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Formal geometric quantisation for
proper actions

Peter Hochs and Varghese Mathai

March 17, 2015

Abstract

We define formal geometric quantisation for proper Hamiltonian
actions by possibly noncompact groups on possibly noncompact, pre-
quantised symplectic manifolds, generalising work of Weitsman and
Paradan. We study the functorial properties of this version of formal
geometric quantisation, and relate it to a recent result by the authors
via a version of the shifting trick. For (pre)symplectic manifolds of a
certain form, quantisation commutes with reduction, in the sense that
formal quantisation equals a more direct version of quantisation.
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Introduction

Consider a Hamiltonian action by a compact Lie group K on a possibly
noncompact prequantised symplectic manifold (N,ν), with proper mo-
mentum map. Weitsman [23] defined the formal geometric quantisation of
this action, which by definition commutes with reduction:

Q−∞
K (N,ν) =

∑
λ∈ΛK+

Q(Nλ)[π
K
λ ],

where ΛK+ is the set of dominant integral weights of K, with respect to
a maximal torus and positive root system, and πKλ is the irreducible repre-
sentation of Kwith highest weight λ ∈ ΛK+. For such λ,Nλ is the symplectic
reduction of the given action at λ/i (which is a symplectic orbifold if λ/i
is a regular value of the momentum map). Formal geometric quantisation
takes values in the abelian group

R−∞(K) = HomZ(R(K),Z),

where R(K) is the representation ring of K.
Paradan [18] proved that formal geometric quantisation is functorial

with respect to Cartesian products and restriction to subgroups. These
two properties imply that it is compatible with the R(K)-module structure
on R−∞(K). Ma and Zhang [14, 15], and also Paradan [19] proved that
quantisation commutes with reduction, in the sense that

QK(N,ν) = Q
−∞
K (N,ν),

for a certain definition of the quantisation QK(N,ν) ∈ R−∞(K).
On the other hand, Landsman [12] proposed a definition of geometric

quantisation of a Hamiltonian action by a Lie group G on a prequantised
symplectic manifold (M,ω), if the orbit space M/G is compact. He used
the analytic assembly map from the Baum–Connes conjecture [2], which
takes values in the K-theory group K∗(C∗(r)G). Here C∗(r)G denotes either
the full C∗-algebra C∗G or the reduced C∗-algebra C∗rG of the group G.
Applying this assembly map to a Dirac operator coupled to a prequantum
line bundle yields Landsman’s definition of

QG(M,ω) ∈ K∗(C∗(r)G). (1)
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Mathai and Zhang [16] showed that Landsman’s version of quantisation
commutes with reduction at the trivial representation, at least if one mul-
tiplies the symplectic formω by a large enough integer. For (possibly only
presymplectic) manifolds of the form M = G ×K N, with N a compact
prequantised Hamiltonian K-manifold, it was shown in [8] that

QG(M,ω) =
∑
λ∈ΛK+

Q(Mλ+ρc ,ωλ+ρc)[λ]. (2)

Here [λ] is a certain generator of K∗(C∗rG), ρc is half the sum of the compact
positive roots, and (Mλ+ρc ,ωλ+ρc) is the symplectic reduction of the action
at (λ+ ρc)/i. The shift over ρc appears because Spinc-quantisation is used
rather than Dolbeault-quantisation.

A common generalisation of R−∞(K) and K∗(C∗rG) is the K-homology
group K∗(C∗rG) of C∗rG. In view of the successes for quantisation with
values in R−∞(K) and K∗(C∗rG), it makes sense to find a definition of quan-
tisation with values in K∗(C∗rG), without assuming the group or the orbit
space to be compact. In this note, we generalise the formal quantisation
studied by Weitsman and Paradan to noncompact groups. For manifolds
of the form M = G ×K N as in (2), but with N possibly noncompact, we
define geometric quantisation in K∗(C∗rG), and show that it equals for-
mal quantisation. This means that this version of quantisation commutes
with reduction (Theorem 3.2). We study the functorial properties of formal
quantisation, and give a relation with the main result in [10] via a version
of the shifting trick.

Acknowledgements

The authors would like to thank Paul–Émile Paradan for helpful com-
ments.

