

Crash avoidance by Electronic Stability Control on Australian high speed rural roads: an analysis of braking interventions

James Richard Ryder Mackenzie

University of Adelaide Centre for Automotive Safety Research

February 2015

CONTENTS

Cc	ontent	S	i
Lis	st of l	Figures	
Lis	st of '	Tables	
Ał	ostrac	t	
Sta	$atem \epsilon$	ent of o	riginalityxxix
1.	Intro	oduction	$n \ldots 1$
2.	Back	ground	1
	2.1	Vehicle	e dynamics
		2.1.1	Longitudinal wheel forces
		2.1.2	Lateral wheel forces
		2.1.3	Traction circle
		2.1.4	Vehicle body kinematics
	2.2	Origin	of ESC
	2.3	ESC o	peration $\ldots \ldots 24$
		2.3.1	Interventions
		2.3.2	Understeer

ii	Contents

		2.3.3	Oversteer	32
		2.3.4	Split Mu	34
3.	Lite	rature 1	review	39
	3.1	Indivi	dual evaluations and estimates of ESC effectiveness	39
	3.2	Statist	tical evaluations of ESC effectiveness	41
		3.2.1	Methods of evaluation and confounding factors	42
		3.2.2	Effect on all crash types	49
		3.2.3	Effect on single vehicle crashes	51
		324	Effect on rollover crashes	52
		325	Effect on loss of control crashes	54
		326	Effect on multiple vehicle crashes	55
		3.2.0	Effect in Australia	56
		2.2.1	Derieur of effective est	50
		3.2.8		50
		3.2.9	Effect in combination with other technologies	57
	3.3	Assess	ment of ESC performance	71
	3.4	Discus	ssion of literature	75
4.	Higl	ı speed	rural road crashes	81
	4.1	Metho	od	81
		4.1.1	TARS database	82
	4.2	Result	s: Categorical variables	84
		4.2.1	Overview	84
		4.2.2	Crash characteristics	85
		4.2.3	Road characteristics	88
		4.2.4	Vehicle characteristics	91

			Contents	iii
		4.2.5	Driver characteristics	92
	4.3	Result	ts: Logistic regression	94
	4.4	Discus	ssion	98
		4.4.1	Univariate categorical variable analysis	98
		4.4.2	Multi-variate logistic regression analysis	103
5.	Loss	s of con	trol crashes on Australian rural roads	107
	5.1	Metho	od	107
		5.1.1	In-depth database	109
	5.2	Mode	l development	111
	5.3	Result	ts: Loss of control crash characteristics	115
		5.3.1	Crash characteristics	116
		5.3.2	Road characteristics	119
	5.4	Discus	ssion	121
6.	Sim	ulating	loss of control scenarios	123
	6.1	Simul	ation software	125
	6.2	Valida	ation of vehicle and ESC models	127
		6.2.1	Sine with dwell test and minimum ESC effectiveness	
			criteria	129
		6.2.2	Validating the Bosch vehicle models without ESC $$. $$.	131
		6.2.3	Validating the Bosch vehicle models with ESC	141
	6.3	Devel	opment of loss of control scenarios	144
		6.3.1	Scenario 1	146
		6.3.2	Scenario 2	149
		6.3.3	Scenario 3	152

		6.3.4	Scenario 4
		6.3.5	Scenario 5
		6.3.6	Scenario 6
		6.3.7	Scenario 7
		6.3.8	Scenario 8
		6.3.9	Scenario 9
		6.3.10	Scenario 10
	6.4	Simula	tion of the environment $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 176$
		6.4.1	Roadway model
		6.4.2	Coefficient of friction
	6.5	Simula	tion of the loss of control trajectory
		6.5.1	Braking
		6.5.2	Steering
		6.5.3	Aquaplaning
	6.6	Optim	isation of simulation parameters
		6.6.1	Selecting an optimisation technique
		6.6.2	Quantifying an error term for optimisation $\ldots \ldots \ldots 199$
		6.6.3	Selecting an optimisation termination criteria $\ . \ . \ . \ . \ 201$
		6.6.4	Selecting which parameters to optimise
		6.6.5	Selecting the best set of optimised parameter values 205
	6.7	Summa	ary
7.	Inves	stigatin	g the effects of ESC braking interventions $\ldots \ldots \ldots 211$
	7.1	Identif	ying representative value sets
	7.2	Compa	aring loss of control scenarios with and without ESC $$ 229

