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Abstract

From the first recorded influenza pandemic in 1890, there have been new strains

of influenza which have caused pandemics approximately every 30 years including

recent events such as the H5N1 Avian ’Flu pandemic and the 2009 H1N1 Swine ’Flu

pandemic. Although the 2009 pandemic was mild in nature, if events of the past

are any indication then control of future pandemics is of utmost importance.

Vaccination is commonly looked at to help control the spread of a pandemic,

however, vaccinations are strain-specific. While developing a new vaccine is possible,

the World Health Organisation estimates that this process would take four to five

months. This means that vaccination cannot be used to help control the spread

of influenza early on in a pandemic. An alternative are antivirals which are not

strain-specific, meaning that they can potentially be used to help control the spread

of influenza early on in a pandemic. Antivirals are, however, not as effective at

reducing the spread of disease when compared to vaccination.

In the 2009 Swine ’Flu pandemic, many countries worldwide utilised antiviral

medication, with the aim to assist in controlling the spread of influenza. The most

common method in which these antivirals were utilised we refer to as dynamic

allocation. In dynamic allocation, when the first person in a household experiences

influenza-like symptoms, they report to a health professional. Then, a sample is sent

for laboratory testing. If the individual is confirmed to have influenza, the entire

household is allocated a course of antivirals and every member of the household

begins taking them. The potential weakness in this strategy is the delay between

becoming infectious and a household receiving antivirals.

xii



We consider an alternative antiviral allocation scheme which we call prealloca-

tion. In a preallocation scheme, instead of waiting for antivirals to be delivered after

the first confirmed infection, as is the case with dynamic allocation, the antivirals

are delivered to households at the beginning of the pandemic. When the first person

experiences symptoms, they contact a health professional via a telephone hotline.

The professional then decides if it is likely that the individual has influenza. If the

individual is likely to have influenza then the entire household starts taking antivi-

rals immediately, just as is the case in dynamic allocation. The advantage of this

scheme is that the delay is essentially zero, but there is the potential for the antivi-

rals to be wasted in at least two ways. First, this type of identification of infection

is clearly less precise than laboratory testing. Second, it is possible that antivirals

will be preallocated to a household who will never experience infection and so those

antivirals will essentially be wasted. It is this tradeoff that is the focus of this thesis.

The stochastic households epidemic model which is detailed and developed in this

work incorporates the household structure of a general population. This allows us to

incorporate the stronger mixing of individuals who share a household compared to

individuals in the general population, as well as the fact that antivirals are allocated

to an entire household when infection is first detected. To analyse this model, we

develop two approximations:

(i) A branching process approximation, and

(ii) a deterministic approximation,

that assist us in calculating quantities associated with a pandemic.

The branching process is very fast to compute, but due to required assumptions

in the derivation, it is only able to describe the early stages of the pandemic. The

branching process is able to rapidly compute quantities such as the Malthusian pa-

rameter, r, and the household reproductive ratio, R∗, but is unable to calculate

quantities such as the final epidemic size, that is, the total number of people in-

fected over the course of the pandemic.. The deterministic approximation does not

allow for as rapid evaluation as the branching process approximation, but is able



to approximately reproduce the entire expected pandemic curve, giving access to

quantities such as the expected final epidemic size. Both of these approximations

are fast to compute so we can explore a range of parameters and compare the two

allocation schemes—dynamic allocation and preallocation.

We show that preallocation of antivirals often leads to a smaller final epidemic

size than dynamic allocation for a severe pandemic outbreak, while a dynamic allo-

cation scheme often gives a lower Malthusian parameter, r, and household reproduc-

tive ratio, R∗. We provide a justification for this behaviour and demonstrate that

the results are relatively robust across the parameters controlling the pandemic. We

also consider a number of extensions to the deterministic approximation such as the

incorrect use of antivirals, a hybrid allocation scheme, and the production of antivi-

rals during the pandemic. Under these extensions, the general behaviour of the two

schemes—preallocation yielding a lower final epidemic size but dynamic allocation

yielding superior early-time quantities—is unchanged.



Chapter 1

Introduction

Influenza pandemics have occurred all throughout history. The Spanish ’Flu in

1918 was one of the worst influenza pandemics to date and killed an estimated 40

million people, almost 2.5% of the world’s population [57]. Every year the risk of an

outbreak of a novel strain of influenza is present, so it is of importance that plans

are available to facilitate the control of a potential pandemic.

Control measures that can potentially be used to help lower the impact of a

pandemic include vaccination, quarantine and isolation of infectious individuals,

travel restrictions and antivirals. Each of these control measures has associated

advantages and disadvantages. Vaccination is often thought of as the best method

to stop the spread of influenza, however vaccinations are strain-specific. This means

that vaccination is only effective against particular strains of influenza, and it is the

novel strains of influenza for which a vaccine does not already exist which cause

pandemics. While it is possible to develop a new vaccine for a novel strain of

influenza, the World Health Organisation estimates the time to do this to be at

least 5 months [75]. For the 2009 Swine ’Flu pandemic, the initial major outbreak

of infection happened approximately 2 months into the pandemic, as seen in Figure

1.1. This is before a vaccine would be available, and so should this behaviour occur

in future pandemics, vaccination would not be viable to use to help control the initial

spread of infection. So, while vaccination is very effective at creating (temporary)

1



CHAPTER 1. INTRODUCTION 2

immunity in susceptible individuals when available, it is infeasible to use for the

early stages of pandemic control.

Quarantine and isolation of infectious individuals is clearly very effective at pre-

venting the spread of infection, however, correctly identifying those who are infected

and isolating them before any new infection occurs is difficult and costly. This dif-

ficulty is due to the potential for individuals to be infectious without showing any

symptoms, a period of time which is known as the incubation period in epidemi-

ology [45]. Identifying infectious people in a timely manner is further complicated

because confirmation of illness requires laboratory testing, which adds a noticeable

delay to the identification process. While timely identification is important in all

control methods, quarantine will have no impact if infection is not identified quickly

enough.

Travel restrictions can be very effective at protecting pandemic spread between

regions, however, travel restrictions alone are generally unable to stop a pandemic in

isolation [24, 26, 27, 42]. In particular, Cooper et al. [24] determined that a reduction

of at least 95% to travel would be required in order to have any noticeable impact

on a pandemic. This, combined with the economics of restricting travel, suggests

that travel restrictions are not a viable control scheme in isolation for controlling

the spread of infection during a pandemic.

Antivirals, unlike vaccines, are not strain-specific, and so they are potentially

effective against many types of influenza. This means that there is no development

time, however, antivirals have a generally lower efficacy, or effectiveness, when com-

pared to vaccination. The fact there is no development time means that antivirals

may prove to be an effective first line of defence during an outbreak. Antivirals are

already a part of the Australian Health Management Plan for Pandemic Influenza

[22], and were utilised in Australia during the 2009 Swine ’Flu Pandemic [23]. An-

tivirals are believed to achieve two things: an infectious individual is less likely to

transmit infection when contact occurs with a susceptible individual, and an indi-

vidual who is not infected has a stronger immunity against infection, even when
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Figure 1.1: Number of new reported cases each month to the World Health Organ-

isation during the 2009 Swine ’Flu Pandemic [76]. After 5 months, countries were

no longer obligated to report every case. After 6 months, the data was no longer

presented as the estimates were deemed too inaccurate.

contact is made with an infectious individual who is not taking antivirals [36]. The

average duration that antivirals are taken for during a pandemic is approximately

5 days, with the potential for a second course if deemed necessary by a physician.

One recommended antiviral treatment, Oseltamivir, is estimated in two independent

studies to reduce the transmission rate and increase immunity to pandemic influenza

by approximately 30%, although this number is likely to be variable [36, 72].

1.1 Antiviral Allocation Schemes

The Australian Health Management Plan for Pandemic Influenza [22] details the

protocol by which antivirals will be used during an influenza pandemic. The allo-

cation scheme that is detailed is as follows: after an infectious person is identified

in a household that has not yet received antivirals, a course of antivirals will be

allocated and the entire household takes antivirals until the course is complete, re-
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gardless of the infection status of each individual inside the household. We call

this scheme dynamic allocation, as antivirals are ‘dynamically allocated’ throughout

the pandemic. The reason for the entire household taking antivirals, regardless of

whether each individual is infectious or not is because a noticeable proportion of

transmission occurs inside a household, and treatment to susceptible individuals,

known as prophylaxis, reduces the severity of the outbreak [50]. Under the dynamic

antiviral allocation scheme, the members of a household must wait until infection

is confirmed, generally requiring laboratory testing, before all the members in the

household begin taking antivirals. If this delay between becoming infectious and

the individuals in the household receiving antivirals is large, then the antivirals will

have little impact as the spread of infection will be complete before the antivirals

have begun being taken. It has been estimated that the median time until antivi-

ral treatment commenced during the 2009 Swine ’Flu pandemic was approximately

three to four days and that the mean infectious period for an individual was approx-

imately two to four days [29], meaning that there were some infectious individuals

who did not receive antivirals until they were no longer infectious. At this point, the

antivirals would have little to no effect on the pandemic as these infectious individ-

uals had already completed all of their transmission. Susceptible individuals in an

infected household would also experience a delay before antiviral treatment begins.

As a noticeable proportion of infection is believed to occur within a household, the

delay until the infectious individuals receive antivirals means that the susceptible

individuals experience the full force of infection from infectious individuals in their

own household. If the delay is large then there will be no reduction to the rate of

infection at the time when infection is most likely to spread inside a household. One

advantage of dynamic allocation, however, is that the antivirals will always be used

in a household that is likely to spread infection in the near future.

An alternative antiviral allocation scheme, called preallocation, can effectively

remove the delay from dynamic allocation but introduces some potential new issues.

Under a preallocation scheme, instead of waiting for doctor’s confirmation or lab-



CHAPTER 1. INTRODUCTION 5

oratory results, all antivirals are allocated to households in the population before

the pandemic begins. When an individual begins showing symptoms of influenza

they are diagnosed but in a potentially less precise way (in comparison to laboratory

testing), such as contacting a government phone help-line and talking to an expert.

If it is decided that the individual is likely to have influenza then all members of the

household begin taking the antivirals just as they would under a dynamic allocation

scheme. Under a preallocation scheme, then, the delay between becoming infectious

and beginning a course of antivirals is reduced as there is no waiting for a doctor’s

formal diagnosis or laboratory test results, however, it is possible for people to take

their antivirals incorrectly (without being ill). It is also possible to have antivirals

that will be essentially wasted as infection may never occur inside a household which

has been preallocated antivirals. The preallocation scheme also relies on households

using the supply of antivirals correctly. As panic spreads during the pandemic, some

households may be likely to take their antivirals without consultation when there

is no infection in the household. In this case the household will still receive the

benefit of a reduction of susceptibility but will not get the benefit of a reduction

to infectivity. While this case is not as bad as allocating antivirals to a household

which never experiences infection, it is still undesirable.

The dynamic allocation scheme has a delay until antivirals arrive to a household

which has experienced infection, but all antivirals will be used in a situation where

infection is likely to spread. Comparatively, the preallocation scheme has the po-

tential for waste, but avoids the delay until antivirals arrive into a household. It

is this tradeoff which we aim to investigate in order to determine which antiviral

allocation scheme is best.

An investigation into the effectiveness of antivirals was performed with respect

to an influenza outbreak in the United States of America [52]. Using a stochastic

simulation, it attempted to determine how effective antivirals would be at controlling

pandemic influenza. It was determined that a treatment course of four weeks to 80%

of those who become infected was almost as effective as vaccinating 80% of the entire
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population, however the efficacy of antivirals in this study was substantially higher

than other estimates, with a 30% reduction in susceptibility and a 60% reduction

in infectivity. A treatment course of four weeks is longer than what is planned for

pandemic response in Australia [21], and it is unlikely that a country would be able

to stockpile enough antivirals for this scheme [18]. In particular, Carrasco et al.

note that it is not cost effective for a country to stockpile enough antivirals for more

than 20% of the population. However, should there be a sufficient antiviral stockpile

then this long treatment scheme may be desirable.

Comparisons between the dynamic antiviral allocation scheme and a prealloca-

tion antiviral scheme have been performed previously. Goldstein et al. [34] analyse

the performance of Medkits, which are analogous to antivirals. The model utilised by

Goldstein et al. has more population structure than the model in our work, including

an age-structured population as well as a household structure. The model however

is only able to be used to calculate the probability of death over an entire pandemic,

and does not reproduce the dynamics of the system, unlike the methods we utilise

throughout this work. The focus of their work is on the minimisation of death in

the population. This is similar to minimising the final epidemic size. However, the

models considered in this thesis do not separate death from recovery. Importantly,

the preallocation antiviral scheme is shown to lead to a smaller expected number

of deaths when compared to a dynamic allocation scheme, however, the required

amount of Medkits is assumed to be high.

1.2 Pandemic Modelling

The commonly used SIR model divides a population of individuals into three distinct

classes – susceptible, where an individual is able to catch the disease; infectious,

where an individual shows symptoms and transmits the infection to other susceptible

individuals; and recovered, where the individual remains after their infectious period.

This introduction of this model is attributed to Kermack and McKendrick [48] in
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S E I R

Figure 1.2: The basic SEIR model, showing the stages of an indivual throughout

the pandemic.

1927, with the now commonly used SIR notation accredited to Hoppensteadt and

Waltman [37] in 1970. The SIR model is commonly used to model the spread of

influenza through a population [3, 7, 9, 39, 45, 63].

The SEIR model which is utilised throughout this work acts similarly to the SIR

model, except that there is an incubation period for the disease. That is, when a

susceptible individual comes into contact with an infectious person, instead of be-

coming instantaneously infectious themselves, the individual is considered exposed

for some period of time and is unable to transmit infection before becoming infec-

tious. This exposed phase would have no impact if any analysis of the model was

independent of time, as when an individual is exposed they can neither infect nor

be infected and so the individual has no impact on the pandemic [6]. However,

for any quantity that depends on time, the exposed phase will impact results. A

graphical illustration of the SEIR model can be seen in Figure 1.2. For a disease

such as influenza, an incubation period, or exposed phase, appears to occur, with

approximations for the incubation time for the 2009 H1N1 Swine ’Flu virus being

between 1 and 1.8 days for children and a mean of 4.3 days for adults [51, 73].

1.2.1 Household Structure and Antivirals

The Australian Health Management Plan for Pandemic Influenza [22] states that

once there is a single infectious person in a household, antivirals are to be taken by

all members of the household, regardless of infection status. This is because it is es-

timated that 30% of transmission happens inside a household [15, 27]. This dynamic



CHAPTER 1. INTRODUCTION 8

antiviral allocation scheme also allows for clear definitions, such as a ‘household’,

which helps to prevent delays in using the antivirals due to policy interpretation

issues. Because of the Management Plan and because there is likely to be a different

infection rate inside a household when compared to the general population, we must

take into account the household structure of the population.

We assume that an individual belongs to precisely one household and does not

migrate between households. Households can be of varying sizes, but are relatively

small when compared to the size of the population. Finally, we assume that the

size of each household remains fixed throughout the duration of the pandemic. Note

that if all households are of size 1, then the household structure reduces down to

the traditional SEIR model without any population structure.

House and Keeling [39] investigated a deterministic SIR pandemic model which

incorporates a household structure, as well as a number of potential schemes for

antiviral intervention. They determined that treating an entire household with

antivirals meant the disease could be eradicated with a lower detection rate of in-

fectious individuals compared to treating only infectious individuals with antivirals.

In doing this, some antivirals are taken by individuals who would never contract the

disease, but this wastage of antivirals did not stop the eradication of disease.

While the work contained in this thesis is largely focussed on the effort of a

single country or area, there has been investigation using models that allow for

spread through multiple countries, each of which has a supply of antivirals available

[20]. It has been determined that a cooperative strategy, that is, a strategy where

each country shares their supplies of antivirals, will out-perform the strategy where

each country keeps their supplies to themselves with respect to controlling the overall

level of infection. It is also noted that should a cooperative strategy be used, the

severity of the pandemic decreases, even for mildly effective antivirals.

Work has been performed on the effects of antivirals in a population with house-

hold structure, but utilising the SEEIIR model, which is the same as the SEIR model

but with an additional exposed and infected phase [15]. In the SEEIIR model, the
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average duration an individual spends in the exposed class (which incorporates the

two phases) and the infectious class remain unchanged, but the variance of the time

spent in both the exposed class and the infectious class is reduced. This reduced

variance is believe to be more physically accurate [29], at the cost of a more complex

model. Note that the model used by Black et al. [15] has an assumption that once

antivirals have begun being taken by individuals in a household, they remain being

taken for the remainder of the early-growth phase of the pandemic. In Chapter 3,

this assumption is investigated by incorporating a finite duration of antivirals.

1.2.2 Quantities of Interest for a Pandemic

There are many quantities that can be used to assess the severity of a pandemic.

One of the most common quantities used in pandemic analysis is the basic repro-

ductive ratio, R0. The basic reproductive ratio is the expected number of secondary

infections caused by one infected individual in an otherwise fully susceptible pop-

ulation [3, 63]. It is known that the basic reproductive ratio, R0, is an invasion

threshold for a pandemic. That is, the basic reproductive ratio, R0, must be greater

than 1 for there to potentially be a pandemic outbreak [45]. Estimates of the basic

reproductive ratio, R0, for the 2009 Swine ’Flu Pandemic range from 1.06 to 1.4

[29], while the the basic reproductive ratio, R0, for the Spanish influenza, regarded

as one of the worst pandemics in history, is estimated to be between 1.8 and 2 [57].

Closely related to the basic reproductive ratio, R0, is the household reproductive

ratio, R∗, first introduced by Ball et al. [11]. The household reproductive ratio is

the expected number of households which are infected by all members of a single

household in an otherwise fully susceptible population. The household reproductive

ratio, R∗, is an invasion threshold for a pandemic in a population with household

structure, much like the basic reproductive ratio, R0, acts as an invasion threshold

in a model without household structure. In a household level model, if the basic

reproductive ratio, R0, is greater than 1 there still may not be a pandemic outbreak
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[25]. To see this, consider the case when there is no possibility of infecting an indi-

vidual outside a given household, but infection could still occur inside a household.

Then, the household reproductive ratio, R0, could be larger than 1, but there will be

no pandemic outbreak. Comparatively, if the household reproductive ratio, R∗, is

greater than 1 then a pandemic outbreak is possible [7]. The household reproductive

ratio, R∗, can be used in a similar way to the basic reproductive ratio, R0, in order

to classify the severity of a pandemic and also to determine whether there could be a

pandemic outbreak in a population. There exists a variety of potential reproductive

numbers that can be used to quantify the severity of an outbreak for a population

with household structure. Goldstein et al. [35] detail five different household repro-

ductive numbers, all of which are threshold parameters in the same way that R∗ is

a threshold parameter. Also of note is Theorem 1 of Goldstein et al. [35] which tells

us that R∗ is the largest of the commonly used household reproductive numbers.

This means that R∗ is a ‘worst-case’ estimate of severity, relative to other potential

household reproductive numbers.

Another quantity that is used to quantify the severity of a pandemic is the early

growth rate, known as the Malthusian parameter, r, which represents the exponential

rate at which the expected number of infected people grows per unit time [45]. Ob-

viously, a lower Malthusian parameter, r, implies a less severe pandemic as there are

fewer infections happening per unit time. Unlike the basic reproductive ratio, R0,

and the household reproductive ratio, R∗, the Malthusian parameter, r, depends

on time. Having the exposed phase in the model compared to the same model

without the exposed phase will naturally give a lower Malthusian parameter, r, as

people remain in the exposed class for a period of time and are not infecting any

other susceptible individuals. The basic reproductive ratio, R0 and the Malthusian

parameter, r, are linked together through what is known as the generation inter-

val distribution, which represents the probability of creating a new infection at a

particular time point [56, 74].

Methods for calculating the household reproductive ratio, R∗, and the Malthu-
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sian parameter, r, using sets of linear differential equations and systems of linear

equations already exist [15]. A key assumption in the derivation of these methods

is that all infections occur in an otherwise naive, or fully susceptible, population.

In Chapter 3 we will extend this work in order to incorporate a finite duration for

which antivirals are effective, and incorporate a number of other extensions, as well

as discussing the effects of antivirals in more detail.

A third quantity used to classify pandemics is the final epidemic size, which is

the total number of individuals who contracted the disease over the duration of the

pandemic [17]. Clearly, the final epidemic size cannot be accurately attained while

a pandemic is in progress, but final epidemic size can be a useful tool for comparing

past pandemics and theoretical scenarios. Final epidemic size can be defined in

terms of either the number of individuals infected or in terms of a proportion of

a potential population. These forms are equivalent, with the proportion simply

being the number of people infected divided by the total population size. There

exists equations to calculate the final epidemic size in a population with household

structure [6, 60, 66], and also the (mean) final epidemic size in a deterministic setting

[46]. However, these methods are not able to be utilised directly with our model,

due to features such as the finite amount of antivirals.

The final quantities of interest are the peak size and peak time of the pandemic,

defined to be the maximum number of infected people over the course of the pan-

demic and the time at which this peak occurs. A lower peak size implies a less severe

pandemic, while generally speaking a later peak time is desired, as this allows for

more time to attempt control and prepare for the outbreak.