1 Compact groups

Let K be a compact, connected Lie group, with Lie algebra k. Let ΛK+ be the
set of dominant integral weights of K, with respect to a maximal torus and
a choice of positive roots. For λ ∈ ΛK+, let πKλ be the irreducible representa-
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tion of Kwith highest weight λ. Consider the abelian group

R−∞(K) := HomZ(R(K),Z)

Here R(K) denotes the representation ring of K. Note that R−∞(K) is gen-
erated by the elements [πKλ ]

∗, for λ ∈ ΛK+, where

[πKλ ]
∗([πKλ ′ ]) = δλλ ′ := { 1 if λ = λ ′;

0 if λ 6= λ ′,

for all λ ′ ∈ ΛK+.
Let (N,ν) be a prequantised symplectic manifold, equipped with a

Hamiltonian K-action. Suppose the momentum map ΦK : N → k∗ is
proper. Then for every λ ∈ ΛK+, the symplectic reduction [13] Nλ of the
action at λ/i is compact. Hence it has a quantisation Q(Nλ) ∈ Z, where
one can use Meinrenken and Sjamaar’s approach [17] in the singular case.

Weitsman [23] introduced the formal geometric quantisation Q−∞
K (N,ν)

of the action by K on (N,ν), as

Q−∞
K (N,ν) =

∑
λ∈ΛK+

Q(Nλ)[π
K
λ ]
∗ ∈ R−∞(K).

Paradan [18] proved that formal quantisation is functorial with respect to
restriction to subgroups, and also notes that it is functorial with respect to
Cartesian products.

To state Paradan’s result on restriction to a subgroup K ′ < K, we con-
sider the abelian group R−∞(K)K ′ of formal differences of equivalence classes
of representations of Kwhose restrictions to K ′ decompose into irreducible
representations of K ′ with finite multiplicities. One has

R(K) ⊂ R−∞(K)K ′ ⊂ R−∞(K),

and

R−∞(K)K = R−∞(K);

R−∞(K){e} = R(K).

Here we identify R−∞(K) = HomZ(R(K),Z) with the abelian group of for-
mal differences of equivalence classes of representations of K containing
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finitely many copies of all irreducibles, via the map [πKλ ]
∗ 7→ [πKλ ]. By defi-

nition of R−∞(K)K ′ , there is a well-defined restriction map

ResKK ′ : R
−∞(K)K ′ → R−∞(K ′).

Let k ′ be the Lie algebra of K ′, and suppose that the momentum map
ΦK ′ : N→ (k ′)∗ for the action by K ′ onN is still proper. A criterion for this
condition is given in Proposition 2.11 in [20]. Then Paradan showed that
Q−∞
K (N,ν) ∈ R−∞(K)K ′ , and

ResKK ′
(
Q−∞
K (N,ν)

)
= Q−∞

K ′ (N,ν). (3)

In addition, for j = 1, 2, let Kj be a compact, connected Lie group, and
let (Nj, νj) be a prequantised Hamiltonian Kj-manifold with proper mo-
mentum map. Then Paradan points out that

Q−∞
K1

(N1, ν1)⊗Q−∞
K2

(N1, ν1) = Q
−∞
K1×K2(N1 ×N2, ν1 × ν2). (4)

Note that R−∞(K) is an R(K)-module, via the tensor product of representa-
tions. The properties (3) and (4) together imply that, if N1 is compact,

Q−∞
K (N1, ν1) ·Q−∞

K (N2, ν2) = Q
−∞
K (N1 ×N2, ν1 × ν2), (5)

where the dot · denotes the R(K)-module structure of R−∞(K).
Our goal is to generalise the definition of formal geometric quantisa-

tion, and its functoriality properties with respect to restriction and Carte-
sian products, to noncompact groups. Then R−∞(K) will be replaced by
K-homology of group C∗-algebras.

2 K-homology of group C∗-algebras and formal
quantisation

Let G be a connected Lie group containing K as a maximal compact sub-
group. Let g be the Lie algebra of G. Let C∗rG be the reduced C∗-algebra of
G. We will write d := dim(G/K). The Connes–Kasparov conjecture, proved
for almost connected groups by Chabert, Echterhoff and Nest [4], states
that there is an isomorphism of Abelian groups

D-IndGK : R(K)
∼=−→ Kd(C

∗
rG).
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This isomorphism is called Dirac induction, and is given by

D-IndGK [π
K
λ ] = µ

G
G/K

[
Dλ
G/K

]
, (6)

for λ ∈ ΛK+, where µGG/K is the analytic assembly map [2], and Dλ
G/K is a

Dirac operator on G/K coupled to the representation πKλ .
LetKd(C∗rG) be theK-homology group ofC∗rG in degree d. SinceKd(C∗rG) ∼=

