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Analysis of stability, local convergence, and
transformation sensitivity of a variant of
particle swarm optimization algorithm

Mohammad Reza Bonyadi and Zbigniew Michalewicz

Abstract—In this paper we investigate three important
properties (stability, local convergence, and transformation
invariance) of a variant of particle swarm optimization called
standard particle swarm optimization 2011. Through some
experiments, we identify boundaries of coefficients for this
algorithm that ensure particles converge to their equilibrium.
Our experiments show that these convergence boundaries
for this algorithm are: 1) dependent on the number of
dimensions of the problem, 2) different from that of some
other PSO variants, and 3) not affected by the stagnation
assumption. We also determine boundaries for coefficients
associated with different behaviors, e.g., non-oscillatory and
zigzagging, of particles before convergence through analysis
of particle positions in the frequency domain. In addition, we
investigate the local convergence property of this algorithm
and we prove that it is not locally convergent. We provide a
sufficient condition and related proofs for local convergence
for a formulation that represents updating rules of a large
class of particle swarm optimization variants. We modify
the standard particle swarm optimization 2011 in such a way
that it satisfies that sufficient condition, hence, the modified
algorithm is locally convergent. Also, we prove that the
original standard particle swarm optimization algorithm is
not sensitive to rotation, scaling, and translation of the search
space.

Index Terms—Particle swarm optimization, stability anal-
ysis, local convergence, transformation invariance

I. INTRODUCTION

ARTICLE swarm optimization (PSO) is a stochastic

population-based optimization algorithm developed
by Kennedy and Eberhart [1]. PSO has been applied to
many optimization problems such as artificial neural net-
work training and pattern classification [2], [3], to name
a few. Since 1995, different aspects of the original version
of PSO have been investigated and many variants of the
algorithm have been proposed. Due to the emergence
of many PSO variants, standard versions for the algo-
rithm [4], [5], [6] were introduced that were updated
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according to new advances every few years. Standard
PSO 2011 (SPSO2011) is the most recent standard version
for PSO [6]. A variant of SPSO2011 was applied to some
continuous space benchmark problems and its results
were reported to set a baseline for further research [7].
Most existing studies on SPSO2011 are related to its
application [7] to continuous space optimization bench-
marks and there is only one article [8] (presented by
the authors of this paper) that investigates theoretical
aspects of SPSO2011 that include stability of particles [9],
[10], local convergence [11], [12], and transformation
sensitivity [13].

In our earlier paper [8], the stability of particles in a
SPSO2011 variant proposed by [7] was investigated un-
der the stagnation assumptions through an experimental
approach called estimation of convergence boundaries
(ECB). Also, it was proven that the algorithm is not
locally convergent and a modification was proposed to
resolve the issue. However, no proof was provided to
illustrate that the modified algorithm is locally conver-
gent. In addition, the transformation invariance of the
algorithm was investigated in [8].

In this paper, stability of particles, local convergence,
and transformation sensitivity of SPSO2011 (proposed
in [6]) are analyzed in more detail. We modify the ECB
algorithm (the new algorithm is called estimation of
variance convergence boundaries, ECVB) and apply it
to a PSO variant for which these boundaries are known.
Results indicate that the estimated convergence bound-
aries are in good agreement with those that were found
through theoretical analyses. ECVB is applied to estimate
the convergence boundaries for SPSO2011 under stagna-
tion as well as general conditions. The behavior of the
positions of particles before convergence is also analyzed
and the boundaries associated with different behaviors
such as harmonic and zigzagging are identified for the
algorithm. Further, the local convergence property of
SPSO2011 is investigated and it is proven that this
algorithm is not locally convergent. We introduce a
sufficient condition together with related proofs for local
convergence of a recursive equation that formulates a
large class of PSO algorithms. We propose a simple
modification to SPSO2011 and prove that the modified
version satisfies the sufficient condition to address the
local convergence issue. Finally, it is proven that the algo-
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rithm is invariant from rotation, scaling, and translation.
Note that the aim of this paper is to understand different
behaviors of particles and to address potential theoretical
issues (e.g., local convergence) in SPSO2011 and it does
not try to improve the algorithm to find better solutions.

This paper is an extension of our earlier paper [8].

There are significant differences between these two pa-
pers, as this paper investigates:

1) a different variant of SPSO2011 than the one inves-
tigated in [8],

2) the algorithm with and without stagnation while
our earlier paper only investigated the algorithm
with stagnation,

3) the behavior of particles before they converge that
was not done in our earlier paper,

4) a recursion equation that represents a large class of
PSO algorithms and provides sufficient conditions
for local convergence of that recursion,

5) the local convergence of SPSO2011 in more detail
than it was done in [8],

6) the transformation invariance of SPSO2011 through
more formal definitions and analyses from what was
done in [8].

Without loss of generality, this paper considers only

minimization problems defined as follows:

find # € S C R? such that Vj € S, F(Z) < F(7) (1)

where S is the search space defined by {z|l; < z; <
u; for all ¢}, l; and u; are lower bound and upper bound
of the values of the i*" dimension of S, d is the number
of dimensions, and F(.) is the objective function. The
set of points that are generated by F(z) for all z € S is
called the landscape.

The rest of this paper is organized as follows. We
briefly discuss earlier variants of PSO in Section II. Sec-
tion III reviews existing approaches for stability analysis
of PSO variants and provides analysis of stability for
SPSO2011. Local convergence properties for some PSO
variants are outlined in Section IV and this property for
SPSO2011 is investigated. In Section V, an overview of
existing transformation sensitivity analyses for different
PSO variants is given. Also, we prove that SPSO2011 is
invariant from rotation, scaling, and translation of the
search space. Section VI concludes the paper.

II. PARTICLE SWARM OPTIMIZATION

Each particle in the Original PSO (OPSO) [14], [1]

contains three vectors:

« Position (#i) — is the position of the i‘" particle in
the ¢! iteration. This is used to evaluate the particle
quality

« Velocity (V;/) — is the direction and length of move-
ment of the " particle in the ¢! iteration

« Personal best () — is the best position (in terms of
objective value) that the particle i has visited until
iteration t. The role of this vector is to store the
knowledge of best found solutions [14].

In OPSO, the velocity of each particle is updated for
the next iteration (¢ + 1) by

Vi =Vi+¢1Ry (B, — T1) + d2Ro (3 — T1)  (2)

where ¢, and ¢, are two real numbers called acceleration

coefficients, pi is the personal best of the particle i at

iteration ¢, and g; is the best personal best in the swarm.
The vector p, for each particle i is updated by Eq. 3.

Pt+1 D otherwise
®)

where ¢ is an arbitrarily small real value that represents
the precision of the calculations. This constant can be
set to the smallest possible value in the simulations (see
Section IV).

Particles are attracted by PI = pi — & (Personal
Influence) and SI = g; — & (Social Influence) to move
toward known quality solutions found until iteration ¢,
ie, pi and g;. Further, Ry; and Ry are two randomly
(a uniform distribution in the interval [0, 1]) generated
d x d diagonal matrices [15], [16]. These two matrices
are generated for each particle i at every iteration ¢
separately. The position of the particles is updated by

Tipr =T+ Vit (4)

OPSO was studied by many researchers since 1995 and
many new variants were proposed. As an example, it
was proposed [17] to multiply the previous velocity (V/’)
by an inertia weight (w) to control the impact of V; on
the movement of particles (we call this PSO variant as

Inertia PSO, IPSO, in this paper). The velocity update
rule for IPSO was written as

f/‘tqu = wVi + ¢ Ry (Fi — ) + 62R2 (G — 7)) (5)

where w is the inertia weight.

