influences 
the sugar-acid balance. The loss of malate from grape ber-
ries in response to heating has been attributed to increased 
degradation during ripening rather than decreased synthesis 
pre-véraison (Ruffner et  al., 1976), influencing winemaking 
processes annually across the globe. However studies are yet 
to unequivocally determine the biochemical and molecular 
mechanisms by which increased malate degradation occurs 
in response to elevated vineyard temperature, and how down-
stream metabolic pathways are affected. The aims of the pre-
sent work were therefore to (i) identify temperature elevation 
strategies that influence fruit organic acid content, and (ii) 
examine the effects on gene transcripts and activities of key 
enzymes involved in organic acid metabolism, and to use a 
metabolomic approach to examine the broader impacts of 
altered berry malate metabolism.

Materials and methods

Experimental design and sample collection
Experiments were conducted with field-grown and potted vines 
of V. vinifera (cv. Shiraz). In the field, untreated controls at ambi-
ent temperature were compared with longer and milder warming 
(2–3 °C differential for three weeks; Experiment 1) or shorter and 
more severe warming (4–6 °C differential for 11 d; Experiment 2), 
and in controlled environments potted vines were exposed to control 
(25/15 °C) and elevated (35/20 °C) temperature conditions for 11 d 
(Experiment 3).

Field experiments
Two field trials (Experiments 1 and 2) were conducted during the 
2008/09 season using North–South facing, own-rooted vines (Shiraz, 
clone NSW15) established in 1997 at SARDI’s Nuriootpa Research 
Station in the Barossa Valley, South Australia (34°S, 134°E, 274m 
AMSL). Vines were spur-pruned to 40–50 nodes per vine and 
drip irrigated weekly from mid-December. Phenological develop-
ment was assessed weekly using the E-L scale of Coombe (1995). 
Differential temperature regimes were applied at three developmen-
tal stages nominally defined as “pre-véraison”, targeting young fruit 
that were rapidly accumulating malate (E-L 31); “véraison”, initi-
ated just before fruit softening when berries contained peak quanti-
ties of malate (E-L 34); and “ripening”, initiated approximately 1–2 

weeks after the véraison treatments had ended, at an intermediary 
level of total soluble solids (TSS) and once a significant portion of 
malate had been lost from the fruit (E-L 36).

Experiment 1. The longer and milder temperature elevation treat-
ment utilized open-top chambers: polycarbonate panels arranged in 
a tent-like structure below canopy level across nine vines (Sadras 
and Soar, 2009). Open-top chambers were used to passively elevate 
daytime temperature by 2.3–3.8 °C for three weeks; further details of 
thermal regimes are described by Sadras and Soar (2009). Three rep-
licate treatments were laid out in a randomized block design. Weekly 
fruit samples (80–90 berries per replicate) were collected across seven 
vines, from at least five randomly selected bunches per vine.

Experiment 2. The shorter and more severe temperature elevation 
treatments utilized (i) closed chambers comprising polycarbonate 
panels that encased three entire vines (Soar et al., 2009), and (ii) fan-
forced heaters aimed at individual bunches (an adaptation of Tarara 
et al., 2000). Combinations of closed chambers and bunch heaters 
(Supplementary Fig. S1 at JXB online) were used to emulate an 11-d 
heat event by increasing temperatures 4–6 °C in relation to controls 
during the day, the night, or both day and night. At each treatment 
period two closed chambers were assembled: one to simulate control 
daytime temperature, similar to ambient, and the other to elevate 
daytime temperature. Within each of the two chambers, four rep-
licates each of control-temperature and elevated-temperature fan 
heaters were aimed at bunches that had been tagged at 50% cap-
fall (E-L 23) for developmental synchronicity (owing to the smaller 
sample size). This set-up enabled a two-by-two factorial design, with 
day temperature regulated at the whole-vine level and night temper-
ature regulated at the individual bunch level. The four temperature 
conditions each contained four individual bunch replicates, labelled 
“control”, “heated days”, “heated nights” and “heated days and 
nights”. “External control” samples were also collected from nearby, 
untreated vines to measure effects of the experimental apparatus; 
however, “control” samples were used for statistical analyses of heat 
effects. Samples of 10 berries were collected from each replicate at 
the end of each treatment, two weeks after each treatment, at vérai-
son (E-L 35) and at harvest ripeness (E-L 38).

Controlled environment experiment
Experiment 3. Trials were carried out at The Plant Accelerator, The 
University of Adelaide Waite Campus, South Australia, using four- 
and five-year-old potted Shiraz (BVRC12) during the 2011/12 and 
2012/13 seasons (different vines for each season). Vines were main-
tained in a shade-house and transferred to two “Conviron” growth 
chambers after fruitset (E-L 29). Plants were watered daily (800 ml) 
and a slow-release fertiliser was applied before fruit set. Four con-
trol plants and four heated plants were selected based on the pres-
ence of at least two bunches of similar size and development. Vines 
were subjected to an acclimation stage for one week under control 
conditions (16.5 h day length, PAR 1100 µmol m–2 s–1, 25 °C/15 °C 
day/night temperature and 40%/80% day/night humidity, with each 
parameter altered gradually to simulate realistic changes during the 
day and night in the field). After the acclimation period, heated vines 
were exposed to 11 d of 35 °C/20 °C day/night temperature whilst 
other conditions remained unchanged. Treatments were applied at 
two stages, “pre-véraison” (E-L 31) and “véraison” (E-L 34, once 
berries began to soften). Samples (8 berries) from each vine were col-
lected at the hottest part of the day, on the first, third, and final days 
of the elevated temperature treatment, the third day of recovery, and 
at ripeness when berries began to shrivel.