			Contents	V
		7.2.1	Scenario 1	31
		7.2.2	Scenario 2	37
		7.2.3	Scenario 3	39
		7.2.4	Scenario 4	41
		7.2.5	Scenario 5	14
		7.2.6	Scenario 6	18
		7.2.7	Scenario 7	50
		7.2.8	Scenario 8	52
		7.2.9	Scenario 9	55
		7.2.10	Scenario 10	57
		7.2.11	Summary of effects of ESC	59
	7.3	Intera	ction between ESC and other rural road safety measures 26	38
8.	Inve	stigatin	g the interventions made by ESC during loss of control	- 1
	scen	arios .		[]
	8.1	Summ	ary of major ESC interventions	71
	8.2	Analys	sis of major interventions $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 2'$	76
		8.2.1	Major interventions during loss of control scenario sim-	
			ulations	76
		8.2.2	Major interventions during the sine with dwell test ma-	
			noeuvre	77
		8.2.3	Characteristics of initial major interventions	78
		8.2.4	Effect of speed on initial major interventions 28	31
		8.2.5	Summary	34

9.	Disc	ussion		287
	9.1	Summ	ary	287
	9.2	Findin	m ngs	293
		9.2.1	Identifying ESC interventions during loss of control	
			scenarios	293
		9.2.2	Effect of rural road safety measures on braking inter-	
			ventions	297
		9.2.3	Suitability of ESC effectiveness criteria	299
	9.3	Future	e work	302
Ap	pend	lix	:	305
A.	Late	eral stal	bility equations	307
	A.1	Nomin	nal yaw	307
	A.2	Side sl	lip angle rate of change	310
В.	Iden	tifying	representative value sets	313
С.	Effee	cts of E	SC in combination with other rural road safety measures	333
	C_{1}	Como	via 1	າງະ

C.1	Scenario 1	•	•	•	•		•	•	•							•	•		•	335
C.2	Scenario 2	•	•	•	•		•	•	•							•	•		•	344
С.3	Scenario 3	•	•	•	•		•	•	•	•	•				•	•	•	•	•	347
C.4	Scenario 4		•	•	•		•		•								•		•	350
C.5	Scenario 5		•	•	•		•		•								•		•	355
C.6	Scenario 6		•	•	•		•	•	•							•	•		•	360
C.7	Scenario 7																			363

vii	Contents
366	ario 8
371	ario 9
374	ario 10

LIST OF FIGURES

2.1	Difference between wheel and vehicle forward velocity	11
2.2	Brake force vs wheel slip [adapted from Gillespie (1992)] \ldots	11
2.3	Wheel slip angle	13
2.4	Traction circle	14
2.5	Example of a set of traction circles	16
2.6	Vehicle body kinematics	19
2.7	Bicycle model	20
2.8	Dynamic lateral response [adapted from van Zanten et al. (1999)]	26
2.9	Wheel force manipulation through braking intervention \ldots	29
2.10	Understeer example	31
2.11	Example of understeer and ESC response	32
2.12	Oversteer example	33
2.13	Example of oversteer and ESC response	34
2.14	Split mu example	35
2.15	Example of split mu and ESC response	37
5.1	Proportion of high speed, rural road injury crashes that were	
	due to a loss of control by hour of day, 1998 - 2007 $\ldots \ldots 1$	18
6.1	Illustration of data flow during simulation	27