Because of the fast growth of number of PSO variants
(see [18] for a review paper on some variants), the
lack of a standard version to compare the results with
became more apparent. Therefore, some researchers set
a standard version for PSO and updated that frequently
(every couple of years)!. New findings in the PSO area,
including new values for coefficients, topology?, velocity
update rule, and adaptations, were incorporated into the
standard PSOs to keep the standard version up-to-date
(see for example [5]).

The most recent standard PSO algorithm is called
Standard PSO2011, SPSO2011 [6]. The algorithm was ap-
plied to some standard continuous optimization bench-
marks [7]. The velocity updating rule for SPSO2011 was
written as:

Vin=wVi+H(GLIG-al) -7 ©)

1Some source codes and documentation for these standard PSOs can
be found in http://www.particleswarm.info/Programs.html

2If a particle 7 uses the personal best position of a particle j to update
its velocity then we say these two particles are connected. The way that
all particles are connected to each other in the swarm is called fopology.
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where H (éi, |Gi — 7 H) is a spherical distribution with

the center G! and radius |G! — Zi| and ||.| is the
Euclidean norm. Also,

K2

@:M+§+ﬁ

@)

where P/ = Zi + ¢1(pi — @), LI = & + (Il — &), and
I} is the best personal best among all particles connected
to particle i (known as local best). Also, in [6], it was
suggested that if i = 7t then calculate
G=tts ®
2

Algorithm 1 was used® to generate the spherical dis-
tribution H(d,b). Step 4 of the algorithm, inspired by
[19], generates a point that is uniformly distributed on
the surface of the unit hypersphere. The radius of the
hypersphere is then altered in the step 5 randomly so
that the point has the chance to be generated on any
hypersphere inside the hypersphere with the radius b
(This algorithm was also used in [6]). Step 5 also shifts
the generated point by the vector a@. One should note that
the distribution of the points generated by this method
is more dense towards the center of the hypersphere,
hence, not uniform in the hypersphere. However, we
have used this setting to be consistent with the original
SPSO2011 proposed in [6]*.

Algorithm 1 generate H(d,b)

1: Input @, b

2: Output §

3 7 =< Ny(0,1), N2(0,1), ..., Ng(0,1) > where N;(0,1)
(for all i) generates a random value according to
the normal distribution with mean equal to 0 and
standard deviation equal to 1

4 = ﬁ, where ||.|| is the Euclidean norm operator

5 = @+ r'U(0,b) where U(0,b) generates a uniform
random scalar in [0, b]

In this paper we assume that all particles are con-
nected (a global best topology) and, consequently, re-
place I} by g;. The values for ¢; and c; were considered
as constants equal to ¢; and ¢,, respectively. The term
SPSO2011 refers to the variant which was described
in [6] throughout this paper unless specified. It was
claimed that SPSO2011 is rotation invariant, however,
no proper proof for this claim was provided.

3In our earlier paper [8], N(0,b) was used rather than U(0,b) in
step 5 of Algorithm 1, that might cause some dissimilarities between
the results of that paper and this paper.

4One can replace U (0, b) with U (0, b)/? to ensure that the generated
points are uniformly distributed in the hypersphere. The probability
that a generated point inside a hypersphere with the radius b and it
is also inside a hypersphere with the radius r (i.e.,, P(D < r) where
D is the distance of the point from the center of coordinates system)

is calculated by 277 where ab? is the volume of a hypersphere with

the radius b. Hence, P(D < r) is uniform if » = bU (0, b)'/<.

In [7], SPSO2011 was modified in a way the values
of ¢; and ¢y were set to ¢1 Ry, and ¢2 Ry, respectively,
where Ri; and Ry, are random diagonal matrices and ¢,
and ¢, are constant values.

ITI. STABILITY ANALYSIS

Perhaps one of the first analyses of convergence for
stochastic optimization algorithms was conducted by
[20], which was later followed by [21], [22]. An it-
erative stochastic optimization algorithm (optimization
algorithm in short) is said to converge in probability (to
converge in short)® if

Ve > 0, lim P(|7, — X|| <e) =1 )

where P is the probability measure, Z; is a generated
solution by the optimization algorithm (a point in the
search space) at iteration ¢, € is a small positive value,
and X is a point in the search space. This type of conver-
gence is usually investigated for an iterative stochastic
optimization algorithm to find the boundaries for co-
efficients in the algorithm so that the sequence of the
generated solutions by the algorithm is convergent. This
analysis is also known as stability analysis.

In this section we analyze the stability and behavior
of particles in IPSO and SPSO2011.

A. Stability analysis for IPSO

Stability analysis for IPSO was performed by many
researchers [9], [23], [24], [25], to name a few. One of
the aims of the stability analysis for IPSO was to find
boundaries for the coefficients of velocity update rule
(i.e., inertia weight and acceleration) so that positions of
particles converge to a point in the search space. The set
of all boundaries for all coefficients of a PSO variant that
guarantee convergence to a point is called convergence
boundaries in this paper.

In order to simplify the analysis of stability for IPSO,
some researchers [26], [9] assumed that the stochastic
values in the velocity update rule are set to constant val-
ues (1 for IPSO). This simplification enabled researchers
to study particles behaviors through dynamic systems
methodologies (analyses with consideration of this sim-
plification is called deterministic model stability analy-
sis). A more realistic view point, however, is to study the
algorithm with the presence of stochastic components.
Some researchers [10], [23] studied the behavior of par-
ticles in expectation, i.e., if lim; ,o E(x¢) is a constant
value, where E(.) is the expectation operator (this anal-
ysis is called first order stability analysis). These studies
found that if the personal best and global best vectors
are not updated during the run then the expectation of
the position of each particle converges to a point (first
order stability analysis) between the personal and global
best vector (%) if and only if -1 < w < 1 and

5Note that there are many other types of convergence such as almost
surely convergence, sure convergence, and n‘” mean convergence.
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Fig. 1. The convergence boundaries for IPSO (dark area) that was
reported in [24] through theoretical analysis.

0 < ¢ < 4(1+ w) where ¢ = ¢1+p2. Recently, it has been
proven [27] that this relation results in first order stability
under more general conditions, i.e., when personal best
and global best can be updated while they can occupy
an arbitrarily large finite number of unique positions in
the search space.

Although first order stability analysis is more realistic
than deterministic model stability analysis, it is still not
the most comprehensive analysis possible to ensure par-
ticle convergence. The reason is that, even if the expected
position of a particle converges to a single value, it does
not mean that the particle is steady at that point as it may
oscillate on a line such that its expected value remains
constant. Hence, some researchers [24], [25], [28] studied
the variance (rather than expectation) of the position of
the particles. The aim was to study the behavior of vari-
ance of particle positions when iteration number grows
to infinity (this analysis is called second order stability
analysis). These studies found that the expectation of
the positions of particles converges to a point and the
variance of the positions converges to a constant value
ifcp<%:1)where<p:<p1:<p2 and —1 < w < 1 (see
Fig. 1). It was shown [25] that the variance of positions
converges to h(¢1, ¢2,w)|g—p| where h(.,.,.) is a function
of inertia weight and acceleration coefficients (see [25]
for details on this function). Hence, if h(¢1, ¢a,w) # 0
is guaranteed then particles do not stop moving (non-
zero variance) until p = g. It has been recently proven

[28] that IPSO is second order stable when ¢ < 125%72:7”
even if personal best is updated during the run.

