Applications of Cone Beam Computed Tomography in Radiotherapy Treatment Planning

Kavitha Srinivasan

Thesis submitted for the degree of

Master of Philosophy (Science)

in the School of Chemistry and Physics University of Adelaide

Supervisors:

Dr. Judith Pollard Dr. Mohammad Mohammadi Dr. Justin Shepherd

July 2014

Table of Contents

List of Figures	6
List of Tables	9
List of Abbreviations	
I. Abstract	
II. Declaration	14
III. Acknowledgements	
IV. Publications	

Chapter 1	
Introduction	
1.1 Background	
1.2 Aims of the Current Thesis	
1.3 Thesis Overview	

Chapter 2	
Current Status of CBCT in Radiotherapy	
2.1 Cone beam Computed Tomography	
2.2 Linac-mounted CBCT Devices	
2.3 CBCT Components	
2.3.1 CBCT Hardware	
2.3.2 CBCT Software	
2.4 CBCT Applications in Radiotherapy	
2.4.1 CBCT for Image-guided Radiotherapy	
2.4.2 CBCT for Adaptive Radiotherapy	
2.5 Concerns in CBCT	
2.5.1 Artefacts: Causes and Solutions	
2.5.2 Image Quality	
2.5.3 Dose Accumulation	
2.6 Conclusions	

Chapter 3	
Comparison and Evaluation of PCT and CBCT Dose Distribution	
3.1 Introduction	
3.2 Materials	
3.2.1 Varian OBI	
3.2.2 Philips PCT	
3.2.3 Treatment Planning Systems	
3.2.4 Phantoms and Patients	
3.3 HU Calibration	
3.3.1 Method	
3.3.2 HU Calibration Results	
3.4 HU Profiles	
3.4.1 Method	
3.4.2 HU Profile Results	
3.5 Dose Calculations and Evaluations	
3.5.1 Method	
3.5.2 Dose Calculations Results	
3.6 Conclusions	
Chapter 4	
Investigation of Effect of Reconstruction Filters on Cone-Beam Co	omputed Tomography
Image Quality	
4.1 Introduction	
4.2 Catphan	
4.3 Method of Acquisition	
4.4 Procedure for Analysis	
4.4.1 Pixel Stability	
4.4.2 HU Uniformity	
4 4 3 Contrast-to-Noise Ratio	70

4.4.3 Contrast-to-Noise Ratio	
4.4.4 Spatial Resolution	71
4.5 Results	71
4.5.1 Pixel Stability	71
4.5.2 HU Uniformity	71

4.5.3 Contrast-to-Noise Ratio	77
4.5.4 Spatial Resolution	77
4.6 Discussion and conclusion	80

Chapter 5	84
Implementation of the CBCT Image Reconstruction Algorithm	84
5.1 Introduction	84
5.2 Cone-Beam Data Acquisition and Pre-processing	84
5.2.1 Projection Data Acquisition	84
5.2.2 Normalisation of Projections	85
5.2.3 Calculation of Weighting Factors	86
5.2.4 Wiener2 – Two-dimensional Adaptive Filter	88
5.3 Cone-beam Reconstruction Algorithm	89
5.3.1 Implementation of 3D Cone-beam Reconstruction – FDK Algorithm	89
5.3.2 Creation of C++ MEX files	90
5.3.3 Hounsfield Unit Calibration	91
5.3.4 Summary of 3D Image Reconstruction Procedure	93
5.4 Discussion of Image Reconstruction	94
5.5 Conclusion	96

Chapter 6	
Analysis of Cone-beam Rando Images Reconstructed using In-house Software	98
6.1 Introduction	
6.2 Image Reconstruction	
6.2.1 Rando Phantom	
6.2.2 Reconstructed Rando Images	
6.3 Radiotherapy Treatment Planning	100
6.3.1 Treatment Technique	100
6.3.2 Treatment Optimisation Parameters	102
6.3.3 Treatment Planning Parameters	102
6.3.4 Dose Calculation Algorithm	103
6.3.5 Treatment Plan Evaluation	106
6.4 Planning Results	107
6.5 Conclusion	112

