PUBLISHED VERSION

ATLAS Collaboration Measurement of exclusive $yy \rightarrow l+l$ - production in proton-proton collisions at $\int s=7$ TeV with the ATLAS detector Physics Letters B, 2015; 749:242-261

©2015 CERN for the benefit of the ATLAS Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

Originally published at: http://doi.org/10.1016/j.physletb.2015.07.069

PERMISSIONS					
http://creativecommons.org/licenses/by/4.0/					
© creative commons					
Attribution 4.0 International (CC BY 4.0)					
Disclaimer					
You are free to:					
Share — copy and redistribute the material in any medium or format Adapt — remix, transform, and build upon the material for any purpose, even commercially.					
The licensor cannot revoke these freedoms as long as you follow the license terms.					
Under the following terms:					
Attribution — You must give <u>appropriate credit</u> , provide a link to the license, and <u>indicate if changes were made</u> . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.					
No additional restrictions — You may not apply legal terms or <u>technological measures</u> that legally restrict others from doing anything the license permits.					

Physics Letters B 749 (2015) 242-261

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Measurement of exclusive $\gamma \gamma \rightarrow \ell^+ \ell^-$ production in proton–proton collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector

ATLAS Collaboration*

ARTICLE INFO

Article history: Received 23 June 2015 Received in revised form 27 July 2015 Accepted 28 July 2015 Available online 31 July 2015 Editor: W.-D. Schlatter

ABSTRACT

This Letter reports a measurement of the exclusive $\gamma \gamma \rightarrow \ell^+ \ell^-$ ($\ell = e, \mu$) cross-section in proton–proton collisions at a centre-of-mass energy of 7 TeV by the ATLAS experiment at the LHC, based on an integrated luminosity of 4.6 fb⁻¹. For the electron or muon pairs satisfying exclusive selection criteria, a fit to the dilepton acoplanarity distribution is used to extract the fiducial cross-sections. The cross-section in the electron channel is determined to be $\sigma_{\gamma\gamma \rightarrow e^+e^-}^{\text{excl.}} = 0.428 \pm 0.035$ (stat.) ± 0.018 (syst.) pb for a phase–space region with invariant mass of the electron pairs greater than 24 GeV, in which both electrons have transverse momentum $p_T > 12$ GeV and pseudorapidity $|\eta| < 2.4$. For muon pairs with invariant mass greater than 20 GeV, muon transverse momentum $p_T > 10$ GeV and pseudorapidity $|\eta| < 2.4$, the cross-section is determined to be $\sigma_{\gamma\gamma \rightarrow \mu^+\mu^-}^{\text{excl.}} = 0.628 \pm 0.032$ (stat.) ± 0.021 (syst.) pb. When proton absorptive effects due to the finite size of the proton are taken into account in the theory calculation, the measured cross-sections are found to be consistent with the theory prediction.

© 2015 CERN for the benefit of the ATLAS Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP³.

1. Introduction

A considerable fraction of proton–proton (*pp*) collisions at high energies involve reactions mediated by photons. This fraction is dominated by elastic scattering, with a single photon exchange. Quasi-real photons can also be emitted by both protons, with a variety of final states produced. In these processes the *pp* collision can be then considered as a photon–photon ($\gamma\gamma$) collision. At the LHC, these reactions can be studied at energies well beyond the electroweak energy scale [1]. The cross-section of the $pp(\gamma\gamma) \rightarrow \ell^+\ell^-X$ process has been predicted to increase with energy [2] and constitutes a non-negligible background to Drell–Yan (DY) reactions [3].

The exclusive two-photon production of lepton pairs $(pp(\gamma\gamma) \rightarrow \ell^+ \ell^- pp)$, referred to as exclusive $\gamma\gamma \rightarrow \ell^+ \ell^-$) can be calculated in the framework of quantum electrodynamics (QED) [4,5], within uncertainties of less than 2% associated with the proton elastic form-factors. Exclusive dilepton events have a clean signature that helps discriminate them from background: there are only two identified muons or electrons, without any other activity in the central detectors, and the leptons are back-to-back in azimuthal angle. Furthermore, due to the very small photon virtualities involved, the incident protons are scattered at almost zero-degree angles. Consequently, the measurement of exclusive $\gamma\gamma \rightarrow \ell^+ \ell^-$ reactions was proposed for precise absolute luminosity measurement at hadron

colliders [5–8]. However, this process requires significant corrections (of the order of 20%) due to additional interactions between the elastically scattered protons [9,10].

At hadron colliders exclusive $\gamma\gamma \rightarrow \ell^+\ell^-$ events have been observed in *ep* collisions at HERA [11], in *pp* collisions at the Tevatron [12–14] and in nucleus–nucleus collisions at RHIC [15,16] and the LHC [17]. The exclusive two-photon production of lepton pairs in *pp* collisions at the LHC was studied recently by the CMS collaboration [18,19].

This Letter reports a measurement of exclusive dilepton production in *pp* collisions at $\sqrt{s} = 7$ TeV. The measurement of exclusive dilepton production cross-section is compared to the QED-based prediction with and without proton absorptive corrections.

2. The ATLAS detector

The ATLAS experiment [20] at the LHC is a multi-purpose particle detector with a forward-backward symmetric cylindrical geometry and nearly 4π coverage in solid angle.¹ It consists of inner tracking devices surrounded by a superconducting solenoid,

^{*} *E-mail address:* atlas.publications@cern.ch.

¹ ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the centre of the detector and the *z*-axis coinciding with the axis of the beam pipe. The *x*-axis points from the interaction point to the centre of the LHC ring, and the *y*-axis points upward. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$, and ϕ is the azimuthal angle around the beam pipe with respect to the *x*-axis. The angular distance is defined as $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$. The transverse momentum is defined relative to the beam axis.

http://dx.doi.org/10.1016/j.physletb.2015.07.069 0370-2693/© 2015 CERN for the benefit of the ATLAS Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license

⁽http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP³.

electromagnetic and hadronic calorimeters, and a muon spectrometer. The inner detector (ID) provides charged-particle tracking in the pseudorapidity region $|\eta| < 2.5$ and vertex reconstruction. It comprises a silicon pixel detector, a silicon microstrip tracker, and a straw-tube transition radiation tracker. The ID is surrounded by a solenoid that produces a 2 T axial magnetic field. Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic (EM) energy measurements with high granularity. A hadron (iron/scintillator-tile) calorimeter covers the central pseudorapidity range $|\eta| < 1.7$. The end-cap and forward regions are instrumented with LAr calorimeters for both the EM and hadronic energy measurements up to $|\eta| = 4.9$. The muon spectrometer (MS) is operated in a magnetic field provided by air-core superconducting toroids and includes tracking chambers for precise muon momentum measurements up to $|\eta| = 2.7$ and trigger chambers covering the range $|\eta| < 2.4$.

A three-level trigger system is used to select interesting events. The first level is implemented in custom electronics and is followed by two software-based trigger levels, referred to collectively as the High-Level Trigger.

3. Theoretical background and event simulation

Calculations of the cross-section for exclusive two-photon production of lepton pairs in *pp* collisions are based on the Equivalent Photon Approximation (EPA) [4,5,21–24]. The EPA relies on the property that the EM field of a charged particle, here a proton, moving at high velocity becomes more and more transverse with respect to the direction of propagation. As a consequence, an observer in the laboratory frame cannot distinguish between the EM field of a relativistic proton and the transverse component of the EM field associated with equivalent photons. Therefore, using the EPA, the cross-section for the reaction above can be written as

$$\sigma_{pp(\gamma\gamma)\to\ell^+\ell^-pp}^{\text{EPA}} = \iint P(x_1) P(x_2) \sigma_{\gamma\gamma\to\ell^+\ell^-}(m_{\ell^+\ell^-}^2) \,\mathrm{d}x_1 \,\mathrm{d}x_2$$

where $P(x_1)$ and $P(x_2)$ are the equivalent photon spectra for the protons, x_1 and x_2 are the fractions of the proton energy carried away by the emitted photons and $m_{\ell^+\ell^-}$ is the invariant mass of the lepton pair. These variables are related by $m_{\ell^+\ell^-}^2/s = x_1x_2$ where *s* is the *pp* centre-of-mass energy squared. The symbol $\sigma_{\gamma\gamma\to\ell^+\ell^-}$ refers to the cross-section for the QED sub-process. As discussed previously, the photons are quasi-real, which means that their virtuality Q^2 is very small compared to $m_{\ell^+\ell^-}^2$. In this kinematic region the EPA gives the same predictions as full leading-order (LO) QED calculations [4,5].

In the reaction $pp(\gamma\gamma) \rightarrow \ell^+\ell^- X$ the protons scattering can be: elastic, X = pp; single-dissociative, X = pX'; or doubledissociative, X = X'X'' (the symbols X', X'' denote any additional final state produced in the event). Unless both outgoing protons are detected, the proton dissociative events form an irreducible background to the fully elastic production.

Such photon-induced reactions, in particular exclusive $\gamma \gamma \rightarrow \ell^+ \ell^-$ production, require significant corrections due to proton absorptive effects. These effects are mainly related to pp strong-interaction exchanges that accompany the two-photon interaction and that lead to the production of additional hadrons in the final state. Recent phenomenological studies suggest that the exclusive $\gamma \gamma \rightarrow \ell^+ \ell^-$ cross-section is suppressed by a factor that depends on the mass and rapidity of the system produced [10]. For the kinematic range relevant for this measurement the suppression factor is about 20%. This factor includes both the strong pp absorptive correction ($\sim 8\%$ suppression) and the photon-proton (γp) coherence condition ($b_{\gamma p} > r_p$, where $b_{\gamma p}$ is the γp impact parameter and r_p the transverse size of the proton).

Simulated event samples are generated in order to estimate the background and to correct the signal yields for detector effects. The signal event samples for exclusive $\gamma \gamma \rightarrow \ell^+ \ell^-$ production are generated using the HERWIG++ 2.6.3 [25] Monte Carlo (MC) event generator, which implements the EPA formalism in pp collisions. The dominant background, photon-induced singledissociative dilepton production, is simulated using LPAIR 4.0 [26] with the Brasse [27] and Suri-Yennie [28] structure functions for proton dissociation. For photon virtualities $Q^2 < 5 \text{ GeV}^2$ and masses of the dissociating system, $m_N < 2$ GeV, low-multiplicity states from the production and decays of Δ resonances are usually created. For higher Q^2 or m_N , the system decays to a variety of resonances, which produce a large number of forward particles. The LPAIR package is interfaced to [ETSET 7.408 [29], where the LUND [30] fragmentation model is implemented. The HERWIG++ and LPAIR generators do not include any corrections to account for proton absorptive effects.

For double-dissociative reactions, PYTHIA 8.175 [31] is used with the NNPDF2.3QED [32] parton distribution functions (PDF). The NNPDF2.3QED set uses LO QED and next-to-next-to-leading-order (NNLO) QCD perturbative calculations to construct the photon PDF, starting from the initial scale $Q_0^2 = 2 \text{ GeV}^2$. Depending on the multiplicity of the dissociating system, the default PYTHIA 8 string or mini-string fragmentation model is used for proton dissociation. The absorptive effects in double-dissociative MC events are taken into account using the default multi-parton interactions model in PYTHIA 8 [33].

The PowHEG 1.0 [34-36] MC generator is used with the CT10 [37] PDF to generate both the DY $Z/\gamma^* \rightarrow e^+e^-$ and $Z/\gamma^* \rightarrow$ $\mu^+\mu^-$ events. It is interfaced with Pythia 6.425 [38] using the CTEQ6L1 [39] PDF set and the AUET2B [40] values of the tunable parameters to simulate the parton shower and the underlying event (UE). These samples are referred to as POWHEG+PYTHIA. The DY $Z/\gamma^* \rightarrow \tau^+ \tau^-$ process is generated using PythiA 6.425 together with the MRST LO* [41] PDF. The transverse momentum of lepton pairs in POWHEG+PYTHIA samples is reweighted to a RESBOS [42] prediction, which is found to yield good agreement with the transverse momentum distribution of Z bosons observed in data [43,44]. The production of top-quark pair $(t\bar{t})$ events is modelled using MC@NLO 3.42 [45,46] and diboson (W^+W^- , $W^{\pm}Z$, ZZ) processes are simulated using HERWIG 6.520 [47]. The event generators used to model Z/γ^* , $t\bar{t}$ and diboson reactions are interfaced to PHOTOS 3.0 [48] to simulate QED final-state radiation (FSR) corrections.

Multiple interactions per bunch crossing (pile-up) are accounted for by overlaying simulated minimum-bias events, generated with PYTHIA 6.425 using the AUET2B tune and CTEQ6L1 PDF, and reweighting the distribution of the average number of interactions per bunch crossing in MC simulation to that observed in data. Furthermore, the simulated samples are weighted such that the *z*-position distribution of reconstructed *pp* interaction vertices matches the distribution observed in data. The ATLAS detector response is modelled using the GEANT4 toolkit [49,50] and the same event reconstruction as that used for data is performed.

4. Event reconstruction, preselection and background estimation

The data used in this analysis were collected during the 2011 LHC *pp* run at a centre-of-mass energy of $\sqrt{s} = 7$ TeV. After application of data-quality requirements, the total integrated luminosity is 4.6 fb⁻¹ with an uncertainty of 1.8% [51]. Events from these *pp* collisions are selected by requiring at least one collision vertex with at least two charged-particle tracks with $p_T > 400$ MeV. Events are then required to have at least two lepton candidates (electrons or muons), as defined below.

Events in the electron channel were selected online by requiring a single-electron or di-electron trigger. For the single-electron trigger, the transverse momentum threshold was increased during data-taking from 20 GeV to 22 GeV in response to the increased LHC instantaneous luminosity. The di-electron trigger required a minimum transverse momentum of 12 GeV for each electron candidate. Electron candidates are reconstructed from energy deposits in the calorimeter matched to ID tracks. Electron reconstruction uses track refitting with a Gaussian-sum filter to be less sensitive to bremsstrahlung losses and improve the estimates of the electron track parameters [52,53]. The electrons are required to have a transverse momentum $p_T^e > 12 \text{ GeV}$ and pseudorapidity $|\eta^{e}| < 2.4$ with the calorimeter barrel/end-cap transition region $1.37 < |\eta^e| < 1.52$ excluded. Electron candidates are required to meet "medium" identification criteria based on shower shape and track-quality variables [54].

Events in the muon channel were selected online by a singlemuon or di-muon trigger, with a transverse momentum threshold of 18 GeV or 10 GeV, respectively. Muon candidates are identified by matching complete tracks in the MS to tracks in the ID [55], and are required to have $p_T^{\mu} > 10$ GeV and $|\eta^{\mu}| < 2.4$. Only isolated muons are selected by requiring the scalar sum of the p_T of the tracks with $p_T > 1$ GeV in a $\Delta R = 0.2$ cone around the muon to be less than 10% of the muon p_T .

Di-electron (di-muon) events are selected by requiring two oppositely charged same-flavour leptons with an invariant mass $m_{e^+e^-} > 24$ GeV for the electron channel and $m_{\mu^+\mu^-} > 20$ GeV for the muon channel. After these preselection requirements 1.57×10^6 di-electron and 2.42×10^6 di-muon candidate events are found in the data.

The background to the exclusive signal includes contributions from single- and double-proton dissociative $\gamma\gamma \rightarrow \ell^+\ell^-$ production, as well as Z/γ^* , diboson, $t\bar{t}$ and multi-jet production. The contribution from $\gamma\gamma \rightarrow W^+W^-$ and $\gamma\gamma \rightarrow \tau^+\tau^-$ processes is considered negligible. Single- and double-dissociative background contributions are estimated using MC simulations. The electroweak $(Z/\gamma^*, \text{ diboson})$ and top-quark pair background contributions are also estimated from simulations and normalised to the respective inclusive cross-sections calculated at high orders in perturbative QCD (pQCD), as in Ref. [56]. Scale factors are applied to the simulated samples to correct for the small differences from data in the trigger, reconstruction and identification efficiencies for electrons and muons [54–56]. MC events are also corrected to take into account differences from data in lepton energy, momentum scale and resolution [55,57].

The multi-jet background is determined using data-driven methods, similarly to Refs. [44,58]. For the e^+e^- channel, the multi-jet sample is obtained by applying the full nominal preselection but requiring the electron candidates to not satisfy the medium identification criteria. For the $\mu^+\mu^-$ channel, it is extracted using same-charge muon pairs that satisfy the remaining preselection criteria. The normalisation of the multi-jet background is determined by fitting the invariant mass spectrum of the electron (muon) pair in the data to a sum of expected contributions, including MC predictions of the signal and the other backgrounds.

5. Exclusive event selection and signal extraction

In order to select exclusive $\gamma\gamma \rightarrow \ell^+\ell^-$ candidates, a veto on additional charged-particle track activity is applied. This exclusivity veto requires that no additional charged-particle tracks with $p_{\rm T} > 400$ MeV be associated with the dilepton vertex, and that no additional tracks or vertices be found within a 3 mm longitudinal isolation distance, $\Delta z_{\rm vitx}^{\rm iso}$, from the dilepton vertex. These conditions are primarily motivated by the rejection of the Z/γ^* and

multi-jet events, which typically have many tracks originating from the same vertex.

The charged-particle multiplicity distribution in Z/γ^* MC events is reweighted to match the UE observed in data, following the same procedure as in Ref. [59]. Uncorrected Z/γ^* MC models overestimate the charged-particle multiplicity distributions observed in data by 50% for low-multiplicity events. In order to estimate the relevant weight, the events in the *Z*-peak region, defined as 70 GeV < $m_{\ell^+\ell^-}$ < 105 GeV, are used. This region is expected to include a large DY component. The correction procedure also accounts for the effect of tracks originating from pile-up and ID track reconstruction inefficiency. The requirement of no additional tracks associated with the dilepton vertex completely removes multi-jet, $t\bar{t}$, and diboson backgrounds.

The Δz_{vtx}^{iso} distribution for events with no additional tracks at the dilepton vertex is presented in Fig. 1(a). The structure observed at small Δz_{vtx}^{iso} values is due to the vertex finding algorithm, which identifies the vertex as two close vertices in high-multiplicity DY events: the two-track vertex formed from the lepton tracks and the vertex from the UE tracks. The 3 mm cut significantly suppresses the DY background, at the cost of a 26% reduction in signal yield. The inefficiency is related to tracks and vertices originating from additional *pp* interactions.

Contributions from the DY e⁺e⁻ and $\mu^+\mu^-$ processes can be further reduced by excluding events with a dilepton invariant mass in the *Z*-peak region. The invariant mass distribution of muon pairs for events satisfying the exclusivity veto (exactly two tracks at the dilepton vertex, $\Delta z_{vtx}^{iso} > 3$ mm) is presented in Fig. 1(b) (where the excluded *Z*-peak region is indicated by dashed lines). The figure shows that the MC description of the $m_{\mu^+\mu^-}$ distribution is satisfactory. To further suppress the proton dissociative backgrounds, the lepton pair is required to have small total transverse momentum ($p_T^{\ell^+\ell^-} < 1.5$ GeV). This is shown in Fig. 1(c), which displays the di-muon transverse momentum distribution for events outside the *Z* region that satisfy the exclusivity veto. The $p_T^{\ell^+\ell^-}$ resolution below 1.5 GeV is approximately 0.3 GeV for the electron channel and 0.2 GeV for the muon channel.

The result of each step of the exclusive selection applied to the data, signal and background samples is shown in Table 1. After all selection criteria are applied, 869 events remain for the electron channel, and 2124 events are selected in the muon channel. From simulations, approximately half are expected to originate from exclusive production. The number of selected events in the data is below the expectation from the simulation, with an observed yield that is approximately 80% of the sum of simulated signal and background processes (see discussion in Section 7).

After the final exclusive event selection, there is still a significant contamination from DY, single- and double-dissociative processes. Scaling factors for signal and background processes are estimated by a binned maximum-likelihood fit of the sum of the simulated distributions contained in the MC templates for the various processes, to the measured dilepton acoplanarity $(1 - |\Delta\phi_{\ell+\ell^-}|/\pi))$ distribution. The fit determines two scaling factors, defined as the ratios of the number of observed to the number of expected events based on the MC predictions, for the exclusive ($R^{\text{excl.}}$) and single-dissociative ($R^{\text{s-diss.}}$) templates. The double-dissociative and DY contributions are fixed to the MC predictions in the fit procedure. Contributions from other background processes are found to be negligible.