6.2	Shape of the sine with dwell steering input
6.3	Steering response for all vehicle models
6.4	Yaw rate during sine with dwell test for CarSim A-Class Hatch
	model
6.5	Yaw rate during sine with dwell test for CarSim B-Class Hatch
	model
6.6	Yaw rate during sine with dwell test for CarSim C-Class Hatch
	model
6.7	Yaw rate during sine with dwell test for CarSim D-Class Sedan
	model
6.8	Yaw rate during sine with dwell test for CarSim D-Class SUV
	model
6.9	Yaw rate during sine with dwell test for CarSim D-Class Mini-
	van model
6.10	Yaw rate during sine with dwell test for CarSim E-Class Sedan
	model
6.11	Yaw rate during sine with dwell test for CarSim E-Class SUV
	model
6.12	Yaw rate during sine with dwell test for CarSim F-Class Sedan
	model
6.13	Yaw rate during sine with dwell test for Bosch rear wheel drive
	model (without ESC) $\ldots \ldots 139$
6.14	Yaw rate during sine with dwell test for Bosch front wheel
	drive model (without ESC)

6.15	Yaw rate during sine with dwell test for Bosch rear wheel drive
	model (with ESC) $\ldots \ldots 142$
6.16	Yaw rate during sine with dwell test for Bosch front wheel
	drive model (with ESC)
6.17	Sine with dwell test for the 2013 Hyundai Genesis [reproduced
	from Lenkeit & Kebschull (2013)] $\ldots \ldots \ldots \ldots \ldots \ldots \ldots 143$
6.18	The roadway, roadside shoulder, and Stobie pole (far right)
	involved in scenario 1
6.19	The damaged to the utility involved in scenario 1
6.20	Site diagram for scenario 1
6.21	The unsealed roadway involved in scenario 2 (note the crest
	in the road) $\ldots \ldots 150$
6.22	The damage to the car involved in scenario 2
6.23	Site diagram for scenario 2
6.24	The roadway involved in scenario 3
6.25	The damage to the vehicle involved in scenario 3
6.26	Site diagram for scenario 3
6.27	The roadway and roadside shoulder involved in scenario 4 156
6.28	The damage to the van involved in scenario 4 $\ldots \ldots \ldots \ldots 156$
6.29	Site diagram for scenario 4
6.30	The impacted tree and site of the final position for the 4WD
	involved in scenario 5
6.31	The damage to the 4WD involved in scenario 5
6.32	Site diagram for scenario 5
6.33	The roadway involved in scenario 6

6.34	The impacted tree and the damage to the car involved in sce-
	nario 6
6.35	Site diagram for scenario 6
6.36	The roadway and roadside shoulder involved in scenario $7 \ . \ . \ 165$
6.37	The damage to the car involved in scenario 7
6.38	Site diagram for scenario 7
6.39	The roadway and roads ide shoulder involved in scenario 8 168
6.40	The damage to the car involved in scenario 8
6.41	Site diagram for scenario 8
6.42	The roadway and roadside shoulder involved in scenario $9\ .\ .\ .\ 171$
6.43	The damage to the car involved in scenario 9
6.44	Site diagram for scenario 9
6.45	The roadway and roadside shoulder involved in scenario 10 174
6.46	The impacted tree involved in scenario $10 \dots \dots \dots 174$
6.47	Site diagram for scenario 10
6.48	Example of using a dimensionally accurate vehicle template
	overlay to determine the scenario trajectory (a) and the re-
	sulting lateral displacement and yaw vs longitudinal distance
	data (b)
6.49	UMTRI driver model flow [adapted from MacAdam (2003)] 185
6.50	Driver model parameter regions during critical driving [adapted
	from MacAdam (2003)]
6.51	Standard driver model path

6.52	Example	e of trajectory error calculation with the scenario tra-	
	jectory s	shown in black and the simulated trajectory shown in	
	red		200
6.53	Average	e error by number of optimisation iterations $\ldots \ldots$	203
6.54	Compar	ison of two optimised trajectories that have a similar	
	error va	lue	206
7.1	Roadwa	y layout, coefficient of friction values, and initial driver	
	paths	$(Scenario 1) \dots $	215
7.2	Roadwa	y layout, coefficient of friction values, and initial driver	
	path	(Scenario 2)	216
7.3	Roadwa	y layout, coefficient of friction values, and initial driver	
	path	(Scenario 3)	217
7.4	Roadwa	y layout, coefficient of friction values, initial position	
	of low fi	riction patch, and initial driver path (Scenario 4) \ldots	218
7.5	Roadwa	y layout, coefficient of friction values, and initial driver	
	path	(Scenario 5)	219
7.6	Roadwa	y layout, coefficient of friction values, and initial driver	
	path	(Scenario 6)	220
7.7	Roadwa	y layout, coefficient of friction values, and initial driver	
	path	(Scenario 7)	221
7.8	Roadwa	y layout, coefficient of friction values, and initial driver	
	path	(Scenario 8)	222
7.9	Roadwa	y layout, coefficient of friction values, and initial driver	
	path	(Scenario 9)	223