Comparing key quantities between a homogeneous mixing model and a model

with population structure is not a trivial task. A household-structured model has

one extra parameter compared to the homogeneous mixing model. To compensate

for this, one key quantity must remain fixed in order to fairly compare the two mod-

els. House and Keeling [39] assessed three different modelling assumptions in order

to match a household-structured model to a homogeneous mixing model. It was
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determined that while all three modelling assumptions provided similar pandemic

dynamics, choosing just one of these assumptions is not straight-forward. In this

work, we do not attempt to compare the household-structured model to a homo-

geneous mixing model. Instead, we focus on the two different antiviral allocation

schemes inside a household-structured model.

1.3 Thesis Outline

In Chapter 2, the technical background required for the rest of the work is pre-

sented, as well as an overview of some of the previous pandemic models which have

been studied. The stochastic households epidemic model is introduced, but it is

shown that this model cannot be used in practice, except by simulation which is

slow. To gain insight into the stochastic households epidemic model, the first of two

approximations, the branching process approximation, is introduced. The branch-

ing process approximation allows fast computation of some quantities associated

with a pandemic, but cannot be used to approximate the long-term behaviour of

the pandemic, due to a necessary assumption that the number of households in

the population is infinite [9]. Recent work has shown that key quantities associ-

ated with a pandemic are calculable using a branching process [13]. However, the

branching process discussed in Chapter 2 is not of the form used by Barbour and

Reinert, but is instead focussed on fast computation of the early-time dynamics of

the pandemic. In Chapter 3, the branching process approximation is extended to

incorporate additional realism such as the finite duration of antivirals and having

insufficient antivirals for the entire population. Results for these extensions are

also discussed, but the shortfalls of the branching process approximation still re-

main. In this chapter, we also present a method for preallocating antivirals to the

population, should the total number of doses not be sufficient for the population

size. In Chapter 4, the deterministic approximation is introduced. The determin-

istic approximation can be used to estimate the mean behaviour of both the early
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stages and the long-term behaviour of the pandemic, at the cost of a slightly longer

computation time when compared to the branching process approximation. There

are a number of extensions to the deterministic approximation which are consid-

ered: having insufficient antivirals for the entire population; a hybrid allocation

scheme, that is, a scheme that is a mix of dynamic allocation and preallocation;

households using antivirals incorrectly; and the production of antivirals during a

pandemic. These extensions allow for the comparison of the two antiviral allocation

schemes—dynamic allocation and preallocation—which are discussed in Chapter 5.

The comparisons made in Chapter 5 are between pandemics under the two antiviral

allocation schemes for both a severe pandemic, based on key quantities from the

1918 Spanish Influenza pandemic, and a mild pandemic, based on key quantities

from the 2009 Swine ’Flu pandemic. Chapter 6 summarises the results and dis-

cusses the overall differences between dynamic allocation and preallocation. Also

mentioned are some open questions and extensions to the approximations that are

presented throughout this thesis.



Chapter 2

Technical Background

In this chapter a background is provided on continuous-time Markov chains as well as

an introduction to the stochastic households epidemic model. We discuss the issues

with using this model in practice, and introduce the first of two approximations—the

branching process approximation. The work that has been done previously using this

approximation is explored, including an efficient method to evaluate the household

reproductive ratio, R∗, and the Malthusian parameter, r. Finally, the choices of

parameters that are utilised throughout this thesis are defined and discussed.

2.1 SEIR Model

As discussed in Chapter 1, this work is focussed on the SEIR model. This model

allocates each individual in a population into one of four distinct classes: susceptible,

exposed, infectious or recovered. Each individual starts susceptible to the disease,

then may become exposed if contact is made with an infectious individual. After

some period of time, the individual becomes infectious and is able to infect other

susceptible individuals. Finally, the individual recovers, and has no further impact

on the pandemic. The SEIR model, shown in Figure 1.2, and other similar models

such as the SIR model, are commonly modelled as a Markov chain [15, 41, 45].

14
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2.2 Continuous-Time Markov Chains

A continuous-time Markov chain is utilised throughout this thesis. Consider a pro-

cess, X(t), which takes values on a finite set of states, S, known as the state space.

The process X(t) is a continuous-time Markov chain if,

P (X(t+s) = j|X(s) = i,X(u) = k, u ≤ s) = P (X(t+s) = j|X(s) = i) ∀t, u > 0, s > u,

that is, the probability distribution of the future states of X(t), conditioned on the

past and present states, depends only upon the present state of the process. This is

known as the Markov property, or the memoryless property. Let Tj be the amount

of time until the Markov chain, X(t), is in state j ∈ S, given that it is currently in

state j ∈ S. The state j is known as recurrent if,

P (Tj <∞) = 1,

that is, the Markov chain will almost surely return to state j. A state which is not

recurrent is known as transient. A recurrent state j ∈ S is known as absorbing if,

P (X(t+ s) = j|X(s) = j) = 1 ∀ t, s > 0.

A continuous-time Markov chain is time-homogeneous if P (X(t+ s) = j|X(s) =

i), i, j ∈ S, s, t ∈ [0,∞) is independent of s. In this thesis, all Markov chains are

time-homogeneous. Let,

Pij(t) = P (X(t+ s) = j|X(s) = i).

The function Pij(t) is the transition function, giving the probability of moving from

from state i ∈ S to state j ∈ S in elapsed time t. The transition function can be

expanded as,

Pij(t) = P (X(t+ s) = j|X(s) = i) =
∑
k∈S

P (X(t+ s) = j,X(t+ u) = k|X(s) = i),

(2.1)
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using the law of total probability, where 0 < u < s. Then, using conditional

probability, the right-hand side of Equation (2.1) can be re-written as,

∑
k∈S

P (X(t + s) = j|X(s + u) = k,X(s) = i)P (X(s + u) = k|X(s) = i), (2.2)

which, using the memoryless property and time-homogeneity becomes,

∑
k∈S

P (X(t+ s) = j|X(s+ u) = k)P (X(u) = k|X(0) = i),

=
∑
k∈S

P (X(t− u) = j|X(0) = k)P (X(u) = k|X(0) = i),

that is,

Pij(t) =
∑
k∈S

Pjk(u)Pkj(t− u)

or, in matrix form,

P(t) = P(u)P(t− u), (2.3)

where P(t) has elements Pij(t). Equation (2.3) is known as the Chapman-Kolmogorov

equation. Note that the matrix, P(t), has time-dependent entries. In order to gain

insight into a continuous-time Markov chain, a method to analyse the matrices, P(t),

is required. Define a matrix, Q, with elements,

qij = lim
h→0+

Pij(h)

h
,

for i, j ∈ S, i 6= j and,

qii = lim
h→0+

Pii(h)− 1

h
,

for i ∈ S. The matrix Q is known as the infinitesimal generator, or the Q-matrix

of the process X(t). Intuitively, qij represents the rate at which we enter state j

from state i, and −qii represents the total rate of leaving state i ∈ S. As Pij(t)

corresponds to the probability of moving from state i to state j in time t, we have

that, ∑
j

Pij(t) = 1,
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for every i ∈ S, t ∈ [0,∞). As such,

1− Pii(h) =
∑
j 6=i

Pij(h),

and so,

lim
h→0+

1− Pii(h)

h
= lim

h→0+

∑
j 6=i

Pij(h)

h

=
∑
j 6=i

lim
h→0+

Pij(h)

h
. (2.4)

The left hand side of Equation (2.4) is precisely −qii, and the term inside the sum

on the right hand side is qij, so Equation (2.4) is,

−qii =
∑
j 6=i

qij,

that is, the diagonal elements of the infinitesimal generator, Q, are the negative of

the sum of the off-diagonal elements.

The infinitesimal generator, Q, can fully define the Markov chain when paired

with a suitable initial condition, p(0). To see this, consider the Chapman-Kolmogorov

equation in Equation (2.3),

Pij(t+ h) =
∑
k∈S

Pik(h)Pkj(t).

We have,

lim
h→0+

Pij(t+ h)− Pij(t)
h

= lim
h→0+

(∑
k∈S Pik(h)Pkj(t)

)
− Pij(t)

h

= lim
h→0+

∑
k∈S Pik(h)Pkj(t)

h
− Pij(t)

h
. (2.5)

Removing the k = i term from the sum in Equation (2.5) yields,

lim
h→0+

∑
k∈S Pik(h)Pkj(t)

h
− Pij(t)

h
= lim

h→0+

[∑
k 6=i

Pik(h)

h
Pkj(t) +

Pii(h)Pij(t)

h
− Pij(t)

h

]

= lim
h→0+

[∑
k 6=i

Pik(h)

h
Pkj(t)−

1− Pii(h)

h
Pij(t)

]
.

(2.6)
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Switching the summation and the limit in Equation (2.6) gives,

dPij(t)

dt
=
∑
k 6=i

qikPkj(t) + qiiPij(t)

=
∑
k∈S

qikPkj(t),

or, in matrix form,
dP(t)

dt
= QP(t),

which has solution

P(t) = eQt, (2.7)

where eQt is the matrix exponential of the matrix Qt [61]. The distribution of the

Markov chain at time t, that is, the probability of being in each state in the state

space at time t is,

p(t) = p(0)P(t) = p(0)eQt,

for some known initial distribution, p(0).

2.3 Matrix Exponential

The matrix exponential for a matrix, A, is defined as,

eA =
∞∑
k=0

1

k!
Ak. (2.8)

The series in Equation (2.8) converges for any matrix A, and so the matrix exponen-

tial is well defined. In this work, matrix exponentials are numerically evaluated using

two methods. Evaluation of veAx for some v and x is performed using EXPOKIT

for MATLAB [70], which is regarded as more efficient and numerically stable when

compared to the MATLAB in-built function expm [59], while eA is evaluated using

the MATLAB in-built function expm.

Let Q be the generator matrix of the Markov chain. A property which will be

useful in Section 3.4 is, ∫ ∞
0

e−t(rI−Q) dt = (rI −Q)−1, (2.9)
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for r ≥ 0. A property of the matrix exponential is, if D is invertible,∫
eDt dt = D−1eDt + C. (2.10)

Let D = −(rI − Q). The matrix D is irreducible, and has off-diagonal elements

being non-negative, and so the matrix D is ML in the sense of Seneta [68]. Consider

the definite integral, ∫ ∞
0

e−t(rI−Q) dt = lim
b→∞

∫ b

0

e−t(rI−Q) dt, (2.11)

which, using Equation (2.10) gives,

lim
b→∞

∫ b

0

e−t(rI−Q) dt = −(rI −Q)−1 lim
b→∞

e−t(rI−Q)
∣∣b
t=0

. (2.12)

At t = 0, e−t(rI−Q) = I, the identity matrix, so Equation (2.12) can be rewritten as,

lim
b→∞

e−t(rI−Q)
∣∣b
t=0

= −(rI −Q)−1
(

lim
b→∞

e−b(rI−Q) − I
)
. (2.13)

As the matrix D is ML, Theorem 2.7 of Senata [68] says,

eDb = e−b(rI−Q) = e−bτwv′ +O(e−bτ
′
),

where τ is the dominant eigenvalue ofD = −(rI−Q) with left and right eigenvectors,

w and v respectively, and τ ′ < τ . The dominant eigenvalue, τ , is non-positive

provided r is non-negative, and so it follows that,

lim
b→∞

e−b(rI−Q) = lim
b→∞

ebτwv′ +O(ebτ
′
) = 0. (2.14)

Substituting Equation (2.14) into Equation (2.13), we see that,∫ ∞
0

e−t(rI−Q) dt = (rI −Q)−1, (2.15)

for r ≥ 0.
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2.4 Path Integrals of Markov Chains

We follow the work of Ross et al. [66] who use a Markov chain model and then derive

equations for the household reproductive ratio, R∗, and the Malthusian parameter,

r, for a pandemic. Let X(t) be an absorbing continuous-time Markov chain which

has a finite state space S. Consider partitioning the state space, S, into two distinct

subsets such that S = A∪C, where A is the set of absorbing states and C is the set

of transient states. Consider a function f : S → [0,∞) with the property f(k) = 0

for all k ∈ A. The function f represents a per unit-time reward associated with each

state k. Consider the path integral,

Γ =

∫ ∞
0

f(X(t)) dt, (2.16)

which represents the total reward obtained over the lifetime of the process. As

the Markov process, X(t), is a random variable, it follows that Γ is also a random

variable.

Pollett and Stefanov [65] demonstrate that the conditional expectation of Γ can

be found using a system of linear equations: Let E [Γ|X(0) = j] = νj, j ∈ S; then,

νj is the minimal non-negative solution to∑
j∈C

qijνj + f(i) = 0, ∀ i ∈ C. (2.17)

Equation (2.17) is a system of linear equations, and can be solved using MATLAB’s

‘backslash’ operator.

Similarly, consider the function

Γ̄(c) =

∫ c

0

f(X(t)) dt. (2.18)

Equation (2.18) represents the total reward of a process over a finite time, c ∈ R+.

The conditional expectation of Γ̄(c) can be found, given any initial state [15]. Let

E
[
Γ̄(t)|X(0) = j

]
= ξj(t) ∀c ∈ C. Then, ξj(t) satisfies

dξj(t)

dt
=
∑
l∈C

qjlξl(t) + f(j), ∀ l ∈ C, (2.19)
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with initial condition ξ(0) = ξ0, which represents the initial ‘reward’. We take ξ0 = 0,

as at time 0 no reward has been earned. We numerically solve the system of ordinary

differential equations in Equation (2.19), giving the expectation of Equation (2.18)

from any initial state. This system of linear differential equations can be solved

efficiently using EXPOKIT for MATLAB, by using the function phiv [70]. This

method is generally faster than the Runge-Kutta methods utilised by MATLAB’s

inbuilt differential equation solvers such as ode45.

Throughout this thesis, expressions of the form,

E
[∫ b

0

f(X(t)) dt

]
, (2.20)

represent the vector of conditional expectations, with the jth component of Equation

(2.20) being,

E
[∫ b

0

f(X(t)) dt

∣∣∣∣X(0) = j

]
.

This slightly unorthodox notation allows for a clean representation of path integrals

from any initial state. In particular, if p(0) is the initial distribution of the process

X(t), then,

p(0)E
[∫ b

0

f(X(t)) dt

]
,

represents the expected value of the path integral until time b. Often, we assume a

fixed initial state, meaning that,

p(0) = uj,

where uj is a vector that has value 1 in the jth element, and 0 otherwise. Then,

ujE
[∫ b

0

f(X(t)) dt

]
= E

[∫ b

0

f(X(t)) dt

∣∣∣∣X(0) = j

]
.

2.5 Stochastic Households Model

The effects of influenza on a population of individuals with household structure

can be modelled as a Markov chain, X(t). Consider a population which consists of
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N households each of size k, giving a total population size of Nk. We say that a

household in the population is in state Zj = (s, e, i) if the household has s susceptible

individuals, e exposed individuals and i infectious individuals. Note that as the

household size is fixed, the number of recovered individuals, r = k − (s + e + i).

There are three possible events which can occur inside a single household in the

population: infection, progression and recovery, which are detailed in Table 2.1.

Note that throughout this work we assume frequency-dependent transmission, that

is,

βk =


β
k−1

if k > 1,

0 if k = 1

,

for some governing rate of (internal) infection, β. We assume frequency-dependent

transmission as the probability of being infected on contact with an infectious indi-

vidual is (relatively) independent of population density inside a household [15, 45,

66]. Considering the infection rate more precisely, the probability of the contact

between a susceptible individual and an infectious individual is i
k−1

, and there are

s such susceptible individuals with infection being successfully transmitted at rate

β, and so the total internal infection rate is β
k−1

si = βksi [66]. Should k = 1, then

there is no possible internal infection and so we set β1 = 0.

As the population has household structure, we are able to incorporate two levels

of mixing. This allows the stochastic households model to have a different internal

infection rate and external infection rate, which means that the model can incorpo-

rate the estimated increase in infection transmission inside a household compared to

infection transmission in the general population [15, 27]. Denote the governing rate

at which an individual infects a member of the population not in their own house-

hold by α. The total force of infection out of a single household in state (s, e, i) is

αi, and so the total force of infection into the general population is,

α

Nk

N∑
j=1

I(Zj),
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where I(Zj) = i. Note here that we have again assumed frequency-dependent trans-

mission of infection, just as for infection inside a household.

Using these transmission rates, the Markov chain for a single household, Xk(t),

can be constructed. The generator for Xk(t), denoted Q(k), has elements,

q
(k)
(s,e,i),(s−1,e+1,i) = βksi+

α

Nk
s

N∑
j=1

I(Zj)

q
(k)
(s,e,i),(s,e−1,i+1) = σe

q
(k)
(s,e,i),(s,e,i−1) = γi

q
(k)
(s,e,i),(s,e,i) = −

∑
j∈S\{(s,e,i)}

q
(k)
(s,e,i),j. (2.21)

The state space for the Markov chain representing a single household, Xk(t), is,

Sk = {(s, e, i)|s+ e+ i ≤ k s, e, i ≥ 0}.

To determine the number of possible states for a household, consider allocating the

k individuals in a household into three distinct classes, with classes able to have zero

members. Hence, the number of possible states for a household is

|Sk| =
(
k + 3

3

)
=

1

6

(k + 3)!

k!
=

1

6
(k + 1)(k + 2)(k + 3).

In this representation of the stochastic households model, we have assumed that

individuals inside the household are indistinguishable, but each household is able to

be individually identified. Because of this, the process Z(t), contains the status of

the N unique households, each with |Sk| possible states, and so the size of the state

space for the stochastic households model is,

|S| = |Sk|N =

(
1

6
(k + 1)(k + 2)(k + 3)

)N
.

For any reasonable N , then, the size of the state space for the stochastic population

model is impractically large. The stochastic households model can still be simulated

however, by using Monte-Carlo simulation.
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Event Transition Rate

Infection (s, e, i)→ (s− 1, e+ 1, i) βksi

Progression (s, e, i)→ (s, e− 1, i+ 1) σe

Recovery (s, e, i)→ (s, e, i− 1) γi

Table 2.1: Possible events inside a single household during a pandemic.

2.5.1 Monte Carlo Simulation

While the state space for the stochastic households model means that the model

cannot be analytically evaluated, simulation of the Markov chain is still possible

using Monte Carlo methods, commonly known as the Gillespie Algorithm [32]. This

is summarised in Algorithm 1.

Each simulation returns a single realisation or sample path from the stochastic

households model, sampled at a set of defined time points. When comparing different

pandemic scenarios, the interest is in the general behaviour of the model rather

than the specifics of each realisation. Because of this, a large number of these

realisations are obtained, and the corresponding mean, E[X(t)], is calculated and

used to calculate quantities associated with the pandemic.

While the stochastic households model is detailed, Monte Carlo Simulation takes

approximately 30 minutes to produce one pandemic curve using the severe param-

eters in Table 2.3, using an Intel Xeon 2.6 GHz processor. This means that sim-

ulation of the stochastic households model is impractical for comparisons across

many pandemic scenarios. We investigate two approximations to this stochastic

household model—a branching process approximation and later, a deterministic

approximation—which are faster to compute and are shown to accurately reproduce

the key quantities associated with a pandemic.
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Initialize state, Z(0), containing the initial configuration of each household

Zj(t) = (s, e, i) ∈ S, j = 1, . . . , N . Set c = 1, t = 0;

Initialize vector of time points to sample the process, t̂, with mth element t̂m.

Let the number of exposed individuals in the current state Z(t) be,

Ê(Z(t)) =
∑

Zj(t)=(s,e,i)

e,

and let the number of infectious individuals in the state Z(t) be,

Î(Z(t)) =
∑

Zj(t)=(s,e,i)

i.

while
(
Ê(Z(t)) + Î(Z(t))

)
> 0 do

Calculate rate of each event, al, l = 1, . . . , A, where A is the number of

possible events. Set a0 =
∑A

l=1 al;

Generate two random variables, r1, r2 ∼ U [0, 1];

Set ∆ = (1/a0) ln(1/r1);

while t+ ∆ > t̂c do

Record Ic =
∑

Zj(t) i, the number of infectious individuals at time t;

Set c = c+ 1;

end

Find µ ∈ {1, . . . , A} such that,

µ−1∑
j=1

aj < r2a0 ≤
µ∑
j=1

aj.

This is equivalent to choosing the jth reaction with probability aj/a0;

Update state Z(t) according to event type µ, set t = t+ ∆;

end

Output: The number of infectious individuals, I, with jth component Ij, at

each sampled time point in t̂.

Algorithm 1: Simulation Algorithm for the stochastic households model.
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2.6 Branching Process Approximation

The first approximation to the stochastic households model is a branching process

approximation. A branching process is a stochastic process in which an individual

has a number of offspring over their lifetime, and each offspring goes on to have

their own independent, and usually identically distributed lifetime. The offspring

lifetimes need not be identically distributed in general, but making this assumption

makes the model more tractable.