Fig. 2 shows the e^+e^- and $\mu^+\mu^-$ acoplanarity distributions in data overlaid with the result of the fit to the shapes from MC simulations for events satisfying all selection requirements. The results from the best fit to the data for the electron channel are: $R_{\gamma\gamma\to e^+e^-}^{\text{excl.}} = 0.863 \pm 0.070$ (stat.) for the signal scaling factor and $R_{\gamma\gamma\to e^+e^-}^{\text{sdiss.}} = 0.759 \pm 0.080$ (stat.) for the single-dissociative

Fig. 1. Illustration of exclusive event selection in the muon channel (see text). (a) Longitudinal distance between the di-muon vertex and any other tracks or vertices, (b) di-muon invariant mass, and (c) transverse momentum of the di-muon system, after application of subsequent selection criteria (indicated by the dashed lines). Data are shown as points with statistical error bars, while the histograms represent the expected signal and background levels, corrected using the scale factors described in the text.

Table 1

Effect of sequential selection requirements on the number of events selected in data, compared to the number of predicted signal and background events for electron and muon channels. Predictions for exclusive and single-dissociative event yields do not take into account proton absorptive corrections.

Selection	$\gamma\gamma ightarrow \ell^+\ell^-$		$Z/\gamma^* \to \ell^+ \ell^-$	Multi-jet	$Z/\gamma^* \to \tau^+ \tau^-$	tī	Di-boson	Total	Data	
	Signal	S-diss.	D-diss.						predicted	
Electron channel $(\ell = e)$										
Preselection	898	2096	2070	1 460 000	83000	3760	4610	1950	1 560 000	1 572 271
Exclusivity veto	661	1480	470	3140	0	9	0	5	5780	5410
Z region removed	569	1276	380	600	0	8	0	3	2840	2586
$p_{\mathrm{T}}^{\ell^+\ell^-} < 1.5~\mathrm{GeV}$	438	414	80	100	0	2	0	0	1030	869
Muon channel ($\ell = \mu$	<i>.</i>)									
Preselection	1774	3964	4390	2 300 000	98 000	7610	6710	2870	2 420 000	2 422 745
Exclusivity veto	1313	2892	860	3960	3	8	0	6	9040	7940
Z region removed	1215	2618	760	1160	3	8	0	3	5760	4729
$p_{\mathrm{T}}^{\ell^+\ell^-}$ < 1.5 GeV	1174	1085	160	210	0	3	0	0	2630	2124

scaling factor. Similarly, for the muon channel the results are: $R_{\gamma\gamma \to \mu^+\mu^-}^{\text{excl.}} = 0.791 \pm 0.041$ (stat.) and $R_{\gamma\gamma \to \mu^+\mu^-}^{\text{s-diss.}} = 0.762 \pm 0.049$ (stat.). The central values and statistical uncertainties on $R^{\text{excl.}}$ are strongly correlated with the central values and uncertainties on $R^{\text{s-diss.}}$, respectively.

6. Systematic uncertainties and cross-checks

The different contributions to the systematic uncertainties are described below. The dominant sources of systematic uncertainty for both the electron and muon channels are related to background modelling.

Fig. 2. (a) Di-electron and (b) di-muon acoplanarity distributions for the selected sample after exclusivity requirements. Data are shown as points with statistical error bars. The stacked histograms, in top-to-bottom order, represent the simulated exclusive signal, and the single-dissociative, double-dissociative and DY backgrounds. The exclusive and single-dissociative yields are determined from the fit described in the text.

The uncertainty on the electron and muon selection includes uncertainties on the electron energy or muon momentum scale and resolution, as well as uncertainties on the scale factors applied to the simulation in order to reproduce the trigger, reconstruction and identification efficiencies for electrons or muons measured in the data. The lepton energy or momentum scale correction uncertainties are obtained from a comparison of the *Z* boson invariant mass distribution in data and simulation, while the uncertainties on the scale factors are derived from a comparison of tag-and-probe results in data and simulations [54–57]. The overall effect on the exclusive $\gamma\gamma \rightarrow \ell^+\ell^-$ cross-sections is approximately 1–3%, where the dominant electron uncertainties originate from the electron reconstruction and identification and the dominant muon uncertainty originates from the trigger.

The uncertainty on the contribution of DY processes mainly accounts for disagreements between data and simulations which are related to the reweighting procedures of the charged-particle multiplicity (10%) and $p_T^{\ell^+\ell^-}$ (5%) distributions. It also includes a 5% contribution for the PDF and scale uncertainties in modelling DY processes, as well as a 5% statistical uncertainty on the Z/γ^* MC samples after event selection. An overall normalisation uncertainty of 20% is assigned to cover all these effects. Because of the similar shapes of the DY and single-proton dissociative $\gamma\gamma \rightarrow \ell^+\ell^-$ components in the fitted acoplanarity distribution, this uncertainty on the DY normalisation is partly absorbed by the single-dissociative contribution. The 20% uncertainly has a 1.2% effect on the exclusive cross-section for the electron channel and 1% for the muon channel.

In order to estimate the double-proton dissociative $\gamma \gamma \rightarrow \ell^+ \ell^-$ uncertainty, this contribution is varied according to the photon PDF uncertainties, defined at 68% confidence level and evaluated using NNPDF2.3QED replicas [32]. The photon PDF are affected by sizeable uncertainties, typically of the order of 50%. The resulting uncertainty on the exclusive cross-sections related to double-dissociative background uncertainty is 1.9% for the electron channel and 1.7% for the muon channel.

The uncertainty arising from the choice of acoplanarity shapes in the fit procedure is evaluated by refitting the data with different template distributions. A small deviation of the proton elastic form-factors [60] from the standard dipole parameterisation used in the simulations has a 0.2% effect on the exclusive cross-sections. This effect is estimated by reweighting the equivalent photon spectra in signal MC events to agree with the model predictions. The impact of the shape uncertainty in the single-dissociative template is evaluated by reweighting the corresponding MC events with an exponential modification factor $\propto \exp\left[-a(p_T^{\ell^+\ell^-})^2\right]$. A value of $a = 0.05 \text{ GeV}^{-2}$ is extracted from the data (before the $p_T^{\ell^+\ell^-} < 1.5 \text{ GeV}$ selection) to improve the shape agreement with the simulation, shown in Fig. 1(c). Propagating these weights to the acoplanarity distribution and the signal extraction results in a 0.9% change of signal yields.

Possible mis-modelling of the angular resolution of the tracking detectors [61] measuring the lepton tracks could also distort the shape of the signal template, and leads to uncertainties of up to 0.3% (0.2%) in the electron (muon) channel.

The systematic effect related to the pile-up description is estimated from data-to-MC comparisons of the p_{T} - and η -dependent density of tracks originating from pile-up, as in Ref. [59]. The resulting uncertainty on the cross-sections is 0.5%.

The dilepton vertex isolation efficiency is studied by comparing the spatial distribution of tracks originating from pile-up in MC simulations and in data. The effect of mis-modelling of the vertex isolation efficiency is determined by comparing the efficiency in data and simulations for different Δz_{vtx}^{iso} values (varied between 2 mm and 5 mm, where the sensitivity of the measurements to the level of background is maximal). The relative variations between the data and simulations are found to be at most 1.2%, which is taken as a systematic uncertainty.

The LHC beam energy uncertainty is evaluated to be 0.7%, following Ref. [62]. This affects the exclusive cross-sections by 0.4% and is considered as a systematic effect. The impact of the nonzero crossing angles of the LHC beams at the ATLAS interaction point is estimated by applying a relevant Lorentz transformation to generator-level lepton kinematics for signal MC events. This results in a 0.3% variation and is taken as a systematic uncertainty.

The effect of QED FSR is predicted to be small (below 1%) in exclusive $\gamma\gamma \rightarrow \ell^+\ell^-$ reactions [63]. However, as experimental corrections for electrons are derived from $Z/\gamma^* \rightarrow e^+e^-$ and $W \rightarrow e\nu$ processes including significant QED FSR effects, these corrections may not be directly applicable to the exclusive dilepton signal MC events without QED FSR simulation. A possible bias in the electron efficiencies is studied by comparing DY e⁺e⁻ MC events with and without QED FSR photons being emitted. The observed difference in the efficiency to trigger, reconstruct and identify electron pairs is 0.8%, which is taken as a systematic uncertainty.

Additional tests of the maximum-likelihood fit stability are performed by comparing different bin widths and fit ranges. Starting

Table 2

Summary of systematic uncertainties on the exclusive cross-section measurement for the electron and muon channels. The data statistical uncertainties are also given for comparison.

Source of uncertainty	Uncertainty [%]	
	$\gamma\gamma ightarrow e^+e^-$	$\gamma\gamma ightarrow \mu^+\mu^-$
Electron reconstruction	1.9	-
and identification efficiency		
Electron energy scale	1.4	-
and resolution		
Electron trigger efficiency	0.7	-
Muon reconstruction efficiency	-	0.2
Muon momentum scale	-	0.5
and resolution		
Muon trigger efficiency	-	0.6
Backgrounds	2.3	2.0
Template shapes	1.0	0.9
Pile-up description	0.5	0.5
Vertex isolation efficiency	1.2	1.2
LHC beam effects	0.5	0.5
QED FSR in DY e ⁺ e ⁻	0.8	-
Luminosity	1.8	1.8
Total systematic uncertainty	4.3	3.3
Data statistical uncertainty	8.2	5.1

from the nominal number of 30 bins in the fit range $0 \le 1 - |\Delta \phi_{\ell^+\ell^-}|/\pi \le 0.06$, variations of the bin width (0.002 ± 0.001) and fit range from [0, 0.03] to [0, 0.09] produce relative changes of at most 0.9%. Since these variations are strongly correlated with the statistical uncertainties, no additional systematic uncertainty is assigned in this case.

Table 2 summarises the contributions to the systematic uncertainty on the exclusive cross-sections from the different sources. The total systematic uncertainty is formed by adding the individual contributions in quadrature for each analysis channel, including the uncertainty on the integrated luminosity. Control distributions of the dilepton transverse momentum for events satisfying the selection criteria listed in Table 1 are shown in Fig. 3, with the exclusive and single-dissociative yields normalised according to the fit results. Here an additional cut on the dilepton acoplanarity $(1 - |\Delta\phi_{\ell^+\ell^-}|/\pi < 0.008)$ is used, instead of the cut on total transverse momentum $(p_T^{\ell^+\ell^-} < 1.5 \text{ GeV})$. The MC predictions for the shapes of dilepton distributions are found to be in good agreement with the data.

7. Results and comparison to theory

The exclusive $\gamma \gamma \rightarrow \ell^+ \ell^-$ cross-sections reported in this article are restricted to the fiducial regions defined in Table 3. The event selection results in an acceptance times efficiency of 19% for the electron channel and 32% for the muon channel. The fiducial cross-sections are given by the product of the measured signal scale factors by the exclusive cross-sections predicted, in the fiducial region considered, by the EPA calculation:

$$\begin{split} \sigma^{\text{excl.}}_{\gamma\gamma\to\ell^+\ell^-} &= R^{\text{excl.}}_{\gamma\gamma\to\ell^+\ell^-} \cdot \sigma^{\text{EPA}}_{\gamma\gamma\to\ell^+\ell^-} \,. \end{split}$$
For the e⁺e⁻ channel,

$$R^{\text{excl.}}_{\gamma\gamma\to e^+e^-} &= 0.863 \pm 0.070 \text{ (stat.)} \pm 0.037 \text{ (syst.)} \end{split}$$

$$\pm$$
 0.015 (theor.) ,

 $\sigma^{\rm EPA}_{\gamma\gamma\to e^+e^-} = 0.496 \, \pm \, 0.008$ (theor.) pb .

The theoretical uncertainties are fully correlated between $R_{\gamma\gamma\to e^+e^-}^{excl}$ and $\sigma_{\gamma\gamma\to e^+e^-}^{EPA}$, and cancel each other in the cross-section extraction procedure. They are related to the proton elastic form-factors (1.6%) and to the higher-order electroweak corrections [63] not included in the calculations (0.7%). The proton form-factor uncertainty is conservatively estimated by taking the full difference between the calculations using the standard dipole form-factors and the improved model parameterisation including pQCD corrections from Ref. [60]. The latter includes a fit uncertainty and the prediction furthest away from the dipole form-factors is chosen.

Similarly, for the $\mu^+\mu^-$ channel,

$$\begin{split} R^{\text{excl.}}_{\gamma\gamma\to\mu^+\mu^-} &= 0.791 \pm 0.041 \text{ (stat.)} \pm 0.026 \text{ (syst.)} \\ &\pm 0.013 \text{ (theor.)} \text{ ,} \\ \sigma^{\text{EPA}}_{\gamma\gamma\to\mu^+\mu^-} &= 0.794 \pm 0.013 \text{ (theor.) pb .} \end{split}$$

The resulting fiducial cross-section for the electron channel is measured to be

$$\sigma^{\text{excl.}}_{\gamma\gamma\to \mathrm{e^+e^-}} = 0.428 \,\pm\, 0.035 \,(\text{stat.}) \,\pm\, 0.018 \,(\text{syst.}) \,\, \text{pb}$$
 .

This value can be compared to the theoretical prediction, including absorptive corrections to account for the finite size of the proton [10]:

Fig. 3. Control distributions of (a) the di-electron and (b) the di-muon transverse momentum for events passing the exclusivity veto together with the other selection criteria described in Section 5, and passing a cut on the dilepton acoplanarity $(1 - |\Delta \phi_{\ell^+\ell^-}|/\pi < 0.008)$, instead of the total transverse momentum. Data are shown as points with statistical error bars, while the histograms, in top-to-bottom order, represent the simulated exclusive signal, and the single-dissociative, double-dissociative and DY backgrounds. Systematic uncertainties on the signal events are shown by the black-hashed regions. The exclusive and single-dissociative yields are determined from the fit described in the text.

Table 3

Definition of the electron and muon channel fiducial regions for which the exclusive cross-sections are evaluated.

Variable	Electron channel	Muon channel
p_{T}^{ℓ}	> 12 GeV	> 10 GeV
$ \eta^{\ell} $	< 2.4	< 2.4
$m_{\ell^+\ell^-}$	> 24 GeV	> 20 GeV

Fig. 4. Comparison of the ratios of measured (red points) and predicted (solid green lines) cross-sections to the uncorrected EPA calculations (black dashed line). Results for the muon and electron channels are also compared with a similar CMS measurement [18]. The inner red error bar represents the statistical error, and the blue bar represents the total error on each measurement. The yellow band represents the theoretical uncertainty of 1.8% (1.7%) on the predicted (uncorrected EPA) cross-sections, assumed to be uniform in the phase space of the measurements. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

$$\sigma^{\rm EPA,\ corr.}_{\gamma\gamma
ightarrow e^+e^-} = 0.398\ \pm\ 0.007$$
 (theor.) pb .

For the muon channel, the fiducial cross-section is measured to be

$$\sigma^{\text{excl.}}_{\gamma\gamma \to \mu^+\mu^-} = 0.628 \, \pm \, 0.032 \, (\text{stat.}) \, \pm \, 0.021 \, (\text{syst.}) \, \text{pb} \, ,$$

to be compared with [10]:

 $\sigma^{\rm EPA,\ corr.}_{\gamma\gamma
ightarrow\mu^+\mu^-}$ = 0.638 $\,\pm\,$ 0.011 (theor.) pb .

The uncertainty of each prediction includes an additional 0.8% uncertainty related to the modelling of proton absorptive corrections. It is evaluated by varying the effective transverse size of the proton by 3%, according to Ref. [64]. Fig. 4 shows the ratios of the measured cross-sections to the EPA calculations and to the prediction with the inclusion of absorptive corrections. The measurements are in agreement with the predicted values corrected for proton absorptive effects. The figure includes a similar CMS cross-section measurement [18].

8. Conclusion

Using 4.6 fb⁻¹ of data from *pp* collisions at a centre-of-mass energy of 7 TeV the fiducial cross-sections for exclusive $\gamma\gamma \rightarrow \ell^+\ell^-$ ($\ell = e, \mu$) reactions have been measured with the ATLAS detector at the LHC. Comparisons are made to the theory predictions based on EPA calculations, as included in the HERWIG++ MC generator. The corresponding data-to-EPA signal ratios for the electron and muon channels are consistent with the recent CMS measurement and indicate a suppression of the exclusive production mechanism in data with respect to EPA prediction. The observed cross-sections are about 20% below the nominal EPA prediction, and consistent with the suppression expected due to proton absorption contributions. The MC predictions for the shapes of the dilepton kinematic distributions, including both the exclusive signal and the background dominated by two-photon production of lepton pairs with single-proton dissociation, are also found to be in good agreement with the data. With its improved statistical precision compared to previous measurements, this analysis provides a better understanding of the physics of two-photon interactions at hadron colliders.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COL-CIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic: DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; RGC, Hong Kong SAR, China; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and ISPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNISW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

References

- CMS Collaboration, Study of exclusive two-photon production of W⁺W⁻ in pp collisions at √s = 7 TeV and constraints on anomalous quartic gauge couplings, J. High Energy Phys. 1307 (2013) 116, arXiv:1305.5596 [hep-ex].
- [2] C. Carimalo, P. Kessler, J. Parisi, γγ background of the Drell–Yan process, Phys. Rev. D 18 (1978) 2443.
- [3] ATLAS Collaboration, Measurement of the high-mass Drell-Yan differential cross-section in *pp* collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector, Phys. Lett. B 725 (2013) 223–242, arXiv:1305.4192 [hep-ex].
- [4] M.-S. Chen, et al., Lepton pair production from two-photon processes, Phys. Rev. D 7 (1973) 3485–3502.
- [5] V. Budnev, et al., The process $pp \rightarrow ppe^+e^-$ and the possibility of its calculation by means of quantum electrodynamics only, Nucl. Phys. B 63 (1973) 519–541.
- [6] V.A. Khoze, et al., Luminosity monitors at the LHC, Eur. Phys. J. C 19 (2001) 313–322, arXiv:hep-ph/0010163.
- [7] A. Shamov, V.I. Telnov, Precision luminosity measurement at LHC using two photon production of $\mu^+\mu^-$ pairs, Nucl. Instrum. Methods A 494 (2002) 51–56, arXiv:hep-ex/0207095.
- [8] M. Krasny, J. Chwastowski, K. Slowikowski, Luminosity measurement method for LHC: the theoretical precision and the experimental challenges, Nucl. Instrum. Methods A 584 (2008) 42–52, arXiv:hep-ex/0610052.
- [9] W. Schafer, A. Szczurek, Exclusive photoproduction of J/ψ in proton–proton and proton–antiproton scattering, Phys. Rev. D 76 (2007) 094014, arXiv: 0705.2887 [hep-ph].
- [10] M. Dyndal, L. Schoeffel, The role offinite-size effects on the spectrum of equivalent photons in proton-proton collisions at the LHC, Phys. Lett. B 741 (2015) 66–70, arXiv:1410.2983 [hep-ph].