7.10	Roadway layout, coefficient of friction values, and initial driver
	path (Scenario 10) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 224$
7.11	Effect of ESC (representative value set 1, scenario 1) $\ldots 233$
7.12	Effect of ESC (representative value set 2, scenario 1) 234
7.13	Effect of ESC (representative value set 3, scenario 1) $\ldots 235$
7.14	Effect of ESC (representative value set 4, scenario 1) $\ldots 236$
7.15	Effect of ESC (scenario 2)
7.16	Effect of ESC (scenario 3)
7.17	Effect of ESC (representative value set 1, scenario 4) $\ldots 242$
7.18	Effect of ESC (representative value set 2, scenario 4) $\ldots 243$
7.19	Effect of ESC (representative value set 1, scenario 5) $\ldots 246$
7.20	Effect of ESC (representative value set 2, scenario 5) $\dots 247$
7.21	Effect of ESC (scenario 6)
7.22	Effect of ESC (scenario 7) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 251$
7.23	Effect of ESC (representative value set 1, scenario 8) $\ldots 253$
7.24	Effect of ESC (representative value set 2, scenario 8) $\ldots 254$
7.25	Effect of ESC (scenario 9) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 256$
7.26	Effect of ESC (scenario 10)
7.27	Relationship between maximum sideslip for simulations with
	and without ESC
7.28	Relationship between maximum lateral offset for simulations
	with and without ESC
7.29	Relationship between maximum yaw for simulations with and
	without ESC

7.30	Maximum sideslip at various initial speeds both without and
	with ESC
7.31	Maximum lateral offset at various initial speeds both without
	and with ESC
7.32	Maximum yaw at various initial speeds both without and with
	ESC
8.1	Characteristics of initial major braking interventions 279
8.2	Characteristics of initial major braking interventions for sim-
	ulations that showed obvious signs of understeer
8.3	Major braking intervention peak slip relative to initial speed
	for simulations that showed obvious signs of understeer $\ . \ . \ . \ 283$
8.4	Major braking intervention duration relative to initial speed
	for simulations that showed obvious signs of understeer $\ . \ . \ . \ 283$
A.1	Bicycle model
B.1	Example of the output generated from the optimisation of a
	group of initial value sets
B.2	Optimised trajectories for set 1 (scenario 1)
B.3	Optimised trajectories for set 2 (scenario 1)
B.4	Optimised trajectories for set 3 (scenario 1)
B.5	Optimised trajectories for set 4 (scenario 1)
B.6	Optimised trajectories (scenario 2)
B.7	Optimised trajectories for scenario 3
B.8	Optimised trajectories for set 1 (scenario 4)

B.9	Optimised trajectories for set 2 (scenario 4) $\dots \dots \dots$
B.10	Optimised trajectories for set 1 (scenario 5) $\dots \dots \dots \dots \dots \dots \dots 324$
B.11	Optimised trajectories for set 2 (scenario 5) $\dots \dots \dots \dots \dots \dots 325$
B.12	Optimised trajectories for scenario 6
B.13	Optimised trajectories for scenario 7
B.14	Optimised trajectories for set 1 (scenario 8) $\dots \dots \dots$
B.15	Optimised trajectories for set 2 (scenario 8) $\dots \dots \dots \dots \dots \dots 329$
B.16	Optimised trajectories for scenario 9
B.17	Optimised trajectories for scenario 10
C.1	Effect of ESC with an initial speed 5 km/h lower (representa-
	tive value set 1, scenario 1) $\dots \dots \dots$
C.2	Effect of ESC with a sealed shoulder (representative value set
	1, scenario 1)
C.3	Effect of ESC with an initial speed 5 km/h lower (representa-
	tive value set 2, scenario 1)
C.4	Effect of ESC with a sealed shoulder (representative value set
	2, scenario 1)
C.5	Effect of ESC with an initial speed 5 km/h lower (representa-
	tive value set 3, scenario 1)
C.6	Effect of ESC with a sealed shoulder (representative value set
	3, scenario 1)
C.7	Effect of ESC with an initial speed 5 km/h lower (representa-
	tive value set 4, scenario 1) $\ldots \ldots \ldots \ldots \ldots \ldots 342$