R(K) is torsion-free, the universal coefficient theorem [21] implies that

Kd(C∗rG)
∼= HomZ(Kd(C

∗
rG),Z). (7)

In particular, R−∞(K) = K0(C∗rK). The isomorphism (7) is given by the
Kasparov product. Pulling back along the Dirac induction map defines an
isomorphism of Abelian groups(

D-IndGK
)∗

: Kd(C∗rG)
∼=−→ R−∞(K). (8)

For λ ∈ ΛK+, we write [λ] for the generator D-IndGK [πKλ ] of Kd(C∗rG). Let
[λ]∗ ∈ Kd(C∗rG) be the corresponding generator, defined by

[λ]∗
(
[λ ′]
)
= δλλ ′ ,

for λ ′ ∈ ΛK+. Then (
D-IndGK

)∗
[λ]∗ = [πKλ ]

∗. (9)

We consider Kd(C∗G) as a subgroup of Kd(C∗rG) via the map [λ] 7→ [λ]∗.
Using the generators [λ]∗ of Kd(C∗rG), one can generalise formal ge-

ometric quantisation to actions by noncompact groups as follows. Let
(M,ω) be a prequantised symplectic manifold, equipped with a proper
Hamiltonian G-action. Suppose the momentum map ΦG : M → g∗ is
G-proper, in the sense that the inverse image of every cocompact set is co-
compact. (By a cocompact set we mean a set with compact quotient by the
group action.) Then all symplectic reductions of the action are compact.
Assume that all symplectic reductions at elements ofΛK+ have well-defined
quantisations; see below for a discussion of this assumption.

Definition 2.1. The formal geometric quantisation of the action byG on (M,ω)
is

Q−∞
G (M,ω) =

∑
λ∈ΛK+

Q(Mλ)[λ]
∗ ∈ Kd(C∗rG).
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Let ξ ∈ g∗ be a value of ΦG. Any of the following conditions is suffi-
cient for the symplectic reduction Mξ to have a well-defined quantisation
Q(Mξ) ∈ Z.

1. If G is compact, one can define Q(Mξ) using Meinrenken and Sja-
maar’s methods [17].

2. Suppose that

(a) ξ is a quasi-regular value of ΦG, in the sense that all G orbits in
(ΦG)−1(G · ξ) have the same dimension; and

(b) the prequantum line bundle L→M is almost equivariantly locally
trivial at level ξ, in the sense that for all m ∈ (ΦG)−1(G · ξ), the
identity component of the stabiliserGm acts trivially on the fibre
Lm.

Then Mξ is a compact symplectic orbifold, with a prequantum line
bundle induced by L, and can be quantised. See Section 2.2 in [17].

3. As a special case of the second point, suppose that all points in (ΦG)−1(G·
ξ) have conjugate stabilisers, and that G · ξ is locally closed. Then by
Theorem 16 in [1], the symplectic reductionMξ is smooth.

4. Suppose G is semisimple with discrete series, and let K < G be a
maximal compact subgroup. If the stabiliser Gξ is compact, i.e. ξ is
strongly elliptic, set

M̃ := (ΦG)−1(g∗se),

where g∗se is the set of strongly elliptic elements. By Corollary 2.4 and
Proposition 2.6 in [22], this is a nonempty open subset of g∗. Hence
M̃ is a G-invariant open neighbourhood of (ΦG)−1(G · ξ) in M. By
Propositions 2.8 and 2.14 in [7], M̃ has the form

M̃ ∼= G×K N,

where N := (ΦG)−1(k∗) ∩ M̃ is a Hamiltonian K-manifold, with mo-
mentum map defined by the restriction of ΦG. Hence there is a
homeomorphism

Mξ = M̃ξ = Nξ,

7



which is a symplectomorphism of ξ is a regular value of ΦK. Hence
Mξ

∼= Nξ has a well-defined quantisation by the first point.

The generators [λ], for λ ∈ ΛK+ ∩ ig∗se correspond to discrete series
representations, see Remark 2.5 in [7], and also Example 4.2.

5. As a special case of the fourth point, suppose thatΦG is proper, rather
than justG-proper. Then it was pointed out in [20] thatΦG(M) ⊂ g∗se,
so the fourth point applies to any value ξ of ΦG.

