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A hybrid model predictive control scheme for energy and cost savings
in commercial buildings: simulation and experiment

Hao Huang Member, IEEE, Lei Chen, Member, IEEE, and Eric Hu

Abstract—This paper presents a hybrid model predictive
control (MPC) scheme for energy-saving control in commercial
buildings. The proposed method combines a linear MPC with
a neural network feedback linearisation (NNFL) method. The
control model for the linear MPC is developed using a simplified
physical model, while nonlinearities associated with the building
system are handled by an affine recurrent neural network
(ARNN) model through system feedback. The proposed MPC
integrates several advanced air-conditioning control strategies,
such as an economizer control, an optimal start-stop control,
and a pre-cooling control. The developed MPC has been tested
in the check-in hall of T-1 building, Adelaide Airport, through
both simulation and field experiment. The result shows that the
proposed control scheme can achieve a considerable amount of
savings without violating occupants’ thermal comfort.

I. INTRODUCTION

Buildings are responsible for 40% of the energy consump-
tion and 33% of carbon dioxide emissions in the world [1].
Within the buildings, almost half of the energy use is related
to heating, ventilation, and air conditioning (HVAC) systems.
Reducing the building energy costs has become an urgent
task due to the increasing environmental concerns and energy
prices.

The traditional HVAC control strategies, such as
proportional-integral-derivative (PID) control and on/off con-
trol, use the current indoor temperature as an input to control
local actuators such as chilled water valves. Due to the
thermal inertia of the buildings, HVAC may respond to
indoor temperature change with a significant time delay.
This causes over-heating (cooling), high on-peak electricity
demand and poor thermal comfort in the buildings. In recent
years, researchers have demonstrated that these issues can
be solved by implementing model predictive control (MPC)
21, 131, [4], [5], [6]. MPC utilises information of weather
forecast, occupancy prediction, and time-varying electricity
price, to minimise the energy costs and improve the thermal
comfort in buildings.

To build control-oriented models for MPC, resistance-
capacitance (RC) networks, based on the first principle of
thermal dynamics, are employed for the modelling of the
thermal dynamics of the building [7], [8], [6], [9], [10].
RC networks use lumped capacitance and resistance in an
analogy electric circuit to represent the thermal elements of
a building. The resultant models can be transformed into
state-space forms, so that a standard MPC can be utilised.
However, when implemented for real-world buildings, such
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Fig. 1: Check-in hall at level-2 of Adelaide airport

approaches face application problems, mainly because the
thermal dynamics of a real building is nonlinear in character-
istic and contains several uncertainties. An alternative mod-
elling approach is artificial neural network (ANN) model. It
has been shown that ANN models outperform both physical
and statistic models in modelling building temperature [11],
[12]. Tt can also be used to design nonlinear MPC for real
buildings [13]. However, when ANNs are used in an MPC,
two major drawbacks arise: 1. A non-convex optimisation
problem must be solved to calculate the control sequence,
which is computationally demanding. 2. Model performance
cannot be guaranteed when the system is running outside the
operational range.

This paper aims to propose an MPC scheme based on
neural network feedback linearisation to achieve energy and
cost savings in commercial buildings. The approach exploits
the universal non-linear approximation ability of ANN and
reliability of the classical MPC techniques. The control
model is built using a simplified physical model, which
allows a linear programming optimisation to be applied.
Nonlinearity of the system is handled separately using an
affine neural network model. Although this control scheme
has been studied before [14], [15], it has not been used for the
building energy control yet. We use such an MPC framework
to evaluate the energy saving potential of two advanced air-
conditioning control approaches: An optimal start-stop MPC
and a pre-cooling MPC, by both simulation and experiment.

