EFFECTS OF DIETARY SODIUM INTAKE ON VASCULAR FUNCTION

A thesis submitted by

Kacie M. Dickinson Bachelor of Nutrition & Dietetics (Honours)

For the degree of Doctor of Philosophy April 2014

> Supervisors: Professor Peter Clifton Associate Professor Jennifer Keogh

Discipline of Physiology, School of Medical Science Faculty of Health Science, University of Adelaide

AND

Commonwealth Scientific and Industrial Research Organisation Animal, Food and Health Science, Adelaide

TABLE OF CONTENTS

LIST OF TABLES	IV
LIST OF FIGURES	V
DECLARATION OF ORIGINALITY	VI
DESCRIPTION OF THESIS	VII
ACKNOWLEDGEMENTS	VIII
ABSTRACT	X
PUBLICATIONS ARISING FROM THIS THESIS	XIII
PRESENTATIONS ARISING FROM THIS THESIS	XV
ABBREVIATIONS	XVIII
Chapter 1: Research Background	1
1.1 Cardiovascular Disease	2
1.1.1 Prevalence	2
1.1.2 Brief Pathophysiology - Atherosclerosis	
1.2 Vascular endothelial function overview	
1.2.1 Endothelium	
1.2.2 Nitric Oxide	
1.2.3 Endothelial dysfunction	4
1.2.4 Clinical assessment of endothelial dysfunction	5
1.2.5 Endothelium-independent vasodilation	6
1.2.6 Endothelial dysfunction and cardiovascular disease risk	6
1.2.7 Other markers of vascular function	7
1.2.8 Inflammatory molecules derived from the endothelium	
1.3 Dietary salt overview	9
1.3.1 Overview of sodium physiology and regulation	9
1.3.2 Renin-Angiotensin Aldosterone System	9
1.3.3 Atrial Natriuretic Peptide	10
1.3.4 Vasopressin	10
1.3.5 Food sources of dietary sodium	11
1.3.6 Recommended intakes of dietary sodium	12
1.3.7 Current dietary sodium intakes in Australian adults	
1.4 Evidence for the effects of salt on cardiovascular health in humans	14
1.4.1 Benefits of salt reduction on blood pressure	14
1.4.2 Salt and cardiovascular disease risk and mortality	15

1.4.3 Low Salt Interventions and CVD	16
1.4.4 Salt and neurohormonal activation	17
1.4.5 Salt and obesity	18
1.5 Impact of Dietary Salt on Vascular Endothelial Function	19
1.5.1 Dietary salt and endothelial function –Evidence from intervention st	udies19
1.5.2 Salt and Endothelial Dysfunction - Potential Mechanisms	20
1.5.3 Effects of dietary salt intake on post-prandial endothelial function	22
1.6 Thesis Scope, Aims and Hypothesis	24
1.6.1 Scope of thesis:	24
1.6.2 Aims:	24
1.6.3 Specific Hypotheses:	24
Chapter 2: A reduction of 3g/day from a usual 9g/day salt diet improves e	ndothelial
function and decreases endothelin-1 in a randomised cross-over study in norma	otensive
overweight and obese subjects	25
2.1 ABSTRACT	
2.2 INTRODUCTION	30
2.3 METHODS	31
2.4 RESULTS	36
2.5 DISCUSSION	39
Chapter 3: Endothelial function is impaired after a high salt meal in health	y subjects
50	
3.1 ABSTRACT	51
3.2 INTRODUCTION	52
3.3 METHODS	53
3.4 RESULTS	57
3.5 DISCUSSION	59
3.6 CONCLUSION	61
Chapter 4: Postprandial effects of a high salt meal on serum sodium, arter	ial stiffness,
markers of nitric oxide production and markers of endothelial function	69
4.1 ABSTRACT	73
4.2 INTRODUCTION	74
4.3 METHODS	75
4.4 RESULTS	80
4.5 DISCUSSION	82
Chapter 5: DISCUSSION	93

5.1 OVERVIEW	93
5.2 KEY FINDINGS	93
5.2.1 CHONIC EFFECTS OF MODEST SALT REDUCTION ON VASCU	LAR
FUNCTION	93
5.2.2 ACUTE EFFECTS OF SALT LOADING ON VASCULAR FUNCTION	ON95
5.3 STUDY LIMITATIONS	97
5.4 FUTURE RESEARCH DIRECTIONS	99
5.5 CONCLUSIONS	. 100
REFERENCES	102
APPENDICIES	114
Appendix 1: PUBLISHED PAPER	. 114