- [11] A. Aktas, et al., H1 Collaboration, Muon pair production in ep collisions at HERA, Phys. Lett. B 583 (2004) 28-40, arXiv:hep-ex/0311015.
- [12] A. Abulencia, et al., CDF Collaboration, Observation of exclusive electronpositron production in hadron-hadron collisions, Phys. Rev. Lett. 98 (2007) 112001. arXiv:hep-ex/0611040.
- [13] T. Aaltonen, et al., CDF Collaboration, Search for exclusive Z boson production and observation of high mass $p\bar{p} \rightarrow \gamma \gamma \rightarrow p + \ell \ell + \bar{p}$ events in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV, Phys. Rev. Lett. 102 (2009) 222002, arXiv:0902.2816 [hep-ex].
- [14] T. Aaltonen, et al., CDF Collaboration, Observation of exclusive charmonium production and $\gamma + \gamma$ to $\mu^+ \mu^-$ in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV, Phys. Rev. Lett. 102 (2009) 242001, arXiv:0902.1271 [hep-ex].
- [15] J. Adams, et al., STAR Collaboration, Production of e^+e^- pairs accompanied by nuclear dissociation in ultra-peripheral heavy ion collision, Phys. Rev. C 70 (2004) 031902. arXiv:nucl-ex/0404012.
- [16] A. Afanasiev, et al., PHENIX Collaboration, Photoproduction of $1/\psi$ and of high mass e^+e^- in ultra-peripheral Au+Au collisions at $\sqrt{s} = 200$ GeV, Phys. Lett. B 679 (2009) 321-329, arXiv:0903.2041 [nucl-ex].
- [17] E. Abbas, et al., ALICE Collaboration, Charmonium and e^+e^- pair photoproduction at mid-rapidity in ultra-peripheral Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, Eur. Phys. J. C 73 (11) (2013) 2617, arXiv:1305.1467 [nucl-ex].
- [18] CMS Collaboration, Exclusive photon-photon production of muon pairs in proton-proton collisions at $\sqrt{s} = 7$ TeV, J. High Energy Phys. 1201 (2012) 052, arXiv:1111.5536 [hep-ex].
- [19] CMS Collaboration. Search for exclusive or semi-exclusive photon pair production and observation of exclusive and semi-exclusive electron pair production in pp collisions at $\sqrt{s} = 7$ TeV, J. High Energy Phys. 1211 (2012) 080, arXiv: 1209.1666 [hep-ex].
- [20] ATLAS Collaboration, The ATLAS experiment at the CERN Large Hadron Collider, I. Instrum, 3 (2008) S08003.
- [21] C. von Weizsacker, Radiation emitted in collisions of very fast electrons, Z. Phys. 88 (1934) 612-625.
- [22] E. Williams, Nature of the high-energy particles of penetrating radiation and status of ionization and radiation formulae, Phys. Rev. 45 (1934) 729-730.
- [23] H. Terazawa, Two photon processes for particle production at high-energies, Rev. Mod. Phys. 45 (1973) 615-662.
- [24] V. Budnev, et al., The two photon particle production mechanism. Physical problems. Applications. Equivalent photon approximation, Phys. Rep. 15 (1975) 181-281.
- [25] M. Bähr, et al., Herwig++ physics and manual, Eur. Phys. J. C 58 (2008) 639-707, arXiv:0803.0883 [hep-ph].
- [26] J. Vermaseren, Two photon processes at very high-energies, Nucl. Phys. B 229 (1983) 347.
- [27] F. Brasse, et al., Parametrization of the q^2 dependence of $\gamma_V p$ total cross sections in the resonance region, Nucl. Phys. B 110 (1976) 413.
- [28] A. Suri, D.R. Yennie, The space-time phenomenology of photon absorption and inelastic electron scattering, Ann. Phys. 72 (1972) 243-292.
- [29] T. Sjöstrand, High-energy physics event generation with PYTHIA 5.7 and JET-SET 7.4, Comput. Phys. Commun. 82 (1994) 74-90.
- [30] B. Andersson, et al., Parton fragmentation and string dynamics, Phys. Rep. 97 (1983) 31-145.
- [31] T. Sjöstrand, S. Mrenna, P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852-867, arXiv:0710.3820 [hep-ph].
- [32] R.D. Ball, et al., NNPDF Collaboration, Parton distributions with QED corrections, Nucl. Phys. B 877 (2013) 290-320, arXiv:1308.0598 [hep-ph].
- [33] R. Corke, T. Sjöstrand, Multiparton interactions and rescattering, J. High Energy Phys. 1001 (2010) 035, arXiv:0911.1909 [hep-ph].
- [34] P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, J. High Energy Phys. 0411 (2004) 040, arXiv:hep-ph/0409146.
- [35] S. Frixione, P. Nason, C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, J. High Energy Phys. 0711 (2007) 070, arXiv:0709.2092 [hep-ph].
- [36] S. Alioli, et al., NLO vector-boson production matched with shower in POWHEG, J. High Energy Phys. 0807 (2008) 060, arXiv:0805.4802 [hep-ph].
- [37] H.-L. Lai, et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024, arXiv:1007.2241 [hep-ph].
- [38] T. Sjöstrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and manual, J. High Energy Phys. 0605 (2006) 026, arXiv:hep-ph/0603175.

- [39] J. Pumplin, et al., New generation of parton distributions with uncertainties from global QCD analysis, J. High Energy Phys. 0207 (2002) 012, arXiv:hepph/0201195.
- [40] ATLAS Collaboration, ATLAS tunes of PYTHIA 6 and Pythia 8 for MC11, ATL-PHYS-PUB-2011-009. http://cds.cern.ch/record/1363300.
- [41] A. Sherstnev, R. Thorne, Parton distributions for LO generators, Eur. Phys. J. C 55 (2008) 553-575, arXiv:0711.2473 [hep-ph].
- [42] F. Landry, et al., Tevatron Run-1 Z boson data and Collins-Soper-Sterman resummation formalism, Phys. Rev. D 67 (2003) 073016, arXiv:hep-ph/0212159,
- [43] ATLAS Collaboration, Measurement of angular correlations in Drell-Yan lepton pairs to probe Z/γ^* boson transverse momentum at $\sqrt{s} = 7$ TeV with the AT-LAS detector, Phys. Lett. B 720 (2013) 32-51, arXiv:1211.6899 [hep-ex].
- [44] ATLAS Collaboration, Measurement of the Z/γ^* boson transverse momentum distribution in *pp* collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector. J. High Energy Phys. 1409 (2014) 145, arXiv:1406.3660 [hep-ex].
- [45] S. Frixione, B.R. Webber, Matching NLO QCD computations and parton shower simulations, J. High Energy Phys. 0206 (2002) 029, arXiv:hep-ph/0204244.
- [46] S. Frixione, P. Nason, B.R. Webber, Matching NLO QCD and parton showers in heavy flavor production, J. High Energy Phys. 0308 (2003) 007, arXiv:hepph/0305252.
- [47] G. Corcella, et al., HERWIG 6.5 release note, arXiv:hep-ph/0210213, 2002.
- [48] P. Golonka, Z. Was, PHOTOS Monte Carlo: a precision tool for QED corrections in Z and W decays, Eur. Phys. I. C 45 (2006) 97–107, arXiv:hep-ph/0506026.
- [49] S. Agostinelli, et al., GEANT4 Collaboration, GEANT4: a simulation toolkit, Nucl. Instrum. Methods A 506 (2003) 250-303.
- [50] ATLAS Collaboration, The ATLAS simulation infrastructure, Eur. Phys. J. 70 (2010) 823-874, arXiv:1005.4568 [physics.ins-det].
- [51] ATLAS Collaboration, Improved luminosity determination in pp collisions at \sqrt{s} = 7 TeV using the ATLAS detector at the LHC, Eur. Phys. J. C 73 (2013) 2518, arXiv:1302.4393 [hep-ex].
- [52] R. Frühwirth, Track fitting with non-Gaussian noise, Comput. Phys. Commun. 100(1997)1-16
- [53] ATLAS Collaboration, Improved electron reconstruction in ATLAS using the Gaussian sum filter-based model for bremsstrahlung, ATLAS-CONF-2012-047, http://cds.cern.ch/record/1449796.
- [54] ATLAS Collaboration, Electron reconstruction and identification efficiency measurements with the ATLAS detector using the 2011 LHC proton-proton collision data, Eur. Phys. J. C 74 (2014) 2941, arXiv:1404.2240 [hep-ex].
- [55] ATLAS Collaboration, Measurement of the muon reconstruction performance of the ATLAS detector using 2011 and 2012 LHC proton-proton collision data, Eur. Phys. J. C 74 (11) (2014) 3130, arXiv:1407.3935 [hep-ex].
- [56] ATLAS Collaboration, Measurement of the low-mass Drell-Yan differential cross section at $\sqrt{s} = 7$ TeV using the ATLAS detector, J. High Energy Phys. 1406 (2014) 112, arXiv:1404.1212 [hep-ex].
- [57] ATLAS Collaboration, Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data, Eur. Phys. J. C 74 (10) (2014) 3071, arXiv: 1407.5063 [hep-ex].
- [58] ATLAS Collaboration, Measurement of the production cross section of jets in association with a Z boson in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector, J. High Energy Phys. 1307 (2013) 032, arXiv:1304.7098 [hep-ex].
- [59] ATLAS Collaboration, Measurement of distributions sensitive to the underlying event in inclusive Z-boson production in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector, Eur. Phys. J. C 74 (12) (2014) 3195, arXiv:1409.3433 [hep-ex].
- [60] M. Belushkin, H.-W. Hammer, U.-G. Meissner, Dispersion analysis of the nucleon form-factors including meson continua, Phys. Rev. C 75 (2007) 035202, arXiv:hep-ph/0608337.
- [61] ATLAS Collaboration, The ATLAS inner detector commissioning and calibration, Eur. Phys. J. C 70 (2010) 787-821, arXiv:1004.5293 [physics.ins-det].
- [62] ATLAS Collaboration, Simultaneous measurements of the $t\bar{t}$, W^+W^- , and $Z/\gamma^* \rightarrow \tau \tau$ production cross-sections in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector, Phys. Rev. D 91 (2015) 052005, arXiv:1407.0573 [hep-ex].
- [63] A. Denner, S. Dittmaier, Production of light fermion-antifermion pairs in $\gamma\gamma$ collisions, Eur. Phys. J. C 9 (1999) 425-435, arXiv:hep-ph/9812411.
- [64] F. Aaron, et al., H1 Collaboration, Measurement of deeply virtual Compton scattering and its t-dependence at HERA, Phys. Lett. B 659 (2008) 796-806, arXiv: 0709.4114 [hep-ex].

ATLAS Collaboration

- G. Aad⁸⁵, B. Abbott¹¹³, J. Abdallah¹⁵¹, O. Abdinov¹¹, R. Aben¹⁰⁷, M. Abolins⁹⁰, O.S. AbouZeid¹⁵⁸,

- G. Addos, B. Abbott ¹¹⁵, J. Abdallah ¹³⁷, O. Abdihov ¹⁴, R. Aben ¹⁶⁷, M. Abbihs³⁰, O.S. AbbuZeld ¹⁶ H. Abramowicz ¹⁵³, H. Abreu ¹⁵², R. Abreu ¹¹⁶, Y. Abulaiti ^{146a,146b}, B.S. Acharya ^{164a,164b,a}, L. Adamczyk ^{38a}, D.L. Adams ²⁵, J. Adelman ¹⁰⁸, S. Adomeit ¹⁰⁰, T. Adye ¹³¹, A.A. Affolder ⁷⁴, T. Agatonovic-Jovin ¹³, J. Agricola ⁵⁴, J.A. Aguilar-Saavedra ^{126a,126f}, S.P. Ahlen ²², F. Ahmadov ^{65,b}, G. Aielli ^{133a,133b}, H. Akerstedt ^{146a,146b}, T.P.A. Åkesson ⁸¹, A.V. Akimov ⁹⁶, G.L. Alberghi ^{20a,20b}, J. Albert ¹⁶⁹, S. Albrand ⁵⁵, M.J. Alconada Verzini ⁷¹, M. Aleksa ³⁰, I.N. Aleksandrov ⁶⁵, C. Alexa ^{26a},

G. Alexander¹⁵³, T. Alexopoulos¹⁰, M. Alhroob¹¹³, G. Alimonti^{91a}, L. Alio⁸⁵, J. Alison³¹, S.P. Alkire³⁵, B.M.M. Allbrooke ¹⁴⁹, P.P. Allport ⁷⁴, A. Aloisio ^{104a,104b}, A. Alonso ³⁶, F. Alonso ⁷¹, C. Alpigiani ⁷⁶, A. Altheimer ³⁵, B. Alvarez Gonzalez ³⁰, D. Álvarez Piqueras ¹⁶⁷, M.G. Alviggi ^{104a,104b}, B.T. Amadio ¹⁵, K. Amako ⁶⁶, Y. Amaral Coutinho ^{24a}, C. Amelung ²³, D. Amidei ⁸⁹, S.P. Amor Dos Santos ^{126a,126c}, A. Amorim ^{126a,126b}, S. Amoroso ⁴⁸, N. Amram ¹⁵³, G. Amundsen ²³, C. Anastopoulos ¹³⁹, L.S. Ancu ⁴⁹, N. Andari ¹⁰⁸, T. Andeen ³⁵, C.F. Anders ^{58b}, G. Anders ³⁰, J.K. Anders ⁷⁴, K.J. Anderson ³¹, A. Andreazza ^{91a,91b}, V. Andrei ^{58a}, S. Angelidakis ⁹, I. Angelozzi ¹⁰⁷, P. Anger ⁴⁴, A. Angerami ³⁵, F. Anghinolfi ³⁰, A.V. Anisenkov ^{109,c}, N. Anjos ¹², A. Annovi ^{124a,124b}, M. Antonelli ⁴⁷, A. Antonov ⁹⁸, J. Antos ^{144b}, F. Anulli ^{132a}, M. Aoki ⁶⁶, L. Aperio Bella ¹⁸, G. Arabidze ⁹⁰, Y. Arai ⁶⁶, J.P. Araque ^{126a}, A.T.H. Arce ⁴⁵, F.A. Arduh ⁷¹, J-F. Arguin ⁹⁵, S. Argyropoulos ⁴², M. Arik ^{19a}, A.J. Armbruster ³⁰, O. Arnaez ³⁰, V. Arnal ⁸², H. Arnold ⁴⁸, M. Arratia ²⁸, O. Arslan ²¹, A. Artamonov ⁹⁷, G. Artoni ²³, S. Asai ¹⁵⁵, N. Asbah ⁴², A. Ashkenazi ¹⁵³, B. Åsman ^{146a,146b}, L. Asquith ¹⁴⁹, K. Assamagan ²⁵, R. Astalos ^{144a}, M. Atkinson ¹⁶⁵, N.B. Atlay ¹⁴¹, B. Auerbach ⁶, K. Augsten ¹²⁸, M. Aurousseau ^{145b}, G. Avolio ³⁰, B. Axen ¹⁵, M.K. Ayoub ¹¹⁷, G. Azuelos ^{95,d}, M.A. Baak ³⁰, A.E. Baas ^{58a}, M.J. Baca ¹⁸, C. Bacci ^{134a,134b}, H. Bachacou ¹³⁶, K. Bachas ¹⁵⁴, M. Backes ³⁰, M. Backhaus ³⁰, P. Bagiacchi ^{132a,132b}, P. Bagnaia ^{132a,132b}, Y. Bai ^{33a}, T. Bain ³⁵, J.T. Baines ¹³¹, O.K. Baker ¹⁷⁶, E.M. Baldin ^{109,c}, P. Balek ¹²⁹, T. Balestri ¹⁴⁸, F. Balli ⁸⁴, E. Banas ³⁹, Sw. Banerjee ¹⁷³, A.A.E. Bannoura ¹⁷⁵, H.S. Bansil ¹⁸, L. Barak ³⁰, E.L. Barberio ⁸⁸, D. Barberis ^{50a,50b}, M. Barbero ⁸⁵, T. Barillari ¹⁰¹, M. Barisonzi ^{164a,164b}, T. Barklow ¹⁴³, N. Barlow ²⁸, S.L. Barnes ⁸⁴, B.M. Barnett ¹³¹, B.M.M. Allbrooke ¹⁴⁹, P.P. Allport ⁷⁴, A. Aloisio ^{104a,104b}, A. Alonso ³⁶, F. Alonso ⁷¹, C. Alpigiani ⁷⁶, A.A.E. Bannoura¹⁷³, H.S. Bansil¹⁶, L. Barak³⁰, E.L. Barberio⁸⁸, D. Barberis^{304,300}, M. Barbero⁸³, T. Barillari¹⁰¹, M. Barisonzi^{164a,164b}, T. Barklow¹⁴³, N. Barlow²⁸, S.L. Barnes⁸⁴, B.M. Barnett¹³¹, R.M. Barnett¹⁵, Z. Barnovska⁵, A. Baroncelli^{134a}, G. Barone²³, A.J. Barr¹²⁰, F. Barreiro⁸², J. Barreiro Guimarães da Costa⁵⁷, R. Bartoldus¹⁴³, A.E. Barton⁷², P. Bartos^{144a}, A. Basalaev¹²³, A. Bassalat¹¹⁷, A. Basye¹⁶⁵, R.L. Bates⁵³, S.J. Batista¹⁵⁸, J.R. Batley²⁸, M. Battaglia¹³⁷, M. Bauce^{132a,132b}, F. Bauer¹³⁶, H.S. Bawa^{143,e}, J.B. Beacham¹¹¹, M.D. Beattie⁷², T. Beau⁸⁰, P.H. Beauchemin¹⁶¹, R. Beccherle^{124a,124b}, P. Bechtle²¹, H.P. Beck^{17,f}, K. Becker¹²⁰, M. Becker⁸³, S. Becker¹⁰⁰, M. Beckingham¹⁷⁰, C. Becot¹¹⁷, A.J. Beddall^{19b}, A. Beddall^{19b}, V.A. Bednyakov⁶⁵, C.P. Bee¹⁴⁸, I.J. Beemster¹⁰⁷, T.A. Beermann¹⁷⁵, M. Bergel²⁵, J.K. Behr¹²⁰, C. Belanger-Champagn⁸⁷, W.H. Bell⁴⁹ L.J. Beemster ¹⁰⁷, T.A. Beermann ¹⁷⁵, M. Begel ²⁵, J.K. Behr ¹²⁰, C. Belanger-Champagne ⁸⁷, W.H. Bell ⁴⁹, G. Bella ¹⁵³, L. Bellagamba ^{20a}, A. Bellerive ²⁹, M. Bellomo ⁸⁶, K. Belotskiy ⁹⁸, O. Beltramello ³⁰, O. Benary ¹⁵³, D. Benchekroun ^{135a}, M. Bender ¹⁰⁰, K. Bendtz ^{146a, 146b}, N. Benekos ¹⁰, Y. Benhammou ¹⁵³, G. Bella ¹⁵⁴, L. Bellagamba ²⁰³, A. Bellerive ²⁹, M. Bellomo ³⁶, K. Belotskiy ³⁸, O. Beltramello ³⁰, O. Benary ¹⁵³, D. Benchekroun ^{135a}, M. Bender ¹⁰⁰, K. Bendtz ^{146a,146b}, N. Benekos ¹⁰, Y. Benharmou ¹⁵³, E. Benhar Noccioli ⁴⁹, J.A. Benitez Garcia ^{159b}, D.P. Benjamin ⁴⁵, J.R. Bensinger ²³, S. Bentvelsen ¹⁰⁷, L. Beresford ¹²⁰, M. Beretta ⁴⁷, D. Berge ¹⁰⁷, E. Bergeaas Kuutmann ¹⁶⁶, N. Berger ⁵, F. Berghaus ¹⁶⁹, J. Beringer ¹⁵, C. Bernand ²², N.R. Bernard ⁸⁶, C. Bernius ¹¹⁰, F.U. Bernlochner ²¹, T. Berry ⁷⁷, P. Berta ¹²⁹, C. Bertella ⁸³, G. Bertoli ^{146a,146b}, F. Bertolucci ^{124a,124b}, C. Bertsche ¹¹³, D. Bertsche ¹¹³, M.I. Besana ^{91a}, G.J. Besjes ³⁶, O. Bessidskaia Bylund ^{146a,146b}, M. Bessner ⁴², N. Besson ¹³⁶, C. Betancourt ⁴⁸, S. Bethke ¹⁰¹, A.J. Bevan ⁷⁶, W. Bhimji ¹⁵, R.M. Bianchi ¹²⁵, L. Bianchini ²³, M. Bianco ³⁰, O. Biebel ¹⁰⁰, D. Biedermann ¹⁶, S.P. Bieniek ⁷⁸, M. Biglietti ^{134a}, J. Bilbao De Mendizabal ⁴⁹, H. Bilokon ⁴⁷, M. Bindi ⁵⁴, S. Binet ¹¹⁷, A. Bingul ^{13b}, C. Bini ^{132a,132b}, S. Biondi ^{202,200}, C.W. Black ¹⁵⁰, J.E. Black ¹⁴³, K.M. Black ²², D. Blackburn ¹³⁸, R.E. Blair ⁶, J.-B. Blanchard ¹³⁶, J.E. Blanco ⁷⁷, T. Blazek ^{144a}, I. Bloch ⁴², C. Blocker ²³, W. Blum ^{83,*}, U. Blumenschein ⁵⁴, G.J. Bobbink ¹⁰⁷, V.S. Bobrownikov ^{109,c}, S.S. Bocchetta ⁸¹, A. Bocci ⁴⁵, C. Bock ¹⁰⁰, M. Boehler ⁴⁸, J.A. Bogaerts ³⁰, D. Bogavac ¹³, A.G. Bogdanchikov ¹⁰⁹, C. Bohm ^{146a}, V. Boisvert ⁷⁷, T. Bold ^{38a}, V. Boltea ^{26a}, A.S. Boldyrev ⁹⁹, M. Bomben ⁸⁰, M. Bona ⁷⁶, M. Boonekamp ¹³⁶, A. Borisov ¹³⁰, G. Borissov ⁷², S. Borroni ⁴², J. Bouffard ², E.V. Bouhova-Thacker ⁷², D. Boumediene ³⁴, C. Bouctarios ¹¹⁷, N. Bousson ¹¹⁴, A. Boveia ³⁰, J. Boyd³⁰, I.R. Boyko ⁶⁵, I. Bozic ¹³, J. Bracinik ¹⁸, A. Brandt ⁸, G. Brandt ⁵⁴, O. Brandt ^{58a}, U. Bratzler ¹⁵⁶, B. Brau ⁸⁶, J.E. Brau ¹¹⁶, H.M. Branu ^{175,*}, S.F. Brazzale ^{164a,164c}