More precisely, consider an individual who lives for a period of time which is

exponentially distributed, known as their lifetime. Over this lifetime, a number of

offspring are created, the number of which is governed by the so-called offspring

distribution. Each offspring lives for a period of time which is independent and

identically distributed to that of the parent. Each offspring also creates a number

of new offspring, usually controlled by the same offspring distribution as the parent,

and so the process continues. Clearly with the assumption of each parent having the

same offspring distribution, the total number of offspring produced is unbounded.

If the mean number of offspring is greater than one, then the branching process is

known as supercritical while if the mean number of offspring is less than one, then

the branching process is known as subcritical, and if the mean number of offspring

is exactly one, then the branching process is known as critical. In this work, only

supercritical branching processes are considered, as the other two cases often produce

‘trivial’ processes—that is, branching processes where the process becomes extinct

quickly. In our context, the process becoming extinct means that the pandemic does

not take off inside the population, and so control schemes for the pandemic are not

relevant.

It is possible to think of the early stages of a pandemic as a branching process.

A household has infectious individuals for some amount of time, and over that time

some number of other individuals in the population will become infected. Those new

individuals will be infectious for an independent and identically distributed amount
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of time and will again infect some number of other individuals in the population.

For a finite population, however, the number of new infections created in the general

population by all members of a single household cannot have the same distribution

through time simply because eventually there will be insufficient susceptible people

to infect. As such, an infinite population size must be assumed, and so a branching

process approximation is valid only for the early stages of a pandemic. The re-

sults of Ball and Donnelly [9] demonstrates that a branching process approximation

converges almost surely to the stochastic households model of the pandemic as the

population size becomes large. In particular, during a minor outbreak, that is, a

pandemic with household reproductive ratio, R∗, less than or equal to one, the pan-

demic behaves like a branching process when the population size, N , is large, while

during a major outbreak, that is, a pandemic with household reproductive ratio, R∗,

being strictly greater than one, the branching process is valid until approximately
√
N members of the population have been infected [10]. Quantities associated with a

pandemic from the branching process can be calculated using path integral methods.

2.6.1 Calculating Key Quantities from the Branching Pro-

cess Approximation

There have been studies which give methods to calculate the early-time quantities

of a pandemic using the path integral of a Markov chain [66, 15]. These methods

are detailed here for our purposes. Let the Markov chain for a household of size k

be Xk(t). Consider the function I(Xk(t)) = i where Xk(t) = (s, e, i) is the state of

the Markov chain at time t. The function I(Xk(t)) gives the number of infectious

individuals in a household at time t. The set of absorbing states for Xk(t) is,

A = {(s, 0, 0)|s ≤ k}.

For all i ∈ A, I(i) = 0 as there are no infectious people in each absorbing state

of the Markov chain and so I(·) satisfies the requirements of the reward function,

f(X(t)), in Equations (2.17) and (2.19).
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Recall from Section 2.5 that the governing rate of external infection is α. From a

single household, the force of infection at time t is αI(Xk(t)). As external infections

are transmitted into a naive household due to the assumption of an infinite popula-

tion size, external infection events follow a Poisson process with (time-dependent)

rate, αI(Xk(t)). The household reproductive ratio, R∗, is the expected number of

secondary households infected, that is,

R∗ = p(0)E
[∫ ∞

0

αI(Xk(t)) dt

]
. (2.22)

We can evaluate this integral conditioned on any initial state using Equation (2.17).

To determine the Malthusian parameter, r, we follow the workings of Wallinga

and Lipsitch [74]. The Euler-Lotka equation for modelling population growth has

the form

b(t) =

∫ ∞
0

b(t− a)n(a) da, (2.23)

where b(t) here represents the total expected number of new infections into fully

susceptible households in time period t and n(a) the average rate at which new (ex-

ternal) infections occur from a household at “age” a. Here, the ‘age’ of a household

refers to the time since the first infection event inside the household. As external

infections occur according to a Poisson process, the number of new infections into

fully susceptible households is growing at an exponential rate per unit time. That

is,

b(t) = b(t− a)era.

Substituting this into Equation (2.23) yields,

b(t) =

∫ ∞
0

b(t)e−ran(a) da,

or

1 =

∫ ∞
0

e−ran(a) da. (2.24)

Also, as n(a) represents the average rate at which external infections occur, it follows

that n(a) = E [αI(Xk(a))]. Substituting this yields the equation for the Malthusian

parameter, r:
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1 = E
[∫ ∞

0

αe−rtI(Xk(t)) dt

]
. (2.25)

Note here that we have moved the expectation outside the integral. This is only

to allow for more efficient numerical evaluation. This equation has been derived

previously by Ball [7] and utilised in pandemic analysis [66, 15].

As presented in Norris [61], Equation (2.25) is a path integral with exponential

discounting by a factor, r > 0. This is equivalent to using the original process and

adding an additional rate, r, from each i ∈ C to the absorbing class A. Using this

modified process, X̄r
k(t) for a given value of r, Equation (2.25) becomes

1 = E
[∫ ∞

0

αI(X̄r
k(t)) dt

]
. (2.26)

The right hand side of this expression can be evaluated for a given value of r using the

system of linear equations in Equation (2.17). The value of r for which equality holds

in Equation (2.26) can be determined by using a numerical root-finding algorithm

such as MATLAB’s fzero function.

Both Equations (2.22) and (2.25) will be extended throughout this work in order

to incorporate more complexity and realism into the model.

2.7 Incorporating Heterogeneous Household Sizes

Until now we have considered only a population made up entirely of households of

a single, fixed size, but it is possible to relax this assumption; including heteroge-

neous household sizes in the stochastic households model is straightforward. Simply

initialize the state, Z(0), to contain the required number of households of each size,

then simulate the Markov chain as in Section 2.5.1.

To incorporate heterogeneous household sizes in the branching process approxi-

mation, denote the probability that a randomly selected household in a population is

of size k by hk. Clearly,
∑

k hk = 1. We utilise the size-biased distribution, π, which
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represents the probability that a randomly selected individual in the population be-

longs to a household of size k. The size-biased distribution, π, allows incorporation

of the fact that transmission occurs between random individuals in the population.

The jth element of the size-biased distribution is,

πj =
jhj∑
k khk

.

When considering a population with heterogeneous household sizes, the probability

of contact of an infectious individual with a susceptible individual who belongs to a

household of size k is πk. The expected number of secondary infections from such a

household is,

πkE
[∫ ∞

0

αI(Xk(t)) dt

]
.

Hence,

R∗ =
∑
k

pk(0)πkE
[∫ ∞

0

αI(Xk(t)) dt

]
(2.27)

where Xk(t) is the Markov chain for a household of size k and pk(0) = u(k−1,1,0).

Similarly the Malthusian parameter r, can be found using

∑
k

pk(0)πkE
[∫ ∞

0

αe−rtI(Xk(t)) dt

]
= 1. (2.28)

Each individual path integral in both Equations (2.27) and (2.28) can be evaluated

using Equations (2.17) and (2.19) respectively [15].

Note that if we take a single household size k, then πk = 1 while all other

elements of π are zero, and we arrive back at Equations (2.22) and (2.25).

2.8 Modelling Antiviral Intervention

Recall that the Australia Health Management Plan for Pandemic Influenza states

that antivirals will be allocated to an entire household as soon as there is one con-

firmed infectious individual in the household. The branching process approximation

can be extended to incorporate the effects of antivirals. The dynamic allocation
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scheme, introduced in Section 1.1, has been incorporated into the branching process

approximation previously [15].

Recall that antivirals have two effects on individuals—a reduction in suscepti-

bility, denoted ρ ∈ (0, 1), and a reduction in infectivity, denoted τ ∈ (0, 1). When

under the effects of antivirals, the rate of infection inside a household, βk, is reduced

by both ρ and τ , as all members of the household are taking antivirals. The rate

of infection to other households in the population, α, is reduced by τ , as the infec-

tivity of individuals inside the household is reduced while the individuals are taking

antivirals.

There are two possible statuses of antivirals inside a household, a: those being

when a household has not yet received antivirals, a = 0; and where individuals

inside a household are currently taking antivirals, a = 1. Let the state (s, e, i, 0)

represent a household which has not yet received antivirals and state (s, e, i, 1) rep-

resent a household that is currently taking antivirals. At this point, we assume

that antivirals will have an essentially infinite effective duration. This assumption

is relaxed in Chapter 3. The time between an individual becoming infectious and

receiving a course of antivirals, known as the delay, must also be modelled. The

delay until antivirals arrive is assumed to be exponentially distributed with mean

ζ > 0. Because of the exponential distribution, antivirals arriving into a household

can be modelled as a transition within the Markov chain. Let the Markov chain

which models a household during a pandemic where antivirals may be allocated be

Xk(t). The transitions of this process are described in Table 2.2. The size of the

state space for the Markov chain, Xk(t), is

|Sk| =
1

3
(k + 1)(k + 2)(k + 3),

which has doubled compared to the case without antivirals.

An alternative way to view the generator matrix for Xk(t) is to construct two

matrices, Q1 and Q2, where Q1 is the generator matrix with τ = ρ = 0, and Q2 the

generator matrix with τ and ρ potentially non-zero. Finally, construct a ‘linking’
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Event Transition Rate

Infection (s, e, i, a)→ (s− 1, e+ 1, i, a) (1− aτ)(1− aρ)βksi

Progression (s, e, i, a)→ (s, e− 1, i+ 1, a) σe

Recovery (s, e, i, a)→ (s, e, i− 1, a) γi

Antivirals begin (s, e, i, 0)→ (s, e, i, 1) 1
ζ

for s+ e 6= k

Table 2.2: Possible events inside a single household during a pandemic with antivi-

rals. Here, a = 0 corresponds to antivirals not being active and a = 1 to antivirals

currently being active within a household.

matrix L which encodes the transitions from state (s, e, i, 0) to (s, e, i, 1) at rate 1/ζ.

Then the generator matrix, Q, for the Markov chain Xk(t) has the block form

Q =

Q1 L

0 Q2

 .
This generator matrix, Q, can be used in Equations (2.22) and (2.25), taking

f(Xk(t)) =

αI(Xk(t)), when a = 0,

(1− τ)αI(Xk(t)) when a = 1,

where I(Xk(t)) = i is the number of infectious individuals in a household at time t.

The first case above represents a household which is not taking antivirals and so re-

ceives none of the reductions in infectiousness. The second case refers to a household

which is currently under the effects of antivirals and so the rate of infection from

this household to individuals in any other household is reduced. The effectiveness

of antivirals is clearly dependent on the delay [15, 71]. Should the delay between

the first infectious case and the antivirals arriving into the household be large, then

the transmission of infection occurs without any intervention, and so the antivirals

will have little impact.
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2.8.1 Incorporating Constant Time Delay until Antivirals

Arrive

Having the delay until antivirals arrive into a household being of constant duration,

instead of exponentially distributed, has been analysed previously [15, 71]. In a

Markov chain, the holding time in each state is exponential, and so antiviral arrival

can no longer be modelled as a transition in the Markov chain. Instead, consider

splitting the pandemic into three intervals:

1. [0, T1)—the interval from the time at which the first individual is exposed until

the first individual becomes infectious in a household,

2. [T1, T1 + Ta)—the interval of time between the first infectious case and the

time when antivirals arrive into the household, and

3. [T1 + Ta,∞)—the remainder of the pandemic.

Consider having two generator matrices, Q1 and Q2, which describe the dynamics

of the pandemic in a household that has not yet received antivirals, and one that

has, respectively. Then, from time t = 0 until the time at which antivirals arrive

into the household, t = T1 + Ta, the dynamics evolve according to Q1. After time

t = T1 + Ta, the dynamics evolve according to Q2 and continue in this way for the

remainder of the pandemic.

Consider first the expected number of secondary households which are infected.

We consider a single path integral from Equation (2.27),

pk(0)E
[∫ ∞

0

f(Xk(t)) dt

]
, (2.29)

with pk(0) = u(k−1,1,0,0). As there is no infection in the time interval [0, T1), this

interval can be removed from Equation (2.22), and the initial condition changed to
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p̄k(0) = u(k−1,0,1,0). As such, Equation (2.29) is

pk(0)E
[∫ ∞

0

f(Xk(t)) dt

]
= p̄(0)E

[∫ Ta

0

αI(Xk(t)) dt+

∫ ∞
Ta

(1− τ)αI(Xk(t)) dt

]
= p̄k(0)E

[∫ Ta

0

αI(Xk(t)) dt

]
+ p̄k(Ta)E

[∫ ∞
0

(1− τ)αI(Xk(t)) dt

]
(2.30)

using the Markov property and that p̄k(Ta) = p̄(0)eQ1Ta is the distribution of the

Markov chain at time Ta, restricted to the set of transient states. As Ta is a constant,

the first term of Equation (2.30) is a path integral over a constant time and can be

evaluated using Equation (2.19), and the second is a path integral over infinite time

and so can be evaluated using Equation (2.17).

Now, consider the Malthusian parameter, r. Again, we expand a single path

integral from the summation in Equation (2.28), that being,

pk(0)E
[∫ ∞

0

f(Xk(t))e
−rtI(Xk(t)) dt

]
= 1,

with pk(0) = u(k−1,1,0,0). Here the first time interval cannot be ignored as was

the case when considering the household reproductive ratio, R∗, due to the time

dependence of the Malthusian parameter, r. We divide the expectation up into

three terms,

pk(0)E
[∫ T1

0

αI(Xk(t))e
−rt dt+

∫ T1+Ta

T1

αI(Xk(t))e
−rt dt+ ...∫ ∞

T1+Ta

(1− τ)αI(Xk(t))e
−rt dt

]
= 1 (2.31)

The first term here is zero as there are no new infections in the time interval [0, T1).

Let s = t−T1, and ds = dt. Substituting this time-shift into Equation (2.31) yields,

pk(0)E
[∫ Ta

0

αI(Xk(s+ T1))e−r(s+T1) ds+

∫ ∞
Ta

(1− τ)αI(Xk(s+ T1))e−r(s+T1) ds

]
= 1.

As the state of the chain is known at time T1, we can change the initial condition

of the Markov chain to p̄k(0) = u(k−1,0,1,0) and remove the dependence on T1. Note



CHAPTER 2. TECHNICAL BACKGROUND 35

that the time until first infection in a household is exponentially distributed with

mean 1/σ, and is independent of the subsequent dynamics. Because of this, the

dependence on T1 can be integrated out giving,

p̄k(0)E
[∫ Ta

0

αI(Xk(s+ T1))e−r(s+T1) ds+

∫ ∞
Ta

(1− τ)αI(Xk(s+ T1))e−r(s+T1) ds

]
=

p̄k(0)E
[∫ Ta

0

αI(Xk(s))e
−rs ds+

∫ ∞
Ta

(1− τ)αI(Xk(s))e
−rs ds

] ∫ ∞
0

σe−(r+σ)s ds = 1.

(2.32)

The final integral can be evaluated as,∫ ∞
0

σe−(r+σ)s ds =
σ

r + σ
,

and moving this to the right hand side of Equation (2.32) gives,

p̄k(0)E
[∫ Ta

0

αI(Xk(s))e
−rs ds+

∫ ∞
Ta

(1− τ)αI(Xk(s))e
−rs ds

]
=
r + σ

σ
. (2.33)

Using the memoryless property, Equation (2.33) can be simplified to,

p̄k(0)E
[∫ Ta

0

αI(Xk(s))e
−rs ds

]
+p̄k(Ta)e

−rTaE
[∫ ∞

0

(1− τ)αI(Xk(s))e
−rs ds

]
=
r + σ

σ
.

(2.34)

Each term in Equation (2.34) can be evaluated using the techniques in Section

2.4, and p̄k(Ta) = p̄k(0)eQTa can be evaluated numerically. We combine these equa-

tions with a numerical root finder, such as MATLAB’s fzero.

In Chapter 3, Equations (2.22), (2.25), (2.30) and (2.34) are extended to include

a finite duration of antivirals as well as modelling the alternative preallocation an-

tiviral scheme.

2.9 Choice of Parameters

Two sets of parameters, one representing a severe pandemic and another repre-

senting a less severe or mild outbreak, are used to compare the dynamic allocation

scheme to the preallocation scheme in this work. Recall from Section 2.6.1 that
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the severity of an outbreak is classified based on a number of quantities, primary

of which is the household reproductive ratio, R∗. We can calculate the household

reproductive ratio, R∗, using the methods in Section 2.6.1 for a given set of pa-

rameters. Recall also that the Spanish Influenza pandemic was one of the worst

influenza pandemics in history and is estimated to have a household reproductive

ratio, R∗, of 1.8 [57], while the 2009 Swine ’Flu pandemic was far less severe and

had an estimated household reproductive ratio, R∗, of 1.3 [29]. The parameters on

which the comparisons in this work are carried out are chosen to give pandemics

which have both of these reproductive ratios.

While not necessary, we fix γ = 1, which scales time. As a result of this time

scaling, one time unit resembles one infectious period. The purpose of this time

scaling is to reduce the number of free parameters in the model, and to avoid issues

with varying estimates between strains of influenza [29, 19]. For additional realism,

we set the distribution of household sizes, h, to resemble that of Australia [4]. That

is,

h = [0.2434, 0.3397, 0.1598, 0.1569, 0.0675, 0.0231, 0.0058, 0.0039],

where the mean household size here is,

h̄ = 2.577.

This gives the size-biased distribution,

π = [0.0944, 0.2636, 0.1860, 0.2435, 0.1310, 0.0537, 0.0158, 0.0120].

Here, there is an assumption that there are no households larger than 8 individuals.

In reality, this is obviously not true. However, the number of households in Australia

which have more than 8 members is not recorded by the Census, and so the number

of households with more than 8 members is assumed to be negligible. These two

distributions are shown in Figure 2.1. Investigation of household size distributions

of Indonesia and Sudan are later investigated in order to assess some sensitivity to

the distribution of household sizes, h. The population size is fixed at 105 individuals,
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meaning that,

N =

[
105

h̄

]
= 38803,

where [x] is the nearest integer to x.

Define the mild parameter set to have parameters β = 0.9669, σ = 1, and α = 0.8

and the severe parameter set to have parameters β = 1.1259, σ = 1 and α = 1. The

mild parameter set gives a household reproductive ratio, R∗, of 1.3, approximately

matching that of the 2009 Swine ’Flu pandemic [29], while the severe parameter

set gives a household reproductive ratio, R∗, of 1.8, approximately matching that of

the Spanish Influenza pandemic [57]. Note that there exist other combinations of

parameters which give the same household reproductive ratio, R∗, as above, however,

we do not consider any other combination in this work.

The average delay until antivirals arrive into a household, ζ, has not been ex-

plored in detail previously, however, an estimate of the average delay in the United

Kingdom in the 2009 Swine ’Flu pandemic was approximately 1 infectious period

implying ζ = 1 [29]. This is clearly very high—on average an individual would

have recovered before the individuals in the household receive the antivirals. We

take a small delay relative to the United Kingdom estimate, in order to assess the

effectiveness of dynamic allocation if significant effort was given to ensuring rapid

distribution of antivirals, and set ζ = 0.5, which for influenza is approximately 1.5

days. The effectiveness of antivirals is varied, with some estimates claiming a 60%

reduction in susceptibility [27, 53], however, these figures have been questioned pre-

viously [43]. We take a more conservative estimate of antiviral effectiveness, and set

the reduction in infectivity, τ , and susceptibility ρ, to 0.3, in line with experimental

estimates [72, 36]. The average antiviral duration, κ, which is discussed in detail in

Chapter 3, is set to be 1 infectious period. All parameters for both the mild and

severe parameter set are listed for convenience in Table 2.3. Throughout this thesis,

the units on parameter values are suppressed for clarity.

During the 2009 Swine ’Flu pandemic, Australia stockpiled enough antivirals to

allocate to 41% of the population [30] but the stockpiles of other countries varied
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Mild Severe

β 0.9669 (γ−1) 1.1259 (γ−1)

α 0.8 (γ−1) 1 (γ−1)

Both

σ 1 (γ−1)

ρ 0.3

τ 0.3

ζ 0.5 (γ)

κ 1 (γ)

γ 1

h Australian Census, 2011

Table 2.3: Definition of the mild and severe parameter sets.

by a large amount. Information about the size of the current antiviral stockpile

available for use during an influenza pandemic in Australia, however is not available,

and so the maximum number of available antivirals, M , cannot be set. As both

approximations considered in this work are fast to compute, a wide range of available

antivirals can be tested to alleviate this issue.

2.10 Summary

In this chapter, the background information about the Markov chain, the stochastic

households model and the branching process approximation has been introduced.

We demonstrated that the stochastic households model is impractical to use ana-

lytically, and can only be explored using simulation. In the branching process ap-

proximation, two key assumptions have been detailed. The first assumption is that

infection happens into a naive, or fully susceptible population. This assumption is

a property of a branching process, and cannot be removed. The second assumption
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Figure 2.1: Household size distribution and the size biased distribution of Australian

households.

is that antivirals have an essentially infinite duration. In Chapter 3, the branching

process approximation is extended in order to remove this assumption, as well as to

consider a number of other extensions. Finally, the mild and severe parameter sets

have been defined. In Chapter 3, the branching process is extended to include the

preallocation antiviral scheme, and some preliminary comparisons between the two

antiviral allocation schemes are made using both the mild parameter set and the

severe parameter set.