LIST OF TABLES

Table 2.1: Mean dietary intake estimated from 3, 3 day weight food records during the
usual salt and reduced salt interventions (excluding sodium supplementation52
Table 2.2: Changes from Usual Salt (US) to Reduced Salt (RS) diet after 2 days and 6
weeks
Table 3.1: Nutrient composition of test meals 62
Table 3.2: Baseline characteristics of participants ^{1, 2}
Table 3.3: Measures of vascular function and blood pressure at the beginning of each
intervention ¹
Table 4.1 Model to describe the postprandial changes to Augmentation Index following a
high salt meal and a low salt meal ¹

LIST OF FIGURES

Figure 2.1: Flow diagram of a randomised control trial assessing the effects of modest salt		
reduction on endothelial function. Describes subject screening, enrolment, randomisation		
and completion of the 12 week protocol involving following a reduced salt diet, with and		
without sodium supplementation for 6 weeks each		
Figure 2.2: Correlation between change in 24h urinary sodium to creatinine ratio and		
change in flow-mediated dilatation (FMD) in 25 overweight and obese men and women		
following consumption of a usual salt diet and a reduced salt diet for 6 weeks each in a		
crossover study. Pearson correlation analyses were conducted to assess the association of		
change between variables. There was a significant correlation between variables ($r = -$		
0.470, P<0.05)		
Figure 3.1: Mean (±SEM) brachial artery FMD at fasting and in response to consumption		
of a low salt meal and a high salt meal,		
Figure 3.2: Mean (±SEM) RHI at fasting and in response to consumption of a low salt		
meal, (LSM,+); and a high salt meal (HSM,)		
Figure 3.3: Mean (±SEM) BP variables before and after consumption of a low salt meal,		
(LSM,♦); and a high salt meal (HSM, –□-)		
Figure 4.1: Mean (±SEM) serum a) sodium and b) osmolality concentration at fasting and		
in response to consumption of low salt meal (+) and high salt meal ()		
Figure 4.2: Mean (±SEM) a) Plasma nitrate/nitrite, b) ANP and c) vasopressin		
concentration at fasting and in response to consumption of low salt meal (+) and high		
salt meal ()		
Figure 4.3: Mean (±SEM) thirst at fasting and in response to consumption of low salt meal		
(♦) and high salt meal (-□-)		

DECLARATION OF ORIGINALITY

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis as listed below resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

.....

Kacie Dickinson

DESCRIPTION OF THESIS

All of the studies have either been published (Chapter 3 and Chapter 4) or have been submitted for publication (Chapter 2) prior to completion of this thesis. Therefore the thesis was prepared in a Thesis by Publication style. Each chapter is formatted to conform to the style of the journal to which it was submitted. The methodologies are included within the relevant chapters. Author contribution statements are at the beginning of each chapter.

ACKNOWLEDGEMENTS

Firstly I would like to acknowledge my supervisors Professor Peter Clifton and Associate Professor Jennifer Keogh who provided me with the opportunity to undertake such a great project. Also for the tremendous support during candidature and getting me to the finish line, I'm very grateful.

Second, I would like to acknowledge the volunteers who generously gave of their time to be part of the studies contained within this thesis.

Third, I would like to acknowledge the huge team of people that helped support various aspects of the studies over the years: the Commonwealth Scientific and Industrial Research Organisation (CSIRO) Clinical Chemistry staff & Clinic Research Unit staff: Lindy Lawson, Julia Weaver, Rosemary McArthur, Mark Mano, Candita Sullivan, Cathryn Seccafien; Vanessa Russell and Leanne Purins and Ilka Priebe at CSIRO for analysis of cellular adhesion molecules; Kylie Lange at the CCRE and Professor Hugh Barrett University of Western Australia for statistical advice; Dr Scott Willoughby, Cheryl Gan and Carlee Shultz at the Centre for Heart Rhythm Disorders, University of Adelaide; Kirsty Turner at University of South Australia for assistance with vascular measurements in Chapter 5; and finally collaborators in Chapter 5 Professor Hugh Barrett at the University of Western Australia and Professor Louise Burrell University of Melbourne, who also carried out the measurement of atrial natriuretic peptide and arginine vasopressin. I would also like to acknowledge JLM-Accutek for loan of the EndoPAT and to Unilever and George Weston Foods for donation of margarine and whole meal bread that were used in Chapter 3

Other sources of funding that I would like to acknowledge are: National Health and Medical Research Council (NHMRC) Project grants (1004380), Centre of Clinical Research Excellence (CCRE) in Nutritional Physiology (NHMRC) (44102557), Interventions and Outcomes Heart Foundation, University of Adelaide. To all fellow PhD students at CSIRO –especially Carly, Laura, Dianne, Eva, Sau-Lai who were a great source of personal support during candidature. And finally to Michael for your tremendous patience and support during the PhD.

