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 1 

A Fast Graph Matrix Partitioning Algorithm for Solving the 2 

Water Distribution System Equations 3 

J. Deuerlein1,3, S. Elhay2and A. R. Simpson3, M.ASCE 4 

Abstract:  5 

In this paper a method which determines the steady-state hydraulics of a water distribution system, the 6 

Graph Matrix Partitioning Algorithm (GMPA), is presented. This method extends the technique of 7 

separating the linear and nonlinear parts of the problem and using the more time consuming nonlinear 8 

solver only on the nonlinear parts of the problem and faster linear techniques on the linear parts of the 9 

problem. The previously developed Forest-Core Partitioning Algorithm (FCPA) used this approach to 10 

separate the network graph's external forest from its looped core but did not address the fact that 11 

within the core of a network graph there may be many internal trees - nodes in series - for which a 12 

more economical linear process can be used. This extension of the separation process can significantly 13 

reduce the dimension of the nonlinear problem that must be solved: GMPA applied to eight case study 14 

networks with between 900 and 20,000 pipes show reductions to between 5% and 55% of the core 15 

dimension (after FCPA). The separation of the problem into its nonlinear and linear parts involves no 16 

approximations, such as lumping or skeletonization, and the resulting solution is precisely the solution 17 

that would have been obtained by the slower technique of solving the entire network with a nonlinear 18 

solver. The new method is applied after the network has been separated into an external forest and 19 

core by the FCPA method. The GMPA identifies all the nodes in the core which are in series (the 20 

internal forest) and then iterates alternately on the remaining core (the (nonlinear) global step) and the 21 

internal forest (the (linear) local step).  In this paper, it is formally shown that the smaller set of 22 

nonlinear equations in the GMPA corresponds to the network equations of a particular topological 23 

subgraph of the original graph. Using algebraic manipulations, the size of the linearized system to be 24 

solved is reduced to the number of nodes in the core having degree greater than two. For pipe models 25 

of real world applications that are derived from GIS datasets, this can mean a dramatic reduction of the 26 

size of the nonlinear problem that has to be solved. The main contributions of the paper are (i) the 27 
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derivation and presentation of formal proofs for the new method and (ii) demonstrating how 28 

significant the reduction in the dimension of the nonlinear problem can be for suitable networks. The 29 

method is illustrated on a simple example.  30 

Keywords: Water Distribution Systems, Hydraulic Network Simulation, Graph Matrix 31 

Decomposition, Forest-Core Partitioning 32 
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INTRODUCTION 41 

The calculation of steady-state hydraulic solutions of networks of elements has a long history. Early 42 

on in 1936, Cross presented a method for the iterative solution of the linear mass balance and 43 

nonlinear equations representing conservation of energy. Later, different methods for the simultaneous 44 

solution of the equations were proposed by Epp and Fowler (1970). In this context, the relation to 45 

graph theory was also established (Kesavan and Chandrashekar 1972, Gupta and Prasad 2000). The 46 

most prevalent methods are the nodal method, the loop flow correction method (e.g. Nielsen 1989) and 47 

the Global Gradient Algorithm (GGA) (Todini and Pilati 1988). The equivalent formulation of the 48 

steady-state equations as a minimization problem that is derived from a variational principle has the 49 

advantage that both the existence and uniqueness of solutions can be proven and powerful techniques 50 

of convex optimization can be applied to the problem (Birkhoff and Diaz 1956, Birkhoff 1963, 51 

Carpentier and Cohen 1993, Cherry 1951, Collins et al. 1978), even in the case where feedback 52 

devices have to be considered in addition to pipes, valves and pumps (Deuerlein et al. 2009). An 53 

overview of existing methods has been published recently (Todini and Rossman 2013).  54 
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Although remarkable speed increases have been achieved by hydraulic solvers, optimization 55 

algorithms, in particular evolutionary algorithms that require a huge number of repeated network 56 

solution calculations in which the network topology does not change still suffer from long computing 57 

times. In addition, speed of computation is important when algorithms are used online for real-time 58 

analysis. As a result, a speed-up of existing hydraulic simulation methods is required.  59 

One application of hydraulic online simulation relates to water network security. Online simulation is 60 

used for monitoring of the current state of the network. As well, in the case of a contamination event, 61 

additional functions such as source identification and development of mitigation measures are based 62 

on the knowledge of the actual hydraulic state of the system. These functions again require the 63 

simulation of a number of different scenarios with various levels of detail. Reducing the size of the 64 

most time-consuming nonlinear problem will help. 65 

Various commercial and non-commercial software programs are available for calculating the hydraulic 66 

steady-state condition of a network. Many of them are based on the Global Gradient Algorithm 67 

(Todini and Pilati 1988), which, for instance, is implemented in EPANET (Rossman 2000). In this 68 

paper, a graph matrix partitioning method is presented that solves the global set of equations but 69 

significantly reduces the size of the linearized system of equations that is solved in each iteration. The 70 

method is based on a decomposition concept of the network graph (Deuerlein 2008). In that 71 

publication it was shown that, in demand-driven analysis, the hydraulic steady-state equations of the 72 

forest can be solved independently from the core. The concept of forest-core partitioning was further 73 

developed by Simpson et al. (2014). The core can be further subdivided into bridge components and 74 

looped blocks. A non-linear solver is required only for the blocks. The content of this manuscript 75 

addresses a faster solution method for the significantly smaller set of the non-linear block equations 76 

that is based on the partitioning of the nodes of the blocks into supernodes (degree > 2) and internal 77 

nodes (degree = 2). 78 

 79 

The GMPA begins by using the FCPA to separate the network core from the external forest (the forest 80 

which consists of all the trees which have leaf nodes (nodes with index 1)) and then identifying, within 81 



the core, all those nodes which have index 2 (the internal forest). The GMPA exploits the fact that the 82 

solution for the internal forest can, like the external forest) be achieved by a much faster linear solver.  83 

As a result, only the smaller part of the core (which remains when the internal trees have been 84 

partitioned for separate treatment), needs a nonlinear solver. 85 

 86 

Giustolisi et al. (2010, 2012) presented the Enhanced Global Gradient Algorithm (EGGA), which uses 87 

heuristically based transformation matrices to exploit the presence of nodes with index 2. However, (i) 88 

GMPA includes a preliminary forest-core partitioning step (Simpson et al. 2014), (ii) allows the 89 

inclusion of control devices by appropriate selection of internal tree chords, (iii) and is presented with 90 

a formal derivation and rigorous proof of the method.  91 

 92 

One possible approach for reducing calculation time is the aggregation of existing models that are 93 

usually derived from comprehensive Geographical Information Systems (GIS) datasets. In this case, a 94 

similar simplified system is created by merging of links of the same diameter and eliminating the 95 

nodes connecting these links. However, the resulting model is only an approximation of the original 96 

system and the connection to the original reference data taken from a GIS may be lost.  97 

 98 

The structure of the paper is as follows: After a brief review of the fundamental equations, some basics 99 

on the subgraph concept are presented. In the main part of this paper, the equivalence of the GMPA 100 

that is based on the topological subgraph to the full set of equations is stated. A proof is then given. It 101 

is shown that the new method subdivides the solution procedure into global and local steps. In the 102 

global step, a nonlinear system of equations has to be solved for the topological subgraph. The 103 

solution of the local step consists of linear algebraic calculations applying the global solution to 104 

determine the flows and heads of the internal trees. An example system is used to illustrate the 105 

method. Eight case-study networks, with between 900 and 20,000 pipes, and which were considered in 106 

Simpson et al (2014), are used to illustrate the significant reduction achieved by GMPA in the size of 107 

the nonlinear problem that must be solved.  108 

 109 



BACKGROUND 110 

Mathematical Modeling of Water Distribution Systems 111 

As mentioned in an earlier paper (Deuerlein et al., 2009), an alternative formulation to solving the pipe 112 

network equations by direct methods may be based on the minimization methods of nonlinear 113 

optimization. Birkhoff and Diaz (1956) and later Birkhoff (1963) have shown that the calculation of 114 

the looped electrical circuit systems with consideration of the first and second laws of Kirchhoff is 115 

equivalent to the minimization of a convex function. These principles also can be applied to solving 116 

the pipe network equations, which are modelled by analogous equations. Using the work of Cherry 117 

(1951) and Millar (1951) for the calculation of electrical networks, Collins et al.(1978) applied the 118 

minimization of the Content and Co-Content functions to the calculation of the steady-state for 119 

hydraulic networks. The problem of minimizing the Content function can be stated as follows: 120 

min
𝐪∈𝑅𝑚

𝐶(𝐪)  