Sample collection
Berries were selected based on distribution within each 
bunch (1:2:1 from apical:median:basal and 1:1:1:1 from 
anterior:posterior:left:right positions) and removed by cutting 
through the petiole at the junction between stem and berry. Samples 
for RNA and enzyme extractions were immediately snap-frozen 
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in liquid nitrogen. Samples for organic acid measurements were 
taken back to the laboratory before freezing. All frozen berries were 
ground to a fine powder in a liquid nitrogen-cooled A11 basic mill 
(IKA, Germany) and stored at –80 °C. Additional berries were col-
lected for determination of TSS using a digital pocket refractometer 
(Atago, Tokyo).

Malate quantification
For samples collected in 2008/09, organic acids were extracted from 
500 mg frozen berry powder according to the method of Melino 
et al. (2009b), diluted (1/10) in 0.1 M MOPS (pH 8.0) and used for 
malate quantification according to Möllering (1974). NADH for-
mation was measured at 340 nm in 200 µl assays containing 0.1 M 
MOPS (pH 8.0), 10 mM NAD+, 50 mM glutamate, 3 units of ala-
nine aminotransferase, 2 units of malate dehydrogenase, and 20 µl 
extract. For samples collected from 2011 onwards, organic acids 
were extracted and analysed using the method of Sweetman et al. 
(2012).

Enzyme assays
Active grape berry enzymes were extracted using methods adapted 
from previous studies (Ruffner and Kliewer, 1975; Walker et al., 
1999). Twelve volumes of  extraction buffer (0.5 M Tris-Cl, pH 
8.5 with 200 M KCl, 20 mM MgCl2, 10 mM EDTA, 8% (w/v) 
PEG-4000, 8 mM cysteine-HCl, 7 mM diethyldithiocarbamate, 
5 mM DTT, 2% (w/v) PVPP, 0.25% (w/v) BSA, 0.5 mM PMSF, 
and 0.5 mM p-aminobenzamidine) were added to 1 g of  frozen 
grape berry powder and mixed gently at 4  °C for 15 min. After 
centrifugation (2750 g, 5 min) to remove cell debris, PEG-4000 
was added to a final concentration of  65% (w/v), mixed gently 
at room temperature until dissolved and centrifuged (30 000 g, 
15 min). Precipitated protein was resuspended to 2 ml final vol-
ume (5 mM Tris-Cl, pH 7.0, with 20 mM MgCl2, 10 mM EDTA, 
5 mM DTT, 3% (v/v) Triton X-100, 0.5 mM PMSF, and 0.5 mM 
ρ-aminobenzamidine), re-centrifuged (3000 g, 1 min) and the 
supernatant used in enzyme activity assays. All assays were car-
ried out at 25  °C using a FLUOstar UV/vis plate reader (BMG 
Labtech, Victoria, Australia), in a final volume of  200 µl and initi-
ated by the addition of  the reagent listed last.

NAD-dependent MDH activity was quantified as the rate of 
NADH oxidation at pH 6.0 (50 mM MES), in the presence of 5 mM 
oxaloacetate, as described previously (Ruffner et al., 1976). NADP-
dependent MDH activity was quantified as the rate of NADPH 
oxidation at pH 8.0 (50 mM TES), in the presence of 5 mM DTT 
and 5mM oxaloacetate, modified from a previous method (Jacquot 
et al., 1981). NAD-dependent ME activity was quantified as the rate 
of NAD reduction at pH 7.4 (50 mM TES) in the presence of 5 mM 
MnCl2, 5 mM DTT, 2.5 mM potassium cyanide, 0.3 µM octyl gal-
late (OG), 5 mM malate, and 75 µM coenzyme A (CoA), modified 
from a previous method (Hatch et al., 1982). CoA is required for 
activation of mitochondrial NAD-ME activity and a temporary 
rate in the absence of CoA was ascribed to NAD-MDH activity. 
NADP-dependent ME activity was quantified as the rate of NADP 
reduction at pH 6.0 (50 mM MES) in the presence of 8 mM MnCl2, 
2.5 mM potassium cyanide, 0.3 µM octyl gallate, and 5 mM malate, 
a modification from Ruffner et al. (1976). PEPC activity was quanti-
fied as the rate of NADH oxidation at pH 8.0 (50 mM TES), in the 
presence of 10 mM MgCl2, 5 mM DTT, 5 mM KHCO3, 6 U MDH 
(Sigma), and 2.5 mM PEP, a modification from Ruffner et al. (1976). 
PEPCK activity was quantified as the rate of NADH oxidation at 
pH 6.7 (50 mM MES), in the presence of 0.1 M KCl, 6 mM MnCl2, 
25 mM DTT, 90 mM KHCO3, 6 U MDH (Sigma), 6 mM PEP, and 
1 mM ADP, as described previously (Walker et al., 1999). PK activ-
ity was quantified as the rate of NADH oxidation at pH 7.2 (50 mM 
TES) in the presence of 70 mM KCl, 30 mM MgCl2, 6 U lactate 
dehydrogenase, 5 mM PEP, and 8 mM ADP, as described previously 
(Turner and Plaxton, 2000).

Quantitative real-time PCR
Grape berry RNA was extracted from 1 g frozen berry powder 
according to Davies and Robinson (1996) and purified according to 
Melino et al. (2009a). Genomic DNA contamination was removed 
using an on-column DNase digestion with RNase-free DNase 
I (Qiagen, Australia). RNA quality was assessed by agarose gel elec-
trophoresis and quantified with a Nanodrop spectrometer (Thermo 
Scientific, Biolab, Australia). First-strand cDNA synthesis was 
achieved with Superscript III reverse transcriptase (Invitrogen) and 
oligo(dT)20. The resultant cDNA was diluted in DNase-free water 
and 50 ng used for each qRT-PCR assay.