Chapter 3

Extensions to the Branching

Process Approximation

In this chapter, the branching process approximation which was introduced in Chap-

ter 2 is extended to allow for a finite antiviral duration, as well as to model the

preallocation scheme. We also consider modelling the delay until antivirals arrive

into a household and the effective duration of antivirals being of constant duration,

as opposed to being exponentially distributed. Finally, preliminary results from the

branching process approximation are presented.

3.1 Finite Antiviral Duration

The branching process approximation presented in Section 2.8 assumed that an-

tivirals had an effective duration which was essentially infinite. In this section, the

branching process approximation is extended to incorporate the finite duration of

antiviral effectiveness. To facilitate this, the state space again requires extension. As

before, let state (s, e, i, 0) represent a household which contains individuals who are

not yet taking antivirals, and state (s, e, i, 1) represent a household which contains

individuals who are currently taking antivirals. The antiviral status of a house-

hold, a, can now take on a new value, a = 2, which represents a household which

40
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Event Transition Rate

Infection (s, e, i, a)→ (s− 1, e+ 1, i, a) βksi for a 6= 1,

(1− τ)(1− ρ)βksi for a = 1,

Progression (s, e, i, a)→ (s, e− 1, i+ 1, a) σe

Recovery (s, e, i, a)→ (s, e, i− 1, a) γi

Antivirals begin (s, e, i, 0)→ (s, e, i, 1) 1
ζ

for s+ e 6= k

Antivirals end (s, e, i, 1)→ (s, e, i, 2) 1
κ

Table 3.1: Possible events inside a household during a pandemic with antivirals

under a dynamic allocation scheme.

contains individuals who have completed their course of antivirals. To begin with,

assume that this effective duration of antivirals is exponentially distributed with

mean effective duration κ. The Markov chain representing the status of an individ-

ual household, Xk(t), has transitions detailed in Table 3.1. The possible states of

Xk(t) are,

S = {(s, e, i, a)|s+ e+ i ≤ k, s, e, i ≥ 0, a = 0, 1, 2}.

Note that once the course of antivirals is complete inside a household (a = 2), it

is assumed that the individuals inside the household are never allocated a second

course of antivirals. To determine the household reproductive ratio, R∗, and the

Malthusian parameter, r, we can again use Equations (2.27) and (2.28), taking the

reward function to be

f(Xk(t)) =

αI(Xk(t)), when a = 0 or 2,

(1− τ)αI(XK(t)) when a = 1.

As before, the (1 − τ) term accounts for a reduction in infectivity while taking

antivirals. There is no benefit once the course of antivirals is complete and so when

a = 2 the rate of infection is not reduced.

Similarly to what has been shown previously when considering the delay until

antivirals arrive into a household, ζ, Figure 3.1 demonstrates that the Malthusian
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parameter, r, is sensitive to the average effective duration, κ. As expected, when

the effective duration of antivirals is small, the antivirals have little effect on the

Malthusian parameter, r. Similarly, when the delay is large, the antivirals have

little impact as all transmission of infection occurs before the antivirals arrive into

the household. It can also be seen that the antivirals have the strongest effect

when the delay is small and the effective duration is large. Note that as κ → ∞,

the Malthusian parameter, r, is similar to that obtained by Black et al. [15]. The

difference between the result obtained in Figure 3.1 and the results obtained by Black

et al. is because an SEIR model has been utilised in this work, whilst Black et al.

utilised an SEEIIR model. Importantly, when the effective duration of antivirals,

κ = 5, which is approximately 15 days for influenza, the Malthusian parameter,

r, is reduced by approximately 30%. Comparatively, if the effective duration of

antivirals, κ = 1, which is approximately 3 days for influenza, then the Malthusian

parameter, r, is reduced by only 17%. This demonstrates that consideration of

the effective antiviral duration is important when determining the effectiveness of

antivirals during a pandemic.

3.2 Preallocation Scheme

Thus far, only the dynamic allocation scheme has been considered. It is also possible

to model pandemic dynamics under a preallocation scheme. Under a preallocation

scheme, there is no period of time where individuals in a household are waiting for

antivirals to be delivered after the first infection. There is, however, a period of time

where the individuals in a household have antivirals available but are not yet taking

them as there has not yet been an infection inside the household. This phase where

individuals inside a household have antivirals available but are not yet taking them

is represented by the state (s, e, i, 3). The transitions for the Markov chain, Xk(t),

which models the preallocation scheme, are detailed in Table 3.2. Note that the

transition representing the effective duration of antivirals is the same as in Section



CHAPTER 3. BRANCHING PROCESS APPROXIMATION EXTENSIONS 43

Effective duration of antivirals, g

Av
er

ag
e 

de
la

y 
un

til
 a

nt
iv

ira
ls

 a
rri

ve
, c

 

 

1 2 3 4 5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Figure 3.1: The Malthusian parameter, r, for values of mean delay until antivirals

arrive in a household, ζ, and mean effective antiviral duration, κ, using the severe

parameter set.
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Event Transition Rate

Infection (s, e, i, a)→ (s− 1, e+ 1, i, a) βksi for a 6= 1

(1− τ)(1− ρ)βksi for a = 1

Progression (s, e, 0, 3)→ (s, e− 1, 1, 1) σe

(s, e, i, a)→ (s, e− 1, i+ 1, a)

Recovery (s, e, i, a)→ (s, e, i− 1, a) γi

Antivirals end (s, e, i, 1)→ (s, e, i, 2) 1
κ

Table 3.2: Possible events inside a household during a pandemic with antivirals

under a preallocation allocation scheme.

3.1, as the preallocation scheme does not affect the effective duration of antivirals.

The inclusion of states of the form (s, e, i, 3) again extends the state space, meaning

that,

|S| = 1

2
(k + 1)(k + 2)(k + 3).

Note that there are some states in S which are impossible to reach, such as (s, e, i, 0).

These states will be utilised later when considering a ‘mixture’ of antiviral schemes.

The Markov chain, Xk(t), shares many of the same transitions as the Markov chain

which models the dynamic allocation scheme, but the transition representing the in-

troduction of antivirals into a household after the first infection is no longer present.

Instead, the Markov chain, Xk(t), which models the preallocation scheme has a

transition from the state representing individuals in a household having antivirals

available but not taking them, (s, e, 0, 3), to the state in which the individuals in

a household are actively taking antivirals, (s, e − 1, 1, 1). Note that if the average

duration until antivirals arrive in a household is zero, then provided the entire popu-

lation has access to antivirals, the dynamic allocation scheme will produce the same

reduction in infectiousness as the preallocation scheme. Should there be insufficient

antivirals for the entire population, however, then even if the mean delay, ζ, is zero,

the two antiviral allocation schemes will not produce the same results, as will be
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discussed in Section 3.3.1.

The household reproductive ratio, R∗, and the Malthusian parameter, r, can

still be calculated using the branching process approximation which includes the

preallocation antiviral scheme. To do this, Equations (2.27) and (2.28) are used

with the matrix, Q, which is the generator matrix for Xk(t). The reward function

is taken to be,

f(Xk(t)) =

αI(Xk(t)) when a = 0, 2, 3

(1− τ)αI(Xk(t)) when a = 1.

A comparison of the Malthusian parameter, r, between the dynamic allocation

scheme and the preallocation scheme for a wide range of delays can be seen in

Figure 3.2. When the delay is 0, the Malthusian parameter, r, is the same for the

pandemic under both the dynamic allocation scheme and the preallocation antivi-

ral scheme. Note that this comparison assumes sufficient antivirals for an entire

population, so it is expected that the preallocation antiviral scheme will lead to a

lower Malthusian parameter, r, than the dynamic allocation scheme, as the preallo-

cation antiviral scheme acts just like the dynamic allocation scheme, but with zero

delay. The assumption of sufficient antivirals for the entire population is likely to

be unreasonable. In the next section, this assumption is removed.

3.3 Insufficient Antivirals for an Entire

Population

Previously there has been an assumption that there is sufficient antivirals for every

member of the population, at least in the early stages of the pandemic. When the

number of antivirals available is extremely small, obviously, this assumption is not

valid. However, our interest is in the range of antivirals when this assumption is

likely to be reasonable, at least for a dynamic allocation scheme.
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Figure 3.2: Effect of the average delay until antivirals arrive, ζ, on the Malthusian

parameter, r.
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Under a preallocation scheme, not all households which become infectious early

in the pandemic will necessarily have access to antivirals, unlike what is likely to

occur under a dynamic allocation scheme. Because of this, Equations (2.27) and

(2.28) must be modified accordingly. Let φk represent the proportion of households

of size k which are preallocated a supply of antivirals. Clearly, φk ∈ [0, 1] ∀ k. If

φk = 0 ∀k then no households in the population are preallocated any antivirals.

Similarly, if φk = 1 ∀k, then every household in the population is preallocated

antivirals. If neither of these are true, then we have partial preallocation.

Assume for now that all available antivirals are preallocated. The households

in the population can then be considered to have a rate of antiviral introduction,

1/ζ, being 0. To calculate the household reproductive ratio, R∗, the population of

households is partitioned into two classes: households which have been preallocated

antivirals, and households which have not. Let the branching process associated with

a preallocated household of size k be X̄k(t) and the branching process associated with

households of size k which have not been preallocated antivirals be Xk(t). These

Markov chains have transitions given in Table 3.2 and Table 3.1 respectively. The

equation for the household reproductive ratio is now given by the convex combination

of the household reproductive ratios for X̄k(t) and Xk(t) respectively. That is,

R∗ =
∑
k

πkpk(0)

(
φkE

[∫ ∞
0

f̄(X̄k(t)) dt

]
+ (1− φk)E

[∫ ∞
0

f(Xk(t)) dt

])
(3.1)

with

f̄(X̄k(t)) =

αI(X̄k(t)) for a = 2, 3

(1− τ)I(X̄k(t)) for a = 1

and

f(Xk(t)) =

αI(Xk(t)) for a = 0, 2

(1− τ)I(Xk(t)) for a = 1.

Each of these path integrals can be separately evaluated using Equation (2.27).

Thus, the calculation of the household reproductive ratio, R∗, is almost as straight-
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forward as calculating quantities when there is sufficient antivirals for the entire

population.

Similarly, the equation for the Malthusian parameter, r, is

∑
k

πkpk(0)

(
φkE

[∫ ∞
0

f̄(X̄k(t))e
−rtdt

]
+ (1− φk)E

[∫ ∞
0

f(Xk(t))e
−rt dt

])
= 1

(3.2)

with f̄(X̄k(t)) and f(Xk(t)) defined as in Equation (3.1). The first term in this

equation represents the households which have been preallocated antivirals, while

the second term represents the households which have not been preallocated antivi-

rals. The left hand side of Equation (3.2) can be evaluated for a given value of r,

and so can be combined with a numerical root-finding algorithm to determine the

Malthusian parameter, r, for which the equality is achieved.

3.3.1 Effects on a Pandemic

The effects of insufficient antivirals for an entire population can be significant. It

can seen in Figure 3.3 that when there is sufficient antivirals available for the popu-

lation, a preallocation scheme tends to give a lower Malthusian parameter, r, than

a dynamic allocation scheme, as expected. This is because when there is a large

amount of antivirals available for use, a majority of the population has antivirals

available immediately under a preallocation scheme, and so the preallocation scheme

leads to the same effect as the dynamic allocation scheme with zero delay. How-

ever, when there is a small number of antivirals available for use in a pandemic, the

dynamic allocation scheme leads the pandemic to have a smaller Malthusian parame-

ter, r. The dynamic allocation scheme ensures that every household which contains

an infectious individual early in the pandemic receives a supply of antivirals. A

preallocation scheme, however, ensures that some, roughly constant, proportion of

infected individuals are taking antivirals throughout the entire pandemic at the cost

of some infected individuals not receiving antivirals. The Malthusian parameter, r,

is a quantity associated with the early stages of a pandemic, and so it is not unex-
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Figure 3.3: The effects of having insufficient antivirals in a population on the Malthu-

sian parameter, r, using the severe parameter set.

pected that the antiviral allocation scheme which focusses on the early stages of the

pandemic, that being the dynamic allocation scheme, yields a smaller Malthusian

parameter, r.

3.4 Extensions to Constant-Time Events

Thus far, we have only considered event holding times which are exponentially dis-

tributed. This is because all events are modelled as transitions in a Markov chain

[61]. We now consider the effective duration and the delay until antivirals arrive

being of constant duration, as opposed to being exponentially distributed. The

constant duration can be thought of as the opposite extreme to an exponentially

distributed duration in terms of the variation of events [15]. The constant duration
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means that there is no longer a Markov chain structure for each event, but quantities

such as the household reproductive ratio, R∗, and the Malthusian parameter, r, can

still be calculated.

3.4.1 Constant Effective Duration

For this section, we assume that the delay until antivirals arrive is exponentially

distributed with mean ζ, but the effective duration is a constant time, κ. To facil-

itate the calculation of the household reproductive ratio, R∗, and the Malthusian

parameter, r, the time of a within-household pandemic is divided into four intervals:

1. The time from first infection until the first person becomes infectious, [0, T1),

where T1 ∼ exp(1/σ),

2. The time interval until antivirals arrive to a household, [T1, T1 + Ta), where

Ta ∼ exp(1/ζ),

3. The time interval that antivirals are active within a household, [T1 + Ta, T1 +

Ta + κ), and

4. The remainder of the pandemic, [T1 + Ta + κ,∞).

Let pk(t) represent the distribution of the Markov chain, Xk(t), at time t. Recall

from Section 2.2 that pk(t) can be calculated as pk(t) = pk(0)eQt where eQt is the

exponential of the matrix Qt, and Q is the generator of the Markov chain, Xk(t).

Consider first the household reproductive ratio, R∗. Recall Equation (2.27). We

calculate a single path integral from this expression,

pk(0)E
[∫ ∞

0

f(Xk(t)) dt

]
,

with

f(Xk(t)) =

αI(Xk(t)) when a = 0, 2,

(1− τ)αI(Xk(t)) when a = 1

.
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The single path integral can be divided into four separate terms corresponding to

the four intervals noted above as follows:

pk(0)E
[∫ ∞

0

f(Xk(t)) dt

]
=pk(0)E

[∫ T1

0

αI(Xk(t)) dt+

∫ T1+Ta

T1

αI(Xk(t)) dt (3.3)

+

∫ T1+Ta+κ

T1+Ta

(1− τ)αI(Xk(t)) dt+

∫ ∞
T1+Ta+κ

αI(Xk(t)) dt

]
.

Note that from 0 to T1 there is no infection in the household and so the initial state

is changed from pk(0) = u(k−1,1,0,0) to p̄k(0) = u(k−1,0,1,0), where uj is a vector with

value 1 in the jth element, and 0 elsewhere. Using the new initial condition, p̄k(0),

the dependence on T1 can be removed from Equation (3.3) giving,

pk(0)E
[∫ ∞

0

f(Xk(t)) dt

]
=p̄k(0)E

[∫ Ta

0

αI(Xk(t)) dt+

∫ Ta+κ

Ta

(1− τ)αI(Xk(t)) dt

+

∫ ∞
Ta+κ

αI(Xk(t)) dt

]
. (3.4)

As expectation is linear, and Xk(t) is a Markov process, the expectation of each

path integral in Equation (3.4) can be taken individually, giving

pk(0)E
[∫ ∞

0

f(Xk(t)) dt

]
=p̄k(0)E

[∫ Ta

0

αI(Xk(t)) dt

]
+ p̄k(Ta)E

[∫ κ

0

(1− τ)αI(Xk(t)) dt

]
+ p̄k(Ta + κ)E

[∫ ∞
0

αI(Xk(t)) dt

]
. (3.5)

As Ta ∼ exp(1/ζ), the state of the process Xk(t) at a random time Ta is required.

To calculate this, a modified process, denoted X
(Ta)
k (t) is required. The process,

X
(Ta)
k (t), is the same as Xk(t) except the process is absorbed at time Ta, the time

at which antivirals arrive into a household after the first infection event. Then,

p̄k(Ta) = lim
t→∞

p̄k(0)eQ
(Ta)t,

restricted to the set of transient states. Here, Q is the generator matrix of Xk(t).

The distribution at time Ta can be numerically estimated by evaluating p̄k(0)eQ
(Ta)t

for large t. The other terms of Equation (3.5) are calculated as before.
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Next, consider the Malthusian parameter, r. The situation is slightly more com-

plex than that of the household reproductive ratio, R∗, because there is a dependence

on absolute time. Recall Equation (2.28) for the Malthusian parameter. Again we

expand a single term of this path integral. As before, this path integral can be

divided into four distinct time periods, yielding

pk(0)E
[∫ T1

0

αI(Xk(t))e
−rt dt+

∫ T1+Ta

T1

αI(Xk(t))e
−rt dt

+

∫ T1+Ta+κ

T1+Ta

(1− τ)αI(Xk(t))e
−rt dt+

∫ ∞
T1+Ta+κ

αI(Xk(t))e
−rt dt

]
= 1, (3.6)

with pk(0) = u(k−1,1,0,0). During the time period from t = 0 to T1, no new infections

occur in the population, and thus the first term above is also zero. Let s = t− T1;

then, ds = dt. Substituting into Equation (3.6) gives,

pk(0)E
[∫ Ta

0

αI(Xk(s))e
−r(s+T1)ds

+

∫ Ta+κ

Ta

(1− τ)αI(Xk(s))e
−r(s+T1)ds+

∫ ∞
Ta+κ

αI(Xk(s))e
−r(s+T1)ds

]
= 1.

(3.7)

Since T1 ∼ exp(σ), and the state of the Markov chain Xk(t) is known at time T1,

the initial state of the Markov chain can be changed from pk(0) = u(k−1,1,0,0) to

p̄k(0) = u(k−1,0,1,0). Note that this technique is valid only because the state of the

process is known (deterministically) at time T1. Integrating out the dependence on

T1 from Equation (3.7) gives,

p̄k(0)E
[∫ Ta

0

αI(Xk(s))e
−rs ds+

∫ Ta+κ

Ta

(1− τ)αI(Xk(s))e
−rs ds

+

∫ ∞
Ta+κ

αI(Xk(s))e
−rs ds

]
·
∫ ∞

0

σe−(r+σ)s ds = 1.

The final term of this equation can be evaluated analytically and has solution σ/(r+

σ). Moving this to the right hand side yields

p̄k(0)E
[∫ Ta

0

αI(Xk(s))e
−rs ds+

∫ Ta+κ

Ta

(1− τ)αI(Xk(s))e
−rs ds

+

∫ ∞
Ta+κ

αI(Xk(s))e
−rs ds

]
=
r + σ

σ
.

(3.8)
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To calculate the first term of Equation (3.8), take a Markov process X̄k(t) which is

identical to Xk(t) but is absorbed as soon as antivirals are taken. Using this process,

the first term of Equation (3.8) can be rewritten as,

E
[∫ Ta

0

αI(Xk(s))e
−rs ds

]
= E

[∫ ∞
0

αI(X̄k(s))e
−rs ds

]
(3.9)

which can be solved using Equation (2.17). Focussing now on the second integral of

Equation (3.8), set u = s − Ta. Then, using the time shift technique as used when

deriving Equation (3.7), the second term in Equation (3.8) can be rewritten as,

E
[∫ Ta+κ

Ta

(1− τ)αI(Xk(s))e
−rs ds

]
= E

[∫ κ

0

(1− τ)αI(Xk(u+ Ta))e
−r(u+Ta)du

]
.

(3.10)

Recall that Ta ∼ exp(ζ). To remove the dependence on Ta from the expectation

in Equation (3.10), we utilise the probability density function of Ta, that being

fTa(x) = ζe−ζx. Then integrating over all possible values of Ta ∈ [0,∞) gives,

E
[∫ κ

0

(1− τ)αI(Xk(u+ Ta))e
−r(u+Ta)du

]
=

∫ ∞
0

p̄k(x)ζe−ζx × E
[∫ κ

0

(1− τ)αI(Xk(u))e−r(u+x)du

]
dx, (3.11)

where p̄(x) denotes the distribution of the Markov chain at time x. Removing terms

independent of u from the expectation in Equation (3.11) gives,∫ ∞
0

p̄k(x)ζe−ζx × E
[∫ κ

0

(1− τ)αI(Xk(u))e−r(u+x)du

]
dx

=

∫ ∞
0

p̄k(x)ζe−x(ζ+r) × E
[∫ κ

0

(1− τ)αI(Xk(u))e−rudu

]
dx. (3.12)

Note that p̄k(x) = p̄k(0)eQx, restricted to the set of transient states, where Q is the

generator matrix of Xk(t), and so the first term of Equation (3.12) is,∫ ∞
0

p̄k(x)ζe−x(ζ+r) dx =

∫ ∞
0

p̄k(0)eQxζe−x(ζ+r) dx.

Moving terms independent of x outside this integral gives,∫ ∞
0

p̄k(0)eQxζe−x(ζ+r) dx = p̄k(0)ζ

∫ ∞
0

e−x((ζ+r)I−Q) dx. (3.13)
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Using the result from Section 2.3, Equation (3.13) is,∫ ∞
0

e−x((ζ+r)I−Q) = ((ζ + r)I −Q)−1,

which, substituting into Equation (3.12) gives,

p̄k(0)ζ

∫ ∞
0

e−x((ζ+r)I−Q)dx× E
[∫ κ

0

(1− τ)αI(X(k(u))e−rudu

]
= p̄k(0)ζ [(ζ + r)I −Q]−1 × E

[∫ κ

0

(1− τ)αI(X(k(u))e−rudu

]
.