𝑠. 𝑡.   𝐀𝑇𝐪 = −𝐐
      (1) 121 

Here, 𝐶(𝐪) denotes the system content, m is the number of pipes, 𝐪 ∈ ℝ𝑚 is the vector of pipe flows, 122 

𝐀 ∈ ℝ𝑚×𝑛 is the link-node incidence matrix of pipes and demand nodes (number n) with 𝐴𝑗,𝑖 = 1 if 123 

node 𝑖 is the final node of link 𝑗, 𝐴𝑗,𝑖 = −1 if node 𝑖 is the first node of link 𝑗 and 𝐴𝑗,𝑖 = 0, otherwise. 124 

Q ∈ ℝ𝑛 is the vector of given nodal demands (for withdrawals 𝑄𝑖 < 0). The equality constraints 125 

consist of the continuity equations of the demand nodes. The total system content is composed of the 126 

sum of the single contents of the network elements. The content of pipe 𝑗 is given by  127 

𝐶𝑗 = ∫ (𝑟𝑗|𝑥𝑗|
𝛼−1

+ 𝐾𝑗|𝑥𝑗|)
𝑞𝑗

0
𝑥𝑗𝑑𝑥𝑗.     (2) 128 

Here, 𝑞𝑗 is the flow for pipe 𝑗, 𝑟𝑗 = 𝑟𝑗(𝑥𝑗) is the pipe resistance which depends on flow for the Darcy-129 

Weisbach head loss and  the exponent of the hydraulic equation (usually for the Darcy-Weisbach or 130 

Hazen-Williams formulations where 𝛼 ≥ 1). The second term refers to the local minor loss of valves 131 

and fittings. If all the content functions are strictly convex (which is guaranteed by the strict 132 

monotonicity of the head loss equation) and norm-coercive (|𝐶𝑗(𝑞𝑗)| ⟶ ∞ if ‖𝑞𝑗‖  → ∞) then the 133 

total system content is a strictly convex and norm-coercive function of 𝐪. As a result, there exists a 134 

unique solution if, in addition, the constraints are affine. The proof of existence is a very important 135 



result and can be found for example in Piller (1995). In this case, the Lagrangian of Eq. (1) gives a 136 

necessary and sufficient condition for the solution:  137 

[
𝐅 𝐀
𝐀𝑇 0

] [
𝐪
𝛌
] = [

−𝐀R𝐇R

−𝐐
]      (3) 138 

where 𝐅 ∈ ℝ𝑚×𝑚 is a diagonal matrix and the product of 𝐅𝐪 are the link head losses. The elements of 139 

the diagonal matrix  𝐅k are defined by 𝐹𝑘𝑗,𝑗
= 𝑟𝑗|𝑞𝑘,𝑗|

𝛼−1
+ 𝐾𝑗|𝑞𝑘,𝑗| where the first term refers to the 140 

head losses due to friction along the pipe wall and the second term includes local minor losses of 141 

valves and fittings (𝐾𝑗: minor loss coefficient). 142 

On the right hand side of Eq. (3) 𝐀R ∈ ℝ𝑚×𝑛𝑟 and 𝐇R  ∈ ℝ𝑛𝑟 refer to the incidence matrix of fixed 143 

head nodes and vector of fixed heads, respectively in Eq. (3), 𝑛𝑟 is the number of fixed head nodes. 144 

The Lagrange multipliers 𝛌 ∈ ℝ𝑛 that correspond to the affine mass balance constraints or nodal flow 145 

continuity equations in Eq. (1) are actually the nodal heads at the demand nodes.  146 

The solution to the non-linear system Eq. (3) is often found iteratively by Newton’s method  147 

[
𝐃𝑘 𝐀

𝐀𝑇 𝟎
] [

𝐪𝑘+1 − 𝐪𝑘

𝐇𝑘+1 − 𝐇𝑘
] = − [

𝐅𝑘𝐪𝑘 + 𝐀𝐇𝑘 + 𝐀𝑅𝐇𝑅

𝐀𝑇𝐪𝑘 + 𝐐
],   (4) 148 

provided 𝐃𝑘, which is the derivative of the head losses 𝐅𝐪, is invertible. The vector 𝐪𝑘+1 − 𝐪𝑘 149 

includes the unknown changes in link flows, 𝐇𝑘+1 − 𝐇𝑘 is the vector of unknown nodal head changes, 150 

𝐇R is the vector of known heads and 𝐐 is the vector of known nodal demands or input flows. 151 

The GGA of Todini and Pilati (1988), a two-stage implementation of Eq. (4), finds the unknown nodal 152 

heads, 𝐇𝑘+1 (Lagrangian multipliers 𝛌 in Eq. (3)) in one-step and then finds the pipe flows, 𝐪𝑘+1, by a 153 

simple update process: 154 

𝐀𝑇𝐃𝑘
−1𝐀 ∙ 𝐇𝑘+1 = 𝐐 + 𝐀𝑇𝐪𝑘 − 𝐀𝑇𝐃𝑘

−1𝐅𝑘 ∙ 𝒒𝑘 −  𝐀𝑇𝐃𝑘
−1𝐀𝑅 ∙ 𝐇𝑅  155 

𝐪𝑘+1 = 𝐪𝑘 − 𝐃𝑘
−1[𝐅𝑘𝐪𝑘 + 𝐀𝐇𝑘+1 + 𝐀𝑅𝐇𝑅]     (5) 156 

The second part of Eq. (5) is solved simply because the matrix 𝐃𝑘
−1 is diagonal. The first part, which is 157 

more difficult to solve, includes the solution of a linear system of size n. In all iterations after the first, 158 



the calculated flows will satisfy the continuity equations independently of the starting point (initial 159 

flow vector) of the algorithm (see Elhay et al., 2014).  160 

Recall that the size of 𝐃𝑘 is the total number of links in the graph of the full network. For constant 𝑟𝑗 161 

the derivative matrix is 𝐷𝑘𝑗,𝑗
= 𝛼𝑟𝑗|𝑞𝑘,𝑗|

𝛼−1
+ 2𝐾𝑗|𝑞𝑘,𝑗| but in the case of the Darcy-Weisbach 162 

formula, 𝑟𝑗 is also a function of 𝑞𝑘,𝑗 and the calculation of the derivative is more complicated (see 163 

Simpson and Elhay 2011 for details).  164 

THE GRAPH MATRIX PARTITIONED ALGORITHM 165 

Decomposition to form the reduced topological subgraph system 166 

The first step of the GMPA consists of the identification of the “forest” of the network graph. The 167 

forest consists of trees that are connected to bridge components or looped blocks at their root node. 168 

Figure 1 shows a simplified example network graph that has typical topological properties of a real 169 

water supply system. Branched trees leading to the end-user demands are connected to a looped 170 

distribution system at the root nodes. From graph theory, it is known that the incidence matrix of a tree 171 

(without its root node) is square and invertible. Therefore, in demand driven analysis, the flows of the 172 

forest pipes can be calculated (see Simpson et al. 2014 for details of calculation method) by using just 173 

the (linear) continuity equations as a preliminary step before the iterative solution procedure is applied 174 

to the “core” of the network. 175 

 176 

In what follows it is assumed that the forest has already been virtually separated from the network 177 

graph and the demand at the root node of each removed tree has been increased by the total demand of 178 

the tree. The separation does not involve any approximation or lumping. At the end of the process, the 179 

solution obtained is precisely the solution for the whole (original) network. The resulting graph 𝐺𝐶 ⊆180 

𝐺 = (𝑉, 𝐸) is called the “core” of the original network graph. It can be shown that 𝐺𝐶 is an (induced) 181 

subgraph of the original graph 𝐺𝐶 ⊆ 𝐺 = (𝑉, 𝐸). More details on the separation of the forest and core 182 

decomposition can be found in the literature (Diestel 2010; Deuerlein 2008). From Figure 1, it can be 183 

seen that the root nodes (filled with black) of all the trees have degree three or greater (degree: number 184 

of connected links at node). After separating each of the trees, most of the root nodes have degree two 185 



in the core graph (see Figure 2). This property is used for the next step where the core graph 𝐺𝐶 is 186 

further simplified by the identification of “supernodes” and “superlinks.”  187 

Supernodes have the property that they connect at least three links of the original core graph (nodes E 188 

and I in Figure 3). A superlink can be understood as virtual link that represents the series of links 189 

between the two supernodes. The nodes inside the path that connects the supernodes are called 190 

“internal tree nodes” (index I, nodes F, G and H in Figure 3). The series of links connecting the two 191 

supernodes with the last link removed is called the internal tree (E - F - G -H), and finally, the link (H-192 