251

N. Calace ⁴⁹, P. Calafiura ¹⁵, A. Calandri ¹³⁶, G. Calderini ⁸⁰, P. Calfayan ¹⁰⁰, L.P. Caloba ^{24a}, D. Calvet ³⁴, S. Calvet ³⁴, R. Camacho Toro ³¹, S. Camarda ⁴², P. Camarri ^{133a,133b}, D. Cameron ¹¹⁹, R. Caminal Armadans ¹⁶⁵, S. Campana ³⁰, M. Campanelli ⁷⁸, A. Campoverde ¹⁴⁸, V. Canale ^{104a,104b}, A. Canepa ^{159a}, M. Cano Bret ^{33e}, J. Cantero ⁸², R. Cantrill ^{126a}, T. Cao ⁴⁰, M.D.M. Capeans Garrido ³⁰, I. Caprini ^{26a}, M. Caprini ^{26a}, M. Capua ^{37a,37b}, R. Caputo ⁸³, R. Cardarelli ^{133a}, F. Cardillo ⁴⁸, T. Carli ³⁰, G. Carlino ^{104a}, L. Carminati ^{91a,91b}, S. Caron ¹⁰⁶, E. Carquin ^{32a}, G.D. Carrillo-Montoya ⁸, J.R. Carter ²⁸, J. Carvalho^{126a,126c}, D. Casadei⁷⁸, M.P. Casado¹², M. Casolino¹², E. Castaneda-Miranda^{145b}, A. Castelli ¹⁰⁷, V. Castillo Gimenez ¹⁶⁷, N.F. Castro ^{126a,g}, P. Catastini ⁵⁷, A. Catinaccio ³⁰, J.R. Catmore ¹¹⁹, A. Cattai ³⁰, J. Caudron ⁸³, V. Cavaliere ¹⁶⁵, D. Cavalli ^{91a}, M. Cavalli-Sforza ¹², V. Cavasinni ^{124a,124b}, F. Ceradini ^{134a,134b}, B.C. Cerio ⁴⁵, K. Cerny ¹²⁹, A.S. Cerqueira ^{24b}, A. Cerri ¹⁴⁹, L. Cerrito ⁷⁶, F. Cerutti ¹⁵, ¹²⁶ F. Ceradini ^{134a,134b}, B.C. Cerio ⁴⁵, K. Cerny ¹²⁹, A.S. Cerqueira ^{24b}, A. Cerri ¹⁴⁹, L. Cerrito ⁷⁶, F. Cerutti ¹⁵, M. Cerv ³⁰, A. Cervelli ¹⁷, S.A. Cetin ^{19c}, A. Chafaq ^{135a}, D. Chakraborty ¹⁰⁸, I. Chalupkova ¹²⁹, P. Chang ¹⁶⁵, J.D. Chapman ²⁸, D.G. Charlton ¹⁸, C.C. Chau ¹⁵⁸, C.A. Chavez Barajas ¹⁴⁹, S. Cheatham ¹⁵², A. Chegwidden ⁹⁰, S. Chekanov ⁶, S.V. Chekulaev ^{159a}, G.A. Chelkov ^{65,h}, M.A. Chelstowska ⁸⁹, C. Chen ⁶⁴, H. Chen ²⁵, K. Chen ¹⁴⁸, L. Chen ^{33d,i}, S. Chen ^{33c}, X. Chen ^{33f}, Y. Chen ⁶⁷, H.C. Cheng ⁸⁹, Y. Cheng ³¹, A. Cheplakov ⁶⁵, E. Cheremushkina ¹³⁰, R. Cherkaoui El Moursli ^{135e}, V. Chernyatin ^{25,*}, E. Cheu ⁷, L. Chevalier ¹³⁶, V. Chiarella ⁴⁷, G. Chiarelli ^{124a,124b}, J.T. Childers ⁶, G. Chiodini ^{73a}, A.S. Chisholm ¹⁸, R.T. Chislett ⁷⁸, A. Chitan ^{26a}, M.V. Chizhov ⁶⁵, K. Choi ⁶¹, S. Chouridou ⁹, B.K.B. Chow ¹⁰⁰, V. Christodoulou ⁷⁸, D. Chromek-Burckhart ³⁰, J. Chudoba ¹²⁷, A.J. Chuinard ⁸⁷, J.J. Chwastowski ³⁹, L. Chytka ¹¹⁵, G. Ciapetti ^{132a,132b}, A.K. Ciftci ^{4a}, D. Cinca ⁵³, V. Cindro ⁷⁵, I.A. Cioara ²¹, A. Ciocio ¹⁵, Z.H. Citron ¹⁷², M. Ciubancan ^{26a}, A. Clark ⁴⁹, B.L. Clark ⁵⁷, P.J. Clark ⁴⁶, R.N. Clarke ¹⁵, W. Cleland ¹²⁵, C. Clement ^{146a,146b}, Y. Coadou ⁸⁵, M. Cobal ^{164a,164c}, A. Coccaro ¹³⁸, J. Cochran ⁶⁴, L. Coffey ²³, J.G. Cogan ¹⁴³, L. Colasurdo ¹⁰⁶, B. Cole ³⁵, S. Cole ¹⁰⁸, A.P. Colijn ¹⁰⁷, J. Collot ⁵⁵, T. Colombo ^{58c}, G. Compostella ¹⁰¹, P. Conde Muiño ^{126a,126b}, E. Coniavitis ⁴⁸, S.H. Connell ^{145b}, I.A. Connelly ⁷⁷, G. Compostella¹⁰¹, P. Conde Muiño^{126a,126b}, E. Coniavitis⁴⁸, S.H. Connell^{145b}, I.A. Connelly⁷⁷, S.M. Consonni^{91a,91b}, V. Consorti⁴⁸, S. Constantinescu^{26a}, C. Conta^{121a,121b}, G. Conti³⁰, F. Conventi^{104a,j}, M. Cooke ¹⁵, B.D. Cooper ⁷⁸, A.M. Cooper-Sarkar ¹²⁰, T. Cornelissen ¹⁷⁵, M. Corradi ^{20a}, F. Corriveau ^{87,k}, A. Corso-Radu ¹⁶³, A. Cortes-Gonzalez ¹², G. Cortiana ¹⁰¹, G. Costa ^{91a}, M.J. Costa ¹⁶⁷, D. Costanzo ¹³⁹, D. Côté⁸, G. Cottin²⁸, G. Cowan⁷⁷, B.E. Cox⁸⁴, K. Cranmer¹¹⁰, G. Cree²⁹, S. Crépé-Renaudin⁵⁵, F. Crescioli⁸⁰, W.A. Cribbs ^{146a,146b}, M. Crispin Ortuzar¹²⁰, M. Cristinziani²¹, V. Croft¹⁰⁶, G. Crosetti ^{37a,37b}, T. Cuhadar Donszelmann¹³⁹, J. Cummings¹⁷⁶, M. Curatolo⁴⁷, C. Cuthbert¹⁵⁰, H. Czirr¹⁴¹, P. Czodrowski³, S. D'Auria⁵³, M. D'Onofrio⁷⁴, M.J. Da Cunha Sargedas De Sousa^{126a,126b}, C. Da Via⁸⁴, W. Dabrowski^{38a}, A. Dafinca¹²⁰, T. Dai⁸⁹, O. Dale¹⁴, F. Dallaire⁹⁵, C. Dallapiccola⁸⁶, M. Dam³⁶, J.R. Dandoy³¹, N.P. Dang⁴⁸, A.C. Daniells¹⁸, M. Danninger¹⁶⁸, M. Dano Hoffmann¹³⁶, V. Dao⁴⁸, G. Darbo^{50a}, S. Darmora⁸, J. Dassoulas³, A. Dattagupta⁶¹, W. Davey²¹, C. David¹⁶⁹, T. Davidek¹²⁹, E. Davies^{120,1}, M. Davies¹⁵³, P. Davison⁷⁸, Y. Davygora^{58a}, E. Dawe⁸⁸, I. Dawson¹³⁹, R.K. Daya-Ishmukhametova⁸⁶, K. De⁸, R. de Asmundis^{104a}, A. De Benedetti¹¹³, S. De Castro^{20a,20b}, S. De Cecco⁸⁰, N. De Groot¹⁰⁶, P. de Jong¹⁰⁷, H. De la Torre⁸², F. De Lorenzi⁶⁴, L. De Nooij¹⁰⁷, D. De Pedis ^{132a}, A. De Salvo ^{132a}, U. De Sanctis ¹⁴⁹, A. De Santo ¹⁴⁹, J.B. De Vivie De Regie ¹¹⁷, W.J. Dearnaley ⁷², R. Debbe ²⁵, C. Debenedetti ¹³⁷, D.V. Dedovich ⁶⁵, I. Deigaard ¹⁰⁷, J. Del Peso ⁸², W.J. Dearnaley ⁷², R. Debbe²³, C. Debenedetti ¹²⁷, D.V. Dedovich¹⁵, I. Deigadu¹⁶, J. Dei reso¹⁷, T. Del Prete^{124a,124b}, D. Delgove¹¹⁷, F. Deliot¹³⁶, C.M. Delitzsch⁴⁹, M. Deliyergiyev⁷⁵, A. Dell'Acqua³⁰, L. Dell'Asta²², M. Dell'Orso^{124a,124b}, M. Della Pietra^{104a,j}, D. della Volpe⁴⁹, M. Delmastro⁵, P.A. Delsart⁵⁵, C. Deluca¹⁰⁷, D.A. DeMarco¹⁵⁸, S. Demers¹⁷⁶, M. Demichev⁶⁵, A. Demilly⁸⁰, S.P. Denisov¹³⁰, D. Derendarz³⁹, J.E. Derkaoui^{135d}, F. Derue⁸⁰, P. Dervan⁷⁴, K. Desch²¹, C. Deterre⁴², ²⁰ P.O. Deviveiros ³⁰, A. Dewhurst ¹³¹, S. Dhaliwal ²³, A. Di Ciaccio ^{133a,133b}, L. Di Ciaccio ⁵, A. Di Domenico ^{132a,132b}, C. Di Donato ^{104a,104b}, A. Di Girolamo ³⁰, B. Di Girolamo ³⁰, A. Di Mattia ¹⁵², B. Di Micco^{134a,134b}, R. Di Nardo⁴⁷, A. Di Simone⁴⁸, R. Di Sipio¹⁵⁸, D. Di Valentino²⁹, C. Diaconu⁸⁵, M. Diamond ¹⁵⁸, F.A. Dias ⁴⁶, M.A. Diaz ^{32a}, E.B. Diehl ⁸⁹, J. Dietrich ¹⁶, S. Diglio ⁸⁵, A. Dimitrievska ¹³, J. Dingfelder ²¹, P. Dita ^{26a}, S. Dita ^{26a}, F. Dittus ³⁰, F. Djama ⁸⁵, T. Djobava ^{51b}, J.I. Djuvsland ^{58a}, M.A.B. do Vale ^{24c}, D. Dobos ³⁰, M. Dobre ^{26a}, C. Doglioni ⁸¹, T. Dohmae ¹⁵⁵, J. Dolejsi ¹²⁹, Z. Dolezal ¹²⁹, B.A. Dolgoshein ^{98,*}, M. Donadelli ^{24d}, S. Donati ^{124a,124b}, P. Dondero ^{121a,121b}, J. Donini ³⁴, J. Dopke ¹³¹, A. Doria ^{104a}, M.T. Dova ⁷¹, A.T. Doyle ⁵³, E. Drechsler ⁵⁴, M. Dris ¹⁰, E. Dubreuil ³⁴, E. Duchovni ¹⁷², G. Duckeck ¹⁰⁰, O.A. Ducu ^{26a,85}, D. Duda ¹⁰⁷, A. Dudarev ³⁰, L. Duflot ¹¹⁷, L. Duguid ⁷⁷, M. Dührssen ³⁰, M. Dunford ^{58a}, H. Duran Yildiz ^{4a}, M. Düren ⁵², A. Durglishvili ^{51b}, D. Duschinger ⁴⁴, M. Dyndal ^{38a},

 23
 Secande 42, K.M. Ecker ¹⁰, R.C. Edgar ⁸⁹, W. Edson², N.C. Edwards ⁴⁶, W. Ehrenfeld ²¹, T. Eifert ³⁰, Eigen ¹⁴, K. Einsweiler ¹⁵, T. Ekelof ¹⁶⁶, M. El Kacimi ¹³⁵, M. Ellert ¹⁶⁶, S. Elles ⁵, F. Ellinghaus ¹⁷⁵, A. Elliot ¹⁶⁹, N. Ellis ³⁰, J. Emsheuser ¹⁰⁰, M. Elsing ³⁰, D. Emelyanov ¹³¹, Y. Brant ¹³⁵, O.C. Endner ⁸⁷, M. Hot ¹⁸, J. F. Hotman ⁴¹, A. Ereditato ¹⁷, G. Ernis ¹⁷⁵, J. Ernst ², M. Ernst ²⁵, S. Errede ¹⁶⁵, E. Ertel⁸³, M. Eschiller ¹¹⁷, H. Esch ⁴³, C. Escobar ¹²⁵, B. Esposito ⁴⁷, A. I. Etienver ¹³⁶, F. Etzion ¹³², R.J. Falla ⁷⁸, J. Fallova ¹²⁹, Y. Eagl ³³, M. Fatt ¹³⁴, M. Fakhrutdinov ¹³⁰, S. Falcianol ¹²², N.J. Farrell ⁷⁵, S. Farrell ⁷⁵, M. Fartington ¹⁷⁰, P. Farthouz ³⁰, F. Fassi ¹³⁵, P. Fassnacht ⁴⁰, D. Fassouliotis ⁹, M. Faucci Giannell ⁷⁷, A. Favareto ^{300, 505}, J. Fayard ¹¹⁷, P. Federic ¹⁴⁴, O.L. Ferrari ¹⁰⁷, R. Ferrari ¹²¹, D. E. Ferreri ⁴⁰, J. Feligioni ⁸⁵, S. Ferrard ⁶⁶, S. Feigl ⁹⁰, J. Feligioni ⁸⁵, S. Ferrari ¹⁶⁶, P. Ferrari ¹⁶⁶, P. Ferrari ¹⁰⁷, R. Ferrari ¹²¹, D. E. Ferreri ⁴⁶, J. Ferreri ⁴⁷, D. Ferreri ⁴⁷, D. Ferreri ⁴⁷, D. Ferreri ⁴⁷, T. Fichelr³³, A. Ferretto Parodi ^{500, 500}, M. Fiascini ³¹, F. Fiedler⁸³, A. Ferretto Parodi ^{500, 500}, M. Fiascini ³¹, F. Fiedler⁸³, A. Ferretto ¹⁶⁷, A. Firara ⁴⁰, A. Fischer ¹⁷, J. Fischer ¹⁷⁵, W.C. Fisher ⁹⁰, E.A. Fitzgerald²⁵, H. Fiedler⁸³, A. Forretto ¹⁸⁶, A. Forretto ¹⁸⁶, M. Franchill ¹⁵⁰, M. C. N. Fiolasi ¹²⁶, ¹²⁶, ¹²⁶, ¹²⁶, ¹²⁶, ¹²⁷, M. Filipuzzi ⁴², F. Filck ¹⁶⁶, M. Fraces astillo ⁶⁰⁰, M. Franchill ¹⁵⁰, M. C. Finchias ¹⁴⁸, F. Fiedler⁸³, A. Forretto ¹⁸⁶, S. Galdoton ⁵⁵, J. Galditon ¹⁵⁰, G. Galston ¹⁵⁰, G. K. Furanci ¹⁸⁷, M. Forneto ⁸⁸, S. Fiescher ¹⁷⁵, G. F. Hetcher ¹⁸⁹, G. Furser ¹⁸⁶, M. Fraternali ^{1214, 121}, D. Freeborn ⁷⁸, S. F. French ²⁸, F. Fiedlich ⁴¹, P. Froideta ⁴¹⁰, P. Galdon ⁵⁵, J. Galditon ¹⁵⁶, J. G C. Ginles ⁹, D.M. Glugrich ^{91a}, N. Glokaris ⁹, M.P. Glordani ¹⁵, M.M. Glorgi ¹⁵⁵, F.M. Glorgi ¹⁵⁵, P.M. Glorgi ¹⁵⁵, P.K. Gjelsten ¹¹⁹, S. Gkaitatzis ¹⁵⁴, I. Gkialas ¹⁵⁴, E.L. Gkougkousis ¹¹⁷, L.K. Gladilin ⁹⁹, C. Glasman ⁸², J. Glatzer ³⁰, P.C.F. Glaysher ⁴⁶,
A. Glazov ⁴², M. Goblirsch-Kolb ¹⁰¹, J.R. Goddard ⁷⁶, J. Godlewski ³⁹, S. Goldfarb ⁸⁹, T. Golling ⁴⁹,
D. Golubkov ¹³⁰, A. Gomes ^{126a,126b,126d}, R. Gonçalo ^{126a}, J. Goncalves Pinto Firmino Da Costa ¹³⁶,
L. Gonella ²¹, S. González de la Hoz ¹⁶⁷, G. Gonzalez Parra ¹², S. Gonzalez-Sevilla ⁴⁹, L. Goossens ³⁰,
P.A. Gorbounov ⁹⁷, H.A. Gordon ²⁵, I. Gorelov ¹⁰⁵, B. Gorini ³⁰, E. Gorini ^{73a,73b}, A. Gorišek ⁷⁵, E. Gornicki ³⁹,
A.T. Goshaw ⁴⁵, C. Gössling ⁴³, M.I. Gostkin ⁶⁵, D. Goujdani ^{135c}, A.G. Goussiou ¹³⁸, N. Govender ^{145b},
E. Gozani ¹⁵², H.M.X. Grabas ¹³⁷, L. Graber ⁵⁴, I. Grabowska-Bold ^{38a}, P. Grafström ^{20a,20b}, K-J. Grahn ⁴²,
J. Gramling ⁴⁹, E. Gramstad ¹¹⁹, S. Grancagnolo ¹⁶, V. Grassi ¹⁴⁸, V. Cratchev ¹²³, H.M. Gray ³⁰,
E. Graziani ^{134a}, Z.D. Greenwood ^{79,n}, K. Gregersen ⁷⁸, I.M. Gregor ⁴², P. Grenier ¹⁴³, J. Griffiths ⁸,
A.A. Grillo ¹³⁷, K. Grimm ⁷², S. Grinstein ^{12,o}, Ph. Gris ³⁴, J.-F. Grivaz ¹¹⁷, J.P. Grohs ⁴⁴, A. Grohsjean ⁴²,
E. Gross ¹⁷², J. Grosse-Knetter ⁵⁴, G.C. Grossi ⁷⁹, Z.J. Grout ¹⁴⁹, L. Guan ⁸⁹, J. Guenther ¹²⁸, F. Guescini ⁴⁹,
D. Guest ¹⁷⁶, O. Gueta ¹⁵³, E. Guido ^{50a,50b}, T. Guillemin ¹¹⁷, S. Guindon ², U. Gul ⁵³, C. Gumpert ⁴⁴,
J. Guo ^{33e}, Y. Guo ^{33b}, S. Gupta ¹²⁰, G. Gustavino ^{132a,132b}, P. Gutierrez ¹¹³, N.G. Gutierrez Ortiz ⁵³,
C. Gutschow ⁴⁴, C. Guyot ¹³⁶, C. Gwenlan ¹²⁰, C.B. Gwilliam ⁷⁴, A. Haas ¹¹⁰, C. Haber ¹⁵, H.K. Hadavand ⁸,
N. Haddad ^{135e}, P. Haefner ²¹, S. Hageböck ²¹, Z. Hajduk ³⁹, H. Hakobyan ¹⁷⁷