Chapter 7	114
Iterative Reconstruction for Cone-beam	114
7.1 Iterative Reconstruction-Overview	114
7.2 Maximum-Likelihood Algorithm	115
7.3 Implementation of the OSEM Iterative Reconstruction Algorithm	117
7.4 Experimental Methods	118
7.4.1 Image Acquisition and Pre-processing	118
7.4.2 Distance Dependent Resolution (DDR) Corrections	119
7.4.3 Simple Transmission OSEM	121
7.4.4 Centre of Rotation (COR) Offset	122
7.5 Practical Applications of OSEM and Results	123
7.6 Discussion	127

Chapter 8	130
Conclusions	130
3.1 Summary and Conclusions	130
8.1.1 Current Status of Varian OBI-based Treatment Planning	130
8.1.2 Effect of Reconstruction Filters on CBCT Image Quality	131
8.1.3 CBCT Image Reconstruction Algorithm Development	131
8.1.4 Investigation of In-house Reconstructed Images for Treatment Planning	132
8.1.5 Iterative-based CBCT Reconstruction	132
3.2 Future Work	132

References		
Appendix A	Matlab Codes	
Appendix B	C++ Codes	
Published Pap	ers	

List of Figures

Figure 2.1 Schematic view of CBCT geometry
Figure 2.2 Cone-beam systems mounted on medical linacs: (a) Varian OBI Imaging system
(b) Elekta XVI system (c) Siemens MVision and (d) Mitsubishi VERO system24
Figure 2.3 Bow-Tie filters used in (a) Varian OBI (Ding et al. 2007) (b) Elekta XVI25
Figure 2.4 Flat-panel detector construction using a-silicon TFTs array
Figure 2.5 Geometric coordinates of CBCT scan with flat-panel detector
Figure 2.6 Procedures in a CBCT system
Figure 2.7 (a) Concentric rings (arrows) around the axis of rotation in the CBCT image, (b)
fan-beam CT image without ring artefact
Figure 2.8 (a) a dark smudge (arrows) at the centre of the homogeneous phantom due to
cupping artefact, (b) CBCT image of density phantom showing dark streaks (see
arrows) around high density inserts and (c) fan-beam CT image of density phantom
without streaks
Figure 2.9 (a) Blurring induced by breathing motion, (b) streaks induced from the
movement of bowel gas and (c) double contours induced by patient movement during
cone-beam acquisition process
Figure 2.10 (a) Typical aliasing patterns (arrows) in CBCT datasets; (b) without aliasing in
fan-beam CT image
Figure 2.11 (a) Opposing dark and bright crescents seen on CBCT datasets of Catphan and
(b) fan-beam image of Catphan without crescent artefacts
Figure 3.1 Varian Clinac iX unit with OBI, Varian Medical system
Figure 3.2 Philips CT scanner, Philips Medical system
Figure 3.3 Calibration curves for PCT and CBCT
Figure 3.4 CBCT scanning of phantom along Z-axis
Figure 3.5 Cone-beam HU profiles of (a) Water phantom, (b) Norm head phantom and (c)
Norm body phantom along Z-axis
Figure 3.6 Cone-beam HU dependence on phantom dimensions along thickness (L) and
diameter (D) of phantom

Figure 3.7 Dose distributions on an axial slice of Catphan acquired using PCT (a1) and
CBCT using curve2 (a2); on an axial slice of Norm body phantom acquired using PCT
(b1) and CBCT using curve2 (b2)
Figure 3.8 DVHs comparison of the PTV for (a) Density phantom, (b) Water phantom, (c)
Catphan and (d) Norm body phantom obtained with PCT, CBCT using density
calibration curve (curve 1) and by using Catphan calibration curve (curve 2)61
Figure 3.9 Comparison of PCT and CBCT dose distributions and dose profiles using
gamma map for (a) Catphan and (b) Norm body phantom using Catphan calibration
curve 2
Figure 3.10 Dose distributions on an axial slice of patient A (a1 and a2) and patient B (b1
and b2) prostate cases using PCT and CBCT respectively
Figure 3.11 DVHs comparison of the PTV and Femoral head for two prostate patients (a)
Patient A and (b) Patient B, obtained with PCT, CBCT using density calibration curve
(curve 1) and using Catphan calibration curve (curve 2)
Figure 3.12a Dose distribution, gamma map and dose profile comparisons for patient A
using MapCHECK
Figure 3.12b Dose distribution, gamma map and dose profile comparisons for patient B
using MapCHECK
Figure 4.1 Illustration of Catphan® 504 phantom
Figure 4.2 Frequency response curves for various reconstruction filters
Figure 4.3 Image of CTP 486 module of Catphan with ROIs drawn
Figure 4.4 Central profiles of reconstructed axial slices for full- and half-fan mode using
Figure 4.4 Central profiles of reconstructed axial slices for full- and half-fan mode using Ram-Lak filter
Figure 4.4 Central profiles of reconstructed axial slices for full- and half-fan mode using Ram-Lak filter
 Figure 4.4 Central profiles of reconstructed axial slices for full- and half-fan mode using Ram-Lak filter
 Figure 4.4 Central profiles of reconstructed axial slices for full- and half-fan mode using Ram-Lak filter
 Figure 4.4 Central profiles of reconstructed axial slices for full- and half-fan mode using Ram-Lak filter
 Figure 4.4 Central profiles of reconstructed axial slices for full- and half-fan mode using Ram-Lak filter
 Figure 4.4 Central profiles of reconstructed axial slices for full- and half-fan mode using Ram-Lak filter
 Figure 4.4 Central profiles of reconstructed axial slices for full- and half-fan mode using Ram-Lak filter
 Figure 4.4 Central profiles of reconstructed axial slices for full- and half-fan mode using Ram-Lak filter
 Figure 4.4 Central profiles of reconstructed axial slices for full- and half-fan mode using Ram-Lak filter
 Figure 4.4 Central profiles of reconstructed axial slices for full- and half-fan mode using Ram-Lak filter