3 Quantisation commutes with reduction

Quantisation commutes with reduction is the statement that

QG(M,ω) = Q−∞
G (M,ω), (10)

for some definition of QG(M,ω) ∈ Kd(C∗rG). For a prequantised Hamil-
tonian K-manifold (N,ν) with proper momentum map ΦK, as considered
earlier, such a definition was given by Ma and Zhang [14, 15] and Paradan
[19]. They definedQK(N,ν) via expanding (relatively) compact subsets of
N. Braverman’s index theory for generalised Dirac operators on possibly
noncompact manifolds [3] can be applied to give a direct analytic defini-
tion of quantisation, provided the critical point set of the norm-squared
function ofΦK is compact (which it is ifN is real-algebraic andΦK is alge-
braic, as noted in Lemma 3.24 of [20]. Ma and Zhang, and also Paradan,
proved that

QK(N,ν) = Q
−∞
K (N,ν). (11)

A definition of QG(M,ω) ∈ Kd(C∗rG) satisfying (10) can be given if M
is of a particular form. Suppose thatG is semisimple, and let g = k⊕p be a
Cartan decomposition. SupposeM is of the formM = G×KN considered
in [7, 8], the quotient of G×N by the K-action

k · (g, n) = (gk−1, kn),

for k ∈ K, g ∈ G and n ∈ N. As in [8], consider the G-invariant presym-
plectic form (i.e. closed two-form)ω onM given by

ω[e,n]

(
Tq(X+ v), Tq(Y +w)

)
:= νn(v,w) − 〈ΦK(n), [X, Y]〉,
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where n ∈ N, X, Y ∈ p, v,w ∈ TnN, and q : G × N → M is the quotient
map. In general, ω may be degenerate, but all constructions relevant to
quantisation and reduction still apply. The momentum mapΦG :M→ g∗,
given by

ΦG[g, n] = Ad∗(g)ΦK(n), (12)

for g ∈ G and n ∈ N, is G-proper if ΦK is proper.
IfG has discrete series representations andΦK(N) ⊂ k∗ ↪→ g∗ lies inside

the set g∗se of strongly elliptic elements, thenω is an actual symplectic form
(see [7], Proposition 2.4, with more details given in Proposition 12.4 in [6]).
Conversely, any Hamiltonian G-manifold (M,ω) whose momentum map
takes values in the strongly elliptic set is of the formM = G×KN as above
([7], Proposition 2.14).

In [7, 8], it was shown that for compact N, quantisation commutes with
induction, in the sense that

QG(M,ω) = D-IndGK
(
QK(N,ν)

)
.

Here QG(M,ω) ∈ K∗d(C∗rG) is Landsman’s version (1) of geometric quan-
tisation. This shows that the following definition reduces to Landsman’s
definition if N is compact.

Definition 3.1. ForM = G×K N as above, the geometric quantisation of the
action by G onM is

QG(M,ω) =
((

D-IndGK
)∗)−1 (

QK(N,ν)
)
∈ Kd(C∗rG).

The formal quantisation of the action by G on (M,ω) depends on the
precise procedure used to quantise the reduced spaces Mξ. Let Q(Mξ) be
defined as the usual index of a Dirac operator if ξ is a quasi-regular value
of ΦG, and as Q(Nξ) if ξ is a singular value (sinceMξ

∼= Nξ).

Theorem 3.2 (Quantisation commutes with reduction). If M is of the form
M = G×K N, then (10) holds.

Proof. The equality (11) implies that

QG(M,ω) =
((

D-IndGK
)∗)−1 (

QK(N,ν)
)

=
((

D-IndGK
)∗)−1 (

Q−∞
K (N,ν)

)
.

Because of Lemma 3.3 below, the latter expression equalsQ−∞
G (M,ω).
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Lemma 3.3. In this setting, one has(
D-IndGK

)∗(
Q−∞
G (M,ω)

)
= Q−∞

K (N,ν).

Proof. Let λ ∈ ΛK+. If λ/i is a singular value ofΦG, one by definition has

Q(Mλ) = Q(Nλ). (13)

For quasi-regular values, one has an isomorphism of (pre)symplectic orb-
ifolds

(Mλ,ωλ) ∼= (Nλ, νλ)

(see [8], Lemma 5.1), so that, in particular, (Mλ,ωλ) is actually symplectic,
rather than just presymplectic. Hence (13) also holds in that case. The
desired equality therefore follows from (9).