ABSTRACT

Background

Increased dietary salt (sodium chloride) intake may increase the risk of cardiovascular disease independently of the effects on blood pressure by altering vascular endothelial function. It has previously been shown that reducing dietary salt intake can improve endothelial function after a short period of time however the effects of chronic moderate salt reduction and acute effects of a high salt meal on vascular function are not well studied in controlled trials. The thesis presents studies exploring the effects of manipulating dietary salt intake on endothelial function in normotensive overweight and obese and healthy adults.

Aims

To assess the effects of 1) longer term moderate salt reduction on vascular function in overweight and obese adults 2) a high salt meal on post-prandial vascular function in healthy adults and 3) explore potential mechanisms underlying effects of acute and chronic modification of salt intake on vascular function.

Results

In the first study overweight and obese adults (n=25) with normal blood pressure followed a moderately reduced salt diet (100mmol Na/day) and a usual salt diet (150mmol Na/day) for six weeks each in a randomised cross-over design. Following the reduced salt diet flow-mediated dilatation (FMD) was improved and endothelin-1 (a biomarker of endothelial function) improved significantly compared with the usual salt diet. The change in FMD occurred after two days, was sustained at 6 weeks and was significantly related to the change in 24hr urinary sodium to creatinine ratio. There were no changes in other markers of vascular stiffness (pulse wave velocity, augmentation index), plasma nitrate/nitrite, asymmetric dimethylarginine, renin, aldosterone or blood pressure between treatments.

Population salt intakes are in excess of recommendations and published data suggest it may be common to consume in excess of 6g salt in a single meal. In the second study we tested the hypothesis that a high salt meal has adverse effects of vascular function in the postprandial period. The results showed that compared with a low salt meal (5mmol Na), the high salt meal (65mmol Na) impaired postprandial FMD and that the FMD response was not related to changes in blood pressure.

In the third study, the mechanisms underlying the effects on endothelial function observed following the high salt meal in Study 2 were investigated. The results showed that augmentation index (a measure of arterial stiffness), serum sodium and osmolality increase significantly in response to the high salt meal (65mmol Na) compared with the low salt meal (5mmol Na). No differences in plasma nitrate/nitrite, vasopressin, atrial natriuretic peptide or blood pressure were observed between treatments.

The main findings in of this thesis are that a modest reduction in dietary salt intake (3g/day) improves FMD rapidly after 2 days, which persists after 6 weeks, which may be explained by a fall in endothelin-1. Second, a single high salt meal has acute adverse effects on post-prandial arterial stiffness that is not accounted for by changes in plasma nitrate/nitrite or other vasoactive hormones. These results suggest mealtime sodium intakes as well as total daily salt intake may have implications for cardiovascular disease risk through altering endothelial function. Further work should be done to define the underlying short and long-term mechanisms by which salt affects endothelial function and long-term cardiovascular disease risk.

XI

PUBLICATIONS ARISING FROM THIS THESIS

Peer Review articles

Dickinson KM, Clifton PM, Keogh JB. A reduction of 3g/day from a usual 9g/day salt diet improves endothelial function and decreases endothelin-1 in a randomised cross-over study in normotensive overweight and obese subjects *(Accepted 23/11/13 Atherosclerosis)*

Dickinson KM, Clifton PM, Burrell LB, Barrett PHR, Keogh JB. Postprandial effects of a high salt meal on serum sodium, arterial stiffness, markers of nitric oxide production and markers of endothelial function.

(Accepted 31/10/13 Atherosclerosis)

Dickinson KM, Clifton PM, Keogh JB. Endothelial function is impaired after a high salt meal in healthy subjects, *American Journal of Clinical Nutrition*, 2011; 93; 500-505.