I) is called the internal co-tree chord. The reason for the terminology “internal tree” and “internal co-193 

tree chord will become clear later. 194 

The (topological) subgraph 𝐺𝑆 = (𝑉𝑆, 𝐸𝑆) consists of the vertex set of supernodes 𝑉𝑆 with |𝑉𝑆| = 𝑛𝑆 195 

and the arc set of superlinks 𝐸𝑆 with |𝐸𝑆| = 𝑚𝑆. Note that 𝐺𝑆 refers to the topological subgraph of the 196 

core of the original network graph that results from link contractions that are iteratively applied to 197 

links that have at least one node of degree 2 in the core subgraph. The resulting topological subgraph 198 

is maximal in the sense that all the nodes with degree 2 are separated. The graph 𝐺𝑆 is smaller than the 199 

full core graph for the network if the network core has nodes in series. By means of graph theory it can 200 

be shown that 𝐺𝑆  is actually a topological minor of 𝐺 and 𝐺𝐶: 𝐺𝑆 ≼ 𝐺𝐶 ≼ 𝐺. The minor relation ≼ is a 201 

partial ordering of finite graphs, i. e. reflexive, antisymmetric and transitive (see Diestel 2010, p. 20). 202 

In contrast, the full core graph 𝐺𝐶 is called a subdivision of graph 𝐺𝑆. It follows that the two graphs 𝐺𝑆 203 

and 𝐺𝐶 are homeomorphic in the topological sense, which means that they have the same topological 204 

properties; for instance, the number of loops remains the same for both 𝐺𝐶 and 𝐺𝑆. Please note that the 205 

term ‘topological’ used here refers to the fact, that in contrast to induced subgraphs, where the link set 206 

of the subgraph is a subset of the original link set, here each superlink of the topological subgraph 207 

replaced by a set of pipes in series each with internal vertices of degree 2. As a consequence, the links 208 

of the original graph appear as superlinks in the subgraph only in the case where both end nodes have 209 

degree > 2 in the original core graph.  210 

Hydraulic Steady-State Equations of the GMPA 211 

In this section, the GMPA method for demand driven hydraulic steady-state calculation of general 212 

pressurized pipe systems which subdivides the solution process into a global step (for the graph 𝐺𝑆) 213 



and a local step (for the internal trees) steps is presented. It will be shown that the dimension of the 214 

system of equations that has to be solved during the iterations can be reduced to the number of 215 

supernodes of the graph 𝐺𝑆 that was introduced in the last section. For complex real-world water 216 

supply systems, the size of the system to be solved can be reduced significantly for such systems. The 217 

full derivation of the method from the basic network equations will be given in the next section. In this 218 

context, the linear transformation mapping between full graph and topological subgraph will also be 219 

discussed. 220 

The global solution step is formulated as follows. The vertex set of 𝐺𝑆 consists of a subset of 𝑛𝑆 nodes 221 

of the original graph, the supernodes. The set of links between supernodes of the original graph may 222 

be treated as a set of 𝑚𝑆 superlinks. Now assume that the heads of the supernodes are known (as 223 

boundary conditions of the local subsystem) the series of pipes in-between can be understood as a  224 

pseudo loop representing a subsystem that consists of two reservoirs that are connected by a series of 225 

pipes. The heads and flows of these isolated subsystems can be efficiently calculated by the loop 226 

method since the subsystem always consists of exactly one pseudo loop regardless of the number of 227 

intermediate links in series. The superlink is the pseudo-link that represents the known pressure 228 

difference between the supernodes and closes the pseudo-loop (see Figure 3). A well-known approach 229 

for solving such a system is to separate the links of the loop into a spanning tree and a chord link. 230 

Therefore, in the previous section, the term “internal tree” has been introduced for the internal 231 

spanning tree that consists of “internal tree branches” and the term “internal tree chord” is used for the 232 

link that is chosen arbitrarily as chord of the local pseudo-loop. The union of internal trees is called the 233 

internal forest. Please note that in our case where the external forest has been separated by the FCPA 234 

before the GMPA is applied and the method is applied to the network core, the internal tree is always a 235 

path. However, the method can still be applied where the local systems have tree like structure (for 236 

example if the trees of the global forest are not separated).  237 

 238 

The superlinks in the GMPA have an important property: it is known (see Elhay et al., 2014) that the 239 

continuity equations are satisfied after the first iteration of the GGA or the Reformulated Co-Tree 240 

Flows Method (RCTM) (see Elhay et al., 2014) and so the flow corrections of all links that are 241 



represented by a common superlink are identical. Thus, if the flow correction for one link (for example 242 

an internal co-tree chord belonging to the internal tree of the superlink) is known from the global step 243 

calculation, the other flows of the internal tree branches of that superlink can be calculated locally 244 

(local step). As mentioned before, in the global step a superlink replaces at least one link, the internal 245 

co-tree chord (index C), and the appropriate number of internal tree branches (index T). The total 246 

number of internal co-tree chords is equal to the number of superlinks and the number of internal tree 247 

branches is 𝑚𝑇 = 𝑚2𝑐𝑜𝑟𝑒 − 𝑚𝑆 . The flows of the other internal tree branches are a linear function of 248 

the both flow of the last link and the given demands of the internal tree nodes. This is a very important 249 

feature of the GMPA and is the fundamental reason why a significant reduction in computation can be 250 

achieved. The system of equations of the global step (graph 𝐺𝑆) can be formulated in terms of the 251 

unknown superlink flows corrections, [𝐪𝐶,𝑘+1 − 𝐪𝐶,𝑘] , at iteration 𝑘 + 1 and the heads corrections, 252 

 [𝐇𝑆,𝑘+1 − 𝐇𝑆,𝑘], at iteration 𝑘 + 1:  253 

[
𝐃𝑆,𝑘 𝐀𝑆

𝐀𝑆
𝑇 𝟎

] [
𝐪𝐶,𝑘+1 − 𝐪𝐶,𝑘,

𝐇𝑆,𝑘+1 − 𝐇𝑆,𝑘
] =  − [

𝐡𝑆,𝑘 + 𝐀𝑆𝐇𝑆,𝑘 + 𝐀𝑆,𝑅𝐇𝑅

𝐀𝑆
𝑇𝐪𝐶,𝑘 + 𝐐̅𝑆

]   (6) 254 

with  255 

𝐐̅𝑆 = −𝐀𝑆,𝑇
𝑇 (𝐀𝐼,𝑇

𝑇 )
−1

𝐐𝐼 + 𝐐𝑆       (6a) 256 

 𝐡𝑆,𝑘 = [𝐅𝐶,𝑘 + 𝐏𝐅𝑇,𝑘𝐏𝑇] 𝐪𝐶,𝑘 − 𝐏𝐅𝑇,𝑘(𝐀𝐼,𝑇
𝑇 )

−1
𝐐𝐼       (6b) 257 

Eq. (6) forms the Newton iteration system for the topological subgraph 𝐺𝑆.  The incidence matrix for 258 

the topological subgraph is 𝐀𝑆  ∈ ℝ𝑚𝑆×𝑛𝑆 and the diagonal matrix 𝐃𝑆 ∈ ℝ𝑚𝑆×𝑚𝑆   has the head loss 259 

derivatives of the superlinks. Submatrices 𝐀𝑆,𝑇 ∈ ℝ𝑚𝑇×𝑛𝑆  and 𝐀𝐼,𝑇 ∈ ℝ𝑚𝑇×𝑚𝑇 are blocks of the 260 

(permuted) original incidence matrix, 𝐏  ∈ ℝ𝑚𝑆×𝑚𝑇 is the incidence matrix for the internal forest of 261 

nodes with index 2 (the nodes which are in series). Matrices 𝐐𝐼  ∈ ℝ𝑛𝐼 and 𝐐𝑆 ∈ ℝ𝑛𝑆 are the blocks of 262 

the decomposed demand vector that refer to internal nodes (Index I) and supernodes (index S), 263 

respectively. Vector 𝐪𝐶,𝑘 ∈ ℝ𝑚𝑆 includes the flows of internal co-tree chords according to Figure 3 264 

and 𝐅𝐶,𝑘 ∈ ℝ𝑚𝑆×𝑚𝑆 and 𝐅𝑇,𝑘  ∈ ℝ𝑚𝑇×𝑚𝑇 are two parts of the diagonal matrix 𝐅𝑘  of Eq. (5) that are 265 

decomposed into blocks for internal tree branches and internal co-tree chords. The matrices and the 266 



objects which they model will be explained in more detail in the next section. In what follows we will 267 

denote (𝐀𝐼,𝑇
−1)