Reactions were prepared in Faststart Universal Probe Master 
(Rox) master mix (Roche, Australia) with gene-specific primers and 
Universal ProbeLibrary probes (Roche, Australia) in a final volume 
of 16 µl (Supplementary Table S1 at JXB online). Thermal cycling 
conditions for all qRT-PCR involved an initial 95  °C melt step 
(10 min), followed by 45 cycles of: 95 °C (15 s) and 57 °C (1 min). 
Assays were conducted with a C1000 Thermal Cycler fitted with a 
CFX96 Real-time PCR detection system (BioRad), and analysed 
using the CFX Manager software (BioRad). Data were normalized 
to a reference number derived from ubiquitin and ankyrin transcript 
levels in each cDNA sample.

Metabolite profiling
Samples (25 mg of freeze-dried berry powder) were extracted, deri-
vatized, and quantified by GC/MS as previously described (Foito 
et al., 2009).

Statistical analyses
Data were analysed using GraphPad Prism v6.04 (California, USA). 
For Experiment 1, independent two-tailed t-tests were used. For 
Experiment 2, two-way ANOVAs with Tukey tests for multiple com-
parisons and two-tailed t-tests were used for comparisons between 
treatments and controls, and statistical significance of heat treat-
ments was based on comparisons with the control treatments (not 
external controls). For Experiment 3, samples from two seasons 
were analysed for interaction between treatment and season using 
two-way ANOVAs, then pooled and subjected to t-tests. Non-linear 
regression was used to compare malate content curves for control 
and treated berries against TSS. Findings were considered signifi-
cant when P≤0.05.

Results

Heating methods

Multiple, complementary strategies were applied both in the 
field and in controlled environments to manipulate thermal 
regimes and capture realistic warming-driven reduction of 
malate content in berries. Passive open-top systems used in 
this study (Experiment 1) were designed to minimize second-
ary effects typical of enclosures, allowing for a moderate 
increase in day temperature that can be applied for extended 
periods (Sadras and Soar, 2009). Closed chambers were used 
to attain more severe and better controlled day-time warm-
ing, but the artefacts of the enclosure constrained its applica-
tion to shorter periods (Soar et al., 2009). Closed chambers 
were used in conjunction with fan heaters (Tarara et al., 2000) 
that regulated bunch temperature at night (Experiment 2). 
In addition, growth chambers were used with potted vines 
(Experiment 3)  to complement the warming studies in the 
field. Table  1 summarizes thermal regimes of Experiment 
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2 and 3; details for Experiment 1 are given by Sadras and 
Soar (2009). Temperatures measured during natural heatwave 
events in Nuriootpa can be seen in Supplementary Fig. S2 at 
JXB online.

As a check for the realism of the experimental set ups, 
berries were assessed for patterns of fresh weight and sugar 
accumulation during development and were typical of viti-
culturally relevant conditions (Supplementary Fig. S3 at 
JXB online). Heated chambers of Experiment 3 generally 
exhibited lower humidity and CO2 concentration than con-
trol chambers during the daylight hours (Supplementary 
Fig. S4 at JXB online) and the fresh weights of the heated 
fruit were slightly smaller than those in the control chambers 
(Supplementary Fig. S3F), suggesting water-deficit as a sec-
ondary effect of heating, although plant water status was not 
measured.

Malate content

Malate was quantified in berry samples from all three experi-
ments to fulfil the first aim: identifying heating strategies 
that reduced berry malate content. Malate concentration 
was determined in whole berries using HPLC or enzyme-
linked spectrophotometry and data are presented as the total 
amount of malate per berry, or malate “content”.

Field experiments

In Experiment 1, neither fresh weight (Fig.  1A) nor TSS 
(Fig. 1B) was affected by heating. The mean malate content 
of berries from the pre-véraison treatment was similar to the 
control, whereas véraison and ripening treatments had lower 
malate content (Fig.  1C). In Experiment 2, pre-véraison 

malate content was significantly higher with night heat-
ing but unaffected by day heating (Fig. 2A). This effect was 
removed by the time the fruit reached véraison, probably 
owing to the marked metabolic changes, including the switch 
from net malate accumulation to degradation, the accumu-
lation of sugars, and the loss of fruit photosynthetic capac-
ity (Ollat and Gaudillere, 2000). Day heating at véraison 
decreased berry malate content, with a 21.5 µmol difference 
between control (85.8 µmol berry–1 or 11.4 mg berry–1) and 
heated (63.3  µmol berry–1 or 8.5 mg berry–1) fruit, equating 
to a 1.4 nmol min–1 berry–1 greater rate of malate loss over 
the 11-d treatment period, and remained significantly lower 
at ripeness (Fig.  2A). Combined day and night heating at 
véraison did not reduce malate content relative to the control 
treatment, suggesting that malate loss with warmer days was 
reduced when berries were also exposed to warmer nights.

Controlled environment experiment

Experiment 3 was conducted over two seasons (2011–2012 
and 2012–2013). As both seasons gave similar results and 
there was no interaction between treatment and season at 
any time point (P>0.142), these data were pooled. Similar to 
Experiment 2, heating temporarily increased malate accumu-
lation in pre-véraison fruit and accelerated the loss of malate 
in ripening fruit (Fig. 2B). The accelerated loss of malate dur-
ing ripening was uncoupled from TSS (Fig. 2C), and therefore 
not a result of general advancement in fruit development.

Table 1.  Temperature conditions in field (Experiment 2) and 
growth chamber (Experiment 3) treatments

Recorded at canopy level for Experiment 2, and measured as ambient 
temperature within chambers for Experiment 3. Diurnal ranges were 
calculated as the difference between mean maximum and mean 
minimum temperatures for each experiment.