Theorem 3.2 motivates the search for a definition ofQG(M,ω) ∈ Kd(C∗rG)
for arbitrary (M,ω), generalising Definition 3.1.

4 A restriction map

We return to the case where G is any connected Lie group. Let G ′ < G

be a closed, connected subgroup that has a maximal compact subgroup K ′

contained in K. We write d ′ := dim(G ′/K ′). Set

K∗(C∗rG)G ′ :=
((

D-IndGK
)∗)−1(

R−∞(K)K ′
)
.

(Note that since all maximal compact subgroups are conjugate, the ring
R−∞(K)K ′ is independent of the choice of maximal compact subgroup K ′ <
G ′.)

Definition 4.1. The Dirac restriction map D-ResGG ′ is defined by commuta-
tivity of the following diagram:

Kd(C∗rG)G ′
D-ResG

G ′//

(D-IndGK )
∗ ∼=
��

Kd
′
(C∗rG

′)

(D-IndG
′

K ′ )
∗∼=

��
R−∞(K)K ′

ResK
K ′ // R−∞(K ′).
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Because the Dirac restriction map is modelled on the restriction map
from K to K ′, it may not contain all representation theoretic information
concerning restriction of representations fromG toG ′. It does have natural
functoriality properties with respect to formal quantisation, as we will see.

Example 4.2. SupposeG is semisimple with discrete series. Then d is even.
Let ρc be half the sum of the positive roots of K. Let λ ∈ ΛK+, and suppose λ
is strongly elliptic. Let πGλ be the irreducible discrete series representation
of G with Harish–Chandra parameter λ + ρc. Then πGλ defines a K-theory
class

[πGλ ] ∈ K0(C∗rG)

(see [11], Section 2.2). In (5.3) in [8], it is noted that

[πGλ ] = (−1)d/2[λ] = (−1)d/2 D-IndGK [π
K
λ ].

Hence the image of [πGλ ] in Kd(C∗rG) is [πGλ ]
∗ := (−1)d/2[λ]∗ ∈ K0(C∗rG), and(

D-IndGK
)∗(

[πGλ ]
∗) = (−1)d/2[πKλ ]

∗.

Let ΛK ′+ be the set of dominant integral weights of K ′ with respect to a
maximal torus and positive roots, compatible with the choices made for K.
Write

ResKK ′(π
K
λ ) =

∑
λ ′∈ΛK ′+

mλ ′π
K ′

λ ′ ,

for certain integer coefficientsmλ ′ . Then(
D-IndG

′

K ′

)∗ ◦D-ResGG ′ [π
G
λ ]
∗ = ResKK ′ ◦

(
D-IndGK

)∗
[πGλ ]

∗

= (−1)d/2
∑
λ ′∈ΛK ′+

mλ ′ [π
K ′

λ ′ ]
∗.

Hence
D-ResGG ′ [π

G
λ ]
∗ = (−1)d/2

∑
λ ′∈ΛK ′+

mλ ′ [λ
′]∗,

by (9).

Suppose that G and G ′ are semisimple, and that M is of the form M =
G ×K N as above. Then formal geometric quantisation has the following
functoriality property with respect to Dirac restriction.
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Proposition 4.3. Suppose that the momentum map for the action by G ′ onM is
still proper. Then (omitting the various symplectic forms from the notation) we
have

Q−∞
G (G×K N) ∈ Kd(C∗rG)G ′ ,

and
D-ResGG ′

(
Q−∞
G (G×K N)

)
= Q−∞

G ′ (G
′ ×K ′ N).

Proof. Because of the form (12) of the momentum map for the action by
G ′ on M, this map is G ′-proper if and only if the momentum map for
the action by K ′ on N is proper. Hence, by Paradan’s result (3), one has
Q−∞
K (N) ∈ R−∞(K)K ′ , and

ResKK ′
(
Q−∞
K (N)

)
= Q−∞

K ′ (N).

Lemma 3.3 states that

Q−∞
K (N) =

(
D-IndGK

)∗(
Q−∞
G (G×K N)

)
.

Hence Q−∞
G (G×K N) ∈ Kd(C∗rG)G ′ , and(

D-IndG
′

K ′

)∗ ◦D-ResGG ′
(
Q−∞
G (G×K N)

)
= ResKK ′ ◦

(
D-IndGK

)∗(
Q−∞
G (G×K N)

)
= ResKK ′

(
Q−∞
K (N)

)
= Q−∞

K ′ (N)

=
(
D-IndG

′

K ′

)∗(
Q−∞
G ′ (G

′ ×K ′ N)
)
.