The convergence boundaries for IPSO were investi-
gated experimentally in [29]. IPSO was applied to a
function that its values were generated randomly for
each point independently (F(z) = U(—1000, 1000) for all
x where Ul(a,b) is a uniform random number in [a, b]).
For each = € S, F(x) was generated only once and it was
reused afterwards if required. Results showed that the
convergence boundaries found through experiments are
almost exactly the same as the boundaries found through
second order stability analysis. Note that [29] did not
simplify the update rules of particles and also allowed

personal best and global best positions to be updated
during the run.

In these analyses, usually velocity and position update
rules are analyzed for an arbitrary particle ¢ in a one
dimensional space. This assumption is valid for IPSO
because, in this algorithm, all calculations (including
generation of the random values on the diagonal of
Ry, and Ry) are performed in each dimension inde-
pendently. Thus, analyses in a one dimensional case is
generalizable to the multi-dimensional case [25].

B. Stability analysis for SPSO2011

Because each dimension in IPSO is updated separately,
the outcome of stability analysis in a one dimensional
space is generalizable to any number of dimensions. This
assumption, however, is not valid for stability analysis
of SPSO2011 because the velocity vector in SPSO2011 is
not updated for each dimension separately. In SPSO2011,
the operator ¢ = H (d,b) (for an arbitrary vector @ and
scalar value b) is responsible for generating a random
point in the space with center ¢ and radius b. This
random generation process is not readily decomposable
to a dimension-wise process. In addition, the value of b
is dependent on the (Euclidean) distance of the position
and personal best vector of the particle as well as the
global best vector. Calculation of this distance is also
not easily decomposable to dimension-wise calculations.
Therefore, analysis of stability of particles for SPSO2011
should be conducted in the general case of d-dimensional
space, ie., ||Vi| = 0, rather than considering each
dimension separately.
In this paper, we conduct an experimental study
(called Estimate Variance Convergence Boundaries,
ECVB), described as Algorithm 2, to estimate the con-
vergence boundaries for PSO variants. As shown in
the ECVB algorithm, we study the variance of one
dimension of the position (second order stability) of a
randomly selected particle during a long run (20,000
iteration) for different combinations of w and ¢.
As EVCB investigates the parameters of PSO variants
through experiments, the value of maxIter needs to be a
large number in the tests. The reason is that there might
be circumstances that particles velocities start shrinking
while they start to grow afterwards.
We consider the following settings for all experiments:
Setting 1 7%, = 7%, (the point 7}, is sampled by %),
Setting 2 the variance of a randomly selected particle is
recorded,

Setting 3 the search space S is bounded for all dimen-
sions in [—10,10],

Setting 4 ¢ = ¢1 = ¢,

Setting 5 ¢’ = 0.

The boundary (Setting 3) has been introduced to make
the experiment setups consistent with the general defi-
nition mentioned in Eq. 1. As the SPSO2011 algorithm is
invariant under any scaling and translation (see section
V for the proof), resizing or shifting the boundaries do
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Algorithm 2 EVCB (Estimate Variance Convergence
Boundaries)

1: Input ¢q, @s, e, Wq, Ws, we, d, r, mazlter
2: Output Y |
3: for ¢ = qﬁa to ¢ with step size ¢, do
4 Ppr1=¢2=2¢
for w = w, to w. with step size w; do
Run the PSO algorithm for a predefined number
of iterations (maxIter) and number of runs (r) for
the given ¢ = ¢2 = ¢ and w
7 For each run, select a random particle and, for
each dimension, calculate the variance of the
particle position (a d x r matrix M, where M, ;
is the variance of the dimension i for the run j),
8: For each dimension, calculate the average of
variances over all runs (a d dimensional vector
Z, where Z; = Z;Zl M; ; for each i),
9: Calculate var, = ||Z]
10: end for
11: ng = var,, for all w in w, : ws : we
12: end for

5:
6:

not affect the convergence behavior of particles. Also,
if a particle left the search space then its personal best
is not updated. Usually, some bound handling tech-
niques are used in PSO variants to prevent particles
from leaving the boundaries of the search space [30]. In
our experiments, however, the velocities and positions
of particles are not prevented from growing/leaving
the boundaries, nor any strategy is applied to bring
the particles back inside the boundaries. This indeed is
necessary as otherwise it is not possible to claim whether
the result of convergence was purely because of the
coefficient values or it was also because of the strategy
used to prevent particles from leaving the boundaries.

To test the validity of this experimental approach
(ECVB algorithm) for identifying convergence bound-
aries, we applied this approach to find the convergence
boundaries for IPSO with ¢, = -2, ¢, = 0.1, ¢, = 6,
we = —1.3, ws = 0.01, we = 1.3, r = 10, maxIter = 20,000
for d =1 and d = 10 (see Fig. 2 (a) and Fig. 2 (b)). These
parameters were set experimentally in a way that the
convergence boundaries are shown completely. Also, we
considered the stagnation assumption, i.e., pi = g and
g+ is not updated for all ¢.

The gray scale level in Fig. 2 (a and b) represents the
value of qui for IPSO for different values of inertia
weight and acceleration coefficients. In the boundaries
where qu is relatively small (darker areas), the particles
have become stable. Also, as it is clear in Fig. 2 (a and b),
when w = 0 the stability of the particles is very probable
for all values of ¢ and d. This was in fact expected as if
w = 0, and because &, = p} and p = g; for all ¢, the value
of V; becomes zero for all ¢, which imposes stability. Of
course this case is not interesting from application point
of view. Fig. 2 (a and b) shows that the convergence

boundaries for IPSO is not affected by the number of
dimensions (the value of Yd for d = 1 and 10 is very
close for the tested w and ¢>) This indeed confirms the
assumption by earlier analyses, e.g., [10], for IPSO that
the analysis in 1 dimensional space is generalizable to the
analysis in d-dimensional space. Also, these results are
very similar to those reported in [24], [25] for the stability
of particles (see also Fig. 1 and compare it with Fig. 2 (a)).
This confirms that ECVB can estimate the convergence
boundaries of IPSO.

We conducted two experiments to estimate the con-
vergence boundaries for SPSO2011: one without the
stagnation assumption and the other with the stagnation
assumption (5% = g and g¢; is not updated for all t).
The aim of these two tests was to understand if the
movement of the personal best and global best affects
the convergence region. For the experiment without the
stagnation assumption, we assumed that there are 10
particles in the swarm and the objective function in [31],
[27] was used to investigate convergence of particles.
This objective function prevents particles from stagnat-
ing. In the case of the stagnation assumption, because the
global best and personal best vectors are not updated,
there is no need to consider any objective function. Also,
there is no need to consider more than one particle in
the swarm as no information is propagated through the
swarm (global best vector is not updated).

The stagnation assumption triggers the velocity up-
date rule in SPSO2011 that is specific for stagnation
(i.e., Eq. 8) only. Hence, if we consider the stagnation
assumption and run the algorithm, the final convergence
region is specific to that formulation while the normal
formulation (i.e., Eq. 7) is ignored. This, however, was
not the case for IPSO as the update rule was the same
for stagnation and non-stagnation. Hence, in the ECVB
algorithm for the stagnation assumption for SPSO2011,
we set the value of Yd to the maximum value generated
by Eq. 8 and Eq. 7 formulations.

The following parameters for ECVB were used: ¢, =
2, s = 0.1, po = 6, wa = —1.3, ws = 0.01, w. = 1.3,
r = 10, maxIter = 20,000 for d = 1 and d = 10 (see Fig.
3). These parameters were set experimentally in a way
that the convergence boundaries appear completely in
the graph.