(3.14)

The path integral in Equation (3.14) can be evaluated using Equation (2.28).

Finally, focussing on the third integral of Equation (3.8), we have

E
[∫ ∞

Ta+κ

αI(Xk(s))e
−rsds

]
. (3.15)

Denote the generator matrix for a household not yet taking antivirals by Q1, and the

generator matrix for a household under the effect of antivirals by Q2. Let u = t−Ta.

Then, Equation (3.15) can be expanded as,

E
[∫ ∞

Ta+κ

αI(Xk(s))e
−rsds

]
=∫ ∞

0

p̄k(0)eQ1xζe−ζxe−rx E
[∫ ∞

Tc

αI(Xk(u))e−ru du

]
dx,

(3.16)

using the same technique as in Equation (3.12). Let v = u − κ. As κ is constant,

Equation (3.16) can be expanded further as,∫ ∞
0

p̄k(0)eQ1xζe−ζxe−rx E
[∫ ∞

κ

αI(Xk(u))e−ru du

]
dx

=

∫ ∞
0

p̄k(0)eQ1xζe−ζxe−rxeQ2κe−rκ E
[∫ ∞

0

αI(Xk(v))e−rv dv

]
dx,

which, taking terms independent of x outside the first integral above gives,∫ ∞
0

p̄k(0)eQ1xζe−ζxe−rxeQ2κe−rκ E
[∫ ∞

0

αI(Xk(v))e−rv dv

]
dx

= ζp̄k(0)eκ(Q2−rI)
∫ ∞

0

e−x((ζ+r)I−Q1) E
[∫ ∞

0

αI(Xk(v))e−rv dv

]
dx. (3.17)
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Using the results in Section 2.3, the first integral of Equation (3.17) is,∫ ∞
0

e−x((ζ+r)I−Q1) dx = ((ζ + r)I −Q1)−1,

which, substituted into Equation (3.17) gives,

ζp̄k(0)e−κ(rI−Q2)

∫ ∞
0

e−x((ζ+r)−Q1) dxE
[∫ ∞

0

αI(Xk(s))e
−rs ds

]
=

= ζp̄k(0)e−κ(rI−Q2) [(ζ + r)I −Q1]−1 E
[∫ ∞

0

αI(Xk(s))e
−rsds

] (3.18)

which can again be evaluated in the same way as Equations (3.9) and (3.14). Com-

bining Equations (3.9), (3.14) and (3.18) gives the expression for a single path

integral from Equation (3.6) as,

p̄k(0)E
[∫ Ta

0

αI(Xk(s))e
−rs ds

]
+ p̄k(0)ζ[(ζ + r)I −Q1]−1E

[∫ κ

0

(1− τ)αI(Xk(s))e
−rs ds

]
+ ζp̄k(0)e−κ(rI−Q2)[(ζ + r)I −Q1]−1E

[∫ ∞
0

αI(Xk(s))e
−rs ds

]
=
r + σ

σ
.

(3.19)

The left hand side of Equation (3.19) can be evaluated for a given value of r with

Equations (2.17) and (2.19) and so equality can be determined using a numerical

root-finding algorithm.

To incorporate the preallocation scheme, we can break up the pandemic into the

following intervals:

1. [0, T1), where T1 is the time to the first infection. This is also the time when

antivirals arrive to the household,

2. [T1, T1 + κ), where κ is the time when antivirals are no longer effective and,

3. [T1 + κ,∞), the remainder of the pandemic.

Similarly to Equation (3.4), the equation for the household reproductive ratio, R∗,

can be expressed as,

R∗ = pk(0)E
[∫ T1

0

αI(Xk(t)) dt+

∫ T1+κ

T1

(1− τ)αI(Xk(t)) dt+

∫ ∞
T1+κ

αI(Xk(t)) dt

]
.
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Again, we can change the initial condition from state pk(0) = u(k−1,1,0,0) to p̄k(0) =

u(k−1,0,1,0) and remove the dependence on T1, giving,

R∗ = pk(0)E
[∫ κ

0

(1− τ)αI(Xk(t)) dt+

∫ ∞
κ

αI(Xk(t)) dt

]
= p̄k(0)E

[∫ κ

0

(1− τ)αI(Xk(t)) dt

]
+ p̄(0)eQκ E

[∫ ∞
0

αI(Xk(t)) dt

]
, (3.20)

using the Markov property, and that pk(κ) = pk(0)eQκ restricted to the set of tran-

sient states. The first expectation of Equation (3.20) above is over a finite time, and

the second over an infinite time. Both of these expectations of path integrals can

be evaluated using Equation (2.19) and (2.17) respectively.

For the Malthusian parameter, r, recall Equation (2.25). Again this can be

divided into 3 intervals, giving

pk(0)E
[∫ T1

0

αe−rtI(Xk(t)) dt+

∫ T1+κ

T1

(1− τ)αe−rtI(Xk(t)) dt

+

∫ ∞
T1+κ

αe−rtI(Xk(t)) dt

]
= 1. (3.21)

As was the case when deriving the Malthusian parameter, r, previously, the first

integral of Equation (3.21) zero as there are no infectious events. Moving the ini-

tial state from pk(0) = u(k−1,1,0,0) to p̄k(0) = u(k−1,0,1,0) and integrating out the

dependence on T1 from Equation (3.21), gives

p̄k(0)E
[∫ κ

0

(1− τ)αe−rtI(Xk(t)) dt+

∫ ∞
κ

αe−rtI(Xk(t)) dt

]
=
r + σ

σ
,

and using the linearity of expectations and the Markov property yields,

p̄k(0)E
[∫ κ

0

(1− τ)αe−rtI(Xk(t)) dt

]
+ p̄k(κ)E

[∫ ∞
0

αI(Xk(t)) dt

]
=
r + σ

σ
. (3.22)

The first term of Equation (3.22) is an expectation of a path integral over a finite

time, and the second term is the expectation of a path integral over infinite time,

and so the left hand side can be evaluated for a given value of r using Equations

(2.19) and (2.17). Recall that p̄k(κ) = p̄k(0)eQκ, restricted to the set of transient

states, can be evaluated using EXPOKIT. This means that the left hand side of
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Equation (3.22) can be calculated for a given value of r, and so the Malthusian

parameter, r, for which equality holds, can be found using a numerical root-finding

algorithm.

3.4.2 Constant Delay and Effective Duration

If both the delay until antivirals arrive and their active duration are constant, then

the situation is much simpler as there is no need to account for the randomness

of the time between the first infection event in a household and antivirals arriving

or the effective duration of antivirals. Consider first a pandemic under a dynamic

allocation scheme. The pandemic can be divided into 3 time intervals,

1. The time until antivirals arrive into a household, [0, ζ),

2. The time while antivirals are active inside a household, [ζ, ζ + κ), and

3. The remainder of the pandemic, [ζ + κ,∞).

The equation for R∗ is as follows:

R∗ = pk(0)E
[∫ ∞

0

αI(Xk(t)) dt

]
= pk(0)E

[∫ ζ

0

αI(Xk(t)) dt

]
+ pk(ζ)E

[∫ κ

0

(1− τ)αI(Xk(t)) dt

]
(3.23)

+ pk(ζ + κ)E
[∫ ∞

0

αI(Xk(t)) dt

]
.

The first two terms of Equation (3.23) can be evaluated using Equation (2.19), while

the third term can be evaluated using Equation (2.17).

Similarly, with both events being constant, the Malthusian parameter has equa-

tion,

pk(0)E
[∫ ζ

0

e−rtαI(Xk(t)) dt

]
+ pk(ζ)E

[∫ κ

0

e−rt(1− τ)I(Xk(t)) dt

]
+ pk(ζ + κ)E

[∫ ∞
0

e−rtαI(Xk(t)) dt

]
= 1. (3.24)
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Considering a pandemic under a preallocation scheme, there is no delay until an-

tivirals arrive. As the effective duration of antivirals is constant, the household

reproductive ratio, R∗, can be calculated using Equation (3.20) and the Malthusian

parameter, r, can be calculated by using Equation (3.22) with a numerical root

finding algorithm.

The difference in the Malthusian parameter, r, when the effective duration of

antivirals, κ, is exponentially distributed and of constant duration, is shown in Fig-

ure 3.4. Note that the exponentially distributed case yields a consistently higher

Malthusian parameter, r, than the constant duration case. If the antiviral duration

is exponentially distributed then there are likely to be households in the population

which contain individuals who receive the benefit of antivirals for a small amount

of time relative to the mean. These households which have a short effective an-

tiviral duration do not receive much benefit from antivirals, and so the Malthusian

parameter, r, increases. Note, however, that the choice of distribution of effective

duration of antivirals, κ, appears to only qualitatively shift the Malthusian parame-

ter, r. The general behaviour, that being that the dynamic allocation scheme yields

a higher Malthusian parameter, r, than the preallocation scheme when the entire

population has access to antivirals, still holds, regardless of whether an exponentially

distributed or constant duration effective duration of antivirals, κ, is used.

3.5 Summary

In this chapter we have used a branching process approximation to calculate the

household reproductive ratio, R∗, and the Malthusian parameter, r, using path inte-

gral methods. We also considered the delay until antivirals arrive into a household,

ζ, and the effective duration of antivirals, κ, being of constant duration, as opposed

to exponentially distributed. We showed that a constant effective duration lowered

the Malthusian parameter, r, for a pandemic. This implies that assuming that the

effective duration of antivirals is exponentially distributed should under-estimate
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Figure 3.4: The difference in Malthusian parameter when the duration of antivirals

is exponentially distributed or constant, using the severe parameter set from Table

2.3. Solid lines are when the effective duration of antivirals, κ, is exponentially

distributed. Dashed lines are when the effective duration of antivirals, κ, is of

constant duration.
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the impact of antivirals. The same effect was observed for the delay until antivi-

rals arrive into a household by Black et al. [15]. Importantly, the assumption of

exponential duration did not largely alter the difference between the Malthusian

parameter, r, under a dynamic allocation scheme and a preallocation scheme and

so the assumption of this time being exponentially distributed should not affect the

comparison of antiviral allocation schemes.

While the branching process is fast to compute, quantities such as the final epi-

demic size, the peak size and the peak time of the pandemic cannot be obtained.

While the Malthusian parameter, r, and the household reproductive ratio, R∗, pro-

vide some indicators as to the severity of a pandemic and can give some indication

as to the potential benefit of preallocation, such as a lower Malthusian parameter,

r, it is still important to consider these other quantities. Intuitively, preallocation

keeps an ‘average level’ of antivirals being taken throughout a pandemic, while dy-

namic allocation ensures that the level of antivirals being taken early in a pandemic

is very high. This may lead to the preallocation scheme outperforming the dynamic

allocation scheme over the entire pandemic, while the dynamic allocation scheme

may outperform the preallocation scheme early in the pandemic. This cannot be

tested using the results obtained using the branching process approximation.

The expected final epidemic size, expected peak size and expected peak time,

which are associated with the long term behaviour of a pandemic, can be calculated

using simulation as described in Chapter 2, however, a single realisation takes 30

minutes on an Intel Xeon 2.6GHz processor for a population of 105 individuals. In

the next chapter, a deterministic approximation to the stochastic household model

is derived. The deterministic approximation is fast to compute, but also contains

all the information required to calculate the expected final epidemic size, expected

peak size and expected peak time as well as the expected Malthusian parameter, r.



Chapter 4

Deterministic Approximation

In Chapters 2 and 3, we approximated the stochastic households model with a

branching process. The key assumption in the derivation of this approximation is

that the number of households in the population is infinite and so external infections

happen into otherwise fully susceptible households. This means that the branching

process cannot be used to accurately predict quantities such as the final epidemic

size, as the number of individuals infected will grow infinitely. Recall that it is pos-

sible to estimate the expected final epidemic size, expected peak time and expected

peak size by simulating the stochastic households model, however this process is time

consuming. In this chapter we derive a deterministic approximation for the stochas-

tic households model using a functional law of large numbers [49]. The deterministic

nature of the approximation means that it is fast to compute, and will only need

to be calculated once for each pandemic scenario. The deterministic approximation

by its very nature approximates the expected value of all key quantities associated

with a pandemic. However, the deterministic approximation can not be used reli-

ably for small population sizes, or to estimate quantities very early in the pandemic.

As we are looking to calculate the expected final epidemic size, expected peak size,

expected peak time and expected Malthusian parameter in a large population size,

these limitations of the deterministic approximation are not an issue. In this chap-

ter we also consider a number of extensions to the stochastic households model and

61
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the deterministic approximation, such as: having insufficient antivirals for an entire

population; a hybrid antiviral allocation scheme; individuals in a household using

antivirals incorrectly; and also the production of antivirals during a pandemic.

4.1 Development by Others

The deterministic approximation we derive is analogous to the model derived by

Ball [8] for the SIS model. A deterministic approximation has been shown to be

valid using the results of Kurtz [49] as the number of households N → ∞ [8].

This result has also been attained using techniques from statistical physics [31].

There has also been work which outlines a procedure that constructs the system

of differential equations which govern a deterministic approximation for the spread

of disease through a population where the disease is modelled using the SIR model

[16]. We follow a similar procedure to develop a deterministic approximation for the

spread of the disease throughout a population, where the disease is modelled using

the SEIR household model.

House and Keeling [39] utilise a similar deterministic approximation for an SIR

model in order to investigate the effects of antivirals on a pandemic, however the

model did not include the reduction to susceptibility, ρ. It was determined that as

the size of households, k, increased, the amount of households required to receive

antivirals to control the pandemic decreased. This is because a small number of large

households receiving antivirals is equivalent to a large number of small households

receiving antivirals in terms of the number of people who are taking antivirals.

In this chapter, we focus on the difference between antiviral allocation schemes,

however, the results of House and Keeling suggest that investigation into household

size distribution may also be necessary.
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4.2 Derivation

When constructing the stochastic households model, we assumed that each house-

hold was uniquely identifiable, while the individuals inside the household were not.

We now seek an alternative representation of the stochastic households model in

which each household is no longer uniquely identifiable [16]. Let H(s,e,i) represent

the number of households with s susceptible, e exposed, and i infectious individuals.

We initially assume that all households have a fixed size, k, an assumption which

we relax in Section 4.4. We also assume that there is a fixed number of households,

N , in the population, and so the total population size is Nk. Clearly, s+ e+ i ≤ k,

and the number of recovered individuals is r = k− (s+ e+ i), as in Chapter 2. The

set of possible household states, or configurations, is,

C = {(s, e, i)|s+ e+ i ≤ k, s, e, i ≥ 0}.

The state space for the process, H(t), representing the disease dynamics in a popu-

lation is,

S =

H = [H(s,e,i)] |(s, e, i) ∈ C, H(s,e,i) ≥ 0
∑

(s,e,i)∈C

H(s,e,i) = N

 .

The vector H(t) has a component for each configuration (s, e, i) ∈ C. As such the

length of the vector, H(t), is,

|C| = 1

6
(k + 1)(k + 2)(k + 3),

which is independent of N , unlike the original formulation in Section 2.5. Let,

Ĥ(t) =
∑

(s,e,i)∈C

iH(s,e,i),

be the total number of infectious individuals in the population at time t. The

process, H(t), has the following transitions,

(H(s,e,i), H(s−1,e+1,i))→ (H(s,e,i) − 1, H(s−1,e+1,i) + 1) at rate
(
βksi+

α

Nk
Ĥ(t)s

)
H(s,e,i)

(H(s,e,i), H(s,e−1,i+1))→ (H(s,e,i) − 1, H(s,e−1,i+1) + 1) at rate σeH(s,e,i)

(H(s,e,i), H(s,e,i−1))→ (H(s,e,i) − 1, H(s,e,i−1) + 1) at rate γiH(s,e,i), (4.1)
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which represent infection, progression, and recovery events respectively. Here, we are

effectively saying that a transition destroys a household of one type (corresponding

to a -1 value), and creates a household of the new type (corresponding to a +1

value). These transitions can be represented in terms of stoichiometric matrices.

For the three transitions in Equation (4.1), we have three stoichiometric matrices,

L1, L2 and L3, with (m,n)th element,

L
(m,n)
1 = δi,i∗(−δs,s∗δe,e∗ + δs,s∗−1δe,e∗+1),

L
(m,n)
2 = δs,s∗(−δe,e∗δi,i∗ + δe,e∗−1δi,i∗+1),

L
(m,n)
3 = δs,s∗δe,e∗(−δi,i∗ + δi,i∗−1),

for each m = (s, e, i), n = (s∗, e∗, i∗) ∈ C, which represent the infection, progression,

and recovery transitions respectively; here, δj,k is the standard Kronecker delta

function, that is,

δj,k =

1 if j = k,

0 if j 6= k

.

The index of the stoichiometric matrix determines the type of event, infection, pro-

gression, or recovery. The (m,n)th entry corresponds to the transition of a household

of type m to n. The rates at which each event occurs can be encapsulated in three

time dependent vectors, y1(t),y2(t),y3(t), with elements

y
(n)
1 (t) =

(
βksi+

α

Nk
Ĥ(t)s

)
Hn(t)

y
(n)
2 (t) = σeHn(t),

y
(n)
3 (t) = γiHn(t),

for each n = (s, e, i) ∈ C.

The state of the process, H(t), can be evaluated by using the event times and

the sequence of events that have occurred up to time t. Let vt represent the event

type that occurred at time t. Here, vt = 1 corresponds to an infection event, vt = 2

corresponds to a progression event, and vt = 3 corresponds to a recovery event. Let,

ut = {vk|k < t},
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be the set of all events that have occurred up to time t. Also, let cj be the household

configuration which is affected by event j. Then, the state of the process, H(t), is,

H(t) = H(0) +
∑
j∈ut

L
(cj ,:)
j ,

where L
(cj ,:)
j represents the cjth row of the matrix Lj. The process H(t) is a Markov

chain, and so can be simulated using the Gillespie Algorithm in Algorithm 1. The

state space for H(t) is still dependent on N , meaning that for a large number

of households, this state space will become large. We now seek a deterministic

approximation which holds asymptotically as N →∞. Let,

p(s,e,i) = N−1H(s,e,i).

The transition rates in Equation (4.1) can be re-written as(
βksi+

α

Nk
Ĥ(t)s

)
H(s,e,i) = N

(
βksi+ αÎ(t)s

)
p(s,e,i), (4.2a)

σeH(s,e,i) = Nσep(s,e,i) (4.2b)

γiH(s,e,i) = Nγip(s,e,i), (4.2c)

where

Î(t) =
1

Nk
Ĥ(t) =

1

k

∑
(s,e,i)∈C

ip(s,e,i),

is the overall proportion of individuals who are infectious at time t. The transition

rates in Equations (4.2a), (4.2b) and (4.2c) are in the form of

Nfj

(
1

N
H(s,e,i)

)
, j = 1, 2, 3.

In particular, the three rates in Equations (4.2a), (4.2b) and (4.2c) have,

f1 = (βksi+ αÎ(t)s)
H(s,e,i)

N
,

f2 = σe
H(s,e,i)

N
,

f3 = γi
H(s,e,i)

N
.
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This means that the transition rates in Equations (4.2a), (4.2b) and (4.2c) are density

dependent in the sense of Kurtz [49], which implies that as N →∞, the stochastic

household model, scaled by a factor of 1/N , converges uniformly in probability

over finite time intervals to the deterministic approximation which we will shortly

define. This intuitively says that the deterministic approximation is accurate for a

sufficiently large population size.

Let

p(t) = N−1H(t).

The system p(t) represents the proportion of households in each state (s, e, i) ∈

C. Due to the scaling by a factor of 1/N , each component of p(t) is between 0

and 1, unlike each component of H(t), and so the deterministic approximation can

be used to calculate expected quantities from pandemics with arbitrarily large N .

The deterministic approximation can be expressed as a sequence of matrix-vector

products using the stoichiometric matrices, Li. Let,

w
(n)
1 (t) =

(
βksi+ αÎ(t)s

)
pn(t)

w
(n)
2 (t) = σepn(t),

w
(n)
3 (t) = γipn(t),

for each n = (s, e, i) ∈ C. The deterministic approximation is,

dp(t)

dt
=

3∑
j=1

Ljwj(t). (4.3)

It is worth noting that for the case where all households are of size 2, House and

Keeling [39] have derived an analytic solution to the set of differential equations for

the SIR model. Also, for the SIS model, Ball [9] derived an analytic solution for the

case where all households are of size 2. There do not appear to be analytic solutions

for the SEIR model with any household size distribution, however.