II. MODELLING

A. Thermal dynamics modelling

The test building is the T1 building of Adelaide Airport,
South Australia. The check-in hall located at level 2 of
the building is selected as the experimental area. Fig. 1
shows the external appearance of the investigated zones. The
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Fig. 2: Thermal network diagram for a double-zone case

selected zones are isolated from the outdoor environment by
a large glass facade to the north. The investigated zones are
lightweight in structure, because it has a significant thermal
coupling with the outdoor environment and the adjacent
space. The uncertainties such as solar radiation, internal
gain, leakage and thermal interaction make the modelling
work very difficult. In this work, thermal building models
are represented by a second order RC model. The thermal
network used to represent the building system is depicted
in Fig. 2. Before building the RC model, the following
assumptions were made:
1) The air in the zone is fully mixed, so that the temper-
ature distribution in each zone is uniform;
2) The density and flow rate of the air in the zones are
constant and not influenced by the temperature change.
3) The walls, floor and ceiling have the same effect on
the zone temperature. The windows have negligible
thermal capacitance.

Based on the above assumptions, energy and mass balance
governing equations for zone 1 can be written as:
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where C, is overall thermal capacitance of the air and
other fast-response elements, C,, is thermal capacitance of
the interior-walls and ceiling , C, is the specific heat of
the air, 7z is the mass flow rate of the supply air, 77 is
temperature of the investigated zone, 75 is temperature of the
neighbouring zone, Ty, is the outdoor air temperature, Ty, is
the supply air temperature, T, is mean surface temperature of
the interior walls, ceiling and floor, Q), is internal heat gain
from occupants, and Q, is heat gain from solar radiation.
Qp and Q, are modelled by an affine function of carbon
dioxide concentration (ppm) and global horizontal irradiation
(W /m?), respectively [16]. The parameters associated with
these two variables (o and ) are identified together with
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Fig. 3: Simulation results of using RC model

Equations. (1) and (2) are discretized by using the Euler
method to obtain an innovation represenationt state-space
form [17] as:

Xk+1 = Axy + Buy + Edy, + key, 3)

where x = [T;,T,,] € R? is the states vector, u = [Ty, 1] € R?
is the input vector, d = [T,u,Qp, 0 € R3 denotes environ-
mental variables, ¢; € E? denotes the feedback vector which
contains the estimated unmeasured disturbances (such as heat
gain due to door opening), and k is the Kalman gain. During
the identification process, the initial values of [R,, Rg, R.,
C;, Cy, o, B] are estimated based on the material properties
and geometry of the surfaces surrounding of the selected
zone first. A nonlinear least squares algorithm is used to
identify unknown parameters. The data used for training and
validation were collected from BMS between the 1st and 31st
of January 2013. The meteorological data obtained from the
Bureau of Meteorology of Australia is used as a prediction
for outdoor temperature and global horizontal irradiation.
Fig. 3 shows that the RC model achieves a fitness of 72%
(normalised relative mean squared error) when an open-loop
simulation is conducted.

B. AHU system

The building is controlled by a Johnson Controls Australia
Pty Ltd building management system (BMS). At the zone
level, air handling units (AHUs) transfer the cooling energy
from the chilled water circuit into airflows, and then supply
to the local thermal zones. The AHUs are with a constant
air volume (CAV). The control system uses a proportional
control rule to regulate chilled water valves, to maintain
the zone temperature at the desired value. The AHUs are
installed with an economizer: when the zone temperature is
lower than the return air temperature but higher than 12°
C, the economizer will open the outdoor air damper more
widely to employ cool ambient air for free cooling.

To compute the energy consumption of the individual
AHUs, we use a series of simplified models to estimate it:

ATC - (1 - Dout)Tr + Dout Tnut - Tma (4)
mC,AT,
= 5
¢~ "Ccop ' )
Py = C, +Cyrin+ Corit?, (6)

where P. is the power consumption related to the cooling
energy consumed by the cooling coils, 71 is the flow rate of
the air passing through the cooling coil, C, is the specific



heat of the supply air, AT, is the temperature change of the
supply air after the heat exchange occurred at the cooling
coil, COP is coefficient of performance of the chiller plant,
Dy, is the opening level of the outdoor air damper, 7, is the
return air temperature, Py is the energy consumed by supply
fan, and C, to C, are parameters related to the fan energy.