𝑇
(which = (𝐀𝐼,𝑇

𝑇 )
−1

) by 𝐀𝐼,𝑇
−𝑇.  268 

The solution procedure here deals with a smaller set of equations than for the GGA if the core of the 269 

network has some nodes in series. The calculation of the head losses of the superlinks and the 270 

respective matrices 𝐃𝑆,𝑘   and 𝐅𝑆,𝑘 is carried out locally. Matrix 𝐏 ∈ ℝ𝑚𝑆×𝑚𝑇 represents the linear 271 

transformation between the links of 𝐺𝐶 and 𝐺𝑆. Multiplication of a topological matrix on the left by 𝐏 272 

collapses the branches of an internal tree onto a single superlink whereas right multiplication of a 273 

matrix by 𝐏 expands a superlink to the individual branches of the corresponding internal tree. The 274 

derivation of 𝐏 is given in the next section. Once the global unknowns 𝐪𝐶,𝑘+1 

 
and 𝐇𝑆,𝑘+1 are known 275 

the local step of calculating the flows of internal tree branches and heads of internal tree nodes is 276 

straightforward. This results in two steps of the GMPA: 277 

The Global Step: Calculation of heads of supernodes and flows of internal co-tree chords representing 278 

the superlinks 279 

𝐀𝑆
𝑇𝐃𝑆,𝑘

−1𝐀𝑆𝐇𝑆,𝑘+1 = 𝐐̅𝑆+𝐀𝑆
𝑇𝐪𝐶,𝑘 − 𝐀𝑆

𝑇𝐃𝑆,𝑘
−1 [𝐡𝑆,𝑘 +   𝐀𝑆,𝑅𝐇𝑅]         (7) 280 

𝐪𝐶,𝑘+1 = 𝐪𝐶,𝑘 − 𝐃𝑆,𝑘
−1 [𝐡𝑆,𝑘 + 𝐀𝑆𝐇𝑆,𝑘+1 + 𝐀𝑆,𝑅𝐇𝑅]     (8) 281 

The Local Step: Calculation of heads of the internal tree nodes and flows of the internal tree branches 282 

𝐪𝑇,𝑘+1 = 𝐏𝑇𝐪𝐶,𝑘 − 𝐀𝐼,𝑇
−𝑇𝐐𝐼              (9) 283 

𝐇𝐼,𝑘+1 = −𝐀𝐼,𝑇
−1[𝐀𝑆,𝑇𝐇𝑆,𝑘+1 + 𝐀𝑅,𝑇𝐇𝑅 + 𝐃𝑇,𝑘𝐪𝑇,𝑘+1]   (10) 284 

With the approach presented here, the number of unknowns of the linear system of equations that has 285 

to be solved at any iteration of the GMPA (Eq. (7)) is reduced to the number of supernodes 𝑛𝑆. Since 286 

𝐃𝑆,𝑘  is a diagonal matrix, Eq. (8) consists of algebraic calculations. The same applies to the local step 287 

since matrix 𝐀𝐼,𝑇 has an analytical inverse, which will be shown later.  288 

 289 

DERIVATION AND PROOF OF THE GRAPH MATRIX PARTITIONING ALGORITHM 290 

In what follows, the equivalence of the modified equations for the local and global steps (Eq. (7) to 291 

Eq. (10)) and the original GGA equations (Eq.Error! Reference source not found.)) will be shown. 292 



The basic idea is that the incidence matrix of the network graph can be partitioned into four blocks 293 

where the upper right square block has full rank and is invertible.   294 

Partitioning of the Incidence Matrix 295 

In the new GMPA method, internal nodes are removed by an algebraic elimination process that is 296 

applied to the full system of hydraulic network equations. It is important to note that the GMPA 297 

method does not include any approximation. The elimination is based on permuting the rows and the 298 

columns of the graph incidence matrix 𝐀 and the diagonal head loss derivative matrix 𝐃 of the original 299 

system. Consider the partitioning of both the 𝐀 and 𝐃  matrices as follows: 300 

𝐀 = [
𝐀𝑆,𝑇 𝐀𝐼,𝑇

𝐀𝑆,𝐶 𝐀𝐼,𝐶
] ,     𝐃 = [

𝐃𝑇 𝟎
𝟎 𝐃𝐶

]         (11) 301 

where 302 

T: Tree (branches of internal trees) (see #3 in Figure 3) 303 

C: Co-tree (Chords) (chords of internal trees) (see #4 Figure 3) 304 

S: Supernodes (E and I in Figure 3) 305 

I: Internal nodes (F, G and H in Figure 3) 306 

In what follows it will be assumed that the necessary permutations have already been performed: the 307 

matrix 𝐀 is in the correct permuted form and 𝐃 is diagonal. It is shown in the Appendix A how to 308 

permute 𝐀 in this way while preserving the diagonal structure of 𝐃. The columns of 𝐀 refer to the 309 

nodes of the graph G. The first column of the block matrix in Eq. (11) belongs to the supernodes (first 310 

index S) and the second column belongs to internal tree nodes (first index I). In a similar way the 311 

internal tree branches (second index T) are partitioned from the internal co-tree chords (second index 312 

C) in matrices 𝐀 and 𝐃. An important result of the reordering is that matrix 𝐀𝐼,𝑇 is always square and 313 

invertible. Furthermore, it will be shown that its exact inverse can be computed quickly and simply. 314 

This fact can be used for eliminating both the flows in the internal trees as well as the heads of the 315 

internal tree nodes. The method can be understood as partitioning the solution process into one global 316 

step (analysis of the network consisting of superlinks and supernodes only) and several local steps 317 

(where the flows of the internal tree links are determined). 318 

 319 



System of equations 320 

Substitution of the matrices 𝐀 and 𝐃 from Eq. (11) into Eq. (5) results in the following system of 321 

linearized equations: 322 

[
 
 
 
 
𝐃𝑇,𝑘 𝟎 𝐀𝑆,𝑇 𝐀𝐼,𝑇

𝟎 𝐃𝐶,𝑘 𝐀𝑆,𝐶 𝐀𝐼,𝐶

𝐀𝑆,𝑇
𝑇 𝐀𝑆,𝐶

𝑇 𝟎 𝟎

𝐀𝐼,𝑇
𝑇 𝐀𝐼,𝐶

𝑇 𝟎 𝟎 ]
 
 
 
 

[

𝐪𝑇,𝑘+1 − 𝐪𝑇,𝑘

𝐪𝐶,𝑘+1 − 𝐪𝐶,𝑘

𝐇𝑆,𝑘+1 − 𝐇𝑆,𝑘

𝐇𝐼,𝑘+1 − 𝐇𝐼,𝑘

] = [

𝑑𝐄𝑇

𝑑𝐄𝐶

𝑑𝐐𝑆

𝑑𝐐𝐼

]

𝑘

     (12) 323 

where  324 

𝑑𝐄𝑇 = −(𝐅𝑇,𝑘𝐪𝑇,𝑘 + 𝐀𝑆,𝑇𝐇𝑆,𝑘 + 𝐀𝐼,𝑇𝐇𝐼,𝑘 + 𝐀𝑅,𝑇𝐇𝑅), 325 

𝑑𝐄𝐶 = −(𝐅𝐶,𝑘𝐪𝐶,𝑘 + 𝐀𝑆,𝐶𝐇𝑆,𝑘 + 𝐀𝐼,𝐶𝐇𝐼,𝑘 + 𝐀𝑅,𝐶𝐇𝑅), 326 

𝑑𝐐𝑆 = −(𝐀𝑆,𝑇
𝑇 𝐪𝑇,𝑘 + 𝐀𝑆,𝐶

𝑇  𝐪𝐶,𝑘 + 𝐐𝑆), 327 

𝑑𝐐𝐼 = −(𝐀𝐼,𝑇
𝑇 𝐪𝐼,𝑘 + 𝐀𝐼,𝐶

𝑇  𝐪𝐶,𝑘 + 𝐐𝐼), 328 

Further developments are based on the following:  329 

Lemma 1: 330 

a) Matrix 𝐀𝐼,𝑇  is square and invertible.  331 

b) 𝐀𝐼,𝑇 is block diagonal with lower triangular diagonal blocks, all the elements of which are in {-332 

1,0,1}, and has an exact inverse which is easily computed.  333 

Proof:  334 

a) Let mS be the number of links (internal tree branches and an internal co-tree chord) represented by a 335 

superlink. Then, the number of nodes of the internal tree and internal co-tree is mS+1. If the last link 336 

(for example link HI in Figure 3) is separated then the resulting structure is an internal tree.  337 