Treatment Mean max.  
(°C)

Mean min.  
(°C)

Diurnal range 
(°C)

Experiment 2, pre-véraison Stage
External control 19.1 9.1 10.0
Chamber control 26.8 10.1 16.7
Heated day 31.6 9.9 21.7
Heated night 27.6 16.5 11.1
Heated day and night 33.0 16.2 16.8
Experiment 2, véraison Stage
External control 35.2 12.1 23.1
Chamber control 33.6 12.9 20.7
Heated day 37.0 13.1 23.9
Heated night 34.6 19.6 15.0
Heated day and night 38.1 19.5 18.6
Experiment 3, all Stages
Control 25.0 15.0 10.0
Heated day and night 35.0 20.0 15.0

Fig. 1.  Berry malate content following three-week elevated temperature 
treatments applied at pre-véraison, véraison, and ripening stages 
(Experiment 1). Effect on (A) fresh weight, (B) TSS, and (C) malate content 
of berries collected at harvest (n=3±SD). *Significantly different from control 
(independent t-test, P<0.05).
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Overall, the loss of malate caused by heating at véraison 
in Experiment 3 was consistent with losses of malate in field 
Experiment 1 with heating during véraison and ripening 
(Fig. 1C) and Experiment 2 with day-only heating at véraison 
(Fig. 2A). Differences between malate content in heated and 
control treatments for each experiment were plotted against 
differences in the diurnal temperature ranges (Fig. 3). Trends 
suggested that the warming effect on berry malate content may 
be more significant with increased diurnal temperature range.

As warming in the field and chamber resulted in malate 
losses that may be typical of hot grape-growing seasons, sam-
ples from these experiments were used to explore the second 
aim: determining the molecular mechanism for accelerated 
malate loss during ripening and the potential downstream 
effects on berry metabolism.

Enzymes of organic acid metabolism

Berries exposed to three-week warming at véraison and rip-
ening in the field (Experiment 1) had lower malate content 
(Fig.  4A), PEPC activity (Fig.  4B), increased NAD-ME 
activity (Fig.  4C), and decreased PK activity (Fig.  4D) 

compared with untreated controls. Furthermore, a posi-
tive linear correlation was observed between malate con-
tent and PEPC activity (Fig. 4E). Berries exposed to 11-d 
heating at véraison in the field (Experiment 2) had lower 
PEPC activity with warmer days, unless nights were also 
warmer, again correlating with malate content (Fig. 5A–
C). Slight changes in transcript levels of  three PEPC 
transcripts were not significant (Fig.5D–F). PEPCK tran-
script (VvPepck) and activity decreased in response to 
day heating (Fig.  6A, B) and although transcript levels 
of  VvPepck and a putative pyruvate, orthophosphate diki-
nase (PPDK) gene (VvPpdk) increased with night heating 
(Fig. 6A, C), this was not reflected in the activity of  the 
PEPCK enzyme (Fig. 6B), whereas PPDK activity could 
not be detected. PK activity also decreased in response 
to elevated day temperature (Fig.  6D). Combined day 
and night heating in Experiment 2 led to increased 
NAD-ME transcript level and enzyme activity (Fig.  6E, 
F). NADP-ME, NADP-MDH, and NAD-MDH activities 
were approximately 60, 70, and 2500 nmol min–1 berry–1, 
respectively and unaffected by warming (Supplementary 
Fig. S5 at JXB online).

Fig. 2.  Berry malate content following eleven-day elevated temperature treatments applied at pre-véraison and véraison stages (Experiments 2 and 3). (A) 
Malate content of berries from Experiment 2 external controls (open circles), control treatments (open squares), heated days (closed squares), heated nights 
(open triangles), and heated days and nights (closed triangles) for pre-véraison and véraison treatments. (B and C) Malate content from berries of Experiment 
3 for control (open squares) and heated (closed squares) vines, plotted against (B) chronological time (days after the initiation of pre-véraison [P] and véraison 
[V] treatments) and (C) TSS (°Brix) for the véraison treatment. Treatment periods are highlighted in grey. [Samples taken from the final four time-points of (B) 
and (C) were used for the metabolite analysis shown in Fig. 7]. n=8±SD. *Significantly different from samples subjected to the control treatment (independent 
t-test, P<0.05). For (C), the overlay of the curves for control and heated berries was determined by nonlinear regression with least squares.
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Metabolite pools

To explore potential downstream effects of malate catabolism 
in heated grapevine berries, metabolite profiling by GC/MS 
was undertaken on developing fruit (Fig. 7; Supplementary 
Table S2 at JXB online). Increases in relative concentra-
tions of sucrose and the amino acids valine, leucine, serine, 
glycine, aspartate, threonine, isoleucine, glutamate, proline, 
and γ-aminobutyric acid (GABA) were observed. Protein 
degradation was unlikely to drive the changes in amino acid 
pools as there was either no difference, or slightly increased 
protein yield from enzyme extracts of fruit exposed to warm-
ing in the field (data not shown), and there were unequal 
changes between individual amino acids. The non-polar, 
neutral amino acids proline, valine, leucine, and isoleucine 
were strongly up-regulated in heated fruit, whereas increases 
in glutamate, aspartate, serine, and glycine, although signifi-
cant, were more modest (Fig. 7). Increases in pipecolic acid, 
putrescine, and inositol, and a small decrease in caffeic acid 
were also observed.