A.D. Hawkins⁸¹, T. Hayashi¹⁶⁰, D. Hayden⁹⁰, C.P. Hays¹²⁰, J.M. Hays⁷⁶, H.S. Hayward⁷⁴, S.J. Haywood¹³¹, S.J. Head¹⁸, T. Heck⁸³, V. Hedberg⁸¹, L. Heelan⁸, S. Heim¹²², T. Heim¹⁷⁵, B. Heinemann¹⁵, L. Heinrich¹¹⁰, J. Hejbal¹²⁷, L. Helary²², S. Hellman^{146a,146b}, D. Hellmich²¹, C. Helsens¹², J. Henderson¹²⁰, R.C.W. Henderson⁷², Y. Heng¹⁷³, C. Hengler⁴², A. Henrichs¹⁷⁶, A.M. Henrichs³⁰, C. Hengler⁴², A. Henrichs¹⁷⁶, C. Helsens ¹², J. Henderson ¹²⁰, R.C.W. Henderson ⁷², Y. Heng ¹⁷³, C. Hengler ⁴², A. Henrichs ¹⁷⁶, A.M. Henriques Correia ³⁰, S. Henrot-Versille ¹¹⁷, G.H. Herbert ¹⁶, Y. Hernández Jiménez ¹⁶⁷, R. Herrberg-Schubert ¹⁶, G. Herten ⁴⁸, R. Hertenberger ¹⁰⁰, L. Hervas ³⁰, G.G. Hesketh ⁷⁸, N.P. Hessey ¹⁰⁷, J.W. Hetherly ⁴⁰, R. Hickling ⁷⁶, E. Higón-Rodriguez ¹⁶⁷, E. Hill ¹⁶⁹, J.C. Hill ²⁸, K.H. Hiller ⁴², S.J. Hillier ¹⁸, I. Hinchliffe ¹⁵, E. Hines ¹²², R.R. Hinman ¹⁵, M. Hirose ¹⁵⁷, D. Hirschbuehl ¹⁷⁵, J. Hobbs ¹⁴⁸, N. Hod ¹⁰⁷, M.C. Hodgkinson ¹³⁹, P. Hodgson ¹³⁹, A. Hoecker ³⁰, M.R. Hoeferkamp ¹⁰⁵, F. Hoenig ¹⁰⁰, M. Hohlfeld ⁸³, D. Hohn ²¹, T.R. Holmes ¹⁵, M. Homann ⁴³, T.M. Hong ¹²⁵, L. Hooft van Huysduynen ¹¹⁰, W.H. Hopkins ¹¹⁶, Y. Horii ¹⁰³, A.J. Horton ¹⁴², J-Y. Hostachy ⁵⁵, S. Hou ¹⁵¹, A. Hoummada ^{135a}, J. Howard ¹²⁰, J. Howarth ⁴², M. Hrabovsky ¹¹⁵, I. Hristova ¹⁶, J. Hrivnac ¹¹⁷, T. Hryn'ova ⁵, A. Hrynevich ⁹³, C. Hsu ^{145c}, P.J. Hsu ^{151,p}, S.-C. Hsu ¹³⁸, D. Hu ³⁵, Q. Hu ^{33b}, X. Hu ⁸⁹, Y. Huang ⁴², Z. Hubacek ¹²⁸, F. Hubaut ⁸⁵, F. Huegging ²¹, T.B. Huffman ¹²⁰, E.W. Hughes ³⁵, G. Hughes ⁷², M. Huhtinen ³⁰, T.A. Hülsing ⁸³, N. Huseynov ^{65,b}, J. Huston ⁹⁰, J. Huth ⁵⁷, G. Iacobucci ⁴⁹, G. Iakovidis ²⁵, I. Ibragimov ¹⁴¹, L. Iconomidou-Fayard ¹¹⁷, E. Ideal ¹⁷⁶, Z. Idrissi ^{135e}, P. Iengo ³⁰, O. Igonkina ¹⁰⁷, T. Iizawa ¹⁷¹, Y. Ikegami ⁶⁶, K. Ikematsu ¹⁴¹, M. Ikeno ⁶⁶, Y. Ilchenko ^{31,q}, D. Iliadis ¹⁵⁴, N. Ilic ¹⁴³, T. Ince ¹⁰¹, G. Introzzi ^{121a,121b}, P. Ioannou ⁹, M. Iodice ^{134a}, K. Iordanidou ³⁵, V. Ippolito ⁵⁷, A. Irles Quiles ¹⁶⁷, C. Isaksson ¹⁶⁶, M. Ishino ⁶⁸, E. Ideal ¹⁷⁶, Z. Idrissi ^{135e}, P. Jengo ³⁰, O. Jgonkina ¹⁰⁷, T. Jizawa ¹⁷¹, Y. Ikegami ⁶⁶, K. Ikematsu ¹⁴¹, M. Ikeno ⁶⁶, Y. Ilchenko ^{31,4}, D. Iliadis ¹⁵⁴, N. Ilic ¹⁴³, T. Ince ¹⁰¹, G. Introzzi ^{121,121}, 121, P. Ioannou ⁹, M. Iodice ¹³⁴⁴, K. Iordanidou ³⁵, V. Ippolito ⁵⁷, A. Irles Quiles ¹⁶⁷, C. Isaksson ¹⁶⁶, M. Ishino ⁶⁸, M. Ishinukhametov ¹¹¹, C. Issever ¹²⁰, S. Istin ^{19a}, J.M. Iturbe Ponce ⁸⁴, R. Iuppa ^{133a,133b}, J. Varsson ⁸¹, W. Iwanski ³⁹, H. Iwasaki ⁶⁶, J.M. Izen ⁴¹, V. Izzo ¹⁰⁴⁴, S. Jabbar³, B. Jackson ¹²², M. Jackson ⁷⁴, P. Jackson ¹, M.R. Jaekel ³⁰, V. Jain ², K. Jakobs ⁴⁸, S. Jakobsen ³⁰, T. Jakoubek ¹²⁷, J. Jakubek ¹²⁸, D.O. Jamin ¹¹⁴, D.K. Janz ⁷⁹, E. Jansen ⁷², R. Jansky ⁶², J. Janssen ²¹, M. Janus ⁷⁰, G. Jarlskog ⁸¹, N. Javadov ^{65,6}, T. Javürek ⁴⁸, L. Jeanty ¹⁵, J. Jejelava ^{514,7}, G.-Y. Jeng ¹⁵⁰, D. Jennens ⁸⁸, P. Jenni ^{465,3}, J. Jentzsch ⁴³, C. Jeske ¹⁷⁰, S. Jézéquel ⁵, H. Ji ¹⁷³, J. Jia ¹⁴⁴, Y. Jiang ³³⁵, S. Jiggins ⁷⁸, J. Jimenez Pena ¹⁶⁷, S. Jin ^{33a}, A. Jinaru ²⁶⁴, O. Jinnouchi ¹⁵⁷, M.D. Joergensens ⁶, P. Johansson ¹³⁹, K.A. Johns ⁷, K. Jon-And ^{146a,146b}, G. Jones ¹⁷⁰, R.W.L Jones ⁷², T.J. Jones ⁷⁴, J. Jongmanns ⁵⁸⁴, P. M. Jorge ^{126a,126b}, K.D. Joshi ⁸⁴, J. Jovicevic ^{159a}, X. Ju ¹⁷³, C.A. Jung ⁴³, P. Jussel ⁶², A. Juste Rozas ^{12,o}, M. Kaci ¹⁶⁷, A. Kaczmarska ³⁹, M. Kado ¹¹⁷, H. Kagan ¹¹¹, M. Kagan ¹⁴³, S.J. Kalnha ⁵⁵, E. Kajomovitz ⁴⁵, C.W. Kalderon ¹²⁰, S. Kama ⁴⁰, A. Kamenshchikov ¹³⁰, N. Karapov ⁶⁵, Z.M. Karapova ⁶⁵, K. Karthik ¹¹⁰, V. Kartsuthis ^{10,107}, M.J. Kareem ⁵⁴, M. Karnevskij ⁸³, S.N. Karapov ⁶⁵, Z.M. Karapova ⁶⁵, K. Karthik ¹⁰⁰, V. Kartsuthis ^{10,107}, M.J. Kareem ⁵⁴, M. Karnevskij ⁸³, S.N. Karapov ⁶⁵, Z.M. Karapova ⁶⁵, K. Karthik ¹⁰⁰, V. Kartsuthis ^{10,107}, M.J. Kareem ⁵⁴, M. Karnevskij ⁸³, S.N. Karapov ⁶⁵, Z.M. Karapova ⁶⁵, K. Karthik ¹⁰⁰, V. Kartsuthishi V.V. Kostyukhin²¹, V.M. Kotov⁶⁵, A. Kotwal⁴⁵, A. Kourkoumeli-Charalampidi¹⁵⁴, C. Kourkoumelis⁹, V. Kouskoura²⁵, A. Koutsman^{159a}, R. Kowalewski¹⁶⁹, T.Z. Kowalski^{38a}, W. Kozanecki¹³⁶, A.S. Kozhin¹³⁰, V. Kouskoula ⁹, K. Koushian ⁹, K. Kowalewski ⁹, 1.2. Kowalski ⁹, W. Kozanecki ⁹, A.S. Kozini ⁹, V.A. Kramarenko ⁹⁹, G. Kramberger ⁷⁵, D. Krasnopevtsev ⁹⁸, M.W. Krasny ⁸⁰, A. Krasznahorkay ³⁰, J.K. Kraus ²¹, A. Kravchenko ²⁵, S. Kreiss ¹¹⁰, M. Kretz ^{58c}, J. Kretzschmar ⁷⁴, K. Kreutzfeldt ⁵², P. Krieger ¹⁵⁸, K. Krizka ³¹, K. Kroeninger ⁴³, H. Kroha ¹⁰¹, J. Kroll ¹²², J. Kroseberg ²¹, J. Krstic ¹³, U. Kruchonak ⁶⁵, H. Krüger ²¹, N. Krumnack ⁶⁴, A. Kruse ¹⁷³, M.C. Kruse ⁴⁵, M. Kruskal ²², T. Kubota ⁸⁸, H. Kucuk ⁷⁸,

S. Kuday^{4b}, S. Kuehn⁴⁸, A. Kugel^{58c}, F. Kuger¹⁷⁴, A. Kuhl¹³⁷, T. Kuhl⁴², V. Kukhtin⁶⁵, Y. Kulchitsky⁹², S. Kuleshov ^{32b}, M. Kuna ^{132a,132b}, T. Kunigo ⁶⁸, A. Kupco ¹²⁷, H. Kurashige ⁶⁷, Y.A. Kurochkin ⁹², V. Kus ¹²⁷, E.S. Kuwertz ¹⁶⁹, M. Kuze ¹⁵⁷, J. Kvita ¹¹⁵, T. Kwan ¹⁶⁹, D. Kyriazopoulos ¹³⁹, A. La Rosa ¹³⁷, J.L. La Rosa Navarro ^{24d}, L. La Rotonda ^{37a,37b}, C. Lacasta ¹⁶⁷, F. Lacava ^{132a,132b}, J. Lacey ²⁹, H. Lacker ¹⁶, D. Lacour ⁸⁰, V.R. Lacuesta ¹⁶⁷, E. Ladygin ⁶⁵, R. Lafaye ⁵, B. Laforge ⁸⁰, T. Lagouri ¹⁷⁶, S. Lai ⁵⁴, L. Lambourne ⁷⁸, S. Lammers ⁶¹, C.L. Lampen ⁷, W. Lampl ⁷, E. Lançon ¹³⁶, U. Landgraf ⁴⁸, M.P.J. Landon ⁷⁶, M. Kuse ¹⁶³, F. Lange ¹², A. Lamper ¹², A. Lamper ¹², J. Lange ⁸⁰, A. Lampe ¹², J. Lange ⁸⁰, J. Lan V.S. Lang^{58a}, J.C. Lange¹², A.J. Lankford¹⁶³, F. Lanni²⁵, K. Lantzsch³⁰, A. Lanza^{121a}, S. Laplace⁸⁰, C. Lapoire³⁰, J.F. Laporte¹³⁶, T. Lari^{91a}, F. Lasagni Manghi^{20a,20b}, M. Lassnig³⁰, P. Laurelli⁴⁷, W. Lavrijsen¹⁵, A.T. Law¹³⁷, P. Laycock⁷⁴, T. Lazovich⁵⁷, O. Le Dortz⁸⁰, E. Le Guirriec⁸⁵, E. Le Menedeu¹², M. LeBlanc¹⁶⁹, T. LeCompte⁶, F. Ledroit-Guillon⁵⁵, C.A. Lee^{145b}, S.C. Lee¹⁵¹, L. Lee¹, G. Lefebvre ⁸⁰, M. Lefebvre ¹⁶⁹, F. Legger ¹⁰⁰, C. Leggett ¹⁵, A. Lehan ⁷⁴, G. Lehmann Miotto ³⁰, X. Lei ⁷, W.A. Leight ²⁹, A. Leisos ^{154, v}, A.G. Leister ¹⁷⁶, M.A.L. Leite ^{24d}, R. Leitner ¹²⁹, D. Lellouch ¹⁷², B. Lemmer ⁵⁴, K.J.C. Leney ⁷⁸, T. Lenz ²¹, B. Lenzi ³⁰, R. Leone ⁷, S. Leone ^{124a,124b}, C. Leonidopoulos ⁴⁶, S. Leontsinis ¹⁰, K.J.C. Leney ⁷⁸, T. Lenz ²¹, B. Lenzi ³⁰, R. Leone ⁷, S. Leone ^{124a,124b}, C. Leonidopoulos ⁴⁶, S. Leontsinis¹⁰, C. Leroy ⁹⁵, C.G. Lester ²⁸, M. Levchenko ¹²³, J. Levêque ⁵, D. Levin ⁸⁹, L.J. Levinson ¹⁷², M. Levy ¹⁸, A. Lewis ¹²⁰, A.M. Leyko ²¹, M. Leyton ⁴¹, B. Li ^{33b,w}, H. Li ¹⁴⁸, H.L. Li ³¹, L. Li ⁴⁵, L. Li ^{33e}, S. Li ⁴⁵, Y. Li ^{33c,x}, Z. Liang ¹³⁷, H. Liao ³⁴, B. Liberti ^{133a}, A. Liblong ¹⁵⁸, P. Lichard ³⁰, K. Lie ¹⁶⁵, J. Liebal ²¹, W. Liebig ¹⁴, C. Limbach ²¹, A. Limosani ¹⁵⁰, S.C. Lin ^{151,y}, T.H. Lin ⁸³, F. Linde ¹⁰⁷, B.E. Lindquist ¹⁴⁸, J.T. Linnemann ⁹⁰, E. Lipeles ¹²², A. Lipniacka ¹⁴, M. Lisovyi ^{58b}, T.M. Liss ¹⁶⁵, D. Lissauer ²⁵, A. Lister ¹⁶⁸, A.M. Litke ¹³⁷, B. Liu ^{151, z}, D. Liu ¹⁵¹, H. Liu ⁸⁹, J. Liu ⁸⁵, J.B. Liu ^{33b}, K. Liu ⁸⁵, L. Liu ¹⁶⁵, M. Liu ⁴⁵, M. Liu ^{33b}, Y. Liu ^{33b}, M. Livan ^{121a,121b}, A. Lleres ⁵⁵, J. Llorente Merino ⁸², S.L. Lloyd ⁷⁶, F. Lo Sterzo ¹⁵¹, E. Lobodzinska ⁴², P. Loch ⁷, W.S. Lockman ¹³⁷, F.K. Loebinger ⁸⁴, A.E. Loevschall-Jensen ³⁶, A. Loginov ¹⁷⁶, T. Lohse ¹⁶, K. Lohwasser ⁴², M. Lokajicek ¹²⁷, B.A. Long ²², J.D. Long ⁸⁹, R.E. Long ⁷², K.A. Looper ¹¹¹, L. Lopes ^{126a}, D. Lopez Mateos ⁵⁷, B. Lopez Paredes ¹³⁹, I. Lopez Paz ¹², J. Lorenz ¹⁰⁰, N. Lorenzo Martinez ⁶¹, M. Losada ¹⁶², P. Loscutoff ¹⁵, P.J. Lösel ¹⁰⁰, X. Lou ^{33a}, A. Lounis ¹¹⁷, J. Love ⁶, P.A. Love ⁷², N. Lu ⁸⁹, H.J. Lubatti ¹³⁸, C. Luci ^{132a,132b}, A. Lucotte ⁵⁵, F. Luehring ⁶¹, W. Lukas ⁶², L. Luminari ^{132a}, O. Lundberg ^{146a,146b}, B. Lund-Jensen ¹⁴⁷, D. Lynn ²⁵, R. Lysak ¹²⁷, E. Lytken ⁸¹, H. Ma ²⁵, L.L. Ma ^{33d}, G. Maccarrone ⁴⁷, A. Macchiolo ¹⁰¹, C.M. Macdonald ¹³⁹, J. Machado Miguens ^{122,126b}, D. Macina ³⁰, D. Madaffari ⁸⁵, R. Madar ³⁴, H.J. Maddocks ⁷², W.F. Mader ⁴⁴, A. Madsen ¹⁶⁶, S. Maeland ¹⁴, T. Maeno ²⁵, ¹⁵, ¹⁵, ¹⁵, ¹⁵, ¹⁵, ¹⁵, ¹⁵, ¹⁶, ¹⁶, ¹⁵, ¹⁶, ¹⁶, G. Maccarrone⁴⁷, A. Macchiolo¹⁰¹, C.M. Macdonald¹³⁵, J. Machado Miguens^{122,1265}, D. Macina³⁶, D. Madaffari⁸⁵, R. Madar³⁴, H.J. Maddocks⁷², W.F. Mader⁴⁴, A. Madsen¹⁶⁶, S. Maeland¹⁴, T. Maeno²⁵, A. Maevskiy⁹⁹, E. Magradze⁵⁴, K. Mahboubi⁴⁸, J. Mahlstedt¹⁰⁷, C. Maiani¹³⁶, C. Maidantchik^{24a}, A.A. Maier¹⁰¹, T. Maier¹⁰⁰, A. Maio^{126a,126b,126d}, S. Majewski¹¹⁶, Y. Makida⁶⁶, N. Makovec¹¹⁷, B. Malaescu⁸⁰, Pa. Malecki³⁹, V.P. Maleev¹²³, F. Malek⁵⁵, U. Mallik⁶³, D. Malon⁶, C. Malone¹⁴³, S. Maltezos¹⁰, V.M. Malyshev¹⁰⁹, S. Malyukov³⁰, J. Mamuzic⁴², G. Mancini⁴⁷, B. Mandelli³⁰, L. Mandelli^{91a}, I. Mandić⁷⁵, R. Mandrysch⁶³, J. Maneira^{126a,126b}, A. Manfredini¹⁰¹, L. Manhaes de Andrade Filho^{24b}, J. Manjarres Ramos^{159b}, A. Mann¹⁰⁰, P.M. Manning¹³⁷, A. Manousakis-Katsikakis⁹, B. Mansoulie¹³⁶, R. Mantifel⁸⁷, M. Mantoani⁵⁴, L. Mapelli³⁰, L. March^{145c}, G. Marchiori⁸⁰, M. Marcisovsky¹²⁷, C.P. Marino¹⁶⁹, M. Marjanovic¹³, D.E. Marley⁸⁹, F. Marroquim^{24a}, S.P. Marsden⁸⁴, Z. Marshall¹⁵, L.F. Marti¹⁷, S. Marti-Garcia¹⁶⁷, B. Martin⁹⁰, T.A. Martin¹⁷⁰, V.J. Martin⁴⁶, B. Martin dit Latour ¹⁴, M. Martinez ^{12,0}, S. Martin-Haugh ¹³¹, V.S. Martoiu ^{26a}, A.C. Martyniuk ⁷⁸, M. Marx ¹³⁸, F. Marzano ^{132a}, A. Marzin ³⁰, L. Masetti ⁸³, T. Mashimo ¹⁵⁵, R. Mashinistov ⁹⁶, J. Masik ⁸⁴, A.L. Maslennikov ^{109,c}, I. Massa ^{20a,20b}, L. Massa ^{20a,20b}, N. Massol ⁵, P. Mastrandrea ¹⁴⁸, A.L. Maslennikov ^{109, c}, I. Massa ^{20a,20b}, L. Massa ^{20a,20b}, N. Massol ⁵, P. Mastrandrea ¹⁴⁸, A. Mastroberardino ^{37a,37b}, T. Masubuchi ¹⁵⁵, P. Mättig ¹⁷⁵, J. Mattmann ⁸³, J. Maurer ^{26a}, S.J. Maxfield ⁷⁴, D.A. Maximov ^{109, c}, R. Mazini ¹⁵¹, S.M. Mazza ^{91a,91b}, L. Mazzaferro ^{133a,133b}, G. Mc Goldrick ¹⁵⁸, S.P. Mc Kee ⁸⁹, A. McCarn ⁸⁹, R.L. McCarthy ¹⁴⁸, T.G. McCarthy ²⁹, N.A. McCubbin ¹³¹, K.W. McFarlane ^{56,*}, J.A. Mcfayden ⁷⁸, G. Mchedlidze ⁵⁴, S.J. McMahon ¹³¹, R.A. McPherson ^{169, k}, M. Medinnis ⁴², S. Meehan ^{145a}, S. Mehlhase ¹⁰⁰, A. Mehta ⁷⁴, K. Meier ^{58a}, C. Meineck ¹⁰⁰, B. Meirose ⁴¹, B.R. Mellado Garcia ^{145c}, F. Meloni ¹⁷, A. Mengarelli ^{20a,20b}, S. Menke ¹⁰¹, E. Meoni ¹⁶¹, K.M. Mercurio ⁵⁷, S. Mergelmeyer ²¹, P. Mermod ⁴⁹, L. Merola ^{104a,104b}, C. Meroni ^{91a}, F.S. Merritt ³¹, A. Messina ^{132a,132b}, J. Metcalfe ²⁵, A.S. Mete ¹⁶³, C. Meyer ⁸³, C. Meyer ¹²², J-P. Meyer ¹³⁶, J. Meyer ¹⁰⁷, R.P. Middleton ¹³¹, S. Miglioranzi ^{164a,164c}, L. Mijović ²¹, G. Mikenberg ¹⁷², M. Mikestikova ¹²⁷, M. Mikuž ⁷⁵, M. Milesi ⁸⁸, A. Milic ³⁰, D.W. Miller ³¹, C. Mills ⁴⁶, A. Milov ¹⁷², D.A. Milstead ^{146a,146b}, A.A. Minaenko ¹³⁰, Y. Minami ¹⁵⁵, I.A. Minashvili ⁶⁵, A.I. Mincer ¹¹⁰, B. Mindur ^{38a}, M. Mineev ⁶⁵, Y. Ming ¹⁷³, L.M. Mir ¹², T. Mitani ¹⁷¹, J. Mitrevski ¹⁰⁰, V.A. Mitsou ¹⁶⁷, A. Miucci ⁴⁹, P.S. Miyagawa ¹³⁹, J.U. Mjörnmark ⁸¹,