𝐀𝐼,𝑇  includes for each superlink the series of internal links except for the last link. The resulting 338 

subgraph is always a tree (i.e. it is connected and has no loops). The nodes of 𝐀𝐼,𝑇  are the interior 339 

nodes. The root of the tree is the initial node of the superlink, which is not part of 𝐀𝐼,𝑇 . It is well 340 

known from graph theory (Diestel 2010) that the incidence matrix of a tree without its root node is 341 

always square and invertible. It follows that the matrix 𝐀𝐼,𝑇  consisting of diagonal blocks of simple 342 

tree incidence matrices is always invertible (see solid links in Figure 3). 343 



b) The second part of the proof can be found in Branin (1963). It is shown there that the inverse of the 344 

tree incidence matrix is equal to the transpose of the node to datum path matrix of the tree, which can 345 

be determined, for instance, by use of basic graph algorithms (depth first search or breadth first search) 346 

or by a simple forward substitution process.  347 

Definition 1: 348 

Matrix 𝐏 = −𝐀𝐼,𝐶 𝐀𝐼,𝑇
−1 is denoted as the internal tree matrix.  349 

The positive direction of a superlink is determined by the direction of the internal co-tree chord. If the 350 

initial node of the internal co-tree chord link is a supernode then it will be the initial node of the 351 

superlink. In the opposite case where the last node of the internal co-tree chord is a supernode node 352 

then it will be the last node of the superlink. The directions of the branches of the internal tree are 353 

determined by the sign of the links in the internal tree matrix. A positive sign means that the direction 354 

of the link coincides with the direction of the superlink and vice versa.  355 

Using Lemma 1, the unknown flows of the branches of the internal tree can be eliminated from the 356 

system of linear equations by solving the fourth row of the Global Linear System [GLS] (Eq. (12)) for 357 

𝐪𝑇,𝑘+1 : 358 

𝐪𝑇,𝑘+1 = 𝐏𝑇𝐪𝐶,𝑘+1 − 𝐀𝐼,𝑇
−𝑇𝐐𝐼           (13) 359 

Again, using Lemma 1, the unknown heads of the internal nodes can be eliminated from Eq. (12) by 360 

substituting 𝐪𝑇,𝑘+1 with use of Eq. (13) and solving the first row of Eq. (12) for 𝐇𝐼,𝑘+1 : 361 

𝐇𝐼,𝑘+1 = 𝐀𝐼,𝑇
−1[𝐡𝑇,𝑘 − 𝐀𝑆,𝑇𝐇𝑆,𝑘+1 − 𝐀𝑅,𝑇𝐇𝑅]      (14) 362 

where 363 

𝐡𝑇,𝑘 = [𝐃𝑇,𝑘 − 𝐅𝑇,𝑘]𝐪𝑇,𝑘 − 𝐃𝑇,𝑘[𝐏𝑇𝐪𝐶,𝑘+1 − 𝐀𝐼,𝑇
−𝑇𝐐𝐼] 364 

Eq. (13) and Eq. (14) together can now be used for elimination of 𝐪𝑇,𝑘+1  and 𝐇𝐼,𝑘+1  from the second 365 

and third rows of Eq. (12). The resulting system of equations includes only the unknown heads of the 366 

supernodes 𝐇𝑆,𝑘+1  and the flows of the internal co-tree chords 𝐪𝐶,𝑘+1 . With only a few algebraic 367 

manipulations we get: 368 

[
[𝐃𝐶 + 𝐏𝐃𝑇𝐏𝑇] [𝐀𝑆,𝐶 + 𝐏𝐀𝑆,𝑇]

[𝐀𝑆,𝐶 + 𝐏𝐀𝑆,𝑇]
𝑇

𝟎
]

𝑘

[
𝐪𝐶

𝐇𝑆
]
𝑘+1

=[
𝐄̅𝐶

−𝐐̅𝑆
]
𝑘  

   (15) 369 



with 370 

𝐄̅𝐶,𝑘 = 𝐏[𝐃𝑇 − 𝐅𝑇]𝑘𝐪𝑇,𝑘 + 𝐏𝐃𝑇,𝑘𝐀𝐼,𝑇
−𝑇𝐐𝐼 − 𝐏𝐀𝑅,𝑇𝐇𝑅 + [𝐃𝐶 − 𝐅𝐶]𝑘𝐪𝐶,𝑘 − 𝐀𝑅,𝐶𝐇𝑅 371 

𝐐̅𝑆,𝑘 = −𝐀𝑆,𝑇
𝑇 𝐀𝐼,𝑇

−𝑇𝐐𝐼 + 𝐐𝑆       372 

Network equations of the topological subgraph 𝑮𝑺  373 

In order to prove the analogy of the network equations of the graph 𝐺𝑆 with the original equations the 374 

topological incidence matrices of 𝐺𝑆 are derived by linear transformations based on the internal tree 375 

matrix given in Definition 1.  376 

Observation 1: 377 

a) Matrix 𝐀𝑆,𝐶 + 𝐏𝐀𝑆,𝑇 is the incidence matrix of graph 𝐺𝑆 consisting of superlinks (instead of the 378 

original links) and supernodes (a subset of the original nodes): 𝐀𝑆 =  𝐀𝑆,𝐶 + 𝐏𝐀𝑆,𝑇 379 

b) Matrix 𝐀𝑅,𝐶 + 𝐏𝐀𝑅,𝑇  is the incidence matrix of the fixed head nodes of graph 𝐺𝑆 consisting of 380 

superlinks (instead of the original links) and supernodes (a subset of the original fixed head nodes): 381 

𝐀𝑆,𝑅 =  𝐀𝑅,𝐶 + 𝐏𝐀𝑅,𝑇. 382 

c) Matrix 𝐃𝐶,𝑘 +  𝐏𝐃𝑇,𝑘𝐏T is a diagonal matrix and corresponds to the derivatives of the hydraulic 383 

head losses of the superlinks  𝐃𝑆,𝑘 = 𝐃𝐶,𝑘 +  𝐏𝐃𝑇,𝑘𝐏T. 384 

Proof: 385 

 386 

a) 387 

𝐀𝑆 =  𝐀𝑆,𝐶 + 𝐏𝐀𝑆,𝑇 = 𝐀𝑆,𝐶 − 𝐀𝐼,𝐶𝐀𝐼,𝑇
−1𝐀𝑆,𝑇 388 

Let us consider the rows of matrix 𝐀𝑆,𝐶 and distinguish between the following two cases when:  389 

1.) The internal tree together with internal co-tree consist of more than one link: 390 

For each internal tree together with its corresponding internal co-tree that consists of more than one 391 

link, the corresponding row of the matrix 𝐀𝑆,𝐶  contains exactly one entry different from zero. This 392 

entry belongs to the internal co-tree chord. The connection of the first supernode with the second 393 

supernode is accomplished by  𝐏𝐀𝑆,𝑇. The rows of matrix 𝐏 correspond to superlinks, the columns 394 

correspond to the original links (co-tree branches only). For each internal tree branch j that is part of 395 

the superlink 𝑖 the matrix entry Pij is different from zero (-1 or +1). By definition, the mapping from 396 



internal tree branches to superlinks is unique. The sign of 𝑃𝑖,𝑗 indicates the direction of the branch 397 

relative to the superlink. Using the same argument that was used above for showing that matrix 𝐀𝑆,𝐶 398 

has exactly one element in row i that is different from zero it can be proven that the corresponding row 399 

in matrix 𝐀𝑆,𝑇 
has also exactly one element different from zero and is therefore incident with the 400 

supernode of the internal tree. Pre-multiplication of the supernode - internal tree incidence matrix 401 

(𝐀𝑆,𝑇) by the internal tree matrix (𝐏) select the root node of the internal tree as the second node of the 402 

superlink. 403 

2.) The superlink includes one link only:  404 

For each superlink containing only one link (the internal co-tree chord), the corresponding rows of 405 

matrix 𝐀𝑆,𝐶  
have two elements in the same row that are different from zero. The internal tree matrix is 406 

the zero matrix. A simplification is not possible and the superlink incidence matrix and the link 407 

incidence matrix are identical. 408 

b) The proof of part b) is analoguous to that for part a).  409 

c) The first term 𝐃𝐶,𝑘 includes the head loss derivatives of the internal co-tree chords. By calculation 410 

of the product of matrices 𝐏𝐃𝑇,𝑘𝐏
T, the head loss derivatives of the internal tree branches are summed 411 

up. The first multiplication by 𝐏 on the left replaces the -1 and +1 entries in the internal tree matrix by 412 

the head loss derivatives of the links. The second multiplication by the transpose of the internal tree 413 

matrix on the right of 𝐃𝑇,𝑘 computes the sum of the head loss derivatives for each internal tree. The 414 

result of the multiplication is again a diagonal matrix where each element on the main diagonal 415 

includes the sum of link head loss derivatives of the corresponding internal tree. It can be seen that the 416 

resulting matrix is diagonal due to the fact that the sets of internal tree branches are disjoint. That 417 

means that the multiplication delivers a value of zero, where the links are not in the same internal tree. 418 