To see the structure of this approximation, consider an example in a population
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of households all of size k = 2. The set of possible household states, C, has elements,

c0 = (0, 0, 0) c5 = (0, 2, 0)

c1 = (0, 0, 1) c6 = (1, 0, 0)

c2 = (0, 0, 2) c7 = (1, 0, 1)

c3 = (0, 1, 0) c8 = (1, 1, 0)

c4 = (0, 1, 1) c9 = (2, 0, 0),

and the system of differential equations is,

dp0(t)

dt
= γp1(t),

dp1(t)

dt
= 2γp2(t) + σp3(t)− γp1(t),

dp2(t)

dt
= σp4(t)− 2γp2(t),

dp3(t)

dt
= γp4(t) + αÎ(t)p6(t)− σp3(t),

dp4(t)

dt
= 2σp5(t) + αÎ(t)p7(t)− (σ + γ)p4(t),

dp5(t)

dt
= αÎ(t)p8(t)− 2σp5(t),

dp6(t)

dt
= γp7(t)− αÎ(t)p6(t),

dp7(t)

dt
= σp8(t)− (αÎ(t) + γ)p7(t),

dp8(t)

dt
= 2αÎ(t)p9(t)− (αÎ(t) + σ)p8(t),

dp9(t)

dt
= −2αÎ(t)p9(t),

with

Î(t) =
p1(t) + 2p2(t) + p4(t) + p7(t)

2
,

where pi(t) is the proportion of households in state ci. This system of differential

equations can be solved numerically using Runge-Kutta methods such as those im-

plemented in MATLAB’s ode45 function, paired with a suitable initial condition

p(0), which we discuss next.
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4.3 Initial Condition

In order to solve Equation (4.3), a suitable initial condition, p(0), is required. The

initial condition must be such that the proportion of the population in each state

is sufficiently large. Further, we want to eliminate the transient behaviour of the

system and so the system essentially starts in the early growth phase of the pan-

demic. This allows for a fairer comparison of the general behaviour of pandemics

under different antiviral allocation schemes.

To determine an initial condition which eliminates transient behaviour, first con-

sider the steady states of the deterministic approximation. Consider the following

two states of the system—the population state where every household is in state

(k, 0, 0), denoted ps, and the population state where the entire population is in

state (0, 0, 0), denoted pr. Clearly, if the system is in either state ps or state pr,

then it will be at equilibrium as the population is either fully susceptible and so

there are no infectious individuals or the population is fully recovered and so there

are no individuals to infect. Further, any convex combination of these two states

is also an equilibrium point. To see that ps is an unstable equilibrium, consider a

small perturbation from ps. This perturbation will cause the state of the system to

never be ps again as individuals who are infected do not become susceptible again.

As such, there exists an eigenvalue, λ, at the point ps, which is positive. To see

the stability of the system in state pr, consider a small perturbation from pr. This

perturbation will not stop the state of the system being pr again, as any infectious

individuals must eventually recover. This means that all eigenvalues of the system

are non-positive at the point pr. Clearly, we want to start ‘near’ the state where all

individuals are susceptible, ps, in order to capture the early growth period of the

pandemic, and so we make a small perturbation from the equilibrium point, ps. As

such, we seek an initial condition of the form,

p(0) = ps + ω.

To determine ω, a linear stability analysis is applied to the deterministic approx-
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imation [44]. Let F (p(t)) =
∑

j Ljwj(t). The system of differential equations which

forms the deterministic approximation can be expressed as,

dp(t)

dt
= F (p(t)).

Let the Jacobian of this system be J , that is,

Jij =
∂Fi
∂pj

,

and J |x be the Jacobian evaluated at the point x. Linearising this system about the

equilibrium point ps, yields

dp(t)

dt
= F (ps) + J |ps(p(t)− ps)

= J |ps(p(t)− ps),

as F (ps) = 0. Let p(t)− ps = δp(t). Then, dδp(t)
dt

= dp(t)
dt

and,

dδp(t)

dt
= Jpsδp(t). (4.4)

As Equation (4.4) is a system of constant coefficient linear differential equations,

the system can be decomposed in terms of its eigenvalues and eigenvectors. Let

J |ps have eigenvalues λ1, . . . , λn, where Re(λ1) ≥ Re(λ2) ≥ · · · ≥ Re(λn), with

corresponding eigenvectors v1, . . . ,vn. It follows that

δp(t) =
n∑
j=1

εje
tλjvj

where εj are coefficients that are yet to be determined, which will depend on the

perturbation. Hence,

p(t) = ps +
n∑
j=1

εje
tλjvj.

In the limit as t→∞, only the dominant eigenvalue, λ1, will remain in the expan-

sion, with corresponding eigenvector v1. We then have,

p(t) = ps + ε1e
tλ1v1. (4.5)
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In order to determine ε1, consider the system at time t = 0. From Equation (4.5),

it can be seen that,

p(0) = ps + ε1v1. (4.6)

We fix the initial proportion of the population infected, denoted i0 ∈ (0, 1). Then,

i0 =
∑

(s,e,i)∈C

p(s,e,i)(0)i = p(0) · i, (4.7)

where i is the vector of the number of infectious individuals in each state (s, e, i) ∈ C.

From Equation (4.6), we have

p(0) · i = ps · i + ε1(i · v1),

but, ps · i = 0 as there are no infectious individuals when the population is in state

ps, and so,

p(0) · i = i0 = ε1(i · v1).

Rearranging for ε1, gives,

ε1 =
i0

i · v1

. (4.8)

Substituting Equation (4.8) into Equation (4.6) gives the formula for determining

the initial condition,

p(0) = ps +
i0

i · v1

v1. (4.9)

This procedure constructs an initial condition which satisfies the requirements of

Kurtz [49], and also eliminates transient activity in the system and ensures that

the system p(t) starts in the exponential growth phase, which allows for a fairer

comparison between pandemics.

Note that in the process of determining the initial condition, we also calculate

the Malthusian parameter, r; Equation (4.5) represents the system, p(t), growing

exponentially at rate λ1. This means that λ1 is precisely the Malthusian parameter,

r.

In order to determine the initial condition, the dominant eigenvalue and eigen-

vector of the Jacobian of p(t) evaluated at the fixed point, ps, is required. Recall
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the system of differential equations from Equation (4.3). This system can be dif-

ferentiated term by term in order to determine the Jacobian. Each matrix Lj is

independent of p(t) and t, so we only need to differentiate the wj(t) terms. That is,

J(t) =
3∑
j=1

Lj
∂wj(t)

∂p
. (4.10)

The vectors w2(t) and w3(t) are linear in p(t) and so are straightforward to differ-

entiate, with the nth component being,

∂w
(n)
2 (t)

∂pm
=

σen if n = m,

0 if n 6= m,

and

∂w
(n)
3 (t)

∂pm
=

γin if n = m,

0 if n 6= m,

for each n = (sn, en, in), m = (sm, em, in) ∈ C. The vector w1(t) is non-linear in

p(t), as Î(t) is also a function of p(t). To differentiate this vector, consider the nth

component,

w
(n)
1 (t) =

(
βksnin + αÎ(t)sn

)
pn(t),

with

Î(t) =
1

k

∑
j∈C

ijpj(t) =
1

k

inpn(t) +
∑
j 6=n
j∈C

ijpj(t)

 .

Then, differentiating term by term gives

∂w
(n)
1 (t)

∂pm
=


βksnin +

1

k
sn

2αinpn(t) + α
∑
j 6=n
j∈C

ijpj(t)

 , if n = m,

1
k
αsnimpn(t), if n 6= m.

The fixed point ps can be substituted into the Jacobian and the resulting eigen-

values can be determined numerically. The resulting dominant eigenvalue, λ1 (which
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is also the Malthusian parameter, r) and the corresponding eigenvector v1, can then

be used in Equation (4.9) to determine the initial condition which ensures that the

system p(t) starts in the exponential growth phase.

4.4 Heterogeneous Household Sizes

As in the branching process approximation, we want to incorporate households of

different sizes. The size of a household, k, is incorporated into the set of household

states in order to ensure that a transition maintains the size of a household. That

is,

C = {(s, e, i, k)|s+ e+ i ≤ k, s, e, i ≥ 0, k = 1, . . . , kmax}.

Note that accounting for household size, k, in the set of household states, C, is

equivalent to incorporating the number of recovered individuals in a household, r,

however, the household size is what is often required in calculations.

The transitions of a household in the population remain the same as those in

Equation (4.1), however, the matrices which represent the states in which events

occur require some extension. In particular, the matrices L1, L2 and L3 are now

such that

L
(m,n)
1 = δk,k∗δi,i∗(−δs,s∗δe,e∗ + δs,s∗−1δy,y∗+1),

L
(m,n)
2 = δk,k∗δs,s∗(−δe,e∗δi,i∗ + δe,e∗−1δi,i∗+1),

L
(m,n)
3 = δk,k∗δs,s∗δe,e∗(−δi,i∗ + δi,i∗−1), (4.11)

for m = (s, e, i, k) and n = (s∗, e∗, i∗, k∗) ∈ C. The three time-dependent vectors

which encapsulate the rates at which these events occur are,

w
(n)
1 (t) =

(
βksi+ αÎ(t)s

)
pn(t), (4.12a)

w
(n)
2 (t) = σepn(t), (4.12b)

w
(n)
3 (t) = γipn(t), (4.12c)
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for n = (s, e, i, k) ∈ C. Also, the total proportion of individuals infected in the

population at time t is now,

Î(t) =
1

k̄

∑
(s,e,i,k)∈C

ip(s,e,i,k),

with the mean household size,

k̄ =
∑
k

khk,

where hk is the proportion of households of size k, introduced in Section 2.9. The

deterministic approximation is as in Equation (4.3), with the L matrices in Equation

(4.11) and w vectors in Equation (4.12).

4.4.1 Initial Condition

Previously, when deriving the initial condition, a perturbation was made around the

point ps, the population state where every individual is susceptible. When there

is only a single household size, the fixed point ps has only a single non-zero value

corresponding to state (k, 0, 0, k). When there is a distribution of household sizes,

the equilibrium point ps has a non-zero element for each household size. For a

household of size k, the value of the non-zero element of ps, corresponding to state

(k, 0, 0, k) for each k, is the proportion of households of that type in the population,

hk.

Considering the Jacobian of this system, each Lj matrix is independent of p,

and so once again we just need to differentiate each wj term. As these terms have

not changed, the derivatives and Jacobian of the system are as in Section 4.3. The

size-biased distribution, π, which was utilised in Chapters 2 and 3, appears in the

initial condition. Consider the term involving α from the w1 vector,

1

k̄
αsnimpn. (4.13)

All other terms in ∂w1

∂pm
are zero at the point ps. The only non-zero pn terms are

when the household is fully susceptible, and so sn = k. Also, pn = hk from above,



CHAPTER 4. DETERMINISTIC APPROXIMATION 74

so, Equation (4.13) is,

1

k̄
αsnimpn =

khk∑
j kjhj

αim,

= πkαim.

The equation for the initial condition remains otherwise unchanged from Section

4.3.

As described in Section 4.2, the results of Kurtz [49] tell us that the deterministic

approximation is valid as the number of households, N → ∞, independent of the

other parameters in the model. In Figure 4.1, we calculate the difference between the

average of one hundred realisations from the stochastic model, using the Gillespie

Algorithm in Algorithm 1, and the deterministic approximation to demonstrate

the accuracy of this deterministic approximation. It can be seen that the error

between the average of a number of realisations from the stochastic model and

the deterministic approximation is small, even for a moderate population size of

N = 105 individuals. We can see clearly that as the number of households increases,

the difference between the average of realisations from the stochastic model and

the deterministic approximation decreases. Interestingly, the difference between

the average of the one hundred simulations and the deterministic approximation

is very small at the peak of the pandemic, between t = 28 infectious periods and

t = 32 infectious periods in this case. This suggests that the expected peak size and

expected peak time of a pandemic are very well approximated by the deterministic

approximation. Note, though, that the difference between the average of the one

hundred realisations and the deterministic approximation is of order 10−3 across the

entire pandemic, and so the deterministic approximation is a reliable method for

estimating mean quantities associated with a pandemic.

The deterministic approximation solves in less than 5 seconds on an Intel Xeon

2.6GHz processor, while producing a single realisation of the stochastic households

model for the severe parameters in Table 2.3 with a population size of 105 individuals
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Figure 4.1: Difference between the average of 100 simulated realisations compared

to the deterministic approximation using the severe parameter set from Table 2.3,

varying population size, Nk̄.
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takes approximately 30 minutes on the same infrastructure. As such, the system of

differential equations which forms the deterministic approximation to the stochastic

households pandemic model is a powerful tool for quickly calculating mean quantities

of the pandemic.

4.5 Antiviral Allocation Schemes

To incorporate antiviral schemes, an additional class of states is required which

represents the status of antivirals in a household. As in Chapter 3, we let a = 0

represent a household which contains individuals who have not yet begun taking

antivirals, a = 1 represent a household which contains individuals who are currently

taking antivirals, a = 2 represent a household which contains individuals who have

completed taking antivirals and no longer receiving the effects of antivirals, and

a = 3 represent a household which has been preallocated antivirals but has not yet

begun taking them. Each household now is in a state (s, e, i, k, a) with the set of

possible household configurations,

C = {(s, e, i, k, a)|s+ e+ i ≤ k, s, e, i ≥ 0, k = 1, . . . , kmax, a = 0, 1, 2, 3}.

Similarly to the case without antivirals,

Ĥ(t) =
∑

(s,e,i,k,a)∈C

(1− δa,1τ)iH(s,e,i,k,a)(t),

is the total force of infection in the population at time t, but here it includes the

reduction in infectivity by τ due to the effect of antivirals. The transitions for the

process, H(t), including antiviral effects for both antiviral allocation schemes, are,

(H(s,e,i,k,a), H(s−1,e+1,i,k,a))→ (H(s,e,i,k,a) − 1, H(s−1,e+1,i,k,a) + 1)

at rate
(
βksi+ αĤ(t)s

)
H(s,e,i,k,a) for a 6= 1,
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which corresponds to infection into and within a household,

(H(s,e,i,k,1), H(s−1,e+1,i,k,1))→ (H(s,e,i,k,1) − 1, H(s−1,e+1,i,k,1) + 1)

at rate
(

(1− τ)(1− ρ)βksi+ (1− τ)αĤ(t)s
)
H(s,e,i,k,a),

corresponding to infection into and within a household which is currently taking

antivirals,

(H(s,e,i,k,a), H(s,e−1,i+1,k,a))→ (H(s,e,i,k,a) − 1, H(s,e−1,i+1,k,a) + 1) at rate σeH(s,e,i,k,a),

corresponding to infection progression,

(H(s,e,i,k,a), H(s,e,i−1,k,a))→ (H(s,e,i,k,a) − 1, H(s,e,i−1,k,a) + 1) at rate γiH(s,e,i,k,a),

corresponding to recovery, and,

(H(s,e,i,k,1), H(s,e,i,k,2) → (H(s,e,i,k,1) − 1, H(s,e,i,k,2) + 1) at rate
1

κ
H(s,e,i,k,1),

corresponding to antivirals no longer being effective inside a household. Throughout

this derivation, we assume that the effective duration of antivirals is exponentially

distributed with mean κ. In the following sections, we consider the specifics of

deriving the deterministic approximation for the dynamic allocation scheme and the

preallocation scheme for antivirals.

4.5.1 Dynamic Allocation

Recall that in dynamic allocation there is a delay until antivirals arrive at a house-

hold after the first person is identified as infectious. We assume this delay is expo-

nentially distributed with mean ζ. For a dynamic allocation scheme, we therefore

have one additional transition corresponding to antiviral introduction into a house-

hold. This transition is,

(H(s,e,i,k,0), H(s,e,i,k,1))→ (H(s,e,i,k,0)−1, H(s,e,i,k,1)+1) at rate
1

ζ
H(s,e,i,k,0) for s+e 6= k.
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Again, we can define the proportion of households in each configuration,

p(s,e,i,k,a) = N−1H(s,e,i,k,a),

as well as the average level of infectiousness,

Î(t) =
1

Nk̄
Ĥ(t).

The transition rates for the system p are still density dependent. The first four

transition rates are identical to those discussed in Section 4.2, while the final two

are of the form

Nx
H(s,e,i,k,a)

N
,

for some x and so the results of Kurtz [49] still apply. This means that the deter-

ministic approximation is valid asymptotically as N →∞.

As in previous sections, the deterministic approximation can be expressed in

terms of matrix-vector products. We define a matrix Li for each transition i which

encapsulates where transitions can occur within the state space, and a corresponding

vector wi which contains the rates at which these transitions occur. The six L

matrices have elements,

L
(m,n)
1 = δk,k∗(1− δa,1)δi,i∗(−δs,s∗δe,e∗ + δs,s∗−1δe,e∗+1),

L
(m,n)
2 = δk,k∗δa,1δi,i∗(−δs,s∗δe,e∗ + δs,s∗−1δe,e∗+1),

L
(m,n)
3 = δk,k∗δs,s∗(−δe,e∗δi,i∗ + δe,e∗−1δi,i∗+1),

L
(m,n)
4 = δk,k∗δs,s∗δe,e∗(−δi,i∗ + δi,i∗−1),

L
(m,n)
5 = δk,k∗δs,s∗δe,e∗ , δi,i∗(1− δ(s+e),k)(−δa,0 + δa,1),

L
(m,n)
6 = δk,k∗δs,s∗δe,e∗ , δi,i∗(−δa,1 + δa,2),

for m = (s, e, i, k, a), n = (s∗, e∗, i∗, k∗, a∗) ∈ C. The first two of these matrices

correspond to infection events. The first matrix, L1, corresponds to infection in a

household without antivirals. The second matrix, L2, corresponds to infection inside

a household with antivirals. The third and fourth represent progression and recovery
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respectively. The fifth matrix corresponds to the introduction of antivirals into a

household that has experienced at least one infection event (s+ e 6= k) and has not

yet received antivirals, while the sixth matrix corresponds to a course of antivirals

being completed in a household. The corresponding rate vectors have elements,

w
(n)
1 (t) =

(
βksi+ αÎ(t)s

)
pn(t)

w
(n)
2 (t) =

(
(1− τ)(1− ρ)βksi+ (1− τ)αÎ(t)s

)
pn(t)

w
(n)
3 (t) = σepn(t),

w
(n)
4 (t) = γipn(t),

w
(n)
5 (t) =

1

ζ
pn(t),

w
(n)
6 (t) =

1

κ
pn(t),

for each n = (s, e, i, k, a) ∈ C and,

Î(t) =
1

k̄

∑
(s,e,i,k,a)∈C

ip(s,e,i,k,a)(t).

The deterministic approximation can then be expressed as

dp

dt
=

6∑
j=1

Ljwj(t). (4.14)

As before, an initial condition which starts the system in the exponential growth

phase is desired in order to allow a fair comparison of the models. To do this, we

consider a small perturbation from the fixed point denoted ps which corresponds to

the state where the entire population is susceptible. That is, ps has value hk in state

(k, 0, 0, k, 0) for each k with all other elements being 0. Considering the Jacobian

of the system in Equation (4.14), we again have no time or state dependence in

each matrix Li. As such, we only need to consider the partial derivatives of the

wi vectors. These share much of the same structure as those in Section 4.3. The

w1,w2,w3 and w4 terms are very similar to those in Section 4.3, with the difference

being the inclusion of constants to incorporate the effects of antivirals. The system

of partial derivatives is, then,
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∂w
(n)
1 (t)

∂pm
=


βksnin +

1

k̄
sn

2αinpn(t) + α
∑
j 6=n
j∈C

ijpj(t)

 , if n = m,

1
k̄
αsninpn(t), if n 6= m,

∂w
(n)
2 (t)

∂pm
=


(1− τ)(1− ρ)βksnin +

1

k̄
(1− τ)sn

2αinpn(t) + α
∑
j 6=n
j∈C

ijpj(t)

 , if n = m,

1
k̄
(1− τ)αsninpn(t), if n 6= m,

∂w
(n)
3 (t)

∂pm
=

σen if n = m,

0 if n 6= m,

∂w
(n)
4 (t)

∂pm
=

γin if n = m,

0 if n 6= m,

∂w
(n)
5 (t)

∂pm
=


1
ζ

if n = m,

0 if n 6= m,

∂w
(n)
6 (t)

∂pm
=


1
κ

if n = m,

0 if n 6= m,

(4.15)

and the Jacobian of the system in Equation (4.14) is

J =
6∑
j=1

Lj
∂wj(t)

∂p
.

4.5.2 Preallocation

Now, consider the preallocation scheme. A household being preallocated antivirals,

that is, in state (s, e, i, k, 3), will transition into state (s, e, i, k, 1) upon the first

infection event. After this point, the household proceeds identically to the dynamic

allocation scheme. Mathematically, if H(s,e,i,k,a) is again the number of households
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in state (s, e, i, k, a), we have the transition,

(H(s,e,0,k,3), H(s,e−1,1,k,1))→ (H(s,e,0,k,3) − 1, H(s,e−1,1,k,1) + 1) at rate σeH(s,e,0,k,3),

(4.16)

with s + e = k to ensure that the household starts taking antivirals on the first

infection event. The remainder of the transition rates remain the same as those in

Section 4.5. While we could remove the class of states where a = 0, it proves useful

not to do so when considering extensions to antiviral allocation schemes, discussed

in Section 4.6. The rate at which the transition in Equation (4.16) occurs is clearly

density dependent for the system, as the transition rate is identical to the normal

progression rate considered in Section 4.2, and so the deterministic approximation

will still provide valid results as the population size N →∞.