C.8 Effect of ESC with a sealed shoulder (representative value set
4, scenario 1) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 343$
C.9 Effect of ESC with an initial speed 5 km/h lower (scenario 2) . 345
C.10 Effect of ESC with a sealed road (scenario 2)
C.11 Effect of ESC with an initial speed 5 km/h lower (scenario 3) . 348
C.12 Effect of ESC with a sealed shoulder (scenario 3)
C.13 Effect of ESC with an initial speed 5 km/h lower (representa-
tive value set 1, scenario 4)
C.14 Effect of ESC with a sealed shoulder (representative value set
1, scenario 4) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 352$
C.15 Effect of ESC with an initial speed 5 km/h lower (representa-
tive value set 2, scenario 4)
C.16 Effect of ESC with a sealed shoulder (representative value set
2, scenario 4) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 354$
C.17 Effect of ESC with an initial speed 5 km/h lower (representa-
tive value set 1, scenario 5)
C.18 Effect of ESC with a sealed shoulder (representative value set
1, scenario 5)
C.19 Effect of ESC with an initial speed 5 km/h lower (representa-
tive value set 2, scenario 5) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots 358$
C.20 Effect of ESC with a sealed shoulder (representative value set
2, scenario 5)
C.21 Effect of ESC with an initial speed 5 km/h lower (scenario 6) . 361
C.22 Effect of ESC with a sealed shoulder (scenario 6) $\dots \dots \dots 362$
C.23 Effect of ESC with an initial speed 5 km/h lower (scenario 7) . 364

C.24 Effect of ESC with a sealed shoulder (scenario 7) $\ldots \ldots 365$
C.25 Effect of ESC with an initial speed 5 km/h lower (representa-
tive value set 1, scenario 8)
C.26 Effect of ESC with a sealed shoulder (representative value set
1, scenario 8)
C.27 Effect of ESC with an initial speed 5 km/h lower (representa-
tive value set 2, scenario 8)
C.28 Effect of ESC with a sealed shoulder (representative value set
2, scenario 8)
C.29 Effect of ESC with an initial speed 5 km/h lower (scenario 9) . 372
C.30 Effect of ESC with a sealed shoulder (scenario 9) $\dots \dots 373$
C.31 Effect of ESC with an initial speed 5 km/h lower (scenario 10) 375
C.32 Effect of ESC with a sealed shoulder (scenario 10)

LIST OF TABLES

2.1	Major components of the ESC system	25
3.1	Summary of ESC effectiveness studies	59
4.1	Categories of Injury Severity	82
4.2	Number of 'rural road' crashes per year by severity category,	
	2008 - 2012	84
4.3	Proportion of casualty crashes that were high injury severity	
	by type of crash, 2008 - 2012	86
4.4	Proportion of casualty crashes involving a collision with an	
	object that were high injury severity by type of object hit,	
	2008 - 2012	87
4.5	Proportion of casualty crashes that were high injury severity	
	by day of week during daylight, 2008 - 2012	88
4.6	Proportion of casualty crashes that were high injury severity	
	by day of week during darkness or low light, 2008 - 2012 (pre	
	5 am crashes attributed to previous day) $\ldots \ldots \ldots \ldots$	88
4.7	Proportion of casualty crashes that were high injury severity	
	by speed zone, 2008 - 2012	89

