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Abstract 

Fracture and fracture network modelling is a multi-disciplinary research area. 

Although the literature in general is significant, many research challenges remain. 

The complex geometry and topology of realistic fracture networks largely 

determine the static and dynamic mechanical properties of rock. In applications to 

hot dry rock geothermal reservoirs it is not possible to observe or measure fractures 

directly on any scale and the only data available are indirect measurements, such 

as seismic activity generated by hydraulic fracture stimulation. The lack of direct 

data and the complexities of the fracture characteristics make fracture network 

prediction and modelling in these applications very difficult. The ultimate purpose 

of the fracture and fracture network models is to evaluate the response of the 

fracture system to stress regimes and fluid flow. As understanding of the effective 

factors in the geometrical modelling of fractures and consequently topological 

properties of fracture networks increases, more accurate and hence more reliable 

results can be achieved from associated analyses. For flow modelling in geothermal 

reservoirs, the critical component of a fracture model is the connectivity of the 

fractures as this determines the technical feasibility of heat production and is the 

single most significant factor in converting a heat resource to a reserve. The ability 

to model this component effectively and to understand the associated system is 

severely constrained by the lack of direct data. In simulations, the connectivity of a 

fracture network can be controlled to a limited extent by adjusting the fracture and 

fracture network parameters (e.g., locations, orientations) of the defining 

distribution functions. In practical applications connectivity is a response of the 

system not a variable. It is essential to pursue modelling methods that maximise 

the extraction of information from the available data so as to achieve the highest 

possible accuracy in the modelling. Although the evaluation of fracture connectivity 

is an active research area, widely reported in the literature, almost all connectivity 

measures are based on degraded representations of the fracture network i.e., 

lattice-based. The loss of fracture connectivity information caused by using discrete 

representations is significant even when very high resolutions (assuming they are 

feasible) are used. This is basically due to the fact that the aperture dimensions of 
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fractures are several magnitudes smaller than their lengths. If discretisation is 

necessary, then a better approach would be to retain all connectivity information 

between fractures, i.e. for connectivity information to remain invariant to the 

resolution of the discretisation. Such a method would provide more reliable 

evaluation of connectivity. This thesis covers the modelling of fracture networks, 

the characterisation (particularly connectivity) of fracture networks and 

applications. 
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1.1 Stochastic approaches 

Deterministic solutions (e.g., using traditional finite elements methods) which are 

nowadays very common in solving engineering problems require fully defined, 

certainly determined parameters and well-defined governing equations to result in 

useful and accurate outputs. Any input parameter must be known certainly (non-

probabilistic) prior to proceeding the deterministic algorithms. In fact, the level of 

accuracy in the input will directly affect significantly the output with even much 

higher loss of accuracy due to accumulation of errors including approximation and 

computation errors. Furthermore, in a worse case (but common) if the phenomenon 

being studied is ill-defined (e.g., due to incomplete or inadequate information; Hsu 

2008) then application of deterministic methods for the assessment, evaluation and 

modelling will be very limited. In practice, one has to choose even fewer 

parameters for models (i.e., further approximation) and often to assign values 

based on very limited observations in order to achieve reasonable computing cost. 

In either case, the result will be erroneous and thus inaccurate. For example, a 

system can be modelled as       , where   is set of parameters for adequately 

describing a phenomenon represented by  . Any failure in proper determination of 

parameters causes errors in   decreasing its reliability. Indeed, in real-world 

applications there is almost always a lack of sufficient data/information. In fact, if 

the phenomenon under study is complex and there is a significant lack of direct 

measurements (data) and associated information (which is particularly the case for 

fracture network modelling in hot dry rock systems located kilometres beneath the 

ground) a feasible solution would be that able to get utmost information from the 

available data of any sort. In fact, as an extreme case when there is no information 

on a subject, a guess is the only legitimate solution. For situations mentioned, 

stochastic methods (Chilès 2004) provide a means of quantifying the uncertainties 

(i.e., certainty requirement in traditional deterministic methods can be tolerated) 

arising from, inter alia, insufficient data, measurement errors and problem 

specification and of including these uncertainties in the modelling. Basically, 

stochastic methods use applied statistics and probability to tackle the issues in the 

data including lack of adequate data by addressing and incorporating associated 
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uncertainties. Random functions as the core requirement in most statistical 

methods play an important role in stochastic modelling, for example. In a nutshell, 

the power of stochastic methods comes from observation-wise (data and expertise 

based) use of properly defined random functions feeding to Monte Carlo methods in 

order to depict unseen aspects of data with the hope to increase the quality of 

processing (e.g., higher accuracy) and thus resulting in more accurate and reliable 

outputs (see further details in Cressie 1991; Jing 2003; Dowd et al. 2007). 

Stochastic methods have frequently been shown capable and efficient to model 

uncertainties involved in a variety of engineering modelling problems (CFCFF 

1996) and their prospective future applications are rapidly increasing. Finally it is 

worth noting the recent trend in engineering analysis to combine deterministic 

methods with probabilistic outputs (stochastic models) in order to widen their 

applications and to improve their results. 

1.2 Modelling 

A mathematical model (Chernoutsan et al. 2011) is usually used to describe the 

most significant governing features of fracture networks (Dimov et al. 2011). If 

such an assessment is based on modelling of individual fractures the method is 

called Discrete Fracture Network modelling (DFN, Jing 2003; Jing and 

Stephansson 2007a) as opposed to continuum modelling in which the entire system 

is modelled as one continuous domain. DFN is more flexible (Dershowitz et al. 

2000; Jing 2003) in dealing with the complex fracture configurations observed in 

practice using a stochastic solution where the distribution of fractures is often 

sparse and there is also significant uncertainty involved in measurement of 

fracture and fracture network parameters; thus deterministic methods such as 

finite techniques (e.g., finite element (FEM), discrete element (DEM), boundary 

element (BEM) and so on) in their traditional use (see previous section) cannot 

solely and satisfactorily handle those situations (see Jing 2003) although they are 

well-known and well-developed numerical modelling techniques and are applied to 

variety of engineering problems. Stochastic modelling may serve providing 

required input data for finite techniques by simulating realisations hence yielding 

a hybrid stochastic-deterministic approach. It is worth noting that such a 
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combination of deterministic and stochastic methods would have noticeable 

improvements in the resulting solutions, especially dealing with complex and less-

known phenomena (a usual case in engineering problems). 

1.3 Fractures and fracture networks 

A fracture is defined as a discontinuity within a rock mass Priest (1993) and Jing 

(2003). The term thus also includes faults, joints, fissures, cleavages and even 

discontinuities between mineral particles (Lacazette 2011). By definition, a 

fracture can be on a scale of a few microns to several kilometres (e.g., faults). 

Engineering-scale fractures are generally greater than 10cm and less than 1km 

(Odling 1991). In its standard form a fracture is considered as an empty space 

between two parallel planes (Hernqvist 2009) embedded in a rock mass with the 

spacing between the two planes termed the aperture (Kacewicz 1994). A more 

complex representation can incorporate additional characteristics such as 

roughness of the fracture plane surface, the variation of the openings (Parisi et al. 

2000) and even the tortuosity (Matyka et al. 2008) of the fracture geometry. The 

term hydraulic aperture (Koyama et al. 2009; Kvartsberg 2010) is used to describe 

the equivalent hydraulic behaviour of a fracture according to Darcy‟s model while 

taking into account all the deviations of the actual fracture from the idealistic 

parallel plane representation (Koyama et al. 2009). An ensemble of at least two 

fractures forms a fracture network (Figure ‎1.1). In practice, even a simple fracture 

network can contain hundreds of fractures of different sizes and orientations. The 

geometrical intersections of fractures are extremely complex (Locsin and Einstein 

2005) but for fluid flow through rock masses (Hayashi et al. 1999) fracture 

intersections are the critical control points for the behaviour of the system. 

1.4 Rock mass 

A rock mass is defined as an ensemble of rock materials (mineral particles) and all 

discontinuities within its entire volume (Figure ‎1.1; see also Harrison and Hudson 

2000). Rock materials are often called the matrix, in which discontinuities have a 

wider definition including joints, fractures, faults and pores (Jing 2003). 
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Figure ‎1.1: Rock mass. Rock blocks on the left which are of interest of rock mechanics and 

geotechnics engineering, and fractures (fracture network) on the right which are of interest 

of water resources, petroleum, geothermal and mining engineering. 

With the above short discussions the title of this thesis makes now more sense 

in general, while in the following sections the research is introduced in details. 

Chapters (including papers) present comprehensive literature reviews, the details 

of topics in this research, their developments, discussions, proposals and 

applications. The ultimate goals of this research are summarised at the end of this 

chapter. 

1.5 Summary of literature review 

Fracture and fracture network modelling play important roles in a variety of 

engineering applications. The stochastic modelling of a fracture involves describing 

its geometry. A fracture network is consequently synthesised as an ensemble of 

generated fractures. A fracture network may exhibit spatial correlation. It is worth 

noting that in the recent decades rock fracture modelling has found numerous 

applications in a variety of engineering disciplines.  

In mining and civil engineering, areas using rock fracture models include 

tunnelling, underground mining operations; rock dynamics; stability analysis 

(Grenon and Hadjigeorgiou 2003) of rock structures in surface and underground 

excavations (see review by Jing 2003 for details). In Water and Petroleum 
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Engineering, it has been reported that the flow of water in underground storages 

and aquifers shows significant inhomogeneity (Freeze 1975) mainly due to the 

sparsely positioned pathways, which are controlled by fractures and fracture 

network in rock and property variation of soil (see Kvartsberg 2010). In petroleum 

engineering, fracture models are used for the evaluation of oil-gas reservoirs; the 

prediction of the production rate (see Cacas et al. 2001; Nelson 2001). 

1.5.1 Geothermal Energy System 

Geothermal reservoirs can be classified to two broad types: hydrothermal and hot 

dry rock (HDR). Hydrothermal resources include sedimentary aquifers and non-

sedimentary rocks such as naturally fractured volcanic rocks. The heat in 

hydrothermal resources is transported by means of water exists in the system. In 

HDR type, however, there is no fluid in the system; thus, external fluid is injected 

to transfer the heat. Enhanced geothermal systems (EGS) are deep (3 to 10km 

beneath the ground) HDR systems in which additional high pressure high volume 

fluid is injected to enlarge the existing fracture network and also to initiate new 

fractures. The fundamental factors in the productivity of geothermal systems 

especially EGS are heat, fractures and fluid flow (Hanano 2004; Singhal and Gupta 

2010). These three factors define the scheme of heat drawdown from the 

geothermal system. Fractures and fracture networks in EGS play the key role in 

geothermal development by defining the flow path that connects injection and 

production wells of the reservoir (Hanano 2004), i.e., the connectivity of the 

reservoir. Furthermore, the permeability of the reservoir is determined by the 

hydraulic characteristics of the fractures forming the connection paths. 
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Figure ‎1.2: Enhanced Geothermal energy System (EGS). Cold water is pumped into the 

injection well to reach the geothermal heat. The contact between the fluid and hot dry rock 

is made due to existing and or stimulated fractures building an appropriate and efficient 

connected network for heat exchange (chamber). Redrawn and painted from MIT (2010). 

In HDR EGS applications (Figure ‎1.2), the permeability of the geothermal 

reservoir is enhanced by fracture stimulation as the natural fracture system in 

general has very low permeability. Studies have shown that the EGS host rock at 

depths of more than three kilometres is mainly granite. Granite is a hard 

crystalline rock that is largely impermeable. Hence fractures are the only 

pathways for fluid flow. On the surface, low-temperature fluid (currently water 

although super-critical CO2 is being evaluated) is pumped down an injection well to 

the reservoir where it passes through the fractured rock absorbing heat and finally 

is extracted as steam from a production well. Fractures and fracture networks are 

critical in establishing the heat-exchange chamber, and in controlling the fluid flow 

and performance of the engineered reservoir (MIT 2010). 

Rock fracture modelling is a multi-disciplinary problem involving mathematics, 

statistics and spatial analysis, petroleum, civil, geotechnical, and mining 

engineering, geology and geophysics, computer programming and data 

visualisation. The modelling of fracture networks starts by defining the geometrical 
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characteristics of the fractures followed by topological characterisation of the 

network. Any attribute associated with fracture geometry influences the response 

of the network to processes such as fluid flow. Topology determines directly the 

connectivity of the fracture network, which is crucial for fluid flow. Thus, it is 

important to make the geometric models as realistic as possible. The topology (here 

simply interconnections among fractures) of a fracture network is another 

important factor in the modelling. Note that although topology is a product of 

fracture assemblages, and thus cannot directly be modelled, it can be characterised 

effectively by means of fracture parameters, most importantly the locations, 

lengths and orientations. 

1.5.2 Geometric modelling of fractures and fracture networks 

Fractures and fracture networks in the real world are very complex in geometry 

and topology. Advanced techniques are thus required to model them at a scale 

appropriate for the evaluation of any process to which the network is subjected, 

e.g., fluid flow. Geometrical modelling of fractures can be associated directly and 

simultaneously with the topology characteristics of fracture networks. This may be 

done, for example, by pixel-based simulations (e.g., sequential geostatistical 

simulations, SGS; Deutsch and Journel 1998) or Voronoi tessellation simulations. 

In these methods, there is a strong dependency between fractures and the resulting 

topology (Jing and Stephansson 2007a).  For example, in Voronoi tessellation, as 

fracture connectivity is a determining factor of network topology, once a Voronoi 

cell is built, all locally associated fractures are concurrently generated. Note that in 

this particular case, there will be no topology update on the local scale as the new 

fractures are added. A different method is to generate all fractures independently, 

first. Next the simulated fractures are located in space; that is, the associated 

topology is established then. The latter is known as Discrete Fracture Network 

modelling (DFN, Jing and Stephansson 2007b). It is widely used and well-

developed. In DFN, using stochastic methods and point pattern analysis (e.g., point 

processes, Diggle 2003), the geometries, spatial characteristics, topological 

constraints, and other attributes can be incorporated effectively to produce realistic 

fracture networks. 
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Fractures are three-dimensional geometrical entities that are more or less 

complex both in the shape of each individual fracture (geometrical formation) and 

in the manner in which they are dispersed in space (spatial formation). The pattern 

of fracture locations, or fracture network dispersion pattern (Diggle 2003; Baddeley 

et al. 2006), is associated with the stress regimes in rock mass. The stress regime is 

formed due to physical, mechanical, chemical and other governing processes in the 

system so-called the underlying processes. Other attributes are orientation, size 

(~length), shape, aperture, roughness (see e.g., Dershowitz and Einstein 1988). 

These characteristics are basic geometrical and spatial characteristics describing 

the system of fractured rocks. They are subjects of modelling fractures and fracture 

network in order to achieve a realistic and so reliable picture of the system (e.g., 

geothermal energy system) which in turn helps to improve our understanding 

about governing processes. Therefore, the geometry of fracture and topology of 

fracture network are critical factors to describe the entire system in a sense that 

they define closely the behaviour of the fracture network against phenomena being 

studied such as fluid flow through fractures. 

Two-dimensional representations 

Fractures in two dimensions are represented by their trace lines on a sampling 

surface (a flat plane including outcrops, tunnel walls; example shown in 

Figure ‎1.3), on borehole logging (core and images). The distinguishing 

characteristic of this type of modelling is that fractures (trace lines) are straight 

lines (often finite line segments). Therefore, the third dimension of a real three-

dimensional fracture, which describes particularly the dip and the shape of 

fractures, is not incorporated in two-dimensional modelling. This type of modelling 

is carried out when there is no three-dimensional measurement available of 

fracture systems, as, for example, in sampling from outcrops in the field. 

Furthermore, they are shown useful for preliminary evaluation of concepts and 

proposals as a common practice in the literature. 

For example, Baecher (1983) conducted statistical analysis of fracture traces to 

examine various biases involved in the field measurements. The work concludes 

that the orientation, size and censoring biases (Laslett 1982) are dominant. Chilès 
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(1988) investigated fractal and geostatistical properties of fracture networks. The 

work also proposed a framework to generate spatially correlated three-dimensional 

fracture networks using disk-shaped fractures. A review by Dershowitz and 

Einstein (1988) discussed various models for fracture networks in two and three 

dimensions mainly categorised into two groups: disaggregate and aggregate 

characterisations. In the former, statistical distributions (Figure ‎1.6) are used for 

modelling attributes of each fracture, while in the latter the simulated fracture 

networks determine the attributes of resulting fractures. A more recent work by 

Renard and Allard (2011) reviews the lattice-based connectivity property of 

fracture networks mainly focusing on two-dimensional investigations. 

Interestingly, all the above example works are based on two-dimensional case 

studies. The main reason perhaps is that two-dimensional fracture networks 

provide a simple and useful framework for exploratory analysis. Exploratory 

analyses are better conducted on two-dimensional graphs due to their easier 

demonstrations. Note that in exploratory evaluations, visual inspection play 

critical role. Even though in some cases there is no further complexity in extending 

the method of analysis to three dimensions, e.g., in lattice-based connectivity 

analysis (see Pardo-Igúzquiza and Dowd 2003), two-dimensional studies still 

remain a primary choice for developing concepts and establishing theories; and it is 

also the chosen practice in this thesis. Often the only obstacle to extending a two-

dimensional concept to three dimensions is the implementation of the associated 

computer code. Many of the ideas, developments and proposals in this thesis are 

based on two-dimensional fracture networks although in some cases three-

dimensional extensions are developed, demonstrated and discussed, and some 

algorithms and/or pseudo-codes are presented. 

Briefly, for two-dimensional fracture network modelling, as fractures are 

represented by line segments, the main focus is on determining location, length 

and orientation attributes. In a very simple case, fracture lengths are assumed to 

be infinite i.e., traversing the entire study area. Orientations can be limited to two 

orthogonal directions. Locations can be obtained from a uniform distribution 

function. In an advanced formulation, however, locations are determined by means 

of Poisson point processes (see Sects. ‎2.1.3 and ‎2.1.12 and Baddeley 2010) 
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providing plenty of patterns including homogeneous, inhomogeneous dispersion 

templates. Orientations follow a von-Mises distribution which is a bell-shaped 

distribution on the interval –  to  . Lengths are obtained from power-law 

distribution functions including exponential and lognormal (Bour and Davy 1999; 

Sect. ‎2.1.12 and Figure ‎1.6). The above procedure is sometimes referred to as a 

Poisson line segment process (Warburton 1980). Further details, demonstrations 

and discussions are given in Chap. 2. 

  

Figure ‎1.3: A real three-dimensional fracture network, the Leeds Rock Fracture Dataset 

(Dowd et al. 2009). On the right, fracture trace lines are generated by means of 

intersections between fractures and a horizontal plane (red rectangle). It follows that 

fracture trace lines can be simulated by means of appropriate distribution functions for 

their locations (e.g., Poisson), length (e.g., Power-law) and orientation (e.g., von-Mises). 

Three-dimensional representations 

In three dimensions it is common practice to model a fracture by a flat plane. In 

the simplest cases, it is modelled as an infinite plane, or as simple geometrical 

shapes such as a circle or an ellipse (Figure ‎1.4); recommended reviews are 

Dershowitz and Einstein 1988; Staub et al. 2002. A more recent trend is, however, 

to model fracture networks as a set of polygonal fractures which are randomly 

positioned in space. Figure ‎1.3 shows real measurements of fractures in three 

dimensions. They clearly form polygons. Polygonal representations of fractures 

may serve as a flexible framework to address the complexity of real fracture 

networks (example shown in Figure ‎1.3). Generally, a set of assumptions is made 

prior to building a model of fractures and fracture networks. For example, a 

fracture in modelling is assumed to have a planar shape (flat plane or ellipse etc.; 
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planar polygons). Note that each side of the fracture is called a fracture surface, 

which is commonly considered to be flat but can also incorporate roughness. The 

aperture spacing of a fracture is much smaller compared to the length of fracture 

i.e., five or more orders of magnitude smaller (Odling 1991). The length of a 

fracture is defined as the longest dimension of its shape. The most significant 

determining characteristics of a fracture in a three-dimensional representation 

include length (one or several scalars depending on the complexity of the fracture 

shape) and orientation (commonly two angles are adequate). A third important 

characteristic, the location of fractures completes the modelling stages for 

generating fracture networks. Hence, three-dimensional modelling follows the 

same procedure as two-dimensional modelling. Figure ‎1.4 presents chronological 

(almost from A to G) developments in the modelling of three-dimensional fracture 

networks. Only a brief explanation of these methods is given here. Three 

orthogonal orientations with infinite fracture sizes are the main features of the 

method (A; Snow 1965) in Figure ‎1.4. It is simple but has no real application. A 

model proposed by Baecher (1983) in which fractures are circular disks is shown in 

Figure ‎1.4B. In the Enhanced Baecher method (proposed by Geier et al. 1988) 

fracture disks can clip one another providing incomplete disks. The “Baecher 

Algorithm Revised Terminations” (BART) model (Dershowitz et al. 1998) in 

Figure ‎1.4D is a generalisation of the Enhanced Baecher method by incorporating 

non-uniform random locations for fractures. Furthermore, in this method fractures 

are generated in two stages. The first generation acts as parent fractures around 

which the second generation is propagated (similar to the parent-daughter 

recursive method). The Veneziano model (E; Dershowitz 1984; Einstein 1993) in 

Figure ‎1.4 is significantly different from the others and in which fracture shapes 

are polygons resulting from intersection between pairs of randomly oriented 

Poisson planes (Dershowitz 1984). Model (F) in Figure ‎1.4 demonstrates the effect 

of incorporating the location point density resulting in fracture networks with 

varying density (see further in Dershowitz and Einstein 1988). Finally, model (G) 

in Figure ‎1.4 shows the use of a simple discrete fracture network modelling 

technique. Readers are referred to Staub et al. (2002) for a much longer list of 

methods with details. Regardless of the method of generating fracture network in 

Figure ‎1.4, even wider patterns can be easily synthesised by advanced application 
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of marked point processes (Illian et al. 2008), which have been used in this thesis 

for two- and three-dimensional fracture networks. Also note that, most of the 

described models are too simplistic for satisfactorily modelling fluid flow for which 

the geometry and topology of fractures and fracture networks are determining 

factors. As a quick note, the use of arbitrary shaped polygons is recommended as 

can be seen in Figure ‎1.3, for example, which is a real fracture network measured 

in a block of granite (Dowd et al. 2009). 

 

Figure ‎1.4: A historical visual review of fracture modelling proposals in the literature. (A) 

Orthogonal, (B) Baecher, (C) Enhanced Baecher (fractures can clip each other), (D) BART 

(random size), (E) Dershowitz (complex shapes on a plane), (F) Density model 

(inhomogeneous) and (G) Randomized polygonal shapes (images from Staub et al. 2002). 

An example of a three-dimensional fracture network is shown in Figure ‎1.5 for 

which fractures are generated independently by means of distribution functions for 

lengths and orientations (details in the next chapter). The location of fractures in 

the network is determined by a Poisson point process. The number of fracture is 

319 and the case is considered medium in complexity. This method overcomes all 

the difficulties in the previous models listed in Figure ‎1.4. The termination 

procedure can be applied on fractures if required as a post-processing stage. One 

may use random functions (simple accept / rejection criterion) to determine which 

fracture is to be trimmed. Applying other types of constrains is also 

straightforward. 
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Figure ‎1.5: Realistic model of fractures and fracture network using polygonal shapes for 

fractures generated and distributed by means of marked point processes. Comparing this 

simulation with the real fracture data set shown in Figure ‎1.3(left) shows a high match 

with reality. 

Once a fracture network has been simulated and validated against the specified 

characteristics (e.g., distribution functions and reproducing conditioning data 

values where they exist) the next stage is to characterise the established model. 

This aim primarily is achieved by investigations on realisations from the models. 

The output of investigations may be generalised by means of E-Type methods for 

particular purpose. A number of examples are given in the following chapters. 

Characterisation of models 

Characterisation of a synthesised fracture network model depicts its significant 

features which are subject of comparison between different models. Features are 

density, statistical and spatial properties, intersections between fractures in the 

fracture network, connectivity (see also Chilès and de-Marsily 1993). Density 

estimations may include location points, line or plane density evaluations, 

intersection density and block density. Intersections between fractures build 

connected fracture groups (clusters). Spatial properties of fracture clusters and 

their statistics (e.g., connectivity measures) are also determined. Fracture clusters 

may provide pathways between two points (say, inlet and outlet stations in fluid 

flow modelling applications) which in turn provide a means to model flow of fluid 
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and or heat. Fracture network connectivity has been widely studied in the 

literature where it usually means cell-based (also called lattice- or grid-based) 

evaluation of connectivity (examples include Robinson 1983; Renshaw 1996; Bour 

and Davy 1997; Pardo-Igúzquiza and Dowd 2003; de-Dreuzy and Erhel 2003; 

reviews by Michaelides and Chappell 2009; and Renard and Allard 2011). While 

connectivity is seen between cells or in a grid, the focus of the reports is on cell 

(edge) neighbourhoods and is related entirely to percolation theory (Stauffer and 

Aharony 2003) in which any established connection between two sides of a study 

area is quantified. The large volume of work in percolation theory is based on grid 

networks providing two sub-systems: site percolation and bond percolation. For the 

use of percolation theory in its traditional form, fractures in two- or three-

dimension need to be projected onto a grid (Odling 1991) or, discretised as cells. 

Both methods degrade the connectivity into the connectivity of grid lines or cells. 

Evaluation of connectivity in lattice-based methods is straightforward; however, 

induced biases due to degradation are not negligible. Whatever the method used to 

estimate the connectivity, the initial step in these methods is to discretise fracture 

networks into a course grid. Usually, the cell dimension in a grid compared to the 

fracture aperture is larger by several orders of magnitude. Note that the difference 

between the size of fracture length and its aperture is usually over five orders of 

magnitude i.e., the length is     times larger. Thus practically speaking, it is 

infeasible to increase the resolution of discretisation to decrease the effect of 

discretisation. As a result the positive false bias is particularly predominant. 

Chapter 6 of this thesis covers an extensive list of techniques and concepts for the 

characterisation of fracture networks.  

Data collection and statistical inference of model parameters 

Fractures can be sampled on surface outcrops (natural or man-made) in the field. 

This is common in geosciences for measuring joints, faults. Measurements may 

include the location, dip-direction (azimuth), dip (if possible) and the length of 

fracture traces. Data can also be gathered from underground works e.g., tunnels 

and mining activities. In other cases, drilling is used to access below the surface for 

data gathering (well-logging). There are several techniques for fracture sampling 

via boreholes. For example, measurement of the fracture traces on the cores or on 
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photographs taken of the walls of the borehole. Geophysical signals 

(electromagnetic, seismic etc.) can be used to penetrate deeper into the rock and 

measure the fractures around the borehole. For very deep cases such as EGS it is 

common practice to use the seismic events produced by injecting large volumes of 

high-pressure fluid into the rock mass to stimulate the propagation of fractures; 

these events are usually the only data available on any meaningful scale. Further 

development or holding of an active EGS is closely dependent to successful 

stimulations. Fractures under stimulation pressure are expanded. Some new but 

relatively smaller fractures are also created. During the expansion due to 

fracturing and hydraulic pressure movement of rock blocks occurs which generates 

micro-seismic events. Micro-seismic events are recorded by means of geophones. In 

Fadakar-A et al. (2013a) a practical characterisation of fracture networks by means 

of a specific random sampling technique (called RANSAC) on micro-seismic point 

cloud data has been proposed. 

 

Figure ‎1.6: Commonly used distribution functions in fracture network modelling. Those 

without a negative tail and having a long positive tail are commonly used for modelling of 

the length of fractures. Gaussian distribution in its polar form i.e., von-Mises distribution is 

used for orientations. Poisson distribution is used indirectly to model the location of 

fractures in space satisfying complete spatial randomness criterion. This figure is not 

meant to exclude the use of any other distribution for any of the attributes of fractures and 

fracture networks. 
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1.6 Summary 

Fracture and fracture network modelling is a truly multi-disciplinary research 

area. Although there is a large volume of publications is this area, the research is 

still challenging and very active. The complexity of realistic fracture networks in 

their geometrical characteristics, which in turn determine static and dynamic 

mechanical properties of rock blocks, lack of direct measurements, uncertainty 

involved in indirect measurements make the characterisation of fracture networks 

a very challenging problem. Having this said, the results of characterisation are 

essential in the evaluation of the response of fracture system against stress regime 

and fluid flow (Dverstorp 1991), for example. Thus as our understanding of the 

effective factors in the geometrical modelling of fractures and consequently 

topological properties of fracture networks increases, more accurate and thus more 

reliable results may be expected from corresponding analyses. As a determining 

factor the inter-connection between fractures needs to be well understood for 

evaluation of fracture network response against fluid flow, for example. To a 

limited extent, during simulation, the fracture network connectivity can be 

controlled by adjusting the defining distribution functions for fracture and fracture 

network parameters (locations, orientations etc.). Either a fracture network is a 

simulated model or measured in the field, a suitable means is required to 

characterise its connectivity properly. The loss of fracture connectivity information 

while discretising (which is predominant in traditional connectivity measures) is 

significant even if high resolutions (assuming them feasible) are used. This is 

basically due to fact that the aperture dimension of a fracture compared to its 

length is very small. A more accurate solution would be that if the discretisation is 

necessary the connectivity information between fractures to be kept invariant to 

the discretisation resolution. Such a method promises more reliable connectivity 

evaluations, indeed. 

In Chap. 2, several issues in fracture and fracture network modelling are 

addressed resulting in practical solutions to simulate realistic fracture networks 

suitable for various needs and configurations. The proposals overcome the over-

simplification issue found in the existing literature (see Figure ‎1.4) regarding 
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geometrical modelling of fractures and the associated topological constraints. The 

algorithms are straightforward (thus practical), effective and capable of dealing 

with any type of complexity and pattern in the fracture network. In this chapter, 

terminologies are explained, demonstrations are given and related discussions are 

made. New techniques to generate fractures and fracture networks are also 

presented. It is critical to understand how fracture networks are generated in a 

way that keeping a high consistency with the observations in the field if exist. 

Chapter 3 is a conference paper with the main focus on fracture network modelling 

in which some new findings are presented. Next, Chap. 4 is a journal paper on 

generating fracture networks conditional to real micro-seismic events data. 

Chapter 5 is another journal paper on modelling fracture networks incorporating 

spatial characteristics. Next, Chap. 6 is a comprehensive set of techniques and 

novel contributions to characterise fracture networks from various aspects. This 

chapter is dedicated to characterising fracture networks with the intention of 

providing practical tools for detecting hidden features of fracture networks. This 

helps to establish criteria for comparing fracture networks, associating their 

behaviour with the model characteristics and, ultimately, increasing our knowledge 

of fracture networks. Chapter 7 is another journal paper on a new proposal, 

connectivity field, to characterise the connectivity of fracture networks without loss 

of inter-connection information of fractures, as is the case with traditional lattice-

based connectivity methods. Applications of connectivity measures, particularly the 

connectivity field and connectivity index are presented in Chap. 8 which is another 

journal paper and also a conference paper. Chapter 9 is another conference paper 

on further applications of connectivity measure to optimising well locations in 

fractured-based reservoirs. The thesis is concluded with Chap. 10. 

List of Papers (C: Conference; J: Journal): 

 A General Framework for Fracture Intersection Analysis: Algorithms and 

Practical Applications. (C, Chap. 3) 

 The RANSAC Method for Generating Fracture Networks from Micro-

Seismic Event Data. (J, Chap. 4) 

 A Spatial Clustering Approach for Stochastic Fracture Network Modelling. 

(J, Chap. 5).   
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 Connectivity Field: A Measure for Characterising Fracture Networks. (J, 

Chap. 7) 

 Connectivity Index and Connectivity Field towards Fluid Flow in Fracture-

Based Geothermal Reservoirs. (C, Chap. 8) 

 A Connectivity-Graph Approach to Optimising Well Locations in 

Geothermal Reservoirs. (C, Chap. 9) 

1.7 Research objectives 

In this research the main focus was on characterising fracture networks with 

emphasis on evaluating and improving existing methods, proposing and developing 

new concepts and methods, and an attempt to bridge the gaps between theoretical 

and real world applications. The research has followed a step-by-step development 

by firstly working on theoretical concepts (Chap. 1 and 2), then on fracture network 

generation frameworks (Chap. 2, 3, 4 and 5), on methods to characterise generated 

fracture networks (Chap. 6, 7, 8 and 9) and finally on connections between the 

proposed or discussed theories, introduced methods and real world applications 

with case studies (Chap. 8 and 9). Briefly, (i) fracture network modelling, (ii) 

characterising fracture networks and (iii) applications of the research findings are 

three main components (and stages) of this research/thesis. Each stage includes 

fairly a comprehensive study of fundamentals, issues, existing solutions and 

introductions to the original proposals and solutions presented in this thesis. 

Within the context of the above objectives there are several secondary objectives 

(computer codes, EGS applications/case studies and so on), processes to generate 

DFN based on original concepts of fracture development, extension and 

termination; and theories to facilitate the visualisation, quantification and 

interpretation of network characteristics have also been developed. A complete 

Matlab package was also programmed (Appendix 2) to facilitate the development of 

the ideas, theories and the evaluation of the results. In the application of DFNs to 

geothermal reservoirs, the development and then application of several theories on 

lengths, apertures and connectivity of fractures and how these characteristics 

influence the flow of fluids through networks are presented. 
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1.8 Fracture network modelling 

In the next chapter as the first stage of the triple study stages (mentioned in the 

previous section) in this research, fracture network modelling is introduced, 

existing methods are reviewed and several original concepts, theories and methods 

are proposed and discussed. As the understanding of fracture network generation 

is improved better understanding can be achieved in the subsequent stages i.e., 

characterisation and applications. All these contribute to clearer understanding of 

various aspects of fracture networks both in theory and real world applications. 
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In the previous chapter a brief literature review of the fundamental understanding 

of the concepts being studied in the research was presented. As the first main stage 

of this research (also a main component of the thesis) fracture network modelling is 

a critical stage as it affects significantly all the subsequent stages. A more realistic 

fracture network model promises more accurate and more reliable characterising 

and application stages. A fundamental study of fracture network modelling 

concepts and methods is presented in the following sections. This chapter may also 

form a useful future reference on the concept of fracture network modelling. 

2.1 Definitions and terminology 

2.1.1 Point 

A point is the simplest geometrical object with zero dimension but fully specified by 

its location in Ed, where E is the Euclidian space in d dimensions (Corrochano 

2005). A fracture as a three-dimensional object can be represented by a point (e.g., 

its geometric centre, see next section) thus its location is simply described as 

coordinates        ∈   . Similarly, fracture clusters (Sect. ‎6.13.1), fracture hyper-

clusters and fracture networks can also be located by a point. 

                   |             ∈     ∈    (‎2.1) 

From the definition in (1), the location of a point can have arbitrary number of 

dimensions ( ); while commonly a pair of two (i.e.,         for fractures in two-

dimensional space, fracture traces) and three (i.e.,           for fractures in 

three-dimensional space) real numeric values is used (Haining 2004). These 

examples refer to usual meaning of the term dimension which is based on spatial 

distances. Adding the time as the fourth dimension which is already common (e.g., 

in seismic investigations) advances the definition of location into a combined 

measure of spatial and temporal differences. In a more advanced and slightly 

abstract application, the term location can be extended even further to incorporate 

any additional attributes such as proximity to neighbouring points and density of 

points (Illian et al. 2008). This type of representative feature abstraction has many 
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other applications and, for points, it has been developed extensively as the theory 

of marked point processes, for example. Objects can be represented by points 

irrespective of their size, shape, complexity and frequency. Attributes can be 

associated then with the points as marks. This method of representation is used 

throughout this thesis for evaluating and developing ideas and proposals. 

2.1.2 The Centre of Geometry 

The most representative location point for a geometrical object (O) is its Centre of 

Geometry (CoG, or geometrical centre; Murayama and Thapa 2011). For 

geometrically complex shapes CoG is preferred over the commonly used and 

physically intuitive centre of mass (CoM, Weltner et al. 2009). The difference 

between these two centres is better apparent when there is a spatially 

inhomogeneous dispersion of shape-determining points on the boundary of object. 

For example, assuming three-dimensional fractures are flat polygon objects with 

either evenly distributed mass or fully void the CoM can easily be found by 

averaging the coordinates of their vertices (i.e., boundary points). However for 

fractures with spatially-uneven located vertices the CoM will be closer to the 

denser areas in terms of number of points thus will be biased (Figure ‎2.1). The CoG 

incorporates the distance between two adjacent vertices, i.e., edges. Hence every 

fracture, whether two- or three-dimensional, is an object that can be robustly 

located by its CoG (see Figure ‎2.1). 

         (‎2.2) 

As a result of representing fractures by their CoG (a single point) they can be 

analysed by several well-developed methods including Point Processes (Diggle 

2003; Baddeley et al. 2006; Baddeley 2010) and Spatial Analysis (Murayama and 

Thapa 2011). Some applications are discussed in Chap. 6. 
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Figure ‎2.1: CoG vs. CoM; CoG is resistant against density of points (vertices) and thus more 

suitable for representing fractures. 

 

2.1.3 Point processes 

In a broad sense, point processes are stochastic models applied to point patterns 

(Illian et al. 2008). Point patterns, either regular or irregular, can be generated by 

means of stochastic simulations. A particular regular pattern can also be 

considered as a customised realisation of a stochastic model. A realisation of a 

point process is often called a point pattern (Diggle 2003). Pattern analysis 

(Corrochano 2005) is a broad branch of computer science and is applied to points 

and other objects. An object, regardless of the complexity of its shape or any other 

attribute, can effectively be modelled by means of point processes, associating each 

attribute as a mark (Descombes and Zerubia 2002) of the point process. The 

effectiveness of application of marked point processes in fracture network 

modelling is basically affected by the level of representativeness that the model 

offers. Every mark is modelled in order to address some important attributes of the 

fractures or fracture networks. There is a trade-off, however, between the number 

of marks and the complexity of model for which an ultimate solution would be case-

based evaluations. 
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2.1.4 Line 

A line is the simplest one-dimensional object and is completely specified by its end-

points, P1 and P2 (Weltner et al. 2009). It can also be specified by a point and an 

angle (α). Note that the term line usually means a finite line i.e., a segment. Thus, 

for a complete description of the second form the length (l) is required. 

                 or                (‎2.3) 

The intersection of a fracture with an exposed surface, such as an outcrop, 

appears on that surface as a line, commonly called a fracture trace line (Odling 

1992) or simply a trace. Without loss of generality one may consider a trace as a 

straight line. The intersection of two traces is therefore a point. In three-

dimensions the intersection of two fractures is a line or a point depending on the 

shapes of the fractures and their relative arrangement in the three-dimensional 

space (position and rotation; refer to Chap. 3 and or Fadakar-A et al. 2011). 