C. Neural network feedback linearisation

The building model developed previously is nonlinear,
because the supply air flow rate 7z is multiplied by the supply
air temperature 7y,, making the energy input a bilinear term.
Also, the supply air temperature is affected by the change of
chilled water temperature and flow rate within the main water
loop. This results in a non-convex optimisation problem
which is hard to solve. To solve the issue, we employ a neural
network feedback-linearization (NNFL) based MPC scheme
[14]. The idea of this approach is to cancel the system
nonlinearity using neural network through feedback, so that
the problem can be solved using a reliable and fast linear
MPC. The design of MPC consists of two steps: nonlinear
functions approximation and controller design. The control
is illustrated in Fig. 4. We firstly linearise the system input
as:

Qu = mca(Tsa - T1>7 (7)

where Q, denotes the thermal energy supplied to the room.
However, Q, is not the actual cooling energy consumed
by the AHU, because when economizer is activated, cool
ambient air will contribute fully or partially to the cooling
load. The actual energy consumed by cooling coil is:

Qr = Qu - Doutmca(Tr - Tout)a (8)

where Q, denotes the actual energy consumed by the AHU
system. From Eq. 8, it can be seen that when the ambient
temperature is lower than the return air temperature, it is
desired to open outdoor damper as widely as possible, so
that Q, is minimised. Therefore, in this study, we set the
outdoor air damper to be fully open after the economizer is
activated, to maximise the use of free cooling energy.

We then use an affine neural network model to approx-
imate the system dynamics [14], [15]. In an affine neural
network model, the input-output relationship appears linearly
as a state-space description. In such a way the neural model
has a similar model structure to a linear state-space model.
The building process can be modelled by an affine recurrent
neural network (ARNN) in discretized form as

Yk+1) = fulVks > Yk—na) +8n(Vks > Vi, )u (k)
+hn()’k» "7yk7np)d(k)7

where y, u and d denote the output, controllable input and
measurable disturbance, respectively. f;, g, and h, are three
neural networks with the orders of n,, n, and n., respectively.
All the neural networks use multilayer perceptron (MLP)
neural network function. The hidden layer uses tangent
hyperbolic as the activation function. We trained the ANN
model using a Levenberg-Marquard algorithm to minimise
the mean squared errors (MSEs) between the predicted and
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Fig. 5: Simulation results of using ANN model

actual values. After several trails of training, the final model
was determined with the orders: n,=3, n,=2, and n.=1. The
simulation results of applying the ARNN for temperature
prediction is illustrated in Fig. 5. One can observe that the
simulation error (82% of fitness) is smaller than the RC
model. By equalising (3) to (9), the following equation is
built:

Jn ks Yi—15Yk—2) + &n (Vs Vi1, Yi—2) g
+h (yi, Yi—1)dy = Ay + By + Ed,

where u; denotes the real control input (7y,), d is a vector
containing disturbance variables. After the control signal v is
calculated by a standard MPC, the real control signal u can
then be calculated by (10). Fig. 6 shows the result of applying
this approach to calculate u (set point temperature) from v
(supply cooling energy). It can be seen that the estimated u
matches the recorded set point values with good accuracy.

(10)

ITIT. CONTROL DESIGN
A. MPC design
The ASHARE standard 55 [18] defines comfortable tem-
perature as a range of temperature values instead of a
fixed value. Therefore, the cost function should allow indoor
temperature to fluctuate within a specific range during the
occupied hour. In this study, MPC is designed as a linear
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Fig. 6: Mapping from v to u using feedback linearisation



programming problem with time-varying constraints on ther-
mal comfort and energy costs. The cost function used in this
paper is employed from [7], [16]. The following optimisation
problem is considered:

N—-1 N

J(k) =a Y, pel Vs jik) + Prir i 0 Y P jie — T jiul
=0 =1

N
+e Y (e il + @ jie)
k=1
1D
subject to:

Vj=0,.,N—1
Vj=1,...N

Xt jr 1k = AXpp jik + BVicy jik + Ediy jiks
Yierjlk = Cxjiis
Tiyjik— € jik < Virjik < Thwjie t e jis Vi=1,...N

Ut jik < Vs jje <0, Vj=0,..,N—1
i jik > 0. >0, Vj=1,.,N
(12)

where N is the prediction horizon, v is a vector of the
control inputs within the prediction horizon, §i, ; is the
predicted output at time k, which is obtained by iteratively
solving (12) using the control input vector v, Py is the
energy consumed by the supply fan, and r is the reference
temperature. e and e are the temperature violations from the
lower and upper comfortable temperatures, respectively, and
T and T are the lower and upper comfortable temperatures,
respectively. U denotes the maximum cooling energy that
the system can supply, which is a negative value as a
cooling system is considered. p, denotes the time-varying
electricity price in dollars per kWh. The cost function (11)
minimises a weighted sum of the energy costs, the deviations
from the set point temperature, and the deviations from
the comfortable bands. These terms are penalised by the
weighting coefficients a, b, and c, respectively.
The constraints are:

1) T,. € [21.5 °C, 24 °C] Thermal comfort during occu-
pied hours.