Again, the deterministic approximation is expressed in terms of matrix-vector

products. Six of these matrices are identical to those in Section 4.5.1, the only

addition being the matrix L0 with (m,n)th element,

L
(m,n)
0 = δk,k∗δs,s∗(−δa,3δe,e∗δi,i∗ + δa,1δe,e∗−1δi,i∗+1),

for m = (s, e, i, k, a), n = (s∗, e∗, i∗, k∗, a∗) ∈ C and the corresponding rate vector,

w
(n)
0 (t) = σepn(t),

for each n = (s, e, i, k, a) ∈ C.

Looking at the initial condition for this system, a majority of the Jacobian re-

mains the same as in the dynamic allocation case. The only additional term added

to the system is the L0w0 term, with L0 being constant with respect to p and t, and

so does not need to be considered. Also, the w0 term is identical to the w3 term

and so the derivative of w0 is the same as that of w3.

4.6 Incorporating Additional Complexity

In this section, a number of extensions to the basic pandemic model are considered.

We consider having,
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• insufficient antivirals for the entire population,

• the potential for a hybrid antiviral allocation scheme, that is, a scheme where

some fixed proportion of the available antivirals is preallocated while the re-

mainder is kept for dynamic allocation,

• individuals in a household using their antivirals incorrectly, and

• the production of antivirals during a pandemic.

4.6.1 Insufficient Antivirals for an Entire Population

Until now, we have assumed that there is sufficient antivirals for the entire popula-

tion. In reality, the amount of antivirals available in a population, M , is likely to

be smaller than the population size. This can be incorporated into our model under

both a dynamic and a preallocation scheme.

For a dynamic allocation scheme the total amount of antivirals used by individ-

uals in the population at time t is,

A(t) = N
∑

(s,e,i,k,a)∈C

(1− δa,0)kp(s,e,i,k,a),

where N is the number of households in the population. It can be determined at each

time point whether the supply of antivirals has been exhausted or not by calculating

A(t) and comparing to the amount of available antivirals, M . We use two sets of

rate vectors,

ω = {wi(t)|i = 0, . . . , 6}, (4.17)

and,

ω̄ = {w̄i(t)|i = 0, . . . , 6}, (4.18)

which contain the rates of transition when there is a supply of antivirals and when

there is not a supply of antivirals respectively. Note that the only difference between

ω and ω̄ is the vector corresponding to the introduction of antivirals, w5 and w̄5
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respectively. We set w̄
(n)
5 = 0 ∀n which ensures that no more antivirals are intro-

duced into the population. Then, the deterministic approximation when we have

insufficient antivirals available for an entire population is,

dp(t)

dt
=


∑6

j=0 Ljwi(t) if A(t) < M,∑6
j=0 Ljw̄i(t) if A(t) ≥M.

(4.19)

When considering the initial condition for this system, we make the assumption

that there is sufficient antivirals for use early in the pandemic. This assumption

is reasonable, because should the number of antivirals be so small that antivirals

cannot be allocated early in the pandemic, the impact that the antivirals will have on

the overall pandemic will be negligible. Because of this assumption, the calculation

of the initial condition is unchanged from Section 4.5.1.

Next, we consider having insufficient antivirals for the entire population for a

pandemic under the preallocation scheme. As in Chapter 3, denote the proportion

of households of size k which are preallocated antivirals by φk. Then, the propor-

tion of households which have not been preallocated antivirals is represented by

(1− φk). The equilibrium point of the system, ps, now has value φkhk in each state

(k, 0, 0, k, 3) ∈ C and value (1 − φk)hk in each state (k, 0, 0, k, 0) ∈ C. For an allo-

cation scheme where we preallocate all available antivirals, we use the rate vectors

in the set ω̄, which does not allow for any more antivirals to be introduced into the

population. The deterministic approximation for having insufficient antivirals for

the entire population under a preallocation scheme then is,

dp

dt
=

6∑
j=0

Ljw̄j(t), (4.20)

and the initial condition for this system can be determined using the method de-

scribed in Section 4.5.2, but using the steady state ps described above.
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4.6.2 Hybrid Allocation Schemes

Thus far, the only allocation schemes that have been considered for antivirals are

pure allocation schemes, those being when only a dynamic allocation scheme or pre-

allocation scheme is used. Consider now a hybrid allocation scheme, where some

proportion of the antiviral supply, ξ, is preallocated, and the remainder of the an-

tiviral supply is used under a dynamic allocation scheme. To model this scenario,

the ξM available antivirals to the population are preallocated, yielding the propor-

tion of households who have been preallocated antivirals, φ, where the kth element

of φ corresponds to the proportion of households of size k which have been pre-

allocated antivirals. Then, utilising the result in Section 4.6.1, the deterministic

approximation is the same as in Equation (4.19).

When considering the initial condition for this system, we again assume that

there is sufficient antivirals for dynamic allocation early in the pandemic. The

equilibrium point of the system, ps, has value φkhk in each (k, 0, 0, k, 3) ∈ C and

value (1− φk)hk in each (k, 0, 0, k, 0) ∈ C. The Jacobian for this system is identical

to that in Section 4.6.1, using the set of rates, ω, from Equation (4.17), which allow

for the introduction for antivirals into the population.

4.6.3 Incorrect Use of Antivirals

Currently, the model of the preallocation scheme assumes that each household uses

their antivirals correctly. One challenge to a preallocation scheme in practice is

that some households are likely to take their antivirals early, particularly due to the

less precise method of identification of infection. This feature can be incorporated

into our model by including a transition which allows a household to begin taking

antivirals incorrectly,

(H(s,e,i,k,3), H(s,e,i,k,1))→ (H(s,e,i,k,3) − 1, H(s,e,i,k,1) + 1) at rate
1

ψ
H(s,e,i,k,3), (4.21)

where a = 3 represents a household which contains individuals who have not yet

taken antivirals and a = 1 represents a household which contains individuals who
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are currently taking antivirals. The transition rate in Equation (4.21) is clearly

density dependent, being identical in form to a number of the transition rates we

have considered already, and so the deterministic approximation is still a good ap-

proximation for the stochastic households model as N →∞. A seventh matrix and

vector is added to the deterministic approximation to represent the states and rates

at which the transition in Equation (4.21) can occur. The matrix, L7, has (m,n)th

element,

L
(m,n)
7 = δk,k′δs,s′δe,e′δi,i′(−δa,3 + δa,1),

with the vector w7(t) having nth element,

w
(n)
7 (t) =

1

ψ
H(s,e,i,k,a).

Next, we look to calculate the steady state and initial condition. Consider the

state of this system with all individuals susceptible and some households being pre-

allocated antivirals. As individuals in a household have the ability to incorrectly

use antivirals, the equilibrium state for households who have been preallocated an-

tivirals would be (k, 0, 0, k, 2). That is, each preallocated household will have used

their supply of antivirals before the pandemic starts. This is clearly unreasonable,

and could be avoided by rapid distribution of antivirals to households as soon as

the pandemic starts. To amend this issue, we assume households do not take their

antivirals incorrectly before the main growth phase of the pandemic starts, and so

when considering the initial condition, we take w
(n)
7 (t) = 0 for each (s, e, i, k, a) ∈ C.

This means that the Jacobian of the system is unchanged by the ability of a house-

hold to incorrectly take antivirals, and the equilibrium point ps is unchanged also,

and so the calculation of the initial condition is identical to that detailed in Section

4.6.1.

4.6.4 Production of Antivirals During a Pandemic

Currently, there is an assumption that the supply of antivirals available during a

pandemic is fixed. It is possible, however, that antivirals can be produced during
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a pandemic. To model this we start with some fixed number of antivirals, m, that

subsequently increases by some amount s per production period. Denote the number

of production periods that have passed by time t by W (t). We change the maximum

number of antivirals, M , to a function of t, giving

M(t) = m+ sW (t).

Note that it is possible to define a ‘maximum’ number of antivirals that can be

produced by defining W (t) to have some maximum value independent of time. We

preallocate out new antivirals that are produced according to the size-biased distri-

bution, π, in the same way as when initially preallocation antivirals, but now only

allow households that have not previously been allocated antivirals.

The addition of the production of antivirals has added no new transitions to

the system, but rather has changed which set of transition rates the system evolves

by through time, according to whether antivirals can be allocated or not. The

deterministic approximation is the same as that defined in Section 4.6.1, but the

number of antivirals available is now a function of time, M(t).

As the number of antivirals is fixed at m before the pandemic starts, calculating

the Jacobian and the initial condition is identical to the case without the production

of antivirals, and can be calculated by simply setting M = m and using the results

in Section 4.6.2.

4.7 Summary

In this chapter, a deterministic approximation to the stochastic households model

has been derived. The deterministic approximation is fast to compute and gives

access to quantities such as the expected final epidemic size, expected peak size,

and expected peak time of a pandemic, quantities which are not calculable using

the branching process approximation. Because of the fast computation speeds of the

deterministic approximation, a number of extensions have been considered including
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having insufficient antivirals for the population, hybrid allocation schemes, house-

holds using antivirals incorrectly and the potential production of antivirals during

a pandemic. However, it is not trivial to incorporate a constant-time period in the

deterministic approximation compared to the branching process approximation. In

the following chapter, we apply the deterministic approximations and the extensions

to the parameters described in Section 2.9. We compare the dynamic antiviral al-

location scheme to the preallocation scheme and look to determine which of these

antiviral allocation schemes is more effective at controlling pandemic influenza.



Chapter 5

Comparison of Antiviral

Allocation Schemes

The Australian Health Management Plan for Pandemic Influenza [22] currently spec-

ifies that antivirals would be utilised according to a dynamic allocation scheme in

the event of an influenza pandemic. In this chapter, we investigate the impact of an-

tivirals on an influenza pandemic when allocated according to a dynamic allocation

and a preallocation scheme. We also investigate the effect of the various extensions

discussed in Chapter 4: that is, allowing individuals in a household to use antivirals

incorrectly; a hybrid allocation scheme; and the production of antivirals during a

pandemic. The key quantities associated with the pandemic, those being the ex-

pected Malthusian parameter, r, the expected peak size and time of a pandemic,

and also the expected final epidemic size, are compared in order to help determine

whether a dynamic allocation scheme or a preallocation scheme is more effective.

5.1 Dynamic Allocation

The first comparison is between a pandemic without antiviral intervention and a

pandemic under a dynamic allocation scheme. The reason for this comparison is due

to the discussion about the effectiveness of antivirals [43]. In particular, Jefferson et

88
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al. [43] note that the effectiveness of antivirals is not fully known due to the lack of

detailed clinical trial data which is publicly available. The population size is fixed,

at Nk̄ = 105, but we consider the full range of possible antiviral availability, from

M = 0 to M = 105. Figure 5.1 shows the comparison of the final epidemic size when

dynamic allocation is used, in blue, compared to having no antivirals available, in

magenta and the preallocation scheme, in red. The benefits of utilising antivirals

during an influenza pandemic can be clearly seen, even though we have assumed

the effectiveness of the antivirals to be lower than other studies [52, 43]. There is

up to a 14% difference in the final epidemic size for a mild outbreak. In the severe

parameter case, the impact of antivirals is still significant, at up to 8%, however,

the antivirals have less impact when compared to the mild parameter case. This is

because the rate of infection is higher in the severe parameter case, while the delay

until antivirals arrive into an infected household is the same in both cases. Hence,

more infection transmission occurs before antivirals arrive in the severe parameter

case, and so the impact of the delay under a dynamic allocation scheme is smaller.

The other noticeable feature is the existence of a saturation point—the point at

which adding more available antivirals to the pandemic has no effect. The reason

for this is simple: at some point, there are enough available antivirals for every

household which becomes infected. As such, having more antivirals available than

this amount will not impact the pandemic. The saturation point demonstrates

that there is likely to be a maximum effective stockpile necessary for use in an

influenza pandemic under a dynamic antiviral allocation scheme. A key factor in

this assumption is the delay until antivirals arrive into a household after the first

infection event [15, 47]. Should the delay be large, then the antivirals will have

negligible impact. Recall that an estimate of this delay from the 2009 Swine ’Flu

pandemic suggested that ζ = 1. In Figure 5.2, the expected final epidemic size

is plotted as a function of the average delay, ζ ∈ (0, 4]. At an average delay of

1 infectious period, the expected final epidemic size is approximately 57% of the

population, while at an average delay of half an infectious period, the expected final
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epidemic size is approximately 55% of the population. This change in expected final

epidemic size is relatively small, especially compared with the change in Malthusian

parameter, r, from Section 3.3.1.

5.2 Comparing Dynamic Allocation and

Preallocation

In this section, we compare pandemics under a dynamic allocation scheme and

a preallocation scheme. Initially, we consider these antiviral allocation schemes

without any additional modifications, and then later investigate the effects of the

incorrect use of antivirals by individuals in households, hybrid allocation schemes,

and the production of antivirals during a pandemic.

5.2.1 Dynamic Allocation vs Preallocation

We now investigate the difference between a pandemic under dynamic allocation and

under preallocation. Figure 5.1 shows the final epidemic sizes for pandemics under

both a dynamic allocation scheme and a preallocation scheme. For the case with the

severe parameters, preallocation outperforms dynamic allocation in terms of final

epidemic size regardless of the maximum amount of available antivirals. For the case

with mild parameters, we can see that dynamic allocation outperforms preallocation

until approximately 70% of the population has antivirals available. The reason that

dynamic allocation outperforms preallocation during a mild outbreak is because

the rate at which infection spreads is lower relative to the delay until antivirals

arrive, and so more antivirals can arrive to households before other members become

infectious. For large amounts of available antivirals, preallocation again gives an

final epidemic size which is up to 10% smaller than the final epidemic size under

a dynamic allocation scheme. This is because the benefit of having no delay until

antivirals arrive outweighs the fact that there are some antivirals which are not
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Figure 5.1: Comparisons of expected final epidemic size without antiviral interven-

tion, and with both a dynamic allocation scheme and a preallocation scheme, for a

range of maximum available antivirals. The parameter sets are taken from Table

2.3.
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Figure 5.2: The effects of the average delay until antivirals arrive into a household, ζ,

and the proportion of the population which have antivirals available, on the expected

final epidemic size under a dynamic allocation scheme, using the severe parameter

set from Table 2.3.
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being used. Note, however, that when a dynamic allocation scheme is superior to

a preallocation scheme, the largest difference between expected final epidemic sizes

is approximately 5%, which is approximately half of the maximum possible gain of

a preallocation scheme. This result indicates that selecting an antiviral allocation

scheme depends on the infectiousness of the influenza strain as well as the amount

of available antivirals. If the outbreak is severe, then a preallocation scheme would

be better. However, for a mild outbreak, a dynamic allocation scheme may be the

better choice.

Comparisons of the expected Malthusian parameter, r, expected peak size, and

expected peak time for a pandemic using the severe parameter set are shown in

Figure 5.3. Recall that a lower early growth rate and peak size is preferable, while

a higher peak time is desired in order to give a longer time to control the pan-

demic. For the Malthusian parameter, r, we can see that the dynamic allocation

scheme is outperforming the preallocation scheme until approximately 70% of the

population has antivirals available. This is contrary to the results seen for final

epidemic size where the preallocation antiviral scheme led to a lower final epidemic

size than the dynamic allocation scheme across the entire range of available antivi-

rals. Similarly, the expected peak time and expected peak size of a pandemic are

also superior under a dynamic allocation scheme until approximately 70% of the

population has antivirals available. This result is relatively intuitive; with any fea-

sible number of antivirals, dynamic allocation guarantees that infected households

will receive antivirals early in the pandemic and so it is no surprise that under a

dynamic allocation scheme, early time quantities such as the Malthusian parameter,

r, and peak size and peak time are all improved compared to preallocation. The

preallocation scheme, however, ensures that some, roughly constant, proportion of

infectious individuals are taking antivirals throughout the pandemic and this tends

to lead to a smaller expected final epidemic size for a severe pandemic outbreak.

Figure 5.2 shows the effect of the average delay until antivirals arrive into a

household, ζ, on the expected final epidemic size, for a fixed mean effective duration



CHAPTER 5. COMPARISON OF ANTIVIRAL ALLOCATION SCHEMES 94

0 0.2 0.4 0.6 0.8 1

0.16

0.18

0.2

0.22

0.24

0.26

Maximum proportion of antivirals available

M
al

th
us

ia
n 

Pa
ra

m
et

er
, r

 

 
Dynamic Allocation
Preallocation

(a)

0 0.2 0.4 0.6 0.8 1
20

22

24

26

28

30

32

Maximum proportion of antivirals available

Pe
ak

 T
im

e

 

 
Dynamic Allocation
Preallocation

(b)

0 0.2 0.4 0.6 0.8 1
0.015

0.02

0.025

0.03

0.035

0.04

Maximum proportion of antivirals available

Pe
ak

 S
iz

e

 

 
Dynamic Allocation
Preallocation

(c)

Figure 5.3: Comparisons of the expected Malthusian parameter, r, expected peak

time, and expected peak size for an epidemic under a dynamic allocation scheme

and a preallocation scheme using the severe parameter set from Table 2.3.
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of antivirals, κ = 1. Only the impact on a dynamic allocation scheme needs to be

considered here, as there is no delay until antivirals arrive into a household under a

preallocation scheme. The figure shows that it is somewhat possible to compensate

for a larger delay until antivirals arrive into a household, ζ, by having more antivirals

available for the population. Similarly to when considering the final epidemic size

for a fixed delay, there exists a saturation point of available antivirals, which is when

approximately 75% of the population has antivirals available. Having more antivirals

available than this amount does not affect the final epidemic size. This is relatively

consistent across the range of tested values of ζ. Importantly, the figure shows

that the effect of the average delay until antivirals arrive into a household, ζ, on

expected final epidemic size, is dependent on the maximum proportion of antivirals

available. When approximately 40% of the population has antivirals available, then

the difference in expected final epidemic size when ζ = 0 compared to when ζ = 4 is

approximately 3%. Comparatively, if 100% of the population has antivirals available,

then the difference in expected final epidemic size is approximately 16%.

In Figure 5.4, the effect of the finite effective duration of antivirals, κ, on the

expected final epidemic size for a fixed mean delay until antivirals arrive into a

household, ζ = 0.5 is shown. The colour in this figure is the difference between

the expected final epidemic size under a dynamic allocation scheme and a preallo-

cation scheme. A negative value shows that the dynamic allocation scheme leads to

a smaller expected final epidemic size, while a positive value shows that the preal-

location scheme leads to a smaller expected final epidemic size. It can be seen that,

for a majority of the range of average effective antiviral durations, the preallocation

scheme yields a smaller expected final epidemic size than the dynamic allocation

scheme. The exception to this is when approximately 65% to 75% of the population

has antivirals available, and the mean effective duration of these antivirals, κ, is

between 2.5 and 4 infectious periods, which is approximately 7.5 to 12 days. In this

case, the dynamic allocation scheme gives an expected final epidemic size which is

at most 1.6% lower than the preallocation scheme. This indicates that there may
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Figure 5.4: The difference between the expected final epidemic size under a dynamic

allocation scheme and a preallocation scheme as a proportion of the population,

depending on the finite effective duration of antivirals, κ, and the proportion of the

population which has antivirals available, using the severe parameter set from Table

2.3.

be merit to allocating long courses of antivirals over the course of a pandemic un-

der a dynamic allocation scheme. Note, however, that the length of time for which

antivirals are taken under the Australian Health Management Plan for Pandemic

Influenza [22] is 4 to 6 days. In this region, the preallocation scheme yields a con-

sistently smaller expected final epidemic size than the dynamic allocation scheme,

regardless of the mean effective duration of antivirals, κ.

It is important to remember that at this point no additional features have been

included in the model. In particular, we have assumed that the individuals in every

household that has been preallocated antivirals will use their antivirals correctly.

This is clearly a strong assumption, however, if every household was to use their

antivirals correctly the preallocation scheme would be the better scheme in terms of
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expected final epidemic size for a severe pandemic outbreak.

5.2.2 Incorrect Use of Antivirals

The main assumption in the previous section for the preallocation scheme is that all

antivirals are used 100% effectively. Recall from Section 4.6.3 the extension to the

base model where individuals in a household begin taking antivirals early at some

rate of false taking, ψ. It is unknown what this rate would be in reality, but the

number of households which contain individuals who would take antivirals incor-

rectly for a given ψ can be calculated by considering the proportion of households

in state (s, e, 0, k, 1). This is possible because a household can only be in state

(s, e, 0, k, 1) if the individuals inside the household take their antivirals incorrectly.

The proportion of households required to incorrectly use their antivirals in order for

the dynamic allocation scheme to be better than the preallocation scheme in terms

of expected final epidemic size can be seen in Figure 5.5. Note that in Figure 5.5

(b), there is a large section where zero households must contain individuals who use

antivirals incorrectly. This represents the fact that a dynamic allocation scheme is

outperforming a preallocation scheme when all antivirals are used 100% effectively.