4.8	Proportion of casualty crashes that were high injury severity	
	by road surface type, 2008 - 2012 $\ldots \ldots \ldots \ldots \ldots \ldots$	89
4.9	Proportion of casualty crashes that were high injury severity	
	by road wetness, 2008 - 2012	89
4.10	Proportion of casualty crashes that were high injury severity	
	by road alignment, 2008 - 2012	90
4.11	Proportion of casualty crashes that were high injury severity	
	by road feature, 2008 - 2012 \ldots	90
4.12	Proportion of involvement in high injury severity crashes by	
	type of vehicle involved, 2008 - 2012	91
4.13	Proportion of casualty crashes that were high injury severity	
	by age of vehicle (car and derivatives), 2008 - 2012 \ldots	92
4.14	Proportion of casualty crashes that were high injury severity	
	by licence type of driver, 2008 - 2012	93
4.15	Proportion of casualty crashes that were high injury severity	
	by age of driver involved, 2008 - 2012	93
4.16	Proportion of casualty crashes that were high injury severity	
	by sex of driver involved, 2008 - 2012	94
4.17	Logistic regression analysis of single vehicle crashes involving	
	cars and car derivatives predicting probability of high injury	
	severity crash (N = 2,348), 2008 - 2012	97
4.18	Change in mean speed and percentage of vehicles exceeding	
	the speed limit for 100 km/h and 110 km/h rural roads, 2008 $$	
	- 2012 [Kloeden & Woolley (2014)] $\ldots \ldots \ldots \ldots \ldots$	105

5.1	Crash type for high speed rural road crashes \hdots
5.2	Appearance of unique word in crash description by loss of
	control classification
5.3	Unique words in the crash description associated with the ten
	highest Chi squared values
5.4	Loss of control prediction model
5.5	Proportion of high speed, rural road injury crashes that were
	due to a loss of control by year, 1998 - 2007 \ldots
5.6	Proportion of high speed, rural road injury crashes that were
	due to a loss of control by injury severity, 1998 - 2007 117
5.7	Proportion of high speed, rural road injury crashes that were
	due to a loss of control by day of week, 1998 - 2007 \ldots 118
5.8	Proportion of high speed, rural road injury crashes that were
	due to a loss of control by speed zone, 1998 - 2007 119
5.9	Proportion of high speed, rural road injury crashes that were
	due to a loss of control by surface type, 1998 - 2007 $\ .$ 119
5.10	Proportion of high speed, rural road injury crashes that were
	due to a loss of control by surface we tness, 1998 - 2007 $\ .$ 120
5.11	Proportion of high speed, rural road injury crashes that were
	due to a loss of control by road alignment, 1998 - 2007 \ldots . 120
5.12	Proportion of high speed, rural road injury crashes that were
	due to a loss of control by road feature, 1998 - 2007 \ldots 120
6.1	Description of the generic vehicle models pre-defined in CarSim131

Steering wheel angle required by each vehicle model to achieve
a lateral acceleration of 0.3 g
Environmental conditions prevalent in scenario 1
Environmental conditions prevalent in scenario 2
Environmental conditions prevalent in scenario 3
Environmental conditions prevalent in scenario 4
Environmental conditions prevalent in scenario 5
Environmental conditions prevalent in scenario 6
Environmental conditions prevalent in scenario 7
Environmental conditions prevalent in scenario 8
Environmental conditions prevalent in scenario 9
Environmental conditions prevalent in scenario 10 $\ldots \ldots \ldots 173$
Nominal values for the coefficient of friction on various surface
types (Rivers, 1981)
Coefficients of friction for various surface types used for simu-
lations in this investigation
The 36 driver preview time and lag time value pairs that span
the likely solution space (P, l) \ldots
Initial value sets (part 1)
Initial value sets (part 2)
Representative value sets (part 1)
Representative value sets (part 2)

7.5	Summary of the effects of ESC during the simulation of the
	representative value sets associated with each loss of control
	scenario
7.6	Variables altered for emulation of various road safety features 268
8.1	Major ESC interventions for RWD vehicle model during loss
	of control scenario simulations (part 1)
8.2	Major ESC interventions for RWD vehicle model during loss
	of control scenario simulations (part 2)
8.3	Major ESC interventions for RWD vehicle model during sine
	with dwell test at various maximum steering wheel amplitudes 275

ABSTRACT

International and Australian research has found that there are significant benefits to road safety associated with the addition of Electronic Stability Control (ESC) to passenger vehicles. The greatest benefit to Australia is for crashes on high speed rural roads that occur due to a loss of control.