Fig. 3 indicates three points about the convergence
boundaries for SPSO2011:

Point 1 the boundaries under the stagnation are very
similar to those of without the stagnation as-
sumption (compare Fig. 3 (a) with Fig. 3(c) and
compare Fig. 3 (b) with Fig. 3(d)),

Point 2 the boundaries look different from those of IPSO
(see Fig. 2 and compare it with Fig. 3)°,

®Note that these boundaries also look different from that of reported
in our earlier paper [8]. The reason is that in that paper we considered
the SPSO2011 proposed in [7] while here we experimented with the
original version described in [6]. Also, the implementation of the
spherical distribution in [8] was different from what we used in this

paper.
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Fig. 2. The boundaries for w and ¢ so that IPSO are convergent. The darker the area is, the smaller the value of de. Thus, the darker the
area is, the more probable that the algorithm is convergent with those coefficients. Experiments were conducted for d = 1 (a) and d = 10 (b).
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Fig. 3. The boundaries for w and ¢ so that SPSO2011 is convergent under stagnation (a and b) and non-stagnation (c and d) assumptions. The
darker the area is, the smaller the value of quw. Thus, the darker the area is, the more probable that the algorithm is convergent with those

coefficients. The color spectrum shows the value of the matrix Yd‘fw. Experiments were conducted for d = 1 (a and ¢) and d = 10 (b and d).
Notice the similarity between the two graphs.

Point 3 the boundaries change when the number of Based on Point 1, it seems that the stagnation as-
dimensions varies. sumption is not an unrealistic assumption to study the
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Fig. 4. Maximum value of ¢ for different values of w and number of
dimensions where the particles are still convergent.

convergence of particles in SPSO2011. This was also
observed for IPSO in [29], [31].

Also, based on Point 2, it seems that the set of
coefficients that results in convergence (according to
the experiment) is different from that of IPSO. Hence,
one should not simply use the same frequently used
parameters in PSO literature for SPSO2011.

Based on Point 3 the convergence boundaries for
SPSO2011 are affected by the number of dimensions.
In order to examine to what extent the convergence
boundaries for SPSO2011 change when the number of
dimensions grows, we used ECVB to estimate the maxi-
mum value of ¢ so that particles are still convergent for
d € {1,2,..,10} and w € {0.5,0.6,...,0.9} (see Fig. 4).
In this test, the maxIter was set to 50,000 to ensure that
particles are stable towards the end of the run.

Results indicate that the most significant changes for
the maximum value of ¢ take place between 1 to 10 di-
mensions and the maximum value for ¢ remains almost
unchanged for larger number of dimensions. Hence, a
parameter setting that is conducted for a 10 dimensional
space is most likely applicable to a wide range of number
of dimensions.

C. Convergence behavior

If the values of coefficients in a PSO variant are
selected in the convergence boundaries then particles
converge to their equilibrium. During the run, how-
ever, particles oscillate in different ways (e.g., harmonic,
zigzagging) around their equilibrium until they col-
lapse on it (converge). These different oscillations are
a consequence of different values of coefficients of the
velocity update rule [10] and, potentially, impact the final
solutions found by the algorithm. Fig. 5 shows examples
of these oscillations for IPSO.

These different behaviors potentially affect the quality
of final solutions found by the particles. As an example,
a non-oscillatory behavior (Fig. 5 (a)) causes particles to
search only one side of each dimension of the equilib-
rium point. This behavior can be beneficial when search-
ing boundaries of the search space (feasible space) is re-
quired. Harmonic behavior (Fig. 5 (b)) is beneficial in the

exploitation phase as particles smoothly oscillate around
their equilibrium point (exploitation) and, potentially,
higher quality solutions might be found. This behavior
can also be beneficial when the search space is smooth
(not rugged). The zigzagging behavior (Fig. 5 (d)) is
more beneficial for the exploitation phase as particles
jump all around the space to look for better basins of
attraction. This behavior can be more useful in rugged
search spaces. The combined harmonic with zigzagging
behavior (Fig. 5 (c)) can be beneficial for the transition
from exploration to exploitation phase. If the boundaries
of coefficients associated with these behaviors are known
then one can design an adaptive approach that changes
the values of coefficients according to the most beneficial
behavior. Note however that designing such adaptive
approach is not a trivial task as it needs strategies to
identify the most beneficial behavior in the first place.

These behaviors were studied by [10] and later by [32]
for IPSO. In those studies, the position update rule of the
particles in IPSO was written as a recursion equation,
Tpp1 = w(zy — x4—1) + 1R (pr — @) + P2Ra (I — x4),
and was investigated by ordinary differential equation
techniques (this recursion is correspondence with the
following second order differential equation: z”/ = w(z'—
x) + $1 R (pr — ') + P2 R2, (I, — 2')). In [10], the charac-
teristic equation of this differential equation was used
to calculate the boundaries associated with different
behaviors (boundaries calculated in [10] are shown in
Fig. 7(a)). Fig. 7(a) shows that the behavior of particles
for the frequently used setting of coefficients in IPSO
(w=0.73 and ¢ = 1.5) is harmonic.

As investigation of the characteristic equation of PSO
variants is not always as easy, we propose an estimation
approach that uses frequency domain information of
particle positions in order to specify these boundaries.
Let us have a closer look at the behavior of some sample
particles in the time (see Fig. 5) and frequency (see Fig. 6)
domains (amplitude in the frequency domain). We used
the Fourier transform to convert the first 200 samples
of the particle positions from time to frequency domain.
One may observe the following:

« In Fig. 5(a), the signal (particle position) converges
to its steady point without any oscillation (or with
small oscillations). Thus, the maximum amplitude
of this signal in the frequency domain belongs to
very low frequencies (see Fig. 6(a)).

« In Fig. 5(b), the signal converges to its steady point
with some harmonic oscillations. Thus, the maxi-
mum amplitude in the frequency domain belongs
to low to mid-range frequencies (see Fig. 6(b)).

e In Fig. 5(c), the signal converges to its steady
point with some zigzag together with harmonic
oscillations. Thus, the maximum amplitude in the
frequency domain belongs to mid-range to high
frequencies (see Fig. 6(c)).

« In Fig. 5(d), the signal converges to its steady point
with some zigzagging oscillations. Thus, the max-
imum amplitude in the frequency domain belongs
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Fig. 5. Examples for (a) non-oscillatory convergence, (b) harmonic oscillation, (c) harmonic combined with zigzagging, and (d) zigzagging,

oscillations of the positions of particles.

to very high frequencies (see Fig. 6(d)).

Thus, the boundaries in Fig. 7(a) can be estimated
by drawing the contour of the maximum frequency of
the positions of particles for different values of w and
¢. This contour has been presented in Fig. 7(b). By
comparing Fig. 7(a) and 7(b), it is clear that the pattern
of the maximum amplitude in the frequency domain
of particles position is very similar to what was found
theoretically [10] for the behavior of particles.

According to Fig. 7(b) small values for ¢ and negative
values for w result in low frequency oscillations. This
is in contradiction with what was observed in Fig. 7(a).
The reason is that the oscillation of particles in that area
(w negative and ¢ small) is a combination of zigzagging
and non-oscillatory, which results in large amplitudes
in both very high and very low frequencies. Note also
that, according to Fig. 7(b), the behavior of particles is
zigzagging for ¢ = 0 and w < 0. The reason is that
when the value of ¢ is zero, only the inertia component
affects the behavior of movement. As w < 0, the sign
of the value of each dimension of velocity changes in
each iteration, which implies zigzagging behavior (high
frequency changes).

We calculated the maximum frequency of particle
positions in SPSO2011 for 1 dimensional space (see Fig.