Discussion

Day and night heating, and heating at different 
developmental stages elicit different responses in 
malate metabolism

Although season-long warming by approximately 1–2 °C with 
open-top chambers did not affect Shiraz juice titratable acidity, 
pH (Sadras et al., 2013), or berry malate content (unpublished 
data), shorter heat treatments in the current study led to sig-
nificant changes in malate content, which generally increased 

with heating during early berry development, and decreased 
with heating at véraison and ripening stages. Specifically, 
malate losses were observed with heating at véraison and rip-
ening stages of field Experiment 1 (Fig. 1C), véraison day-only 
heating in field Experiment 2 (Fig. 2A), and véraison heating in 
controlled-environment Experiment 3 (Fig. 2B, C). Common 
to all of these treatments, in addition to the increase in maxi-
mum day temperature, was an increase in diurnal temperature 
range that was comparable to the 3.4 °C increase in average 
diurnal temperature ranges observed during natural heatwave 
events in Nuriootpa (Supplementary Fig. S2 at JXB online). 
In Experiment 2, heating during the night or during both day 
and night resulted in decreased diurnal temperature ranges and 
no significant decrease in malate content relative to control 

Fig. 3.  Berry malate content and diurnal temperature range differentials. 
Differences in diurnal temperature range and malate content between 
heated and control treatment means for Experiment 1 véraison and 
ripening treatments (white), Experiment 2 véraison treatment (grey), 
and Experiment 3 véraison treatment (black). Error bars represent the 
standard deviation for absolute malate content in the heated samples 
(or control samples, plotted at 0). Average diurnal temperature range 
differences for Experiment 1, véraison, and ripening treatments, were 
estimated from average maximum temperature differentials reported for 
2008/09 “véraison” and “pre-harvest” treatments by Sadras and Soar 
(2009). n=3 (Experiment 1), n=4 (Experiments 2 and 3). *Significantly 
different from control (independent t-test, P<0.05).

Fig. 4.  Berry malate content and activities of PEPC, NAD-ME, and PK 
following three-week elevated temperature treatments applied at véraison 
and ripening (Experiment 1). (A) Malate content, (B) PEPC activity, (C) 
NAD-ME activity, and (D) PK activity of berries collected on the final day 
of the véraison and ripening treatments from control (white) and heated 
(black) vines. (E) Correlation between malate content and PEPC activity 
of the véraison treatment. n=3±SD. *Significantly different from control 
(independent t-test, P<0.05).
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berries (Fig. 3). Therefore, malate regulatory mechanisms dif-
fer not only with developmental stage, but also between day 
and night cycles, with increased sensitivity to heating when day 
temperature is increased to a higher degree than night tem-
perature during ripening. This finding contradicted previous 
studies where malate losses were observed with heated days 
regardless of night temperature (Kliewer, 1968, 1971, 1973); 
however, three major differences separate the previous studies 
from the present one. Firstly, the present study matched the 
continuous change between maximum and minimum temper-
atures in the vineyard (Supplementary Fig. S4 at JXB online), 
and mimicked heating events that may occur during a typical 
grape-growing season (Supplementary Fig. S2 at JXB online), 
whereas previous studies applied alternating eight- to sixteen- 
hour blocks of day and night temperature, often with diurnal 
ranges of only 5 °C. Secondly, the present study targeted heat-
ing events to specific stages of berry development and ripen-
ing as opposed to the entire fruit ripening stage. Thirdly, the 

bunch-specific night heating strategy used in Experiment 2 dif-
fers from the whole-vine heating strategies of previous studies. 
Varying CO2, humidity, and light levels owing to differences 
in the design of Experiment 1 (Soar et al., 2009), Experiment 
2 (Sadras and Soar, 2009), Experiment 3 (Supplementary Fig. 
S4), and previous experiments (Kliewer, 1968) may account 
for some variation in malate content between these treatments. 
The heated growth chambers used in Experiment 3 demon-
strated decreased humidity and CO2 levels relative to control 
growth chambers during the day. Increased levels of berry ino-
sitol and pipecolic acid, which are involved in plant defence 
and stress responses (Loewus and Loewus, 1983; Zeier, 2013), 
may be due to high temperature or to potential water deficit 
conditions in the heated growth chamber; therefore, some cau-
tion is required when interpreting these results. Nevertheless, 
water loss is a direct effect of heating in the vineyard, and the 
effects on malate content in berries of potted vines were con-
sistent with those seen in field experiments.

Fig. 5.  Berry malate content, PEPC activity, and PEPC transcript levels following an eleven-day elevated temperature treatment applied at véraison 
(Experiment 2). (A) Malate content, (B) PEPC activity, and (C) linear regression between malate content and PEPC activity (left panel) are shown. 
Transcript levels for (D) VvPepc1, (E) VvPepc2, and (F) VvPepc3 are also given (right panel). In column graphs, control and heated day treatments are 
indicated on the x-axes, with external controls (white), control nights (grey), and heated nights (black) (n=4±SD). Columns sharing a lower-case letter are 
not significantly different (two-way ANOVA with Tukey’s multiple comparisons test; independent t-tests for comparison with external control, P<0.05).
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Inherent differences in activities and gene expression pro-
files of malate-metabolizing enzymes in grapes (Hawker, 
1969; Terrier et al., 2005; Deluc et al., 2007; Pilati et al., 2007; 
Sweetman et al., 2009) and their differing temperature optima 
(Lakso and Kliewer, 1975b), are likely to cause differences in 
the response of malate to heating at different developmental 
stages and during the day compared with night. Although a 
previous study with potted Cabernet Sauvignon vines could 
not attribute decreased titratable acidity in heated fruit to 
altered activities of malate-metabolizing enzymes (Ruffner 
et al., 1976), some activities were altered in response to warm-
ing of potted and field-grown Shiraz vines in the present study, 
and observed changes in metabolite pools were also used to 
explore endpoints of metabolic pathways altered by heating.