2) T, € [19.5 °C, 26 °C] Thermal comfort during unoc-
cupied hours.

3) O, €[0, 12 kW] Maximum cooling energy that can be
supplied to each zone.

4) Dy €[20%,100%] Outdoor damper should meet the
minimum amount of supply air requirement.

The constraints for the refined control inputs Q, are
calculated by (4) and (5) using the historical data. As
the time step progresses, the time-varying constraints on
thermal comfort shift forward. This guarantees a smooth
transition from occupied hour to unoccupied hour, without
violating temperature constraints. The linear programming
optimisation problem (12) is solved using Yalmip [19], which
generates an optimised input variable trajectory. The first
control signal uy); is applied to the building, and the rest are
disposed. When a new time interval starts, the optimisation

TABLE I: Electricity rate of a T-1 building

Time of the day
7:00 am-9:00 pm
All other

Energy charge($/kWh)
0.090
0.024

peak
off-peak

problem is repeated again with the updated initial condition
Xr+1 and shifted constraints.

IV. RESULTS AND DISCUSSIONS
A. Simulation setup

Before incorporating the proposed control method in an
on-line experiment, we first tested it under a simulation
environment. The objective is to properly calibrate the pa-
rameters of MPC to reduce the possible errors of running
the experiment. A commonly applied approach to conduct
simulation is to replace the real building by a detailed
physical model [6]. In this study, we use a feed-forward
neural network model to achieve the same purpose. Since
the output of the neural network is very similar to the real
output, the simulation result will be close to the experiment.
This enables a reliable tuning to be performed before the
algorithm is applied to the real building.

Beforehand, some key parameters were configured: The
basic requirement of MPC is to maintain the indoor temper-
ature between 21.5 °C to 24 °C during the occupancy hours,
which is from 5:00 am to 9:30 pm. The building uses two
electricity rates, which are shown in Table I. The weighting
coefficients of the cost function were found empirically as:
a=0.8, b=1, and c=1. The prediction horizon was set to be
6 hours (36 steps). We chose the historical profile from
24th to 25th January, 2013 for comparison purposes. In
particular, we compare the following two types of MPC with
the baseline control method:

1) Optimal start-stop MPC considers time-varying con-
straints and real-time flight schedules.

2) Pre-cooling MPC (PMPC) considers time-varying con-
straints and time of use (TOU) electricity price.

B. Simulation results

Fig. 7(a) shows the control results of applying the optimal
start-stop MPC. It illustrates that, in the morning, MPC
turns on the AHUs later than the baseline control so that
the temperature reaches the upper comfortable temperature
at the start of occupancy. Similarly, before the end of
the occupancy, MPC turns off the AHUs earlier, but the
temperature does not exceed the upper temperature band.
Whenever the building is unoccupied during the daytime,
the cooling supply of the AHUs will also be turned off to
conserve energy. This explains why the AHU stops supplying
cooling energy between 6:00 am and 12:00 pm. It is shown
that this simple optimal start-stop MPC achieves up to 41%
of energy savings compared to the baseline control method.

The second simulation considers PMPC. Fig. 8(e) shows
that the morning ambient temperature was low on the inves-
tigated day. As a consequence, the baseline control waited
passively until the zone temperature started to increase to
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Fig. 7: Comparison results between baseline control and
optimal start-stop MPC.

provide cooling energy. In opposition, PMPC pre-cools the
temperature to 21 °C after the AHU was turned on, as shown
in Fig. 8(a). Obviously, the PMPC takes advantage of cheap
off-peak electricity prices to precool the building’s thermal
mass and to store cooling energy. Fig. 8(b) shows that the
pre-cooling process ended before the peak hour started (7:00
am). After 7:00 am, the AHUs were turned off and the stored
cooling energy started to release, so that very little cooling
energy was needed to compensate for the increasing heat
gains during the daytime. Fig. 8(c) shows that the process
of pre-cooling does not require too much cooling energy,
because more free cooling energy has been employed by the
MPC.