2.1.5 Polygon 

A set of connected lines forms a polygon. Fractures in three dimensions can be 

modelled by convex polygons (Goodman and O'Rourke 2004). Curved fractures can 

be easily flattened onto some tangents producing a set of simple convex flat 

polygons. Hereafter polygon is meant as flat polygon. Convex polygons are 

standard for robust geometrical operations (e.g., intersections; Toussaint 1985). A 

quadrangle, quadrilateral which is the simplest four-vertex convex polygon, is 

commonly used to model three-dimensional fractures (Blocher et al. 2010). Any 

quadrilateral representation of a fracture can be approximated by an ellipse. The 

elliptical representation of fractures is commonly used, and widely reported in the 

literature (CFCFF 1996), primarily because of its simplicity in parameterisation. It 

is  worth noting that there are, however, significant errors in this simplification 

especially in the approximation of fracture intersections. In light of CoG concept 

(see Sect. ‎2.1.2), it can be generalised that there are very rare cases in which CoG 

of an ellipse would match CoG of the original polygonal fracture. Also note that the 

area and permitter of a modelled ellipse would be significantly different than of the 
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fracture. These errors are more problematic when dealing with fracture network 

modelled by ellipses in order to analysis the connectivity, intersection and topology. 

In addition, any statistic inferred from elliptical approximations of fractures is 

likely heavily biased. On the other hand, polygonal modelling avoids all the above 

mentioned problems as it matches any complexity in the shape of fractures either 

perfectly or with a negligible approximation. Polygonal representation delivers: 

high effectiveness in modelling, high performance computation, high accuracy in 

fitting, high flexibility in dealing with complexity in fracture shape and high 

realism in modelling of fractures and fracture networks. 

2.1.6 Convex-hull 

For any subset S of points in Ed, the convex-hull is the smallest convex set 

containing S (Preparata and Shamos 1985). A convex-hull is also a polytope defined 

by its boundary. In two dimensions, a convex-hull of a set of points is a convex 

polygon and in three dimensions it is convex polyhedron. Fracture network in 

general while is represented by points either CoG or vertices can be covered by 

convex-hulls. Several algorithms can be used to compute convex-hulls for points in 

two and three dimensions, including: Graham‟s scan, Jarvis‟s march, quick hull, 

divide-and-conquer, dynamic convex-hull for points in two dimensions; gift-

wrapping and beneath-beyond for points in three dimensions (see Preparata and 

Shamos 1985 for details). 

2.1.7 Smallest enclosing circle, ellipse, sphere and ellipsoid 

The smallest enclosing circle (SEC), ellipse (SEE), sphere (SES) and ellipsoid 

(SEEd) are the smallest circle, ellipse, sphere and ellipsoid, respectively, enclosing 

a set of points (Gartner and Schonherr 1998). If the shape of a fracture in three-

dimension is approximated by a circle or an ellipse, SEC and SEE are useful to 

determine the size and orientation parameters, for example. 

2.1.8 Largest Empty Circle, Ellipse, Sphere and Ellipsoid 

An empty part of a space can be generalised into a largest empty circle (LEC), 

ellipse (LEE), sphere (LES) or ellipsoid (LEEd) (Toussaint 1983). For fracture 
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networks determining the size of an empty space can be useful for a variety of 

purposes including, but not limited to, safety risk evaluation and reservoir 

expansion (e.g., in enhanced geothermal systems). This is an important task for 

locating stations of hazardous waste storages beneath the ground in proximity of 

fractured areas. It has also applications for determining sub-areas with minimum 

probable tectonic activity. These measures can also be useful for characterising 

fracture networks to predict the productivity of reservoirs in terms of potential 

flow. Refer to Sect. ‎6.5 for demonstrations. 

2.1.9 Triangulation  

Triangulation (Boissonnat and Yvinec 1998; Okabe et al. 2000) is a procedure to fit 

a set of non-overlapping triangles to a finite number of points. For points in three 

dimensions the computational complexity of triangulation is         . It is used to 

generate two-dimensional simplexes (i.e., triangles) from sampling points in a 

study region or on a fracture surface. In three dimensions a fracture can be 

efficiently triangulated using any of the available algorithms (refer to Sadoyan et 

al. 2006). The resulting triangulation gives better performance and robustness for 

geometrical operations and is also a standard for visualisation. In addition, 

triangulation is vital part of meshing (Persson 1997) in any finite differential 

method in engineering including finite elements methods (Liu and Quek 2003; 

Paluszny and Zimmerman 2011). 

2.1.10 Delaunay and Voronoi tessellations 

The main purposes of triangulation are to model surfaces and to estimate 

proximity. The resulting triangles can be used to create the Delaunay (Boissonnat 

and Yvinec 1998) and Voronoi tessellations (Boissonnat and Yvinec 1998) which 

are standards for partitioning the space. Delaunay and Voronoi tessellations are 

dual and so each can be constructed by means of the other. In two-dimensions a 

Voronoi tessellation is a convex polygonal partitioning of a space while in three-

dimensions it is set of convex polyhedrons. A Voronoi polygon is defined as: 
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      ⋂        

   

 (‎2.4) 

where H is the half-plane containing the set of points closer to Pi than Pj. An 

example of Voronoi tessellation (sometimes also called a Voronoi diagram, Voronoi 

partition or Voronoi decomposition) is shown in Figure ‎2.2. Note the treatment of 

the edge effect in Voronoi diagrams. Figure ‎2.2(left) shows a Voronoi diagram in 

which no edge correction is applied. Two common approaches to edge correction are 

the periodic network (Okabe et al. 2000) and the buffer zone, each of which use 

additional points surrounding the region to be tessellated. In the periodic solution 

every edge meets the opposite edge whereas in the buffer zone correction the 

additional points are generated using random functions. Moreover, in the periodic 

solution the additional points are exact, translated copies of the original points and 

there is thus an implicit assumption of stationarity and homogeneity in the point 

pattern. If the pattern is not homogeneous, (e.g., with a systematic trend in point 

density from left to right) the periodic approach gives even worse results 

(Figure ‎2.3). In the buffer zone method, the additional points along each edge of the 

region can be chosen such that to reflect the local patterns of points near those 

edges. 

 

Figure ‎2.2: Edge effect for a Voronoi diagram. (a) no correction, (b) periodic network 

correction, (c) buffer zone solution. 

It can be concluded that there is no uniquely optimal choice of edge correction 

for a given point pattern (see Figure ‎2.3 for an example of issues). Eventually, 

depending on the purpose of the application and the pattern of points, the choice of 
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method is determined, somewhat subjectively, by the extent to which a satisfactory 

tessellation is achieved. As shown in Figure ‎2.3 visual inspection may be required 

to avoid additional complexity and biases. For the example shown, if the purpose of 

tessellation is to partition the study region according to the locations of sample 

points, a noticeable number of Voronoi cells are excluded (red blocks) and thus, in 

this case, the periodic network edge correction is not recommended. Finally, it 

should be noted that if no edge correction is made to a Voronoi tessellation it is 

basically assuming there are no points outside in the neighbourhood of the study 

region. 

  

Figure ‎2.3: The periodic boundary edge correction of a Voronoi diagram may fail to generate 

a satisfactory tessellation if the point pattern is not homogeneous. The red parts are 

Voronoi blocks (cells) that do not contain a point and these are, thus, redundant. 

Shortcomings such as this inhibit the application of the periodic method as the associated 

error is apparently greater than not applying any edge correction. 

2.1.11 Mathematical Morphology 

The theory of mathematical morphology (Serra 1983; Kimmel 2003; Illian et al. 

2008) stemmed from set theory to characterise and transform geometrical 
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structures (shapes). It has also been widely used in computer sciences particularly 

for image processing (Serra 1983). Some demonstrations can be found in Kimmel 

(2003), for example. Two fundamental operations are dilation   and erosion   that 

are denoted as   and  , respectively. They are defined as follows (Kimmel 2003). 

           ⋃              ∈    ∈    

 ∈ 

 (‎2.5) 

and 

           

 ⋂ ⋃     

 ∈  ∈ 

 

        ∈     ∈     

           

 ⋂      ∈     

(‎2.6) 

Two other basic operations are closing ( ) and opening ( ) and are defined as 

follows (see Figure ‎2.4 for demonstration). 

       (     )           (‎2.7) 
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Figure ‎2.4: Fundamental morphological operations. Opening is combination of erosion and 

dilation; while in closing first dilation then erosion applies. Numbers in the main map are 

areas of blocks. Note that opening operation is more like mechanical erosion i.e., narrower 

the block more chance to be completely dismissed. Also note that how closing fills opened 

areas. 

If the medium consists of two distinguishably separable types, say, the fractures 

and the matrix in rock mass, a binary map of it can be subject of opening and 

closing operations. Commonly used reservoir simulations include indicated (binary) 

maps of few facies (also called Boolean maps, see Vogel 2002), which are suitable 

for ordinary mathematical morphology operations. The aim may be decreasing the 

noise by removing small isolated parts, for example, which can be easily achieved 

by application of opening and closing in an iterative manner. 

Synthesising fracture networks 

Three methods are used in this thesis for modelling and generating fracture 

networks. They provide a reasonable coverage of the forms (i.e., patterns) of 

fracture networks as observed in practice. The first method is Marked Point 

Processes (MPP, see for details: Diggle 2003; Illian et al. 2008; Baddeley 2010) in 

which fracture attributes are stochastically defined. Stochastic methods are 
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powerful to deal with lack of data (information). They provide means to 

encapsulate the uncertainty associated with the input data and also the resulting 

information. They are fundamentally based on statistical inference and so may 

provide more flexibility in the determination of governing factors. A point process 

is used to simulate fracture locations and marks refer to the attributes of the 

fractures (e.g., size, orientation) which are simulated at those locations. Marked 

point processes do not explicitly simulate interactions among fractures, such as 

intersections, terminations of one fracture by another or propagation of fractures 

(approaches to these are discussed in Sect. ‎2.4). The second, and most commonly 

used, method of stochastic fracture modelling is Discrete Fracture Network 

modelling (DFN, Dershowitz et al. 2000; Jing 2003; Jing and Stephansson 2007b) 

in which each fracture is generated independently of all others. DFN can provide 

very useful fracture models for analysing the flow of fluid through fractures, for 

example. The connectivity of fracture networks can be efficiently evaluated from 

the generated fracture networks (Xu et al. 2006; Renard and Allard 2011; Fadakar-

A et al. 2012; Fadakar-A et al. 2014). More sophisticated methods are required 

when there is a need to model blocks of rock (Block Theory, Goodman and Shi 1985; 

Windsor and Thompson 1996; Staub et al. 2002) produced by intersecting fractures 

(some solutions are discussed in Sects. ‎2.1.15, ‎2.1.16,  ‎2.1.17 and ‎2.4). 

2.1.12 Discrete Fracture Networks 

DFN starts by generating the location of each fracture in the study region. This is 

done by generating location points (e.g., representative points of fractures, say, 

CoG). In the next step, the size of fractures (length in two-dimensional cases) is 

generated and an orientation is assigned to each fracture. These three attributes 

i.e., location, size and orientation are essential marks; additional shape attributes, 

such as aperture, can be incorporated as complementary marks. In addition to 

these geometrical attributes there are other physical (mechanical) properties, such 

as roughness, porosity, permeability and transmissivity (CFCFF 1996; Singhal and 

Gupta 2010) that are important to be modelled properly. The concept of marks may 

assist to build a proper model for these attributes. Conceptually, in the DFN 

methodology there is no limit to the number of attributes to be incorporated in 

modelling. 
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Locations 

The point location of a fracture is the most fundamental attribute in DFN and it is 

initially defined by means of distribution functions (Kendall 2003). The resulting 

point pattern can be adapted more by applying concepts of point processes (Illian et 

al. 2008) such as thinning. The simplest pattern for a set of points is a regularly 

spaced grid (see Figure ‎2.5a), i.e., the systematic sampling pattern (Haining 2004). 

A more usual point pattern can be constructed by means of a uniform random 

function (Figure ‎2.5b) in which points are independently distributed in the study 

region. An alternative to uniform randomness is the clustering scheme in which 

points are distributed unevenly over the study region (Figure ‎2.5c). These three 

forms cover most patterns as any pattern other than these three can be made up by 

combinations of the three forms. If a pattern is stationary (invariant) in space, it is 

called homogenous otherwise inhomogeneous (see example in Figure ‎2.6, Diggle 

2003; Baddeley et al. 2006; Illian et al. 2008). An inhomogeneous pattern is a point 

process that has a variable density depending on the location in the study region. 

The density function (Xu et al. 2003a) can be simple or complex, linear or higher 

order. For example, a multi-Gaussian density map (parametric estimations, Xu et 

al. 2003b) can be used to generate clustered point patterns (see examples in 

Figure ‎2.5 and Figure ‎2.6). 

 

Figure ‎2.5: Point patterns: (a) regularly spaced, (b) randomly located and (c) clustered. Note 

that in all three patterns the number of points is 100; however, the resulting forms are 

significantly different. 

Random patterns are simulated using any random functions including uniform, 

Gaussian, Poisson, exponential distribution functions. Of these, the homogeneous 
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Poisson pattern is statistically known as a standard example point process which 

satisfies the Complete Spatial Randomness (CSR, Diggle 2003) criterion. A side 

comment is that depending on the subject of study other types of distribution 

functions can be justified with no limitation. 

 

Figure ‎2.6: Point patterns can be homogeneous or inhomogeneous. Inhomogeneous point 

patterns expose intensity function rather than a single density value for the points. In (b) 

the intensity function is       in which       . Both (a) and (b) have 100 points. 

In a similar way, location points can be generated for three-dimensional fracture 

networks as shown in Figure ‎2.7 (see further discussion in: Baddeley et al. 2006 

and Illian et al. 2008). 

  

Figure ‎2.7: Realisations of points in three-dimensions using (left) homogenous Poisson point 

process with the resulting intensity of 368 and (right) inhomogeneous Poisson point process 

(IPPP) with the resulting intensity of 682. The intensity function for IPPP was          

          . 
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A common approach to generating inhomogeneous point processes (Diggle 2003; 

Xu and Dowd 2010) is to generate a homogeneous Poisson point process with a 

global intensity function and then to thin the process by applying retention 

probabilities. The intensity function may be a well-defined parametric function in 

the space, a fine grid of individual density values, for example. A point is retained 

if either its local estimated density (Xu et al. 2003a; Freeden et al. 2010) is less 

than the corresponding grid cell or it fails the Metropolis rejection criterion 

(Kendall 2003; Illian et al. 2008).   

Orientations 

The orientations of fractures in rock masses are determined by the mechanical, 

stress field (Cosgrove 1998), geochemical and other factors, on local and regional 

scales. Probability distributions are convenient and widely used ways of 

summarising fracture orientations. The most common distributions used for 

fracture orientations in rock masses are the von-Mises (or the circular Normal) for 

two dimensions, the Fisher (or von-Mises-Fisher) distribution (a von-Mises 

distribution on the (   )-dimensional sphere in   ) for three dimensions and the 

uniform distribution (Dershowitz and Einstein 1988; Odling 1992; CFCFF 1996; 

Gringarten 1997; Fouche and Diebolt 2004; Gupta and Adler 2006; Fadakar-A et 

al. 2011). Some typical examples are shown in Figure ‎2.8: oriented, semi-oriented 

and with no particular orientation. Although there are significant visual 

differences, all three sets of orientations, were generated from von-Mises 

distributions by setting   equal to 1000, 10 and 0 for sub-figures a, b and c, 

respectively. The mean orientation is zero (horizontal) for all three simulations. 
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Figure ‎2.8: Same locations and same lengths but different orientations. In (a) fractures are 

mainly oriented E-W; (b) partially oriented towards E-W and (c) are randomly oriented. For 

(a) von-Mises distribution with        and       , for (b) with        and      

and for (c) with        and    . 

Any degree of orientation complexity can be achieved by combining several 

fracture orientations generated from von-Mises distributions. In the examples in 

Figure ‎2.8, the orientations were defined separately for each set of points. A more 

complex degree of complexity could be achieved by overlaying the three sets. 

Fracture Sets  

Fractures can be grouped into sets according to their orientations, lengths and 

locations. The sets may be defined on the basis of fracture characteristics or may be 

defined solely for modelling convenience, e.g., by the frequency of occurrence of 

fractures in directional intervals. Physically meaningful sets may be inferred from 

the chronological sequence of fracture propagation, by stress field orientations or 

any other physical or mechanical characteristic. For example, different orientations 

for fractures may result from different stages of compression or tension stress in 

specific directions. In addition, for anisotropic rock, fractures can be classified on 

the basis of their relative locations i.e., spatial settings (see also Dershowitz 1984). 

Lengths 

Fracture lengths can be modelled by probability distributions including the 

uniform, Gaussian, power-law, exponential and log-normal distributions, for 

example (Odling 1992; Gringarten 1997; Ozkaya and Mattner 2003; see also details 

in Riley 2005; Figure ‎2.9). The power-law distribution is a common model for 
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simulations in DFN. Power-law distributions (in a broader sense including 

exponential and log-normal distributions) have a very narrow long right tail 

meaning that there is a very limited chance of long fractures occurring or that 

shorter fractures are much more likely than longer ones. The likely cause of this is 

the energy required to propagate fractures in rock masses. Note that basically 

fracturing occurs when the stress exceeds the strength of the rock releasing the 

energy. Consequently due to release of energy the system becomes less active. Also 

note that larger fractures release larger amount of energy, therefore, due to this 

significant depletion of energy the probability of further large fracturing decreases 

dramatically. 

 

Figure ‎2.9: Same locations and same orientations but different models of lengths. In (a) 

fractures are all the same size; in (b) they follow a power-law (exponential) distribution 

truncated between [0.01, 0.9] and (c) they are infinite in length. 

Variations in the patterns of point locations, orientations and lengths generate 

very different fracture network models, such as those shown in Figure ‎2.10. Note 

that in each example in Figure ‎2.10 only one fracture set is generated; more 

complex fracture models can be generated by combining several fracture set 

models. Figure ‎2.10 is a demonstration of the ability of DFN modelling to generate 

significant complexity and variation in fracture network models to satisfy almost 

any natural situation whilst keeping the modelling procedure straightforward and 

practical. 
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Figure ‎2.10: Various fracture network models can be generated by combining location, 

length and orientation models. The examples shown demonstrate the flexibility of the 

approach to modelling almost any form of fracture network. 

2.1.13 Clipping and Cleaning 

Fracture network models are often used as inputs to various processes to evaluate 

their performance under a range of conditions. For example, the potential 

performance of an enhanced geothermal system could be evaluated by simulating 
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the flow of fluid through a fracture network model of the system. The ability of 

fluid to flow through the system is largely a function of the characteristics of the 

fracture network. Prior to such an application it is common practice to conduct a 

number of pre-processing operations on the fracture network model including 

clipping (Goodman and O'Rourke 2004) of fractures at the boundary of the study 

region (truncating as in Long et al. 1982) and cleaning up fractures resulting from 

clipping that are shorter than a specified length. If the length distribution function 

is not truncated at a lower threshold then artificially short fractures may be 

included in the fracture network model. When a fracture is clipped the vertex lying 

outside the region is removed and replaced by a new vertex on the boundary, i.e., 

clipping may generate a fracture that is too short to be consistent with the model. 

The cleaning up stage removes all artificially short fractures from the model; it is 

very important for stability and reliability of geometrical operations conducted in 

subsequent processing applications. As a geometrical operation applied to a FNM 

of a region   clipping is defined as: 

                    ∈      (‎2.8) 

An example of a clipped two-dimensional fracture network is shown in 

Figure ‎2.11. Robust and unbiased statistical analyses require a well-determined 

study region especially for stochastic modelling in which many realisations will be 

generated. Generally, as in Figure ‎2.11 because of the very limited number of 

fractures being clipped the quality of subsequent evaluations on clipped fracture 

network including the evaluation of the lengths remains acceptable. 
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Figure ‎2.11: Fractures are clipped at the boundaries of the study region. Clipping is 

followed by a cleaning up stage in which clipped fractures that are too short are removed 

from the network. 

For example, note the updated fracture centres after clipping, shown in 

Figure ‎2.12, which have much the same density distribution (shown as contour 

map) as the original FNM. 

 

Figure ‎2.12: After clipping a FNM, the centres of clipped fractures are updated. For this 

example, updating the fracture centres has no significant effect on the density map of 

centre points. 

2.1.14 Marked Point Processes 

Examples of various fracture networks generated by Marked Point Processes 

(MPP) are shown in Figure ‎2.13. The demonstrations show how adjustments in the 

parameters for orientations and lengths (marks) mimic less and more realistic 
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patterns of fracture networks. The locations in Figure ‎2.13 were generated by the 

homogeneous Poisson point process (number of fractures      ); orientations 

were produced by the von-Mises distribution (mean orientation   and dispersion 

factor  , varying values as shown in each sub-figure) and lengths were drawn from 

the truncated exponential distribution ( ∈          ). 

 

Figure ‎2.13: Fracture patterns generated by changing parameter values of a von-Mises 

distribution function for generating orientations of fractures. Pairs of values in captions 

refer to parameters for two different sets of fractures. 

2.1.15 Fracture growth concept 

Growing fracture network model (GFNM) is here proposed as a new method for 

synthesising fracture networks. In this method, the locations of fractures and 

associated orientations are generated in the same way as in MPP. The lengths of 

fractures, however, are determined dynamically as follows. Initially, all fractures 

have lengths equal to epsilon (   ), and then all fractures grow simultaneously 

and at the same rate from both endpoints. The growth of a fracture from each 
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endpoint stops as soon as another fracture is intersected or at the boundary of the 

study region (Figure ‎2.14). The resulting fracture network produces polygons (rock 

mass blocks, see Goodman and Shi 1985; Stone et al. 1996). The generated 

polygons (blocks) satisfy the assumptions of block theory including 1) fracture 

(joint) is straight line, 2) there is no incomplete fracture i.e., no free end, 3) blocks 

are rigid (Goodman and Shi 1985). 

 

Figure ‎2.14: Growing Fracture method; (a) 50 locations, (b) some fractures still growing, (c) 

the final result in which the growing process has stopped and a set of well-defined blocks is 

created. 

Applying the concept of growing fractures with various settings for the fracture 

network model (e.g., locations and orientations) can generate a wide range of 

fracture patterns that form rock blocks such as the examples shown in Figure ‎2.15. 

The method provides a useful means of generating blocks that interestingly 

conforms to field observations. 
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Figure ‎2.15: Rock blocks generated by means of GFNM for each setting listed in 

Figure ‎2.13. 

It is worth noting that, the concept of fracture growth can be readily extended to 

three-dimensional fractures. It requires, however, more complex geometrical 

operations in order to apply directional growth to three-dimensional fracture 

polygons and to evaluate collisions between them. The implementation is mainly a 

subject of computer sciences, computational geometry. 

Growing conditioned to existing fractures 

The method of fracture growth interestingly can also honour existing fractures in 

the study region, i.e., the conditioning of the model to the existing fractures in any 

amount or complexity requires no further adaptation. This is a valuable property of 

the method. For example, major fractures (e.g., faults) can be easily taken into 

account and thus the resulting fracture network (or its dual, the set of fracture 

blocks) is more realistic (Figure ‎2.16). 
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Figure ‎2.16: GFNM in which growing fractures are conditioned to the existing structures 

e.g., blue fractures etc. 

2.1.16 Voronoi tessellation 

Voronoi tessellation, as described in Sect. ‎2.1.10, is commonly used for generating 

rock blocks (Figure ‎2.17) e.g., in the UDEC package (Board 1989; Staub et al. 

2002). Although there are many developments in algorithms for computing Voronoi 

diagrams for various seeds including points, lines and shapes (Okabe et al. 2000), it 

is very difficult to include conditioning to existing fractures (see Okabe et al. 

(2000), Gavrilova (2008) and Velic et al. (2009) for proposed pixel-based solutions). 

Tessellation edge effects are treated using the methods discussed in Sect. ‎2.1.10, 

for example. 

 

Figure ‎2.17: Voronoi tessellation fracture network modelling method; (a) 50 locations, (b) 

Voronoi network and locations (c) the final result in which a set of well-defined blocks is 

also created. 
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2.1.17 Block theory 

Block theory (Goodman and Shi 1985; Windsor and Thompson 1996) is used in 

engineering applications, such as mining and civil excavation, largely to assess the 

safety and stability of structures in rock. It is a geometrically based set of analyses 

that determines the locations of potentially dangerous blocks of rock intersected by 

discontinuities, including fractures. The input to block theory analyses is in the 

form of polygonal shapes (polyhedrons in three dimensions) generated from 

fracture networks using GFNM, VFNM and other techniques. Stochastic models 

are useful for generating realistic models for use in block analysis (Dershowitz and 

Carvalho 1996; Jing and Stephansson 2007a). In addition, the methods presented 

so far and in the following sections demonstrate the effectiveness of stochastic 

methods for block theory (see also: Dershowitz and Carvalho 1996; Dershowitz and 

Busse 1996). 

2.2 Additional processing stages for fracture network 

modelling 

Here a set of procedures are proposed that can be applied to a fracture network 

model to achieve desirable patterns that mimic real fracture networks. For 

example, a random function can be used to simulate closed (Figure ‎2.18, filled, for 

example as a result of precipitation, CFCFF 1996) fractures; a fracture can be 

removed, shortened, thinned or left untouched on the basis of probabilistic 

acceptance or rejection criteria. This stage may involve all the fractures in the 

network or a selected subset of them. 
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Figure ‎2.18: Marking a subset of fractures as filled (closed due to precipitation, collapsing 

stresses etc.), so as to be removed from the fracture network. The criteria for removal is for 

the acute angle of the fracture to the horizon to be less than 30º and a probability of 

removal 70%; or 10% probability of removal for any fracture. 

2.3 Mathematical Morphology operations applied blocks  

As a proposed application the rock blocks generated by the growing concept or by 

Voronoi tessellation can be processed further using various morphological 

operations (see mathematical morphology in Kimmel 2003; Illian et al. 2008; see 

also Sect. ‎2.1.11). The erosion operation can, for example, be used to simulate the 

process of geological erosion (e.g., contact surface geochemical dissolution) or 

geotechnical (mechanical) rock erosion in the fracture network. The thinner rock 

blocks shown in Figure ‎2.19 are more affected by the erosion which is consistent 

with field observations of physical erosion. The morphological erosion procedure 

applies a negative and positive buffer to each block, sequentially (see details in 

Sect. ‎2.1.11). In Figure ‎2.19 the growing method produces thinner rock blocks 
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compared to those resulting from Voronoi tessellation. In the erosion operation 

thinner blocks more likely fully are removed. In reality, thin blocks can be seen in 

metamorphic rocks such as slates and also in layered sedimentary rocks. 

 

Figure ‎2.19: Blocks generated by GFNM and VFNM can be subjected to mathematical 

morphology operations such as erosion. These models simulate rock block erosion due to 

contact deformation or fluid flow, for example. It can be seen that GFNM is affected more 

than VFNM by the erosion procedure. The reason is the type of blocks. 

Application of morphology concepts to a fracture network model e.g., VFNM as 

shown in Figure ‎2.19, results in a fully connected fracture network in which the 

evaluation of fluid flow pathways is of interest. Note that the penny-shaped black 

spots in Figure ‎2.20 are due to the removal of nearby thinner blocks by the erosion 

operation. 
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Figure ‎2.20: Fully connected pathways (left), which can be used as input for evaluation of 

fluid flow (right) in fractured rock. 

2.4 Extension and trimming 

The termination of fractures is arguably related to the mechanical evolution of the 

fracture system (Manzocchi et al. 1998). In MPP models fractures may cross each 

other i.e., “X type”, touch the other i.e., “Y type”, or remain isolated, i.e., “I type”. 

The two types X and Y produce blocks, however, type I requires a post-processing 

stage comprised of an extension and trimming for producing blocks. Figure ‎2.21 

shows the blocks that result from extension and trimming. An endpoint of a 

fracture trace line is extended or trimmed depending on the cost (energy 

consumption) involved. It is assumed that the same amount of energy is required 

for one unit of extension or trimming. Note that in this method, denoted TFNM, 

some resulting blocks may be concave in contrast to GFNM and VFNM in which 

blocks are always convex. As in reality not all blocks are convex the resulting 

blocks of TFNM are therefore more realistic. 
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Figure ‎2.21: Blocks generated by extension and trimming. Fractures are extended or 

trimmed depending on the cost of extension or trim. This approach may result in convex or 

concave blocks. 

2.5  Three-dimensional modelling of fracture networks 

In three dimensions a fracture is better represented by polygon in its generic 

meaning providing convenient way to model any complex and unsymmetrical 

shapes. Other methods including circle, ellipse, rectangle and plane 

representations are too simplistic. In modelling methods, such as DFN, polygons 

are strictly convex so as to avoid unnecessary complexity in analytical and 

numerical solutions. This condition does not limit the modelling capability of the 

method as any concave polygon can be readily sub-divided into convex polygons. 

Restricting the polygonal representation to convex shapes also results in a robust 

framework for topological (connectivity) relationships in fracture networks. 

Furthermore, despite the apparent complexity of a general convex polygon 

compared to a circle, ellipse or rectangle, the geometrical operations are 

straightforward if not more efficient (see Goodman and O'Rourke 2004). For 

example, joining a set of topologically ordered points (forward joining) defines a 

convex polygon using the method demonstrated in Figure ‎2.22. In this proposal 

either the enclosing domain is a circle or an ellipse, a set of random values in [0, 

2π) (angles) are generated and sorted. The vertices of the polygon are then 

determined by lines of orientation   and lengths equal to the chords these lines 

make with the circle or ellipse. 
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Figure ‎2.22: A simple but robust method to generate polygonal fracture shapes for three-

dimensional fracture network simulations. The method is based on generating convex 

polygons enclosed by a circle or an ellipse. As shown the latter provides a means of 

accounting for anisotropic shapes. The variety of the shapes in both examples demonstrates 

the ability to accommodate almost any polygon. Also note the size variation in the second 

method (ellipse). 

The next stage is to generate locations and orientation angles to be applied to 

simulated fracture polygons. Fracture locations can be generated by a Poisson 

point process (see Sect. ‎2.1.3 and ‎2.1.12), for example. Orientations are generated 

from a Fisher distribution (Sect. ‎2.1.12). That is, setting the   parameter in the 

distribution affects the dispersion of fracture orientations around a chosen mean 

orientation vector in a three-dimensional fashion. It is worth noting that a 

bivariate Gaussian distribution of points if projected on the surface of a sphere 

generates exactly what Fisher distribution produces. By translating the CoG of 

fracture polygons to the simulated location points and applying three-dimensional 

rotations according to simulated angles a three-dimensional fracture network is 

built. An example three-dimensional fracture network (with 150 polygonal 
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omnidirectional fractures) as a result of application of described method is shown 

in Figure ‎2.23a. 

It is also worth noting that, many of developed and proposed ideas in this thesis 

can be applied either straightforwardly or with some efforts on three-dimensional 

fracture networks. This is not however the focus of this thesis by any means, 

although, time to time some recommendations are given. For reader‟s convenience I 

have appended a full software package called Alghalandis Fracture Network 

Modelling (AFNM) which was developed in Matlab environment. It can be used to 

conduct easily many of the ideas discussed in this thesis. 

2.5.1 Fracture network as pipe model 

Most three-dimensional fracture networks are too complex for input to standard 

finite element methods of modelling fluid flow. The example fracture network 

shown in Figure ‎2.23a gives an indication of the level of complexity of a fracture 

network that would have to be meshed (discretised) in preparation for modelling by 

finite element methods. Note that the example shown is a relatively simple 

network compared to those that could be generated by stochastic modelling. 

Several proposals are given in the literature to overcome this problem with the 

primary objective being to simplify the modelling stage. One such proposal is the 

pipe model (La-Pointe and Wallmann 1996; Dershowitz and Fidelibus 1999; Xu et 

al. 2013a). In this model, for two connected fractures two pipes are used to connect 

the centres of the fractures to the centre of intersection. In this way, the apertures 

of the fractures can be individually represented by the radius of the associated 

pipe. The pipe model for the example in Figure ‎2.23a is shown in Figure ‎2.23c. 
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Figure ‎2.23: Three-dimensional fracture network and associated pipe model. Pipes are 

generated by connecting the centres of each fracture to the centre of intersection line (point 

in vertex touching case). The radius of pipes can be defined locally according to the 

apertures of the associated fractures. 

2.6 Conditional fracture network modelling 

Two types of conditioning are applicable in fracture network modelling: 1) Intrinsic 

conditioning in which the model honours any given information by adapting the 

distribution functions which are used for attributes (marks). This method can also 

be seen as pre-conditioning; 2) The resulting fracture network model can also be 

adapted to satisfy given conditions such as regenerating specified existing fractures 

in the study region. Whilst the latter may appear more interesting in terms of real 

applications, it is important not to disturb the stochastic spatial features of the 

simulated fracture model when conditioning it to data or prior information.  

2.6.1 Conditioning fracture locations using Simulated Annealing 

Simulated Annealing (SA, Deutsch and Cockerham 1994; Tran 2007) can be used 

to manipulate a FNM simulation to honour any existing data e.g., sampled 

fractures. It is an optimisation method based on perturbation of parameters to 

minimise a specified cost function. The proposed example in Figure ‎2.24 shows the 

results of applying SA during the generation of a fracture network for an entire 

study region to condition it to 20 existing fracture locations (hard data) within an 

area equal to 1/5 of entire region. The resulting conditioned locations are shown in 

Figure ‎2.24d and a comparison is made in Figure ‎2.24e of locations before and after 
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the application of SA.  In this example, SA reaches a stable state after around 2000 

iterations. A plot of the evolving objective function, (OFn), is shown in Figure ‎2.24c. 

Here OFn is defined as a function of the number (〈 〉) of points in the conditioning 

area and their distances (D) from conditioning data. 

     |〈 〉   |  ∑    
      

   (‎2.9) 

where   is the number of hard (conditioning) data. 

 

Figure ‎2.24: Conditioning fracture locations to given sample points. Simulated Annealing is 

used to honour given locations. 

2.6.2 Conditioning to existing fractures 

When fracture observations and measurement are available (e.g., measured on drill 

cores, borehole walls, tunnel walls or outcrops), they can be used to condition the 

simulation. If the independency assumption in DFN is accepted (i.e., all fractures 

are generated independently of all others), then it is a simple task to generate 

conditional fracture networks. The solution, as proposed by Andersson et al. (1984) 
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and Andersson and Dverstorp (1987) and developed further by Chilès and de-

Marsily (1993), is: 1) generate an unconditional simulation of the fracture network; 

and 2) remove any fracture that intersects the conditioning area e.g., borehole, 

tunnel walls etc. The resulting fracture network is thus conditioned to include all 

observed fractures whilst preserving the unconditionally simulated fractures in the 

rest of the study region. This simple method assumes that the conditioning area 

has been exhaustively sampled for fractures, which for two and three dimensions 

may not be the case. It also creates significant edge effects around the conditioning 

area and the conditioning area biases true fracture lengths. Figure ‎2.25 shows a 

fracture network in two-dimensions covering an entire study region conditioned to 

fractures observed in two boreholes. 

 

Figure ‎2.25: Conditioning fracture network to existing fractures observed in two boreholes. 

In the demonstration given in Figure ‎2.25a the fractures (blue) observed in the 

boreholes are clipped by the borehole perimeter. One may use a suitable 

distribution function such as Gaussian in order to simulate full length of fractures. 

As the rejection criteria in the above conditioning method only applies on borehole 

boundaries such an expansion has no effect on simulation but has two benefits: 1) 

the unobserved parts of longer fractures are being modelled rather than being 

ignored 2) boundary artefacts in the proximity of borehole perimeter is decreased. 

The described conditioning can be applied at the beginning or at the end of the 

modelling procedure. The conditioning technique described is applicable to three-

dimensional fracture networks, in which fracture polygons can be generated in 

such a way as to avoid intersecting any conditioning volumes, such as boreholes. A 

further development of this conditioning method would be to control the fracture 
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density in the generated network to follow specified distributions or patterns. To do 

so, density evaluation may apply on conditioning area resulting in information for 

the density of entire study region. If the density map of the conditioning area 

shows specific pattern / structure it may be desired somehow to generalise the 

structure onto the entire simulated region. 

2.6.3 Conditional simulation to a point cloud 

Hough transform 

The detection of objects from point data is an active research area in computer 

vision and has many applications in other disciplines. In fracture network 

modelling for enhanced geothermal systems, for example, micro-seismic events 

generated by fracture stimulation of the reservoir provide data in the form of a 

point cloud (i.e., set of points). A micro-seismic event is associated with a movement 

in the rock caused by the hydraulic pressure of the fluid injected into the reservoir 

and distributed via the extension of existing fractures and newly propagated 

fractures. The locations of the events are determined by processing the recorded 

seismic logs. Note that no topology information is detected or recorded during the 

procedure. That is, the resulting is in the form of points distributed in the space 

often without any apparent structure or alignment. 

The Hough transform (HT, Hough 1962; Duda and Hart 1972) is a simple 

transform which projects any point in Euclidean space onto a pair comprising an 

angle and a distance (parameter space). The line equation in Euclidean space is: 

        (‎2.10) 

It can be easily rearranged into parameter space as: 

         (‎2.11) 

Note that in Eq. 2.10 the parameters   and   are constant for any particular 

line. Therefore in its transformed form (Eq. 2.11) any point       on the line will 

generate the same   and   parameters. This is called a “voting” procedure in which 
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the pairs of parameters       corresponding to the highest votes relate to the 

lineaments in the point data in Euclidean space. This procedure is called line 

detection. An example application of HT to fracture network modelling (a proposal) 

is shown in Figure ‎2.26 in which Figure ‎2.26b is a point cloud in two dimensions 

prepared by discretisation of the fracture network shown in Figure ‎2.26a. 

Additional random points completes the generation of point cloud. The aim is to see 

whether HT can detect embedded lines in the point cloud. The parameter space is 

shown in Figure ‎2.26c which is an accumulation of sinusoids (             ) 

where   is an angle in degrees and   is distance in pixels. Red pixels denote the 

highest votes corresponding to their dual lines in Euclidean space as shown in 

Figure ‎2.26d.  

 

Figure ‎2.26: Line detection using the Hough Transform. In (b) the generated lines in (a) are 

discretised into pixels added significant noise. The Hough transform for (b) is shown in (c) 

which results in linear objects shown as red in (d). The resulting lines (e) compared to the 

original lines (a) show a very good match despite the effects of noisy data added in (b). 

Comparing the results in Figure ‎2.26e with the original embedded lines in 

Figure ‎2.26a it can be concluded that HT works satisfactorily when applied to 
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highly randomly populated point cloud. A similar concept can be developed for 

three dimensional fracture networks in order to detect planar shapes in point 

clouds. 