Regulation of malate synthesis with warming

Malate in the berry is synthesised from phosphoenolpyruvate 
(PEP) via PEPC and MDH, competing with PK and the ulti-
mate step of glycolysis (Sweetman et al., 2009). Both MDH 
and PEPC activities are present throughout berry development 
(Hawker, 1969; Diakou et  al., 2000), although PEPC tran-
script levels are generally favoured during early development 
(Sweetman et al., 2009). High rates and negligible changes in 
the activities of NADP-MDH and NAD-MDH with elevated 
temperature suggested that neither of these enzymes regulate 
malate content in response to warming. However, the activ-
ity of PEPC in fruit of vines exposed to day heating during 
véraison and ripening correlated positively with malate con-
tent (Figs 4E and 5E) and the 50 nmol min–1 berry–1 decrease 

Fig. 6.  Gene transcript levels and activities of enzymes involved in grape berry malate metabolism following an eleven-day elevated temperature 
treatment applied at véraison (Experiment 2). (A) PEPCK transcript level and (B) PEPCK activity (top panel), (C) PPDK transcript level and (D) PK activity 
(middle panel), and (E) NAD-ME transcript level and (F) NAD-ME activity (lower panel) (n=4±SD). Control and heated day treatments are indicated on the 
x-axis, with external controls (white), control nights (grey), and heated nights (black). (n=4±SD). Columns sharing a lower-case letter are not significantly 
different (two-way ANOVA with Tukey’s multiple comparisons test; independent t-tests for comparison with external control, P<0.05).
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in PEPC activity could account for the degree of malate loss 
observed in fruit from heat-treated vines (approximately 
1.4 nmol min–1 berry–1 based on the difference of 2.9 mg berry–

1 between control and heated fruit over 11 d). In pre-véraison 
berries, PEPC activity decreased with day heating regardless 
of night temperature (data not shown), but malate content did 
not correlate with changes in PEPC activity, confirming that 
PEPC is not rate-limiting for pre-véraison malate accumula-
tion (Ruffner, 1982). Activity of purified PEPC from imma-
ture Carignane grape berries increased with temperatures up 
to a maximum of 38–40 °C (Lakso and Kliewer, 1975a, 1978). 
Therefore, night heating in Experiment 2, which resulted in 
mean minimum temperatures of 19  °C relative to 13  °C in 
controls, may have considerably increased PEPC activity and 
hence malate content during the night, whereas day heating, 
which resulted in mean maximum temperatures of 37 °C rela-
tive to 33.6 °C in controls may not significantly affect activity.

The three PEPC genes of  grapevine are differentially 
expressed during development (Sweetman et  al., 2009), 
and at least one of  these (VvPepc2) showed a similar 
pattern to PEPC activity and malate content, and fur-
thermore decreased in response to heating, according to 
data from a previous study (Carbonell-Bejerano et  al., 
2013). However, this transcript is not regulated diurnally 
(Carbonell-Bejerano et  al., 2014; Rienth et  al., 2014). 
According to the online grapevine co-expression data-
base VtcDB (Wong et  al., 2013), putative PEPC genes 
(VIT_19s0015g00410 and VIT_19s0014g01390) may be 
co-expressed with PK genes (VIT_13s0074g00210 and 
VIT_16s0050g02180), and in the present study PK activity 
was down-regulated with heating in a similar manner to 
PEPC activity. Co-ordinated regulation of  these activities, 
which both utilize PEP, could markedly affect glycolytic 
flux in heated berries.

Fig. 7.  Metabolite pools following an eleven-day elevated-temperature treatment of potted Shiraz vines applied at véraison (Experiment 3). Time-series 
graphs demonstrate relative concentrations (to internal standard, ribitol) of compounds within control (open squares) and heated (closed squares) berries 
from (I) the first day of treatment, (II) the third day of treatment, (III) the final day of treatment and (IV) harvest ripeness (i.e. samples taken at the final four 
timepoints of the véraison treatment as shown in Fig. 2B, C). n=4±SD.
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Regulation of malate degradation with warming

Heating increased the activity and transcript level of NAD-
dependent ME (NAD-ME) in pre-véraison (data not shown), 
véraison, and ripening treatments (Fig. 6E, F). In pre-vérai-
son fruit, up-regulation of NAD-ME activity coincided with 
increased malate content and therefore the respiration rate of 
malate may be exceeded by its synthesis and sequestration in 
the vacuole, whereas in véraison and ripening fruit, up-regu-
lation of NAD-ME coincided with decreased malate content 
and may play a role in net malate loss. NAD-ME-catalysed 
conversion of mitochondrial malate to pyruvate provides 
NADH to the mitochondrial electron transport chain and 
acetyl-CoA (from pyruvate) to the TCA cycle. Malate can 
also enter the TCA cycle directly through the activity of 
mitochondrial MDH, again supplying NADH to the mito-
chondrial electron transport chain. However, this enzyme 
cannot be measured from whole berry extracts, owing to 
the presence of additional isoforms in other compartments 
(Taureilles-Saurel et al., 1995). Although the mitochondrial 
malate concentration in grape berries is unknown, transcript 
levels of several mitochondrial dicarboxylate/tricarboxylate 
transporters increased with warming (Rienth et  al., 2014), 
suggesting increased import of malate into the mitochondria 
for respiration. A decrease in CO2 solubility at higher tem-
peratures may also promote the decarboxylation of malate by 
NAD-ME (Lakso and Kliewer, 1978), whereas the increase in 
fumarate, an NAD-ME activator (Tronconi et al., 2010), and 
decrease in citrate, an NAD-ME inhibitor (Wedding, 1989), 
observed in heated berries (Fig.  7), would further increase 
activity in vivo. Increased NAD-ME activity may therefore 
facilitate increased respiration rates observed in heated grape-
vine clusters (Palliotti et al., 2005), utilizing malate as a fuel 
source during ripening. Observed increases in numerous 
amino acids, typically those derived from pyruvate (valine, 
leucine, serine, and glycine), oxaloacetate (aspartate, threo-
nine, and isoleucine) and α-ketoglutarate (glutamate, pro-
line, and GABA) indicate a change in TCA cycle regulation 
that could be a result of the observed increase in NAD-ME 
activity.