255

T. Moa^{146a,146b}, K. Mochizuki⁸⁵, S. Mohapatra³⁵, W. Mohr⁴⁸, S. Molander^{146a,146b}, R. Moles-Valls²¹, K. Mönig⁴², C. Monini⁵⁵, J. Monk³⁶, E. Monnier⁸⁵, J. Montejo Berlingen¹², F. Monticelli⁷¹, S. Monzani ^{132a,132b}, R.W. Moore³, N. Morange¹¹⁷, D. Moreno ¹⁶², M. Moreno Llácer⁵⁴, P. Morettini ^{50a}, M. Morgenstern ⁴⁴, D. Mori ¹⁴², M. Morii ⁵⁷, M. Morinaga ¹⁵⁵, V. Morisbak ¹¹⁹, S. Moritz ⁸³, A.K. Morley ¹⁵⁰, G. Mornacchi ³⁰, J.D. Morris ⁷⁶, S.S. Mortensen ³⁶, A. Morton ⁵³, L. Morvaj ¹⁰³, M. Mosidze ^{51b}, J. Moss ¹¹¹, K. Motohashi ¹⁵⁷, R. Mount ¹⁴³, E. Mountricha ²⁵, S.V. Mouraviev ^{96,*}, E.J.W. Moyse ⁸⁶, S. Muanza ⁸⁵, R.D. Mudd ¹⁸, F. Mueller ¹⁰¹, J. Mueller ¹²⁵, R.S.P. Mueller ¹⁰⁰, T. Mueller ²⁸, D. Muenstermann ⁴⁹, P. Mullen ⁵³, G.A. Mullier ¹⁷, J.A. Murillo Quijada ¹⁸, W.J. Murray ^{170,131}, H. Musheghyan ⁵⁴, E. Musto ¹⁵², A.G. Myagkov ^{130,aa}, M. Myska ¹²⁸, O. Nackenhorst ⁵⁴, J. Nadal ⁵⁴, H. Musheghyan ⁵⁴, E. Musto ¹⁵², A.G. Myagkov ^{130,aa}, M. Myska ¹²⁸, O. Nackenhorst ⁵⁴, J. Nadal ⁵⁴, K. Nagai ¹²⁰, R. Nagai ¹⁵⁷, Y. Nagai ⁸⁵, K. Nagano ⁶⁶, A. Nagarkar ¹¹¹, Y. Nagasaka ⁵⁹, K. Nagata ¹⁶⁰, M. Nagel ¹⁰¹, E. Nagy ⁸⁵, A.M. Nairz ³⁰, Y. Nakahama ³⁰, K. Nakamura ⁶⁶, T. Nakamura ¹⁵⁵, I. Nakano ¹¹², H. Namasivayam ⁴¹, R.F. Naranjo Garcia ⁴², R. Narayan ³¹, T. Naumann ⁴², G. Navarro ¹⁶², R. Nayyar ⁷, H.A. Neal ⁸⁹, P.Yu. Nechaeva ⁹⁶, T.J. Neep ⁸⁴, P.D. Nef ¹⁴³, A. Negri ^{121a,121b}, M. Negrini ^{20a}, S. Nektarijevic ¹⁰⁶, C. Nellist ¹¹⁷, A. Nelson ¹⁶³, S. Nemecek ¹²⁷, P. Nemethy ¹¹⁰, A.A. Nepomuceno ^{24a}, M. Nessi ^{30,ab}, M.S. Neubauer ¹⁶⁵, M. Neumann ¹⁷⁵, R.M. Neves ¹¹⁰, P. Nevski ²⁵, P.R. Newman ¹⁸, D.H. Nguyen ⁶, R.B. Nickerson ¹²⁰, R. Nicolaidou ¹³⁶, B. Nicquevert ³⁰, J. Nielsen ¹³⁷, N. Nikiforou ³⁵, A. Nikiforov ¹⁶, V. Nikolaenko ^{130,aa}, I. Nikolic-Audit ⁸⁰, K. Nikolopoulos ¹⁸, J.K. Nilsen ¹¹⁹, P. Nilsson ²⁵, Y. Ninomiya ¹⁵⁵, A. Nisati ^{132a}, R. Nisius ¹⁰¹, T. Nobe ¹⁵⁵, M. Nomachi ¹¹⁸, I. Nomidis ²⁹, T. Nooney ⁷⁶, S. Norberg ¹¹³, M. Nordberg ³⁰, O. Novgorodova ⁴⁴, S. Nowak ¹⁰¹, M. Nozaki ⁶⁶, L. Nozka ¹¹⁵, K. Ntekas ¹⁰, G. Nunes Hanninger ⁸⁸ T. Nunnemann ¹⁰⁰ F. Nurse ⁷⁸ F. Nuti ⁸⁸ B.L. O'Brien ⁴⁶ F. O'grady ⁷ G. Nunes Hanninger⁸⁸, T. Nunnemann¹⁰⁰, E. Nurse⁷⁸, F. Nuti⁸⁸, B.J. O'Brien⁴⁶, F. O'grady⁷, D.C. O'Neil ¹⁴², V. O'Shea ⁵³, F.G. Oakham ^{29,d}, H. Oberlack ¹⁰¹, T. Obermann ²¹, J. Ocariz ⁸⁰, A. Ochi ⁶⁷, I. Ochoa ⁷⁸, J.P. Ochoa-Ricoux ^{32a}, S. Oda ⁷⁰, S. Odaka ⁶⁶, H. Ogren ⁶¹, A. Oh ⁸⁴, S.H. Oh ⁴⁵, C.C. Ohm ¹⁵, H. Ohman ¹⁶⁶, H. Oide ³⁰, W. Okamura ¹¹⁸, H. Okawa ¹⁶⁰, Y. Okumura ³¹, T. Okuyama ⁶⁶, A. Olariu ^{26a}, S.A. Olivares Pino ⁴⁶, D. Oliveira Damazio ²⁵, E. Oliver Garcia ¹⁶⁷, A. Olszewski ³⁹, J. Olszowska ³⁹, A. Onofre ^{126a,126e}, P.U.E. Onyisi ^{31,q}, C.J. Oram ^{159a}, M.J. Oreglia ³¹, Y. Oren ¹⁵³, D. Orestano ^{134a,134b}, N. Orlando ¹⁵⁴, C. Oropeza Barrera ⁵³, R.S. Orr ¹⁵⁸, B. Osculati ^{50a,50b}, R. Ospanov ⁸⁴, G. Otero y Garzon ²⁷, H. Otono⁷⁰, M. Ouchrif^{135d}, E.A. Ouellette¹⁶⁹, F. Ould-Saada¹¹⁹, A. Ouraou¹³⁶, K.P. Oussoren¹⁰⁷, Q. Ouyang^{33a}, A. Ovcharova¹⁵, M. Owen⁵³, R.E. Owen¹⁸, V.E. Ozcan^{19a}, N. Ozturk⁸, K. Pachal¹⁴², Q. Ouyang ³³⁴, A. Ovcharova ¹⁵, M. Owen ⁵³, R.E. Owen ¹⁸, V.E. Ozcan ^{19a}, N. Ozturk ⁸, K. Pachal ¹⁴², A. Pacheco Pages ¹², C. Padilla Aranda ¹², M. Pagáčová ⁴⁸, S. Pagan Griso ¹⁵, E. Paganis ¹³⁹, F. Paige ²⁵, P. Pais ⁸⁶, K. Pajchel ¹¹⁹, G. Palacino ^{159b}, S. Palestini ³⁰, M. Palka ^{38b}, D. Pallin ³⁴, A. Palma ^{126a,126b}, Y.B. Pan ¹⁷³, E. Panagiotopoulou ¹⁰, C.E. Pandini ⁸⁰, J.G. Panduro Vazquez ⁷⁷, P. Pani ^{146a,146b}, S. Panitkin ²⁵, D. Pantea ^{26a}, L. Paolozzi ⁴⁹, Th.D. Papadopoulou ¹⁰, K. Papageorgiou ¹⁵⁴, A. Paramonov ⁶, D. Paredes Hernandez ¹⁵⁴, M.A. Parker ²⁸, K.A. Parker ¹³⁹, F. Parodi ^{50a,50b}, J.A. Parsons ³⁵, U. Parzefall ⁴⁸, E. Pasqualucci ^{132a}, S. Passaggio ^{50a}, F. Pastore ^{134a,134b,*}, Fr. Pastore ⁷⁷, G. Pásztor ²⁹, S. Pataraia ¹⁷⁵, N.D. Patel ¹⁵⁰, J.R. Pater ⁸⁴, T. Pauly ³⁰, J. Pearce ¹⁶⁹, B. Pearson ¹¹³, L.E. Pedersen ³⁶, M. Pedersen ¹¹⁹, S. Pedraza Lopez ¹⁶⁷, R. Pedro ^{126a,126b}, S.V. Peleganchuk ^{109,c}, D. Pelikan ¹⁶⁶, O. Penc ¹²⁷, C. Peng ^{33a}, H. Peng ^{33b}, B. Penning ³¹, J. Penwell ⁶¹, D.V. Perepelitsa ²⁵, E. Perez Codina ^{159a}, M.T. Pérez García-Estañ ¹⁶⁷, L. Perini ^{91a,91b}, H. Pernegger ³⁰, S. Perrella ^{104a,104b}, R. Peschke ⁴² H. Peng ^{35D}, B. Penning ³¹, J. Penwell ⁶¹, D.V. Perepelitsa ²³, E. Perez Codina ^{159a}, M.T. Pérez García-Estañ ¹⁶⁷, L. Perini ^{91a,91b}, H. Pernegger ³⁰, S. Perrella ^{104a,104b}, R. Peschke ⁴², V.D. Peshekhonov ⁶⁵, K. Peters ³⁰, R.F.Y. Peters ⁸⁴, B.A. Petersen ³⁰, T.C. Petersen ³⁶, E. Petit ⁴², A. Petridis ^{146a,146b}, C. Petridou ¹⁵⁴, P. Petroff ¹¹⁷, E. Petrolo ^{132a}, F. Petrucci ^{134a,134b}, N.E. Pettersson ¹⁵⁷, R. Pezoa ^{32b}, P.W. Phillips ¹³¹, G. Piacquadio ¹⁴³, E. Pianori ¹⁷⁰, A. Picazio ⁴⁹, E. Piccaro ⁷⁶, M. Piccinini ^{20a,20b}, M.A. Pickering ¹²⁰, R. Piegaia ²⁷, D.T. Pignotti ¹¹¹, J.E. Pilcher ³¹, A.D. Pilkington ⁸⁴, J. Pina ^{126a,126b,126d}, M. Pinamonti ^{164a,164c,ac}, J.L. Pinfold ³, A. Pingel ³⁶, B. Pinto ^{126a}, S. Pires ⁸⁰, H. Pirumov ⁴², M. Pitt ¹⁷², C. Pizio ^{91a,91b}, L. Plazak ^{144a}, M.-A. Pleier ²⁵, V. Pleskot ¹²⁹, E. Plotnikova ⁶⁵, P. Plucinski ^{146a,146b}, D. Pluth ⁶⁴, R. Poettgen ^{146a,146b}, L. Poggioli ¹¹⁷, D. Pohl ²¹, G. Polesello ^{121a}, A. Poley ⁴², A. Policicchio ^{37a,37b}, R. Polifka ¹⁵⁸, A. Polini ^{20a}, C.S. Pollard ⁵³, V. Polychronakos ²⁵, K. Pommès ³⁰, L. Pontecorvo ^{132a}, B.G. Pope ⁹⁰, G.A. Popeneciu ^{26b}, D.S. Popovic ¹³, A. Poppleton ³⁰, S. Pospisil ¹²⁸, K. Potamianos ¹⁵, I.N. Potrap ⁶⁵, C.J. Potter ¹⁴⁹, C.T. Potter ¹¹⁶, G. Poulard ³⁰, J. Poveda ³⁰, V. Pozdnyakov ⁶⁵, P. Pralavorio ⁸⁵, A. Pranko ¹⁵, S. Prasad ³⁰, S. Prell ⁶⁴, D. Price ⁸⁴, L.E. Price ⁶, M. Primavera ^{73a}, S. Prince ⁸⁷, M. Proissl ⁴⁶, K. Prokofiev ^{60c}, F. Prokoshin ^{32b}, E. Protopapadaki ¹³⁶, S. Protopopescu ²⁵, J. Proudfoot ⁶, M. Przybycien ^{38a}, E. Ptacek ¹¹⁶, D. Puddu ^{134a,134b}, E. Pueschel ⁸⁶, D. Puldon ¹⁴⁸, M. Purohit ^{25,ad}, P. Puzo ¹¹⁷, J. Qian ⁸⁹, G. Qin ⁵³, Y. Qin ⁸⁴, A. Quadt ⁵⁴, D.R. Quarrie ¹⁵,