  419 

With the results of Observation 1 then Eq. (15) can be rewritten as: 420 

[
𝐃𝑆 𝐀𝑆

𝐀𝑆
𝑇 𝟎

]
𝑘

[
𝐪𝐶

𝐇𝑆
]
𝑘+1

= [
𝐄̅𝐶

−𝐐̅𝑆
]
𝑘

            (16) 421 



Matrix 𝐃𝑆,𝑘 is a diagonal matrix and invertible if 𝐷𝑆𝑖,𝑖
> 0    ∀𝑖 = 1,… ,𝑚𝑆. Consequently, Eq. (16) 422 

can be decomposed by using Schur’s theorem analogously to the simplification of Eq. (5): 423 

𝐪𝐶,𝑘+1 = 𝐃𝑆,𝑘
−1 [𝐏[𝐃𝑇 − 𝐅𝑇]𝑘𝐪𝑇,𝑘 + [𝐃𝐶 − 𝐅𝐶]𝑘𝐪𝐶,𝑘 + 𝐏𝐃𝑇,𝑘[𝐀𝐼,𝑇

𝑇 ]
−1

𝐐𝐼 − 𝐀𝑆𝐇𝑆,𝑘+1 − 𝐀𝑆,𝑅𝐇𝑅]   (17) 424 

With  𝐪𝑇,𝑘 = 𝐏𝑇𝐪𝐶,𝑘 − 𝐀𝐼,𝑇
−𝑇𝐐𝐼 (Eq. (13)) it follows that: 425 

𝐪𝐶,𝑘+1 = 𝐪𝐶,𝑘 − 𝐃𝑆,𝑘
−1[𝐅𝐶,𝑘𝐪𝐶,𝑘 + 𝐏𝐅𝑇,𝑘𝐏𝑇𝐪𝐶,𝑘 −  𝐏𝐅𝑇,𝑘𝐀𝐼,𝑇

−𝑇𝐐𝐼 + 𝐀𝑆𝐇𝑆,𝑘+1 + 𝐀𝑆,𝑅𝐇𝑅]           (18) 426 

With the same arguments that were used for the elimination of 𝐪𝑘+1 in Eq. (5) now Eq. (18) can be 427 

used for replacing the unknown flows 𝐪𝐶,𝑘+1 in the second row of Eq. (16):  428 

𝐀𝑆
𝑇𝐃𝑆,𝑘

−1𝐀𝑆𝐇𝑆,𝑘+1 = 𝐐̅𝑆+𝐀𝑆
𝑇𝐪𝐶,𝑘 − 𝐀𝑆

𝑇𝐃𝑆,𝑘
−1 [𝐅𝑆,𝑘𝐪𝐶,𝑘 − 𝐏𝐅𝑇,𝑘𝐀𝐼,𝑇

−𝑇𝐐𝐼 + 𝐀𝑆,𝑅𝐇𝑅]       (19) 429 

where 𝐅𝑆,𝑘 = 𝐅𝐶,𝑘 + 𝐏𝐅𝑇,𝑘𝐏𝑇 is analogous to Observation 1 c). By consideration of the fact that the 430 

term 𝐅𝑆,𝑘𝐪𝐶,𝑘 − 𝐏𝐅𝑇,𝑘𝐀𝐼,𝑇
−𝑇𝐐𝐼 is equal to the vector of head losses 𝐡𝑆,𝑘 of the superlinks at iteration k, 431 

Eq. (18) and Eq. (19) can be further simplified which finally leads to the main result of this paper. In 432 

other words, the results of the solution of the reduced set of equations of the topological graph 𝐺𝑆 433 

paper (Eq. (7) to Eq. (10)) are identical to the solution of the full set of equations for the core (Eq. (5)). 434 

This completes the proof. 435 

Consideration of control devices 436 

Real water supply systems typically include, in addition to the pipes of the network, a number of 437 

control devices and pumps for system operations. The devices are normally modelled as links and can 438 

be subdivided into devices with given local headloss functions (TCV: throttle control valves) or 439 

feedback control devices. The latter are used to control the flow and/or pressure by continuous 440 

adjustment of the hydraulic resistance. Flow control is used either for allowing only unidirectional 441 

flow (CHV) or maximum flow (FCV), whereas pressure control tries to maintain the downstream 442 

(PRV) or upstream (PSV) head at a given set value. In EPANET control device models are based on a 443 

set of heuristics that are described in the manual.  444 

A simple way to tackle one-way devices in the GMPA approach is to set the initial and end nodes to 445 

supernodes by definition. Then, the superlink consists of one link for the device only. The commonly 446 

used heuristics for control devices can then be applied directly. However, the GMPA approach also 447 

allows for consideration of flow control within a superlink. The only additional requirement is that the 448 



control device link with the flow inequality condition is chosen as the internal tree chord. In this case 449 

the flow of the device link is identical with the superlink flow in the global system. Therefore, the 450 

linear inequality can be transferred to the global step as inequality condition for the superlink flow. 451 

If there is more than one device with inequality flow constraints included in the superlink then three 452 

cases have to be considered locally. 1.) There are contradictions between the constraints. There is no 453 

solution to the original system or the reduced system. 2.) The constraints are redundant.  One device 454 

can be arbitrarily chosen. 3.) There are constraints that can never be active. Those that can be activated 455 

have to be identified. Note that the flows of any link can be always expressed by superposition of the 456 

internal tree chord flow and a constant local flow: 457 

𝐪𝑇 = 𝐏𝑇𝐪𝐶 − 𝐀𝐼,𝑇
−𝑇𝐐𝐼 458 

Therefore, the constraints (inequality or equality for gate valves) can be transferred from any link to 459 

the superlink flow.  460 

Example: Assume that there is an inequality flow constraint representing a check valve in tree link 𝑗 461 

that belongs to superlink 𝑖, then: 𝐪𝑇,𝑖,𝑗 ≥ 0, which is equivalent to [𝐏𝑇]𝑖,𝑗𝐪𝐶,𝑖 − [𝐀𝐼,𝑇
−𝑇𝐐𝐼]𝑖,𝑗 ≥ 0. 462 

[𝐏𝑇]𝑖,𝑗 is +1 or -1 depending on the direction of flow in link 𝑗 with respect to the direction of 463 

superlink 𝑖. The inequality condition for the superlink can now be written as 𝐪𝐶,𝑖 ≥ [𝐏𝑇]𝑖,𝑗[𝐀𝐼,𝑇
−𝑇𝐐𝐼]𝑗. 464 

That means that only the right hand side of the inequality has changed As a consequence, even if the 465 

control link changes within the superlink (for example by closing different gate valves) there is no 466 

need to re-calculate the decomposition.  467 

 468 

EXAMPLE 469 

The system shown in Figure 1 is now used to illustrate the GMPA method. After forest – core –470 

partitioning the core network (shown in Figure 4) consists of one reservoir (R) and eight demand 471 

nodes (a through h). There exist two nodes a and b that connect more than two pipes (degree > 2). 472 

Therefore node a and node b are the supernodes of the network graph. The supernodes are connected 473 

by three superlinks. The pipe and node properties of the core are given in Table 1 and Table 2.  474 

The first column in Table 1 refers to the pipe ID, L is the length in meters, D is the inner diameter of 475 

the pipe in millimeters, C denotes the Hazen-Williams coefficient and 𝐪0 is the initial guess of the 476 



flows. The first column in Table 2 shows the identifier of the node and Q is the demand. A negative 477 

sign means withdrawal. The last column shows the elevation of the node. With the parameters shown 478 

in Table 1 and Table 2 including the internal tree flows as initial flow distribution q0, the flow iterates 479 

of the new GMPA algorithm are as shown in Table 4. Note that the last four rows (for links 8, 9 10 480 

and 1) refer to the internal tree chords representing the superlinks. The flows of the upper six internal 481 

tree branches (links 2, 3, 4, 5, 6 and 7) are a linear function of the flows of the chords (Eq. (9)). The 482 

reordered and partitioned incidence matrix of the original network graph is in compliance with Eq. 483 