Centeno et  al. (2011) demonstrated the wide-ranging 
effects of perturbing mitochondrial malate metabolism using 
antisense tomato lines. Tomato fruits possessing decreased 
fumarase and mitochondrial MDH activities contained 
respectively lower and higher levels of malate, and amino acid 
levels were generally reduced in both circumstances, prob-
ably owing to the interruption of the TCA cycle. Antisense 
MDH lines showed some evidence of increased flux through 
NAD-ME and PDH as a result of the increase in malate con-
centration, enabling a malate-driven supply of acetyl-CoA to 
rescue the TCA cycle. The redox state of the fruit was also 
altered, which subsequently affected the regulation of starch 
metabolism, causing a strong negative correlation between 
malate and starch concentrations across all lines. Although 
grape berries are a non-climacteric fruit that contain negli-
gible levels of starch (Downton & Hawker, 1973), the pre-
sent study demonstrates that increased flux through the 
TCA cycle and NAD-ME caused by elevated temperatures 

accelerated the utilization of malate and could increase the 
anaplerotic capacity of the TCA cycle for amino acid biosyn-
thesis. The down-regulation of PEPCK transcript level and 
activity measured in this, and other recent studies (Rienth 
et  al., 2014), suggests that the utilization of malate in sup-
plementing the TCA cycle may be favoured over its use in 
gluconeogenesis. As such, increased PEPCK activity does 
not contribute to accelerated malate degradation in berries 
of heated vines and the significant increase in sucrose levels, 
which occurs in the absence of change in glucose and fructose 
levels, is therefore a result of increased import into the berry 
rather than gluconeogenesis. Together, these studies high-
light the importance of the regulation of malate and TCA 
cycle enzymes in amino acid and carbohydrate metabolism in 
developing fruits, both climacteric and non-climacteric.

Accumulation of the non-proteinogenic amino acid 
GABA in berries of heat-treated vines (Fig.  7) supports 
the link between organic acid degradation and amino acid 
synthesis through TCA cycle intermediates and the GABA 
shunt as seen in post-harvest citrus fruit and, along with the 
observed increases in proline and the polyamine putrescine, 
may be symptomatic of an oxidative stress response (Ye 
et al., 1997; Bouche and Fromm, 2004; Ozden et al., 2009; 
Sun et al., 2013). Proline accumulates as a normal function 
of berry ripening (Stines et al., 1999; Deluc et al., 2007); how-
ever warming resulted in hyper-accumulation (Fig. 7), similar 
to drought- and salinity-stressed grapevine leaves (Cramer 
et  al., 2007). Up-regulation of pyrroline-5-carboxylate syn-
thetase transcript in heated berries (Rienth et al., 2014), could 
account for the increased proline levels observed in the pre-
sent study, and increases the supply of NADP+ to the cytosol 
(Kohl et al., 1990), thereby stimulating NADP-ME that could 
contribute to malate metabolism in the cytosol. Putrescine 
declined during ripening of control berries, as seen in other 
fruits (Aizat et  al., 2014), whereas up-regulation with heat-
ing suggests negative regulation of ethylene biosynthesis, also 
seen in other fruits (Ketsa et al., 1999). Glutamate, a precur-
sor of putrescine, GABA, proline, and arginine, was higher 
in berries from heat-treated vines and therefore indicates the 
metabolic pathways by which these compounds were prob-
ably synthesized. Glutamate in heated grapes could be gen-
erated from α-ketoglutarate through increased TCA cycle 
activity. In addition to its role in the GABA shunt, glutamate 
can also inhibit PEPC expression (Sugiharto and Sugiyama, 
1992), and thus may simultaneously play a role in the down-
regulation of PEPC transcript level and enzyme activity 
observed in berries of heated vines.

Despite the presence and notable up-regulation of VvPpdk 
transcript levels in grape berries at véraison (Sweetman et al., 
2009), PPDK activity, which catalyses the reversible con-
version between pyruvate and PEP, is yet to be successfully 
measured in fruits. The level of PPDK protein in grape berry 
and other fruits is also low or undetectable (Famiani et al., 
2007), although post-harvest peach fruit stored at 39 °C for 
three days and nights demonstrated increased PPDK protein 
and decreased PK protein along with decreased malate con-
centration (Lara et al., 2009). In the present study, VvPpdk 
transcript was up-regulated with night-heating at both 
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pre-véraison (data not shown) and véraison (Fig. 6C) stages. 
Further work is required to determine whether PPDK is 
active in grape berries.

Malate compartmentalization

The developmental control of grape berry malate degrada-
tion may be associated with the rate of its release from the 
vacuole. Tonoplastic dicarboxylate transporters regulate the 
rate of malate import into plant vacuoles (Etienne et  al., 
2013), which decreases in response to low cytosolic pH 
(Pantoja and Smith, 2002). A  recently characterized tono-
plastic malate and tartrate inward-rectifying transporter gene 
in grapevine, VvAlmt9 (De Angeli et al., 2013), demonstrated 
increased transcription around véraison (Deluc et al., 2007) 
and may maintain a malate concentration gradient between 
the vacuole and cytosol during ripening. A  strong positive 
link between fruit acidity and another tonoplastic transporter 
gene, Ma1, was reported in apple (Bai et al., 2012). Decreased 
transcript levels (and presumably activities) of VvAlmt4-like 
(a putative grapevine Ma1 homolog; VIT_01s0011g03290), 
VvAlmt9 (VIT_17s0000g03850), and a tonoplast dicarboxy-
late transporter (VIT_00s0187g00130) in leaves and berries 
exposed to elevated temperatures, based on publicly available 
microarray data (Dash et al., 2012; Liu et al., 2012; Rienth 
et al., 2014), could result in decreased retention of malate in 
the berry vacuole, thereby increasing the availability of the 
acid for degradation in other cellular compartments. The 
ripening-induced up-regulation of vacuolar proton-pumping 
pyrophosphatases (PPases), which transfer protons from 
cytosol to vacuole and generate an electrical potential gradi-
ent across the tonoplast, may also regulate malate transport 
into the vacuole (Terrier et al., 2001). Characterisation of the 
activities of these transporters during pre-véraison, vérai-
son and ripening stages would help to elucidate their roles 
in malate regulation, and a special effort should be made 
to measure their response to changes in temperature and 
cytosolic pH.