W.B. Quayle^{164a,164b}, M. Queitsch-Maitland⁸⁴, D. Quilty⁵³, S. Raddum¹¹⁹, V. Radeka²⁵, V. Radescu⁴², S.K. Radhakrishnan¹⁴⁸, P. Radloff¹¹⁶, P. Rados⁸⁸, F. Ragusa^{91a,91b}, G. Rahal¹⁷⁸, S. Rajagopalan²⁵, S.K. Kaunakrisinian 1.2, P. Kadion 1.2, P. Kadios 55, F. Kagusa 514,515, G. Kanal 175, S. Kajagopalan 25, M. Rammensee ³⁰, C. Rangel-Smith ¹⁶⁶, F. Rauscher ¹⁰⁰, S. Rave ⁸³, T. Ravenscroft ⁵³, M. Raymond ³⁰, A.L. Read ¹¹⁹, N.P. Readioff ⁷⁴, D.M. Rebuzzi ^{121a,121b}, A. Redelbach ¹⁷⁴, G. Redlinger ²⁵, R. Reece ¹³⁷, K. Reeves ⁴¹, L. Rehnisch ¹⁶, H. Reisin ²⁷, M. Relich ¹⁶³, C. Rembser ³⁰, H. Ren ^{33a}, A. Renaud ¹¹⁷, M. Rescigno ^{132a}, S. Resconi ^{91a}, O.L. Rezanova ^{109,c}, P. Reznicek ¹²⁹, R. Rezvani ⁹⁵, R. Richter ¹⁰¹, S. Richter ⁷⁸, E. Richter-Was ^{38b}, O. Ricken ²¹, M. Ridel ⁸⁰, P. Rieck ¹⁶, C.J. Riegel ¹⁷⁵, J. Rieger ⁵⁴, M. Rijssenbeek ¹⁴⁸, A. Rimoldi ^{121a,121b}, L. Rinaldi ^{20a}, B. Ristić ⁴⁹, E. Ritsch ³⁰, I. Riu ¹², F. Rizatdinova ¹¹⁴, E. Riggi ⁷⁶, S. H. Bebertsen ^{87,k}, A. Bebishawd Vacanaeu ⁸⁷, D. Bebishawa ²⁸, I. K. K. P. Lin, ⁴² E. Rizvi⁷⁶, S.H. Robertson^{87,k}, A. Robichaud-Veronneau⁸⁷, D. Robinson²⁸, J.E.M. Robinson⁴², A. Robson⁵³, C. Roda^{124a,124b}, S. Roe³⁰, O. Røhne¹¹⁹, S. Rolli¹⁶¹, A. Romaniouk⁹⁸, M. Romano^{20a,20b}, S.M. Romano Saez³⁴, E. Romero Adam¹⁶⁷, N. Rompotis¹³⁸, M. Ronzani⁴⁸, L. Roos⁸⁰, E. Ros¹⁶⁷, S. Rosati^{132a}, K. Rosbach⁴⁸, P. Rose¹³⁷, P.L. Rosendahl¹⁴, O. Rosenthal¹⁴¹, V. Rossetti^{146a,146b}, E. Rossi^{104a,104b}, L.P. Rossi^{50a}, R. Rosten¹³⁸, M. Rotaru^{26a}, I. Roth¹⁷², J. Rothberg¹³⁸, D. Rousseau¹¹⁷, C.R. Royon¹³⁶, A. Rozanov⁸⁵, Y. Rozen¹⁵², X. Ruan^{145c}, F. Rubbo¹⁴³, I. Rubinskiy⁴², V.I. Rud⁹⁹, C. Rudolph⁴⁴, M.S. Rudolph¹⁵⁸, F. Rühr⁴⁸, A. Ruiz-Martinez³⁰, Z. Rurikova⁴⁸, N.A. Rusakovich⁶⁵, A. Ruschke¹⁰⁰, H.L. Russell¹³⁸, J.P. Rutherfoord⁷, N. Ruthmann⁴⁸, Y.F. Ryabov¹²³, M. Rybar¹⁶⁵, G. Rybkin¹¹⁷, N.C. Ryder¹²⁰, A.F. Saavedra¹⁵⁰, G. Sabato¹⁰⁷, S. Sacerdoti²⁷, A. Saddique³, H.F-W. Sadrozinski ¹³⁷, R. Sadykov ⁶⁵, F. Safai Tehrani ^{132a}, M. Saimpert ¹³⁶, T. Saito ¹⁵⁵, H. Sakamoto ¹⁵⁵, Y. Sakurai ¹⁷¹, G. Salamanna ^{134a,134b}, A. Salamon ^{133a}, M. Saleem ¹¹³, D. Salek ¹⁰⁷, P.H. Sales De Bruin ¹³⁸, D. Salihagic ¹⁰¹, A. Salnikov ¹⁴³, J. Salt ¹⁶⁷, D. Salvatore ^{37a,37b}, F. Salvatore ¹⁴⁹, A. Salvucci ¹⁰⁶, A. Salzburger ³⁰, D. Sammel ⁴⁸, D. Sampsonidis ¹⁵⁴, A. Sanchez ^{104a,104b}, J. Sánchez ¹⁶⁷, V. Sanchez Martinez ¹⁶⁷, H. Sandaker ¹¹⁹, R.L. Sandbach ⁷⁶, H.G. Sander ⁸³, M.P. Sanders ¹⁰⁰, M. Sandhoff ¹⁷⁵, G. Sandaron ¹¹⁶, P. Sandaker ¹¹⁹, R.L. Sandbach ⁷⁶, H.G. Sander ⁸³, M.P. Sanders ¹⁰⁰, ⁴⁷ V. Sanchez Martinez ¹⁰⁷, H. Sandaker ¹¹³, R.L. Sandbach ⁷⁶, H.G. Sander ⁵⁵, M.P. Sanders ¹⁰⁶, M. Sandhoff ¹⁷⁵, C. Sandoval ¹⁶², R. Sandstroem ¹⁰¹, D.P.C. Sankey ¹³¹, M. Sannino ^{50a,50b}, A. Sansoni ⁴⁷, C. Santoni ³⁴, R. Santonico ^{133a,133b}, H. Santos ^{126a}, I. Santoyo Castillo ¹⁴⁹, K. Sapp ¹²⁵, A. Sapronov ⁶⁵, J.G. Saraiva ^{126a,126d}, B. Sarrazin ²¹, O. Sasaki ⁶⁶, Y. Sasaki ¹⁵⁵, K. Sato ¹⁶⁰, G. Sauvage ^{5,*}, E. Sauvan ⁵, G. Savage ⁷⁷, P. Savard ^{158,d}, C. Sawyer ¹³¹, L. Sawyer ^{79,n}, J. Saxon ³¹, C. Sbarra ^{20a}, A. Sbrizzi ^{20a,20b}, T. Scanlon ⁷⁸, D.A. Scannicchio ¹⁶³, M. Scarcella ¹⁵⁰, V. Scarfone ^{37a,37b}, J. Schaarschmidt ¹⁷², P. Schacht ¹⁰¹, D. Schaefer ³⁰, R. Schaefer ⁴², J. Schaeffer ⁸³, S. Schaepe ²¹, S. Schaetzel ^{58b}, U. Schäfer ⁸³, A.C. Schaffer ¹¹⁷, T. Scanlon ¹⁸, D.A. Scannicchio ¹⁶³, M. Scarcella ¹⁵⁰, V. Scarfone ^{57a,370}, J. Schaarschmidt ¹⁷², P. Schacht ¹⁰¹, D. Schaefer ³⁰, R. Schaefer ⁴², J. Schaeffer ⁸³, S. Schaepe ²¹, S. Schaetel ^{38b}, U. Schäfer ⁸³, A.C. Schaffer ¹¹⁷, D. Schaile ¹⁰⁰, R.D. Schamberger ¹⁴⁸, V. Scharf ^{58a}, V.A. Schegelsky ¹²³, D. Scheirich ¹²⁹, M. Schernau ¹⁶³, C. Schiult ⁴⁸, M. Schioppa ^{37a,37b}, S. Schlenker ³⁰, E. Schmidt ⁴⁸, K. Schmieden ³⁰, C. Schmitt ⁸³, S. Schmitt ^{58b}, S. Schmitt ⁴², B. Schneider ^{159a}, Y.J. Schnellbach ⁷⁴, U. Schnoor ⁴⁴, L. Schoeffel ¹³⁶, A. Schoening ^{58b}, B.D. Schoenrock ⁹⁰, E. Schopf ²¹, A.L.S. Schorderms ⁵⁴, M. Schott ⁸³, D. Schouten ^{159a}, J. Schovancova ⁸, S. Schramm ⁴⁹, M. Schreyer ¹⁷⁴, C. Schroeder ⁸³, N. Schulk ⁸³, D. Schouten ^{159a}, J. Schovancova ⁸, S. Schramm ⁴⁹, M. Schreyer ¹⁷⁴, C. Schroeder ⁸³, N. Schulk ⁸³, D. Schouten ^{159a}, J. Schovancova ⁸, S. Schwintz ¹⁶, M. Schumacher ⁴⁸, B.A. Schumm ¹³⁷, Ph. Schune ¹³⁶, C. Schwanenberger ⁸⁴, A. Schwartzman ¹⁴³, T.A. Schwarz ⁸⁹, Ph. Schwegler ¹⁰¹, H. Schweiger ⁸⁴, Ph. Schuter ¹³⁶, R. Schwienhorst ⁹⁰, J. Schwindling ¹³⁶, T. Schwindt ²¹, F.G. Sciaca ¹⁷, E. Scifo ¹¹⁷, G. Sciolla ²³, F. Scuri ^{124a,124b}, F. Scutti ²¹, J. Searcy ⁸⁹, G. Sedov ⁴², E. Sedykh ¹²³, P. Seema ²¹, S. Sesi ^{143,134b}, R. Seuster ^{159a}, H. Severini ¹¹³, T. Sfliigo ⁷⁵, F. Sforza ³⁰, A. Styrla ³⁰, E. Shabalina ⁵⁴, M. Shamim ¹¹⁶, LY. Shan ^{33a}, R. Shang ¹⁶⁵, J.T. Shank ²², M. Shapiro ¹⁵, P.B. Shatalov ⁹⁷, K. Shaw ^{164a,164b}, S.M. Shaw ⁸⁴, A. Shcherbakova ^{146a,146b}, C.Y. Shehu ¹⁴⁹, P. Sherwood ⁷⁸, L. Shi ^{151,ae}, S. Shimiz ⁶⁷, C.O. Shimmin ¹⁶³, M. Shimojima ¹⁰², M. Shiyakova ⁶⁵, A. Shumeleva ⁶⁶, D. Shoaleh Saadi ⁹⁵, M.J. Shochet ³¹, S. Shojail ^{91a,91b}, S. Shrestha ¹¹¹, E. Shulga ⁹⁸, M.A. Shupe ⁷, S. Shushkevich ⁴², P. Sichoo ¹²⁷, P. Sideo ¹⁴⁷, O. Sidiropoulou ¹⁷⁴, D. Sidorov ¹¹⁴, A. S

257

U. Soldevila¹⁶⁷, A.A. Solodkov¹³⁰, A. Soloshenko⁶⁵, O.V. Solovyanov¹³⁰, V. Solovyev¹²³, P. Sommer⁴⁸, H.Y. Song^{33b}, N. Soni¹, A. Sood¹⁵, A. Sopczak¹²⁸, B. Sopko¹²⁸, V. Sopko¹²⁸, V. Sorin¹², D. Sosa^{58b}, M. Sosebee⁸, C.L. Sotiropoulou^{124a,124b}, R. Soualah^{164a,164c}, A.M. Soukharev^{109,c}, D. South⁴², B.C. Sowden⁷⁷, S. Spagnolo^{73a,73b}, M. Spalla^{124a,124b}, F. Spanò⁷⁷, W.R. Spearman⁵⁷, D. Sperlich¹⁶, F. Spettel ¹⁰¹, R. Spighi ^{20a}, G. Spigo ³⁰, L.A. Spiller ⁸⁸, M. Spousta ¹²⁹, T. Spreitzer ¹⁵⁸, R.D. St. Denis ^{53,*}, S. Staerz ⁴⁴, J. Stahlman ¹²², R. Stamen ^{58a}, S. Stamm ¹⁶, E. Stanecka ³⁹, C. Stanescu ^{134a}, M. Stanescu-Bellu⁴², M.M. Stanitzki⁴², S. Stapnes¹¹⁹, E.A. Starchenko¹³⁰, J. Stark⁵⁵, P. Staroba¹²⁷, P. Starovoitov⁴², R. Staszewski³⁹, P. Stavina^{144a,*}, P. Steinberg²⁵, B. Stelzer¹⁴², H.J. Stelzer³⁰, O. Stelzer-Chilton^{159a}, H. Stenzel⁵², G.A. Stewart⁵³, J.A. Stillings²¹, M.C. Stockton⁸⁷, M. Stoebe⁸⁷, G. Stoicea^{26a}, P. Stolte⁵⁴, S. Stonjek¹⁰¹, A.R. Stradling⁸, A. Straessner⁴⁴, M.E. Stramaglia¹⁷, G. Stoicea ^{26a}, P. Stolte ⁵⁴, S. Stonjek ¹⁰¹, A.R. Stradling ⁸, A. Straessner ⁴⁴, M.E. Stramaglia ¹⁷, J. Strandberg ¹⁴⁷, S. Strandberg ^{146a,146b}, A. Strandlie ¹¹⁹, E. Strauss ¹⁴³, M. Strauss ¹¹³, P. Strizenec ^{144b}, R. Ströhmer ¹⁷⁴, D.M. Strom ¹¹⁶, R. Stroynowski ⁴⁰, A. Strubig ¹⁰⁶, S.A. Stucci ¹⁷, B. Stugu ¹⁴, N.A. Styles ⁴², D. Su ¹⁴³, J. Su ¹²⁵, R. Subramaniam ⁷⁹, A. Succurro ¹², Y. Sugaya ¹¹⁸, C. Suhr ¹⁰⁸, M. Suk ¹²⁸, V.V. Sulin ⁹⁶, S. Sultansoy ^{4c}, T. Sumida ⁶⁸, S. Sun ⁵⁷, X. Sun ^{33a}, J.E. Sundermann ⁴⁸, K. Suruliz ¹⁴⁹, G. Susinno ^{37a,37b}, M.R. Sutton ¹⁴⁹, S. Suzuki ⁶⁶, M. Svatos ¹²⁷, S. Swedish ¹⁶⁸, M. Swiatlowski ¹⁴³, I. Sykora ^{144a}, T. Sykora ¹²⁹, D. Ta ⁹⁰, C. Taccini ^{134a,134b}, K. Tackmann ⁴², J. Taenzer ¹⁵⁸, A. Taffard ¹⁶³, R. Tafirout ^{159a}, N. Taiblum ¹⁵³, H. Takai ²⁵, R. Takashima ⁶⁹, H. Takeda ⁶⁷, T. Takeshita ¹⁴⁰, Y. Takubo ⁶⁶, M. Talby ⁸⁵, A.A. Talyshev ^{109,c}, J.Y.C. Tam ¹⁷⁴, K.G. Tan ⁸⁸, J. Tanaka ¹⁵⁵, R. Tanaka ¹¹⁷, S. Tanaka ⁶⁶, B.B. Tannenwald ¹¹¹, N. Tannoury ²¹, S. Tapprogge ⁸³, S. Tarem ¹⁵², F. Tarrade ²⁹, G.F. Tartarelli ^{91a}, P. Tas ¹²⁹, M. Tasevsky ¹²⁷, T. Tashiro ⁶⁸, E. Tassi ^{37a,37b}, A. Tavares Delgado ^{126a,126b}, Y. Tayalati ^{135d}, F.E. Taylor ⁹⁴, G.N. Taylor ⁸⁸, W. Taylor ^{159b}, F.A. Teischinger ³⁰, M. Teixeira Dias Castanbeira ⁷⁶, P. Teixeira-Dias ⁷⁷, K.K. Temming ⁴⁸, H. Ten Kate ³⁰, F.A. Teischinger ³⁰, M. Teixeira Dias Castanheira ⁷⁶, P. Teixeira-Dias ⁷⁷, K.K. Temming ⁴⁸, H. Ten Kate ³⁰, P.K. Teng ¹⁵¹, J.J. Teoh ¹¹⁸, F. Tepel ¹⁷⁵, S. Terada ⁶⁶, K. Terashi ¹⁵⁵, J. Terron ⁸², S. Terzo ¹⁰¹, M. Testa ⁴⁷, R.J. Teuscher ^{158,k}, T. Theveneaux-Pelzer ³⁴, J.P. Thomas ¹⁸, J. Thomas-Wilsker ⁷⁷, E.N. Thompson ³⁵, P.D. Thompson ¹⁸, R.J. Thompson ⁸⁴, A.S. Thompson ⁵³, L.A. Thomsen ¹⁷⁶, E. Thomson ¹²², M. Thomson ²⁸, R.P. Thun^{89,*}, M.J. Tibbetts¹⁵, R.E. Ticse Torres⁸⁵, V.O. Tikhomirov^{96,ag}, Yu.A. Tikhonov^{109,c}, S. Timoshenko⁹⁸, E. Tiouchichine⁸⁵, P. Tipton¹⁷⁶, S. Tisserant⁸⁵, K. Todome¹⁵⁷, T. Todorov^{5,*}, S. Todorova-Nova¹²⁹, J. Tojo⁷⁰, S. Tokár^{144a}, K. Tokushuku⁶⁶, K. Tollefson⁹⁰, E. Tolley⁵⁷, L. Tomlinson⁸⁴, M. Tomoto¹⁰³, L. Tompkins^{143,ah}, K. Toms¹⁰⁵, E. Torrence¹¹⁶, H. Torres¹⁴², E. Torró Pastor¹⁶⁷, J. Toth^{85,ai}, F. Touchard⁸⁵, D.R. Tovey¹³⁹, T. Trefzger¹⁷⁴, L. Tremblet³⁰, A. Tricoli³⁰, I.M. Trigger^{159a}, S. Trincaz-Duvoid ⁸⁰, M.F. Tripiana ¹², W. Trischuk ¹⁵⁸, B. Trocmé ⁵⁵, C. Troncon ^{91a}, M. Trottier-McDonald ¹⁵, M. Trovatelli ¹⁶⁹, P. True ⁹⁰, L. Truong ^{164a,164c}, M. Trzebinski ³⁹, A. Trzupek ³⁹, C. Tsarouchas ³⁰, J.C-L. Tseng ¹²⁰, P.V. Tsiareshka ⁹², D. Tsionou ¹⁵⁴, G. Tsipolitis ¹⁰, N. Tsirintanis ⁹, S. Tsiskaridze ¹², V. Tsiskaridze ⁴⁸, E.G. Tskhadadze ^{51a}, I.I. Tsukerman ⁹⁷, V. Tsulaia ¹⁵, S. Tsuno ⁶⁶, S. Isiskaridze ¹⁰, V. Isiskaridze ¹⁰, E.G. Isknadadze ¹¹, I.I. Isukerman¹⁰, V. Isulala¹⁰, S. Isuno¹⁰,
D. Tsybychev ¹⁴⁸, A. Tudorache ^{26a}, V. Tudorache ^{26a}, A.N. Tuna ¹²², S.A. Tupputi ^{20a,20b}, S. Turchikhin ^{99,af},
D. Turecek ¹²⁸, R. Turra ^{91a,91b}, A.J. Turvey ⁴⁰, P.M. Tuts ³⁵, A. Tykhonov ⁴⁹, M. Tylmad ^{146a,146b},
M. Tyndel ¹³¹, I. Ueda ¹⁵⁵, R. Ueno ²⁹, M. Ughetto ^{146a,146b}, M. Ugland ¹⁴, M. Uhlenbrock ²¹,
F. Ukegawa ¹⁶⁰, G. Unal ³⁰, A. Undrus ²⁵, G. Unel ¹⁶³, F.C. Ungaro ⁴⁸, Y. Unno ⁶⁶, C. Unverdorben ¹⁰⁰,
J. Urban ^{144b}, P. Urquijo ⁸⁸, P. Urrejola ⁸³, G. Usai⁸, A. Usanova ⁶², L. Vacavant ⁸⁵, V. Vacek ¹²⁸, J. Urban ^{144b}, P. Urquijo ⁸⁸, P. Urrejola ⁸³, G. Usai ⁸, A. Usanova ⁶², L. Vacavant ⁸⁵, V. Vacek ¹²⁶, B. Vachon ⁸⁷, C. Valderanis ⁸³, N. Valencic ¹⁰⁷, S. Valentinetti ^{20a,20b}, A. Valero ¹⁶⁷, L. Valery ¹², S. Valkar ¹²⁹, E. Valladolid Gallego ¹⁶⁷, S. Vallecorsa ⁴⁹, J.A. Valls Ferrer ¹⁶⁷, W. Van Den Wollenberg ¹⁰⁷, P.C. Van Der Deijl ¹⁰⁷, R. van der Geer ¹⁰⁷, H. van der Graaf ¹⁰⁷, R. Van Der Leeuw ¹⁰⁷, N. van Eldik ¹⁵², P. van Gemmeren ⁶, J. Van Nieuwkoop ¹⁴², I. van Vulpen ¹⁰⁷, M.C. van Woerden ³⁰, M. Vanadia ^{132a,132b}, W. Vandelli ³⁰, R. Vanguri ¹²², A. Vaniachine ⁶, F. Vannucci ⁸⁰, G. Vardanyan ¹⁷⁷, R. Vari ^{132a}, E.W. Varnes ⁷, T. Varol ⁴⁰, D. Varouchas ⁸⁰, A. Vartapetian ⁸, K.E. Varvell ¹⁵⁰, F. Vazeille ³⁴, T. Vazquez Schroeder ⁸⁷, J. Veatch ⁷, L.M. Veloce ¹⁵⁸, F. Veloso ^{126a,126c}, T. Velz ²¹, S. Veneziano ^{132a}, A. Ventura ^{73a,73b}, D. Ventura ⁸⁶, M. Venturi ¹⁶⁹, N. Venturi ¹⁵⁸, A. Venturini ²³, V. Vercesi ^{121a}, M. Verducci ^{132a,132b}, W. Varkerke ¹⁰⁷, I.C. Vermeulen ¹⁰⁷, A. Vest ⁴⁴, M.C. Vetterli ^{142,d}, O. Viazlo ⁸¹, I. Vichou ¹⁶⁵, T. Vickey ¹³⁹ W. Verkerke¹⁰⁷, J.C. Vermeulen¹⁰⁷, A. Vest⁴⁴, M.C. Vetterli^{142,d}, O. Viazlo⁸¹, I. Vichou¹⁶⁵, T. Vickey¹³⁹, O.E. Vickey Boeriu¹³⁹, G.H.A. Viehhauser¹²⁰, S. Viel¹⁵, R. Vigne⁶², M. Villa^{20a,20b}, M. Villaplana Perez^{91a,91b}, E. Vilucchi⁴⁷, M.G. Vincter²⁹, V.B. Vinogradov⁶⁵, I. Vivarelli¹⁴⁹, F. Vives Vaque³, S. Vlachos¹⁰, D. Vladoiu¹⁰⁰, M. Vlasak¹²⁸, M. Vogel^{32a}, P. Vokac¹²⁸, G. Volpi^{124a,124b}, M. Volpi⁸⁸, H. von der Schmitt¹⁰¹, H. von Radziewski⁴⁸, E. von Toerne²¹, V. Vorobel¹²⁹, K. Vorobev⁹⁸, M. Vos¹⁶⁷, R. Voss³⁰, J.H. Vossebeld⁷⁴, N. Vranjes¹³, M. Vranjes Milosavljevic¹³, V. Vrba¹²⁷,

