Magnetotelluric and Seismic Joint Inversion using Nelder-Mead Minimization

Thesis submitted in accordance with the requirements of the University of Adelaide for an Honours Degree in Geophysics.

Simon Carter

November 2012

ABSTRACT

It is often assumed that the combination of geophysical data within a single inversion framework yields a geologically more robust and reliable model than can be obtained from separate individual inversions. In this study this assumption is questioned with specific reference to magnetotelluric (MT) and seismic data. Forward modelling, incorporating the Nelder-Mead parameter optimization method, is used to test the hypothesis that zones with similar reflectivity represent geological zones with similar electrical properties. This is a new, geometric approach, to joint inversion. Subsurface structures at a potential mine site are examined using seismic and MT inversion results, and aspects of the deposit are interpreted from the perspective that preconceptions and assumption influence the results of joint inversion. A number of statistical techniques are then employed to examine if the geological processes that produce changes in elasticity also have some impact on resistivity. The two dimensional seismic reflection and MT data used to examine these concepts are from the Hillside Project Area, Yorke Peninsula South Australia.

KEYWORDS

joint, inversion, magnetotelluric, seismic, Nelder, Mead, simplex, Hillside

Table of Contents

Introduction	6
Review	7
Approach	10
The Downhill Simplex Method	 11
The Algorithm	 12
Analysis	 14
Case Study	15
Discussion	21
Comparison of Models	 21
Residuals	 23
Sensitivity Analysis	 25
Synthesis of MT and Seismic Data	 26
Comparison with other Geophysical Data	 27
Conclusions	27
Acknowledgements	28
References	29
Appendices	31