Figure 5.4 HU calibration curve for CBCT of Catphan in full-fan mode
Figure 5.5 Reconstructed axial slices of Catphan in insert and line pair modules (top) and
the same slices reconstructed by Varian software (bottom)
Figure 5.6 MTF calculated using Droege's method for Varian and in-house reconstructed
images
Figure 6.1 (a) Rando male phantom and (b) its sections
Figure 6.2 Reconstructed axial slices from head and neck regions of Rando using Varian
software (top) and in-house (bottom)
Figure 6.3 Schematic diagram of IMRT treatment planning process
Figure 6.4 IMRT parameters window from Pinnacle TPS
Figure 6.5 IMRT dose distributions computed on planning CT images in axial, sagittal and
coronal slices
Figure 6.6 IMRT dose distributions computed on Varian CBCT images in axial, sagittal
and coronal slices
Figure 6.7 IMRT dose distributions computed on in-house reconstructed CBCT images in
axial, sagittal and coronal slices
Figure 6.8 The planar dose maps from (a) PCT, (b) in-house reconstructed CBCT are
compared to produce (c) Gamma dose map showing failed points in blue colour and
(d) profiles generated across x-axis of the planar dose maps (black line- PCT; yellow
circles- CBCT)
Figure 7.1 Catphan®504 phantom used for CBCT scans
Figure 7.2 Cone-beam projection of a thin wire seen on IDL program
Figure 7.3 FWHM for the flat-panel detector as a function of distance between source and
detector
Figure 7.4 Transmission- and emission-based geometries
Figure 7.5 (a) Blade calibration plate and (b) setup
Figure 7.6 Catphan projection displayed using IDL program
Figure 7.7 Reconstructed axial slices of high contrast section of Catphan (containing line
pairs) with DDR and COR corrections
Figure 7.8 Reconstructed axial slice of high contrast section of Catphan (containing line
pairs) with scatter correction
Figure 7.9 FDK-based reconstruction of high contrast section of Catphan (containing line
pairs)

List of Tables

Table 2.1 Source specifications of gantry-mounted CBCT devices
Table 2.2 List of studies on dosimetric investigation of CBCT 36
Table 2.3 CBCT dose studies based on Varian OBI and Elekta XVI
Table 3.1 Image acquisition parameters for CBCT and PCT for head and body scans
Table 3.2 Dimensions of phantoms used for this study
Table 4.1 Insert materials present in Catphan CTP 404 modules and their expected and
measured HU values
Table 4.2 Uniformity Index measurements on a reconstructed slice of Catphan using five
different filters in full- and half-fan modes76
Table 4.3 Summary of contrast-to-noise (CNR) measurements for (a) half-fan and (b) full-
fan acquisition mode of CBCT using five different filters
Table 4.4 Summary of the MTF measurement for (a) half-fan and (b) full-fan CBCT
imaging protocol using five different reconstruction filters. The frequencies
corresponding to MTF values of 0.5 and 0.1 are shown
Table 5.1 Default calibrated Varian CBCT full-fan mode summarising the scan and
reconstruction parameters
Table 5.2 Nominal and measured HU values for sensitometry inserts in the CTP404
module of the Catphan 504 phantom and their relative density91
Table 6.1 CBCT scan and reconstruction parameters 100
Table 6.2 IMRT plan summary for Rando PCT and CBCT scans 104
Table 7.1 FWHM measurements of a thin wire at various distances from the detector 121
Table 7.2 Interfile header created to feed into OSEM algorithm 125