Remark 4.4. One would expect a restriction map ResGG ′ to satisfy

ResGG ′
(
Q−∞
G (M)

)
= Q−∞

G ′ (M),

compare with Theorem D in [20]. Proposition 4.3 reflects a different nature
of the Dirac restriction map.

5 Products of generators

In Section 5.3 of [7], a multiplicativity property of the analytic assembly
map is discussed. This will allow us to generalise the multiplicative prop-
erty (4) of formal geometric quantisation to noncompact groups. That in
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turn leads to a generalisation of property (5) of formal quantisation with
respect to the R(K)-module structure of R−∞(K).

Let G1 and G2 be locally compact groups, acting properly and cocom-
pactly on locally compact Hausdorff spaces X1 and X2, respectively. There
are Kasparov product maps on equivariant K-homology and on K-theory,

KG1∗ (X1)× KG2∗ (X2)
×−→ KG1×G2∗ (X1 × X2);

K∗(C
∗
rG1)× K∗(C∗rG2)

×−→ K∗(C
∗
r(G1 ×G2)).

By Theorem 5.2 in [7], the assembly maps µGjXj and µG1×G2X1×X2 satisfy

µG1X1 (a1)× µ
G2
X2
(a2) = µ

G1×G2
X1×X2 (a1 × a2), (14)

for all aj ∈ K
Gj
∗ (Xj), at least if X1 and X2 are metrisable.

Now suppose G1 and G2 are connected, semisimple Lie groups. Let
Kj < Gj be maximal compact subgroups, and suppose that the adjoint rep-
resentations Ad : Kj → SO(pj) lift to Spin(pj), for Cartan decompositions
gj = kj ⊕ pj. (This is always true for certain covers of the groups Gj.) Write
dj := dim(Gj/Kj).

Lemma 5.1. Let λj ∈ Λ
Kj
+ . Then one has

[λ1]× [λ2] = [(λ1, λ2)] ∈ Kd1+d2(C∗r(G1 ×G2)).

(Note that ΛK1×K2+ = ΛK1+ ×ΛK2+ .)

Proof. Let Kj < Gj be as above. In this setting, for G = Gj and K = Kj,
the Dirac operator Dλ

G/K used in the definition (6) of Dirac induction is
defined explicitly as follows. Let {X1, . . . , Xn} be a basis of p, orthonormal
with respect to the Killing form. Let ∆p be the standard representation of
Spin(p), and let c : p→ End(∆p) be the Clifford action. Let λ ∈ ΛK+, and let
Vλ be the representation space of πKλ . Then

Dλ
G/K =

n∑
j=1

Xj ⊗ c(Xj)⊗ 1Vλ (15)

on (
C∞(G)⊗ ∆p ⊗ Vλ

)K
.
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In KG1×G1∗
(
(G1×G2)/(K1×K2)

)
, it follows from (15) that for all λj ∈ Λ

Kj
+ ,[

D
(λ1,λ2)
(G1×G2)/(K1×K2)

]
=
[
Dλ1
G1/K1

⊗ 1+ 1⊗Dλ2
G2/K2

]
=
[
Dλ1
G1/K1

]
×
[
Dλ2
G2/K2

]
Here we have used the fact that πK1×K2(λ1,λ2)

= πK1λ1 ⊗ π
K2
λ2

. We conclude that,
because of (14),

[(λ1, λ2)] = D-IndG1×G2K1×K2 [π
K1×K2
(λ1,λ2)

]

= µG1×G2(G1×G2)/(K1×K2)
[
D

(λ1,λ2)
(G1×G2)/(K1×K2)

]
= µG1×G2(G1×G2)/(K1×K2)

([
Dλ1
G1/K1

]
×
[
Dλ2
G2/K2

])
= µG1G1/K1

[
Dλ1
G1/K1

]
× µG2G2/K2

[
Dλ2
G2/K2

]
= [λ1]× [λ2].

We will use an extension of Lemma 5.1 to an equality involving the
Kasparov product map on K-homology

K∗(C∗rG1)× K∗(C∗rG2)
×−→ K∗(C∗r(G1 ×G2)). (16)

Corollary 5.2. For all λj ∈ Λ
Kj
+ , one has

[λ1]
∗ × [λ2]

∗ = [(λ1, λ2)]
∗ ∈ Kd1+d2(C∗r(G1 ×G2)).