RANSAC 

Random Sample Consensus (RANSAC) is an algorithm for robust fitting 

(matching) of models to data that include significant numbers of outliers. In the 

presence of outliers RANSAC is significantly more robust than the traditional least 

squares methods. It can be used for extracting possible fractures lines or planes 

from micro-seismic point clouds, for example. The RANSAC method is very efficient 

in dealing with large datasets. Chapter 4 comprises a comprehensive, published 

paper on RANSAC and its application to fracture network modelling. 
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In Chap. 2 fracture network modelling was studied. Details of new proposals were 

presented. In the present chapter which is a published conference paper a couple of 

additional fundamental discussions on fracture network modelling are presented. 

Some new measures are introduced that help to characterise fracture networks. 

These include intersection density, distribution of length of fracture intersection 

lines in a fracture network and the effect of fractures on the percolation state of 

two-dimensional fracture networks. As shown in the illustration above this paper is 

the first paper that started building the publication structure of this thesis. The 

tree shows major published papers from this research in a chronological order from 

bottom to top. 
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NOTE:   

This publication is included on pages 84-100 in the print copy  
of the thesis held in the University of Adelaide Library. 

 

A 
Fadakar Alghalandis, Y., Xu, C. & Dowd, P.A. (2011) A general framework for fracture intersection 
analysis: algorithms and practical applications. 
Presented at: Australian Geothermal Energy Conference, Melbourne, Australia, pp. 15-20 
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From the discussions in Chap. 2 and 3 the present chapter, which is a published 

journal paper, focuses on the conditional modelling of fracture networks. The 

conditioning is applied in such a way that the generated fracture network honours 

the existing point cloud data which are collected during the stimulation process in 

EGS development. This paper contributes to the fracture network modelling stage 

of the research and also introduces for the first time the use of the RANSAC 

method in fracture network modelling. Other areas of related disciplines may 

benefit from this contribution. 
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The RANSAC method for generating fracture networks 

from micro-seismic event data 

Younes Fadakar Alghalandis1, Peter A. Dowd2, Chaoshui Xu3 

Abstract Fracture network modelling is an essential part of the design, 

development and performance assessment of Enhanced Geothermal Systems. 

These systems are created from geothermal resources, usually located several 

kilometres below the surface of the Earth, by establishing a network of connected 

fractures through which fluid can flow. The depth of the reservoir makes it 

impossible to make direct measurements of fractures and data are collected from 

indirect measurements such as geophysical surveys. An important source of 

indirect data is the seismic event point cloud generated by the fracture stimulation 

process. Locations of these points are estimated from recorded micro-seismic 

signals generated by fracture initiation, propagation and slip. This point cloud can 

be expressed as a set of three-dimensional coordinates with attributes, for example, 

                 |     ∈    ∈   . We describe two methods for reconstructing 

realistic fracture trace lines and planes given the point cloud of seismic events 

data: Enhanced Brute-Force Search and RANSAC. The methods have been tested 

on a synthetic data set and on the Habanero dataset of Geodynamics‟ geothermal 

project in the Cooper Basin of South Australia. Our results show that the RANSAC 

method is an efficient and suitable method for the conditional simulation of 

fracture networks. 

Keywords Fracture Network Modelling, Line/Plane Detection, Point Cloud, 

RANSAC, Conditional Modelling. 
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4.1 Introduction 

The technical and commercial viability of producing geothermal energy from hot 

dry rock (HDR) depends on the creation of artificial reservoirs, or Enhanced 

Geothermal Systems (EGS), in the rock mass by stimulating and creating fractures 

(generally by hydro-fracturing) to enable geothermal flow. The artificial reservoir is 

the critical component of an EGS: the fracture network that connects the injection 

and production wells and acts as the heat exchange chamber for the system. The 

productivity of the system depends crucially on the connectivity/permeability of the 

reservoir fracture network and a realistic and reliable fracture model is the key to 

assessing reservoir performance and designing a suitable heat exchange chamber 

for the EGS. 

The characterization of rock fracture networks is a very difficult problem not 

least because accurate field measurement of a single fracture is difficult and 

measurement of all fractures is impossible. Thus, in practice, the whole fracture 

system is not observable on any meaningful scale and the only realistic approach is 

via a stochastic model informed by sparse data and/or by analogues. In HDR 

applications, a realistic solution is even more difficult as the only reference data 

related to the fracture system are from limited drill core samples, geophysical 

borehole logs or sparse seismic events kilometres beneath the surface detected 

during the hydraulic stimulation process. During fracture stimulation, fracture 

initiation, propagation and slipping generate micro-seismic events that can be 

monitored and their spatial locations determined. The resulting seismic point cloud 

can be used to determine the geographical extent of the HDR reservoir, the 

hydraulic performance, the amount of fracturing and the fracture network within 

the reservoir (Shapiro et al. 1998; Audigane et al. 2002; Bruel 2007; Xu et al. 2011; 

Li and Anderson-Sprecher 2011). Post-processing of the seismic data yields a data 

set comprising three-dimensional coordinates of the events and attributes inferred 

from the seismic signals. 

Assuming that fractures can be modelled by lines in two dimensions or planes in 

three dimensions (Fadakar-A et al. 2011; Toth and Vass 2011), the problem 

addressed in this paper is the assignment of lines or planes to the seismic event 
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locations to provide an optimal realization of the fractures represented by the 

micro-seismic events. Any three seismic locations define a plane that may be a 

candidate for a fracture surface. As the number of points (locations) used for fitting 

a surface increases, the shape of the inferred fracture surface changes as a varying 

convex-hull. This can be envisaged as a three-dimensional envelope that includes 

all points within some specified distance from the central plane fitted to the initial 

three points. The computational difficulty of fitting fracture surfaces increases as 

the number of points in the point cloud increases and the dispersion pattern of the 

points becomes more complex. This is most apparent when attempting to fit the 

best plane through the entire point cloud. 

In the following sections we discuss the difficulties of, and some solutions for, 

generating fractures in the form of lines from a two-dimensional point cloud and 

polygons from a three-dimensional point cloud. An attempt to investigate 

relationships between seismic events and the occurrence of fractures in an EGS 

has been reported in Xu et al. (2011). The technique used was Markov chain Monte 

Carlo (MCMC) simulation, which in general incurs a very high computational cost. 

The methods reported in this paper are very computationally efficient which makes 

them more advantageous in dealing with large data sets. 

4.2 The Problem of Fitting Lines/Planes to Point Cloud: 

Conditional Simulation 

There is a significant body of work reported in the computer vision literature and 

in related areas such as image processing and intelligent robotics, dealing with the 

detection of objects from input data sets, for example, photographic images or 

automatic sensing systems (Duda and Hart 1972; Roth and Levine 1993; Hofer et 

al. 2005; Szeliski 2010; Yang and Wolfgang 2010). The input data essentially 

comprise a collection of points (or small regular shapes, such as pixels, that can be 

represented as points). A collection of such point data is often called a point cloud. 

Often there is no direct topological information about the points and it must be 

inferred by some form of modelling or matching. 
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We introduce the Random Sample Consensus (RANSAC) method for extracting 

possible fractures lines or planes from micro-seismic point clouds. In this paper we 

focus on adapting RANSAC methods for our particular application. Our study uses 

two sets of data: stochastically simulated point clouds (two- and three-dimensional) 

and a real data set of seismic events in an EGS. Note that in both cases the 

reconstruction of fracture lines/planes is analogous to the conditional simulation of 

an FNM (Cherpeau et al. 2012) conditioned to the seismic events point cloud 

observed in the field. The proposals presented here have potential application to 

other types of conditioning data. 

4.2.1 Enhanced Brute-Force Search  

Brute-Force Search (BFS) is an exhaustive search method that finds the best 

solution after examining all possible solutions (Harris and Ross 2005). The method 

can be applied as a single exhaustive search or as an iterative search. Although 

BFS is an intuitive and very simple approach we detail here the difficulties in 

dealing with large datasets. This section also proposes a set of improvements and 

provides a logical move to, and a background for, the RANSAC method in the next 

section. 

Fitting a fracture network to a set of points requires a distance (d) tolerance ( ) 

to assign points to candidate fractures. A criterion for the goodness-of-fit of a 

fracture to a set of points is to maximize the number of nearby (   ) points 

associated with the candidate fracture. In other words, the goodness-of-fit increases 

as the number of points associated with a fracture increases. This criterion is used 

to rank all candidate solutions and select the best. The steps in BFS are as follows. 

1. Select two points sequentially from the point cloud and define a candidate 

fracture line              

2. Compute the rank    of the candidate line, which is a count function of 

nearby points with distance (   ) less than a distance tolerance     thus 

            ∑            
    

3. Store the rank and go to step 1 
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4. Sort the ranks in descending order and choose a specified number as the 

candidate fracture lines 

Figure ‎4.1 demonstrates the application of BFS to a small artificial two-

dimensional point cloud comprised of 367 points (300 uniformly random locations 

and 67 aligned points). The lines shown correspond to the fitted fracture lines that 

are ranked higher than the rank percentile values of 20%, 40%, 60% and 80%. We 

have found these threshold values to be useful for detecting major orientations 

from a complex map of lines. For visual clarity in Figure ‎4.1, where there are 

clusters of lines of similar orientation, the main direction appears as a dense line; 

the feint lines are neighbouring lines of similar orientation (see  -blending in 

Unwin et al. 2006). Although the resulting orientations in Figure ‎4.1 appear 

promising, the assessment is visual and, therefore, subjective and in practical 

applications the selection of threshold values instead of quantiles would require 

some trials. 

Note that in three dimensions, triples of points are used to build a candidate 

plane; these are established sequentially in the same manner as in two-dimension, 

and the rest of the procedure is unchanged. BFS, in its standard form, for medium 

to large point clouds, in addition to its high computational time, also requires 

significant memory (measured in terabytes). However, the memory issue can be 

efficiently addressed by implementing a fixed storage size similar to the stack 

structure of, say,             rankings, that is, only       rankings of the best 

matches are stored. 
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Figure ‎4.1: A demonstration of BFS applied to a point cloud with a total of 367 points in two 

dimensions comprising 300 random points superimposed on a set of 5 lines discretised into 

a total of 67 points. Qn in the titles stands for quantiles computed from the ranks. 

A Line Cluster Fitting (LCF) procedure was used to choose automatically the 

most likely orientations of a set of similarly oriented fracture lines (Figure ‎4.2). 

The proposal removes the need for visual judgment and therefore increases the 

efficiency of the automation. The method was successfully applied to the 

orientations resulting from the BFS method to derive the main orientation line 

fittings as shown in Figure ‎4.2. Hereafter we refer to the full procedure as 

Enhanced BFS. The LCF procedure is as follows. 

1. Select sequentially a line    |         

2. Select another line    |       

3. Check if    is already clustered; if so go to step 2 

4. Check whether both endpoints of    are within the     distance from   ; if so 

update the cluster    adding   ; otherwise go to step 2 

5. Mark    as clustered; go to step 1 

6. For each cluster find the best fitting line using least squares 
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Figure ‎4.2: LCF in action: Filtering lines and fitting the main orientations using a 

tolerance=0.1. (a) a small part of the original line data set produced by BFS; (b): clusters of 

line segments produced by our method and (c) the two fitted main lines (red) as proposed by 

LCF. 

For three-dimensional applications, the fitting process is the same as two-

dimension but with three points selected each time to fit a candidate plane. 

However, the computational cost of the three-dimensional implementation of BFS 

is significant. This cost is directly related to the number of possible solutions that 

must be examined, 

 
       (

 
 
)  

  

        
  (‎4.1) 

where      (N) is the number of cases to be evaluated. The method can easily 

become impractical to implement even for a reasonable size point dataset. This 

combinatorial explosion problem is recognized in the literature. For example, the 

Habanero dataset contains nearly 25,000 points, for which N=2,603,854,175,000 

candidate planes must be constructed and the distances of each plane to the 25,000 

points have to be calculated and ranked just to fit one fracture. Memory is also a 

significant issue unless the technique discussed above is used. Using an iterative 

fitting process can reduce computation time. In this case, points that have been 

assigned to fractures are not considered for any further assignment. However, this 

does not solve the fundamental exhaustive search problem and BFS can only 

realistically be applied to small data sets (     ) depending on the capacity and 

performance of the computing system used. 
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4.2.2 RANSAC method 

The Random Sampling Consensus (RANSAC) method was originally proposed by 

Fischler and Bolles (1981) to address the location determination problem (LPD) 

given an image depicting a set of landmarks with known locations. Although 

RANSAC originated in image processing it has rapidly found wider application in 

areas such as robotics, computer vision and, more recently, statistics (Szeliski 

2010). Applications include the provision of artificial vision for robotics in 

surveying or manufacturing, automatic image matching and registration in 

medicine, environmental science and astronomy (Hartley and Zisserman 2004). 

The RANSAC method is more robust to contaminating points (outliers) in a point 

cloud than the traditional least squares methods as typically demonstrated in 

Figure ‎4.3. 

 

Figure ‎4.3: Comparison of the performance of Least Squares (LS) and RANSAC for highly 

contaminated linear objects in a point cloud; RANSAC finds the best fit after 20 iterations 

which were completed in less than a second. The two lines around the fitted line in the 

RANSAC result correspond to the tolerance value   used to compute the cost function. 

The RANSAC method is of interest in fracture modelling because of its efficiency 

in dealing with large point datasets. RANSAC relies on random sampling 

strategies in which only a selection of cases is examined rather than all possible 

cases as in BFS. The input and output of the RANSAC method are: 
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      {

      

        
        and               {

      

  , (‎4.2) 

where   is the set of points used and | |   ,   is the fracture fitting function (e.g., 

least squares method) used to compute fitting parameters   given a sample   from 

 ,      is the cost function given a set of data points   and fitting parameters,   

and    are the final optimized fracture parameters that minimize the cost function. 

The simplest implementation of the RANSAC algorithm is as follows. 

1. Initiate         ,      and      

2. Set       as the trial counter 

3. Select a random set of points of size         |  |    

4. Compute parameters of the fitted fracture          

5. Evaluate the cost function          ,   ∈   

6. Update the objective function for trial   that is          where    is the 

number of inliers 

7. Record the best set so far if       then       and       

8. Repeat from step 2 until      where    is the number of trials chosen 

9. Record the fitted model and remove associated points from   

10.         and restart from step 1 

11. Finish if all points have been associated or | |    or     , where   is 

a number chosen by user 

Note that   defines a minimum sample size required for modeling which is 2 or 

3 given two- and three-dimensional points for fitting a fracture line or plane 

respectively. The cost function    is defined as the sum of the distances between 

the points and the candidate fracture model. Inliers are those points located within 

a tolerance distance   (i.e., fitting bandwidth) of the fitted model. The objective 

function    can be proposed given the cost function to maximize the number of 

inliers    in fitting process. Indeed for the same values for    in trials the cost 

function proposes the best solution. That is    is a critical value for assessment of 

the fitting given a tolerance value. 
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    (     )  ∑(     )         (   )  {
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where      is a count function,     is the set of distances between points ( ) and the 

candidate fracture ( ),   is the distance tolerance to determine the point-fracture 

association and       is an indicator function applied as defined. The value of   

depends on the application and the accuracy required. 

The number    of trials required to find a best solution is defined as follows. 

 
       (

       ̃ 

             
)  (‎4.4) 

where   is the probability that any selected data point is an outlier (Fischler and 

Bolles 1981);  ̃ is the probability of success and   is the minimum number (2 and 3 

for line and plane, respectively) of points to satisfy the model. Further discussion 

on evaluation of    can be found in Papazov and Burschka (2010). Figure ‎4.4 

provides performance curves for the probability  ∈ 0.1,0.3,0.5,0.7,0.9] in detecting 

lines (Figure ‎4.4a) and planes (Figure ‎4.4b). 

 

Figure ‎4.4: Performance of RANSAC for line (a) and plane (b) fitting;   is the probability of 

outliers. 

An important step in the RANSAC implementation is the determination of the 

association of seismic points with the candidate fracture. In the proposed 

implementation, the criterion for association is the maximum distance,  , of points 
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from the candidate fracture; all points within this distance from a candidate 

fracture are termed inliers. This definition for point-fracture association is 

completely general in terms of the geometrical shapes used to represent fractures 

and, for example, applies equally well to curved fracture surfaces. A detailed 

discussion on general optimization for the cost function can be found in Yaniv 

(2010). 

Completion of the steps in the RANSAC algorithm given above will yield a fitted 

fracture, which is the best candidate, defined as the one with the highest rank, 

among all those examined. The associated seismic points are then removed from 

the dataset and the process is repeated to fit the next fracture; this process is 

repeated until there are fewer than 2 or 3 points remaining, for two- and three-

dimensional cases respectively. This step is particularly important for RANSAC 

because: (i) the probability of finding the next best fitted fracture within a limited 

number of trials increases, and (ii) the efficiency of objective function evaluation 

increases with fewer numbers of points. 

The computational cost (e.g., elapsed time) of RANSAC is much less than that of 

BFS and can be estimated as                  where    is the time required to 

compute the model. We conclude this section by introducing an extension to 

RANSAC, R-RANSAC, which provides even better performance. In Sect. ‎4.3, some 

performance evaluations are conducted using both a simulated and real case data 

sets. 

R-RANSAC 

Randomized RANSAC (R-RANSAC) is an extension to increase the efficiency 

and accuracy of the implementation (Matas and Chum 2004). The idea is simple: 

under normal conditions the majority of data points are outliers and an 

improvement could be achieved if the evaluation of those candidate lines/planes for 

which the cost function is comprised largely of outlier points is done rapidly by 

means of shortcuts. The cost function increases from a set of points comprised 

entirely of inliers to a set of points comprised entirely of outliers; the cost function 

for a random selection of points from a point cloud will tend to be at the higher end. 
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A quick assessment is sufficient to reject those candidates that lack sufficient 

neighboring points. 

4.2.3 Fracture Extents 

The final extent of each detected fracture generated by RANSAC is determined 

by fitting a least squares line in two-dimension to the points associated with the 

fracture. In three-dimensions a three-dimensional convex-hull can effectively 

encapsulate all the points associated with the fracture and thus defines the extent 

of the fracture. For small values of τ (distance tolerance) the least squares line and 

the fitted fracture line will be almost identical in two-dimension in terms of the 

orientation. In three-dimensional cases the associated points are projected onto the 

fitted fracture plane for the fitting of a two-dimensional convex hull. The projection 

may cause some changes in the two-dimensional polygonal shape of the fracture 

compared with the three-dimensional convex-hull fitted without the projection. In 

our implementation we considered only small τ values as this is the case for 

practical applications in fitting fractures (the aperture to extent ratio is very low) 

to a point cloud so the discrepancy is expected to be small. 

4.3 Results and Discussions 

In this section, the EBFS and RANSAC methods are applied to some simulated 

datasets and to the Habanero seismic point cloud dataset and their performances 

are compared. Both two- and three-dimensional cases were examined for detecting 

fracture trace lines and fracture planes, respectively. 

4.3.1 EBFS and RANSAC applied on two-dimensional Point Cloud 

A flexible procedure to generate a two-dimensional point cloud in which there is a 

known number of lines randomly simulated and discretised into a few oriented 

points is as follows. 

1.      generate   random pairs of       uniformly 

2. generate   number of two-point lines uniformly 

3. set                         
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4. for each line generate   points between its endpoints 

5. append the point to    

The number of lines can readily be changed, as can the resolution of 

discretization and the number of randomly positioned points. Such a point cloud 

with hidden lines (inliers) among noise (outliers) provides a robust means of 

assessing the performance of the methods. 

 

Figure ‎4.5: Application of EBFS to a two-dimensional point cloud comprising 1,365 points; 

(a) point cloud with 30 embedded fracture lines represented using 365 points; (b) the same 

point cloud without the lines drawn; (c) lines detected by EBFS; (d) detected fracture lines 

in (c) are superimposed on the 30 initial hidden lines in (a). 
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As demonstrated in Figure ‎4.5 EBFS performs well on a heavily contaminated 

dataset of linear objects. In the example given, a total of 30 different fracture lines 

(shown on Figure ‎4.5a as color-coded lines using the blue-red spectrum as the 

length increases) are represented by a total of only 365 points, which are heavily 

contaminated by 1,000 randomly distributed points. As seen in Figure ‎4.5b, it is 

almost impossible to detect the 30 linear objects by visual inspection. After 

applying EBFS and using the fitting condition that candidate lines must have at 

least a certain number of associated points (here 14, for example) defined by a 

distance tolerance of 0.01, the final fitted fracture lines are shown in Figure ‎4.5c. 

Clearly the longer linear objects are satisfactorily detected but shorter linear 

objects are not detectable using the specified parameters. This can be seen easily in 

Figure ‎4.5d in which the fitted fracture lines are superimposed on the original 30 

lines. 

The procedure comprises two stages: (i) find candidate lines and, (ii) choose 

clusters of lines. A summary of the complete algorithm is as follows. 

1.                      all candidate lines according to the conditions: 

points within bandwidth (    ) and at least    number of points involved, 

2.                           where      is the bandwidth to involve adjacent 

lines,    is the minimum number of lines,   is the clusters of lines and      

is a collection of fitted main orientation lines. 

The RANSAC method was applied to the same simulated data set with a few 

different setups as described below. First, four different numbers of iterations (50, 

100, 200 and 400) were applied to investigate the performance and accuracy of the 

method. The resulting fracture networks are shown in Figure ‎4.6. It is apparent 

from these networks that increasing the number of iterations improves the 

accuracy of the method; however, the relationship is not linear. For example, the 

improvement achieved from 50 and 100 iterations is minimal. 
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Figure ‎4.6: Lines resulting from RANSAC for different numbers (i ∈ [50,100,200,400]) of 

iterations per stage. The embedded lines are shown in (d). As the number of iterations 

increases the large numbers of linearly aligned points are correctly identified as embedded 

lines as shown in subplot (f). 

In addition, the tolerance value has to be adjusted according to the strength of 

linearity within the point cloud. For the example given here, the point cloud is 

highly dispersed and a very small tolerance value was required to achieve 

acceptable results. In practical applications, the choice of tolerance value will be 

informed by any available information about the nature and geometry of the 

fractures. The fracture detection or measurement method (e.g., seismic methods) 

may also assist in the choice. A diagnostic approach for selecting an appropriate 

tolerance is to evaluate the final fracture network in terms of the overall setting 

such as the number of fractures. Figure ‎4.7 demonstrates the effect of the tolerance 

on the fitting process. 
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Figure ‎4.7: A demonstration of the effect on the RANSAC fitting process of varying the 

tolerance value. Figures (b) and (f) demonstrate clearly the importance of choosing the 

correct tolerance. Note that in reality, for example, field measurements, the ratio of overall 

inliers over outliers is much higher than that (0.192) used in these examples. 

We assessed the sensitivity of RANSAC to varying the number of trials per 

stage,   , and the distance tolerance    . To do so, we used a criterion based on the 

cosine similarity measure between two lines. We adapted this measure to include 

the distances between lines as weighting factors: closer lines receive higher 

weights. Figure ‎4.8a shows the results for a simulated point cloud comprising 1,000 

random points and 157 points representing ten embedded lines. For small values of 

   the lines detected are less similar to the embedded lines and significant 

fluctuations may occur in the similarity measure from one value of    to another. 

For values of    greater than 200, however, the similarity is consistently high 

(>0.9) which suggests that, for this example, 200 is an optimum value for the 

number of iterations per stage. Figure ‎4.8b shows the effect of varying the distance 

tolerance on the similarity between generated and embedded lines; on average, for 

tolerances greater than 0.01, the similarity decreases as the tolerance increases. 

Although the average similarity is around 0.9 for          the significant 



120 CHAPTER 4: RANSAC 

fluctuations in similarity values makes it difficult to draw general conclusions. A 

summarized procedure is as follows. 

1. Choose    from the lines set 1; 

2. For each line    from lines set 2, find the cosine similarity (   ) measure as 

follows.            |
   

| | | |
| where   and   are unit vectors of the lines    

and   ; 

3. Find distance (    ) between centroid points of the lines    and   ; 

4. Find z-score transforms of     and      to the range of [0,1]; 

5. Return the value of                   as the new measure of 

similarity; 

6. Repeat from step 1 for all lines in set 1. 

 

Figure ‎4.8: Performance of RANSAC as a function of varying the number,   , of trials per 

stage and a constant distance tolerance equal to 0.001 (a) and varying the distance 

tolerance     with    fixed at 200 (b) 

We reiterate a fundamental difference between RANSAC and BFS as 

implemented here. In RANSAC the points associated with a fitted fracture are 

removed from the dataset before the procedure proceeds to fit the next fracture. In 

BFS, points are not removed at any stage of the fitting process and any point could, 

therefore, be associated with several different fractures. 
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4.3.2 EBFS and RANSAC applied to a simulated three-dimensional 

Point Cloud 

A simulated point cloud with a total of 609 points was prepared to test the two 

methods. The point cloud includes three sets of planar points representing three 

three-dimensional polygonal fracture surfaces. A total of 109 points is used to 

represent the three fractures and the remaining points were generated in the 

three-dimensional space using a Poisson process. The high level of contamination 

(
   

   
    ) provides a challenging case on which to test the performances of both 

methods. To provide a more realistic example, the locations of the inliers were 

randomly moved, using values from a uniform distribution, around the associated 

planes with a maximum of 1% of the dimensions of the volume of study (a cube). 

Figure ‎4.9a shows the point dataset used for the test with the points representing 

the three fractures shown as open circles. 

 

Figure ‎4.9: Plane detection using EBFS method. (a) three-dimensional point cloud 

comprising 109 oriented points (open circles) representing three fracture surfaces and 500 

points (filled circles) with coordinates from a Poisson process; (b)  resulting fractures (only 

the first three are shown). Crosses are random points associated with the detected 

fractures. 

Figure ‎4.9b shows the first three fitted fracture polygons. The resulting 

orientations include points representing embedded fractures excluding those that 
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exceed the distance threshold (open circles). In addition, some random points close 

to the fractures were included in the fitting stage (crosses). Figure ‎4.10 shows the 

number of points incorporated in the chosen best matches for the iterations. Note 

that although EBFS evaluates all possible candidates, the majority of the points 

are associated with the earliest selected best candidates. 

 

Figure ‎4.10: The greatest numbers of points are associated with the earliest selected 

planes. 

RANSAC was applied to the same point cloud with parameters: distance 

tolerance      , extent       |   ∈        and number of trials per stage       . 

If there is any indication of the orientations in the point cloud a small number of 

iterations per stage may be sufficient to find the best configuration by inspecting 

the results; otherwise, depending on the code and the hardware, the number of 

iterations may be limited by the computing time required for higher repetition 

strategies. The resulting fitted fractures are shown in Figure ‎4.11. 
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Figure ‎4.11: The fracture network generated by applying RANSAC to the simulated point 

cloud. Compared with BFS, RANSAC, with                    achieves an acceptably 

accurate result at significantly reduced computational cost,                  . The 

efficiency of RANSAC increases further as the amount of data increases. 

4.3.3 The Habanero Seismic Events Point Cloud 

The Habanero hot dry rock geothermal project is located in the Cooper Basin of 

South Australia. The data were collected during fracture stimulation in November 

and December of 2003. The data are shown in Figure ‎4.12. 



124 CHAPTER 4: RANSAC 

 

Figure ‎4.12: Habanero point cloud data corresponding to seismic events recorded in the 

2003 fracture stimulation. The number of points is 23,232 and the cloud is approximately 

horizontally oriented. 

BFS is not suitable in this case as it is only practical for small datasets. The 

following parameters were used for the RANSAC fracture fitting process: 

 The coordinates are scaled to [0, 1] with the aspect ratio of 1 preserved. 

 Distance tolerance = 0.001. 

 Number of trials per stage = 500. 

 The fitted fractures are planar convex polygons. 

Figure ‎4.13 demonstrates an exponential relationship for both the time 

consumed in fitting one fracture in each stage and the number of points per 

fracture polygon as the RANSAC algorithm proceeds. These relationships prove 

that the better matches (fracture with a greater number of associated points) are 

found first, as expected. The graphs are also consistent with the results obtained 

from BFS shown in Figure ‎4.10. 
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Figure ‎4.13: The construction of the first polygons requires assessment of the largest 

number of points and the greatest amount of time with the number and time declining 

exponentially with the number of stages. 

The final results of the fitted fracture model for the Habanero reservoir are 

given in Figure ‎4.14. According to Wyborn et al. (2005) based on extensive analyses 

of geophysical data it is believed that most of the fractures in the reservoir are 

approximately horizontal. This feature is clearly supported by the model generated 

by RANSAC as shown in Figure ‎4.14. Figure ‎4.14a shows all fitted fracture 

polygons; Figure ‎4.14b shows those fracture polygons dipping at an angle less than 

or equal to 15 degrees, a total of 143 out of 186 fractures; Figure ‎4.14c shows the 

first three fracture polygons found by the RANSAC algorithm. 



126 CHAPTER 4: RANSAC 

 

Figure ‎4.14: Fractures fitted to the Habanero seismic point cloud data; (a) All 186 polygons 

where the first one involved 956 associated points, the second one 857, the third 786; (b) 

The 143 fitted polygons that have dip angle less than or equal to 15 degrees; (c) The first 

three polygons fitted by RANSAC. 

We also conducted statistical analyses of the number of points associated with 

the areas and dip angles of fracture polygons and the number of edges per fracture; 

these are given in Figure ‎4.15. The histogram of fracture-associated points 

indicates that the majority of points are associated with the first few detected 

fracture planes. The points associated with each fitted plane form the polygonal 

shape for each fracture with the number of edges indicating the complexity of the 

shape. As shown in Figure ‎4.15, the complexity decreases as the procedure 

proceeds. An interesting finding is that the majority of fitted fractures are almost 

horizontal and these were the first to be fitted. The histogram of the dip angles of 

the fitted fractures for this data set is given in Figure ‎4.16 in which the histogram 

appears almost lognormal with a mode of 10° to 15°. All of these results are 
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consistent with the published view that the reservoir response is broadly 

equivalent to an effective large horizontal fracture that may be regional. 

 

Figure ‎4.15: (a) The number of points associated with the fitted fractures for the Habanero 

point cloud; (b) the areas of fractures; (c) the dip angles; and (d) the number of edges of the 

fitted fractures. 

 

Figure ‎4.16: Histogram of dip angles for 186 fitted fractures for the Habanero seismic point 

cloud. 
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4.4 Conclusions 

We have adapted the RANSAC method for application to fracture network 

modelling from point data, in this case from seismic events. We have also proposed 

an enhanced version of BFS by adding post-processing algorithms in which 

adaptations have been made to achieve better performance. EBFS has been 

presented as background for the RANSAC method and as a performance 

benchmark for it. Whilst EBFS provides an intuitive and straightforward approach 

to fitting fractures to point cloud data, its use is restricted to relatively small data 

sets; as the size of the point cloud increases the method rapidly becomes 

impractical due to the increase in computation, memory and time. RANSAC is a 

robust fitting method in general and, in particular, has been shown to be an 

efficient method for fitting fractures to point data, using reasonable computing 

time and memory. We have discussed the effect on RANSAC performance and 

output of the choice of model parameters such as the distance tolerance for 

associating points with a candidate fracture and the number of trials per stage. We 

have also proposed a set of new assessment approaches with applications to 

quantify the resulting simulated fracture network in terms of the new similarity 

measure and the efficiency. 

We have presented case studies using simulated point cloud data in two- and 

three-dimension and a real data set comprising seismic events resulting from a 

fracture stimulation process conducted in the Habanero geothermal energy system 

in 2003. In both types of point cloud the resulting fractures are very well matched 

either with the embedded fractures or with the interpretations in technical reports. 
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The objective of this chapter is to determine a fracture model from micro-seismic 

conditioning data by minimising the sum of the distances from the data points from 

the fitted fracture model. The paper documents the use of simulated annealing and 

a proposed goodness of fit measure. A DD transform is presented and shown to 

improve the solution both in terms of efficiency and accuracy. 
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A Spatial Clustering Approach for Stochastic Fracture 

Network Modelling 

S. Seifollahi, P. A. Dowd, C. Xu, A. Y. Fadakar 

Abstract Fracture network modelling plays an important role in many application 

areas in which the behaviour of a rock mass is of interest. These areas include 

mining, civil, petroleum, water and environmental engineering and geothermal 

systems modelling. The aim is to model the fractured rock to assess fluid flow or 

the stability of rock blocks. One important step in fracture network modelling is to 

estimate the number of fractures and the properties of individual fractures such as 

their size and orientation. Due to the lack of data and the complexity of the 

problem, there are significant uncertainties associated with fracture network 

modelling in practice. Our primary interest is the modelling of fracture networks in 

geothermal systems and, in this paper, we propose a general stochastic approach to 

fracture network modelling for this application. We focus on using the seismic 

point cloud detected during the fracture stimulation of a hot dry rock reservoir to 

create an enhanced geothermal system; these seismic points are the conditioning 

data in the modelling process. The seismic points can be used to estimate the 

geographical extent of the reservoir, the amount of fracturing and the detailed 

geometries of fractures within the reservoir. The objective is to determine a 

fracture model from the conditioning data by minimizing the sum of the distances 

of the points from the fitted fracture model. Fractures are represented as line 

segments connecting two points in two-dimensional applications or as ellipses in 

three-dimensional (3D) cases. The novelty of our model is twofold: (1) it comprises a 

comprehensive fracture modification scheme based on simulated annealing and (2) 

it introduces new spatial approaches, a goodness-of-fit measure for the fitted 

fracture model, a measure for fracture similarity and a clustering technique for 

proposing a locally optimal solution for fracture parameters. We use a simulated 

dataset to demonstrate the application of the proposed approach followed by a real 

3D case study of the Habanero reservoir in the Cooper Basin, Australia. 
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5.1 Introduction 

Fracture network modelling, particularly discrete fracture network (DFN) 

modelling, is critical for the design, evaluation and development of natural energy 

systems and resources, particularly for those located at significant depth beneath 

the Earth‟s surface. For example, the evaluation of fluid flow through a fractured 

rock mass for water, petroleum and geothermal applications can only be conducted 

on a proper rock fracture model. Given the nature of the problem, it is in most 

cases impossible to observe or measure fractures directly on any scale relevant to 

the problem. Studies are generally limited to sparse, small-scale observations (e.g. 

on drill cores) or indirect measures such as those provided by geophysical surveys 

or, in the case of engineered geothermal systems (EGS), micro-seismic events 

generated during fracture stimulation. There are significant uncertainties 

associated with indirect measures of variables such as fractures, and in such 

circumstances the only feasible approach is a stochastic one. Important parameters 

in DFN are those that define fracture geometries such as size and orientation of 

individual fractures. 

Existing DFN approaches use various statistical and geostatistical techniques; 

see for example Chilès and Delfiner (1999), Dershowitz and Einstein (1988), Dowd 

et al. (2007), Lantuejoul (2002), Kulatilake et al. (1993), Lee et al. (1990), Meyer 

and Einstein (2002), Oda et al. (1987), Rawnsley and Wei (2001), Stoyan et al. 

(1995) and Xu et al. (2007). Some of the well-known approaches include object-

based and grid-block methods and their extensions. Approaches using geostatistics 

are applied within the context of Poisson modelling (Gringarten 1997; Billaux et al. 

1989; Wen and Sinding-Larsen 1997). However, there are difficulties with all of 

these methods in constructing a realistic fracture network when the only available 

conditioning data are in the form of seismic events. The seismic point cloud can be 

used to estimate the geographical extent of the hot dry rock (HDR) reservoir, the 

amount of fracturing and the fracture geometries (Baisch et al. 2006; Eisner et al. 

2010; Sausse et al. 2010; Xu et al. 2013a). In these stimulation processes, it is 
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reasonable to assume that seismic events occur only on fracture surfaces (Xu et al. 

2013b), which is an assumption in the proposed modelling method. However, the 

recorded seismic events are relatively sparse and, for a given fracture, usually only 

a few seismic points are recorded. Establishing the fracture network reservoir 

model conditioned by this seismic point cloud is critical in creating a more realistic 

and reliable fracture model for HDR EGS. Recently published work includes DFN 

optimization conditioned by two- and three-dimensional data (2D and 3D) (Mardia 

et al. 2007a, b; Xu et al. 2013b). In general, the DFN solution in these approaches 

is delivered via a stochastic optimization approach. Mardia et al. (2007b) use a 

Markov chain Monte Carlo (MCMC) approach to condition the fracture model to 

borehole data. An extension of MCMC to include the seismic point cloud in the 

conditioning of the fracture model was used in Xu et al. (2013b) for a case study 

from the Habanero well-field. In the former work, the number of fractures and the 

parameters of individual fractures are modified during the optimization process. 

However, the application of the method is limited to borehole intersections. Xu et 

al. (2013b) fix the number of fractures in advance and only the unknown 

parameters of fractures, such as their size and orientation, are optimized during 

the MCMC simulation. In the present work, we address the issues of optimizing 

the number of fractures and conditioning the model on seismic data by means of a 

general stochastic model in which the objective function is structured to allow the 

optimization of the proposed goodness-of-fit measure and the sizes of fractures in 

the model. We use a comprehensive model modification scheme which includes 

eight proposals, four for updating the parameters of individual fractures and four 

for adjusting the size of the fracture network. To adjust the network size, two 

proposals, termed “Split” and “Special-Split”, are used for growing the fracture 

network and the other two, termed “Joint” and “Special-Joint”, are used for 

pruning the fracture network. The purpose of the split proposals is to grow the 

number of fractures in the model by proposing new fractures. The two join 

proposals are used to reduce the number of fractures in the system by joining two 

fractures into a single new fracture or by removing a redundant fracture from the 

network. A new similarity measure is introduced to find the two most similar 

fractures in a joint proposal. We use a new spatial clustering method, the distance-

directional transformation (DD-transform), to determine the parameters of the new 
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fractures. The DD-transform is based on distances and orientations between pairs 

of points. This approach increases the efficiency of the optimization by generating a 

locally optimal solution for the parameters and reduces the number of trials 

required to reach an optimal solution. The structure of the proposed method is 

similar to the MCMC approach of Mardia et al. (2007b), in that both use similar 

proposals for updating parameters of the fractures and for updating the size of the 

fracture network. However in our approach, simulated annealing (SA) is used to 

optimize the fitted model. In addition, the proposed method uses a different 

objective function based on a new goodness-of-fit measure. Our approach is thus a 

combination of the MCMC proposal and SA. 

The performance of the proposed method is demonstrated using a 2D simulated 

dataset (Figure ‎5.2a) and a real case study of Geodynamics‟ Habanero reservoir in 

the Cooper Basin of South Australia (Baisch et al. 2006) (Figure ‎5.6a). 

5.2 The Objective Function 

For simplicity, details of the proposed method are described within the context of 

2D applications. The extension to 3D is described in Sect. ‎5.10. In 2D DFN a 

fracture is represented as a line segment connecting two points in the region: 

         (‎5.1) 

where          ,           are the endpoints of H. We can also represent a 

fracture using four parameters,                , where         are the 

coordinates of the centre and    and    are, respectively, the orientation and the 

length of the fracture. 