8). It is clear that the spectrum of maximum frequencies
in SPSO2011 is different from that of IPSO. For a positive
value of w the behavior of particles changes from non-
oscillatory to harmonic when ¢ increases. If the value
of w is negative, however, particles behave more non-
oscillatory for small values of ¢ and more zigzagging for
larger values of ¢. These patterns are almost consistent
in both 1 and 10 dimensional cases.

Fig. 8 shows that for w = 1 and ¢ from 0 to almost 3,
the oscillation of particles is harmonic while this behav-
ior is transformed to zigzagging for larger ¢. Further, for
w < 0, the behavior is zigzagging (the reason is the same
as what was explained for IPSO). Also, for small values
of w (0 to 0.5) and small values of ¢ (0 to 1.5) the particles
are non-oscillatory. The behavior is also non-oscillatory
if ¢ is negative for any w.

These observations are useful for practitioners to pick
appropriate values for coefficients according to the spec-
ifications of the search space.

IV. LOCAL CONVERGENCE

If the point X in Eq. 9 is a local optimum and a
stochastic algorithm guarantees the satisfaction of Eq. 9
then that algorithm is said to be locally convergent. In
the context of PSO, the local convergence condition is
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Fig. 6. (a) non-oscillatory convergence, (b) slow harmonic oscillation, (c) harmonic combined with zigzagging, and (d) zigzagging.

written as follows [33]:

ve>OVi,tgrglop(||ﬁ_i|| <e) =1 (10)

If the personal bests of all particles in a PSO variant
converge to a local optimum’ then that PSO variant is
locally convergent. Alternatively, as the final output of a
PSO variant is the best personal best over the swarm, a
PSO variant is locally convergent if [33]:

Ve >0, lim P(||§, — X|| <e)=1 (11)
t—o0
where ¢, is the best found solution over the swarm.
Local convergence is an important characteristic of an
optimization algorithm. If an optimization algorithm is
not locally convergent, the final solution of the algorithm
might be a point that can be improved further, i.e., the
gradient at the final point is non-zero, while the algo-
rithm has stopped searching. There might be different
approaches to solve this issue. At the meta-algorithmic
level, one can hybridize the algorithm with another
algorithm that is locally convergent and ensure that the
locally convergent algorithm is applied at appropriate
time (see [34] for example). Another approach at the
meta-algorithmic level is to restart some (or all) of the

7¢; is a local minimum of an objective function F over the search

space S if there exists an open interval I; C S such that F(¢;) < F(z)
forall z € I; and ¢; € I;.

particles whenever they stagnate and initialize them
randomly (see [35], [36] for example). The issue can also
be addressed at the algorithmic level, i.e., guarantee that
the generated solutions by the algorithm converge to a
local optimum (see [33], [12], [37] for examples).

In this section, some earlier analyses on the local
convergence property of IPSO at the algorithmic level
are described and the local convergence for SPSO2011 is
investigated.

A. Local convergence for IPSO

Local convergence for IPSO has been investigated
in [12], [37], [33]. A PSO variant is locally convergent if it
guarantees finding a local optimum in the search space.
In IPSO, if pi = G; = &, then Z is moved in the next step
only if WW is non-zero. However, if 17; becomes zero
then ‘_/’tﬁrl = 0 and, consequently, no movement takes
place in the next step [12]. Also, because V;Zrl = 0 and
Py = gy = T} = Ty, ,, particles do not move even during
further steps, i.e., the particle is in its equilibrium. Note
that there is no guarantee that the equilibrium point is
a high quality point (e.g., a local optimum), hence, there
is no guarantee that IPSO is locally convergent.

It was proposed [12] to mutate the position of the
global best particle (the particle whose personal best is
g¢) to a random point (with some distribution) “around”
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Fig. 7. Different behavior of particles before convergence in IPSO.
The spectrum in (a) shows different behaviors found in [10], where
non-oscillatory convergence (value 0), harmonic oscillation (value 1),
harmonic combined with zigzagging (value 2), and zigzagging (value
3) have been represented by integers from 0 to 3 respectively. (b)
shows the maximum frequency of oscillation of particles with different
coefficient values.

the current global best vector to guarantee local con-
vergence. Hence, by using this strategy, the global best
particle continues movement randomly around g; even
if all particles stop moving. It was proven that the
algorithm is locally convergent. The general idea behind
the proof was that if there is any better solution around
the global best vector then that solution is found by
the perturbation with non-zero probability. Thus, the
algorithm will converge to a local optimum eventually.

The local convergence for IPSO was investigated
in [37] where the authors proved that IPSO is locally
convergent in a one dimensional space if n > 1 and
coefficients are set in the convergence boundaries. How-
ever, this conclusion is not generalizable to a multi-
dimensional spaces. To address this issue, it was pro-
posed to regenerate the velocity vector if ||V;i|| + |7, — Z||
is smaller than a constant 6. It was proven that this
approach guarantees local convergence.

A PSO variant called Locally convergent Rotationally
invariant Particle Swarm Optimization (LcRiPSO) was
proposed in [33]. The velocity update rule for LcRiPSO

10
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Fig. 8. Different behavior of particles before convergence in SPSO2011.
The spectrum shows the maximum frequency of position of a particle
in a 1 dimensional space. The results for the 10 dimensional space was
similar.

was written as:

V;ti-&-l = "JVti + Z T;‘tﬁbj( ;t(ﬁ) - 3_7%)

JEE]}

(12)

where 7%, is a uniform random scalar in the interval
0,1] and [}, is a function and f : R* — R?, Ej is the
set of all neighbors of the particle ¢ that contribute into
its velocity update rule. It was proven that LcRiPSO is
locally convergent if the function f satisfies the following
condition:

Vije S 3A, CSVze A, V5> 0,P(|fH) — 2| <) >0

where §/ is an arbitrary point in the search space S, A,
is an open set that contains ¥, z’ is an arbitrary point in
Ay, and ¢ is a positive value. In other words, LcRiPSO is
locally convergent if the function f is designed in such a
way that for any input vector ¢ in the search space, there
exists an open region A which contains ¥ and f(¥) can
be located anywhere in A. To the best of our knowledge,
this variant is the only PSO variant that guarantees both
local convergence and rotation invariance at the same
time.

B. Local convergence for SPSO2011

SPSO2011 in its original form is not locally convergent.
Assume that pi = [} = 7! in SPSO2011. The value of G
in Eq. 6 is then calculated by

T+ ¢1 (P, — ) + 7
2

Thus, in this case, |G — || is zero, which implies that
H(G |Gl — Zi|) = Gi = & for all t. Hence, the value of
velocity for t 41 is V/, ; = wV}.. This is exactly the same
as the case we discussed in Section IV-A for IPSO (i.e. if
Vi = 0, the particle does not move in further iterations).
Using the same analysis as in Section IV-A, SPSO2011 is
not locally convergent in general.

There is also another condition for which SPSO2011 is
not locally convergent that can be found in [8].

S
G; =

_
=X

(13)
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Fig. 9. The light-gray area represents a search space S, the dark gray
circle represents 7, (¢i). Also, an example of the set 11, (¢2) has been
shown in the figure. ny, n,(G1, ¢2) is a random point that is inside the
dark gray areas with non-zero probability.

C. A locally convergent SPSO2011

A simple modification of SPSO2011 to guarantee local
convergence is to bound |G — Zi|| to a small non-zero
value 6 > 0 [8]. Before we prove that this strategy
actually fixes the local convergence issue, we introduce
some definitions, notations, and lemmas.

We define three notations, r,(q), ¥n(q),
Nhy. by (Q1, G2) as follows:

and

Notation 1. 71,(q) is the set of all points in a hyper-ball with
the center § and radius h > 0.