M. Vreeswijk¹⁰⁷, R. Vuillermet³⁰, I. Vukotic³¹, Z. Vykydal¹²⁸, P. Wagner²¹, W. Wagner¹⁷⁵, M. Vreeswijk ¹⁰⁷, R. Vuillermet ³⁰, I. Vukotic ³¹, Z. Vykydal ¹²⁸, P. Wagner ²¹, W. Wagner ¹⁷⁵, H. Wahlberg ⁷¹, S. Wahrmund ⁴⁴, J. Wakabayashi ¹⁰³, J. Walder ⁷², R. Walker ¹⁰⁰, W. Walkowiak ¹⁴¹, C. Wang ¹⁵¹, F. Wang ¹⁷³, H. Wang ¹⁵, H. Wang ⁴⁰, J. Wang ⁴², J. Wang ^{33a}, K. Wang ⁸⁷, R. Wang ⁶, S.M. Wang ¹⁵¹, T. Wang ²¹, X. Wang ¹⁷⁶, C. Wanotayaroj ¹¹⁶, A. Warburton ⁸⁷, C.P. Ward ²⁸, D.R. Wardrope ⁷⁸, M. Warsinsky ⁴⁸, A. Washbrook ⁴⁶, C. Wasicki ⁴², P.M. Watkins ¹⁸, A.T. Watson ¹⁸, I.J. Watson ¹⁵⁰, M.F. Watson ¹⁸, G. Watts ¹³⁸, S. Watts ⁸⁴, B.M. Waugh ⁷⁸, S. Webb ⁸⁴, M.S. Weber ¹⁷, S.W. Weber ¹⁷⁴, J.S. Webster ³¹, A.R. Weidberg ¹²⁰, B. Weinert ⁶¹, J. Weingarten ⁵⁴, C. Weiser ⁴⁸, H. Weits ¹⁰⁷, P.S. Wells ³⁰, T. Wenaus ²⁵, T. Wengler ³⁰, S. Wenig ³⁰, N. Wermes ²¹, M. Werner ⁴⁸, P. Werner ³⁰, M. Wessels ^{58a}, J. Wetter ¹⁶¹, K. Whalen ¹¹⁶, A.M. Wharton ⁷², A. White ⁸, M.J. White ¹, R. White ^{32b}, S. White ^{124a,124b}, D. Whiteson ¹⁶³, F.J. Wickens ¹³¹, W. Wiedenmann ¹⁷³, M. Wielers ¹³¹, P. Wienemann ²¹, C. Wiglesworth ³⁶ I. A.M. Wiik-Fuchs ²¹ A. Wildauer ¹⁰¹ H.C. Wilkens ³⁰ P. Wienemann²¹, C. Wiglesworth³⁶, L.A.M. Wiik-Fuchs²¹, A. Wildauer¹⁰¹, H.G. Wilkens³⁰, H.H. Williams¹²², S. Williams¹⁰⁷, C. Willis⁹⁰, S. Willocq⁸⁶, A. Wilson⁸⁹, J.A. Wilson¹⁸, I. Wingerter-Seez⁵, F. Winklmeier¹¹⁶, B.T. Winter²¹, M. Wittgen¹⁴³, J. Wittkowski¹⁰⁰, S.J. Wollstadt⁸³, M.W. Wolter³⁹, H. Wolters^{126a,126c}, B.K. Wosiek³⁹, J. Wotschack³⁰, M.J. Woudstra⁸⁴, K.W. Wozniak³⁹, M. Wu⁵⁵, M. Wu³¹, S.L. Wu¹⁷³, X. Wu⁴⁹, Y. Wu⁸⁹, T.R. Wyatt⁸⁴, B.M. Wynne⁴⁶, S. Xella³⁶, D. Xu^{33a}, M. Wu³⁵, M. Wu³⁴, S.L. Wu¹⁷⁵, X. Wu⁴⁵, Y. Wu⁶⁵, T.R. Wyatt⁶⁴, B.M. Wynne⁴⁰, S. Xella³⁶, D. Xu³³⁶, L. Xu^{33b,aj}, B. Yabsley¹⁵⁰, S. Yacoob^{145a}, R. Yakabe⁶⁷, M. Yamada⁶⁶, Y. Yamaguchi¹¹⁸, A. Yamamoto⁶⁶, S. Yamamoto¹⁵⁵, T. Yamanaka¹⁵⁵, K. Yamauchi¹⁰³, Y. Yamazaki⁶⁷, Z. Yan²², H. Yang^{33e}, H. Yang¹⁷³, Y. Yang¹⁵¹, W-M. Yao¹⁵, Y. Yasu⁶⁶, E. Yatsenko⁵, K.H. Yau Wong²¹, J. Ye⁴⁰, S. Ye²⁵, I. Yeletskikh⁶⁵, A.L. Yen⁵⁷, E. Yildirim⁴², K. Yorita¹⁷¹, R. Yoshida⁶, K. Yoshihara¹²², C. Young¹⁴³, C.J.S. Young³⁰, S. Youssef²², D.R. Yu¹⁵, J. Yu⁸, J.M. Yu⁸⁹, J. Yu¹¹⁴, L. Yuan⁶⁷, S.P.Y. Yuen²¹, A. Yurkewicz¹⁰⁸, I. Yusuff^{28,ak}, B. Zabinski³⁹, R. Zaidan⁶³, A.M. Zaitsev^{130,aa}, J. Zalieckas¹⁴, A. Zaman¹⁴⁸, S. Zambito⁵⁷, L. Zanello^{132a,132b}, D. Zanzi⁸⁸, C. Zeitnitz¹⁷⁵, M. Zeman¹²⁸, A. Zemla^{38a}, K. Zengel²³, O. Zenin¹³⁰, T. Žaniš^{144a}, D. Zeruya¹¹⁷, D. Zhang⁸⁹, F. Zhang¹⁷³, H. Zhang³³⁶, J. Zhang⁴⁸, P. Zhang⁴³, J. Jang⁴⁸, J. Zhang⁴⁸, L. Zancho J., D. Zanzi J., C. Zehlin Z. J., W. Zehlan J., A. Zehla J., K. Zehler J., O. Zehlin J., T. Ženiš ^{144a}, D. Zerwas ¹¹⁷, D. Zhang ⁸⁹, F. Zhang ¹⁷³, H. Zhang ^{33c}, J. Zhang ⁶, L. Zhang ⁴⁸, R. Zhang ^{33b}, X. Zhang ^{33d}, Z. Zhang ¹¹⁷, X. Zhao ⁴⁰, Y. Zhao ^{33d}, ¹¹⁷, Z. Zhao ^{33b}, A. Zhemchugov ⁶⁵, J. Zhong ¹²⁰, B. Zhou ⁸⁹, C. Zhou ⁴⁵, L. Zhou ³⁵, L. Zhou ⁴⁰, N. Zhou ¹⁶³, C.G. Zhu ^{33d}, H. Zhu ^{33a}, J. Zhu ⁸⁹, Y. Zhu ^{33b}, X. Zhuang ^{33a}, K. Zhukov ⁹⁶, A. Zibell ¹⁷⁴, D. Zieminska ⁶¹, N.I. Zimine ⁶⁵, C. Zimmermann ⁸³, ¹¹⁷ S. Zimmermann ⁴⁸, Z. Zinonos ⁵⁴, M. Zinser ⁸³, M. Ziolkowski ¹⁴¹, L. Živković ¹³, G. Zobernig ¹⁷³, A. Zoccoli ^{20a,20b}, M. zur Nedden ¹⁶, G. Zurzolo ^{104a,104b}, L. Zwalinski ³⁰

- ² Physics Department, SUNY Albany, Albany, NY, United States
- ³ Department of Physics, University of Alberta, Edmonton, AB, Canada
- 4 (a) Department of Physics, Ankara University, Ankara; (b) Istanbul Aydin University, Istanbul; (c) Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
- ⁵ LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
- ⁶ High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States
- ⁷ Department of Physics, University of Arizona, Tucson, AZ, United States
- ⁸ Department of Physics, The University of Texas at Arlington, Arlington, TX, United States
- ⁹ Physics Department, University of Athens, Athens, Greece
- ¹⁰ Physics Department, National Technical University of Athens, Zografou, Greece
- ¹¹ Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
- ¹² Institut de Física d'Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain
- ¹³ Institute of Physics, University of Belgrade, Belgrade, Serbia
- ¹⁴ Department for Physics and Technology, University of Bergen, Bergen, Norway
- ¹⁵ Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States
- ¹⁶ Department of Physics, Humboldt University, Berlin, Germany
- ¹⁷ Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
- ¹⁸ School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
- 19 (a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics Engineering, Gaziantep University, Gaziantep; (c) Department of Physics, Dogus University, Istanbul, Turkev
- ^{20 (a)} INFN Sezione di Bologna; ^(b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
- ²¹ Physikalisches Institut, University of Bonn, Bonn, Germany
- ²² Department of Physics, Boston University, Boston, MA, United States
- ²³ Department of Physics, Brandeis University, Waltham, MA, United States
- ²⁴ (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; ^(b) Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora; ^(c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; ^(d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
- ²⁵ Physics Department, Brookhaven National Laboratory, Upton, NY, United States
- 26 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; ^(c) University Politehnica Bucharest, Bucharest; ^(d) West University in Timisoara, Timisoara, Romania
- ²⁷ Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
- ²⁸ Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom ²⁹ Department of Physics, Carleton University, Ottawa, ON, Canada
- ³⁰ CERN, Geneva, Switzerland
- ³¹ Enrico Fermi Institute, University of Chicago, Chicago, IL, United States
- 32 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile

¹ Department of Physics, University of Adelaide, Adelaide, Australia

ATLAS Collaboration / Physics Letters B 749 (2015) 242-261

33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; ^(d) School of Physics, Shandong University, Shandong; ^(e) Department of Physics and Astronomy, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai: ^(f) Physics Department, Tsinghua University, Beijing 100084, China ³⁴ Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France ³⁵ Nevis Laboratory, Columbia University, Irvington, NY, United States ³⁶ Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark ³⁷ ^(a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; ^(b) Dipartimento di Fisica, Università della Calabria, Rende, Italy ³⁸ (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; ^(b) Hardian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland ³⁹ Institute of Nuclear Physics Polish Academy of Sciences. Krakow. Poland ⁴⁰ Physics Department, Southern Methodist University, Dallas, TX, United States ⁴¹ Physics Department, University of Texas at Dallas, Richardson, TX, United States ⁴² DESY, Hamburg and Zeuthen, Germany ⁴³ Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany ⁴⁴ Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany ⁴⁵ Department of Physics, Duke University, Durham, NC, United States ⁴⁶ SUPA – School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom ⁴⁷ INFN Laboratori Nazionali di Frascati, Frascati, Italy ⁴⁸ Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany ⁴⁹ Section de Physique, Université de Genève, Geneva, Switzerland
 ⁵⁰ (a) INFN Sezione di Genova; ^(b) Dipartimento di Fisica, Università di Genova, Genova, Italy
 ⁵¹ (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tiblisi State University, Tbilisi; ^(b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia ⁵² II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany ⁵³ SUPA – School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom ⁵⁴ II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany ⁵⁵ Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France ⁵⁶ Department of Physics, Hampton University, Hampton, VA, United States ⁵⁷ Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, United States 58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan 60 (a) Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; (b) Department of Physics, The University of Hong Kong, Hong Kong; (c) Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China ⁶¹ Department of Physics, Indiana University, Bloomington, IN, United States ⁶² Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria ⁶³ University of Iowa, Iowa City, IA, United States ⁶⁴ Department of Physics and Astronomy, Iowa State University, Ames, IA, United States ⁶⁵ Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia ⁶⁶ KEK, High Energy Accelerator Research Organization, Tsukuba, Japan ⁶⁷ Graduate School of Science, Kobe University, Kobe, Japan 68 Faculty of Science, Kyoto University, Kyoto, Japan ⁶⁹ Kyoto University of Education, Kyoto, Japan ⁷⁰ Department of Physics, Kyushu University, Fukuoka, Japan ⁷¹ Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina ⁷² Physics Department, Lancaster University, Lancaster, United Kingdom ⁷³ ^(a) INFN Sezione di Lecce; ^(b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy ⁷⁴ Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom ⁷⁵ Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia ⁷⁶ School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom ⁷⁷ Department of Physics, Royal Holloway University of London, Surrey, United Kingdom ⁷⁸ Department of Physics and Astronomy, University College London, London, United Kingdom ⁷⁹ Louisiana Tech University, Ruston, LA, United States ⁸⁰ Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France ⁸¹ Fysiska institutionen, Lunds universitet, Lund, Sweden ⁸² Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain ⁸³ Institut für Physik, Universität Mainz, Mainz, Germany ⁸⁴ School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom ⁸⁵ CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France ⁸⁶ Department of Physics, University of Massachusetts, Amherst, MA, United States

- ⁸⁷ Department of Physics, McGill University, Montreal, QC, Canada
- ⁸⁸ School of Physics, University of Melbourne, Victoria, Australia
- ⁸⁹ Department of Physics, The University of Michigan, Ann Arbor, MI, United States
- ⁹⁰ Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States
- ⁹¹ ^(a) INFN Sezione di Milano; ^(b) Dipartimento di Fisica, Università di Milano, Milano, Italy
- ⁹² B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
- 93 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Belarus
- ⁹⁴ Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, United States
- 95 Group of Particle Physics, University of Montreal, Montreal, QC, Canada
- ⁹⁶ P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
- ⁹⁷ Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
- 98 National Research Nuclear University MEPhI, Moscow, Russia
- ⁹⁹ D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
- ¹⁰⁰ Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
- ¹⁰¹ Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
- 102 Nagasaki Institute of Applied Science, Nagasaki, Japan
- ¹⁰³ Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
- ¹⁰⁴ ^(a) INFN Sezione di Napoli; ^(b) Dipartimento di Fisica, Università di Napoli, Napoli, Italy
- ¹⁰⁵ Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, United States
- ¹⁰⁶ Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands

¹⁰⁷ Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands

¹⁰⁸ Department of Physics, Northern Illinois University, DeKalb, IL, United States

¹⁰⁹ Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia

¹¹⁰ Department of Physics, New York University, New York, NY, United States

¹¹¹ Ohio State University, Columbus, OH, United States

¹¹² Faculty of Science, Okayama University, Okayama, Japan

¹¹³ Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, United States

¹¹⁴ Department of Physics, Oklahoma State University, Stillwater, OK, United States

¹¹⁵ Palacký University, RCPTM, Olomouc, Czech Republic

¹¹⁶ Center for High Energy Physics, University of Oregon, Eugene, OR, United States

¹¹⁷ LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France

¹¹⁸ Graduate School of Science, Osaka University, Osaka, Japan

¹¹⁹ Department of Physics, University of Oslo, Oslo, Norway

¹²⁰ Department of Physics, Oxford University, Oxford, United Kingdom

¹²¹ ^(a) INFN Sezione di Pavia; ^(b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy

¹²² Department of Physics, University of Pennsylvania, Philadelphia, PA, United States

¹²³ National Research Centre "Kurchatov Institute" B.P. Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia
 ¹²⁴ (a) INFN Sezione di Pisa; ^(b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy

¹²⁵ Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, United States

126 (a) Laboratório de Instrumentação e Física Experimental de Partículas – LIP, Lisboa; ^(b) Faculdade de Ciências, Universidade de Lisboa, Lisboa; ^(C) Department of Physics, University of Coimbra, Coimbra, ^(d) Centro de Física Nuclear da Universidade de Lisboa, Lisboa; ^(e) Departamento de Física, Universidade do Minho, Braga; ^(f) Departamento de Física Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada (Spain); (g) Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal

¹²⁷ Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic

¹²⁸ Czech Technical University in Prague, Praha, Czech Republic

¹²⁹ Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic

130 State Research Center Institute for High Energy Physics, Protvino, Russia

¹³¹ Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom

¹³² ^(a) INFN Sezione di Roma: ^(b) Dipartimento di Fisica. Sapienza Università di Roma. Roma. Italy

¹³³ ^(a) INFN Sezione di Roma Tor Vergata; ^(b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy

¹³⁴ ^(a) INFN Sezione di Roma Tre; ^(b) Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy

135 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies – Université Hassan II, Casablanca; (b) Centre National de l'Energie des Sciences Techniques Nucleaires, Rabat; (c) Faculté des Sciences Semlalia, Université Cadi Ayvad, LPHEA-Marrakech; (d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (e) Faculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco

136 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat à l'Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France ¹³⁷ Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, United States

¹³⁸ Department of Physics, University of Washington, Seattle, WA, United States

¹³⁹ Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom

¹⁴⁰ Department of Physics, Shinshu University, Nagano, Japan

¹⁴¹ Fachbereich Physik, Universität Siegen, Siegen, Germany

¹⁴² Department of Physics, Simon Fraser University, Burnaby, BC, Canada

¹⁴³ SLAC National Accelerator Laboratory, Stanford, CA, United States

144 (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic

145 (a) Department of Physics, University of Cape Town, Cape Town; ^(b) Department of Physics, University of Johannesburg, Johannesburg; ^(c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa

¹⁴⁶ ^(a) Department of Physics, Stockholm University; ^(b) The Oskar Klein Centre, Stockholm, Sweden

¹⁴⁷ Physics Department, Royal Institute of Technology, Stockholm, Sweden

¹⁴⁸ Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, United States

¹⁴⁹ Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom

¹⁵⁰ School of Physics, University of Sydney, Sydney, Australia

¹⁵¹ Institute of Physics, Academia Sinica, Taipei, Taiwan

¹⁵² Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel

¹⁵³ Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel

¹⁵⁴ Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

¹⁵⁵ International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan

¹⁵⁶ Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan

¹⁵⁷ Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

¹⁵⁸ Department of Physics, University of Toronto, Toronto, ON, Canada

^{159 (a)} TRIUMF, Vancouver BC; ^(b) Department of Physics and Astronomy, York University, Toronto, ON, Canada

¹⁶⁰ Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan

¹⁶¹ Department of Physics and Astronomy, Tufts University, Medford, MA, United States

¹⁶² Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia

¹⁶³ Department of Physics and Astronomy, University of California Irvine, Irvine, CA, United States

164 (a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy

¹⁶⁵ Department of Physics, University of Illinois, Urbana, IL, United States

¹⁶⁶ Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

167 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain

¹⁶⁸ Department of Physics, University of British Columbia, Vancouver, BC, Canada

¹⁶⁹ Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada

¹⁷⁰ Department of Physics, University of Warwick, Coventry, United Kingdom

¹⁷¹ Waseda University, Tokyo, Japan

¹⁷² Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel

¹⁷³ Department of Physics, University of Wisconsin, Madison, WI, United States

¹⁷⁴ Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany

¹⁷⁵ Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany

¹⁷⁶ Department of Physics, Yale University, New Haven, CT, United States

¹⁷⁷ Yerevan Physics Institute, Yerevan, Armenia

¹⁷⁸ Centre de Calcul de l'Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

- ^a Also at Department of Physics, King's College London, London, United Kingdom.
- ^b Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
- ^c Also at Novosibirsk State University, Novosibirsk, Russia.
- ^d Also at TRIUMF, Vancouver, BC, Canada.
- ^e Also at Department of Physics, California State University, Fresno, CA, United States.
- ^f Also at Department of Physics, University of Fribourg, Fribourg, Switzerland.
- ^g Also at Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Portugal.
- ^h Also at Tomsk State University, Tomsk, Russia.
- ⁱ Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
- ^j Also at Universita di Napoli Parthenope, Napoli, Italy.
- ^k Also at Institute of Particle Physics (IPP), Canada.
- ¹ Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
- ^m Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.
- ⁿ Also at Louisiana Tech University, Ruston, LA, United States.
- ^o Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain.
- ^p Also at Department of Physics, National Tsing Hua University, Taiwan.
- ^{*q*} Also at Department of Physics, The University of Texas at Austin, Austin, TX, United States.
- ^r Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia.
- ^s Also at CERN, Geneva, Switzerland.
- ^t Also at Georgian Technical University (GTU), Tbilisi, Georgia.
- ^{*u*} Also at Manhattan College, New York, NY, United States.
- ^v Also at Hellenic Open University, Patras, Greece.
- ^w Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
- ^x Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France.
- ^y Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.
- ^z Also at School of Physics, Shandong University, Shandong, China.
- ^{aa} Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
- ^{*ab*} Also at Section de Physique, Université de Genève, Geneva, Switzerland.
- ^{ac} Also at International School for Advanced Studies (SISSA), Trieste, Italy.
- ad Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, United States.
- ae Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China.
- ^{af} Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.
- ^{ag} Also at National Research Nuclear University MEPhI, Moscow, Russia.
- ^{ah} Also at Department of Physics, Stanford University, Stanford, CA, United States.
- *ai* Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
- ^{*aj*} Also at Department of Physics, The University of Michigan, Ann Arbor, MI, United States.
- ^{*ak*} Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia.

* Deceased.