An investigation of what variables in the South Australian statewide crash database are associated with high injury severity for vehicle occupants during crashes on high speed rural roads was conducted. For specifically single vehicle crashes on high speed rural roads, a higher speed limit, the hours of darkness, and an earlier crash year were found to be the major indicators of a high injury severity outcome.

A complementary investigation of high speed rural road crashes that were a result of a loss of control was also conducted. This required the development of a method for identifying loss of control crashes using available variables from the South Australian statewide crash database. It was estimated that, per year in South Australia, 561 injury crashes on high speed rural roads are the result of a loss of control including 33 fatal crashes and 208 crashes resulting in injuries requiring hospital admission.

While literature from ESC manufacturers clearly explains the theory behind how ESC operates, no research has directly investigated what braking interventions are made by ESC during real world situations where a vehicle not equipped with ESC would have crashed. More specifically, no research has investigated how braking interventions affect vehicle trajectory and enable a collision to be avoided. Also of interest is how the effect of interventions are altered when combined with other rural road safety features such as lower travelling speeds, sealed roadside shoulders, and sealed roads.

Crash scenarios, developed based on high speed rural road crashes, were simulated using a vehicle model (with a corresponding ESC model) supplied by Bosch Australia. The simulation method included processes such as dynamic testing of the vehicle model, use of a driver model, and trajectory matching through optimisation. Each crash scenario was simulated using the vehicle model without ESC active and then again using the vehicle model with ESC active. The differences in vehicle trajectory and the braking interventions responsible for those differences were then analysed. The crash scenario simulations were also altered to represent the presence of specific rural road safety measures in order to investigate how ESC braking interventions were affected. However, this process was found to render the results unreliable and no analysis of how ESC was affected by the rural road safety measures was possible.

The results of simulating each crash scenario were presented in figures that show when braking interventions are made and how they affect vehicle trajectory. Vehicle trajectory was analysed by investigating how ESC affected vehicle sideslip, lateral offset, and yaw. The strength and duration of individual braking interventions were then analysed which included an investigation of how they were affected by travelling speed and how they compare to braking interventions elicited during ESC effectiveness tests.

STATEMENT OF ORIGINALITY

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to James Mackenzie and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed:

Date:

ACKNOWLEDGEMENTS

I would firstly like to thank my supervisors Robert Anderson and Paul Hutchinson for their assistance and encouragement throughout the journey that this thesis represents. Their ideas, feedback, and sustained enthusiasm were greatly appreciated and contributed considerably to my persistence to finish.

Special thanks are also owed to the following people for assistance with various parts of this thesis:

- Bosch Australia in particular Walter My, John Nicolopoulos, Ken Humphreys, Mark Jackman, and Chris Woods - for their provision of the driver and ESC models as well as their hospitality during a fortnight long visit where I was shown how to operate the models and able to experience the effectiveness of ESC firsthand on a test track.
- David Kuchenmeister from the South Australia Police Major Crash unit for providing a catalogue of results from friction tests performed around South Australia.
- Tony Porcaro from the South Australian Department of Planning, Transport and Infrastructure for providing data and assistanting with estimating a general friction coefficient for South Australian roads.

- Nigel Bean from the School of Mathematical Sciences at the University of Adelaide for providing advice on the selection of a suitable optimisation method and assistance with applying the method to my specific circumstances.
- Rick Morgan of the United States National Highway Transport Safety Administration for providing access to results of ESC minimum effectiveness tests.
- Jaime Royals from the Centre for Automotive Safety Research for assistance with identifying, and then tracking down, many pieces of (sometimes obscure) literature.

Finally I would like to thank all the staff and students at the Centre for Automotive Safety Research, my family, and my friends for all their encouragement (even the sarcastic bits) and patience through all the years I have been working on this thesis. I'm sure you'll all be as glad as me to hear that it is done!

LIST OF ABBREVIATIONS

- CASR Centre for Automotive Safety Research
- ESC Electronic Stability Control
- FWD Front wheel drive
- LOC Loss of control
- NHTSA National Highway Traffic Safety Authority
- RWD Rear wheel drive
- SAPOL South Australian Police
- TARS Traffic Accident Reporting System