The sum of the distances of the points (seismic events) from the fitted fracture 

model has been used as a goodness-of-fit measure (Xu et al. 2013b). In DFN, this 

measure is defined as the sum of squared distances of events from their nearest 

fractures as follows: 
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      ∑    

 

   

                  
 

      (‎5.2) 

where   is the number of points,   the index of the fracture in the network,     the 

squared distance of the  th point to the  th fracture and      the smallest of all 

projection distances from the point to all fractures. 

However, in applications where spatial characteristics are important, such as in 

DFN, it is not sufficient to use this measure to quantify the goodness of fit of the 

model. For example, this measure does not include fracture size, as the point is 

projected to the nearest fracture regardless of the sizes of fractures. Therefore, 

DFN using Eq. (5.2) tends to produce fractures that are too large. To ensure more 

realistic models, we have developed a new spatial distance based measure. The 

new measure, which includes both distance and orientation characteristics between 

the data points and the endpoints of fractures, is defined as: 

               (‎5.3) 

where    and    are the absolute distances between an event and the endpoints of 

a given fracture and    and    are the corresponding acute angles between the 

fracture and the line segment connected by the event and the endpoints. As the 

value of the measure is always positive, it can be used in conjunction with the 

orthogonal distance in Eq. (5.2) to define the total distances of all points to the 

fitted fracture model. The new measure has two important features: whilst 

minimizing the distances of the points from fractures, it also minimizes the 

fracture sizes. 

If the orthogonal projection of a point does not intersect a fracture, it is deemed 

to be an outlier for that fracture and a penalty, based on the nearest endpoint of 

the fracture to the point, is assigned to it: 

           ( (    )        ) (‎5.4) 
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where    is an outlier,   and   are the endpoints of a fracture and   is the absolute 

distance.    is the weight assigned to the outlier, which is set to the maximum 

possible size of fractures in the network. 

5.3 The Simulated Annealing Method 

The simulated annealing method derives its name from the physical process of 

annealing or cooling of heated metals. Kirkpatrick et al. (1983) trace this procedure 

back to Metropolis (Metropolis et al. 1953), who originally attempted to simulate 

the behaviour of an ensemble of atoms in equilibrium at a given temperature. 

Metropolis constructed a mathematical model of the behaviour of such a system 

that contained a method for minimizing the total energy of the system. 

SA comprises two main iterations: outer and inner. In the outer iteration, the 

temperature   (notional for non-thermodynamics problems) is updated. To do so, 

we take any initial value    and a reduction ratio       and use the 

temperature schedule                   . In the inner iteration, we update the 

solution. To generate a new solution in the inner iteration, we randomly generate a 

new solution (or new state) and a uniformly distributed random number   from 

     . The acceptance probability is calculated as: 

 
      (

               

 
)  (‎5.5) 

If     , the new state is accepted, otherwise the inner iteration is repeated. 

     is the best objective function value obtained in previous iterations and      is 

the objective function value based on the proposed new state. The state refers to 

any perturbation in parameters of a fracture or any proposals, as discussed in 

Sects. ‎5.5. SA is an efficient stochastic method for finding a global optimum 

solution of a nonlinear problem. An alternative to SA, applicable in DFN, is 

MCMC; see Mardia et al. (2007b) and Xu et al. (2013b). 
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5.4 A Spatial Clustering Technique 

In this section, we propose a spatial clustering approach to generate a locally 

optimal solution for fracture parameters. The major challenge here is to transform 

the coordinates of seismic points into a new space of distances and orientations so 

that features in the transformed space are easy to analyse and the required 

information can be easily extracted. For a given set of points, the aim is to find the 

midpoints and orientations of the best lines fitted to the points, among all possible 

candidates with the most number of events co-aligned with the directions. For each 

event, a fixed number of cells are created, corresponding to equal angle intervals in 

the interval      to     . The value assigned to each cell represents the number of 

events aligned with the selected event in the corresponding direction. More 

precisely, the angle between a line segment (constructed by connecting a candidate 

event with another event from the dataset) and the horizontal axis is calculated 

and the count is accumulated in the corresponding cell. The cell with the maximum 

value corresponds to the orientation of an optimal line passing through that 

particular point. 

For a given set of points an array of accumulated values is obtained, in which 

the      -element of the array (  and  ) correspond to the  th point and the index of 

the  th angle, respectively) is expressed as: 

     ∑   (        ̅)

 ∈ 

 (‎5.6) 

where               [     ]                           .     is the weight, equal to the 

inverse distance between the points    and   : 

         (     )
  

 (‎5.7) 

where   is a positive real number that reflects the importance of the inverse 

distances in calculating the counts in Eq. (5.6); we set       in our experiments. 

The weight        decreases as the distance between points    and    increases.  ̅ is 
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a positive real fixed number, depending on the inverse distances between pairs of 

points; to prevent the undue effects of small distances in calculating weights, we 

set it to five in our simulated experiment. For a set of points,  , algorithm 1 finds 

the orientations of the best lines through the points. 

Algorithm 1: DD-transform 

1. Set     where   is an    ̅ matrix,   is the total number of points and  ̅ 

is a positive integer number corresponding to the number of angles (e.g. 

 ̅     for angles between      and     with    intervals). 

2. Select a point,   ∈  . 

3. Select   ∈      , and calculate the distance between points    and   , i.e., 

 (     ). 

4. Find the angle between the line segment         and the horizontal axis. 

5. Update the element       of the matrix   as follows:         

   (        ̅), where   is the angle index,   and   refer to points    and    

and  ̅ is an upper bound for       . 

6. Set      . If    , repeat from step 3; otherwise go to step 7. 

7. Find the maximum value of each row of   (i.e. among  ̅ elements) and 

assign the value to vector     , and also store the angles corresponding to 

    , in     . Set      . If    , repeat from step 2; otherwise go to the 

next step. 

8. Sort vector      in descending order and label it  ̅   . Change the order of 

rows of      and   on the basis of the order of elements in  ̅    and denote 

them by    and   , respectively. 

9. Select the first number of    and    as the orientation and midpoint of the 

first proposed line. 

10. Select the next number of    and   . If the selected elements are co-

aligned with a line (given a threshold depending on the problem domain 

and the proposal) which was created in previous iterations, go to step 12; 

otherwise, go to the next step. 

11. Define a new line passing through the selected point with the associated 

orientation. 
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12. Use a threshold to determine whether each point belongs to at least to 

one fracture. If so, terminate the algorithm; otherwise, repeat from step 

10. 

The elements of    and    are chosen in such a way that the proposed lines go 

through all points and no duplicate lines are generated. The algorithm is repeated 

until all lines are detected. If each point is associated with at least one fracture (i.e. 

lies within a bandwidth of a fracture), the algorithm terminates. As the size of the 

bandwidth decreases, more lines will be detected and vice versa. The algorithm is 

used as a supervised tool to increase the efficiency of the optimization. In our 

model, when required, parameters of one or two “best” fractures are drawn using 

the DD-transform. 

5.5 Proposed Stochastic Fracture Network Modelling 

The proposed modelling method incorporates eight proposals. Four proposals are 

for updating parameters of existing fractures and the rest are for adjusting the 

number of fractures. The modelling process consists of three phases. After the 

initialization phase, the parameters of a randomly selected set of fractures {  }
   

  
 

are updated sequentially using SA. The algorithm then optimizes the size of the 

fracture network by proposing new fractures or removing redundant ones. After 

each proposal, the stopping criteria are checked. The algorithm terminates when a 

pre-specified number of iterations have been completed or the temperature 

parameter has been reduced to a specified threshold value. 

5.5.1 Phase 1: Initialization 

At the beginning,   initial fractures are set, where   is an arbitrary small positive 

integer number. To find the parameters for the initial fractures, we choose   points 

at random from the problem domain as midpoints of initial fractures. The length 

and orientation of each fracture are drawn from specified probability distribution 

functions, here lognormal with parameters informed by expert knowledge and 

standard Gaussian, respectively. Orientations obtained from the Gaussian are 

truncated at      and    . 



CHAPTER 5: SPATIAL CLUSTERING 141 

5.5.2 Phase 2: Updating Parameters of Individual Fractures 

Four proposals are used to optimize the fracture parameters. First, a set of 

fractures is chosen at random from the network. For each fracture, its orientation 

and midpoint are perturbed sequentially by values drawn from a Gaussian 

distribution as follows: 

                               (‎5.8) 

where    stands for the coordinates of the midpoint or the orientation of the 

fracture before the perturbation and   is the Gaussian distribution with mean   

and variance   . For fracture length, we propose a different approach: another 

fracture, different from the candidate fracture, is chosen at random from the 

network, and their lengths are exchanged. As no new values of the variable are 

involved, the distribution of the orientation remains unchanged after this process. 

It is noted that random sampling can be used as an alternative to the exchange 

proposal. For each proposal, the objective function is recalculated using the new 

point associations due to the perturbation. It is now necessary to decide, on the 

basis of Eq. (5.5), whether to accept the proposed move. 

5.5.3 Phase 3: Updating the Size of the Fracture Network 

Four proposals are used to adjust the size of the fracture network. Different 

criteria are used to select candidate fractures in each proposal. For example, the 

candidate fracture for the split proposal should be a fracture that has a high 

potential for being split into two new fractures with two different sets of 

parameters. The potential is assessed by examining the farthest point to the 

fracture (the longest distance) and applying the DD-transform to the associated 

points to check for two distinct best orientations. 

Once the candidate fractures are selected, the next step is to propose the 

parameters for the new fractures to which the proposals are to be applied. The DD-

transform is used to suggest the orientations and the coordinates of the midpoints 

of new fractures. Fracture length is generated from the corresponding distribution 
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function. The final step is to determine, on the basis of Eq. (5.5), whether to accept 

the proposed new fractures. The steps of the algorithm are summarized as follows. 

Algorithm 2 

1. Initialize n fractures, {  }
   

 
, where n is a random integer number (a small 

portion of the points). 

2. Select three subsets of fractures at random, i.e.    {  }
   

  
,    {  }

   

  
 

and    {  }
   

  
, where   ,    and    are random integer numbers 

(portions of existing fractures). 

3. Update midpoints of fractures in    using SA. If SC are met, terminate the 

algorithm. 

4. Update orientations of fractures in    using SA. If 

5. SC are met, terminate the algorithm. 

6. Exchange the lengths of pairs of fractures       
∈   . If SC are met, 

terminate the algorithm. 

7. Apply special-split proposal. If SC are met, terminate the algorithm. 

8. Apply split proposal. If SC are met, terminate the algorithm. 

9. Apply special-joint proposal. If SC are met, terminate the algorithm. 

10. Apply joint proposal. If SC are met, terminate the algorithm. 

11. Repeat from step 2. 

5.6 Optimal Number of Fractures 

Finding an optimal number of fractures is important in DFN and for this purpose a 

growing algorithm can be used. In this algorithm, a few fractures are initially fitted 

to the points. During the optimization process, the network is allowed to grow, 

either by inserting a new fracture or by splitting an existing fracture into two new 

fractures. This process will continue until an adequate number of fractures is 

obtained, which is assessed by examining the objective function value and its 

statistics. Another way is by pruning the network, starting with a large number of 

fractures. There are two alternatives for reducing the network size: removing a 

redundant fracture or joining two existing fractures into a single fracture. Both the 
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growing and pruning techniques start with a set of initial fractures and their final 

solution for the optimal number of fractures should be similar. These two 

techniques can be integrated into a model so that the network starts with an 

arbitrary number of initial fractures and the number of fractures varies during the 

optimization process (an increase or decrease) as given in algorithm 2. 

5.7 Growing the Network (“Split” and “Special-Split”) 

When the number of fractures is not sufficient to give an acceptable fit to the entire 

dataset (e.g. existence of some points outside a bandwidth of any fracture given a 

pre-specified threshold), splitting a fracture into two fractures may improve the 

goodness of fit. It is then important to choose an appropriate candidate fracture 

and the set of parameters for the two new fractures. A candidate fracture is chosen 

on the basis of the existence of an isolated point (the largest distance to the 

fracture) and the potential for splitting into two noticeably different fractures 

(orientations), which are assessed by applying the DD-transform on the associated 

points. More precisely, if the proposed two orientations are significantly different, 

two new fractures are constructed from the midpoints and the orientations. The 

lengths of the two new fractures are drawn from the fracture size distribution. The 

steps of the proposal are: 

1. For each fracture, find the largest distance from its farthest associated 

point. Sort the fractures in descending order of their largest distances and 

select the first S fractures as initial candidates. 

2. For each initial candidate, apply the DD-transform to the associated points 

to determine the two “best” lines. If the difference in the orientations of the 

lines obtained in step 2 is not significant (\#) for a given fracture, that 

fracture is discarded from further consideration. 

3. Choose a fracture based on the highest distance as the final candidate 

fracture.  

4. Accept or reject the proposal on the basis of Eq. (5.5). 

  is an integer number (a small portion of existing fractures). The value of   

depends on the number of existing fractures; we set     in our implementation. 
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Threshold   is set to a small integer number, e.g. 5( ), so as to discard new 

generated lines with similar parameters. In other words, if the difference in 

orientations of the two new fractures is less than    the initial candidate fracture is 

removed from further consideration. The coordinates of midpoints and orientations 

of proposed new fractures are obtained in step 2 by the DD-transform and the 

length is obtained by sampling from the fracture length distribution. The key 

difference between the “Special-Split” and “Split” is in step 2 where for the “Split”, 

two new fractures are generated and the old one is removed; while for the “Special-

Split”, only one new fracture is generated and the original fracture is kept as the 

second fracture. The need for two different proposals is because the candidate 

fracture for splitting may itself already be a good fit to some of the associated 

points. Thus, in step 2, two versions are assessed depending on the importance of 

the candidate fracture in the fitted model. The “Special-Split” does not require 

determination of two different orientations and the first element of    and    

obtained by the DD-transform corresponds to the only fracture required in this 

proposal. 

5.8 Pruning the Network (“Joint” and “Special-Joint”) 

We first discuss the “Joint” proposal which consists of two stages. In the first stage, 

we find the two most similar candidate fractures as assessed by a similarity 

measure. We define a measure similar to the spatial distance measure described in 

Sect. ‎5.2. This measure incorporates the distances between the endpoints and 

orientations of fractures simultaneously and is termed the “product–similarity” 

measure, 

      
                  ̅̅ ̅̅ ̅̅          ̅̅ ̅̅ ̅̅          ̅̅ ̅̅ ̅̅          ̅̅ ̅̅ ̅̅   (‎5.9) 

where            and            are two fractures from the fracture network 

and     and     ̅̅ ̅̅ ̅ are the angles and absolute distances related to    and    as 

described in Figure ‎5.1. The two most suitable candidate fractures correspond to 

the pair with the smallest value of the similarity measure. The selection process 

may fail when two fractures are co-aligned, whether or not they overlap. To 
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overcome this problem, we combine this measure with another similarity measure 

on fracture centres to obtain a general definition of similarity, 

       
                 

                 (‎5.10) 

where   is a small positive number to handle the co-alignment problem (e.g.     ) 

and          is the absolute distance of the centres   ∈    and   ∈   . In the 

second stage, the aim is to propose a new fracture and its parameters. The DD-

transform is used to find the best choice among all possibilities. The rest of the 

procedure is the same as that of the split proposal, i.e. accepting or rejecting the 

proposal based on the acceptance probability. The “Joint” proposal is: 

1. Apply the product-similarity measure,     , for pairs of fractures.  

2. Choose a pair of fractures with the smallest value of the similarity 

measure.  

3. Find the orientation and the coordinates of the midpoint of the new 

fracture by applying the DD-transform to the associated points of the 

candidate fractures. 

4. Generate a value for the length of the proposed fracture from its 

distribution.  

5. Accept or reject the proposal on the basis of Eq. (5.5). 

 

Figure ‎5.1: The lines         and         used in the product-similarity measure. 

In joining two fractures, it may be necessary to consider criteria other than the 

similarity of lines. One of these is to combine fractures with small values of the 

associated point density, which is defined as the number of associated points of the 

fracture per unit length of the fracture; we refer to this as the “Special-Joint” 

proposal. The aim is to remove redundant fractures from the fracture network. 

This case is similar to the joint proposal in that the number of fractures is 



146 CHAPTER 5: SPATIAL CLUSTERING 

decreased by one for each successful proposed move. First, the fracture with the 

smallest associated point density is selected. The selected fracture is removed from 

the network. The objective function value is calculated for the proposed 

combination based on    in Eq. (5.5). The proposal is accepted if    is less than a 

random number generated from the uniform distribution. 

5.9 Experiments 

A simulated dataset was constructed to test the proposed methods. A number of 

random points, here 70, were generated in the region of               with each 

point representing the midpoint of a fracture. For each point, values for length and 

orientation were drawn from their respective distributions. In this example, the 

distribution of length is lognormal, with mean 0.20 and standard deviation 0.13 

and the distribution of orientations is Gaussian,       . The values obtained for 

orientation are then truncated to the interval   
 

 
 
 

 
 . The region displayed in 

Figure ‎5.2a, is greater than               as the fractures are not truncated. 

 

Figure ‎5.2: Results of the simulated dataset with 70 embedded lines; (a) simulated 

fractures; (b) point sampling with noise 0.01; (c) the final fitted fractures; (d) the number of 
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fractures versus the  iteration number; (e) the objective function values versus the iteration 

number; (f) the models of the length histogram for the actual and fitted fractures  

Figure ‎5.2a is the “true” fracture network that is to be modelled. Figure ‎5.2b is 

the point cloud simulating the seismic points associated with the fracture network, 

and Figure ‎5.2c is the fracture model fitted using the proposed method. The points 

in Figure ‎5.2b are obtained by using randomly sampled points of the fractures in 

Figure ‎5.2a. The minimum and maximum number of points for the smallest and 

largest fractures are between 3 and 10 depending on fracture lengths; the longer 

the fracture, the greater is the number of points. Noise from a uniform distribution 

is added to the sampling points to create a dataset resembling reality. Figure ‎5.3 is 

the initial fracture model before optimization. For the initial model, some points, 

here 54, are selected from the point set at random as initial fracture centres; for 

each point, values of orientation and length are generated at random from their 

respective distributions. The final total number of detected fractures is 71 

compared with 70 “true” fractures. The joint and split proposals are demonstrated 

in Figure ‎5.2d where “S”, “SS”, “J” and “SJ” stand for “Split”, “Special-Split”, 

“Joint” and “Special-Joint”. As shown in Figure ‎5.2d, total numbers of 25 “Split”, 41 

“Special-Split”, 17 “Joint” and 32 “Special-Joint” proposals were accepted. As 

expected from the global convergence property of SA (Kirkpatrick et al. 1983), after 

a certain number of iterations the number of fractures stabilizes; in this example, 

stabilization is achieved at around 30,000 iterations. The value of the objective 

function decreases and converges to a steady state as shown in Figure ‎5.2e. In 

Figure ‎5.2f, the length histogram of fitted fractures is compared with the initial 

distribution of the fracture lines in Figure ‎5.2a; there is a close match between the 

two histograms. Figure ‎5.4a shows the rose diagram of the orientations for the 

original “true” fractures and Figure ‎5.4b shows the rose diagram of the fractures in 

the fitted fracture model. Although the orientation was not directly involved in 

conditioning the fracture simulation, the two still show significant similarity, given 

the noise on sample points and the few sample points on each fracture. To check 

that the model can generate a distribution of lengths similar to the length 

histogram model in Figure ‎5.2f, we conducted 30 simulations with different sets of 

parameters for the lognormal distribution. In each simulation, noise from a 

Gaussian distribution was added to the actual parameters of the original dataset to 
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create a noisy set of parameters. The resulting length histograms are shown in 

Figure ‎5.5c where the bold line is the actual histogram and the others correspond 

to the different simulations. Figure ‎5.5a shows the number of fractures obtained 

after optimization versus the number of initial fractures, and Figure ‎5.5b shows 

the function values in these 30 simulations. In Figure ‎5.5a, two simulations co-

locate with two other simulations (red circles). 

5.10 Extension to 3D Applications 

Several issues must be addressed to extend this work to 3D applications. First, 

fractures in 3D are no longer line segments and common representations of 

fractures in 3D include circular discs, elliptical discs, planar polygons or planes 

with infinite extent. The elliptical disc representation is the most common and is 

used in the research reported here, i.e.                    , where       are the 

coordinates of the fracture centre point,     the dip direction and dip angle of the 

plane,   the rotation angle of the major axis against the dip direction of the ellipse, 

and     the major and minor axes of the ellipse. Because of the tortuosity of 

fractures, this configuration, even with the „best‟ fitted model, cannot intersect all 

seismic points, but the distance of the points to the fracture planes can be used as 

one of the criteria to assess the goodness of fit of the fracture model.  

Second, the DD-transform must be extended so that it represents at least the 

centres and the orientations of the ellipses. For each candidate point in step 2 of 

algorithm 1, two distinct points in step 3 are required to propose a plane, hence 

determining the corresponding centre and orientation. Note that the rotation angle 

is not obtained from the plane information constructed by the three points in steps 

2 and 3. The centre coordinates, the dip direction and the dip angle are available 

from the DD-transform in which a 3D array is constructed with the first dimension 

referring to the index of points, the second to the dip direction and the third to the 

dip angle. The other three parameters (the rotation angle, major axis and minor 

axis) are generated randomly from their respective distributions. 

Third, the objective function in 2D applications is the sum of the spatial 

distances from fractures. The purpose of the objective function is not only to 
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minimize the distances of points to the fracture model, but also to condition the 

model to the fracture sizes. The extension of the objective function to 3D is not 

straightforward and requires an alternative formulation using two objective 

functions: one for minimizing distances of the points to the fitted fracture model 

and the other for minimizing the fracture sizes. The former function is simply a 

projection of the distances of the points to the fracture planes. The latter is defined 

as: 

 
    ∑

      

    

 

   

 (‎5.11) 

where   is the number of fractures,    and    are the major and minor axes of the 

 th fracture and    is the number of points associated with the  th fracture 

(  ∑   
 
   ). This objective helps to achieve a network with the smallest possible 

number of fractures and a minimum amount (area) of fracturing (corresponding to 

the existing point cloud). The function is divided by             , to achieve 

fractures with more associated points; the larger the value of   , the smaller is the 

value of    . 

 

Figure ‎5.3: Initial map before optimization 
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Figure ‎5.4: Rose diagrams for the simulated dataset: (a) actual lines; (b) fitted lines 

 

 

Figure ‎5.5: A summary of 30 simulations: (a) number of final fractures versus number of 

initial fractures; (b) function values after optimization; (c) actual (bold line) and fitted 

length histograms 
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Figure ‎5.6: Results for Habanero dataset; (a) seismic point cloud; colours represent time 

domain of the seismic events; (b) initial fractures propagated from the borehole; (c) final 

fitted fractures; (d) distribution of point associations (i.e. number of points per fracture) 

Fourth, the proposals are extended to 3D applications as follows. The centre and 

the orientation of fractures are perturbed by adding noise, using a random sample 

from a Gaussian distribution, while the fracture sizes (major and minor axes) are 

exchanged between two randomly selected fractures. The four proposals used for 

growing and pruning the network size can be easily adapted for 3D cases. However, 

some changes are required in the selection criteria for choosing a candidate 

fracture(s) and for determining parameters of proposed new fractures. In the 

“Joint” proposal, the 2D similarity measure is no longer applicable and the two 

closest fractures are chosen on the basis of the Euclidean distance of their 

parameters. In the “Split” and “Special-Split” proposals, the 2D selection criteria 

are equally applicable in 3D. 

5.10.1 A Real Case Study: Habanero Reservoir Dataset 

The Habanero wells are part of Geodynamics‟ HDR geothermal project in the 

Cooper Basin, South Australia. These wells have been drilled to depths of about 

4,400 m below the surface or about 700 m into the bedrock where the temperature 
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reaches 250 C (Baisch et al. 2006). The dataset used in this study contains 23,232 

seismic events covering an approximate area of 2.5    . The absolute hypocentre 

locations of these events are shown in Figure ‎5.6a. 

 

Figure ‎5.7: (a) Variation of number of fractures; (b) the total objective function value; (c) the 

amount (area) of fracturing during the optimization process; (d) distribution of the 

associated distances; (e) distribution of major axis; (f) distribution of minor axis. 

The resulting fracture model after optimization (100,000 iterations of SA) is 

shown in Figure ‎5.6c, which represents an optimal realization of the point cloud, 
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and Figure ‎5.6b shows the initial fracture model. To create an initial map, the 

nearest points from a borehole are selected first as possible candidates for centres 

of new fractures. If the selected point is not in a pre-specified bandwidth of existing 

fractures, a new fracture is added to the network. This process continues until all 

points are visited and each has been assigned to a bandwidth of at least one 

fracture. The number of initial fractures here is 371. The number of fractures after 

optimization is 515 compared with 613 fractures in the work of Baisch et al. (2006) 

and Xu et al. (2013b), while retaining reasonable accuracy in terms of the 

associated distances and the point–fracture associations. The method is almost ten 

times more efficient than the MCMC model of Xu et al. (2013b). Figure ‎5.6d shows 

the distribution of the point associations. From Figure ‎5.6d, the two largest 

detected associations have more than 400 associated points, while in the work of 

Xu et al. (2013b) the largest fracture had an association of 393 points. Figure ‎5.7a 

shows the variation in the number of fractures during the optimization process. 

This figure also shows the variation in the proposals (“Split”, “Special-Split”, 

“Joint” and “Special-Joint”). Figure ‎5.7b shows the objective function value and 

Figure ‎5.7c shows the amount (area) of fracturing. Figure ‎5.7d shows the 

distribution of the associated distances, i.e. the distances of points from the 

fracture model. Figure ‎5.7e, f shows distributions of the major and minor axes of 

the detected fractures, which have a lognormal distribution. 

5.11 Conclusions and Future Work 

We have developed a stochastic optimization method for fitting a fracture network 

conditioned by a seismic point cloud. The results from the simulated dataset were 

satisfactory in terms of the objective function value and statistics including the 

histogram of fracture length and the rose diagram of fracture orientations (for 2D). 

The proposed method is general in the sense that it can be easily extended to 3D 

applications. The use of the DD-transform increases the accuracy as well as the 

efficiency of the modelling by introducing a locally optimal solution for fracture 

parameters. The results from the Habanero reservoir field data were satisfactory in 

terms of the number of iterations, the number of fractures and point association 

(for 3D). 
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Fracture networks can be characterised by their geometry, spatial arrangement 

and topological relationships. For a stable fracture network, fluid flow is a function 

of these defining characteristics. In a broader sense, if the intention (or even the 

outcome) of fluid injection (as in stimulation process) is to propagate fractures then 

it is more a response of the rock and the confining conditions. For simulation of 

fracture networks, the characteristic of a fracture network model can be defined 

somehow explicitly, however, for a given fracture network realisation a set of 

measures are required to determine and or to evaluate the network specifications. 

In this chapter, some known and some novel measures are introduced and 

discussed with the intention of providing an insight into the subject and purpose of 

characterisation of fracture networks.  

6.1 Fracture centroid density 

It is common practice to represent fracture locations in two- and three-dimensions 

by their centroids. The point densities of the resulting point patterns can be used, 

for example, to produce density maps (Fadakar-A et al. 2011). A common and 

recommended (due to its smoothing effect, efficiency and robustness) method for 

evaluating point densities is kernel density estimation (KDE, Wand and Jones 

1995). KDE is covered extensively in the literature and there is a particular focus 

on the optimal determination of KDE parameters such as the choice of bandwidth, 

which has a significant effect on the resulting map (details in Duong 2004). As a 

proposal applying KDE to a set of fracture centroid points yields a new measure 

called the fracture centroid density (FCD, or DFC: density of fracture centroids). 

Figure ‎6.1 shows the FCD maps for a synthetic two-dimensional example of a 

fracture network. 
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Figure ‎6.1: Fracture network density maps based on fracture centroid points (FCD map). A 

density map of this type can be seen as a quick and useful evaluation of concentration of 

fractures in the study region. It is, however, a biased estimation due to the simplistic 

representation of fracture lines as points. 

Density maps, such as those provided by FCD, do not take into account the 

inter-connection among fractures in the network; these density methods are 

neither representative of intersection patterns nor connectivity characteristics of 

the fracture network. This remains true irrespective of the level of correlation 

between fracture density and fracture connectivity in any particular case. The 

example shown in Figure ‎6.2 demonstrates that a completely unconnected set of 

fractures, which would generate a void connectivity map, can nevertheless 

generate a regular density map. The fracture network in the example was 

generated using an inhomogeneous point density for fracture centres. Fractures 

were then generated using a truncated power-law distribution for lengths and a 

von-Mises distribution for orientations. Fractures were accepted only if they had no 

intersections with previously existing fractures in the set. 
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Figure ‎6.2: High fracture centroid density does not necessarily imply fracture intersections. 

In (a) despite its appearance (due to size of image resolution) there are no percolating sides. 

This example shows the serious shortcoming of using FCD for describing the connectivity 

and/or percolation state of the network. 

A FCD map represents fractures solely by their centroid points and there is thus 

no information about length and orientation in the resulting density map. FCD is a 

simplistic form of the density of fractures that is only appropriate for a quick initial 

evaluation. The limitations of FCD can be addressed by using alternative measures 

such as the one proposed in Sect. ‎6.4. 

6.2 Xf 

The average number of intersections per fracture, Xf, is a traditional measure of 

the overall connectivity of a fracture network. To compute this measure, for each 

fracture in the network the number of intersections with other fractures is counted 

and the average of all of these values is the Xf measure, which is a single value for 

the entire network. An investigation was made to count the number of 

intersections per randomly generated lines instead of the fractures themselves. The 

resulting value was similar to that of the less-known P11 (see next, Sect. ‎6.3). 

Briefly, although the two measures Xf and P11 are similar, they differ 

fundamentally in concept and application. Note that Xf evaluates the connectivity 

of fracture networks (i.e., intersection between fractures must exist otherwise Xf is 

zero) while P11 evaluates the intensity of fractures (same as scanline sampling). 

That is, for a completely unconnected fracture network, such that in Figure ‎6.2, the 

Xf value is zero while the P11 value is greater than zero. 

6.3 Intensity group 

Dershowitz (1992) proposed a list of six intensity measures known as the P 

(persistence) group including P11, P21, P31, P22, P32 and P33 of which P21 and 

P32 are the most widely used. The measures are summarised in Figure ‎6.3. 
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Figure ‎6.3: Summary of fracture intensity measures proposed by Dershowitz (1992). 

An example evaluation of P11 is shown in Figure ‎6.4 in which two scenarios for 

sampling lines have been implemented.  From the Figure it can be seen the regular 

(i.e., single direction) sampling lines generate a lower P11 value (15.551) than the 

random scanlines (16.314). In fact, using a single direction or a restricted range of 

directions for scan lines yields a biased evaluation of P11. The resulting error can 

be significant for regularly oriented fracture networks as in the following example. 

Consider a case in which fractures are oriented in a limited range of directions. If 

sampling lines are aligned with those directions there will be no or minimum 

intersection between fractures and the sampling lines. On the other hand, random 

scanline sampling is unbiased with respect to the orientation of fractures. 
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Figure ‎6.4: P11 using two systems of scanline sampling: random (a) and regular (b). 

Histograms of P11(r) and P11 are shown in (c). 

P21 is demonstrated in Figure ‎6.5 for which two strategies were used. For the 

first strategy P21 was calculated as the total length of all fractures in the study 

region. For the second evaluation P21 was calculated as the average of the values 

yielded by Monte Carlo sampling (Robert and Casella 1999) of smaller squares (see 

Figure ‎6.5b). For a sampling square of 0.1×0.1 within a 1×1 square study region, 

the resulting P21 value is 34.513 (approach 2) compared to 31.757 as of the entire 

region (approach 1). 

 

Figure ‎6.5: P21 using Monte Carlo simulation. A number of 1000 square samples of size 

0.1×0.1 were taken. In (c) in the title of histogram of P21 values, 31.757 is for entire study 

region while 34.513 is average of 1000 samples. 

The effect of variation in the sample size was investigated using a simulation 

with sample sizes varying from 0.1 to 0.5 within a study region of size     for ten 

realisations, each with 1000 samples. The results are shown in Figure ‎6.6. 
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Figure ‎6.6: It appears that the size of sample (w) influences the calculated P21 value. 

However, the sign of the influence varies among the different realisations, suggesting that 

the proposed relationship is strongly associated with each realisation. In the figure, each 

data point of each curve is produced by averaging 1000 samples. Ten realisations were 

used. 

From Figure ‎6.6 there appears to be a clear correlation between the sample size 

and the resulting P21 value; note, however, that the sign of the correlation varies 

among the realisations. 

6.4 Fracture density 

As a new proposal, the density of fractures in two-dimensional fracture networks 

can also be estimated by means of cell sampling on a grid as follows. The fracture 

density for any cell (e.g., square in Figure ‎6.7) in the grid covering the entire study 

region is calculated as the sum of the number of fractures wholly contained within 

the cell and the number that intersect the boundary of the cell. This produces a 

matrix of fracture density (Fn), which can be mapped as the example shown in 

Figure ‎6.7. Moreover, implementation of various cell sizes results in multiple Fn 



162 CHAPTER 6: CHARACTERISATION OF FRACTURE NETWORKS 

maps on which E-Type measures can be used to calculate a Generalised Fn (GFn). 

These measures can be readily extended to three-dimensional fracture networks for 

which the sampling cell would be a cube. 

 

Figure ‎6.7: Fracture Density calculated for each cell in the grid by counting the number of 

fractures wholly contained within a cell and the number that intersect the boundary of the 

cell. GFn is the Generalised Fn computed for grid sizes in the range [3, 25], i.e., cell size 

varying from 1/9 to 1/625 of the area of study region. 

6.5 Largest empty circle 

The largest empty circle (LEC) in a region containing points is the largest circle 

that does not contain a point, i.e. it is a measure of the largest empty space in the 

region. A motivation for finding the LEC in a study region would be the placement 

of a nuclear reactor as far away as possible from surrounding cities. As a proposal 

in fracture network applications, LEC can roughly approximate the largest size of 

intact rock mass; suggesting applications for designing underground cavities, 

tunnels, buildings and so on. Figure ‎6.8 demonstrates the LEC for a set of points 

representing the centroid of fractures. Intuitively, a similar concept can be 

developed for three-dimensional fracture networks for which the objective would be 

the largest empty sphere. Note that, because of intrinsic assumptions, these 

measures are approximate. One such assumption is that fractures can be 

adequately represented by their centre points, which is not entirely realistic for 

rock masses. Another approximation is the use of a circle (sphere) to simplify the 

area (volume) of intact rock. The next two sections Sects. ‎6.6 and ‎6.7 (Distance 

map) provide ways of addressing these two shortcomings. 
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Figure ‎6.8: LEC analysis. The largest one is highlighted. This measure is useful to 

determine isolated areas in the study region according to a distance of interest. Note that 

the edges of the study region have also been considered as constraints. The exponential 

distribution of the areas is apparent as shown in the histogram on the right. 

6.6 Largest empty convex-hull (inner-convex-hull) 

Largest empty convex-hull (LECH or ICH) analysis is used to determine areas in 

the study region with the largest convex polygon that does not contain a point. 

Intuitively, this measure is more precise than LEC (see previous section) in 

providing the largest intact areas in rock masses. A precise solution is presented in 

the next section. 

 

Figure ‎6.9: Largest empty convex-hulls. Similar to LEC in its application but provides a 

much more realistic measure of empty space. Note that for any fitted convex-hull a 

maximum area circle can easily be found. 
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6.7 Distance map 

The distance map is a standard tool in image processing (Kimmel 2003). It is 

computed as a Euclidian distance field around a target object (here fracture trace 

lines). It is a simple function          which assigns values to all points in the 

domain such that           ∈       , where        ‖   ‖  
 is the Euclidian 

distance between two points p and q. As a proposal for application of distance map 

in characterising fracture networks, as for example implementation stage in two-

dimensional fracture networks, fracture traces are first discretised into pixels with 

a desired resolution (small enough to preserve the overall structure of the fracture 

network). For the example shown in Figure ‎6.10 the resolution was 0.001 compared 

to the extent of study region    . The size was chosen so as to distinguish dense 

areas. The distance function results in a matrix of distances (Figure ‎6.10b). A 

contour map of the distances is also shown in Figure ‎6.10c. The distance field 

(map) analysis provides a simple and useful view of intact areas in the study 

region. 

 

Figure ‎6.10: Distance map based on the distance from fracture trace lines. The darker the 

shade of blue the farther the location is from a fracture. This analysis may have 

applications in ranking a study region for safety issues. In (c) the contour values are the 

logarithms of the distance values. 

6.8 Buffer effect 

The buffer effect is widely used in Geographic Information Systems (GIS) to 

determine an affected space around a target object, such as restricted areas around 
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a road, railway and so on. It was originally a product of the dilation (a 

mathematical morphology function, see Sect. ‎2.1.11) of an object by a smaller, and 

often simple, geometrical shape such as a circle (2D) or a sphere (3D). It can also be 

produced using a distance map (Sect. ‎6.7). As shown in Figure ‎6.11c buffers may 

overlap, which may indicate a potential new fractured zone due to the expansion of 

fractures (e.g., due to stimulation). The expansion is considered in both length and 

lateral extent. The buffer map can be used to evaluate the probability of expansion 

of the fracture network due to a stimulation process. That is, larger and multiple 

overlapping areas suggest a higher probability of newly expanded areas in the 

network. Finally, the size of the buffer can be associated with parameters of each 

individual fracture such as aperture and length. 

6.9 Convex-hull 

Fracture clusters are determined by means of intersection analysis. An isolated 

fracture is one that has no connection to other fractures. Isolated fractures are not 

involved in fluid flow modelling. A fracture cluster can be bounded by a convex-hull 

defining the minimum convex area surrounding it. Overlaps (i.e., shared areas), as 

shown in Figure ‎6.11b, show regions of potential expansion of multiple clusters 

similar to that explained in the previous section on the buffer effect. The convex-

hull and the buffer effect indicate very similar potential areas for expansion. 

 

Figure ‎6.11: Convex-hull and buffer effect applied to a fracture network. Note that the 

buffer effect is applied only on clustered fractures assuming that the isolated fractures are 

not affected by expansion mechanisms.  
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6.10 Block area 

Rock blocks are duals to fractures in fractured rocks. The analyses of rock block 

statistics, geometry and displacement are important especially in rock mechanics 

and rock engineering, where the safety of underground works are closely associated 

with the stability of rock blocks. Investigations show that the size of rock blocks 

(i.e., area for two-dimensional cases) has a distribution with a long positive tail. As 

shown in Figure ‎6.12 for GFNM fracture network models the resulting histogram 

of areas is exponential in form with no upper tail whereas for VFNM upper and 

lower tails are present although large areas are rare in either tail (see Figure ‎6.12). 

 

Figure ‎6.12: Histograms of block areas for GFNM and VFNM. Smaller area blocks are more 

dominant in GFNM compared to VFNM. 