Published Abstracts

Dickinson KM, Clifton PM, Keogh JB; The effects of modest dietary salt reduction on vascular function and blood pressure in overweight and obese adults, Hypertension, 2012; 60(30); A1-A667

Dickinson KM, Clifton PM, Keogh JB; Relation between noninvasive vascular function assessment methods in healthy and obese adults, Hypertension, 2012; 60(30); A1-A667

Dickinson KM, Clifton PM, Keogh JB; Postprandial sodium and nitric oxide in response to a high salt meal, 2012, Journal of Hypertension, Vol. 30, e-supplement 1, No. 1042, page 303

Dickinson KM, Clifton PM, Keogh JB; Postprandial sodium and nitric oxide in response to a high salt meal, Clinical Nutrition Supplements, 2012 Vol. 7, Issue 1, Page 240.

Dickinson KM, Clifton PM, Keogh JB; Effects of modest salt reduction on vascular function in overweight and obese subjects, Australasian Medical Journal, 2011, Vol. 4, No. 12, 789-813.

Dickinson KM, Clifton PM, Keogh JB; Effects of a high salt meal on post-prandial serum sodium concentration, Australasian Medical Journal, 2011, Vol. 4, No.12, 739-788, P40

Dickinson KM, Clifton PM, Keogh JB; A pilot study of modest salt reduction in obesityeffects on vascular function, Obesity Research & Clinical Practice, 2011 Vol, 5, (Suppl 5) S55-S75

OTHER PUBLICATIONS DURING CANDIDATURE

Published Abstracts

Willoughby SR, **Dickinson KM**, Schultz CD, Clifton PM, Keogh JB, Worthley MI, Lau DH, Sanders P; Effect of obesity on arterial stiffness in subjects with and without atrial fibrillation, Heart Lung and Circulation, 2012; 21; S13-S14.

Keogh JB, **Dickinson KM**, Clifton PM. Dietary Salt reduction has a beneficial effect on flow mediated dilatation in human subjects, Atherosclerosis Supplement, 2009, Vol. 10, Issue 2

Keogh JB; **Dickinson KM**; Clifton PM. Salt Intake and Flow Mediated Dilatation, Obesity Facts 2009; 2 (Suppl.2):214-256

PRESENTATIONS ARISING FROM THIS THESIS

Oral presentations

Dickinson KM, Clifton PM, Keogh JB (2012) Long term effects of modest salt reduction on vascular function in overweight and obese subjects; *Nutrition Society of Australia Annual Scientific Meeting*, Wollongong, NSW, Australia, 27 -30 November [Oral]

Dickinson KM, Clifton PM, Keogh JB (2012) Effects of a high salt meal on postprandial sodium and nitric oxide concentration; *Australian Society of Medical Research SA Branch*, Adelaide, Australia, 6 June. [Oral]

Dickinson KM, Clifton PM, Keogh JB (2011) Long term effects of modest salt reduction on vascular function in overweight and obese subjects; *Nutrition Society of Australia and New Zealand Joint Annual Scientific Meeting*, Queenstown New Zealand, 29 November – 2 December. [Oral]

Dickinson KM, Keogh JB, Clifton PM (2010) The effects of a high salt meal on flowmediated dilatation; *Nutrition Society of Australia Annual Scientific Meeting*, Perth Australia, 30 November – 3 December. [Oral]

Dickinson KM, Keogh JB, Clifton PM (2010) The effects of a high salt meal on flowmediated dilatation; *Australian Atherosclerosis Society Annual Scientific Meeting*, Cairns Australia, 26-29 October. [Oral]

Dickinson KM, Keogh JB, Clifton PM (2010) The effects of a high salt meal on flowmediated dilatation; *Nutrition Society of Australia Annual Scientific Meeting*, Perth Australia, 30 November – 3 December. [Oral]

Dickinson KM, Keogh JB, Clifton PM (2010) The effects of a high salt meal on flowmediated dilatation; APSVAD Meeting and *Australian Atherosclerosis Society Annual Scientific Meeting*, Cairns Australia, 26-29 October. [Oral]

Poster Presentations

Dickinson KM, Clifton PM, Keogh JB (2012); Postprandial sodium and nitric oxide in response to a high salt meal, *Nutrition Society of Australia Annual Scientific Meeting*, Wollongong, NSW, Australia, 27 -30 November . [Poster]