Upon the release of malate from the vacuole around 
véraison, the formation of pyruvate from malate is likely 
to be favoured over glycolysis, as the latter generates pro-
tons (Sakano, 1998), whereas NAD-ME activity, which is 
activated at low pH, ensures continued TCA cycle activity 
when MDH is inhibited by low pH and oxaloacetate build-
up (Wedding, 1989). PPDK activity will be favoured over PK 
in the conversion of PEP to pyruvate at low pH, as the for-
mer consumes two protons whereas the latter consumes only 
one (Edwards et al., 1985; Sakano, 1998), and both will be 
favoured over PEP carboxylation to OAA by PEPC, which 
uses HCO3

– from the proton-generating carbonic anhydrase 
(Sakano, 1998). At véraison, the up-regulation of NAD-ME 
activity (unpublished data), increase in PPDK transcript 
level, and decrease in PEPC transcript level (Sweetman 
et al., 2009; Sweetman et al., 2012) suggests that véraison is 
accompanied by cytosolic acidification, whereas up-regula-
tion of VvPpdk transcript level and NAD-ME activity and 
down-regulation of PK and PEPC activities in grape berries 
exposed to elevated temperature in the present study suggest 

that this mechanism may also be utilized during warming or 
heat stress. In addition, the heat-induced accumulation of 
GABA, which is formed through glutamate decarboxylase 
activity and induced by cytosolic H+ and Ca2+ (Kinnersley 
and Turano, 2000), consumes protons in the cytosol and may 
further enable cellular pH to remain within physiological 
limits.

Conclusions

The difference between pre-véraison, véraison, and ripen-
ing responses of malate to heating could not be explained by 
changes in transcript levels or activities of enzymes explored 
in the present study, and may be due instead to differences 
in the regulation of malate compartmentalization between 
these developmental stages, as pre-véraison berries undergo 
net malate accumulation through vacuolar sequestration 
whereas ripening berries undergo net malate degradation 
upon its release from the vacuole. Grape berries that were 
heated by 4–10 °C for 11 d or 2–4  °C for three weeks dur-
ing véraison and ripening showed significant losses of malate, 
although when night temperatures were also raised such that 
the diurnal temperature range between treatment and con-
trol was either maintained or decreased, there was no sig-
nificant malate loss compared with controls. PEPC activity, 
which correlated positively with malate content in treatments 
applied during véraison and ripening, could play a role in the 
day- and night-specific regulation of malate in response to 
temperature, and therefore malate synthesis remains impor-
tant in spite of the net loss of the acid at this time. However, 
increased amino acid pools and NAD-ME activity implicate 
an increase in anaplerotic flux through the TCA cycle as the 
cause of accelerated malate degradation in grapes of heated 
vines, which may compete with gluconeogenesis at higher 
temperatures and warrants further investigation using flux 
analysis. Overall, the decrease in PEPC and PK activities 
and increase in NAD-ME activity, VvPpdk transcript level, 
and glutamate and GABA levels suggested a malate-driven 
response to cytosolic acidification in fruit that were heated 
during véraison and ripening.

Whilst some grapevine cultivars contain higher berry 
malate content at harvest owing to varying patterns of accu-
mulation and degradation throughout development and 
ripening (Kliewer et al., 1967; Diakou et al., 1997), it is imper-
ative to determine whether warming will affect the acidity of 
these cultivars in a similar manner to Shiraz. Further research 
should target the effects of heating on malate compartmental-
ization and cytosolic pH homeostasis in pre-véraison, vérai-
son, and ripening fruit, to elucidate the differential regulation 
of malate metabolism between developmental stages and 
day/night cycles. The utilization of transgenic plants is neces-
sary for further characterisation of the roles of fruit PEPC, 
NAD-ME, and TCA cycle enzymes in regulating organic acid 
levels and primary metabolic pathways, as demonstrated in 
tomato (Centeno et  al. 2011), while the VvPpdk gene also 
warrants further examination based on up-regulation of the 
transcript at véraison and its coordinated response to day/
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night temperature shifts. Meanwhile, the effect of altering 
cytosolic pH on the mobilization and catabolism of malate 
and on the activities of VvAlmt9 and VvAlmt4 gene products 
could be investigated using fruit cell culture systems. The ulti-
mate goal is to identify grapevine cultivars and practices that 
maintain fruit sugar-acid balance as well as aroma, flavour 
and texture compounds with implications for wine properties 
under changing environmental conditions.

Supplementary data

Supplementary data are available at JXB online
Table S1. List of accession numbers, primer sets and probes 

used for qRT-PCR.
Table S2. Compounds detected using GC/MS in control 

and heated fruit from Experiment 3.
Figure S1. Details of heating strategies used in 

Experiment 2.
Figure S2. Maximum, minimum and diurnal temperature 

ranges in Nurootpa, South Australia during heatwaves and 
average conditions from 1999 to 2014.

Figure S3. Effects of elevated temperature treatments on 
berry fresh weight and TSS across all three experimental 
designs.

Figure S4. Details of growth conditions and heating 
regimes used in Experiment 3.

Figure S5. Activities of NADP-ME, NADP-MDH and 
NAD-MDH following eleven-day elevated temperature treat-
ments at véraison for Experiment 2.
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