6.11 Backbone density 

Any fracture network, if not fully isolated, has an internal structure called a 

backbone (also known as a skeleton, Priest 1993), which is the determining 

structure for fluid flow through fractures. A backbone structure of an FNM can be 

extracted by 1) removing isolated fractures, and 2) trimming free-end fractures to 

the nearest intersection point. Figure ‎6.13 shows the backbone of an FNM and the 
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density map of centres of segments of the backbone. Due to significance of 

backbone structure on flow the density of centroids of backbone elements (shortly 

BBD) is proposed as another useful measure. BBD can also be seen as an 

important tool for evaluating the domain for reaction between fractures and the 

fluid in a qualitative manner. Denser areas in BBD suggest more involvement in 

the flow regime for those areas. One may also remove any isolated clusters from 

the structure of backbone to decrease the computational effort in evaluating fluid 

flow. Isolated clusters are those that have no connection to boundary conditions, 

inlet or outlet. 

 

Figure ‎6.13: Backbone structure of an FNM. (a) FNM; (b) backbone; (c) density map of 

centres of backbone line segments. 

6.12 Block centroid density 

The blocks in a rock mass can also be represented by their centroid points, which 

makes them amenable to point density mapping techniques (Figure ‎6.14). As a 

proposal an application of block centroid density (BCD) analysis would be for safety 

analysis in underground cavity design. Dense areas of blocks suggest higher 

potential for movement (instability) and so require additional support (e.g., 

bolting). 
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Figure ‎6.14: Density map of block centres in an FNM, which is useful in identifying blocks 

of smaller area blocks in rock masses. 

6.13 Intersection analysis 

Determination of intersections between lines in two-dimensional fracture networks 

and between polygons in three-dimensional cases is the first stage in the 

connectivity analysis of fracture networks. The various ways in which two lines can 

intersect are illustrated in Figure ‎6.15 and intersection algorithms must consider 

all of these possibilities. Computer-code implementations must be as robust as 

possible and error-free. Various techniques have been proposed for exact 

computation to avoid round-off errors due to floating point representation limits in 

computer systems. The analysis of intersection (inter-connection) of fractures in 

fracture networks is an important stage in characterising the network. For 

example, connectivity analysis follows fracture clustering as a direct output of 

intersection analysis. Connectivity is a key factor in creating pathways in 

geothermal energy systems for fluid flow through fracture networks. 
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Figure ‎6.15: All possible ways in which two lines can intersect. In the overlaying cases it is 

better to choose the centre of the overlapping segment although other choices are also valid. 

For example, when using intersection analysis for segmenting the overlaying lines both 

endpoints are reported. 

6.13.1 Fracture clusters 

Fracture clusters i.e., groups of inter-connected fractures, are produced by the 

intersection between fractures. A cluster consists of at least two fractures. The 

existence of clusters in a fracture network may be associated with the 

heterogeneity of a fracture system (La-Pointe and Hudson 1985). Examples of 

fracture clusters determined on a synthesised fracture network are shown in 

Figure ‎6.16 in which the largest cluster has 24 members (fractures, elements) from 

the total number of 100 fractures. Note that despite such a significant proportion 

(24%), the area covered by the cluster is limited to a small portion of the study 

region. The area covered by a cluster can be quantified by using various tools such 

as the convex-hull or the buffer effect. It can therefore be concluded that the 

cardinality of a cluster is not highly correlated with its areal coverage. 

The extraction of fracture clusters is a step in intersection analysis. The 

clustering information is then used to determine the connectivity of the fracture 

network. This is very useful for a rapid evaluation of the connectivity between a 

newly added fracture or a set of fractures (e.g., support edges) and the existing 

fracture network. Such a task is common in connectivity analysis including the 
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connectivity index (Chap. 7 and Xu et al. 2006) and the connectivity field (Chap. 7 

and Fadakar-A et al. 2014) between supports and the fracture network. 

 

Figure ‎6.16: Application of intersection analysis results in groups of fractures called 

fracture clusters. The size of a cluster can be defined as its number of member fractures 

(cardinality) or the area that the convex-hull of a fracture cluster covers (coverage). 

The application of fracture intersection analysis and clustering described can be 

extended to three-dimensional fracture networks with no additional concepts. An 

example of a realistic three-dimensional fracture network is shown in Figure ‎6.17a 

for which the first three largest clusters with cardinalities of 94, 25 and 22, and the 

second three largest clusters with cardinalities of 13, 11 and 10 are shown in 

Figure ‎6.17b and 6.17c), respectively. 

 

Figure ‎6.17: Three-dimensional fracture network and fracture clusters. In (b) the first 

largest clusters are shown in decreasing order in red, green and blue. In (c) the next three 

largest clusters are shown. The cardinalities of the value clusters are shown next to them. 

Fracture clusters can be used for various purposes. For example, as shown in 

Figure ‎6.18, the pipe model constructed on the first three largest fracture clusters, 
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Figure ‎6.17b, provides an overall representation of fluid pathways in three-

dimensional fracture networks. Combining fracture clusters with a pipe model is 

very useful in understanding possible pathways in the fracture network for fluid 

flow between any pair of locations. Where percolating sides exist such a 

representation (clustered pipes) helps to determine the domain in which fluid 

flows. 

 

Figure ‎6.18: Pipe model constructed for the three-dimensional fracture network model 

shown in Figure ‎6.17. The first three largest fracture clusters are highlighted. The pipe 

mode clearly exhibits the possible domain for fluid transport for each fracture cluster. 

6.13.2 Intersection density 

As described in Fadakar-A et al. (2011) the analysis of intersection points between 

fractures is an important measure that is closely related to the connectivity of 

fracture networks and so can be associated with the response of the fracture 

network to fluid flow. 
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Figure ‎6.19: The intersection points between fractures are used for density mapping. 

6.13.3 Extended intersection density 

The infinite extension of the length of fractures generates a fully connected 

fracture network for which all intersection points can be determined and a density 

map can be generated (Figure ‎6.20). This proposes a new measure called extended 

intersection density (EID). 

 

Figure ‎6.20: Intersection Density maps for an extended FNM. Every fracture trace has been 

extended to reach the boundary of the study area. 

The resulting measure is a density map called the extended intersection density 

(EID) map. 

6.13.4 Inter-connectivity 

Inter-connectivity in a fracture network can be defined between at least two sets of 

fractures that are distinguished due to some criteria such as orientation. For 
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example, in the following example two fracture sets are defined on the basis of 

having an acute angle less than 45 degrees or higher. The inter-connectivity 

measure, as defined in Rouleau and Gale (1985-1987), is calculated as: 

 
    

  
  

                      (‎6.1) 

for two fracture sets indexed by   and  . In general, for n fracture sets the measure 

is defined as: 

 
   ∑

  
  

 

   

                      (‎6.2) 

where    is the mean length of fractures in each set,    is the mean spacing between 

fractures in each set and     is the mean angle between every two sets. 

 

Figure ‎6.21: Inter-connectivity (Ii) between two sets of fractures in a fracture network. I1 in 

the title means     i.e., fracture set 1 (fs1) and similarly for fs2. As shown, this measure is 

not transitive; depending on the choice of   two different values are calculated as 0.961 and 

1.685. 

According to Rouleau and Gale (1985-1987) and Lee (1990) this measure is 

useful in indicating the importance of every fracture set individually in respect to 

its hydraulic role in the network. Figure ‎6.22 demonstrates the values of the 

measure for three fracture sets defined by orientation classification. It can be seen 
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that the measure has higher values for cases in which the first set is the class 2 

(Figure ‎6.22). 

 

Figure ‎6.22: Inter-connectivity measured between three fracture sets (orientation classes). 

6.13.5 Fracture normal intersection density 

If the normal vectors to fracture lines (planes in three-dimensions) are generated in 

association with the length of fractures (Figure ‎6.23), a new set of intersecting 

points between the normal vectors can be derived on which density evaluation can 

be applied. Further inspection of the fracture network and the resulting normal 

intersection density map may suggest areas with high mechanical activity. This 

suggestion may be justified to some extent by considering the normal vectors in the 

σ3 direction (lowest principal stress direction) for every fracture in the network. 

This proposal is related to the concept of Fabric Tensor in rock engineering (see 

also Sect. ‎6.14 for a related discussion). 
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Figure ‎6.23: Density maps of intersections between normals of fractures for GFNM and 

VFNM. The normal lines are the same size as the fractures. The VFNM model suggests 

that NID is associated with the BCD whereas GFNM is not. 

6.14 Effects of stress field 

Fracturing due to brittle failure in rock can generate different fracture patterns 

depending on the relationship between the differential stress (     ) and 

maximum strength (T) of the rock during fracturing (Cosgrove 1998). The patterns 

of extensional failures (i.e.,         ) are shown in Figure ‎6.24, for example. 

The corresponding simulated fracture pattern for each stress state is conducted 

simply by adjusting the density of points ( ) and the Fisher dispersion factor ( ). 
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Figure ‎6.24: Mohr circles for extensional failures (e.g., due to hydraulic pressures) and 

associated fracture patterns. Labels “a” to “d” on Mohr circles correspond to patterns shown 

on sub-figures (a) to (d), respectively.  

The effect of variation in the setting of principal stresses on the resulting 

fracture patterns in three dimensions is also shown in Figure ‎6.25. 
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Figure ‎6.25: Various patterns of fracture networks in three dimensions due to extensional 

failure criteria. 

6.15 Comparison of density measures 

A comparison of various density measures is shown in Figure ‎6.26, which includes 

fracture centroid density (FCD, Sect. ‎6.1), intersection density (ID, Sect. ‎6.13.2), 

extended intersection density (EID, Sect. ‎6.13.3), block centroid density (BCD, 

Sect. ‎6.12), backbone density (BBD, Sect. ‎6.11), and normal intersection density 

(NID, Sect. ‎6.13.5). Figure ‎6.26 also shows the results of fracture cluster, convex-

hull and popularity analysis (see definition in the next section). The correlation 

matrix between the density measures is also given. Visual inspection and 

interpreting the correlations between density measures suggest that BBD and 

BCD are highly correlated with ID. The justification of the strong relationship 

between BBD and BCD is that both measures are direct products of the 

intersections between fractures in the network. An interesting finding is that by 

determining ID one can find an approximation of the density of blocks being 

created due to the extension of existing fractures. This is useful in those 

applications that are mostly focused on rock mass blocks, e.g., tunnelling in a 

fractured zone rather than fractures. In addition, FCD shows high correlation with 

EID and NID suggesting its usefulness as an approximation for them. Note that 

both FCD and ID can be quickly calculated for any fracture network. Whilst FCD is 

general, ID requires intersections between fractures; the latter assesses the 

potential of the network for fluid flow through fractures which is important. 

6.16 Popularity index 

A measure of popularity of fractures in the fracture network called popularity 

index is proposed as the number of intersections for each fracture in the network. 

Thus a larger number of intersecting fractures yields a higher popularity measure 

for fractures. The map in Figure ‎6.26 is made by discretising fractures with a fine 

resolution in which the values for cells are the accumulated popularity values. A 

quick inspection of the results in Figure ‎6.26 also suggests that the popularity 

measure is strongly correlated with ID. 
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Figure ‎6.26: Comparison and correlation between various proposed measures. Correlation 

values are Pearson-r computed pixel-wise. 
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6.17 Connectivity of fracture networks 

For any fracture network that is not completely isolated, the inter-connections 

between fractures generate fracture clusters (subsets or sub-network of fractures). 

The connectivity of a fracture network is intrinsically associated with fracture 

intersections and so with fracture clusters. The connectivity is a topological feature 

of the fracture network in the sense of spatial association between a fracture and 

neighbouring fractures. The traditional way of assessing the connectivity of 

fracture networks is to apply discretisation followed by examination of the 

connection properties between neighbouring cells in the discretised (pixelated) 

map. This has been reported in the literature for some time (Renard and Allard 

2011) and is closely associated with percolation theory. Appling discretisation is 

straightforward and the resulting maps are binary maps. For a binary map finding 

neighbouring connected cells is trivial and quick. This suggests that pixel map 

connectivity assessment is very efficient. However, there are serious drawbacks in 

the use of discretisation for fracture network connectivity analysis. One 

fundamental issue is that during the discretisation the intersection (inter-

connection) information between fractures on the local scale is lost, which may 

result in highly biased estimation of connectivity, depending to the discretisation 

setting. The size of pixel (discretised cell) is very much larger than the aperture of 

fractures (which appears as the width of fracture trace line in two-dimensions). 

Therefore the local connectivity cannot be reflected (preserved) in the resulting 

discretised map. Implementing a very fine cell size i.e., close to aperture size to 

cover the entire fracture network is computationally impractical due to the very 

large computational power (CPU), memory and processing time. Moreover at such 

a resolution there will be no additional information other than the fracture 

network itself. A proper solution would be a method that retains all local and 

regional inter-connection information for reasonable size of sampling cell, 

applicable to two- and three-dimensional fracture networks. Chapter 7 comprises a 

journal paper (Fadakar-A et al. 2014) which proposes, demonstrates and discusses 

in detail a new measure called the Connectivity Field that provides a proper 

connectivity measure for fracture networks that address the issue discussed above. 
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Connectivity Field: A Measure for 

Characterising Fracture Networks 
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This chapter is a journal paper on a new proposal, Connectivity Field (CF). The 

concept of CF is introduced as a measure that quantifies the connectivity 

relationship between fractures in a fracture network preserving local and global 

inter-connectivity information. CF block maps are shown to provide more 

information on spatial relationships including fracture intersections and 

clustering. The Generalised CF, the Probabilistic CF and the average CF are all 

demonstrated to have major potential significance in EGS and also potential 

application in many areas of DFN engineering. 
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Connectivity Field: A measure for characterising fracture 

networks 

Younes Fadakar Alghalandis1, Peter A. Dowd2, Chaoshui Xu2 

Abstract Analysis of the connectivity of a fracture network is an important 

component of the design, assessment and development of fracture-based reservoirs 

in geothermal, petroleum and groundwater resource applications. It is a useful 

means of characterising the flow pathways and the mechanical behaviours of 

reservoirs. An appropriate practical measure is required for connectivity 

characterisation because of the extreme complexity of fracture networks. In this 

paper, we propose the connectivity field (CF), as a useful measure to evaluate the 

spatial connectivity characteristics of fractures in a fracture network. The CF can 

be applied on both a particular realisation of a fracture network model (for 

deterministic evaluation) and on stochastic fracture network models using 

stochastic modelling and Monte Carlo simulations (Robert and Casella 1999) for 

probabilistic evaluation with uncertainties). Two extensions are also proposed: the 

generalised CF, a measure that is independent of support size, and the 

probabilistic CF. Potential applications of the CF and its extensions are in 

determining the optimal location of an injection or production well so as to 

maximise reservoir performance; and in determining potential flow pathways in 

fracture networks. The average CF map shows strong correlations with the Xf and 

P21 measures. The relationships between the CF measures, the fracture 

intersection density and the fracture network connectivity index are also 

investigated. 

Keywords Connectivity Field, Connectivity Index, Discrete Fracture Network, 

Fractured Reservoir, Intersection Density. 
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7.1 Introduction 

Fracture network modelling (FNM) is an important component of the design and 

development of natural energy and resource systems including geothermal and 

petroleum reservoirs and aquifers (Freeze 1975; CFCFF 1996; Cacas et al. 2001; 

Nelson 2001; Jing 2003; Hanano 2004; Kvartsberg 2010; Singhal and Gupta 2010; 

Fadakar-A et al. 2013a; Seifollahi et al. 2013). In general, the productivity of the 

reservoir depends critically on connections between injection and production wells 

and the areal extent of the fracture network in the reservoir. This is particularly 

true in hot dry rock (HDR) geothermal energy systems, as connections between 

injection and production wells provide pathways for the geothermal flow. It is, 

therefore, vitally important to understand the connectivity of the fracture network 

in such reservoirs and the methods proposed in this paper will contribute to 

achieving this understanding. 

Stochastic FNM provide a means of incorporating uncertainty in the generation 

of fracture network models; see, for example, Gringarten (1997); Hayashi et al. 

(1999); Hestir and Long (1999); Dowd et al. (2007); Mardia et al. (2007a); Jing and 

Stephansson (2007a); Xu and Dowd (2010). Stochastic FNM are based on the 

theory of random processes and can be implemented by various means including 

point processes (Diggle 1983; Baddeley 2010) combined, for example, with Monte 

Carlo simulations. The output of a stochastic FNM is a probabilistic realisation of a 

fracture network in contrast to conventional deterministic approaches, which 

produce a single “best” output. The rapid development of computers over the past 

two decades has made it practical to use stochastic FNM to investigate large-scale 

probabilistic problems such as modelling fractures in the deep rock masses of an 

enhanced geothermal system (EGS; Willis-Richards and Wallroth 1995; MIT 2010; 

Xu and Dowd 2010; Fadakar-A et al. 2013a; Seifollahi et al. 2013), in petroleum 

(oil/gas) reservoirs (Cacas et al. 2001; Nelson 2001) and in water resource 

engineering (Freeze 1975; Singhal and Gupta 2010). Stochastic modelling can be 

applied to many natural resource problems. For example, in geothermal reservoirs, 

it can be used to simulate fluid flow (Zhang 2002; Fadakar-A et al. 2013b) through 

fractures (Chilès and de-Marsily 1993; CFCFF 1996; Karvounis and Jenny 2011; 
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Ghaffari et al. 2012) to assess the main orientations (Xu et al. 2006), preferred 

pathways and reservoir extents (Fadakar-A et al. 2013b). Discrete Fracture 

Network (DFN) modelling (Jing 2003), as one implementation of stochastic FNM, 

represents fractures as individual conducting features (Priest 1993), each having 

its own physical, mechanical and hydraulic properties. DFN modelling can be done 

by means of marked point processes (Wen and Sinding-Larsen 1997; Baddeley 

2010). 

Recent developments in the connectivity assessment of stochastic FNM (see 

reviews by Michaelides and Chappell 2009; Renard and Allard 2011) include the 

work by Pardo-Igúzquiza and Dowd (2003) which is basically a cell (pixel) -based 

connectivity evaluation followed by Xu et al. (2006) who proposed the concept of 

Connectivity Index (CI) by adapting the connectivity measure so that the 

connection occurs only through fractures (Figure ‎7.1). That is, two sample supports 

(a support is any defined sub-space of the study region varying in size from a point 

to the entire region) even though they may overlap each other will be connected if, 

and only if, there is a pathway between them via fractures. This definition of 

fracture connectivity differs fundamentally from the conventional lattice, pixel or 

cell-based connectivity measuring methods (e.g., 4 or 8 connectivity scenarios for 

square cells) in which fractures are discretised into cells or edges and then the 

relationships between cells (edges) are quantified. In these methods, because of the 

limitations of the discretisation of the fracture network (e.g., in practice, cells are 

extremely large compared to the aperture of fractures), the relationships between 

fractures (intersection, closeness etc.) cannot be fully preserved; in other words, the 

process of discretisation degrades the physical structure of the connectivity 

(Figure ‎7.1). The CI, on the other hand, investigates directly the probability of 

connection between two supports via fractures. Figure ‎7.1 demonstrates some 

typical situations for which the resulting connectivity differs from lattice-based to 

support-based methods. In support-based methods the connectivity between two 

supports is defined only by fracture connections and not by the relative locations of 

the supports (e.g., overlapping, adjoining), that is, any inter-connection information 

between fractures is preserved. Consequently, two adjoining supports, e.g., square 

cells, as in Figure ‎7.1(right), are connected if and only if there is a fracture (or set 
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of fractures) intersecting both. The preservation of connectivity information during 

sampling (systematic or random scheme, Figure ‎7.1) is fundamental in our 

research. In Xu et al. (2006) the CI was used to predict preferential flow directions 

and the output was consistent with that derived by finite element analysis. This 

type of approach is useful as it partially addresses (by means of stochastic 

methods) the issue of uncertainty due to lack of data and/or data errors and 

provides a local interpretation of the entire system behaviour with associated 

confidence levels. 

 

Figure ‎7.1: Lattice-based connectivity (left) vs. fracture/support-based connectivity (right) 

measurement. In lattice-based methods the cell is the key element for defining connectivity 

in three forms: vertices, edges or faces. In support-based methods, however, connection is 

determined only via fractures. In the example shown (systematic sampling scheme),       

and       but      . Also note that two disjoint supports can be connected via 

fracture(s). Two overlapping supports are not connected if there is no connecting 

fracture(s). 

As noted in Fadakar-A et al. (2011), if the location of each fracture is 

represented by its centroid, the connectivity of a fracture network (as discussed 

above) does not necessarily depend on the density of fracture centroids (DFC, see 

Figure ‎7.2 for some examples), although a high DFC (and P21) may be associated 

with a high probability of fracture intersections (Gringarten 1997; see also 

Mauldon 1992 and 1994; Jimenez-Rodriguez and Sitar 2008, for relationships 

between P21 (P32) and intersection intensity). For example, areas with a large 
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number of small, isolated fractures, will have a high DFC (and P21, P32), however, 

because the fractures are isolated, the associated connectivity value is zero. Three 

examples of fully isolated fracture networks with associated DFC maps are shown 

in Figure ‎7.2. Despite their DFC patterns all of them have zero intersection 

densities (void maps). Thus, a more useful and generic connectivity solution would 

be a measure that counts intersections, and hence inter-connections, between 

fractures. The general concept of a measure of fracture intersection density has 

been proposed by other authors. Robinson (1983) in particular, and within the 

context of percolation theory, proposed a 2D measure as the average number of 

intersections per line (fracture) at percolation and termed this measure the Critical 

Intersection Number; other examples include the lineament intersection density in 

Elfouly (2000). In Fadakar-A et al. (2011) we proposed a different measure, 

unrelated to percolation theory, in which points (2D) or lines (3D) of intersections 

are used to calculate the density value per unit area or volume respectively. We 

termed this measure the (fracture) intersection density (ID). For two-dimensional 

cases the intersections between fractures always produce points while for three-

dimensional cases the resulting intersections can be points or lines (see 

classifications in Fadakar-A et al. 2011). Furthermore, the resulting intersection 

lines can also be represented by their midpoints. For both two- and three-

dimensional fracture networks a simple density estimation method, such as the 

Kernel Density Estimator (KDE, with Gaussian kernel, for example), can be used 

to generate intersection density (ID) maps. The relationship between ID and our 

present proposal, connectivity field, is also discussed in this paper. 
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Figure ‎7.2: Three scenarios for fully isolated fracture networks. As they are fully isolated 

the ID maps will be void while associated DFC maps are shown above. DFC contours are 

generated using the KDE method with automatic optimum bandwidth selection. 

Two traditional overall fracture network measures are Xf and P21 (P32 for 

three-dimension, Lee et al. 2010), which measure the average number of 

intersections per fracture (overall connectivity) and the average fracture length per 

unit area (i.e., fracture density), respectively. However, both measures consist of a 

single number for the network, which limits the extent to which they can 

characterise the FNM in any detail. We propose a series of new concepts to 

quantify the connectivity of fracture networks in detail both locally and globally. 

The concepts proposed include the connectivity field (CF), which characterises the 

spatial connectivity of fracture networks, the generalised connectivity field (GCF), 

which enhances the CF by eliminating the support dependency and the 

probabilistic connectivity field (PCF), which produces a connectivity map for a 

fracture network model. We first define the concepts and then use examples to 

demonstrate the implementation and to evaluate the performance of the 

connectivity measures. We also discuss relationships within CF groups and 
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between them together with other useful measures of fracture networks including 

DFC, ID, Xf  and P21. Potential applications and ideas for further developments are 

then discussed. Demonstrations are mostly on two-dimensional fracture networks 

to provide greater clarity in demonstration. Nevertheless, the principles of the 

methods proposed remain unchanged in their extension to three-dimensional cases. 

The only additional complexity in three dimensions would be in the computational 

geometry. An example of CF for a real three-dimensional fracture network is also 

presented.  

7.2 The Connectivity Field 

A connectivity function describes the connection between two points (Allard 1993) 

and can be represented as an indicator function (i.e., 0 or 1). If the two points are 

connected the function value is 1 otherwise it is 0. This basic concept has been 

widely applied to evaluate connectivity on the basis of a domain that has been 

discretised into pixels (cells). Cell-based methods (see the recent review by Renard 

and Allard 2011) are examples of so-called lattice-based connectivity evaluations. 

For fracture networks, these methods degrade the connectivity into finite cells. 

Indeed, by using cell-based discrete representations of fractures it is the 

relationships between cells that are investigated rather than those between 

fractures. As a result, the local and global interconnection information among 

fractures is lost (see example shown in Figure ‎7.5). To address these difficulties we 

have adapted the Xu et al. (2006) definition of the connectivity between two 

fractures in a fracture network. Fundamentally, if two fractures are directly 

connected to each other (i.e., they intersect) or are indirectly connected (i.e., there 

is a pathway via other connected fractures from one to the other) then they have a 

connectivity indicator of 1. We use       to denote that fractures    and    are 

connected and        to denote that the two are not connected A connectivity 

measure, such as a connectivity index (Xu et al. 2006) for fracture networks, is 

defined on the basis of a support ( , sub-space), which is a virtual area (two-

dimensional case) or volume (three-dimensional case) of interest in the particular 

application. The dimension of the support can be as small as zero i.e., a point. If a 

regular grid is used to cover the entire field of study, say for a systematic sampling 
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scheme (Figure ‎7.1), then the connectivity is defined between two supports (with 

size v positioned at points p and q) that are either connected via fractures, i.e., 

      or are not connected via fractures, i.e.,      . Hereafter we use 

“connectivity” to mean the connectivity between two supports in the sense just 

defined. Recall that the supports are not physical entities, and thus two nearby or 

overlapping supports are connected only if there is a pathway from one to the other 

strictly via fractures (see examples in Figure ‎7.1). Note also that if a grid is used to 

position the supports in a space then the definition of support precludes it being 

considered as a lattice (e.g., example situations in Figure ‎7.1), that is, the 

relationships between cells (the basis of discretisation methods) are not of interest 

on their own. For these reasons lattice- or pixel-based connectivity evaluations (see 

review by Renard and Allard 2011) are not suitable for our purpose which is the 

direct evaluation of fracture network connectivity via fractures (as demonstrated in 

Figure ‎7.1). A simple application of the defined fracture connectivity assessor 

would be to compute the connectivity index (CI,      in Xu et al. 2006), which is 

defined as a measure of the probability that two support cells are connected via 

fractures in a fracture network. The CI is useful for estimating the behaviour of the 

fracture network in terms of flow pathways. Xu et al. (2006) reported that, 

although the connectivity index does not deal with mechanical properties of flow 

through fractures, the resulting preferential flow direction is consistent with the 

output from conventional deterministic methods such as finite element methods. 

The connectivity index for two supports (     ) in the region   is defined as: 

                           ∈   (‎7.1) 

By definition, the highest CI value is 1 (a cell is always connected to itself if it 

contains a fracture). For surrounding cells the probability decreases exponentially 

as the separation distance increases; the minimum value of CI is 0, which means 

the two cells (supports) are always isolated from each other. CI evaluation is based 

on Monte Carlo simulation, in which a set of independent realisations of the FNM 

is generated. The evaluation of the proposed connectivity field in its basic form, 

however, requires only one realisation (equivalent to the deterministic case). Our 

proposal, the connectivity field (CF), is a measure that quantifies the connectivity 
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relationship between fractures in a fracture network preserving local and global 

inter-connectivity information of fractures. The CF evaluates the connectivity 

between a set of supports (     ) covering the entire study region (area or volume 

for two- and three-dimensional cases, respectively) as follows. 

 
   {∫           

 

  ∈ 

           ∈  } (‎7.2) 

where      is the indicator function mapping connectivity to binary values (0 and 

1). 

CF is thus a surface or volume for two- or three-dimensional regions, 

respectively. The integral in (2) simplifies to a double summation for a two-

dimensional grid of size     covering the region  . If required, a normalisation 

factor ( ) can be used to scale the range of CF to [0, 1], for example for a 

comparative study with CI (a probabilistic measure). Alternatively, the         

projection operator can be used. The numerical implementation (discrete form) is: 
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where        refers to the support indexed at (i, j) in the grid (G). When scaling is 

not required      The extension to three-dimensional fracture networks is: 
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The evaluation of CF is demonstrated in Figure ‎7.3 in which the CF is evaluated 

on a coarse two-dimensional grid (11×11 cells) for the simple fracture network 

shown in Figure ‎7.3a. A more detailed example is shown in Figure ‎7.4 where the 

CF clearly identifies cells with the largest hyper-cluster of associated fractures in 

the field (dark red cells). A hyper-cluster is a set of clusters that are connected to 

the same support. The CF contour map (e.g., Figure ‎7.3c or Figure ‎7.4c) provides a 

smoother representation of the CF map, which is a useful means of visually 
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depicting the trend in the variation of CF values. In our demonstrations we 

sampled the CF block map at a higher resolution (say, three times finer) to 

generate higher quality contour maps. Note that the grid is used here for locating 

the supports in the study region for a systematic sampling scheme. Recall that cells 

(supports) in the grid are not connected with each other unless via intersecting 

fractures. The example in Figure ‎7.5 demonstrates the lattice representation of 

connectivity for the fracture network shown in Figure ‎7.4a. As shown, the lattice-

based connectivity evaluation (here edge connection only) generates a single large 

cluster (which covers almost the entire study region) for the same size of support 

used in CF. The CF on the other hand provides much more information about the 

spatial relationships among fractures e.g., intersections and clustering. Lattice-

based evaluations cannot provide such information because, after discretisation of 

the fracture network into the lattice, the original relationships between fractures 

are degraded to the cell size, whereas in CF, connectivity is still determined by 

fractures regardless of the support size (as shown in Figure ‎7.1). Thus CF 

characterises fracture networks while preserving local and global relationships 

among fractures (Figure ‎7.5). 
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Figure ‎7.3: The computational stages of the CF; (a): A realisation of a FNM; (b): The 

resulting CF block map. The darker the colour the higher the value of CF; (c): The 

smoothed contour map of super-sampled CF. (d): stages for central 9 cells. 
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As fracture connectivity results from fracture clustering, CF provides a more 

reliable connectivity assessment of a fracture network because of its intrinsic link 

to the fracture clusters. In fact, fracture cluster analysis is used in the calculation 

of the CF in order to associate connected fractures with a support cell. In advanced 

forms of intersection analysis, the ID measure identifies regions with higher 

probability of flow through fractures and these correspond to high densities of 

intersections among fractures in the network (see Figure ‎7.8(ID); Fadakar et al. 

2011). The CF achieves the same end as ID but provides much more reliable maps 

because of its direct evaluation of the connectivity in the fracture network (see 

Figure ‎7.8 and Sect. ‎7.3 for detailed comparison). 

 

Figure ‎7.4: A realisation of a FNM, the CF map computed on a       grid and the 

interpolated contour map of the CF, from left to right respectively. 

 

Figure ‎7.5: Lattice-based connectivity evaluation of a fracture network. For comparison, the 

example fracture network is the same as that used in Figure ‎7.4a for the CF map. Note the 

difference in the output of lattice-based connectivity and support-based connectivity 

evaluations on a synthesised ray form fracture network. 
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7.2.1 The Generalised Connectivity Field 

The CF evaluation described above is based on a fixed size support  . It is, 

therefore, of interest to investigate the sensitivity of CF to variation in the support 

size (i.e.,  ∈        where   is the entire field of study and     i.e., a point 

support). In the example shown in Figure ‎7.6a, we investigate the variation of CF 

maps for support sizes in the range between 1/9 and 1/400 of the entire area. We 

observe that the spatial characteristics of the CF remain more or less similar under 

change of support size. This leads to the proposal of the generalised form of the 

connectivity field (GCF), which is defined by incorporating a wide range of support 

sizes (      ) and is formulated in continuous form as: 

 
     ∫   

 

 

   (‎7.5) 

Furthermore, the discretised form of the GCF can be calculated as: 

 
     ∑     

  
 
 

 

   
 (‎7.6) 

in which for     the support size becomes equal to the entire region   (upper 

bound), and     determines the lower bound for the support size. The GCF is 

therefore an E-type map of all CF maps obtained from a wide range of support 

sizes (Figure ‎7.6a). Figure ‎7.6c and 7.6d show an example of the GCF map for the 

fracture network shown in Figure ‎7.6b. 
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Figure ‎7.6: An example of the evaluation of GCF; (a): First stage: evaluation of CF for 

different support sizes  ; (b): the fracture network; (c, d): The resulting GCF maps. 

The variation in CF values as a function of support size is shown in Figure ‎7.7 

for four realisations. All four realisations have a more or less constant median CF 

under significant variation in support size. The apparent similarity in the spatial 

pattern of the CF maps (for various support sizes, Figure ‎7.6) and the invariant 

median statistic indicate that CF is a resistant measure with respect to changes in 

the support size. More importantly, these observations also suggest that CF is, to 

some extent, additive (i.e., almost linearly scalable) thereby increasing the 

reliability of the proposed GCF formulation. Compared to Figure ‎7.4, in which the 

CF contour map is a product of super-sampling (i.e., improving the resolution) of 

the CF block map, the contour map of GCF is constructed directly on top of the 

GCF block map. In other words, GCF eliminates the need for super-sampling and 

so adds further reliability to the connectivity mapping of the FNM by removing 

possible biases due to the super-sampling. 
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Figure ‎7.7: Box-plot of CF values for the various support sizes (1/3 to 1/20 of region  ) 

shown in Figure ‎7.6a. An interesting observation is that the median CF value for different 

support sizes is less variable (note that here the CF values are not normalised). Increasing 

the resolution generates a longer positive tail for the CF distribution.  

7.2.2 The Probabilistic Connectivity Field 

The CF, as defined above, is calculated from realisations of the FNM. We have 

extended the definition in order to derive the underlying governing function of the 

connectivity field. This extension, termed the probabilistic connectivity field (PCF), 

combines of CF and Monte Carlo simulations to describe the connectivity 

characteristics of a FNM. It is the application of CF to a stochastic model of the 

fracture network and is defined as: 

 
        (∑   

 

   
) (‎7.7) 

where   is the number of independent realisations of the FNM, and         is a 

projection operator to the range [0, 1] to comply with a probability measure. An 

example based on 60 realisations of a FNM is shown in Figure ‎7.8. In this example, 



CHAPTER 7: CF 199 

the realisations were generated using the DFN approach (Jing 2003; Alemanni et 

al. 2011) with the following settings: the locations of fractures were simulated by a 

Homogeneous Poisson Point Process (HPPP) with point density of λ=200 

(stationary case); the orientations of fractures were derived from a von Mises-

Fisher distribution (   , almost isotropic orientations; Baddeley 2010); fracture 

lengths were generated from an exponential distribution (Priest and Hudson 1981; 

La-Pointe and Hudson 1985) with λ=0.1. The resulting PCF in Figure ‎7.8(PCF) 

shows the probability that locations are connected to (and hence are part of) 

fracture clusters. In other words, the higher the PCF value, the more likely the cell 

is connected to the reservoir model. The CI map in Figure ‎7.8 shows the 

connectivity index for the centre point of the realisation and is much more 

homogeneous than the either the ID or the PCF map. The ID map is an E-Type 

map of the 60 individual ID realisations and appears more homogeneous, or 

smoother, than the PCF map, which is the sum of the 60 CF realisations. In a 

sense ID is a, more or less imperfect, proxy for the real connectivity quantified by 

CF and this is reflected in the greater homogeneity or smoothness of the former. As 

PCF quantifies the underlying reservoir connectivity of the FNM it provides a more 

realistic stochastic model of connectivity. 
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Figure ‎7.8: Comparison of ID, CI and PCF for a set of 60 realisations of a FNM as input 

data. One realisation (#6) is shown as an example. 

7.3 The relationships between the CF, GCF, DFC, ID, Xf 

and P21 

The intersection density (Gringarten 1997; Elfouly 2000), as developed further in 

Fadakar et al. (2011), is a measure of the intensity of fracture intersections in a 

FNM. In a realisation of a two-dimensional FNM, fracture intersection points (used 

to calculate the ID values) may differ from the points used to represent fracture 

locations (e.g., homogeneous point pattern; Baddeley 2010) and therefore the ID of 

a fracture network differs from the corresponding DFC map (see examples in 
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Figure ‎7.2). DFC is a global characteristic of the FNM (i.e., the intensity value of 

the associated point pattern if a point process is used to describe the FNM) which 

does not include any relationship among fractures. On the other hand, the ID is a 

direct measure of intersections between fractures in the FNM and is thus an 

effective measure for analysing fracture network properties such as percolation 

state and flow. The ID is, therefore, useful for identifying regions with high 

densities of fracture intersections, which can be used to help determine optimal 

well locations in petroleum or geothermal engineering applications (Fadakar et al., 

2011). However, the ID provides no information about clustering or connectivity at 

the reservoir scale. For example, a high fracture intersection area may be isolated 

and not connected to (and hence not part of) the percolating fracture cluster 

spanning the reservoir but the ID alone does not provide this connectivity 

assessment. The proposed CF can be used directly to solve this problem. 

Figure ‎7.9 shows a comparative study of the ID and the CF for four realisations 

of a FNM. The correlation coefficients between ID and CF for the four realisations 

are, respectively, 0.26, 0.20, 0.42 and 0.34 and hence there is weak correlation 

between the ID and the CF. This confirms the fundamental difference between ID 

and CF in characterising fracture networks. Although ID is much more reliable 

than the DFC in identifying regions with high fracture intersections (Figure ‎7.2 

and Figure ‎7.10), the cluster connectivity of regions at the reservoir scale can only 

be described by the CF. The two may differ significantly (Figure ‎7.9) and it appears 

that, at the reservoir scale, the actual flow response is more closely related to the 

CF. 



202 CHAPTER 7: CF 

 

Figure ‎7.9: Comparison of CF and ID: four realisations (cases) of a FNM and the 

corresponding ID and CF. 

DFC and the P21 and P32 measures are useful conventional ways of analysing 

the intensity of fractures (see also Zhang and Einstein 2000), assessing point 

patterns and providing information for modelling. The intensity measures are 

useful means for probabilistic assessment of rock quality in which the rock mass is 

the focus rather fractures. The reliability of these measures for flow modelling, 

however, is questionable (see Figure ‎7.2 for examples in which fully isolated 

fracture networks show good DFC maps). Thus a measure such as ID would be 

more useful for flow applications, because higher intersection density suggests 

higher possibility of flow. The DFC contour is not an effective way of determining 

the interacting regions (fracture connection) in the fracture network whereas ID 

provides a more informative map in terms of fracture network connectivity (see 

comparison in Figure ‎7.10). The drawback of ID is that it does not contain any 

information about fracture dimensions as can be seen in Figure ‎7.10(ID contour), 

which causes biases in the evaluation of fluid flow pathways. Connected fractures 

create clusters and pathways for flow can be depicted in fracture clusters. Clusters, 
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for a given support in CI and CF, create hyper-clusters. CF deals directly with 

hyper-clusters and it therefore effectively characterises the connectivity of the 

FNM at the reservoir scale (compare the maps in Figure ‎7.10). By definition, GCF 

and CF are intrinsically related (Eqs. 7.2 and 7.5). The CF is reasonably resistant 

to changes in the support size whereas GCF does not depend on the support size. 