List of Abbreviations

ACA: Adaptive Convolution Algorithm
ART: Adaptive Radiotherapy
CBCT: Cone Beam Computed Tomography
CNR: Contrast-to-Noise Ratio
COR: Centre of Rotation
CPU: Central Processing Unit
3D-CRT: Three- dimensional Conformal Radiotherapy
CT: Computed Tomography
CTV: Clinical Target Volume
DDR: Distance Dependent Resolution
DICOM: Digital Imaging and Communications in Medicine
DMPO: Direct Machine Parameter Optimisation
DVH: Dose Volume Histogram
DQE: Detective Quantum Efficiency
2D: Two-dimensional
3D: Three-dimensional
FBP: Filtered Back Projection
FDK: Feldkamp Davis Kress
FOV: Field of View
FPI: Flat-Panel Imager
fps: frames per second
FWHM: Full-Width at Half Maximum
GPU: Graphical Processing Unit
H&N: Head and Neck
HU: Hounsfield Unit
IGRT: Image-Guided Radiotherapy
IMRT: Intensity Modulated Radiotherapy
IQ: Image Quality
kVp: Peak kilovoltage
lp/cm: line pair /centimetre

mAs: milli-ampere second

- MEX: Matlab Executable
- MLC: Multi leaf Collimator
- MLEM: Maximum-Likelihood Expectation-Maximisation
- MRI: Magnetic Resonance Imaging
- MTF: Modulation Transfer Function
- MU: Monitor Unit
- OAR: Organs at Risk
- **OBI: On-Board Imager**
- OSEM: Ordered Subset Expectation Maximisation
- PCT: Planning Computed Tomography
- PET: Positron Emission Tomography
- PTV: Planning Target Volume
- QA: Quality Assurance
- **ROI:** Region of Interest
- SAD: Source-to-Axis Distance
- SBRT: Stereotactic Body Radiotherapy
- SD: Standard Deviation
- SDD: Source-to-Detector Distance
- SNR: Signal-to-Noise Ratio
- SPECT: Single Photon Emission Computed Tomography
- SSD: Source-to-Surface Distance
- TFT: Thin-Film Transistor
- **TPS:** Treatment Planning Systems

I. Abstract

In recent years Image-Guided Radiotherapy (IGRT) has experienced many technical advances. One of the most significant has been the widespread implementation of kilovoltage imagers attached to the gantry of linear accelerators (LINACs); these units are capable of 2D planar imaging, fluoroscopy and 3D Cone Beam Computed Tomography (CBCT) imaging. With CBCT imaging, the treatment plan can be modified based on patient's anatomy just before the treatment session. This method of Adaptive Radiotherapy (ART) helps in managing a patient's treatment by compensating for the effect of daily setup variation and changes to the tumour during the course of radiotherapy. Currently the image quality of CBCT is sufficient for patient set-up verification; however the use of CBCT for dose calculations requires reproducible CT numbers in order to be used effectively during ART. The aim of this project was to investigate methods to improve the image quality of CBCT datasets in order to facilitate their use in dosimetric calculations.

The project was divided into two major parts. In the first part, the conventional Feldkamp-Davis-Kress (FDK) cone-beam reconstruction algorithm was implemented in Matlab. The algorithm was then modified using weighting factors for data redundancy and for non-equal cone angles. A 2D adaptive filter was used to remove noise and to compensate for the loss of resolution. A modified in-house reconstruction algorithm was developed and the image quality obtained was comparable to reconstructed images obtained using the Varian OBI system software. The images are free of crescent artifacts and showed a maximum spatial resolution of 7 line pairs/cm. The effect of different reconstruction filters on CBCT image quality was also studied and guidelines were produced for different anatomical sites to assist in choosing appropriate filters to achieve optimal reconstructed image quality.