Notation 2. ¢y (q) is a connected set such that ¢, (q) C S,
7€ Yr(Q), Yr(q) —{q} is non-empty, and

vZe (@) |IZ—dll <h

i.e., any point in ¥y, (q) is closer (Euclidean distance) than or
as far as h to q.

Notation 3. np, n,(q1, §2) is a random point generated by a
probability distribution in ry, (1) U ¥n,(q2) and

Vi, 45 € S 3hi,he > 0Vz € mp,, (G1) U, (¢2) Ve > 0,
P(nn, ne (1, @2) € 7e(2)) > 0
where P is the probability measure.

According to Notation 1 any point in 74(¢) can be
written as ¢+ @ where ||@]| < h.

According to Notation 2 any point in () can be
written as ¢+ @ where ||d|| < h.

According to the Notation 3 any point generated by
Thy.hy (G1, G2) has non-zero probability to be in 7y, (¢1)
and also non-zero probability to be in ¢, (g3).

Fig. 9 shows examples of the areas defined in Nota-
tions 1, 2, and 3.

We define a local minimizer and an optimality region
of the objective function F' over the search space S as
follows:

Definition 1. ¢; is a local minimizer of an objective function
F over the search space S if there exists an open set I; C S
such that F(c;) < F(x) forall x € I; and ¢; € 1.

Definition 2. The optimality region of the objective function
F is defined as R. = |J; Re;; where Re; = {x € I; : F(x) <
F(c;) + €} and e is an arbitrarily small positive value.

11

The aim of a local search algorithm is to find a point
in the search space that is within the optimality region
[22], [12], [33].

We define a general form of stochastic algorithms,
(General Stochastic Algorithm, GSA) as follows:

Definition 3. GSA has following three steps:
1) initialize Py from the search space S and set t =1
2) generate a random sample Z, from S
3) generate the candidate solution p; = D(pPi_1,%t), set
t=t+1,and go to 2
where D(a,b) is defined by

Dla,b) = {b F(b) < F(a) — e

a otherwise
and € is a positive value that is smaller than or equal to € (e
in the definition of R. ;).

The operator D updates p; if and only if the new solu-
tion Z; is better than p;_; by at least the constant €. The
constant ¢ specifies the precision of the calculations and
can be considered arbitrarily small. This value needs to
be considered in the calculations as numerical methods
are simulated on physically limited computers, hence,
the lack of this consideration can affect the generality of
the proofs and statements. One can set ¢; to the smallest
possible float/double value [20], [33] in computer simu-
lations to achieve maximum precision.

Lemma 1. If a GSA guarantees
Je>03Ip>035€(0,1] V¢t >0 3t >0,

P(F(p+v) < F(pt) —n) = 6 or pr € Re (14)
then that GSA is locally convergent.
Proof. This has been proven as Lemma 1 in [33]. O

In fact, if the probability that F'(p;1) is smaller than
F(p;) by at least 7 is larger than ¢ unless 7, is already
in the optimality region then GSA is locally convergent.

Lemma 2. If a GSA guarantees

Vt >0 3z,h' >0 Yu € rp(py) Veo > 0,
P(”.’I_jt+z — U” < 60) > 0

then the condition in Lemma 1 is satisfied, i.e., if there
exists an iteration z that ¥y, has non-zero probability to
be arbitrarily close to any point in ry,(p;) then the condition
in Lemma 1 is satisfied.

Proof. There are two cases: 1) there exists a set A C
r/(Py) such that all points in A are better than p; by at
least ¢ or, 2) there is no point inside r;/(p;) that is better
than p; by at least ¢y. In the first case, because Z;. can
be arbitrarily close to any point in 7/ (p;) with non-zero
probability, and A C ry/(p;), the point %+, has non-zero
probability to be inside A, that satisfies the condition in
Lemma 1 with setting ¢y = 7. In the second case, p; is
already in the optimality region that also satisfies the
condition in Lemma 1. Thus, in both cases the condition
in Lemma 1 is satisfied, that completes the proof. O
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Lemma 3. Any recursion in the form of 11 = w(Z@ —
Ty—1) + Npy by (Pr, Tt), where Py = D(Py—1,7:), is locally
convergent for any w € (0,1), o € S, and py € S.

Proof. The recursion #41 = w(& — Ti—1) + Nohy by (Pt Tt),
where p; = D(p;—1,%:), is an instance of GSA. Thus, if
we prove that

3¢>03p>035€(0,1]Vi>03 >0,
P(F(pryr) < F(py) —m) > 6 or p € Re

then, according to Lemma 1, this recursion is locally
convergent.

For any z > 0, two cases might take place until
iteration £ + z > 0:

Case 1 F(piy2) < F(p)
Case 2 F(pyy.) = F(ph)

In the Case 1, because the operator D updates p; if
the new found solution is better than p; by at least ¢,
condition in Lemma 1 is satisfied for 6 = 1 if we set
€o = 1 because p; has been already updated. We continue
with the Case 2. Note that, from here on we always write
Pt as Py, = Pr for all z. For the Case 2, we prove that
for all ¢ > 0, there exists z > 0 and A’ > 0 such that
for any point u in 71 (p}), P(||Zi+- — ul| < €0) > 0, that,
according to Lemma 2, satisfies the condition in Lemma
1 and completes the proof for the local convergence.

One can write &0 = w(Ze41 )
Mhy by (Pt Trt1) that indicates Tiao
w (W& = Ty—1) + nhy ho (D, Te) — o) Nohy o (Ps Tegr)-
According to Notation 3, np, n,(Pi,Z:) can sample
a point in p,(Z;) with non-zero probability, thus
can be written as #; + @ where d is a random
vector and |l@|| < hs. Hence, with non-zero
probability, Zio = w(w(Z — 1)+ T +a1 —T) +
Nhy by (Prs Teg1) = W — To1) + wail + npy by (Br, Tri1)
where dj is a random vector and ||di|| < hg. Also, one
can write ZTiy3 = w(Tppo — Tip1) + Nhy by (Drs Trye) =
ww?(Fr — Tio1) + wai + gy opy (P Tip1) — Tip1) +
Nhy by (Pt Tite). Again, according to Notation 3,
Frig = W3 (T — 1) + widl +wad + npy n, (P, Tegz) With
non-zero probability, where @ is a random vector and
léz|| < ho. If we continue the same strategy, we can
write 7y, as follows:

I+

z—1
— _ z(= — z—17 —
iy, =W (T — Teoq) + g w Tl aj
i=1

+nh1,h2 (ﬁ’tvftJrzfl) (15)

where d; are random vectors and ||dj|| < hq for all j.
If we prove that

Vhy >0 3z,ho, h' > 0,71 () € Y hy ho

where Y, , 1, is the set of all possible points that can be
z—1

sampled by w*(Z;—Z;— 1)—}—2 W@+ nny by (Pry Tegz1),

i=
then 2, . can be arbitrarily close to any point in rp (p;)
with non-zero probability, that satisfies the condition in
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z—1
Lemma 2. Clearly, the maximum length of > w*™7d;

j=1
is °’1:_°:) ha. Let us assume h' = hy — [W*(||Z: — Zi-1]]) +
w—w

“~hy]. Thus, we need to guarantee that

. . w— w*
(@ — Zpn) + 1

Vh1>05|z,h2>0,h1—[wz h2}>0

If we set hy < (1—W)(h1—:1i(\|zft—ft71H)) then hy — [w* (%) —
Ty—1)+27%" hy] > 0is guaranteed for large enough z. The
reason is that for any hy the term {=e)(i—« (“zt Zemall))
is positive if z is large enough. In fact, a large Value for
z diminishes the effect of w?||Z; — @;_1]|| and, as w — w?,
hy, and 1 — w are larger than 0, A-w)(t — Ell}‘ Tl

also larger than 0. Hence, for any h,, there exists z and
ho such that 2’ > 0 with non-zero probability. Therefore,
Tty can be arbitrarily close to any point inside a hyper-
ball with the center p; and radius A’ > 0 with non-
zero probability. According to Lemma 2, in this case, the
condition in Lemma 1 is guaranteed, which guarantees
local convergence of the algorithm and completes the
proof. O

This lemma can be useful to prove local convergence
of any PSO variant that follows the mentioned recursion
form. In order to prove local convergence of the modified
SPSO2011, we first need to find whether the modified
SPS02011 follows the recursion form in Lemma 3.