(11) and is: 484 

 485 

                                      Nodes   a     b     c       d       e       f        g       h       Links  486 

             𝐀 = [
𝐀𝑆,𝑇 𝐀𝐼,𝑇

𝐀𝑆,𝐶 𝐀𝐼,𝐶
] =

[
 
 
 
 
 
 
 
 
 
−1 0 1 0 0 0 0 0
0 0 −1 1 0 0 0 0

−1 0 0 0 1 0 0 0
−1 0 0 0 0 1 0 0
0 0 0 0 0 −1 1 0
0 0 0 0 0 0 −1 1
0 1 0 0 −1 0 0 0
0 1 0 −1 0 1 0 0
0 1 0 0 0 0 0 −1
1 0 0 0 0 0 0 0 ]

 
 
 
 
 
 
 
 
 

      

2
3
4
5
6
7
8
9
10
1

  487 

The resulting topological matrices of graph 𝐺𝑆 (taken from the 6 by 6 block of the upper right corner 488 

of the A matrix above and inverting the matrix analytically, Figure 5) are: 489 

𝐀𝐼,𝑇
−1 =

[
 
 
 
 
 
1 0 0 0 0 0
1 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 1 0
0 0 0 1 1 1]

 
 
 
 
 

,         𝐏 = −𝐀𝐼,𝐶 𝐀𝐼,𝑇
−1 = [

0 0 1 0 0 0
1 1 0 0 0 0
0 0 0 1 1 1
0 0 0 0 0 0

], 490 

𝐀𝑆 =  𝐀𝑆,𝐶 + 𝐏𝐀𝑆,𝑇 = [

−1 1
−1 1
−1 1
1 0

] ,         𝐀𝑆,𝑅 =  𝐀𝑅,𝐶 + 𝐏𝐀𝑅,𝑇 = [

0
0
0

−1

] 491 

𝐐̅𝑆 = −𝐀𝑆,𝑇
𝑇 (𝐀𝐼,𝑇

𝑇 )
−1

𝐐𝐼 + 𝐐𝑆 = [
Qc + Q𝑑 + Q𝑒 + Qf + Q𝑔 + Qh

0
] + [

Qa

Qb
] = [

−340
−20

]      [
𝑚3

ℎ
] 492 

The demands of the supernodes and the internal nodes are included in 𝐐̅𝑆. The reallocation of the 493 

interior demand nodes is given by Eq. (6a) and depends on the choice of the internal tree chord. In the 494 

example, the last link (connected to node b) of every superlink is chosen as internal tree chord. As a 495 



consequence, the demands are all allocated to the upstream node, a. However, in general, the choice of 496 

another internal link as internal co-tree link can be useful, especially if control devices have to be 497 

considered. In such a case, by the application of Eq. (6a), parts of the interior node demands are 498 

allocated to the upstream supernode, and the other parts are allocated downstream. 499 

The global/local factoring brings certain advantages when considering flow constraints associated with 500 

control devices For example, suppose that a check valve is placed on pipe 6 allowing flow only from 501 

node f to node g. Suppose also that a check valve is placed on pipe 7 allowing only flow from node h 502 

to node g. Pipe 6, for example, could be selected as the internal tree chord of the superlink that 503 

consists of link 5, 6, 7, 10. Then, the demand allocation is as follows: 504 

𝐐̅𝑆 = −𝐀𝑆,𝑇
𝑇 (𝐀𝐼,𝑇

𝑇 )
−1

𝐐𝐼 + 𝐐𝑆 = [
Qc + Q𝑑 + Q𝑒 + Qf

Q𝑔 + Qh
] + [

Qa

Qb
] = [

−190
−170

]      [
𝑚3

ℎ
] 505 

When considering the constraints of the two check valves it is sufficient to consider the local 506 

subsystem of the superlink. Furthermore, the flows of the superlink can be expressed as a linear 507 

function of the internal tree chord flow q6 and the internal tree flows (which result from the interior 508 

node demands): 509 

q5 = −𝑄𝑓 + 𝑞6, q6 = 𝑞6, q7 = 𝑄𝑔 + 𝑞6, q10 = 𝑄𝑔 + 𝑄ℎ + 𝑞6. The two check valves are modelled by 510 

the following linear inequalities: q6 ≥ 0, q7 ≤ 0  ⟺ 𝑄𝑔 + 𝑞6  ≤ 0  ⟺ 𝑞6  ≤  −𝑄𝑔. It follows that 511 

𝑞6 ∈ [0;−𝑄𝑔]. Note that the demand (withdrawal at node g) has a negative sign. Therefore −𝑄𝑔  is 512 

positive. This means that the two check valves in the original network (and the local system of the 513 

superlink) have been modelled, in a preliminary step, by lower and upper bound constraints for the 514 

flow of the superlink. The global solution can be calculated by any existing technique which models 515 

control devices (see, for example Rossman (2000)). The flows are checked in case they exceed the 516 

upper or lower bounds. If they do, the flow in the superlink is set to the corresponding boundary value 517 

(in the example this is link 6 and its flow would be set to 0 for the lower bound, or −𝑄𝑔   for the upper 518 

bound.)  519 

One advantage of the GMPA is that the local subsystems can be checked independently. Infeasible 520 

conditions can be detected before the iteration starts. In the example, such an infeasible condition 521 

occurs if the check valve of link 6 is replaced by an FCV and the direction of the CHV at link 7 allows 522 



flow only from node g to node h. Thus, the conditions q6 ≤ 𝑞𝑆𝑒𝑡 , q7 ≥ 0  ⟺ 𝑄𝑔 + 𝑞6  ≥ 0  ⟺523 

 𝑞6  ≥  −𝑄𝑔apply. The constraint is now −𝑄𝑔 ≤ q6 ≤ 𝑞𝑆𝑒𝑡. If the maximum flow 𝑞𝑆𝑒𝑡 for 𝑞6 is 524 

smaller than the withdrawal at node g there is no feasible solution in demand driven analysis. In the 525 

state of the art package EPANET similar configurations often result in failure to converge or in 526 

unrealistic results because of the singularity of the Jacobian matrix. GMPA analysis of the local 527 

subsystems can detect infeasible sets of constraints a priori. 528 

.The reduction of the size of the problem by application of FCPA and GMPA is shown in Table 3. The 529 

size of the final system dealt with in the GMPA is only 8% of the original network.  530 

 531 

CASE STUDIES 532 

Nine case-study networks, with between 900 and 64,000 pipes, and eight of which were considered in 533 

Simpson et al. (2014), illustrate the significant reduction achieved by GMPA in the size of the 534 

nonlinear problem that must be solved. Table 5 shows, for these networks, the basic dimensions of the 535 

nonlinear part of the problem before the forest-core partitioning, after the forest-core partitioning, and 536 

after the graph matrix partitioning step of the GMPA: the resulting problems have dimension between 537 

5% and 55%, with a mean 27% (a 73% reduction in dimension), of the core dimension that results 538 

from application of the forest-core partitioning.  539 

The data for case study networks N1, N3, N4 and N7, which are slight modifications of networks in the 540 

public domain, are available as Supplemental Data Files.  The other four networks considered in this 541 

paper are not available because of security concerns. 542 

 543 

CONCLUSIONS 544 

The Graph Matrix Partitioning Algorithm (GMPA) developed in this paper, when applied to networks 545 

that have many core pipes in series, can save a significant computational effort by reducing the size of 546 

the problem for the most time consuming part of the calculation. The FCPA step, applied before the 547 

main GMPA step, separates the forest from the core, thereby reducing the dimension of the non-linear 548 

part of the problem when a forest is present. The GMPA step, the separation or partitioning of the 549 

topological subgraph from the core, further separates linear and nonlinear parts of the problem and 550 



further reduces the dimension of the non-linear part of the problem when there are pipes in series 551 

within the core. These two steps, which separate out the linear and non-linear parts of the problem and 552 

then deal with them using appropriate linear and non-linear methods, save much time that is otherwise 553 

wasted applying non-linear techniques to problems which have significant linear components. 554 

 555 

The permuted system is decomposed into a global solution for the maximal topological subgraph 556 

𝐺𝑆 and a local solution for the internal trees with nodes of degree two. The iterative solution of the 557 

smaller system of equations of 𝐺𝑆 in combination with the linear local steps gives identical results to 558 

those obtained from the standard solution to the full network system. There are no approximations. 559 

The equivalence of the GMPA and the original set of equations has been proven.   560 