Importantly, if between 30% and 70% of households have antivirals available and

the outbreak is severe, then somewhere in the region of 10% to 15% of households

would need to use antivirals incorrectly for a dynamic allocation scheme to lead

to the same expected final epidemic size as the preallocation scheme. For the less

severe pandemic, there is more evidence that a dynamic allocation scheme would

be preferable. In particular, note that until approximately 80% of the population

has antivirals available, no more than 10% of households in the population must

contain individuals who use antivirals incorrectly. When a large proportion of the

population has antivirals available, however, the required proportion of households

who must use antivirals incorrectly increases rapidly.
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Figure 5.5: Required proportion of households who use antivirals incorrectly for a

dynamic scheme to be preferable to a preallocation scheme in terms of final epidemic

size, for a (a) severe outbreak and a (b) mild outbreak. All parameters are taken

from Table 2.3.
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5.2.3 Hybrid Schemes

Another potential antiviral allocation scheme is a hybrid allocation scheme, that is,

a scheme in which some proportion of antivirals are preallocated, while the remain-

ing antivirals are reserved for dynamic allocation. Figure 5.6 shows the difference

between a hybrid scheme and the best pure scheme, in terms of expected final epi-

demic size. We see that the difference between the hybrid allocation scheme and

the best pure scheme is small until a relatively high proportion of the population

has antivirals available. When a large proportion of the population has antivirals

available, however, a hybrid scheme does not perform as well as the preallocation

scheme. This is because when a small amount of antivirals is preallocated, and

the remainder reserved for dynamic allocation, a hybrid scheme uses antivirals very

similarly to a dynamic allocation scheme. Recall from Figure 5.1 that, for a severe

outbreak, a preallocation scheme yielded a smaller expected final epidemic size than

a dynamic allocation scheme. Thus, it is expected that a hybrid scheme which re-

serves a large amount of antivirals for dynamic allocation does not perform as well

as the preallocation scheme. Note importantly that a hybrid allocation scheme does

not yield a smaller expected final epidemic size than the superior pure scheme. It

is possible that a hybrid allocation scheme can lead to a slightly smaller expected

final epidemic size for extreme sets of parameters. However, a pandemic that follows

these types of parameters is far from realistic.

5.2.4 Production of Antivirals During a Pandemic

Recall from Section 4.6.4 that it is possible to model the fact that antivirals could

be produced during a pandemic, by effectively setting the amount of available an-

tivirals, M , to be a function of time, M(t). Figure 5.7 shows the effects that the

production of antivirals during a pandemic could have. In Figure 5.7, the initially

available amount of antivirals is assumed to be one production amount. We can see

that there is a production amount in which dynamic allocation leads to a smaller
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Figure 5.6: The difference in expected final epidemic size as a proportion of the

total population, between a hybrid scheme and the best pure scheme using the

severe parameter set from Table 2.3 with M = 105 available antivirals.
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Figure 5.7: The effect of the production of antivirals throughout a pandemic on the

expected final epidemic size, using severe parameters from Table 2.3.

expected final epidemic size than preallocation. After approximately 1, 200 antivi-

rals are produced per time period, the preallocation scheme again leads to a smaller

expected final epidemic size. This indicates that if the number of available antivi-

rals is small, then a dynamic allocation scheme may be preferable to a preallocation

scheme. If a large proportion of the population has antivirals available, though, then

a preallocation scheme still leads to a smaller expected final epidemic size than the

dynamic allocation scheme for a severe outbreak.

5.2.5 Sensitivity to Household Size Distribution

All the results presented in this chapter have the household size distribution, hk,

representing that of Australian households. We also investigate two other household

size distributions which represent Indonesian [5] and Sudanese households [15]. Both
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of these countries tend to have larger household sizes than Australia, with Sudan

being the highest. The distribution of household sizes for Sudan is,

hS = [0.0467, 0.0705, 0.0958, 0.1080, 0.1187, 0.1153, 0.1114, 0.0948,

0.0681, 0.0559, 0.0389, 0.0277, 0.0170, 0.0102, 0.0209],

and for Indonesia is,

hI = [0.0512, 0.1113, 0.1926, 0.2367, 0.1795, 0.1103, 0.0562, 0.0291, 0.0331].

Both of these household size distributions are shown in Figure 5.8. Figure 5.9

shows the expected final epidemic size for a range of available antivirals, across the

household size distributions of Australia, Indonesia and Sudan for a severe pandemic

outbreak. It can be seen that while the household size distribution shifts the graphs,

it does not generally alter the fact that a preallocation scheme consistently yields

a smaller expected final epidemic size than the dynamic allocation scheme. The

effects of each antiviral scheme are qualitatively similar, and so we conclude that

these results seem to hold across a range of household size distributions. Note that

even though the population size in each of these pandemics is fixed at N = 105,

the expected final epidemic size tended to increase with the mean household size of

the population. This result has been seen previously [39]. Having more members

inside a household means that a single infectious individual is likely to, on average,

create more secondary infectious cases, when compared to an individual in a smaller

household, due to the higher mixing rate inside a household compared to in the

general population. This larger amount of secondary infectious cases leads to the

higher expected final epidemic size that is observed.

5.3 Summary

In this chapter, comparisons have been made between the dynamic allocation scheme

and the preallocation scheme. First, it was seen that even under a dynamic allo-

cation scheme, antivirals can provide a substantial reduction in the expected final
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Figure 5.8: Household size distribution of (a) Indonesia and (b) Sudan

0 0.2 0.4 0.6 0.8 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Maximum proportion of antivirals available

Fi
na

l E
pi

de
m

ic
 S

iz
e

 

 
Aus−Dyn
Aus−Pre
Ind−Dyn
Ind−Pre
Sud−Dyn
Sud−Pre

Figure 5.9: The effect of household size distribution on the expected final epidemic

size for a range of antivirals available for the population. All parameters, except for

the household size distribution, are taken from the severe parameter set from Table

2.3.
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epidemic size. Also demonstrated was that, for a severe pandemic, a prealloca-

tion scheme leads to a lower expected final epidemic size than a dynamic allocation

scheme. Contrary to the expected final epidemic size, however, the expected Malthu-

sian parameter, r, expected peak size, and expected peak time indicated that until

a large proportion of the population has antivirals available, a dynamic allocation

scheme would be better. This suggests that the preferable allocation scheme de-

pends on which key quantity is the focus of pandemic control. It is worth noting

that extremely high stockpiles of antivirals are somewhat unrealistic and expensive

[18, 30]. Also considered were extensions to the stochastic households model. We

demonstrated that, for a severe pandemic outbreak, somewhere between 10% and

15% of households must contain individuals who incorrectly use antivirals for the

dynamic allocation to give a smaller expected final epidemic size than the preallo-

cation scheme. We also showed that a hybrid allocation scheme does not produce

a smaller expected final epidemic size than a pure scheme. Finally, we also showed

that changes in the household size distribution do not appear to qualitatively alter

the expected final epidemic size. These results indicate that a preallocation scheme

could potentially lead to a smaller expected final epidemic size, particularly for a

severe outbreak.



Chapter 6

Conclusion

In this thesis, two potential antiviral allocation schemes, dynamic allocation and

preallocation, have been compared in order to determine which allocation scheme is

better in terms of a number of performance measures. To facilitate this, two approx-

imations for the stochastic household model have been considered and extended.

6.1 Approximations

In Chapters 2 and 3, the branching process approximation was introduced and ex-

tended. While branching processes have been used to assess the severity of an

influenza outbreak previously [71], and also used to determine the effectiveness of

antivirals [15], the finite duration of antivirals has not been previously explored in

this context. Many simulation studies incorporate a finite duration of antivirals

[53, 28, 14], however, this finite duration is assumed fixed, and the effect has not

been assessed. We have demonstrated, using a branching process, that the finite du-

ration of antivirals can have significant impact on the Malthusian parameter, r. For

example, if the average delay until antivirals arrive in the household is exponentially

distributed with a mean of 1 infectious period, then having a the effective duration

of antivirals be exponentially distributed with a mean of 5 infectious periods gives a

Malthusian parameter which is approximately 25% lower than the situation where

105
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the mean effective duration is 1 infectious period. This implies that selecting an an-

tiviral allocation scheme depends not only on the delay until antivirals arrive into a

household after the first infection event, as has been determined previously [15, 27],

but also on the effective duration of these antivirals. Note that as the mean effec-

tive duration, κ → ∞, there is an approximately 36% reduction in the Malthusian

parameter, compared to the case with no antiviral intervention. This estimate is

similar to the result obtained by Black et al. [15]. In the case when κ = 1, the

Malthusian parameter is reduced by approximately 17%, in line with estimates from

Ghani et al. [29]. This reaffirms that the finite duration of antivirals is an important

consideration, even for a quantity associated with the early stages of the pandemic

such as the Malthusian parameter.

We also considered having the delay until antivirals arrive into the household

after the first infection event, and the effective duration of antivirals, being of con-

stant length as opposed to being exponentially distributed. The results in Section

3.4 demonstrate that assuming an exponentially distributed period gives a gener-

ally higher Malthusian parameter as opposed to a constant duration, in line with

previous results [71, 15]. Note importantly that the predominant impact of the ef-

fective duration of antivirals is to lower the Malthusian parameter, independent of

the distribution of this effective duration.

The main issue with using a branching process approximation is that it cannot be

easily used to calculate quantities such as the final epidemic size, or peak time and

peak size. It is the required assumption for a branching process that the population

size is infinite and so infection happens into a naive, or fully susceptible household,

that leads to the fact that the branching process cannot easily approximate the

long-term behaviour of a pandemic. As discussed throughout this work, the dynamic

allocation scheme ensures that every household which experiences an infection event

early in the pandemic will receive antivirals, while the preallocation scheme ensures

that some, roughly constant, proportion of infectious individuals is taking antivirals

throughout the pandemic. The benefits of a preallocation scheme then may not
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be seen in quantities associated with the early stages of a pandemic, such as the

Malthusian parameter.

In Chapter 4, a deterministic approximation is derived to calculate the expected

final epidemic size, expected peak size, and expected peak time of a pandemic. One

limiting factor to the deterministic approximation is that we assume that all event

times are exponentially distributed. While other distributions can be incorporated

through systems of delay differential equations [1], they have not been considered

in this work. The deterministic approximation utilises an alternative representation

of the stochastic households model. This representation means that households are

no longer uniquely identifiable, unlike in the representation described in Chapter

2. This alternative representation condenses the state space of the process, making

the model more tractable [16]. When formulated in this way, we have shown that

the stochastic households model is a density-dependent process in the sense of Kurtz

[49], and so the deterministic approximation is accurate in the limit as the number of

households N →∞ [8]. This type of deterministic approximation has been utilised

previously to assess the impact of antivirals, however, these models have either not

assumed household structure [34] or have not focussed on the method of antiviral

distribution [16, 39], both of which are contained within this work. As the state space

for the deterministic approximation is relatively small, a number of extensions to the

stochastic households model were also incorporated. These extensions are: having

insufficient antivirals for an entire population; members of households using their

supply of antivirals incorrectly; and the production of antivirals during an epidemic.

6.2 Comparison of Antiviral Allocation Schemes

In Chapter 5, the two antiviral allocation schemes, dynamic allocation and preal-

location, were compared. Firstly, it was noted that a dynamic allocation scheme,

which is the antiviral allocation scheme that would currently be utilised in the event

of an influenza epidemic in Australia [22], has a significant impact on final epidemic
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size for both a mild and severe epidemic outbreak. A dynamic allocation scheme re-

duced the final epidemic size by up to 14% in the mild case and 8% in the severe case.

This reduction is small in comparison to reductions in the Malthusian parameter

considered both here and by others [15, 29]. One factor which is often not consid-

ered is the impact that the delay until antivirals arrive into a household and the

effective duration of antivirals has on the expected final epidemic size. We showed

that it is possible to compensate somewhat for the delay until antivirals arrive into

a household by having more antivirals available for the population, although this

compensation is clearly limited. We also showed that the effect of a finite duration

on antivirals can be profound, even for quantities associated with the early stages

of the pandemic, such as the Malthusian parameter. When assuming a long mean

effective duration of antivirals, we showed in Chapter 3 that antivirals reduced the

Malthusian parameter by approximately 30% for a mean delay of 1 infectious pe-

riod, while assuming a small mean effective duration of antivirals only reduced the

Malthusian parameter, by approximately 17%. Both of these percentages have been

determined previously [15, 29], and this result demonstrates the importance of the

finite effective duration of antivirals.

One important consideration for any antiviral allocation scheme is the proportion

of the population which has antivirals available. Many studies in the past assume

that the entire population has access to antivirals [14, 15, 53], however, should this

not be the case, then the effectiveness of antivirals can be significantly impacted.

We demonstrated that for a mild outbreak, the allocation scheme which produced

the smaller expected final epidemic size was dependent on how many antivirals were

available. Should more than 70% of the population have antivirals available, then a

preallocation scheme gives a smaller expected final epidemic size, while if less than

70% of the population has antivirals available, then a dynamic allocation scheme

gives a smaller expected final epidemic size. For a severe outbreak, however, a pre-

allocation scheme always gives a lower expected final epidemic size than a dynamic

allocation scheme, regardless of how many antivirals are available. Interestingly,
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when considering just the Malthusian parameter, this is not the case. Even for a

severe outbreak, the dynamic allocation scheme gives a smaller Malthusian param-

eter if less than 70% of the population has antivirals available. This occurrence

justifies the consideration of the expected final epidemic size, as opposed to just the

Malthusian parameter when comparing the antiviral allocation schemes. The dy-

namic allocation scheme also gives a lower expected peak size, and higher expected

peak time, when less than 70% of the population has antivirals available, similarly

to the Malthusian parameter. Again, this is because the dynamic allocation scheme

ensures that all individuals inside households which experience an infection event

early in the pandemic have access to antivirals, and so the quantities associated

with the early stages of the pandemic are reduced compared to preallocation. A

preallocation scheme, however, ensures that some, roughly constant, proportion of

infectious individuals is taking antivirals throughout the pandemic, and in a severe

outbreak, this leads to a smaller expected final epidemic size than the dynamic al-

location scheme. This result highlights the importance of considering a number of

key quantities associated with an epidemic when choosing which antiviral allocation

scheme is best. Unfortunately, with nine parameters in the model, seven of which

must be estimated based on pandemic data, obtaining good predictions of quantities

associated with a pandemic would prove challenging in practice. It is worth noting

that the cost of maintaining large stockpiles is estimated to be high [18], and so in

reality, a country is unlikely to have stockpiles as high as 70% of the population.

The main assumption in the preallocation scheme is that individuals inside a

household always use their antivirals correctly. In reality, this is unlikely to be true

[28]. We showed that, for a severe outbreak, if the proportion of the population which

has antivirals available is greater than 20%, then more than 10% of the population

would have to use antivirals incorrectly for a dynamic allocation scheme to give a

lower expected final epidemic size than a preallocation scheme. For a mild outbreak,

though, a dynamic allocation scheme already gives a lower expected final epidemic

size than a preallocation scheme until approximately 70% of the population has
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antivirals available. After this point, however, the proportion of households required

to use antivirals incorrectly increases steeply. These results again suggest that should

the amount of antivirals available for the population be high, then a preallocation

scheme would lead to a lower expected final epidemic size than a dynamic allocation

scheme, even when individuals in a household are able to use antivirals incorrectly.

Another potential allocation scheme is a hybrid allocation scheme. A hybrid al-

location scheme preallocates some proportion of the antiviral stockpile, and reserves

the rest of the antivirals for a dynamic allocation scheme. We demonstrated that,

for feasible parameters, a hybrid allocation scheme does not lower the expected fi-

nal epidemic size compared to a pure allocation scheme for both a mild and severe

pandemic.

In other studies, the supply of antivirals is assumed to be infinite [15, 27] or

fixed [24, 28, 29, 55]. In this work, we have considered the effects of a production

of antivirals during a pandemic. We showed that the production of antivirals can

have a noticeable impact on expected final epidemic size for a severe pandemic

outbreak. The expected final epidemic size under preallocation scheme in particular

was increased noticeably, even when the amount of antivirals produced per infectious

period was relatively small. While no data is available with respect to the capacity of

antiviral production, we expect that this number will be large enough to ensure that

there is sufficient antivirals for the dynamic allocation scheme. With our parameters,

sufficient antivirals for a dynamic allocation scheme is 0.08% of the population per

day. We demonstrated that producing more antivirals beyond this amount will not

change the expected final epidemic size under a dynamic allocation scheme, but will

only improve the expected final epidemic size under a preallocation scheme.

This work has shown overall that for a severe pandemic outbreak, a preallocation

scheme could yield a smaller expected final epidemic size than a dynamic allocation

scheme. However, quantities such as the expected Malthusian parameter, expected

peak size, and expected peak time may indicate that a dynamic allocation scheme

would be preferable. For a mild pandemic outbreak, this work has demonstrated
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that a preallocation scheme would yield a lower expected final epidemic size than

preallocation only if the amount of antivirals available for the population is high,

otherwise a dynamic allocation scheme would yield the lower expected final epidemic

size.

6.3 Limitations and Potential Extensions

While the results throughout this thesis provide a broad comparison of antiviral

allocation schemes for an influenza pandemic, there are some limitations of the

model which has been utilised. The model that has been utilised throughout this

work is the SEIR model, as opposed to the SIR model which is commonly used

for influenza [16, 39, 66]. However, the model could be further refined for a better

approximation. This would entail adding additional phases to the model, which

will increase the size of the state space. The deterministic approximation is fast

to compute because of a relatively small state space, but some extension should

not affect this computation time too drastically. For example, adding an additional

exposed and infectious phase would mean that the distribution for the exposed and

infectious periods would follow an Erlang-2 distribution [2, 66], which is more in line

with observations from the 2009 Swine ‘Flu pandemic [29]. This extension, however,

lifts the number of possible household configurations for a household of size 3 from

20 to 56.

One key limitation of our model is the assumption that there are negligible births

and deaths throughout the duration of the pandemic. While death is somewhat

similar to recovery in terms of a modelling assumption, in that the individual has no

further impact on the pandemic, the minimisation of death through a pandemic has

been a focus of other studies [33, 34]. We expect that minimisation of final epidemic

size would also contribute to a lower number of deaths, however, this concept is

not verified here. The inclusion of births has been shown to play an important role

in long-term models [33], however, this work is focussed on the impact of a single
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pandemic, the likely span of which is a few months, and so the amount of births is

unlikely to have a substantial impact.

Another limitation of the model utilised in this work is that there is only a single

strain of influenza. This is closely linked to the time-scale for which these com-

parisons are relevant, however, consideration of multi-strain dynamics may prove

important for a large-scale pandemic [58]. This extension may also require hav-

ing the transition rates being time-dependent rather than constant throughout the

pandemic. The analytical form of the Jacobian may no longer exist, however, the

differential equations should still be solvable numerically.

In this work, we have assumed homogeneous mixing at a population level. It

would be possible to overlay a network structure into the model, similarly to other

studies [69]. This would allow for more targeted antiviral distribution to people

who have recently come in contact with an infectious individual, in a similar vein

to contact tracing during a pandemic [40, 67, 77].

The model could be extended to further accurately represent a population by

including a third phase of mixing which could represent a workplace or school en-

vironment. This third level would add significant complexities to the stochastic

households model, but would allow exploration into the effects of closing schools

and workplaces, which is a control measure discussed in the Australian Health Man-

agement Plan for Pandemic Influenza [22]. The closing of workplaces and schools

has previously been shown to reduce the severity of a pandemic by 30% to 70% [38].

Incorporating this extension would also allow testing of the two antiviral allocation

schemes—dynamic allocation and preallocation—to determine the effects of the de-

lay until antivirals arrive with a more detailed transmission model. Preliminary

work based on the concept of large patches has been undertaken [16], but as of yet,

there have been no approximations for models consisting of more than two levels of

mixing.

Another potential extension to this work is to investigate different methods of

preallocating the antivirals, in a similar vein to the optimal vaccination policy ques-
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tion [12, 54, 62]. In this thesis, the antivirals are preallocated to entire households

in the population according to the distribution of household sizes, h. A potential

investigation would be to change this method, say by giving antivirals to all the

large households first, or according to the size-biased distribution, and testing the

effects.

Also of interest is to calculate the diffusion approximation for the mean pan-

demic. This would allow for an approximation of the variance of the process which

could help for planning against worst-case and best-case pandemic scenarios. The

diffusion approximation for an SIR model has been completed [16], however, this is

yet to be extended to the SEIR model that was utilised throughout this work. A

method which could potentially be applied to the SEIR model has been established

[64], however, expressions for the diffusion approximation for the SEIR stochastic

households model have not yet been studied.

New strains of influenza have caused pandemics approximately every 30 years.

Events of the past would indicate that control of future pandemics is of utmost

importance. Further research is needed to fully understand the best use of antivirals.

In this thesis, we have shown that a potential new allocation scheme, known as

preallocation, could have potential benefits for pandemic control. The preallocation

scheme yields a consistently smaller final epidemic size than the dynamic allocation

scheme for a severe pandemic outbreak. However, a dynamic allocation scheme is

more robust in terms of the number of antivirals available for the population and the

severity of the pandemic outbreak. The extensions and ideas presented throughout

this work should lead to a more efficient use of antivirals, leading to a smaller impact

of future pandemics.
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