Lemma 4. In SPSO2011, if
>0V >1Vt>0,|G] —Z7|| >4

where ¢ = ¢1 = ¢o then

Vpy, & € S Jhy,he > 0Vz € rp, (P7) Uthp, (27)
Ve >0, P(H(GT,||GT — Z7|)) € re(2)) > 0

In other words, for any p; and I in the search space,
there exist hy,hy > 0 such that H(GT,||GT — ZT||) can be
arbitrarily close to any point in ry,, (P]) U n, (Z7) with non-
zero probability, where T is the index of the best particle in
the swarm.

Proof. H(G7,||GT — &7||) can be arbitrarily close to any
point on the line segment that connects G7 and Z7. As
|GT —&7| > 6, thus this line segment always exists, and
we can consider 0 < hy < 6. Hence, this line segment can
be considered as the set ¢,,(G7) in Notation 1 and hy >
0 always exists® (see Fig. 10). If we prove that ||G7 —57|| <
|GT — &7 with non-zero robability then there exists a
hy > 0 such that H(G7,||GT — Z7||) can generate a point
that can be arbitrarily close to any point in 7, (p] ) as well
(see Fig. 10), which completes the proof. We calculate

3T =T+ 2(pf — #7) (note that for the particle 7, p} =
l[ = gy, where g; is the best solution found over the
swarm, see Eq. 6). Thus, |GT — 77| = ||Z] + %(ﬁ[ —77) —

8 Another alternative for this set is the intersection between 7y, (¥7)
and H(G7, ||G] — Z7||), where ho < 6.
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Fig. 10. The dark gray area represents np, . (Py,Z1), see Lemma 4.

il =l (% —1)(pf —Z])||. This value is obviously smaller
than ||G7 — 27 || = & + §(77 —27) — & | = 1567 — &)
for any ¢ > 1. Hence, there exists hji,hy > 0 such that
H(GY,||G] —Z7||) can be arbitrarily close to any point in
T, (P7 ) U ¥, (£7) with non-zero probability. O

This shows that H(G7, |GT — Z7||) with ||G] — 7| > 6
is an instance of np, p, (P, %) as it is a probability
distribution with the condition in Notation 3.

Now we are ready to prove the following theorem:

Theorem 1. If ||GT — Z7|| > 6 > 0,0 <w < 1, and ¢ > 1
are guaranteed then SPSO2011 is locally convergent, where
T is the index of the particle whose personal best is the best
solution found by the swarm at iteration t.

Proof. The position update rule for the best particle in
the swarm in SPSO2011 is written as: Zyy1 = w(& —
#1) + H(GT,||GT — #7]). According to Lemma 4, if
IGf — 7|l = 6 > 0 and ¢ > 1 then H(GY,|G] — &7]))
is an instance of np, n, (P7, 77 ). Thus, the best particle in
SPSO2011 follows the recursion introduced in Lemma
3. Also, the best particle in SPSO2011 is updated if
the new found solution is better than the previous best
found solution by at least an €. Thus, SPSO2011 is locally
convergent if IGT —Z7| > 6 > 0,0 < w < 1, and
o> 1. O

This shows that the proposed modification guarantees
local convergence of the algorithm under specified con-
ditions.

V. SENSITIVITY TO TRANSFORMATIONS

Sensitivity to transformations, especially to scaling,
rotation, and translation, has been investigated for opti-
mization algorithms [13], [33]. It is expected that the per-
formance of an optimization algorithm does not change
if the search space is rotated, scaled, or translated. The
special form of transformation that only includes rota-
tion, scaling, and translation is called RST transformation
in this paper (see Fig. 11).

Definition 4. Let 8" = {ij: sQZ + b, & € S} where s € R,
Q € R? x R? is a rotation matrix, and b € R%. Also, let
for any & € S, F(x) = F'(2') where F' : S' — R and
@' = sQi +b, ie., the objective value of a point in S is equal

13

20
/(_/

Fig. 11. Rotation, scaling, and translation (RST) of a search space.

to the transformed objective value of the transformed point by
s, Q, and b. Assume that &y is an arbitrary point in S' and
Ty € Sand 3y = sQT4 +b. An optimization algorithm is RST
invariant if:

Vt>0Vse RVYQ € R* x R% Vb € RY

Fry1 = 5QT1 +b (16)

where %111 is the generated point by the algorithm at the
iteration t + 1 in S while ¥y, is the generated point by the
algorithm in S.

This definition means that the algorithm should pre-
serve the relation between the points in the search space
and the transformed space for any RST transformation.
Also, based on this definition, a PSO algorithm is RST
invariant if updating the position of particle i and
then rotating, scaling, and translating the search space
(sQZy1 + 5) is the same as rotating, scaling, and trans-
lating the search space and then updating the position
(Z¢41) [38], [13], [33].

It is important that an algorithm is transformation
invariant. In fact, if an algorithm is invariant of a trans-
formation T' then the performance of the algorithm on
any problem P can be generalized to the complete class
of problems C' that are introduced by 7" and P € C. This
in fact enables researchers to make stronger statements
about the performance of the algorithm. Although such
statement might be about a bad or a good performance
of the algorithm, it is valuable as one can study the
reasons behind the performance and also generalize the
claims. One well-known set of transformations is linear
transformations (e.g., scaling, rotation, and translation)
that are frequently used in different areas. Hence, it is
valuable to understand if an algorithm is invariant under
any linear transformation.

In terms of real world optimization, the variables
(dimensions) of a problem usually represent physical
concepts (e.g., temperature) that are related to each other
through a function. If such function is non-separable
in its original form while becoming separable under
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a rotation «, then an algorithm that is sensitive to
rotation might struggle to find an optimum solution of
the original function even if it can find the optimum
solution of the rotated function. However, as the rotation
a is not known by the algorithm, another procedure
is needed to find a rotation that enables the algorithm
to find an optimum of the function successfully. This
procedure might be very time consuming, especially
for large scale problems (note that the rotation should
be performed along all possible axes). If the algorithm
is rotation invariant, however, there is no need for
such procedure that speeds up the optimization process.
Of course making an algorithm rotationally invariant
should not affect its performance.

A. Transformation sensitivity for IPSO

It has been proven [39], [13], [33] that IPSO is scaling
and translation invariant while it is rotation variant.
It was proven [13] that the linear PSO (a PSO vari-
ant for which all values on the diagonal of R;; and
Ry are equal) is RST invariant (this variant is called
LPSO). However, LPSO suffers from another limitation
investigated in [40] and [33]. If (p} — #})|/(g: — &) and
Vi||(pi— ), particle i oscillates between its personal best
and the global best and it cannot sample other points in
the search space.