Proof. Let λj, µj ∈ Λ
Kj
+ . Then

[(λ1, λ2)]
∗([(µ1, µ2)]) = δλ1µ1δλ2µ2 = [λ1]

∗([µ1]) · [λ2]∗([µ2]). (17)

The isomorphism (7) is induced by the Kasparov product, i.e. for λ ∈ ΛK+,
the homomorphism

[λ]∗ : KK(C, C∗rG)→ Z
is given by taking the Kasparov product with [λ]∗ ∈ KK(C∗rG,C). Hence
the right hand side of (17) equals(
[µ1]×C∗rG1 [λ1]

∗) · ([µ2]×C∗rG2 [λ2]∗) = ([µ1]× [µ2]
)
×C∗rG1⊗C∗rG2

(
[λ1]

∗× [λ2]
∗),

where we have used the associativity properties of the Kasparov product.
By Lemma 5.1, the latter expression equals

[(µ1, µ2)]×C∗rG1⊗C∗rG2
(
[λ1]

∗ × [λ2]
∗) = ([λ1]∗ × [λ2]

∗)([(µ1, µ2)]).
14



6 Module structures

Corollary 5.2 implies that formal quantisation is multiplicative. For j =
1, 2, let (Mj,ωj) be equivariantly prequantised proper Hamiltonian Gj-
manifolds, with Gj-proper momentum maps. Suppose the groups Gj are
connected and semisimple.

Corollary 6.1. One has

Q−∞
G1×G2(M1×M2,ω1×ω2) = Q

−∞
G1

(M1,ω1)×Q−∞
G2

(M2,ω2) ∈ Kd1+d2(C∗r(G1×G2)).

Proof. Let λj ∈ Λ
Kj
+ . As noted by Paradan [18], one has an equality of

symplectic reductions(
(M1 ×M2)(λ1,λ2), (ω1 ×ω2)(λ1,λ2)

)
∼=
(
(M1)λ1 × (M2)λ2 , (ω1)λ1 × (ω2)λ2

)
,

if λ1/i and λ2/i are regular values of the respective momentum maps.
Since the manifolds (Mj)λj are compact, one has

Q
(
(M1)λ1

)
Q
(
(M2)λ2

)
= Q

(
(M1)λ1 × (M2)λ2

)
∈ Z.

Hence, because ΛK1×K2+ = ΛK1+ ×ΛK2+ =: Λ+, Corollary 5.2 implies that

Q−∞
G1×G2(M1 ×M2,ω1 ×ω2) =

∑
(λ1,λ2)∈Λ+

Q
(
(M1 ×M2)(λ1,λ2)

)
[(λ1, λ2)]

∗

=
∑

(λ1,λ2)∈Λ+

Q
(
(M1)λ1

)
Q
(
(M2)λ2

)
[λ1]

∗ × [λ2]
∗

= Q−∞
G1

(M1,ω1)×Q−∞
G2

(M2,ω2).

The compatibility property (5) of formal quantisation with the R(K)-
module structure on R−∞(K) can be generalised to noncompact groups.
It is possible to equip Kd(C∗rG) with a Kd(C∗rG)-module structure in the
following way. For a ∈ Kd(C∗rG) we have a∗ ∈ Kd(C∗rG), via the inclusion
map defined by [λ] 7→ [λ]∗ on generators. If b ∈ Kd(C∗rG), then we have

a∗ × b ∈ K0(C∗r(G×G)),

15



where × denotes the Kasparov product (16). Corollary 5.2 implies that(
D-IndG×GK×K

)∗
(a∗ × b) =

(
D-IndGK

)∗
(a∗)⊗

(
D-IndGK

)∗
(b)

∈ R(K)⊗ R−∞(K) ⊂ R(K× K)∆(K).

where ∆(K) < K× K is the diagonal subgroup. So

a∗ × b ∈ K0(C∗r(G×G))∆(G),

which is the domain of the Dirac restriction map

D-ResG×G∆(G) : K
0(C∗r(G×G))∆(G) → Kd(C∗rG).

Definition 6.2. The Kd(C∗rG)-module structure of Kd(C∗rG) is defined by

a · b := D-ResG×G∆(G)(a
∗ × b), (18)

for a and b as above.