C. Experiment results

After the simulation, a filed experiment was conducted to
test the functionality of PMPC. The optimal start-stop MPC
was not tested experimentally because its benefits can be
directly observed from the simulation study. The real-time
experiment was executed over a period of 4 days, from 23th
January to 27th January, 2014. During the experiment, the
data used for training were downloaded from the BMS a day
ahead of the experiment. After the data were obtained, the
MPC algorithm was executed to calculate the optimal set
point temperature trajectory, based on the weather forecast
data. The new set point was then scheduled to the BMS by
the building manager. To better compare the performance
of MPC with the baseline control method, we chose 10th
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Fig. 8: Comparison results between baseline control and
PMPC

January, 2014 as the reference day. On this day, the outdoor
temperature, initial zone temperature, and occupancy level
were all similar to 23th January, 2014; therefore, we can
make a fair comparison between the two control methods. We
only compare the energy use between 3:00 am and 6:00 pm,
considering there is a big difference in outdoor temperature
starting from 6:00 pm (see Fig. 9(c)). Fig. 9(a) compares
the zone temperature trajectory between the baseline control
and MPC. Similar to the simulation, MPC decreased the
temperature to the lower band of 21 °C before the start of the
peak hour. Fig. 9 (b) depicts the cooling energy consumed by
the AHUs. It can be seen that MPC has partially shifted the
cooling load from on-peak hours to off-peak hours, at the
cost of consuming more off-peak energy. As the ambient
temperature was not too low (22 °C), the benefit from
applying free cooling was relatively smaller than simulation.
However, the cheap off-peak electricity price allows the pre-
cooling process to be performed at a very low cost. By
calculation, it is estimated that 13% of cost savings were



- = =MPC
o 251 —_— Base\ir}e control ~S_o=~
c: o4 Occupied hour ]
© '
5 281 \ - Ntcon~ B
o \
@ 221 T
Q - 1
§ 21t Sy i
201 N
. . I . . . . . . . . .
0 2 4 6 8 10 12 14 16 18 20 22 24
Time in hour
(a) Zone temperature
10 T T T T T T T T T T T
- - =MPC
8r K= Baseline control|
1
g - ]
£ !
= 1
g 1
2F 1 4
1
0 L ! L L L
0 2 4 6 8 10 12 14 16 18 20 22
Time in hour
(b) Power consumption
a5 T T T T T T T T T T T ™
e - = = Exeprimental day
-i f L— Reference day 1
3
[
8 25 1
£
3
20 . ) . . . . . . -

. . .
0 2 4 6 8 10 12 14 16 18 20 22 24
Time in hour

(c) Outdoor air temperature

Fig. 9: Control performance between two homogeneous days

TABLE II: Comparison of performance between baseline
control and PMPC from 3:00 am to 6:00 pm

Controller Total energy in-  Utility costs ($)
put (kWh)

Baseline control(10th Jan.) 423 12.3

MPC(23rd Jan.) 447 10.7

achieved as compared to the baseline control when MPC
was used during the comparison period (see Table II).

V. CONCLUSIONS

This study proposes an neural network feedback
linearisation-based MPC to achieve energy-saving for a
commercial building. An affine neural network model is
feedback-linearised through a state feedback, which converts
a nonlinear control problem into a linear control problem.
Two types of MPC schemes are investigated. The simulation
result shows that optimal start-stop MPC is an effective
method to save energy for the investigated building. This
method is especially useful for a building with several
occupancy sections within a day. On the other hand, when
the TOU electricity price is considered, the utility costs can
be reduced by using the PMPC. The savings mainly come
from the use of cheap off-peak electricity price and free
cooling energy. The experiment also shows that, due to the
lightweight property of the building, the benefits of applying
a pre-cooling strategy seem less significant, as compared
to other similar studies. Future work will investigate the
robustness of the control method to the modelling errors.
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