In the next part of the research, a comparative study between Varian and in-house reconstructed images was performed using Planning CT (PCT) images as a reference dataset. The feasibility of using the Varian and in-house reconstructed images for treatment planning was investigated by acquiring CBCT images of the Rando anthropomorphic phantom. An Intensity-Modulated Radiotherapy (IMRT) treatment plan was generated using both sets of reconstructed images using the Pinnacle³ treatment planning system.

Planar dose distributions were extracted from both the datasets in order to evaluate dose distributions quantitatively based on 3%/3mm Gamma analysis criteria. These distributions were then compared against the reference PCT image and it was found that in-house reconstructed images showed good agreement with the PCT images with a gamma passing rate of 99.8%. Although several pre-processing steps performed on the Varian images were not included during in-house reconstruction, the results demonstrated the potential for use of in-house reconstructed CBCT image for treatment planning.

As an alternative to FDK reconstruction, iterative reconstruction using Maximum Likelihood solutions was also investigated. Since the Ordered Subsets Expectation Maximisation (OSEM) package used in this study is intended for fan-beam geometry, only the slices from the central plane of cone-beam were chosen. The projections were corrected for distance-dependent resolution and centre of rotation offset. When the number of iterations was increased to 16, the algorithm converges well and showed more uniform images. However, the images were not comparable to FDK-based images due to the intrinsic difference in data handling. The OSEM program was developed initially for emission-based measurements and did not model the scatter component effectively for transmission-based measurements. Including the scatter component more effectively may make it more realistic for CBCT geometry.

II. Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signature:

Date:

III. Acknowledgements

Many people have helped me along the way to this thesis and I am pleased to express my appreciation here. I wish to acknowledge the Australian Postgraduate Award/scholarship from Australian government, which made this project possible.

I am extremely grateful to my supervisors, Mohammad Mohammadi, Justin Shepherd and Judith Pollard who have always provided encouragement, guidance and good advice throughout my time here at Royal Adelaide Hospital and the University of Adelaide, and especially on this thesis project.

Next, I received invaluable assistance from the staff of the Medical Physics department at the Royal Adelaide Hospital: Raelene Nelligan, Scott Penfold, Kim Quach, Daniel Ramm and John Lawson. They taught me the operations and the functions of linac machines, and were always there to help when the unexpected happened. Among the physicists, Justin Shepherd helped me in understanding and working of Pinnacle treatment planning system and in the image management (ARIA®) issues.

I would like to thank Joshua Moores for sharing his knowledge of CBCT with me. I would also like to express my gratitude to the chief of Medical Physics department, Dr. Eva Bezak for her valuable advices over the course of my project work. My sincere thanks go to Leighton Barden and Daniel Badger for their invaluable assistance in using the iterative reconstruction software available at the Queen Elizabeth hospital.

My special thanks to Ramona Adorjan from University of Adelaide who helped in installing software and solving many technical problems that I came across. My friendship with my fellow research students has made it a pleasant place to study and work during my candidature. I would like to thank the University of Adelaide and Australasian College of Physical Scientists and Engineers for providing me the fund to attend the EPSM conference held in Darwin (2011) and EPI2k12 conference (2012) held in Sydney.

My final thanks, as always, go to my family, whose love and support are so important to me.

IV. Publications

Journal Papers

- Srinivasan, K, Mohammadi, M, Shepherd, J 2014, 'Applications of linac-mounted kilovoltage cone-beam computed tomography in modern radiation therapy: A review', *Polish Journal of Radiology*, vol. 79, pp. 181-193.
- Srinivasan, K, Mohammadi, M, Shepherd, J 2014, 'Cone Beam Computed Tomography for adaptive radiotherapy treatment planning', *Journal of Medical and Biological Engineering*, vol. 34(4), pp. 377-385.
- Srinivasan, K, Mohammadi, M, Shepherd, J 2014, 'Investigation of effect of reconstruction filters on cone-beam computed tomography image quality', *Australasian Physical & Engineering Sciences in Medicine*, vol. 37, pp. 607-614.

Conference Presentations

1. Use of Cone Beam Computed Tomography for Radiotherapy Treatment Planning, EPSM 2011, held in Darwin.

2. Varian CBCT for Adaptive Radiotherapy Tasks, EPI2k12, held in Sydney, March 2012.

3. Investigation of effect of reconstruction filters on image noise and resolution in Varian Cone-beam Computed Tomography, EPSM 2012, held in Gold coast, 2012.