A PSO variant was proposed in [13] that was proven
to be rotationally invariant. In that variant, the random
diagonal matrices were replaced by random rotation
matrices to rotate the velocity vector. As generating
random rotation matrices is computationally expensive,
an approximation idea (an exponential map) was used
that generated a rotation matrix M as follows:

maz;

_I+Z (180 E ET))

where EF is a d x d matrix with elements generated
randomly in the interval [-0.5, 0.5], o is a real value
representing the angle, and I is the identity matrix. The
generated matrix M is an approximation of a random
rotation matrix with the angle «. The value of max;
determines the accuracy of the estimation of a rotation
matrix with the angle o (see Eq. 17). The value of max;
was set to 1 in [13] that limits the approximation to one
term only. Thus, the approximation error of the random
rotation matrix method grows with the rotation angle
(o). The time complexity for generating the approxi-
mated rotation matrix with maxz; = 1 is in O(d?). Also,
multiplying this matrix into a vector (SI or PI vectors) is
also in O(d?).

It was shown [41] that IPSO performs poorly in com-
parison with Covariance Matrix Adaptation Evolution-
ary Strategy (CMA-ES) [42] and Differential Evolution
(DE) [43] when it is applied to non-separable opti-
mization problems. As rotating a search space usually
makes the problem non-separable [44], IPSO performs
also poorly when the search space is rotated (it is rotation

17)
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variant). This comparison was also conducted in [45]
where it was found that IPSO performs poorly when
the problem is non-separable. A given explanation for
this weak performance in comparison to other methods
is that potential correlation between the variables is
ignored in IPSO as all calculations in the algorithm are
done for each dimension separately [45], which makes
the algorithm rotationally variant.

The impact of rotation matrices on the performance of
several PSO variants was studied by [46], where random
Euclidean rotation matrices were used rather than the
random diagonal matrices in several PSO variants (this
variant is called RotPSO). A dynamic programming tech-
nique was used to generate Euclidean rotation matrices
in low computational time, i.e., O(d?). A normal distribu-
tion was used to generate the directions of rotations with
the mean of current direction of velocity and the variance
that was set experimentally for different variants. This
makes the particles mutate their direction of movement
to find better solutions. Experiments showed that ran-
dom rotation matrices can improve the performance
of several PSO variants in most cases on the tested
benchmarks.

The rotation variance issue was also investigated
by [33] from theoretical perspective (see Eq. 12). It was
proven [33] that if sQf(y) +b = f(sQy + b) is true for
all scalar s, orthogonal matrices @ (Q € R? x R%), and
vectors b and 7 (b, € RY), then the PSO variant that
uses velocity update rule in Eq. 12 is RST invariant.

B. Transformation sensitivity for SPSO2011

In this section we investigate RST invariance of
SPSO2011.

Theorem 2. SPSO2011 is invariant under any scaling s €
R, rotation @), and translation b of the search space.

Proof. The position update rule for SPSO2011 for a parti-

cle i is written as 7}, | = w(% —&i_,) + H(GL, | Gi - Zi|).
This can be rewritten as follows:
T =w(@ —Ti_y) +T; + 7+ HO,|T}|) (18)

$1 (7t _‘Lt)+¢1 (ge—%

where T} = ") Let us calculate &y

ji+1 =w(d —&_,) + &+ Tti + H(0, ||TtZH) =

W(sQT} = sQF; 1) +sQF; +b+ T + H(O,[T])  (19)
where 7} is calculated by
i — ¢1(pf — &) + ¢1(ge — 2f)
t 3 -
;
s~ );)r¢1( 7 _ QT
Hence, Eq. 19 is rewritten as:
Ty = w(sQF; — sQF_) +
sQF; +b+ sQT} + H(0,||sQT} ) (20)
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Fig. 12. Application of five PSO variants to an Ellipse function.

Also, we calculate sQ7%, | + b as:
$QT} 1 +b = sQu(T, — T;_y) +
SQT} + sQT; + sQH(0, | T{||) +b

By comparing Egs. 20 and 21, it is clear that the
algorithm is RST invariant if

sQH(0,||T7])) = H(0, |sQT} )

21

(22)

Rotating the space (matrix ()) preserves the Euclidean
distances. Also, scaling the space and then generating
a point by H(.,.) is the same as generating a point
and then scaling the space. Hence, Eq. 22 is true for a
spherical distribution, that completes the proof. O

In order to see the impact of transformation on dif-
ferent algorithms, we applied SPSO2011, IPSO, RotPSO,
LcRiPSO, and GCPSO to a two dimensional Ellipse
function proposed in [47]. The function is rotated in the
space from 0 degree to 180 degree and different PSO
variants are applied to the rotated Ellipse to find an
optimum point in the search space (see Fig. 12).

According to Fig. 12 the performances of SPSO2011,
LcRiPSO, and RotPSO are not significantly (we used
the Wilcoxon rank test to compare the results of the
algorithm for each rotation angle with the next) changed
by rotating the search space with different angles. Slight
changes in the performance of these methods are because
of the involvement of random components in their calcu-
lations. It is clear, however, that the performance of IPSO
and GCPSO is changed by rotating the search space.

VI. CONCLUSIONS AND FUTURE WORK

Stability of particles, local convergence, and rotation
sensitivity are important characteristics of optimization
algorithms including PSO. In this paper, we investigated
these properties for a variant of PSO called SPSO2011.
We analyzed the stability of particles through an es-
timation method (called ECVB) that uses an exhaus-
tive search with defined step size to find convergence
boundaries. ECVB was used to estimate the convergence
boundaries for a particular PSO variant (called IPSO)
for which the convergence boundaries are known. It
was observed that the estimated boundary is in good
agreement with what was found theoretically. ECVB
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was also used to estimate the convergence boundaries
for SPSO2011. Results showed that the convergence
boundaries for SPSO2011 are different from that of IPSO.
It was observed that the convergence boundaries for
SPSO2011 is affected by the number of dimensions. Fur-
ther experiments showed, however, that the convergence
boundaries for SPSO2011 for d-dimensional problems
with d > 10 remain almost the same. This enables
practitioners to conduct parameter settings for a large
enough number of dimensions (e.g., d = 10) to make
sure their results are scalable. Also, our experiments
showed that the convergence boundaries under the stag-
nation assumption are similar to that of without the
stagnation assumption. The behavior of particles before
convergence was also analyzed through Fourier analysis
of the movement of particles vs iteration numbers. This
analysis also showed differences between the behavior
of particles in IPSO with those in SPSO2011 with same
values of coefficients. These results assist practitioners
to select appropriate set of coefficients according to the
specifications of the problem at hand. In addition, it was
proven that SPSO2011 does not guarantee to locate a
local optimum in the search space. We proved that any
algorithm (PSO variant) that follows the form of Z;1, =
W(Ty — Ty—1) + npy ny (Pr, T¢), where py = D(pi_1,7),
is locally convergent for all w € (0,1),Z,po € S (see
Lemma 3 and Notation 3). This lemma is applicable to
study the local convergence property of a large class
of PSO variants. We modified SPSO2011 in a way that
this condition is satisfied so that the modified SPSO2011
is locally convergent. Finally, we provided a proof for
the transformation invariance property of SPSO2011.
Indeed, it was proven that SPSO2011 is rotation, scaling,
and translation invariant. As potential future work, one
can consider a theoretical analysis of the stability of
particles in SPSO2011, keeping in mind the traditional
analyses are not readily applicable to this algorithm.
Also, formulating the regions where particles’” behave
differently might be of high value. Another important
area for further research is to investigate the earliest
first hitting time of the algorithm [48]. As the local
convergence is a prerequisite for the first hitting time
analysis, it would be interesting to conduct such analysis
for the modified SPSO2011. In addition, investigations of
transformation sensitivity and convergence of other PSO
variants using the methodologies proposed in this paper
represent other potential future directions.
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