CF (and, even more so, GCF) incorporates all density, intersection and clustering 

information and thus provides maps suitable for determining flow pathways in 

fracture networks regardless of their pattern and complexity. Further 

investigations (Figure ‎7.11) show that CF and GCF are highly correlated with a 

correlation coefficient of 0.81 from 60 FNM realisations (this can also be seen 

visually in Figure ‎7.10). 

 

Figure ‎7.10: Comparison of various FNM measures: DFC, ID, CF, GCF and fracture 

clusters.  
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Figure ‎7.11: Correlation coefficient between CF and GCF for 60 realisations of a FNM; 

While support size for CF was 0.16% of the size of study region  , for GCF it varied from 

0.16% to 100% of  . CF and GCF are highly correlated with an average correlation 

coefficient of 0.81. 

Figure ‎7.12 shows relationships between two conventional measures, Xf and 

P21, and the average connectivity field (  ̅̅̅̅ , a scalar), defined as: 

 
  ̅̅̅̅  

∑  

     
 (‎7.8) 

where #(.) is the number of elements in the CF for grid-based sampling. The 

investigation was conducted using 700 realisations of a FNM (see details in the 

caption of Figure ‎7.12). The curves (solid red) were fitted using polynomials of 

order 4. The example shown in Figure ‎7.12 is one of many simulations in which 

nonlinear relationships between    and Xf and P21 are demonstrated. While 

correlations between pairs are positive and strong, the apparent S-shape 

behaviours between Xf and   ̅̅̅̅ , and P21 and   ̅̅̅̅  are interesting. The S-shape 

reflects a phase transition in the phenomenon under study. For connectivity in 

fracture networks it reflects the transitional increase in CF values corresponding to 

values of the measure greater than ~0.5. For P21 versus CF the transition to 

higher CF values occurs at around P21=0.6. From this we can conclude that   ̅̅̅̅  (as 

a single scalar form of CF) is also a potentially effective measure for characterising 

fracture networks from P21 and Xf  perspectives. 
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Figure ‎7.12: Scatter plots for Xf, P21 and   ̅̅ ̅̅  measures based on 700 realisations from FNM 

(locations: Homogeneous Poisson Point Process with      ; orientations: von-Mises with 

mean direction on X axis and    ; lengths: Truncated-Power-Law [0.03, 1]). Note that all 

measures are normalised to the range [0, 1]. Fitted curves are polynomials of order 4. 

Support size for   ̅̅ ̅̅  was      . 

7.4 Applications of the Connectivity Field group 

7.4.1 CF and Flow Pathways 

The CF can be used to determine existing and possible flow pathways through 

fracture networks. Figure ‎7.13 demonstrates clearly the two potential pathways 

(dashed and dotted lines) in the network based on the CF output. The pathway 

lines are constructed by joining high CF-value cells in the CF map (see 

Figure ‎7.14). The CF map can also help identify those pathways that could be 

constructed under minimum development (e.g., fracture growth) of the fracture 

system (regions    and   ). This result, when associated with the geo-mechanical 

properties of the fracture network (such as the stress field), provides an even more 

accurate model. Such information is useful in determining the potential 

connections in the fracture network, for example as a result of a fracture 

stimulation process in geothermal reservoir applications. 
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Figure ‎7.13: Pathway analysis using the CF for the fracture network shown in Figure ‎7.6b. 

Two regions,    and   , are also identified as having the highest potential to change the 

percolation state of the region (see next section). The dashed line represents the major flow 

pathway while the dotted line shows a less developed pathway from the bottom to the top of 

the region. 

7.4.2 CF and Percolation State 

The percolation state (Stauffer and Aharony 1992; Robinson 1983) is used to 

describe a condition in which the reservoir is permeable because the internal 

structure has reached a state in which two sides (or, in general, n-sides) of the 

region of study are connected and hence the internal structure of the region is 

permeable (Sahimi 1993). In our application, this internal structure consists of 

connected fracture clusters; and the reservoir percolation state is reached only if at 

least one pathway has been established connecting the input and the output sides 

of the region through fracture clusters. Although there are many publications on 

the use of percolation theory for lattice-based connectivity assessments of fracture 

networks (e.g., Hoshen and Kopelman 1976; Balberg 1986; Berkowitz 1995; Renard 

and Allard 2011), our aim here is to investigate the relationship between fracture 

connectivity, as defined in this paper, and the percolation state. We consider each 

side of the region as an individual domain (support) and use the term multi-cluster 

to denote a set of fracture clusters intercepting a side. Reaching the percolation 
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state is, therefore, essentially equivalent to the connectivity between multi-clusters 

as a system response to changes in the fracture network. By definition, the 

percolation state is related to connectivity measures. For example, the relationship 

between the percolation state and the CI is reported in Xu et al. (2006) as: 

 

                ( ⋃ ⋃        

  ∈    ∈  

)  ∑ ∑          

  ∈    ∈  

 (‎7.9) 

That is, the upper bound of the percolation state can be achieved by summation of 

all CI of point pairs (     ) from sides    and   . It is important to note that CI 

maps are always probabilistic and so the relationship in (9) is an evaluation of the 

chance of reaching the percolation state for fracture network models. This implies 

that for a given deterministic fracture network (i.e., one particular realisation), 

since the CI is not defined the relationship in (9) cannot be used, although the 

percolation state of the fracture network can be calculated. 

By definition, the CF is directly related to the connectivity of the hyper-clusters 

in the fracture network and hence it uses fracture-clustering information and so 

provides the possibility of evaluating the percolation state of an FNM. In the use of 

CF for analysing the percolation state the potential of each cell in the grid of the 

network to trigger the state change is quantified. As demonstrated in Figure ‎7.14 

the highest values of the CF are usually obtained where there are small gaps 

(relative to the size of the support) between clusters of fractures. Connecting these 

high CF values in the CF map identifies the fully or partially developed pathways 

in the network. In Figure ‎7.13 the regions (   and   ) with slightly lower values 

between the summits are the areas with the highest potential to change the state 

of the system, i.e., to reach the percolation state. This demonstration indicates a 

potential use of the CF in predicting a state in which percolation in the fracture 

network may occur. The procedure can be applied in a Monte Carlo simulation to 

estimate the percolation state for fracture network models. 
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Figure ‎7.14: A system of fractures that is percolating for sides S1 and S2; the numbers 

shown are the CF values for each cell. The cells with higher CF values i.e.,           and 

          are used to assess the percolation state of the system. 

7.4.3 Using CF to determine well locations and to design underground 

repositories 

Another application of CF analysis is in determining optimal drilling locations for 

geothermal, petroleum or groundwater reservoirs to maximise the connectivity 

between a proposed new well and the reservoir (see the example demonstrated in 

Sect. ‎7.5) and hence contribute to maximising reservoir performance. CF analysis 

can also be applied to the design of underground repositories for hazardous wastes 

or for carbon dioxide sequestration, where it is required to determine a location 

that is not well-connected to the surrounding environment. For these applications, 

areas with minimum CF values are the most suitable regions. A final note is that, 

incorporating variable permeability for fractures would increase the reliability and 

effectiveness of the output; this will be the subject of future work (e.g., a proposal 

for weighted connectivity as in Fadakar-A et al. 2013b). 

7.5 CF applied to a real three-dimensional fracture 

network 

The definition of CF and its extensions are generic and hence equally applicable to 

both two- and three-dimensional cases. The evaluation of CF requires efficient 

computational geometry algorithms and implementations in three dimensions. The 

intersection analysis between two fractures in three-dimensions results in 0, 1 or 

many intersection points, i.e., no intersection (0), edge intersection (1) or line 
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intersection (many). In addition, the support   is a cube (a simplistic form of a 

three-dimensional cell, see Figure ‎7.15). The procedure for evaluating the CF in 

three-dimensions begins by finding the extent (bounding box:  ) of the fracture 

network, which is then divided into cubic cells (other shapes can also be used) 

according to the resolution (i.e., number of cells            or the dimension of 

support  ) required, see Figure ‎7.15a to 7.15d. The CF value for each cell is then 

calculated. Figure ‎7.15e and 7.15f show the resulting three-dimensional CF slice 

and volumetric maps. 

 

Figure ‎7.15: The CF for the Leeds Rock Fracture Data Set; (a to d): Stages for the 

preparation of the three-dimensional grid for CF evaluation; the evaluated CF maps are 

shown as: (e): the interpolated slice map, (f): the volumetric rendered map. 

The case study shown in Figure ‎7.15 is based on the public domain Leeds 

fracture data set (Dowd et al., 2009; Leeds 2011), which was constructed from a set 

of measurements of fracture traces on seven horizontal slices of a block of granite 

with an extent of approximately           cm. The CF maps of the block 

(Figure ‎7.15e and 7.15f) clearly demonstrate some well-connected areas in the 

block (areas shown in red). These areas can also be considered as the controlling 

domain for characteristics such as fluid flow through the fractures within the block. 

In addition, locations with high CF values are potentially the most suitable drilling 
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locations for wells with good connections to the reservoir extent. The CF map also 

indicates the overall shape of the connected reservoir based on the existing fracture 

network. 

7.6 Concluding remarks 

We propose the connectivity field (CF) and its extensions, generalised CF (GCF), 

probabilistic CF (PCF) and average CF (  ̅̅̅̅ ), as a means for characterising the 

connectivity of a fracture network both as deterministic measures for a given 

fracture network and as probabilistic measures for a stochastic fracture model. We 

have also given some potential applications of these measures for determining 

spatial fracture connectivity in a fracture network. CF values are calculated using 

the sampling locations in the study region (e.g., grid for systematic sampling) and 

the fracture clusters (generating hyper-clusters) in the network. As the 

connectivity information in CF is based on fracture intersections, the local and 

global relationships between fractures in the fracture network are preserved 

regardless of the size of the support being used for sampling. This is a 

distinguishing attribute of CF compared with lattice-based connectivity 

assessments. Higher CF values for a cell indicate a better connection of the cell to 

larger hyper-clusters of fractures in the reservoir. Such quantitative information 

can be useful in the design of drilling programmes to maximise performance for 

petroleum and geothermal reservoirs and aquifers. The CF can also be used to 

identify the main flow pathways through the fracture network. In addition, the CF 

can determine regions with minimum chance of fracturing based on a given 

fracture network, which can be useful for designing underground repositories. 

Finally, random sampling schemes (non-systematic sampling) for locating the 

supports can also be used in the evaluation of CF, which we will cover in future 

work. 
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This chapter is a conference paper of a practical nature dealing with the 

application of the connectivity index and connectivity field to geothermal reservoirs 

as a means of assessing potential fluid flow. Here CI and CF are used in fluid flow 

investigations. This chapter incorporates the fracture hydraulic properties 

(persistence/aperture) and utilises the finite difference method, FDM. The CF is 

demonstrated to be useful for characterising preferential flow pathways. Ranked 

flow pathways are possible using CF measures and an extension of CF, the 

probabilistic connectivity field (PCF). Major contributions of the paper include 

classification of flow pathways and improved understanding of flow – with benefits 

in EGS stimulation programs. 
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This chapter deals with the use of a connectivity graph approach to optimal well 

location in geothermal reservoirs and hence has mainly a practical focus. A 

distance-distribution function combined with the length and aperture of pathways 

is used (based on graph theory: Dijkstra shortest pathway algorithm) to optimise 

well location. A methodology using equivalent aperture and total length of pathway 

allows derivation of “weighted” shortest fluid pathways. An important contribution 

here is the ability to produce maps showing optimal well locations. 
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10.1 Conclusions 

Fractured rock is an important subject of interest in many applications including 

geothermal reservoirs, water aquifers, petroleum (oil and gas) production, and 

stability of underground works (e.g., tunnels). Fracturing process is also an 

important study in other areas of science and engineering such as geology 

(geosciences), material and mechanical engineering and manufacturing. As a 

particular application, modelling and simulation of fractures and their topological 

arrangement in the space (as fracture networks) is a key component of the 

assessment of hot dry rock (HDR) geothermal resources and of the design and 

creation of enhanced geothermal systems (EGS). The production of geothermal 

energy from an EGS heavily depends on fluid pathways through the HDR and thus 

fractures, fracture network and the interconnectivity of fractures in the network 

are essential factors (see Chap. 1 Introduction). 

Rock mass comprises of the matrix and fractures. Fractures (as in its 

generalised definition) appear in wide ranges of scales and types, thus an ideally 

intact rock (i.e., with no fracture) does not exist in the real world. This identifies a 

need for better understanding of fractures and their characteristics such as 

interrelationships (fracture to fracture relationships) and patterns (spatial 

arrangement in the space). Generally, sampling of fractures (e.g., measuring 

fracture geometrical dimensions, its surface roughness, permeability and so on) is 

very costly if not possible in practice. Particularly, for EGS systems (kilometres 

beneath the ground) only indirect measurements e.g., geophysical investigations 

are possible. Due to these difficulties modelling techniques (including formulation 

process) are helpful for achieving this kind of understandings. A fracture in real 

situations can be filled by natural fillers (cements) such as products of 

crystallisation due to flowing fluid (e.g., in hydrothermal systems) or even by 

smaller size (compared to the aperture) rock particles (Figure 10.1). If a fracture is 

still void (or noticeably permeable otherwise) it has a determining role in directing 

the fluid flow within the rock mass due to the factors including gradient of 

permeability, inhomogeneity of in situ pressures and governing stress regimes 

(Sect. 00.00). Concisely, fracture network modelling is the study of fractures as a 
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system for evaluating its internal interactions between fractures and the resulting 

effect on the subject of study in local and global scales. Important example subjects 

are the fluid flow through fractures and the stability of rock blocks. 

 

Figure ‎10.1: Rock mass: the matrix (blocks) and fractures. Modelling of fluid flow through 

fractures and the stability of rock blocks are two important applications of fracture network 

modelling. 

In Chap. 2 (Fracture Network Modelling) fundamental terminology and 

definitions of the concept of fracture network modelling were presented followed by 

algorithms and discussions on the methodologies (including geometrical modelling) 

for simulating realistic fracture networks. It was shown that the developed DFN 

methods utilising stochastic concepts can mimic the complexity of geometry and 

topology of fractures and fracture networks observed in real world. Conditioning to 

the existing sampling data was also introduced. Some techniques for advanced 

modelling were proposed including the concept of growing fractures (Sect. 2.1.15) in 

which fractures are initialised as such either with negligible length or with a 
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desired length distribution. Then each fracture starts growing until intersection 

with another fracture or the boundary of study area occurs. This method can be 

linked somehow to the study of mechanics of fracture growth in materials. 

Furthermore, the proposed method has a potential for incorporating multiple 

growth rate depending on the initial fracture length or any other additional 

affecting factors, hence promises further applications. The growing method is 

capable to be conditioned to any existing fractures (e.g., faults) could result in 

desired fracture networks. 

In Chap. 3 (A General Framework for Fracture Intersection Analysis: 

Algorithms and Practical Applications) further discussions were made on the 

methodologies to generate fractures and fracture networks satisfying the 

complexity of real fractures and fracture networks. As demonstrated any real and 

complex fracture (e.g., curvy fractures) can be decomposed into some flat polygons. 

Each flat polygon then is treated as an individual fracture. Since in subdividing 

process (decomposition) the relationships between fractures are preserved, 

therefore for any newly generated fracture the global topological information of the 

fracture network remains unchanged. Thus this method demonstrates capability to 

deal with any amount of complexity of real fractures in an efficient, robust and 

scalable manner. In this chapter, a robust framework to generate polygons in 

three-dimensional space which satisfies DFN requirements was proposed. It is 

worth noting that for computational performance all generated polygons are 

convex. For the reason that any convex polygon can be presented perfectly (with no 

loss of resolution, for example) by triangles (simplexes) it has been a standard in 

computational geometry codes for long time and is of interest in DFN codes as well. 

In DFN simulation, basically, fractures are modelled by convex flat polygons. 

Translating all generated fractures to their positions (determined by stochastic 

process e.g., Poisson point process) in the space; and then applying desired 

orientations (simulated based on directional statistical methods such as use of 

Fisher distributions), results in standard fracture networks in three-dimensions. 

The above procedure can be further developed by means of Monte Carlo 

simulation method in order to characterise and determine the uncertainty 

associated with any individual parameter of the chosen models. The connectivity 
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between fractures in a fracture network determines the topology of the network. In 

order to analysis interconnection between fractures, in this chapter couple of 

efficient algorithms were discussed by which one can determine intersections 

between fractures, evaluate the resulting intersection points or lines and apply 

related statistical and spatial analysis. In addition, three novel analyses were 

introduced including a) intersection density as an effective and realistic 

representation measure of the connectivity (~conductivity) within a fracture 

network, b) distribution of the length of fracture intersection lines in a fracture 

network which is shown to be exponential, and c) the effect of length of fractures on 

the percolation state of two-dimensional fracture networks. It was shown that the 

number of percolation clusters has a non-linear relationship with the range of 

variations in the fracture length. In other words, fracture size and its unevenness 

are both important variables in percolation analysis and connectivity index 

evaluation, which in turn are important measures for the quantification of fluid 

flow characteristics of fracture networks. 

The topic in Chap. 4 (The RANSAC Method for Generating Fracture Networks 

from Micro-Seismic Event Data) was basically on advancement in conditional 

simulation of three-dimensional fractures based on micro-seismic events measured 

during stimulation process in deep geothermal reservoirs. EGS are created from 

geothermal resources, usually located several kilometres below the surface of 

Earth, by establishing a network of connected fractures through which fluid can 

flow. The depth of the reservoir makes it impossible to conduct direct 

measurements of fractures and hence data are usually collected from indirect 

measurements such as geophysical surveys. An important source of indirect data is 

the seismic event point cloud generated by the fracture stimulation process. 

Locations of these points are estimated from recorded micro-seismic signals 

generated by fracture initiation, propagation or slip. Two methods for 

reconstructing realistic fracture trace lines and planes given the point cloud of 

seismic events data were described: Enhanced Brute-Force Search (EBFS) and 

RANSAC. The methods have been tested on a synthetic data set and on the 

Habanero dataset of Geodynamics‟ geothermal project in the Cooper Basin of South 

Australia. The results showed that the RANSAC method is an efficient and 
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suitable method for the conditional simulation of fracture networks. In this 

chapter, the RANSAC method was adapted for application to fracture network 

modeling from point data, in this case from micro-seismic events. It was also 

proposed an enhanced version of BFS by adding post-processing algorithms in 

which adaptations have been made to achieve better performance. EBFS has been 

presented as background for the RANSAC method and as a performance 

benchmark for it. Whilst EBFS provides an intuitive and straightforward approach 

to fitting fractures to point cloud data, its use is restricted to relatively small data 

sets; as the size of the point cloud increases the method rapidly becomes 

impractical due to the increase in computation, memory and time. RANSAC is a 

robust fitting method in general and, in particular, has been shown to be an 

efficient method for fitting fractures to point data, using reasonable computing 

time and memory. RANSAC performance was investigated for the effect of the 

choice of model parameters such as the distance tolerance for associating points 

with a candidate fracture and the number of trials per stage. A set of new 

assessment approaches with applications to quantify the resulting simulated 

fracture network in terms of the new similarity measure and the efficiency was 

also proposed. Case studies using simulated point cloud data in two- and three-

dimensions and a real data set comprising seismic events resulting from a fracture 

stimulation process conducted in the Habanero geothermal energy system in 2003 

were presented. In both types of point cloud the resulting fractures are very well 

matched either with the embedded fractures or with the interpretations in 

technical reports. 

Discussions in Chap. 5 (A Spatial Clustering Approach for Stochastic Fracture 

Network Modelling) show that an important step in fracture network modelling is 

to estimate the number of fractures and the properties of individual fractures such 

as their size and orientation. In practice, due to the lack of data and the complexity 

of the problem, significant uncertainties associated with fracture network 

modelling exist. The objective in this chapter was to determine a fracture model 

from the conditioning data (micro-seismic events) by minimizing the sum of the 

distances of data points from the fitted fracture model. The model comprises a 

comprehensive fracture modification scheme based on simulated annealing and 
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also introduces a goodness-of-fit measure for the fitted fracture model. The 

measure utilises a fracture similarity and a clustering technique to find a locally 

optimal solution for fracture parameters. The method was applied to a simulated 

dataset and to a real 3D case study of the Habanero reservoir in the Cooper Basin, 

Australia. The results from the simulated dataset were satisfactory in terms of the 

objective function value and statistics including the histogram of fracture length 

and the rose diagram of fracture orientations (for 2D). The proposed method is 

general in the sense that it can be easily extended to 3D applications. The use of 

proposed DD-transform increases the accuracy as well as the efficiency of the 

modelling by introducing a locally optimal solution for fracture parameters. The 

results from the Habanero reservoir field data were also satisfactory in terms of the 

number of iterations, the number of fractures and point association (for 3D). 

In the previous chapters the focus was to model fracture networks satisfying the 

complexity of real fractures and mimicking real fracture networks patterns. A big 

step further is to characterise fracture networks. The results of characterisation 

may serve comparison (matching test) between fracture networks or their 

responses (e.g., fluid flow), for example. Response matching evaluation helps to 

calibrate the modelling and simulation parameters in order to achieve desired and 

reliable realisations. Characterisation may depict hidden relationships between 

geometrical properties of the fractures and fracture networks and the response of 

the network against phenomena of study, e.g., fluid flow and stability of blocks. In 

Chap. 6 (Characterisation of Fracture Networks) in addition to investigations made 

on the existing characterising tools including density/intensity measures (FDC, Xf, 

intensity group), spatial measures (LEC, distance map, buffer effect, convex-hull), 

a couple of new proposals and developments were presented. Fracture density, a 

new proposal, evaluates accurately the density of fractures in a network. In two-

dimensional fracture networks this measure is estimated by means of cell sampling 

on a grid covering the entire study area. The fracture density for any cell in the 

grid is calculated as the sum of the number of fractures wholly contained within 

the cell and the number that intersect the boundary of the cell. As a result, a 

matrix of fracture density (Fn) is produced. The resulting matrix can be easily 

mapped. It can readily therefore be used for conditioning fracture networks. These 
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measures can also be extended to three-dimensional fracture networks for which 

the sampling cell would be a cube. Inner-convex-hull applied to a point pattern 

determines the areas within the study area with the largest convex polygon that 

does not contain a point. This measure precisely provides the largest intact areas 

in the rock mass. Proposals also include new densities measures for backbone, 

block centroid, intersection, extended intersection, and fracture normal 

intersection. The relationships between principal stresses and the associated 

patterns in fracture networks in two- and three-dimensions were also investigated. 

Comparison of density measures was also conducted. Furthermore, another new 

measure called “Popularity Index” was introduced. Popularity index is calculated 

based on the number of intersections for each fracture in the network. Thus a 

larger number of intersecting fractures yields a higher popularity measure for 

fractures. 

Connectivity Field as proposed in Chap. 7 (Connectivity Field: A Measure for 

Characterising Fracture Networks) helps to evaluate interconnectivity of fractures 

in fracture network in a unique way that the local and global connectivity 

information are preserved. Analysis of the connectivity of a fracture network is an 

important component of the design, assessment and development of fracture-based 

reservoirs in geothermal, petroleum and groundwater resource applications. It is a 

useful means of characterising the flow pathways and the mechanical behaviours 

of reservoirs. An appropriate practical measure is required for connectivity 

characterisation because of the extreme complexity of fracture networks. In this 

chapter, the connectivity field (CF), as a useful measure to evaluate the spatial 

connectivity characteristics of fractures in a fracture network was proposed. The 

CF can be applied on both a particular realisation of a fracture network model (for 

deterministic evaluation) and on stochastic fracture network models using 

stochastic modelling and Monte Carlo simulations (for probabilistic evaluation with 

uncertainties). Two extensions are also proposed: the generalised CF, a measure 

that is independent of support size, and the probabilistic CF. Potential applications 

of the CF and its extensions are in determining the optimal location of an injection 

or production well so as to maximise reservoir performance; and in determining 

potential flow pathways in fracture networks. The average CF map shows strong 
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correlations with the Xf and P21 measures. The relationships between the CF 

measures, the fracture intersection density and the fracture network connectivity 

index are also investigated. 

The connectivity field (CF) and its extensions, generalised CF (GCF), 

probabilistic CF (PCF) and average CF (  ̅̅̅̅ ), as a means for characterising the 

connectivity of a fracture network both as deterministic measures for a given 

fracture network and as probabilistic measures for a stochastic fracture model were 

proposed. Some potential applications of these measures for determining spatial 

fracture connectivity in a fracture network were given. CF values are calculated 

using the sampling locations in the study region (e.g., grid for systematic sampling) 

and the fracture clusters (generating hyper-clusters) in the network. As the 

connectivity information in CF is based on fracture intersections, the local and 

global relationships between fractures in the fracture network are preserved 

regardless of the size of the support being used for sampling. This is a 

distinguishing attribute of CF compared with lattice-based connectivity 

assessments. Higher CF values for a cell indicate a better connection of the cell to 

larger hyper-clusters of fractures in the reservoir. Such quantitative information 

can be useful in the design of drilling programmes to maximise performance for 

petroleum and geothermal reservoirs and aquifers. The CF can also be used to 

identify the main flow pathways through the fracture network. In addition, the CF 

can determine regions with minimum chance of fracturing based on a given 

fracture network, which can be useful for designing underground repositories. 

In Chap. 8 (Connectivity Index and Connectivity Field towards Fluid Flow in 

Fracture-Based Geothermal Reservoirs) the aim was to extend the use of developed 

measures (CI and CF) to real world applications such as fluid flow modelling. 

Connectivity measures including CI and CF are useful for determining preferential 

flow directions and flow pathways through fracture networks. However, the 

current implementation of these measures does not consider the hydraulic 

properties of the fracture network, which is the issue addressed in this chapter. 

Darcy‟s law can be incorporated into the evaluation of these measures using the 

persistence and aperture properties of fractures in the fracture network. This 

incorporation helps determine more reliable and accurate flow pathways in the 
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fracture network for three forms of aperture distributions: (i) constant aperture for 

each fracture cluster (pathway), (ii) variable aperture for each cluster and (iii) 

variable aperture for each fracture. A new concept for the classification of 

pathways based on the reliability of their assessment was introduced, which 

enhances the understanding of the flow behaviour of fracture-based reservoirs as a 

result of fracture network expansion processes such as hydraulic stimulation. 

Briefly, in this chapter a method to incorporate the size and aperture of 

fractures in the connectivity field and connectivity index was introduced. It was 

shown that incorporating these properties makes it possible to link much more 

realistically the connectivity of fracture networks to fluid flow (using a method 

analogous to Darcy‟s law), which in turn significantly increases the reliability of 

the connectivity analysis. The application of the proposed measures in directional 

flow analysis with the benefit of increased accuracy and reliability were discussed. 

The rose diagrams resulting from CI and WCI were compared to results from the 

finite difference method. It was also shown that the incorporation of the length and 

aperture of fractures improves significantly the consistency between the results 

from the connectivity measure and the finite difference solutions. The application 

of CF to the direct determination of flow pathways in fracture networks and to 

providing a ranking system for pathways that can be used to predict and assess the 

extent of fracture networks as the result of a multi-stage hydraulic fracture 

stimulation process was also demonstrated. 

Yet another new application for connectivity measures was discussed in Chap. 9 

(A Connectivity-Graph Approach to Optimising Well Locations in Geothermal 

Reservoirs) where the problem of optimal location of injection and production wells 

in fractured-based geothermal reservoirs was addressed. The optimisation was 

based on a distance distribution function, and the length and aperture of pathways 

between the two wells. The initial locations of the two candidate wells are chosen 

at random and the fracture pathways between the wells are determined using 

graph theory concepts. The weighted shortest pathway incorporates the equivalent 

aperture and total length of pathway elements (i.e., linked fractures). The method 

is efficient and effective for generating final optimal well locations (as coordinates) 

and also provides a map of optimality for any given fracture network. The sampling 
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scheme used can incorporate any constraint including technical, topographical and 

or design. Furthermore, stochastic modelling of fracture networks can be used to 

extend the use of the proposed method to deal with the uncertainty involved in 

estimated or simulated fracture networks. 

In summary, the proposed method is a simple but effective and realistic solution 

for determining optimal well locations for fracture-based reservoirs such as 

enhanced geothermal systems. It is based on generating random point pairs 

separated by a distance drawn from a distance distribution function, for example 

N(μ, σ). The parameters of the distance distribution are defined on the basis of the 

technical, topographical and design requirements. The proposed method uses 

regional and local backbone extraction for the fracture network. The pathways are 

determined by means of graph theory algorithms such as the dijkstra method. Each 

element of the local backbone is associated with a weight corresponding to its 

length and aperture, which in turn result in an equivalent resistivity (analogous to 

inappropriateness of the pathway). Note that while the length of the element is 

calculated locally (necessarily due to intersections and the application of backbone 

procedure) its aperture value is taken from the original fracture network. A 

number of trials are conducted using Monte Carlo line sampling for each local 

backbone and the shortest weighted pathways are extracted. Finally, the minimum 

total pathway weight suggests the optimal well locations. Our primary goal in the 

present work was to examine, evaluate and demonstrate the usefulness of the 

proposed method. The method is readily adaptable to transmissivity and other 

problems. The conceptually simple formulation of the method offers promise for 

further development and applications. 

10.2 Summary of contributions 

Contributions of this thesis can be summarised as follows. 

10.2.1 Journal Papers 

1. The RANSAC method for generating fracture networks from micro-seismic 

event data (J Mathematical Geosciences, published) 
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2. Connectivity Field: A measure for characterising fracture networks (J 

Mathematical Geosciences, published) 

3. A Spatial Clustering Approach for Stochastic Fracture Network Modelling 

(J Rock Mechanics and Rock Engineering, published) 

4. Connectivity Index and Connectivity Field towards fluid flow in fracture-

based geothermal reservoirs (J Mathematical Geosciences, under review) 

10.2.2 Conference Papers and Presentations 

5. A general framework for fracture intersection analysis: algorithms and 

practical applications (AGEC2011, published) 

6. Application of Connectivity Measures in Enhanced Geothermal Systems 

(AGEC2012, published) 

7. Connectivity Index and Connectivity Field towards fluid flow in fracture-

based geothermal reservoirs (SGW2013, published) 

8. A Connectivity-Graph Approach to Optimising Well Locations in 

Geothermal Reservoirs (AGEC2013, published) 

10.2.3 Talk 

9. Applications of connectivity measure in fracture-based reservoirs for: fluid 

flow modeling, optimal drilling locations design and reservoir 

characterization (University of British Columbia, Canada, UBC2013) 

10.2.4 Developed and new terms, concepts, models, algorithms, 

frameworks and methods 

The following list provides section reference to the contributions (from this 

research) which are either novel (original) or developed. It is worth noting that 

developments also provide some extent of novelty. Ultimately, the main purpose 

was and is to enrich and empower simulation (generating), characterisation and 

application (the three major stages) of fracture networks. 
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 Fracture growth concept (Sect. 2.1.15); Growing conditioned to existing 

fractures (Sect. 2.1.15); Additional processing stages for fracture network 

modelling (Sect. 2.2); Fracture extension and trimming (Sect. 2.4); Efficient 

algorithm to model n-edge convex polygons (Sect. 2.5); Conditioning 

fracture locations using Simulated Annealing (Sect. 2.6.1); Conditioning to 

existing fractures (Sect. 2.6.2); Application of Hough transform in fracture 

network modelling (Sect. 2.6.3); Application of RANSAC in fracture 

network modelling (Sect. 2.6.3) 

 Framework to generate realistic fracture network by means of marked 

point processes (Sect. 3.2); Locations from Poisson point processes (Sect. 

3.2.1); Fracture circumscribe rectangle side sizes from exponential 

distributions (Sect. 3.2.3); Intersection Analysis in 3D (Sect. 3.3); A full 

robust framework for fracture-fracture intersection analysis (Sect. 3.3); 

Intersection Density (Sect. 3.3.1 and 6.13.2); Lengths of Intersection Lines 

(Sect. 3.3.2); Effects of Fracture Length on Percolation State (Sect. 3.3.3) 

 Enhanced Brute-Force Search (Sect. 4.2.1); Line Cluster Fitting (LCF, 

Sect. 4.2.1); RANSAC algorithm for fracture network modelling (Sect. 

4.2.2); Performance of RANSAC for line and plane fitting (Sect. 4.2.2); 

Fracture Extents (Sect. 4.2.3); A flexible procedure to generate a two-

dimensional point cloud (Sect. 4.3.1); Algorithm for fracture networks 

similarity assessment (Sect. 4.3.1) 

 A Spatial Clustering Technique (Sect. 5.4); Algorithm of DD-transform 

(Sect. 5.4) 

 Fracture centroid density (Sect. 6.1); Fracture density (Sect. 6.4); Largest 

empty circle (Sect. 6.5); Largest empty convex-hull (inner-convex-hull, 

Sect. 6.6); Distance map (Sect. 6.7); Buffer effect (Sect. 6.8); Convex-hull 

(Sect. 6.9); Block area (Sect. 6.10); Backbone density (Sect. 6.11); Block 

centroid density (Sect. 6.12); Intersection analysis (Sect. 6.13); Fracture 

clusters and pipe modelling (Sect. 6.13.1); Extended intersection density 

(Sect. 6.13.3); Fracture normal intersection density (Sect. 6.13.5); Effects of 

stress field (Sect. 6.14); Popularity index (Sect. 6.16) 

 Connectivity Field: A measure for characterising fracture networks (Chap. 

7 and Sect. 7.2); Fracture/support-based connectivity (Sect. 7.1); Fully 
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isolated fracture networks (Sect. 7.1); The Generalised Connectivity Field 

(Sect. 7.2.1); The Probabilistic Connectivity Field (Sect. 7.2.2); The 

relationships between the CF, GCF, DFC, ID, X f and P21 (Sect. 7.3); 

Average CF (Sect. 7.3); CF and Flow Pathways (Sect. 7.4.1); CF and 

Percolation State (Sect. 7.4.2); Using CF to determine well locations and to 

design underground repositories (Sect. 7.4.3); CF applied to a real three-

dimensional fracture network (Sect. 7.5) 

 Connectivity Index and Connectivity Field towards Fluid Flow in Fracture-

Based Geothermal Reservoirs (Chap. 8); Model to extract directional flow 

information (Sect. 8.2.2); The framework for a finite difference method 

used to model the flow through fracture networks in two dimensions (Sect. 

8.2.2); Incorporating Length and Aperture in CI: WCI (Sect. 8.3.2); A 

weighting factor based on the length and aperture of fractures forming the 

pathways between two supports (Sect. 8.3.2); Preferential Flow Pathways 

using CF (Sect. 8.4.1); Histograms of orientation errors for CI and WCI 

(Sect. 8.4.1); CI Field (Sect. 8.4.1); Relationship between PCF and CIF 

(Sect. 8.4.1) 

 A Connectivity-Graph Approach to Optimising Well Locations in 

Geothermal Reservoirs (Chap. 9); Generic form of equivalent aperture 

(Sect. 9.2.1) 

 Matlab package for fracture network modelling (Appendix 2) 

The above list of contributions can easily be matched with the three main stages 

in this research: generation, characterisation and application stages. For example, 

fracture growth concept, extension and trimming algorithms, Hough transform and 

RANSAC methods are examples of important contributions in the stage of 

generation (simulation) of fracture networks. Fracture networks similarity 

measure, intersection analysis including intersection density, fracture density, 

popularity index and other proposed measures together with Connectivity Field 

group are main contributions to the field of fracture network characterisation. 

Weighted CF and CI measures in which length and aperture of fractures are 

incorporated and application of graph theory concepts provide useful tools for 

extending the proposed theoretical concepts into real world applications; and are 
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together with their example applications in EGS main contributions. Classification 

of flow pathways; improved understanding of flow – with benefits in EGS 

stimulation programs; and the ability to produce maps showing optimal well 

locations are other contributions. As another noticeable contribution the Matlab 

code package provided in Appendix 2 is useful to future DFN engineering 

researchers. 

10.3 Ideas for future research 

The following ideas are of interest for future developments: 

 Developing an extension of CF in which the edge effect due to grid 

sampling is minimised. The proposal is to centre a grid covering study area 

on a randomly positioned target cell (implementation of random sampling 

scheme) and then to apply standard CF computation for the cell. In this 

way due to unrestricted (non-grid) movement of the target cell in the study 

region the resulting CF will have no cell edge effect. The method shall be 

called Random Connectivity Field (RCF). A simple demonstration of its 

implementation is shown in Figure 10.2. With no additional work or 

complexity this idea can easily be extended into three-dimensions where 

the position of the target cell will be a tuple of three random 

coordinates               . Note that fracture clustering information as an 

instant result of intersection analysis on the fracture network plays an 

important role in optimising the performance of evaluation of intersections 

between the newly generated grid and the network at each stage. Other 

optimisations for improving computing performance are also to be 

investigated. Random sampling scheme may open further opportunities to 

study the effect of pattern of sampling points on the resulting CF maps 

and shall suggest new extensions. 
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Figure ‎10.2: RCF. The grid is centred on each point as shown. CF is calculated for each 

move. RCF is the sum of all resulting CF maps. 

 Investigations on the association of CF with Geological Strength Index 

(GSI), a matter of interest in rock mechanics according to feedback 

received from the presentations in SGW2013 and UBC2013. 

 Further development of mathematical relationships between CF, CI, and 

other fracture network characterisation measures are to be done. The 

relationship between PCF and CIF as extracted in Fadakar-A et al. (2013b, 

SGW2013) can be a starting point. 

 Incorporation of length and aperture in the evaluation of connectivity 

measures as proposed in Fadakar-A et al. (2013b-2013c) can be further 

developed. Concepts including the number of pathways between the two 

connected supports, the complexity of the pathways, a deeper 
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incorporation of the mechanics of fluid flow (effects of gravitational force, 

capillarity etc.) are the areas for further developments in the use of 

weighting system for connectivity assessment. 
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A 
NOTE:   

This publication is included on pages 267-273 in the print copy  
of the thesis held in the University of Adelaide Library. 

A 
Fadakar-A, Y., Dowd, P.A. & Xu, C. (2012) Application of connectivity measures in enhanced 
geothermal systems. 
Presented at: Australian Geothermal Energy Conference, Sydney, Australia, pp. 62-66 
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2.1 Introduction 

Alghalandis Fracture Network Modelling (AFNM) is a package of computer codes 

in Matlab language syntax which consists of a) functions to generate fracture 

networks in two and three dimensions based on stochastic modelling principals 

(e.g., discrete fracture network modelling framework); b) functions to characterise 

synthesised or imported two- and three-dimensional fracture networks including 

intersection analysis, density measures, connectivity indices, clustering and many 

others; c) functions for highly simplification of visualisation of two- and three-

dimensional fracture networks; and d) functions to generically utilise the above 

stages and to extend their use for practical applications, to provide stable 

framework for further developments, and tools to save the resulting maps, tables 

and information in appropriate formats readable by many common standard 

software applications. The intension of this endeavour was to unify the 

computation stages i.e., framework and even more the core functions such to get 

the highest productivity. With the hope readers will find this package handy and 

useful for evaluation of the concepts proposed in this thesis, developing their own 

ideas and experiencing fracture network modelling concepts. 