Dickinson KM, Clifton PM, Keogh JB; (2012) Postprandial sodium and nitric oxide in response to a high salt meal, *International Society of Hypertension Meeting*, Sydney, Australia 30 Sept-4 Oct [Poster]

Dickinson KM, Clifton PM, Keogh JB (2012); Postprandial sodium and nitric oxide in response to a high salt meal, *American Heart Association High Blood Pressure Research Sessions*, Washington DC, USA, 19-22 September [Poster]

Dickinson KM, Clifton PM, Keogh JB (2012); Postprandial sodium and nitric oxide in response to a high salt meal, *The 34th Meeting of the European Society for Clinical Nutrition and Metabolism*, Barcelona, Spain, 8-11 September [Poster]

Dickinson KM, Clifton PM, Keogh JB (2011) The effects of a high salt meal on postprandial sodium concentration and arterial stiffness; *Nutrition Society of Australia and New Zealand Joint Annual Scientific Meeting*, Queenstown New Zealand, 29 November – 2 December [Poster]

Dickinson KM, Clifton PM, Keogh JB (2011) The effects of a high salt meal on postprandial sodium concentration and arterial stiffness; *Australian Atherosclerosis Society Annual Scientific Meeting*, Adelaide Australia, 19 October – 21 October.[Poster]

Dickinson KM, Clifton PM, Keogh JB (2011); A pilot study of modest salt reduction in obesity- effects on vascular function; *Australian and New Zealand Obesity Society Conference (ANZOS)*, Adelaide Australia, 20-22 October [Poster]

Dickinson KM, Keogh JB, Clifton PM (2009) Salt Intake and Flow Mediated Dilatation; *Australian and New Zealand Obesity Society Conference (ANZOS)*, Melbourne Australia, 23-25 October. [Poster]

Dickinson KM, Keogh JB, Clifton PM (2009) Salt Intake and Flow Mediated Dilatation; *Australian Society for Medical Research Annual Scientific Meeting (SA branch)*, Adelaide Australia, 2 June. [Poster]

Dickinson KM, Keogh JB, Clifton PM (2009) University of Adelaide Faculty of Health Sciences Postgraduate Symposium "Salt intake and flow-mediated dilatation"

GRANTS AND PRIZES DURING CANDIDATURE

2012

University of Adelaide Faculty of Health Sciences International Travel Award Nutrition Society of Australia Student Travel Award International Society of Hypertension Special Travel Grant Award Foundation for High Blood Pressure Research Young Investigator Travel Grant Nutrition Society of Australia Early Career Research Award National Heart Foundation Postgraduate International Travel Award University of Adelaide, Discipline of Physiology Travel Award Faculty Finalist (Health Science) University of Adelaide 3-Minute Thesis Competition Finalist Ross Wishart Memorial Award Australian Society of Medical Research

2011

University of Adelaide, Discipline of Physiology Publication Award Nestle and Nutrition Society of Australia Student Travel Grant

2010

Nutrition Society of Australia Student Travel Award Australian Atherosclerosis Society Student Travel Award

ABBREVIATIONS

AI	Adequate intake
ANOVA	Analysis of variance
ADH	Anti-diuretic hormone
AUC	Area under the curve
ADMA	Asymmetric dimethyl arginine
ANP	Atrial natriuretic peptide
AVP	Arginine vasopressin
AIx	Augmentation index
BP	Blood pressure
BMI	Body mass index
CVD	Cardiovascular disease
CRP	C-reactive protein
CV	Coefficient of variation
DBP	Diastolic blood pressure
ET-1	Endothelin-1
FMD	Flow-mediated dilatation
HSM	High salt meal
HR	Heart rate
ICAM-1	Intracellular adhesion molecule - 1
kJ	Kilojoule
LSM	Low salt meal
K	Potassium
MAP	Mean arterial pressure
NO	Nitric oxide

NRV	Nutrient reference value
PAT	Peripheral arterial tonometry
PWV	Pulse wave velocity
RHI	Reactive hyperaemia index
RAAS	Renin angiotensin aldosterone system
Na	Sodium
NaCl	Sodium chloride
SBP	Systolic blood pressure
SD	Standard deviation
SEM	Standard error of the mean
UL	Upper limit
UNa	Urinary sodium
UNa:C	Urinary sodium creatinine ratio
UNa:K	Urinary sodium: potassium ratio
VAS	Visual analogue scale
VCAM-1	Vascular cellular adhesion molecule – 1