Lemma 6.3. Dirac induction is compatible with the R(K)-module structure of
R−∞(K) and the Kd(C∗rG)-module structure of Kd(C∗rG), in the sense that(

D-IndGK
)∗(D-IndGK [π] · b

)
= [π] ·

(
D-IndGK

)∗
(b),

for all finite-dimensional representations π of K, and all b ∈ Kd(C∗rG).

Remark 6.4. This lemma in particular implies that (18) indeed defines a
module structure.

Proof of Lemma 6.3. It is enough to check the equality for irreducible π = πKλ1
and generators b = [λ2]

∗ of Kd(C∗rG), for λj ∈ ΛK+. Then, using Corollary
5.2 and (9), one finds that(

D-IndGK
)∗(D-IndGK [π] · b

)
=
(
D-IndGK

)∗ ◦D-ResG×GG

(
[λ1]

∗ × [λ2]
∗)

=
(
D-IndGK

)∗ ◦D-ResG×GG [(λ1, λ2)]
∗

= ResK×KK ◦
(
D-IndG×GK×K

)∗
[(λ1, λ2)]

∗

= ResK×KK

[
πK×K(λ1,λ2)

]∗
= ResK×KK

[
πKλ1 ⊗ π

K
λ2

]∗
= [πKλ1 ] · [π

K
λ2
]∗

= [π] ·
(
D-IndGK

)∗
(b).

16
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Proposition 4.3, Corollary 6.1 and Lemma 6.3 have the following con-
sequence. Let (Nj, νj) be prequantised Hamiltonian K-manifolds. Suppose
N1 is compact, and the momentum map for the action byK onN2 is proper.
Then, with respect to the module structure of Definition 6.2,

Q−∞
G (G×K N1) ·Q−∞

G (G×K N2) = Q
−∞
G

(
G×K (N1 ×N2)

)
.

7 The shifting trick

As in [10], consider aG-invariant metric on the trivial bundleM×g∗ →M,
equipped with the G-action

g · (m,ξ) = (g ·m,Ad∗(g)ξ),

for g ∈ G, m ∈M and ξ ∈ g∗. Denote the induced norm on the fibre at m
by ‖·‖m. Let H be the associated norm-squared function of the momentum
map ΦG:

H(m) = ‖ΦG(m)‖2m.

Consider the one-form d1H ∈ Ω1(M) defined by

(d1H)m = dm
(
m ′ 7→ ‖ΦG(m ′)‖2m

)
.

Let Crit1(H) be the set of zeroes of d1H. Under the assumptions that
Crit1(H)/G is compact and G is unimodular, the invariant quantisation

Q(M,ω)G ∈ Z

was defined in [10]. It was proved that for p ∈ N large enough,

Q(M,pω)G = Q(M0, pω0), (19)

and conjectured that this equality holds for p = 1. (Here (M0,ω0) is the
symplectic reduction of the action at 0 ∈ g∗.)

Let λ ∈ ΛK+. Consider the reduction map RGλ : Kd(C∗rG) → Z given by
taking the multiplicity of [λ]∗ (i.e. by applying elements to [λ]). Let O−

λ :=
Ad∗(G)λ/i be the coadjoint orbit through λ/i, equipped with minus the
standard Kirillov–Kostant–Souriau symplectic form. Letωλ ∈ Ω2(M×O−

λ )

17



be the induced product symplectic form. Let Hλ be the function H defined
above, for the diagonal action byG onM×O−

λ . Suppose the conjecture that
(19) holds for p = 1 is true, which is the case for example if the action is
free. Then one has the following version of the shifting trick.

Proposition 7.1. If Crit1(Hλ)/G is compact, then, if λ/i is a regular value of
ΦG,

RGλ
(
Q−∞
G (M,ω)

)
= Q

(
M× O−

λ ,ω
λ
)G
.

Proof. See Corollary 5.12 in [10].

Under the stronger assumption (which may be restrictive) that Crit1(Hλ)/G
is compact for all λ, one can define a semi-formal version of quantisation as

Qsemi
G (M,ω) =

∑
λ∈ΛK+

Q
(
M× O−

λ ,ω
λ
)G

[λ]∗.

This version of quantisation has the advantage that it is well-defined re-
gardless of how singular the reduced spacesMλ may be. In the special case
where λ/i is a regular value of ΦG for all λ, then Proposition 7.1 implies
that semi-formal quantisation commutes with reduction, in the sense that
Qsemi
G (M,ω) = Q−∞

G (M,ω). (But note that this is only true if (19) holds for
p = 1.)
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