Real world applications have shown reductions from 5,000 unknown in the system of equations to 150 561 

or even 230,000 unknowns to 10,000 unknowns. On average, the number of unknowns in the 562 

nonlinear (core) part of the problem for the systems tested was less than 20% of the original size. The 563 

case studies reported in Table 5 show that GPMA achieves a reduction to between 5% and 55% of the 564 

core dimension that results from application of the FCPA. In the GMPA method, all the important 565 

properties of the system matrix of the original system are retained (sparse, symmetric, Stieltjes matrix) 566 

and the same efficient factorization methods can be applied to the reduced system.  567 

Last, but not least, the linear mapping between topological subgraph and original graph can be used 568 

for other applications. The aggregation methods for simplification of large networks can be replaced 569 

by an adaptive modelling based on the topological subgraph. As a consequence, the process of 570 

updating existing models from GIS is much easier since the one to one mapping between GIS features 571 

and network model features is always valid and not lost by aggregation.  572 

 573 

The focus of this paper is on the derivation of, and the theoretical basis for, the GMPA method. The 574 

efficiency of a production implementation of method depends on many factors, including, for 575 

example, the architecture of the computing platform and the coding language.  The global and local 576 

steps can be handled separately: by separate program codes or even on separate architectures. In the 577 

case where a coarse grid approximation to the solution is all that is required, the user can simply solve 578 



the global step: the method can be used in the same way as common aggregation techniques that 579 

calculate an approximate solution Where the complete solution is required the local and global steps of 580 

the GMPA can be implemented by different codes or on even on different architectures. Where 581 

separate architectures are used for the global and local steps the data exchange required is minimal, a 582 

significant advantage of the GMPA. Thus, an existing nonlinear solver code can be used by adding to 583 

it a separate package to handle the local step in the algorithm. The GMPA is also well suited to handle 584 

the inclusion of control devices and parts of the method are well suited to parallelization.  585 

Further research in the application of GMPA to the solution of pressure dependent models would 586 

be a useful contribution to the field. Another contribution to the field would be a comprehensive study 587 

of just how large would be the time savings available by use of the GMPA. Study of these issues is 588 

well beyond the scope of this paper. 589 
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 596 

APPENDIX A: Calculation of permutation matrices  597 

The system in Eq. (12), in which the matrix, 𝐀, on the left has its rows and columns permuted in the 598 

required order, as shown in Eq. (11), and the matrix, 𝐃, is diagonal, can be obtained from the original 599 

system (Eq. (5)Error! Reference source not found.) as follows. Suppose the original system is 600 

[ 𝐃̂ 𝐀̂
𝐀̂𝑇 𝟎

] [
∆𝐪̂

∆𝐇̂
] = [

𝑑𝐄̂
𝑑𝐐̂

]              (A.1) 601 

and that the 𝑚 × 𝑛 incidence matrix 𝐀̂ (𝑚: total number of links, 𝑛: total number of nodes) has its 602 

rows and columns in an order different from that which is required. Suppose 𝐑 ∈ ℝ𝑚×𝑚 and 𝐒 ∈603 

ℝ𝑛×𝑛  are (orthogonal) permutation matrices which are such that 𝐑𝐀̂𝐒 has its rows and columns in the 604 

required order. Then, multiplying (A.1) on the left by 605 



[𝐑
𝐒𝑇] 606 

and inserting the product  607 

[𝐑
𝑇

𝐒
] [

𝐑
𝐒𝑇] = 𝐈 608 

between the matrix and vector on the left gives 609 

[𝐑
𝐒𝑇] [ 𝐃̂ 𝐀̂

𝐀̂𝑇 𝟎
] [𝐑

𝑇

𝐒
] [𝐑

𝑺𝑻] [
∆𝐪̂

∆𝐇̂
] = [𝐑

𝑺𝑻] [
𝑑𝐄̂
𝑑𝐐̂

],       (A.2) 610 

Denoting 611 

𝐀 = 𝐑𝐀̂𝐒, 𝐃 = 𝐑𝐃̂𝐑𝑇, ∆𝐪 = 𝐑∆𝐪̂, ∆𝐇 = 𝐒𝑇∆𝐇̂, 𝒂𝟏 = 𝐑𝒂̂1, 𝒂2 = 𝐒𝑇𝒂̂2 612 

means that (A.1) can be rewritten as 613 

[
𝐃 𝐀
𝐀𝑇 𝟎

] [
∆𝐪
∆𝐇

] = [
𝑑𝐄
𝑑𝐐

],         (A.3) 614 

the system in Eq. (12) with consideration of Eq. (11) in which 𝐀 has its rows and columns permuted as 615 

required. By multiplication of the incidence matrix with the matrix 𝐒 the columns that belong to 616 

supernodes are separated from the columns that belong to inner nodes. Matrix 𝐒 can be easily 617 

determined by traversing the network nodes and selecting first all the 𝑛𝑆 nodes that have degree > 2 618 

followed by the rest of the nodes.  619 

Multiplication by matrix 𝐑 separates the internal tree branches of the superlinks from the internal co-620 

tree chords.  621 

622 
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Table 1: Pipe properties of core of example network (after application of the FCPA) 

Pipes  L [m] D [mm] C [-] /h]3[m 0q 

1 1111 011 111 1 

2 1111 211 111 71 

0 1011 101 111 41 

4 1211 211 111 01 

0 011 211 111 211 

6 011 101 111 101 

7 011 101 111 01 

0 1211 111 111 1 

9 1111 111 111 1 

11 011 111 111 1 

 

  



Table 2: Node properties of core of example network (after application of the FCPA) 
Nodes /h]3Q[m [m] 0H 

a 11- 1 

b 21- 1 

c 01- 1 

d 41- 1 

e 01- 1 

f 61- 1 

g 71- 1 

h 01- 1 

R 061 101 

 

  



 

Table 3: Reduction in size of the nonlinear problem by application of the GMPA method 
Step number of 

nodes 

number of 

links 

reduction of number of nodes 

[%] 

Original network Fig. 1 38 39 - 

After forest-core partitioning. Fig. 2 9 10 76 

After topological partitioning (GMPA). Fig 3 3 4 92 

 



Table 4: Flow iterates of the GMPA (m3/s) 

k =   0 1 2 3 4 5 

2 0.01944 0.01859 0.02382 0.02508 0.02519 0.02519 

3 0.01111 0.01026 0.01548 0.01675 0.01685 0.01685 

4 0.01389 0.03868 0.02632 0.02286 0.02251 0.02250 

5 0.05833 0.03995 0.04709 0.04928 0.04953 0.04953 

6 0.04167 0.02328 0.03042 0.03262 0.03286 0.03286 

7 0.02222 0.00384 0.01098 0.01317 0.01342 0.01342 

8 0.00000 0.02479 0.01243 0.00897 0.00862 0.00861 

9 0.00000 -0.00086 0.00437 0.00563 0.00574 0.00574 

10 0.00000 -0.01838 -0.01124 -0.00905 -0.00880 -0.00880 

1 0.00000 0.10000 0.10000 0.10000 0.10000 0.10000 

  



Table 5: Network dimensions before forest partitioning (𝒎 pipes, 𝒏 nodes), after forest 

partitioning (𝒎̃ pipes, 𝒏̃ nodes), and after graph matrix partitioning (𝒎̂ pipes, 𝒏̂ nodes) together 

with partitioned dimensions as percentages 

ID 𝑚 𝑛 𝑚̃ 𝑛̃ 𝑚̂ 𝑛̂ 𝑛̃

𝑛
% 

𝑛̂

𝑛̃
% 

𝑛̂

𝑛
% 

N1 934 848 573 487 246 160 57 33 19 

N2 1118 1039 797 718 235 156 69 22 15 

N3 1976 1770 1153 947 547 341 54 36 19 

N4 2465 1890 2036 1461 1379 804 77 55 43 

N5 2508 2443 1806 1741 187 122 71 7 5 

N6 8584 8392 6734 6542 542 350 78 5 4 

N7 14830 12523 11898 9591 6405 4098 77 43 33 

N8 19647 17971 15233 13557 4878 3202 75 24 18 

N9 63829 59157 51845 47173 14228 9556 79 21 16 

 Means 71% 27% 19% 

 

.  



Captions of Figures: 

 

Figure 1: Example network graph.  

Figure 2: The core of the example network graph (after forest-core partitioning) 

Figure 3: Links and nodes of a superlink. 

Figure 4: Labelled core of the example network graph. 

Figure 5: Topological minor (topological subgraph) of the core of the example 
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E F G H I

1.) supernodes (E, I)

2.) internal tree nodes (F, G, H)

3.) internal tree branches (EF, FG, GH) (E to H is the internal tree)

4.) internal co-tree chord (HI)

5.) superlink (EI)
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