A couple of external Matlab single codes or packages are linked here without 

inclusion of their code including “geom2d10” and “geom3d11” (edition 2011, by David 

Legland), “circstat12” (edition 2011, by Philipp Berens), “kde2d.m13” (edition 2009, 

by Zdravko Botev), “smoothn.m14” (edition 2010, by Damien Garcia), “vol3d.m15” 

(edition 2009, by Oliver Woodford), and “dict.m16” (edition 2008, by Doug 

Harriman). 

  

                                                

10 http://www.mathworks.com.au/matlabcentral/fileexchange/7844-geom2d 
11 http://www.mathworks.com.au/matlabcentral/fileexchange/24484-geom3d 
12 http://www.mathworks.com.au/matlabcentral/fileexchange/10676-circular-statistics-toolbox-directional-statistics 
13 http://www.mathworks.com.au/matlabcentral/fileexchange/17204-kernel-density-estimation 
14 http://www.mathworks.com.au/matlabcentral/fileexchange/25634-easy-n-fast-smoothing-for-1-d-to-n-d-data 
15 http://www.mathworks.com.au/matlabcentral/fileexchange/22940-vol3d-v2 
16 http://www.mathworks.com.au/matlabcentral/fileexchange/19647-dict 
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2.2 License 

The provided computer codes in this chapter are copyrighted. They are made 

publically available for use under the following license and conditions. 

Copyright (c) 2011-2012-2013-2014, Younes Fadakar Alghalandis 

All rights reserved. 

 

Redistribution and use in source and binary forms, with or without modification, are 

permitted provided that the following conditions are met: 

* Redistributions of source code must retain the above copyright notice, this list of 

conditions and the following disclaimer. 

* Redistributions in binary form must reproduce the above copyright notice, this list of 

conditions and the following disclaimer in the documentation and/or other materials 

provided with the distribution. 

* Name of the Author (copyright holder) cannot be used to endorse or promote products 

derived from this software without specific prior written permission. 

 

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND 

CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, 

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 

BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 

OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 

2.3 List of functions 

Name Description Name Description 
Angles2D angles of 2D lines Centers2D centres of 2D lines 
Lengths2D lengths of 2D lines GenFNM2D 2D fracture network 
ClipLines2D clips 2D lines LinesXLines2D two line sets 

intersections 
LinesX2D intersection 

analysis on 2D lines 

LinesToClusters2D clusters of lines 

Density2D true density of 2D 
lines 

Histogram2D 2D histogram 
(density) 

RandLinesInPoly2D random line 
sampling 

Sup2D creates 2D support 

SupCSup2D two 2D supports‟ 
connectivity 

SupXLines2D intersections 
between a support 
and 2D lines 

SupXNLines2D sup intersects 2D 
lines 

P21G P21 gridded 
measure 

ConnectivityIndex2D CI ConnectivityField2D CF 
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BreakLinesX2D break lines at their 
intersections 

Rotate2D rotates 2D points 

SortPoints2D topological sort of 
points 

Isolated2D checks if a 2D line 
isolated 

Backbone2D backbone of 2D 
lines 

IsolatedLines2D checks isolation for 
all 2D lines 

BackboneToNodesEdges2D backbone to graph Expand2D expands 2D matrix 
Resize2D resize 2D matrix DrawLines2D draws 2D lines 
LinesToXYnan2D convert lines to X 

and Y 

ExpandAxes2D expands 2D axes 

Titles2D title, labels, grid … 
for axes in 2D 

RandPoly3D random 3D polygons 

GenFNM3D 3D facture network Sup3D creates 3D support 
ClipPolys3D clips 3D polygons PolysX3D intersection analysis 

on 3D polygons 
PolysXPolys3D polygons‟ 

intersections 

PolyXPoly3D intersection between 
two 3D polygons 

SupCSup3D two  3D supports‟ 
connectivity 

BBox3D bounding box of 3D 
points 

Expand3D expand 3D matrix Resize3D resizes 3D matrix 
SaveToFile3D save 3D result to 

file 

SavePolysToVTK3D saves 3D polygons 
as VTK file 

SetAxes3D sets 3D axes DrawPolys3D draws 3D polygons 
DrawSlices3D draws 3D slices VolRender3D draws volume 

render of 3D 
volumetric data 

Scale scales data ToStruct converts to `struct` 
format 

Clusters cluster analysis CheckClusters checks clusters for 
errors 

Labels labels Relabel relabels cluster 
labels 

Stack stacks cell data Group groups data based 
on common 
elements 

FarthestPoints two farthest points PDistIndices generates indices for 
`pdist` function 

Occurrence occurrence of points ConnectivityMatrix connectivity matrix 
(CM) 

FullCM full form of CM FNMToGraph converts fracture 
network to graph 

LoadColormap loads colormap SaveColormap saves current 
colormap 

SecondsToClock seconds to clock Colorise colourise given data 
ShowFNM shows fracture 

network  

Round rounds data 
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2.4 Functions for Two Dimensional Cases 

2.4.1 Angles2D 

% Angles2D 
% returns angles of 2D lines (fracture) 
% 
% Usage :  
%    ags = Angles2D(lines) 
% 
% input : lines     (n,4) 
% output: ags       (n) in radian 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function ags = Angles2D(lines) 
ags = atan2(lines(:,4)-lines(:,2),lines(:,3)-lines(:,1)); 

Angles2D computes orientation angles of two-dimensional fractures (line segments) 

with correct sign for each quadrant. Lines are represented as a two-dimensional 

array of size     here and in all other functions. 

2.4.2 Centers2D 

% Centers2D 
% returns center points of 2D fracture lines 
% 
% Usage :  
%    cts = Centers2D(lines) 
% 
% input : lines     (n,4) 
% output: cts       (n,2) 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function cts = Centers2D(lines) 
cts = 0.5*[lines(:,3)+lines(:,1),lines(:,4)+lines(:,2)]; 

Centers2D computes centre of fracture lines. The centring points can be used to 

compute the DFC (FCD), for example. 

2.4.3 Lengths2D 

% Lengths2D 
% returns lengths of 2D fracture lines 
% 
% Usage : 
%    lhs = Lengths2D(lines) 
% 
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% input : lines     (n,4) 
% output: lhs       (n) 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function lhs = Lengths2D(lines) 
if isempty(lines) 
    lhs = 0; 
else 
    lhs = hypot(lines(:,3)-lines(:,1),lines(:,4)-lines(:,2)); 
end 

Lengths2D calculates the Euclidean lengths between the two endpoints of lines. 

This function can be used for estimation of P21 measure, for example. 

2.4.4 GenFNM2D 

% GenFNM2D 
% generates 2D fracture network 
% 
% Usage : 
%    [lines,olines] = GenFNM2D(n,theta,kappa,minl,maxl,rgn) 
% 
% input : n         number of fracture lines, default=150 
%         theta     main orientation, default=0 
%         kappa     Fisher dispersion factor, default=0: omnidirectional 
%         minl      minimum length of fracture lines, default=0.05 
%         maxl      maximum length of fracture lines, default=1 
%         rgn       region of study, default=[0,1,0,1] i.e., unit square 
% output: lines     fracture lines after clipping by rgn 
%         olines    original lines 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function [lines,olines] = GenFNM2D(n,theta,kappa,minl,maxl,rgn) 
if nargin<6; rgn = [0,1,0,1]; end 
if nargin<5; maxl = 1; end 
if nargin<4; minl = 0.05; end 
if nargin<3; kappa = 0; end 
if nargin<2; theta = 0; end 
if nargin<1; n = 150; end 
pts = rand(n,2);                                  %locations~ U(0,1) 
ags = circ_vmrnd(theta,kappa,n);                  %oreint.~von-Mises(theta=0,kappa=0) 
lhs = Scale(exprnd(1,n,1),minl,maxl);             %lengths~ Exp(mu=1) 
[dx,dy] = pol2cart(ags,0.5*lhs); 
olines = [pts(:,1)-dx,pts(:,2)-dy,pts(:,1)+dx,pts(:,2)+dy];  %original 
lines = ClipLines2D(olines,rgn);                  %clipped by region of study 

GenFNM2D synthesises two-dimensional fracture networks according to stochastic 

modelling principals in which for locations, orientations and lengths finite samples 

from desired random distribution functions are drawn. In this implementation for 
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locations a simple uniform distribution is chosen while for orientations von-Mises 

distribution is used. The lengths are generated based on an exponential 

distribution and are truncated into a specific range by scaling. In use, one may 

adapt the code easily to benefit from other distributions. 

2.4.5 ClipLines2D 

% ClipLines2D 
% returns clipped 2D fracture lines by a given rectangle (box) 
% 
% Usage : 
%    clines = ClipLines2D(lines,box) 
% 
% input : lines     (n,4) 
%         box       (4), default=[0,1,0,1] 
% output: clines    (n,4) 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function clines = ClipLines2D(lines,box) 
if nargin<2; box = [0,1,0,1]; end 
[m,n] = size(lines); 
clines = zeros(m,n); 
for i = 1:m 
    clines(i,:) = clipEdge(lines(i,:),box); 
end 

ClipLines2D provides handy tool to apply clipping to two-dimensional fracture 

lines by a given rectangle. 

2.4.6 LinesXLines2D 

% LinesXLines2D 
% finds intersection indices and points between two sets of 2D fracture lines 
% 
% Usage: 
%    [xpss,idss] = LinesXLines2D(lines1,lines2) 
% 
% input : lines1    (m,4) 
%         lines2    (n,4) 
% output: xtss      intersection points, (cell) 
%         idss      intersecting lines' indices, (cell) 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function [xpss,idss] = LinesXLines2D(lines1,lines2) 
m = size(lines1,1); 
n = size(lines2,1); 
idss = cell(m,1); 
xpss = cell(m,1); 
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u = 0; 
for i = 1:m                                       %for all lines in lines1 
    idx = zeros(1,1); 
    xps = zeros(1,2); 
    found = false; 
    k = 0; 
    for j = 1:n                                   %for all lines in lines2 
        xpt = intersectEdges(lines1(i,:),lines2(j,:)); 
        if ~isfinite(xpt(1)); continue; end 
        k = k+1; 
        idx(k) = j; 
        xps(k,:) = xpt; 
        found = true; 
    end 
    if found                                      %record if there was any 
intersection 
        u = u+1; 
        idss(u) = {{i,idx}}; 
        xpss(u) = {xps}; 
    end 
end 
idss = idss(1:u);                                 %compaction 
xpss = xpss(1:u); 

LinesXLines2D is made available to apply intersection analysis between two sets of 

lines. The resulting intersection points and the identity number of intercepting 

lines are reported in the format of Matlab “cell” data type. The implementation is 

optimised to consume minimum memory requirement and also to deliver high 

performance. 

2.4.7 LinesX2D 

% LinesX2D 
% finds intersection indices and points for a set of 2D fracture lines 
% 
% Usage : 
%    [xts,ids,La] = LinesX2D(lines) 
% 
% input : lines     (n,4) 
% output: xts       intersection points, (m,2) 
%         ids       intersecting lines indices, (m,2)  
%         La        cluster labels (n) 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function [xts,ids,La] = LinesX2D(lines) 
n = size(lines,1); 
m = n*(n-1)/2;                                 %max possible number of intersections 
xts = zeros(m,2); 
ids = zeros(m,2); 
k = 0; 
for i = 1:n-1                                     %apply optimum iteration 
    for j = i+1:n 
        xpt = intersectEdges(lines(i,:),lines(j,:)); 
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        if ~isfinite(xpt(1)); continue; end 
        k = k+1; 
        xts(k,:) = xpt;                           %intersection points 
        ids(k,:) = [i,j];                         %intersecting lines' indices 
    end 
end 
xts = xts(1:k,:);                                 %compaction 
ids = ids(1:k,:); 
La = Labels(Clusters(num2cell(ids,2)),n);         %fracture cluster labels 

LinesX2D is to compute intersections between all lines in a set of fracture lines. 

This function also computes fracture clusters with appropriately assigned labels. It 

plays an important role in analysing connectivity measures, for example. 

2.4.8 LinesToClusters2D 

% LinesToClusters2D 
% finds clusters of 2D fracture lines (inter-connections) 
% 
% Usage : 
%    La = LinesToClusters2D(lines) 
% 
% input : lines     (n,4) 
% output: La        (n) cluster labels 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function La = LinesToClusters2D(lines) 
[~,~,La] = LinesX2D(lines); 

LinesToClusters2D wraps LinesX2D for cases in which only label of clusters are 

required rather than complete intersection information. 

2.4.9 Density2D 

% Density2D 
% computes true density of 2D fracture network 
% 
% Usage : 
%    [DN,x,y] = Density2D(lines,gm,gn) 
% 
% input : lines     (n,4) 
%         gm        grid dimension vertically 
%         gn        grid dimension horizontally 
% output: DN        (gm,gn) 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function [DN,x,y] = Density2D(lines,gm,gn) 
w = 1/gn;                                         %sampling cell's width 
h = 1/gm;                                         %sampling cell's height 
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DN = zeros(gm,gn); 
for i = 1:gm 
    for j = 1:gn 
        sup = [(j-1)*w,j*w,(i-1)*h,i*h]; 
        DN(i,j) = SupXNLines2D(sup,lines); 
    end 
end 
x = [w/2,1-w/2];                                  %for usage in imagesc(x,y,DN) 
y = [h/2,1-h/2]; 

Density2D computes the true density of fracture lines in the region of study based 

on a grid (     ) sampling. 

2.4.10 Histogram2D 

% Histogram2D 
% computes 2D histogram (~density) of points 
% 
% Usage : 
%    out = Histogram2D(pts,nx,ny) 
% 
% input : pts       (n,2) 
%         nx        grid dimension on axis X 
%         ny        grid dimension on axis Y 
% output: out       (ny,nx) 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function out = Histogram2D(pts,nx,ny) 
if nargin<3 
   nx = 7;                                        %default grid size 
   ny = 7; 
end 
k = [nx,ny]; 
bin = zeros(size(pts)); 
for i = 1:2                                       %iterate for X and Y coordinates 
    minx = min(pts(:,i)); 
    egs = minx+((max(pts(:,i))-minx)/k(i))*(0:k(i)); 
    [~,t] = histc(pts(:,i),[-Inf,egs(2:end-1),Inf],1); 
    bin(:,i) = min(t,k(i)); 
end 
out = accumarray(bin(all(bin>0,2),:),1,k)'; 

Histogram2D provides a superbly fast evaluation of density of points based on the 

concept of histogram classification. For some cases this function is superior to KDE 

estimation if the local variation is more important than global smoothing. 

2.4.11 RandLinesInPoly2D 

% RandLinesInPoly2D 
% generates random 2D sampling lines inside a 2D polygon 
% 
% Usage : 
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%    lines = RandLinesInPoly2D(n,h,dh,ang,da,poly) 
% 
% input : n         number of lines 
%         h         length of lines 
%         dh        length's tolerance  
%         ang       angle 
%         da        angle tolerance  
%         poly      (k,2) 
% output: lines     (n,4) 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function lines = RandLinesInPoly2D(n,h,dh,ang,da,poly) 
if nargin<6; poly = [[0,0];[1,0];[1,1];[0,1]]; end      %default: unit square 
if nargin<5; da = 0; end 
if nargin<4; ang = 0; end 
if nargin<3; dh = 0; end 
if nargin<2; h = 0.1; end 
if nargin<1; n = 100; end 
px = poly(:,1); 
py = poly(:,2); 
lines = zeros(n,4); 
i = 0; 
while i<n 
    x1 = rand(1,1); 
    y1 = rand(1,1); 
    rr = (2*rand(1,2)-1); 
    [dx,dy] = pol2cart(ang+rr(1)*da,h+rr(2)*dh); 
    x2 = x1+dx; 
    y2 = y1+dy; 
    if inpolygon([x1,x2],[y1,y2],px,py)           %if line is inside the polygon          
        i = i+1; 
        lines(i,:) = [x1,y1,x2,y2]; 
    end 
end     

RandLinesInPoly2D is to generate n random lines inside of a given polygon. The 

length of lines is defined by a scalar h with variation   . The orientation follows 

scalar     with tolerance of    both in radian. 

2.4.12 Sup2D 

% Sup2D 
% creates a support at point(x,y) with width(w) and height(h) 
% 
% Usage : 
%    sup = Sup2D(x,y,w,h) 
% 
% input : x,y       coordinates of the center of support 
%         w,h       width and height 
% output: sup       (4,4), a rectangle 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
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% Updated: Nov 2013 
function sup = Sup2D(x,y,w,h) 
sup = [[0,0,w,0];[w,0,w,h];[w,h,0,h];[0,h,0,0]]; 
sup(:,[1,3]) = sup(:,[1,3])+x-0.5*w; 
sup(:,[2,4]) = sup(:,[2,4])+y-0.5*h; 

Sup2D generates a two-dimensional support (here rectangle). 

2.4.13 SupCSup2D 

% SupCSup2D 
% test for connectivity between two 2D supports via fracture network 
% 
% Usage : 
%    C = SupCSup2D(lines,La,sup1,sup2) 
% 
% input : lines     (n,4), fracture network 
%         La        (n) cluster labels for lines 
%         sup1      support 1, box,e.g., [0,1,0,1] 
%         sup2      support 2 
% output: C         true/false 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function C = SupCSup2D(lines,La,sup1,sup2) 
xC1 = SupXLines2D(sup1,lines,La);                 %cluster info of sup1 from fnm 
xC2 = SupXLines2D(sup2,lines,La);                 %cluster info of sup2 from fnm 
C = ~isempty(intersect(xC1,xC2));                 %if they intersect? 

SupCSup2D evaluates whether the two given supports are connected to each other 

or not. This is a pretty and robust implementation of connectivity assessment 

between the two supports. Note that the cluster information of fracture network 

(  ) is used for the evaluation. 

2.4.14 SupXLines2D 

% SupXLines2D 
% find cluster labels for a support intersecting 2D fracture network 
% 
% Usage : 
%    xC = SupXLines2D(sup,lines,La) 
% 
% input : sup       (4), e.g., [0,1,0,1] 
%         lines     (n,4) 
%         La        cluster labels of fractures 
% output: xC        intersected clusters 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function xC = SupXLines2D(sup,lines,La) 
xC = unique(La(sum(ClipLines2D(lines,sup),2)>0));   %utilises clipping concept 
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SupXLines2D is used to determine all fracture clusters (including isolated 

fractures) intersecting a support. 

2.4.15 SupXNLines2D 

% SupXNLines2D 
% finds number of intersected 2D fractures by a 2D support 
% 
% Usage : 
%    xN = SupXNLines2D(sup,lines) 
% 
% input : sup       (4), e.g., [0,1,0,1] 
%         lines     (n,4) 
% output: xN        number of intersected lines 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function xN = SupXNLines2D(sup,lines) 
xN = sum(sum(ClipLines2D(lines,sup),2)>0);        %utilises clipping concept 

SupXNLines2D determines the total number of intersecting fractures for a support. 

2.4.16 P21G 

% P21G 
% evaluates P21 measure of 2D fracture network (regular grid) 
% 
% Usage : 
%    [tLs,xLs,x,y] = P21G(lines,gn,gm) 
% 
% input : lines     (n,4) 
%         gn        grid dimensions, horizontally 
%         gm        grid dimensions, vertically 
% output: tLs       (n) cell, total length 
%         xLs       (n) cell, all lengths 
%         x,y       extent for plotting 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function [tLs,xLs,x,y] = P21G(lines,gn,gm) 
if nargin<3 
    gn = 25; 
    gm = gn; 
end 
w = 1/gn;                                         %cell width 
h = 1/gm;                                         %cell height 
xLs = cell(gm,gn); 
tLs = zeros(gm,gn); 
for i = 1:gm 
    for j = 1:gn 
        sup = [(j-1)*w,j*w,(i-1)*h,i*h]; 
        cls = ClipLines2D(lines,sup); 
        lhs = Lengths2D(cls(sum(cls,2)>0,:)); 
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        xLs(i,j) = {lhs};                         %store all lengths 
        tLs(i,j) = sum(lhs);                      %total length per cell 
    end 
end 
x = [w/2,1-w/2]; 
y = [h/2,1-h/2]; 

P21G is to compute P21 measure based on regular grid cell sampling. 

2.4.17 ConnectivityIndex2D 

% ConnectivityIndex2D 
% computes connectivity index (CI) on 2D fracture networks 
% 
% Usage : 
%    [CI,x,y] = ConnectivityIndex2D(lines,La,gm,gn,cm,cn) 
% 
% input : lines     (n,4) 
%         La        cluster labels (n) 
%         gm        grid dimension vertically 
%         gn        grid dimension horizontally 
%         cm        target cell i index 
%         cn        target cell j index 
% output: CI        (gm,gn) 
%         x,y       extents  
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function [CI,x,y] = ConnectivityIndex2D(lines,La,gm,gn,cm,cn) 
w = 1/gn; 
h = 1/gm; 
CI = zeros(gm,gn); 
xCs = cell(gm,gn); 
for i = 1:gm                                   %extract cluster info for all supports 
    for j = 1:gn 
        sup = [(j-1)*w,j*w,(i-1)*h,i*h]; 
        xCs(i,j) = {SupXLines2D(sup,lines,La)};   %store 
    end 
end 
xC1 = xCs{cm,cn};                                 %target cell cluster info 
if ~isempty(xC1)                                  %if target cell is not isolated 
    for i = 1:gm 
        for j = 1:gn 
            com = intersect(xC1,xCs{i,j});        %any common cluster? 
            if ~isempty(com); CI(i,j) = 1; end 
        end 
    end 
end 
x = [w/2,1-w/2];                                  %for usage in imagesc(x,y,CI) 
y = [h/2,1-h/2]; 

ConnectivityIndex2D evaluates the connectivity index (CI) on a two-dimensional 

fracture network based on grid cell sampling. 
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2.4.18 ConnectivityField2D 

% ConnectivityField2D 
% computes connectivity field (CF) for 2D fracture network 
% 
% Usage : 
%    [CF,x,y] = ConnectivityField2D(lines,La,gm,gn,rm,rn) 
% 
% input : lines     (n,4) 
%         La        cluster labels (n) 
%         gm        grid dimension vertically 
%         gn        grid dimension horizontally 
%         rm        range for cells vert. 
%         rn        range for cells horiz. 
% output: CF        (gm,gn) 
%         x,y       extents  
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Oct 2013 
function [CF,x,y] = ConnectivityField2D(lines,La,gm,gn,rm,rn) 
w = 1/gn; 
h = 1/gm; 
sm = length(rm); 
sn = length(rn); 
CF = zeros(gm,gn); 
xCs = cell(gm,gn); 
for i = 1:gm 
    for j = 1:gn 
        sup = [(j-1)*w,j*w,(i-1)*h,i*h]; 
        xCs(i,j) = {SupXLines2D(sup,lines,La)};   %all supports' clusters information 
    end 
end 
for i = 1:sm                                      %outer loop for all target cells 
    for j = 1:sn 
        xC1 = xCs{i,j}; 
        k = 0; 
        for ii = 1:gm 
            for jj = 1:gn 
                com = intersect(xC1,xCs{ii,jj}); 
                if ~isempty(com); k = k+1; end    %record number of connected cells 
            end 
        end 
        CF(rm(i),rn(j)) = k; 
    end 
end 
x = [w/2,1-w/2];                                  %for usage in imagesc(x,y,CF) 
y = [h/2,1-h/2]; 

ConnectivityField2D computes connectivity field (CF) on a two-dimensional 

fracture network based on grid cell sampling. 

2.4.19 BreakLinesX2D 

% BreakLinesX2D 
% breaks 2D lines at their intersection points 
% 
% Usage : 
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%    olins = BreakLinesX2D(lines) 
% 
% input : lines     (n,4) 
% output: olins     cell 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function olins = BreakLinesX2D(lines) 
[xts,ids,~] = LinesX2D(lines); 
gxs = Group(xts,ids,size(lines,1)); 
n = size(gxs,1); 
olins = cell(n,1); 
for i=1:n 
    ots = SortPoints2D([gxs{i};lines(i,1:2);lines(i,3:4)]); 
    olins{i} = [ots(1:end-1,:),ots(2:end,:)]; 
end 

BreakLinesX2D breaks given lines at their intersection points. This function is used 

for generating backbone structure. 

2.4.20 Rotate2D 

% Rotate2D 
% rotates 2D points about a center by given angle 
% 
% Usage : 
%    ots = Rotate2D(pts,cnt,ang) 
% 
% input : pts       (n,2) 
%         cnt       center of rotation (2) 
%         ang       angle of rotation 
% output: ots       (n,2) 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function ots = Rotate2D(pts,cnt,ang) 
if nargin<3; ang = 0; end 
if nargin<2; cnt = [0,0]; end 
ots = [pts(:,1)-cnt(1),pts(:,2)-cnt(2)]*[cos(ang),sin(ang);-sin(ang),cos(ang)]; 
ots = [ots(:,1)+cnt(1),ots(:,2)+cnt(2)]; 

Rotate2D applies rotation to points about a given centre and angle (in radian). 

2.4.21 SortPoints2D 

% SortPoints2D 
% sorts 2D points topologically 
% 
% Usage: 
%    ots = SortPoints2D(pts) 
% 
% input : pts       (n,2)  
% output: ots       (n,2) 
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% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function ots = SortPoints2D(pts) 
p1 = FarthestPoints(pts);                         %farthest point as ref 
d = pdist2(pts,p1); 
[~,idx] = sort(d); 
ots = pts(idx,:); 

SortPoints2D sorts points based on their topological arrangement, that is, they 

can be connected to create a polyline without self-intersection. 

2.4.22 Isolated2D 

% Isolated2D 
% checks if a line at index i from lines is isolated 
% 
% Usage : 
%    b = Isolated2D(i,lines,tol) 
% 
% input : i         index 
%         lines     (n,4) 
%         tol       tolerance, default=1e-9 
% output: b         boolean 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Oct 2013 
function b = Isolated2D(i,lines,tol) 
if nargin<3; tol = 1e-9; end 
p1s = lines(:,1:2); 
p2s = lines(:,3:4); 
pts = [p1s;p2s]; 
b = (Occurrence(p1s(i,:),pts,tol)<=1) | (Occurrence(p2s(i,:),pts,tol)<=1); 

Isolated2D determines if a line is isolated from (unconnected to) others in fracture 

network. 

2.4.23 Backbone2D 

% Backbone2D 
% returns backbone of 2D fracture network 
% 
% Usage : 
%    bbn = Backbone2D(lines,process,rgn,tol) 
% 
% input : lines     (n,4) 
%         process   if true to break lines into segments 
%         rgn       the region of study as polyline (k,4) 
%         tol       tolerance 
% output: bbn       (m,4) 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
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% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function bbn = Backbone2D(lines,process,rgn,tol) 
if nargin<4; tol = 1e-9; end 
if (nargin<3) || isempty(rgn) 
    rgn = [0,0,1,0; 1,0,1,1; 1,1,0,1; 0,1,0,0];   %default: a unit square 
end 
if nargin<2; process = false; end 
if process 
    bbn = Stack(BreakLinesX2D([lines;rgn])); 
else 
    bbn = lines; 
end 
while true 
    B = IsolatedLines2D(bbn,tol); 
    if ~any(B); break; end                        %break if no isolated line anymore 
    bbn = bbn(~B,:);                              %update backbone 
end 

Backbone2D extracts the backbone structure of given fracture network. 

2.4.24 IsolatedLines2D 

% IsolatedLines2D 
% check isolation for all 2D fracture lines 
% 
% Usage : 
%    B = IsolatedLines2D(lines,tol) 
% 
% input : lines     (n,4) 
%         tol 
% output: B         (n) boolean 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function B = IsolatedLines2D(lines,tol) 
if nargin<3; tol = 1e-9; end 
p1s = lines(:,1:2); 
p2s = lines(:,3:4); 
pts = [p1s;p2s]; 
n = size(lines,1); 
B = false(n,1); 
for i=1:n 
    B(i) = (Occurrence(p1s(i,:),pts,tol)<=1) | (Occurrence(p2s(i,:),pts,tol)<=1); 
end 

IsolatedLines2D checks isolation for all lines in fracture network. 

2.4.25 BackboneToNodesEdges2D 

% BackboneToNodesEdges2D 
% returns (nodes,edges) extracted from 2D backbone 
% 
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% Usage : 
%    [nodes,edges] = BackboneToNodesEdges2D(bbn) 
% 
% input : bbn       backbone 
% output: nodes 
%         edges 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function [nodes,edges] = BackboneToNodesEdges2D(bbn) 
nodes = dict(); 
edges = bbn; 
for i=1:size(bbn,1) 
    p1 = bbn(i,1:2);                     %endpoints as keys for nodes 
    p2 = bbn(i,3:4); 
    nodes(p1) = unique([nodes(p1),i]);   %indices of edges associated with nodes 
    nodes(p2) = unique([nodes(p2),i]); 
end 

BackboneToNodesEdges2D produces list of nodes and edges (graph structure) from 

given backbone. 

2.4.26 Expand2D 

% Expand2D 
% expands a 2D matrix by nx,ny 
% 
% Usage : 
%    Y = Expand2D(X,nx,ny) 
% 
% input : X         2D matrix 
%         nx,ny     increase in dimensions 
% output: Y         expanded matrix 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Oct 2013 
function Y = Expand2D(X,nx,ny) 
if nargin==1; nx = 1; ny = 1; end 
[m,n] = size(X); 
Y = zeros(m+ny,n+nx)+X(end,end); 
Y(1:m,1:n) = X; 

Expand2D expands given 2D matrix by    and   . 

2.4.27 Resize2D 

% Resize2D 
% resizes 2D matrix in shape (m,n) 
% 
% Usage : 
%    B = Resize2D(A,m,n) 
% 
% input : A         input 2d matrix 
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%         m,n       desired dimensions 
% output: B         resized matrix (m,n) 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Oct 2013 
function B = Resize2D(A,m,n) 
[a,b] = size(A); 
if nargin<2; m = 70; end 
if nargin<3; n = m; end 
zm = m/a; 
zn = n/b; 
B = A(floor((0:end*zm-1)/zm)+1,floor((0:end*zn-1)/zn)+1); 

Resize2D resizes a given matrix into shape of      . 

2.4.28 DrawLines2D 

% DrawLines2D 
% draws quickly 2D fracture lines 
% 
% Usage : 
%    DrawLines2D(lines,La,rgb,age) 
% 
% input : lines     (n,4) 
%         La        cluster labels 
%         rgb       color, default=[0,0,0] 
%         age       axes, grid settings, check `Titles2D` 
%  
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function DrawLines2D(lines,La,rgb,age) 
if nargin<4; age = '=['; end 
if nargin<3; rgb = [0,0,0]; end 
if nargin<2; La = []; end 
if isempty(La) || all(La==0) 
    [X,Y] = LinesToXYnan2D(lines); 
    if all(rgb==0); rgb = [0,0,0]; end 
    plot(X,Y,'-','Color',rgb) 
else 
    [X,Y] = LinesToXYnan2D(lines(La<0,:));        %isolated fractures 
    plot(X,Y,'-','Color',[0.5,0.5,0.5]) 
    hold on 
    for i=1:max(La)                               %fracture clusters 
        [X,Y] = LinesToXYnan2D(lines(La==i,:)); 
        plot(X,Y,'-','Color',rand(3,1),'LineWidth',1.5); 
    end 
end 
Titles2D(age) 

DrawLines2D draws efficiently large number of fracture lines. 



APPENDIX 2: AFNM 295 

2.4.29 LinesToXYnan2D 

% LinesToXYnan2D 
% builds [X,Y,nan] from lines for `plot` to highest efficiency 
% 
% Usage : 
%    [X,Y] = LinesToXYnan2D(lines) 
% 
% input : lines     (n,4) 
% output: X         x coordinates of lines 
%         Y         y coordinates of lines 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function [X,Y] = LinesToXYnan2D(lines) 
n = size(lines,1); 
X = [lines(:,[1,3]),NaN(n,1)]'; 
Y = [lines(:,[2,4]),NaN(n,1)]'; 

LinesToXYnan2D builds            structure for increased efficiency in drawing 

large number of 2D lines. 

2.4.30 ExpandAxes2D 

% ExpandAxes2D 
% expands current axes by rate (+:relative,-:absolute) 
% 
% Usage: 
%    ExpandAxes2D(rate) 
% 
% input : rate      to expand axes symmetrically 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function ExpandAxes2D(rate) 
a = axis; 
if rate>0                                         %relative expansion 
    fx = a(2)-a(1); 
    fy = a(4)-a(3); 
else                                              %absolute expansion 
    fx = -1; 
    fy = -1; 
end 
axis([a(1)-rate*fx,a(2)+rate*fx,a(3)-rate*fy,a(4)+rate*fy]); 

ExpandAxes2D expands two-dimensional axes by factor of given rate. 

2.4.31 Titles2D 

% Titles2D 
% sets titles, grid etc for current 2D axes 
% 
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% Usage : 
%    Titles2D(tl,xl,yl,ext,rgn,age) 
% 
% input : tl        title 
%         xl        xlabel 
%         yl        ylabel 
%         ext       limits of axes 
%         rgn       region of study 
%         age       aspect,limits,grid switches 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function Titles2D(age,tl,xl,yl,ext,rgn) 
if nargin<6; rgn = [0,1,0,1]; end 
if nargin<5; ext = [-0.03,1.03,-0.03,1.03]; end 
if nargin<4; yl = 'Y'; end 
if nargin<3; xl = 'X'; end 
if nargin<2; tl = ''; end 
if nargin<1; age = '=['; end 
hold on 
drawBox(rgn,'k-','LineWidth',1.5) 
if isempty(strfind(age,'-')) 
    title(tl) 
    xlabel(xl); 
    ylabel(yl); 
else 
    axis off 
end 
box on 
if strfind(age,'=')>0; axis image; end 
if strfind(age,'+')>0; grid on; end 
if strfind(age,'[')>0; axis(ext); end 
hold off 

Titles2D simplifies setting the titles, labels, grid, extent and region information 

for current 2D axes. 

2.5 Functions for Three Dimensional Fracture Networks 

2.5.1 RandPoly3D 

% RandPoly3D 
% generates randomly shaped and distributed 3D polygons 
% 
% Usage : 
%    plys = RandPoly3D(n,dax,day,daz) 
% 
% input : n         number of polygons 
%         dax,day,daz rotation angle range around X, Y and Z axes 
% output: ply       (n,4,3) 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Oct 2013 
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function plys = RandPoly3D(n,dax,day,daz) 
if nargin<4; daz = 2*pi; end 
if nargin<3; day = 2*pi; end 
if nargin<2; dax = 2*pi; end 
if nargin<1; n = 1; end 
plys = zeros(n,4,3); 
for i=1:n 
    r = rand(4,1); 
    ply = [r(1),0,0; 0,r(2),0; r(3),1,0; 1,r(4),0];   %random polygon with 4 vertices 
    cnt = polygonCentroid3d(ply); 
    T = composeTransforms3d(... 
        createRotationOx(cnt,rand*dax),... 
        createRotationOy(cnt,rand*day),... 
        createRotationOz(cnt,rand*daz)); 
    plys(i,:,:) = transformPoint3d(ply(:,1),ply(:,2),ply(:,3),T); 
end 

RandPoly3D generates three-dimensional polygons following the given angle 

variations about triple axes. 

2.5.2 GenFNM3D 

% GenFNM3D 
% generates 3D fracture network 
% 
% Usage: 
%    [clys,plys] = GenFNM3D(n,dax,day,daz,s,rgn) 
% 
% input : n         number of polygons 
%         dax,day,daz rotation angle range around X, Y and Z axes 
%         s         scale 
%         rgn       region of study, default= unit cube 
% output: clys      (n), cell, clipped polygons by region of study rgn 
%         plys      (n), cell 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function [clys,plys] = GenFNM3D(n,dax,day,daz,s,rgn) 
if nargin<6; rgn = [0,1,0,1,0,1]; end 
if nargin<5; s = 0.25; end 
if nargin<4; daz = pi; end 
if nargin<3; day = pi; end 
if nargin<2; dax = pi; end 
if nargin<1; n = 1; end 
plys = cell(n,1); 
for i=1:n 
    ply = [rand-0.5,-0.5,0; -0.5,rand-0.5,0; rand-0.5,0.5,0; 0.5,rand-0.5,0]; 
    pt = rand(3,3); 
    T = composeTransforms3d(... 
        createRotationOx([0,0,0],(2*rand-1)*dax),... 
        createRotationOy([0,0,0],(2*rand-1)*day),... 
        createRotationOz([0,0,0],(2*rand-1)*daz),... 
        createScaling3d(s,s,s),... 
        createTranslation3d(pt(1),pt(2),pt(3))); 
    plys{i} = transformPoint3d(ply(:,1),ply(:,2),ply(:,3),T); 
end 
clys = ClipPolys3D(plys,rgn); 
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GenFNM3D synthesises a three-dimensional fracture network (polygonal shape 

fractures). 

2.5.3 Sup3D 

% Sup3D 
% creates a 3D support (box) 
% 
% Usage: 
%    sup = Sup3D(cnt,dim) 
% 
% input : cnt       a point(3) 
%         dim       [width,height,depth] 
% output: sup       cell, six sides of a cube 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function sup = Sup3D(cnt,dim) 
if nargin<2; dim = [1,1,1]; end 
if nargin<1; cnt = [0.5,0.5,0.5]; end 
sup = cell(6,1); 
sup{1} = [0,0,0; 0,0,1; 0,1,1; 0,1,0];    %left 
sup{2} = [1,0,0; 1,0,1; 1,1,1; 1,1,0];    %right 
sup{3} = [0,0,0; 1,0,0; 1,1,0; 0,1,0];    %bottom 
sup{4} = [0,0,1; 1,0,1; 1,1,1; 0,1,1];    %top 
sup{5} = [0,0,0; 0,0,1; 1,0,1; 1,0,0];    %front 
sup{6} = [0,1,0; 0,1,1; 1,1,1; 1,1,0];    %back 
d = cnt-[0.5*dim(1),0.5*dim(2),0.5*dim(3)]; 
for i=1:6 
    sup{i}(:,1) = sup{i}(:,1)*dim(1)+d(1); 
    sup{i}(:,2) = sup{i}(:,2)*dim(2)+d(2); 
    sup{i}(:,3) = sup{i}(:,3)*dim(3)+d(3); 
end 

Sup3D creates 3D cubic support. 

2.5.4 ClipPolys3D 

% ClipPolys3D 
% clips 3D polygons by a box 
% 
% Usage : 
%    clys = ClipPolys3D(plys,box) 
% 
% input : plys      cell(n) 
% output: clys      cell(m) 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function clys = ClipPolys3D(plys,box) 
if nargin<2; box = [0,1,0,1,0,1]; end 
x1 = box(1); x2 = box(2); y1 = box(3); 
y2 = box(4); z1 = box(5); z2 = box(6); 
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xy1 = createPlane([x1,y1,z1],[0,0,-1]); 
xy2 = createPlane([x1,y1,z2],[0,0,1]); 
xz1 = createPlane([x1,y1,z1],[0,-1,0]); 
xz2 = createPlane([x1,y2,z1],[0,1,0]); 
yz1 = createPlane([x1,y1,z1],[-1,0,0]); 
yz2 = createPlane([x2,y1,z1],[1,0,0]); 
n = size(plys,1); 
clys = cell(n,1); 
for i=1:n 
    ply = plys{i}; 
    ply = clipConvexPolygon3dHP(ply,xy1); 
    ply = clipConvexPolygon3dHP(ply,xy2); 
    ply = clipConvexPolygon3dHP(ply,xz1); 
    ply = clipConvexPolygon3dHP(ply,xz2); 
    ply = clipConvexPolygon3dHP(ply,yz1); 
    ply = clipConvexPolygon3dHP(ply,yz2); 
    if all(ply(1,:)==ply(end,:)); ply = ply(1:end-1,:); end 
    clys{i} = ply; 
end 

ClipPolys3D clips 3D polygons by given cube. 

2.5.5 PolysX3D 

% PolysX3D 
% finds all intersections between 3D polygons 
% 
% Usage: 
%    [xts,ids,La] = PolysX3D(plys) 
% 
% input : plys      cell(n) 
% output: xts       cell 
%         ids       cell 
%         La        cluster labels  
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 

function [xts,ids,La] = PolysX3D(plys) 
n = size(plys,1); 
m = n*(n-1)/2; 
xts = cell(m,1); 
ids = cell(m,1); 
k = 0; 
for i = 1:n-1 
    for j = i+1:n 
        xpt = PolyXPoly3D(plys{i},plys{j}); 
        if isempty(xpt); continue; end 
        k = k+1; 
        xts{k} = xpt;                             %intersection points 
        ids{k} = int32([i,j]);                    %intersecting lines indices 
    end 
end 
xts = xts(1:k); 
ids = ids(1:k); 
La = Labels(Clusters(ids),n);                     %fracture cluster labels 
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PolysX3D conducts intersection analysis for given 3D fractures resulting in 

information of intersection points, inter-connected fracture indices and fracture 

clusters. 

2.5.6 PolysXPolys3D 

% PolysXPolys3D 
% finds intersection (points,indices) between two sets of 3D polygons 
% 
% Usage: 
%    [xts,pts,ids] = PolysXPolys3D(plys1,plys2) 
% 
% input : plys1     cell of polygons 
%         plys2     cell of polygons 
% output: xts       (k,3), cell 
%         pts       stacked intersection points, i.e., (k,2) 
%         ids       indices, cell 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function [xts,pts,ids] = PolysXPolys3D(plys1,plys2) 
m = length(plys1); 
n = length(plys2); 
xts = cell(m,1); 
ids = []; 
u = 0; 
for i=1:m 
    pts = cell(n,1); 
    idx = zeros(n,1); 
    k = 0; 
    for j=1:n 
        xpt = PolyXPoly3D(plys1{i},plys2{j});     %intersecting 
        if isempty(xpt); continue; end 
        k = k+1; 
        pts{k} = xpt;                             %points 
        idx(k) = j;                               %polygon index 
    end 
    if k==0; continue; end 
    u = u+1; 
    xts{u} = pts(1:k); 
    ids = union(ids,idx(1:k));                    %indices 
end 
xts = xts(1:u); 
pts = zeros(0,3); 
k = 0; 
for i=1:u 
    cps = xts{i};                                 %stacking all intersection points 
    for j=1:size(cps,1) 
        ets = cps{j}; 
        for w=1:size(ets,1) 
            k = k+1; 
            pts(k,:) = ets(w,:); 
        end 
    end 
end 
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PolysXPolys3D assesses inter-connection between two sets of three-dimensional 

fractures. It can be used for example to find connectivity information between a 

three-dimensional support (e.g., cube) and a fracture network. 

2.5.7 PolyXPoly3D 

% PolyXPoly3D 
% finds intersection points between two 3D polygons 
% 
% Usage : 
%    xts = PolyXPoly3D(ply1,ply2) 
% 
% input : ply1      (n,3) 
%         ply2      (m,3) 
% output: xts       (k,3) 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function xts = PolyXPoly3D(ply1,ply2) 
edges = [ply1,circshift(ply1,[-1,0])];            %create edges 
pln = createPlane(ply2(1:3,:)); 
xts = intersectEdgePlane(edges,pln); 
xts = xts(sum(isnan(xts),2)==0,:); 
if ~isempty(xts) 
    pts = planePosition(ply2,pln); 
    its = planePosition(xts,pln); 
    ins = xor(isPointInPolygon(its,pts),polygonArea(pts)<0); 
    xts = xts(ins,:); 
end 

PolyXPoly3D results in intersection points between two three-dimensional 

polygons. 

2.5.8 SupCSup3D 

% SupCSup3D 
% checks if two 3D suports are connected 
% 
% Usage : 
%    out = SupCSup3D(sup1,sup2,plys,La) 
% 
% input : sup1      cell of polygons 
%         sup2      cell of polygons 
%         plys      cell of polygons 
%         La        cluster labels 
% output: out       boolean 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function out = SupCSup3D(sup1,sup2,plys,La) 
[~,~,ids1] = PolysXPolys3D(sup1,plys);            %fractures intersection indices 
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[~,~,ids2] = PolysXPolys3D(sup2,plys); 
if isempty(ids1) || isempty(ids2) 
    out = false; 
else 
    out = ~isempty(intersect(La(ids1),La(ids2))); 
end 

SupCSup3D evaluates connectivity between two three-dimensional supports (e.g., 

cubes). 

2.5.9 BBox3D 

% BBox3D 
% finds min and max of polygon in each axis X, Y and Z 
% 
% Usage : 
%    [mins,maxs] = BBox3D(plys) 
% 
% input : plys      cell 
% output: mins      min values for X, Y and Z 
%         maxs      max values for X, Y and Z 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function [mins,maxs] = BBox3D(plys) 
mins = min(cell2mat(cellfun(@min,plys,'UniformOutput',false))); 
maxs = max(cell2mat(cellfun(@max,plys,'UniformOutput',false))); 

BBox3D finds bounding box for given three-dimensional points / polygons. 

2.5.10 Expand3D 

% Expand3D 
% expands a 3D matrix by nx,ny,nz 
% 
% Usage : 
%    Y = Expand3D(X,nx,ny,nz) 
% 
% input : X         3D matrix 
%         nx,ny,nz  increase in dimensions 
% output: Y         expanded matrix 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function Y = Expand3D(X,nx,ny,nz) 
if nargin==1; nx = 1; ny = 1; nz = 1; end 
[m,n,o] = size(X); 
Y = zeros(m+ny,n+nx,o+nz)+X(end,end,end); 
Y(1:m,1:n,1:o) = X; 

Expand3D expands a given three-dimensional matrix. 
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2.5.11 Resize3D 

% Resize3D 
% resizes 3D matrix into shape (m,n,o) 
% 
% Usage : 
%    B = Resize3D(A,m,n,o) 
% 
% input : A         input 3d matrix 
%         m,n,o     desired dimensions 
% output: B         resized matrix (m,n,o) 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function B = Resize3D(A,m,n,o) 
[a,b,c] = size(A); 
if nargin<2; m = 70; end 
if nargin<3; n = m; end 
if nargin<4; o = n; end 
zm = m/a; 
zn = n/b; 
zo = o/c; 
B = A(floor((0:end*zm-1)/zm)+1,floor((0:end*zn-1)/zn)+1,floor((0:end*zo-1)/zo)+1); 

Resize3D resizes three-dimensional matrix to a given shape. This function is useful 

to combine different shapes of input matrices to generate E-Type maps, for 

example. 

2.5.12 SaveToFile3D 

% SaveToFile3D 
% saves 3D data into text file 
% 
% Usage : 
%    SaveToFile3D(fname,x) 
% 
% input : fname     filename 
%         x         3D matrix 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function SaveToFile3D(fname,x,index) 
if nargin<3; index = false; end 
if ~index 
    dlmwrite(fname,x,'delimiter',',')             %just data, no indices 
else 
    fut = fopen(fname,'w'); 
    [m,n,o] = size(x); 
    for i=1:m 
        for j=1:n 
            for k=1:o 
                fprintf(fut,sprintf('%d, %d, %d, %0.6f\n',i,j,k,x(i,j,k))); 
            end 
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        end 
    end 
    fclose(fut); 
end 

SaveToFile3D exports three-dimensional data to an ASCII file. 

2.5.13 SavePolysToVTK3D 

% SavePolysToVTK3D 
% saves 3D polygons as standard VTK file (ASCII format) 
% 
% Usage : 
%    SavePolysToVTK3D(plys,colors,fname) 
% 
% input : plys      cell 
%         colors    (x,3[4]), with or without alpha values 
%         fname     filename 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function SavePolysToVTK3D(plys,colors,fname) 
nply = length(plys); 
plyn = cellfun(@length,plys,'UniformOutput',false); 
npnt = sum(cell2mat(plyn)); 
fut = fopen(fname,'w'); 
fprintf(fut,'# vtk DataFile Version 3.0\n');      %header...    
fprintf(fut,'Polygons by Younes Fadakar Alghalandis\n'); 
fprintf(fut,sprintf('ASCII\nDATASET POLYDATA\nPOINTS %d float\n',npnt)); 
for i=1:nply 
    ply = plys{i}; 
    fprintf(fut,sprintf('%0.6f %0.6f %0.6f\n',ply')); 
end 
fprintf(fut,sprintf('POLYGONS %d %d\n',nply,npnt+nply)); 
k = 0; 
for i=1:nply                                      %polygon data 
    fprintf(fut,strcat(sprintf('%d ',plyn{i},k:k+plyn{i}-1),'\n')); 
    k = k+plyn{i}; 
end 
fprintf(fut,sprintf('POINT_DATA %d\n',npnt)); 
fprintf(fut,'COLOR_SCALARS lut 4\n'); 
if size(colors,2)==3                              %if no alpha provided, set all to 1     
    colors(:,4) = 1; 
end 
for i=1:nply 
    for j=1:plyn{i} 
        fprintf(fut,strcat(sprintf('%0.3f ',colors(i,:)),'\n')); 
    end 
end 
fclose(fut); 
fprintf(1,'Polygons were saved as file %s.\n',fname);   %report on screen 

SavePolysToVTK3D exports polygons to a file as VTK ASCII format. VTK format is 

industry standard for three-dimensional data and can be visualised and 

manipulated by many available free software applications such as ParaView. 
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2.5.14 SetAxes3D 

% SetAxes3D 
% sets and adjust axes into 3D view 
% 
% Usage : 
%    SetAxes3D(mins,maxs) 
% 
% input : mins,maxs min and max values of X, Y and Z axes 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function SetAxes3D(mins,maxs) 
if nargin==0;  
    mins = [0,0,0];                               %defaults 
    maxs = [1,1,1]; 
end 
hold on 
plot3([mins(1),maxs(1)],[mins(2),mins(2)],[mins(3),mins(3)],'-',... 
      'LineWidth',1.5,'Color',[0.7,0,0]); 
plot3([mins(1),mins(1)],[mins(2),maxs(2)],[mins(3),mins(3)],'-',... 
      'LineWidth',1.5,'Color',[0,0.7,0]); 
plot3([mins(1),mins(1)],[mins(2),mins(2)],[mins(3),maxs(3)],'-',... 
      'LineWidth',1.5,'Color',[0,0,0.7]); 
text(0.5*(mins(1)+maxs(1)),mins(2),mins(3),'X','BackgroundColor',[0.7,0,0],'Color','w
') 
text(mins(1),0.5*(mins(2)+maxs(2)),mins(3),'Y','BackgroundColor',[0,0.7,0],'Color','w
') 
text(mins(1),mins(2),0.5*(mins(3)+maxs(3)),'Z','BackgroundColor',[0,0,0.7],'Color','w
') 
camproj('perspective') 
set(gca,'CameraPosition',[-1*maxs(1),-2*maxs(2),1.5*maxs(3)]); 
axis(reshape([mins;maxs],1,[])); 
axis image 
grid on 
box on 

SetAxes3D sets the current view into three-dimensional perspective view with axes 

and labels automatically adjusted. 

2.5.15 DrawPolys3D 

% DrawPolys3D 
% draws quickly 3D polygons 
% 
% Usage : 
%    DrawPolys3D(plys,La,rgba,axes) 
% 
% input : plys      cell 
%         rgba      [r,g,b,a] 
%         clus      La 
%         axes      if true to draw set axes and adjust into 3D 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
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% Updated: Nov 2013 
function DrawPolys3D(plys,La,rgba,axes) 
if nargin<4; axes = true; end 
if nargin<3; rgba = [0.5,0,0.1,0.5]; end 
if nargin<2; La = []; end 
hold on 
cmap = colormap(jet); 
for i=1:length(plys) 
    ply = plys{i}; 
    if ~isempty(La) && La(i)<0                    %isolated fractures 
        patch(ply(:,1),ply(:,2),ply(:,3),[0.5,0.5,0.5],'FaceAlpha',0.5,... 
              'EdgeColor','none'); 
    else 
        fvc = zeros(length(ply),3); 
        if isempty(La)                            %no cluster labels info provided 
            fvc(1,:) = rgba(1:3); 
        else 
            fvc(1,:) = cmap(int32(double(La(i))/double(max(La))*64),:); 
        end 
        h = patch(ply(:,1),ply(:,2),ply(:,3),0,'FaceAlpha',rgba(4)); 
        set(h,'FaceVertexCData',fvc); 
    end 
end 
if axes 
    [mins,maxs] = BBox3D(plys);                   %bounding box of polygons 
    SetAxes3D(mins,maxs); 
end 

DrawPolys3D draws three-dimensional polygons (fracture network). If clusters‟ 

labels (  ) were provided fractures will be colourised according to their associated 

clusters. 

2.5.16 DrawSlices3D 

% DrawSlices3D 
% draws 3D slices of 3D volume data 
% 
% Usage : 
%    h = DrawSlices3D(data,a,axes) 
% 
% input : data      3D array 
%         a         transparency 
%         axes      if true to set and adjust axes into 3D 
% output: h         handle to slice objects 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function h = DrawSlices3D(data,a,axes) 
if nargin<3; axes = true; end 
if nargin<2; a = 1; end 
[m,n,o] = size(data); 
[x,y,z] = meshgrid(0:m,0:n,0:o); 
h = slice(x,y,z,Expand3D(data),m/2,n/2,o/2); 
shading flat 
if a~=1 
    if a<0 
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        set(h,'EdgeColor','none','FaceColor','interp'); 
        alpha(abs(a)); 
    else 
        for i=1:length(h) 
            set(h(i),'alphadata',get(h(i),'cdata'),'facealpha',a); 
        end 
    end 
end 
if nargout==0; clear h; end 
if axes; SetAxes3D([m,n,o]); end 

DrawSlices3D draws three-dimensional slices on the middle of each of axes. 

2.5.17 VolRender3D 

% VolRender3D 
% view volume render of 3D volumetric data 
% 
% Usage : 
%    VolRender3D(data,a,axes) 
% 
% input : data      array (m,n,o) 
%         a         alpha factor 
%         axes      if true to draw set axes and adjust into 3D 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function VolRender3D(data,a,axes) 
if nargin<3; axes = true; end 
if nargin<2; a = 1; end 
[m,n,o] = size(data); 
mdl = Vol3D('CData',data); 
alphamap('rampup'); 
alphamap(a.*alphamap); 
if axes; SetAxes3D([0,0,0],[m,n,o]); end 

VolRender3D renders three-dimensional data (volumetric) with adjustable alpha 

(transparency value). 

2.5.18 Vol3D 

function [model] = vol3d(varargin)       Vol3D 
By Woodford O, 2011 

  



308 APPENDIX 2: AFNM 

2.6 Generic Functions 

2.6.1 Scale 

% Scale 
% scales (maps) X into range (a to b) 
% 
% Usage : 
%    Y = Scale(X,a,b) 
% 
% input : X         any array 
%         a         minimum bound of the output 
%         b         maxmium bound of the output 
% output: Y         same as X but mapped 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function Y = Scale(X,a,b) 
if nargin<3; a = 0; b = 1; end 
Y = double(X-min(X(:)))/double(range(X(:)))*(b-a)+a; 

Scale scales data to a given bounds. 

2.6.2 ToStruct 

% ToStruct 
% builds `struct` data type from data 
% 
% Usage : 
%    S = ToStruct(data) 
% 
% input : data      any array 
% output: S         struct 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function S = ToStruct(data) 
S = struct(); 
m = size(data,1); 
for i = 1:m 
   S.(sprintf('S%d',i)) = data(i,:); 
end 

ToStruct provides “struct” format for the given data. 

2.6.3 KDE 

function [bandwidth,density,X,Y] = kde2d(data,n,MIN_XY,MAX_XY)    KDE 
By Botev Z.I @ botev@maths.uq.edu.au 
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KDE applies kernel density estimation. 

2.6.4 Smooth 

function [z,s,exitflag,Wtot] = smoothn(varargin)                  Smooth 
By Garcia D @ http://www.biomecardio.com/matlab/smoothn.html 

Smooth applies smoothing on the given data. 

2.6.5 dict 

classdef dict < handle       dict 
By Harriman D @ doug.harriman@gmail.com 

dict provides “dict” structure. 

2.6.6 Clusters 

% Clusters 
% clusters items based on common elements 
% 
% Usage : 
%    C = Clusters(S) 
% 
% input : S         cell 
% output: C         cell 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function C = Clusters(S) 
if isempty(S); C = {}; return; end 
while true 
    m = length(S); 
    united = zeros(m,1);                          %nothing is clustered yet 
    C = cell(m,1); 
    u = 0; 
    for i = 1:m-1 
        if united(i); continue; end; 
        p = S{i}; 
        for j = i+1:m 
            q = S{j}; 
            com = intersect(p,q);                 %common elements 
            if ~isempty(com) 
                united(j) = 1; 
                p = union(p,q); 
                S{i} = p; 
            end 
        end 
        u = u+1; 
        C{u} = p; 
    end 
    if ~united(m)                                 %copy the last item if not united 
        u = u+1; 
        C{u} = S{m}; 
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    end 
    C = C(1:u); 
    if any(united) 
        S = C; 
    else                                          %all are united, i.e., clustered 
        C = S; 
        break 
    end 
end 

Clusters determines fracture clusters in the fracture network by means of 

intersection indices (see also LinesX2D). This function is highly efficient and also 

generic for two- and three-dimensional fracture clustering. 

2.6.7 CheckClusters 

% CheckClusters 
% checks if clusters are OK, have no missing common element 
% 
% Usage : 
%    OK = CheckClusters(C) 
% 
% input : C         cell 
% output: OK        boolean 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function OK = CheckClusters(C) 
X = horzcat(C{:}); 
OK = (length(unique(X))==length(X)); 

CheckClusters checks cluster information for any inconsistency due to any 

remaining unclassified elements. 

2.6.8 Labels 

% Labels 
% extracts labels from clusters 
% 
% Usage : 
%    La = Labels(C,n) 
% 
% input : C         cell of Clusters 
%         n         number of fractures 
% output: La        labels for all fractures 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function La = Labels(C,n) 
La = zeros(n,1); 
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for i = 1:length(C) 
    La(C{i}) = i; 
end 
f = (La==0);                                      %isolated fractures 
La(f) = -(1:sum(f));                              %relabeling 

Labels assigns unique label for each cluster. Isolated fractures are assigned a 

unique negative label for each. 

2.6.9 Relabel 

% Relabel 
% relabel cluster labels according to their number of elements 
% 
% Usage : 
%    Ra = Relabel(La) 
% 
% input : La        labels 
% output: Ra        relabeled output 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function Ra = Relabel(La) 
k = max(La);                                      %highest label 
frq = zeros(k,1,'int32'); 
for i=1:k                                         %frequency of each label 
    frq(i) = sum(La==i); 
end 
[~,idx] = sort(frq);                              %sort based on their frequencies 
Ra = La; 
for i=1:k 
    Ra(La==idx(i)) = i;                           %apply relabing 
end 

Relabel is to sort fracture cluster labels based on the cardinality of each cluster. 

2.6.10 Stack 

% Stack 
% stacks values of cell, i.e., results in array 
% 
% Usage : 
%    S = Stack(C) 
% 
% input : C         cell 
% output: S         array 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function S = Stack(C) 
S = cat(1,C{:}); 
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Stack stacks data in the give cell structure and produces an array. 

2.6.11 Group 

% Group 
% groups intersection indices and points 
% 
% Usage : 
%    [gxs,gds] = Group(xts,ids,n) 
% 
% input : xts       intersection points (m,2) 
%         ids       intersection indices (m,2) 
%         n         number of fractures 
% output: gxs,gds   (n) cell 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function [gxs,gds] = Group(xts,ids,n) 
gds = cell(n,1); 
gxs = cell(n,1); 
for i=1:size(ids,1) 
    I = ids(i,1); 
    J = ids(i,2); 
    gds{I} = [gds{I},J]; 
    gds{J} = [gds{J},I]; 
    gxs{I} = [gxs{I};xts(i,:)]; 
    gxs{J} = [gxs{J};xts(i,:)]; 
end 

Group groups given intersection points based on their associated fracture indices. 

2.6.12 FarthestPoints 

% FarthestPoints 
% finds two farthest points in a set of nD points 
% 
% Usage : 
%    [p1,p2] = FarthestPoints(pts) 
% 
% input : pts       (n,2)  
% output: p1,p2     two farthest points 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function [p1,p2] = FarthestPoints(pts) 
[~,idx] = max(pdist(pts,'euclidean')); 
[I,J] = PDistIndices(size(pts,1)); 
p1 = pts(I(idx),:); 
p2 = pts(J(idx),:); 

FarthestPoints finds two farthest points from each other in a given set of n-

dimensional points. 
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2.6.13 PDistIndices 

% PDistIndices 
% finds indices of results from `pdist` function 
% 
% Usage : 
%    [I,J] = PDistIndices(n) 
% 
% input : n         number of points 
% output: I,J       indices 
 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Oct 2013 
function [I,J] = PDistIndices(n) 
[I,J] = find(tril(ones(n),-1)); 

PDistIndices produces indices information for “pdist” function. 

2.6.14 Occurrence 

% Occurrence 
% finds number of occurrence of a point in set of nD points 
% 
% Usage : 
%    k = Occurrence(pt,pts,tol) 
% 
% input : pt        point 
%         pts       points 
%         tol       tolerance of distance 
% output: k         occurrence number 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Oct 2013 
function k = Occurrence(pt,pts,tol) 
if nargin<3; tol = 1e-9; end 
[m,n] = size(pts); 
k = true(m,1); 
if tol~=0 
    for i=1:n 
        k = k & (abs(pts(:,i)-pt(i))<tol);        %relative match 
    end 
else 
    for i=1:n 
        k = k & (pts(:,i)==pt(i));                %absolute match 
    end 
end 
k = sum(k); 

Occurrence determines occurrence of any point in a set of n-dimensional points. 

2.6.15 ConnectivityMatrix 

% ConnectivityMatrix 
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% computes connectivity matrix of fracture network 
% 
% Usage : 
%    cm = ConnectivityMatrix(ids,n,full,mat,fnm) 
% 
% input : ids       intersection indices 
%         n         number of fractures 
%         full      if true returns full matrix 
%         mat       if false sparse form of results 
%         fnm       fracture network 
% output: cm        (n,n) 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Oct 2013 
function cm = ConnectivityMatrix(ids,n,full,mat,fnm) 
if nargin==5                                      %to find indices if not provided 
    if iscell(fnm) 
        [~,ids,~] = PolysX3D(fnm);                %3D fracture network 
    else 
        [~,ids,~] = LinesX2D(fnm);                %2D fracture network 
    end 
    n = size(fnm,1); 
end 
if nargin<4; mat = true; end 
if nargin<3; full = false; end 
cm = zeros(n,n); 
for i=1:size(ids,1) 
    if iscell(ids) 
        I = ids{i}(1); 
        J = ids{i}(2); 
    else 
        I = ids(i,1); 
        J = ids(i,2); 
    end 
    cm(I,J) = 1; 
    if full; cm(J,I) = 1; end 
end 
if ~mat; cm = sparse(cm); end 

ConnectivityMatrix generates connectivity matrix based on intersection indices 

for a fracture network. If fracture network was provided it applies intersection 

analysis to find intersection indices. The function accepts two- or three-dimensional 

fractures networks. 

2.6.16 FullCM 

% FullCM 
% returns full form of connectivity matrix (cm) 
% 
% Usage :  
%    fcm = FullCM(cm) 
% 
% input : cm        sparse/matrix of connectivity 
% output: fcm       full matrix of cm 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
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% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function fcm = FullCM(cm) 
if issparse(cm) 
    fcm = full(cm); 
else 
    fcm = cm; 
end 
fcm = fcm+fcm'; 

FullCM builds full connectivity matrix based on sparse or triangular connectivity 

matrix. 

2.6.17 FNMToGraph 

% FNMToGraph 
% creates Graph from fracture network 
% 
% Usage : 
%    [G,cm] = FNMToGraph(ids,n,fnm) 
% 
% input : ids       intersection indices 
%         n         number of fractures 
%         fnm       fracture network 2D or 3D 
% output: G         Graph 
%         cm        connectivity matrix 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function [G,cm] = FNMToGraph(ids,n,fnm) 
if nargin==3 
    if iscell(fnm) 
        [~,ids,~] = PolysX3D(fnm);                %3D fracture network 
    else 
        [~,ids,~] = LinesX2D(fnm);                %2D fracture network 
    end 
    if isempty(ids); G = empty; return; end 
    n = size(fnm,1); 
end 
cm = ConnectivityMatrix(ids,n,false,false); 
G = biograph(cm,num2str(linspace(1,n,n)'));       %Matlab graph structure 

FNMToGraph generates graph structure based on intersection indices. 

2.6.18 LoadColormap 

% LoadColormap 
% updates current colormap from file 
% 
% Usage : 
%    LoadColormap(fname) 
% 
% input : fname     filename 
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% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function LoadColormap(fname) 
load(fname,'cmap'); 
set(gcf,'Colormap',cmap); 

LoadColormap loads a given “colormap” file and applies it to current figure. 

2.6.19 SaveColormap 

% SaveColormap 
% saves current colormap as file 
% 
% Usage : 
%    SaveColormap(fname) 
% 
% input : fname     filename 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function SaveColormap(fname) 
cmap = get(gcf,'Colormap'); 
save(fname,'cmap'); 

SaveColormap saves current “colormap” to a file. 

2.6.20 SecondsToClock 

% SecondsToClock 
% converts seconds to clock format as string 
% 
% Usage : 
%    clk = SecondsToClock(snd) 
% 
% input : snd       seconds 
% output: clk       clock string 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function clk = SecondsToClock(snd) 
h = floor(snd/3600); 
m = floor((snd-(h*3600))/60); 
s = rem(snd,3600)-m*60; 
clk = sprintf('%02d:%02d:%05.2f',h,m,s); 

SecondsToClock converts given seconds to “time (clock) format”. 
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2.6.21 Colorise 

% Colorise 
% returns colors based on given data 
% 
% Usage : 
%    colors = Colorise(x,cmap) 
% 
% input : x         (n) 
%         cmap      colormap 
% output: colors    (64,3) 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function colors = Colorise(x,cmap) 
if nargin<2; cmap = colormap(jet); end 
y = int32(Scale(x,1,64)); 
colors = cmap(y,:); 

Colorise maps given data into a specified “colormap”. 

2.6.22 ShowFNM 

% ShowFNM 
% shows 2D or 3D fracture network 
% 
% Usage : 
%    ShowFNM(fnm,La) 
% 
% input : fnm       (n,4) for 2D or cell for 3D 
%         La        cluster labels 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function ShowFNM(fnm,La) 
if nargin<2; La = []; end 
if iscell(fnm) 
    cla 
    DrawPolys3D(fnm,La);                          %3D fracture networks 
else 
    cla 
    DrawLines2D(fnm,La);                          %2D fracture networks 
end 

ShowFNM visualises given two- or three-dimensional fracture network. 

2.6.23 Round 

% Round 
% rounds x to an arbitrary (dp) decimal 
% 
% Usage : 
%    y = Round(x,dp) 
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% 
% input : x         any 
%         dp        decimal point, default=no decimal 
% output: y         rounded output 
% 
% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Nov 2013 
function y = Round(x,dp) 
if nargin<2; dp = 1.0; end 
y = round(x/dp)*dp; 

Round rounds data up to a given precision. 

2.7 Example Full Programs 

2.7.1 Example: Simulation of 2D Connectivity Index 

By means of the provided functions Connectivity Index (CI) can be easily evaluated 

for two-dimensional fracture network model. The following full program code 

demonstrates the required stages and setup. Figure 2.1 shows the resulting maps. 

% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Oct 2013 
 
clear all 
clc 
 
%% Simulation for Connectivity Index (CI) 
n = 500; 
simN = 30; 
gm = 25;                                      %grid dimension vertically 
gn = 25;                                      %grid dimension horizontally 
cm = int32(floor(gm/2)+1); 
cn = int32(floor(gn/2)+1); 
CI = zeros(gm,gn); 
tic 
kappa = 10; 
for i = 1:simN 
    lines = GenFNM2D(n,3*pi/4,kappa,0.05,0.5); 
    La = LinesToClusters2D(lines); 
    ci = ConnectivityIndex2D(lines,La,gm,gn,cm,cn); 
    CI = CI+ci; 
    fprintf(1,'Real#:%04d, Total Elapsed Time:<%s>\n',i,SecondsToClock(toc)); 
end 
CI = CI/simN; 
 
%% Visualisation 
clf 
subplot(131); 
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[X,Y] = LinesToXYnan2D(lines); 
plot(X,Y,'k-') 
Titles2D('-=[') 
 
colormap(jet); 
subplot(132); 
w = 0.5/gn; 
h = 0.5/gm; 
imagesc([w,1-w],[h,1-h],CI); 
set(gca,'YDir','normal'); 
Titles2D('-=['); 
 
subplot(133); 
sCI = Smooth(CI); 
contourf(linspace(0,1,25),linspace(0,1,25),sCI,20); 
shading flat 
Titles2D('-=['); 
 
print('-dpng','-r600','CI2D Example');                %to export result as image 

As can be seen in Fig. 2.1 the simulated fracture network is anisotropic towards 

North-West, South-East. This is due to the setting in the code i.e., main orientation 

  
  

 
 and   equal to 10. The resulting CI maps show the anisotropy. 

 

Figure 2.1: Results of evaluating CI on anisotropic fracture network. 

2.7.2 Example: Two-dimensional Line Sampling 

Line sampling is common stage for evaluating connectivity measures including CI 

and CF. The following full program code shows how generating line samples can be 

conducted by means of provided functions in the AFNM package. 

% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Oct 2013 
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clear all 
clc 
 
lines = RandLinesInPoly2D(1000,0.09,0.01,0,pi/2);     %generating line samples 
[X,Y] = LinesToXYnan2D(lines); 
clf 
plot(X,Y,'k-') 
Titles2D() 

Note that any function provides quick help on its parameters and usage upon 

request by right-click in Matlab environment as shown for RandLinesInPoly2D in 

Fig. 2.2. 

 

Figure 2.2: Quick help is available any time for all the functions. 

Variation in the function RandLinesInPoly2D parameters results in various setting 

of line samples as the examples shown in Fig. 2.3. 
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Figure 2.3: Various setting of line samples can be used in the determination of 

directional connectivity measures, for example. 

2.7.3 Example: Simulation of 3D Connectivity Index 

The evaluation of three-dimensional CI is simple and straightforward by means of 

the provided functions. The following full program code evaluates CI on a 

simulation of 30 realisations from a three-dimensional fracture network model. 

Each realisation includes 70 three-dimensional polygonal fractures which are 

randomly located and oriented in a unit cube. 

% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Oct 2013 
 
clear all 
clc 
 
%% CI3D 
w = 0.2; h = 0.2; d = 0.2; 
m = 1/w; n = 1/h; o = 1/d; 
i = floor(m/2)+1; j = floor(n/2)+1; k = floor(o/2)+1; 
sup1 = Sup3D([i/m-w/2,j/n-h/2,k/o-d/2],[w,h,d]); 
CI = zeros(m,n,o); 
tic 
for s=1:30                                               %simulation number 
    plys = GenFNM3D(70,deg2rad(15),deg2rad(15),0);       %anisotropic 
    [~,~,La] = PolysX3D(plys); 
    for i=1:m 
        for j=1:n 
            for k=1:o 
                pt = [i/m-w/2,j/n-h/2,k/o-d/2]; 
                sup2 = Sup3D(pt,[w,h,d]); 
                CI(i,j,k) = CI(i,j,k)+SupCSup3D(sup1,sup2,plys,La); 
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            end 
        end 
    end 
    fprintf(1,'Real.#: %d, Total Elapsed Time:<%s>\n',s,SecondsToClock(toc)); 
end 
 
clf 
DrawPolys3D(plys); 

 

The resulting CI matrix which is three-dimensional volumetric data can be 

visualised by means of VolRender3D and DrawSlices3D (see also Fig. 2.4). 

 

Figure 2.4: An example of CI3D on anisotropic fracture network. 

2.7.4 Example: Intersection Analysis and Fracture Clusters 

Conducting the intersection analysis and assessing fracture clusters are easy tasks 

by means of the provided functions in the AFNM as shown in the following full 

program code. 

% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Oct 2013 
 
clear all 
clc 
 
%% Fracture Network models 
fnm2 = GenFNM2D(150,0,0,0.01,0.7); 
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fnm3 = GenFNM3D(150,pi/3,pi/3,0,0.25); 
 
%% Intersection Analysis >> Clusters 
[xts2,ids2,La2] = LinesX2D(fnm2); 
[xts3,ids3,La3] = PolysX3D(fnm3); 
 
%% Visualisations 
clf 
subplot(121); 
ShowFNM(fnm2,La2);                   % a generic visualisation function which handles 
                                     %    automatically 2D and 3D fractures and  
subplot(122);                        %    and associated cluster data 
ShowFNM(fnm3,La3); 

The numeric results for the two-dimensional fracture network are as follows. 

| xts1 =              | ids1 =         | La1 =    |     
|   0.4720    0.7168  |     2      18  |      -1  | 
|   0.2915    0.5062  |     2      61  |       1  | 
|   0.4091    0.6434  |     2      73  |       1  | 
|      :         :    |     :       :  |       :  | 

For the three-dimensional fracture network the results are as follows. 

| xts2 =              | ids2 =         | La2 =    |     
|    [1x3 double]     |    [1x2 int32] |      -1  | 
|    [1x3 double]     |    [1x2 int32] |       1  | 
|    [2x3 double]     |    [1x2 int32] |       2  |        %two intersection points 
|          :          |         :      |       :  | 

Fracture clusters are visualised by the help of clusters labels (  ) passed to 

function ShowFNM (Fig. 2.5). 
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Figure 2.5: Fracture clustering is conducted on two- and three-dimensional fracture 

networks. 

2.7.5 Example: Density Analysis 

The density of fracture network can be found via different methods including 

density of fracture centroids (DFC, FCD). Here however the following program code 

demonstrates better solution which is based on cell sampling, i.e., fracture density 

(Fn). The function Density2D conducts the evaluation and results in density matrix 

which can be visualised as block or contour maps. 

% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Oct 2013 
 
clear all 
clc 
 
%% 
n = 200; 
gn = 20; 
sf = gn; 
lines = GenFNM2D(n,0,0,0.05,0.5); 
[dn,x,y] = Density2D(lines,gn,gn); 
 
sdn = Smooth(dn,1); 
[X,Y] = LinesToXYnan2D(lines); 
 
clf 
subplot(121); 
imagesc(x,y,dn); 
set(gca,'YDir','normal'); 
hold on 
plot(X,Y,'k-','LineWidth',0.7) 
Titles2D('-=[') 
 
subplot(122); 
contourf(0:1/(sf-1):1,linspace(0,1,sf),sdn,30); 
shading flat 
hold on 
plot(X,Y,'k-','LineWidth',0.7) 
Titles2D('-=[') 

The output of the above program code is shown in Fig. 2.6. The same concept can 

be used for three-dimensional fracture networks. 
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Figure 2.6: An example of density of fracture network; block and contour maps. 

2.7.6 Example: Backbone Extraction 

Backbone of two-dimensional fracture networks can be efficiently extracted by 

means of the function Backbone2D. 

% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Oct 2013 
 
clear all 
clc 
 
fnm2 = GenFNM2D(150);                           %fracture network 
 
clf 
subplot(121); 
DrawLines2D(fnm2,0,0,'-=[');                    %visualisation of fnm 
 
bbn = Backbone2D(fnm2,true);                    %backbone extraction 
 
if ~isempty(bbn) 
    subplot(122); 
    DrawLines2D(bbn,0,0,'-=[');                 %visualisation of the backbone 
end 

The resulting backbone from the above code is shown in Fig. 2.7. 
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Figure 2.7: An example of backbone of fracture network. 

The BackboneToNodesEdges2D function was used in the following program code 

to determine the popularity (centrality) of each node in the graph network. 

% Part of package: Alghalandis Fracture Network Modelling (AFNM) 
% Author: Younes Fadakar Alghalandis 
% email: younes.fadakar@yahoo.com 
% Copyright (c) 2011-2012-2013-2014 Younes Fadakar Alghalandis 
% All rights reserved. 
% Updated: Oct 2013 
 
clear all 
clc 
 
lines = GenFNM2D(300);                            %2D fracture network 
bbn = Backbone2D(lines,true,[],0);                %backbone 
[nodes,edges] = BackboneToNodesEdges2D(bbn);      %nodes and edges: graph structure 
nn = cellfun(@numel,nodes.values);                %popularity of nodes 
pts = Stack(nodes.keys);                          %node locations 
 
clf 
subplot(121); 
DrawLines2D(lines,0,[0,0,0],'-=['); 
 
subplot(122); 
DrawLines2D(bbn,0,[0,0,0],'-=['); 
hold on 
scatter(pts(:,1),pts(:,2),10,nn,'filled');        %colourised by popularity 

In Fig. 2.8(right) blue, green and red dots correspond to 2, 3 and 4 connected 

edges respectively. 



APPENDIX 2: AFNM 327 

 

Figure 2.8: An example of backbone of fracture network, node centrality evaluation. 
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