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STIFFNESS MECHANISM USING INCLINED LINEAR
SPRINGS
William S. P. Robertson, Ben Cazzolato, and Anthony Zander
School of Mechanical Engineering, The University of Adelaide, SA 5005, Australia

will.robertson@adelaide.edu.au

Negative stiffness mechanisms have seen renewed attention in recent years for their ability to reduce the resonance frequency
of a structure without impeding their load-bearing ability. Such systems are often described as having quasi-zero stiffness
when the negative stiffness is tuned to reduce the overall stiffness of the system as close to zero as possible without creating an
instability. The system analysed in this work consists of a vertical spring for load bearing, and two symmetric inclined springs
which behave with a snap-through effect to achieve negative stiffness. While this structure has been analysed extensively in the
literature, generally only the stiffness in the vertical direction has been considered in the past. Here, the horizontal stiffness is
assessed as well, and it is shown that it is possible to achieve quasi-zero stiffness in both directions simultaneously if the spring
stiffnesses and pre-loads are chosen appropriately. Attention is paid to the tuning required in order to set the equilibrium point
at a position which is arbitrarily close to having quasi-zero stiffness while avoiding issues arising from mechanical instability.

INTRODUCTION
In recent years a number of nonlinear systems have been

proposed for vibration isolation to overcome the trade-off
between low stiffness and high load bearing. These systems
in general use a combination of positive and negative stiffness
elements to achieve a localised region of ‘quasi–zero stiffness’
at or near the equilibrium position of the system [13].

One system that exemplifies this idea involves using a
repelling magnet pair to provide load bearing and an attracting
magnet pair to provide negative stiffness which has been
investigated previously by the present authors [10, 16, 11]. The
noncontact forces of the magnetic system make them well-suited
for online tuning [15, 14], but the inherent instability of magnetic
systems can add complexity to the control required.

While flexible structures have been shown to operate similarly
[12, 4, 7], the most common system for achieving quasi–zero
stiffness involves arrangements of inclined mechanical springs
which generally operate in ‘snap-through’ regimes such as
the spring arrangement shown in Figure 1 [8, 3, 2]. This
system consists of a load bearing vertical spring in parallel
with a pair of inclined springs that behave in a buckling regime.
Generally, analyses of this system have only considered its
stiffness properties in a single degree of freedom, in the direction
of the primary load bearing.

This paper consists of an analysis of the quasi-static behaviour
of this inclined spring system and re-formulates the force and
stiffness characteristics in both vertical and horizontal directions,
describing in some detail the approach by which low stiffness
in both directions can be achieved. Low stiffness in the vertical
direction has been previously documented due to the negative
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Figure 1. Negative stiffness inclined springs in parallel with a positive
stiffness spring. Top: the system with the inclined springs in their
uncompressed state corresponding to a vertical displacement of z = h.
Bottom: inclined springs at a position of maximum negative stiffness,
corresponding to a vertical displacement of z = 0

vertical stiffness of a pair of horizontal springs in compression.
Low stiffness in the horizontal direction is newly analysed here,
which is achieved due to the negative stiffness in the horizontal
direction of the load-bearing vertical spring.

GEOMETRY

Figure 1 shows the planar inclined spring system both without
load (that is, with undeflected springs) and after deflection to

the position which has the potential of achieving ‘quasi–zero
stiffness’, which is the position of maximum compression of
the inclined springs. The overall stiffness of the system must be
tuned to support the mass of the load at this position.

At the unloaded state shown in Figure 1, all springs are
considered to be in their uncompressed state; with inclined
spring lengths L0 =

√
h2 +w2 and vertical spring length H0 =

ηL0, where η is denoted the ‘length ratio’ between the vertical
and inclined springs. The inclined springs each have stiffness ki
and the vertical spring has stiffness kv = αki, with α denoted the
‘stiffness ratio’ between the vertical and inclined springs. The
stiffness and deflection properties of the springs are summarised
in Table 1.

The position at which the inclined springs are horizontal
defines the displacement origin of the system, where z is
the displacement in the load bearing direction, and x is the
displacement in the non–load bearing direction (this is used later
for the derivation of the horizontal stiffness of the system).

The deflected lengths of the springs from vertical
displacement z and horizontal displacement x are L(x,z) for
the inclined spring and H(x,z) for the vertical spring. The
compressed length of the inclined spring on the left is

L(x,z) =
√
[w+ x]2 + z2, (1)

and the vertical spring length is

H(x,z) =
√

x2 +[H0 −h+ z]2; (2)

note that L(0,h) = L0 and H(0,h) = H0.
The geometry that has been chosen uses linear springs that are

all arranged to be undeflected in the unloaded state of the system.
Kovacic, Brennan, and Waters [6] have explored the effects of
including pretension and the use of nonlinear softening springs
for vertical vibration isolation.

VERTICAL FORCES

The forces on the mass are calculated by analysing the
components due to each spring individually. The force due
to the inclined spring (on the left of Figure 1), in the direction
of the spring, is given by

Fi(x,z) = [L0 −L(x,z)]ki =

[√
w2 +h2 −

√
[w+ x]2 + z2

]
ki.

(3)

Assuming only vertical displacement (x = 0), the vertical
component of this inclined spring force is

(4)Fiv(0,z) = Fi(0,z)
z

L(0,z)
= zki

[√
w2 + h2

√
w2 + z2

− 1

]
.

It is convenient to normalise this result by representing the
lengths and displacements as ratios of the uncompressed height
of the inclined springs. With the coordinate substitutions

Table 1. Properties of the springs in the quasi–zero stiffness inclined
spring system defining stiffness ratio α and length ratio η .

Spring Stiffness Undeflected length

Inclined ki L0 =
√

h2 +w2 =
√

h2 [1+ γ2]
Vertical kv = αki H0 = ηL0

ξ = z/h and γ = w/h, the inclined spring force in the vertical
direction can be written in non-dimensional form as

(5)
Fiv(ξ )

hki
= ξ

[√
γ2 + 1

γ2 + ξ 2 − 1

]
,

where γ is denoted the ‘geometric ratio’ of the device and ξ
the normalised displacement. Note that here γ = 0 corresponds
to unloaded inclined springs at 90◦ (that is, vertical) before
compression, and γ = ∞ corresponds to unloaded inclined
springs at 0◦ (that is, horizontal). In the coordinate system used
here, the displacement origin z = 0 corresponds to the position
of maximum compression of the inclined springs; that is, when
they are horizontal.

Figure 2 illustrates the force characteristic of Eq. (5) versus
normalised displacement for a range of geometric ratios γ . In
Figure 2 and later figures, the geometric ratio γ is expressed
as a ratio of γ∗, the value of γ that produces quasi–zero
stiffness for this system; γ∗ will be derived later in Eq. (12).
The ‘snap-through’ forces that cause the negative stiffness are
especially strong for smaller values of geometric ratio γ (that is,
the more vertical the spring angles before deflection).

The total vertical force produced by the system, Ftv(x,z), is
calculated by combining Eq. (4) for each inclined spring with
the force due to the vertical spring:

(6)Ftv(x,z) = 2Fiv(x,z) + Fvv(x,z) .

For vertical displacements, the force due to the vertical spring is
given by

(7)Fvv(x,z) = [h − z]kv ,

and the total force in the vertical direction can be
nondimensionally represented by

(8)
Ftv(x,z)

hki
= −ξ α + α + 2ξ

[√
γ2 + 1

γ2 + ξ 2 − 1

]
,
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Figure 2. Vertical force due to inclined springs only for a range of
geometric ratios γ .
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Figure 3. Normalised vertical force characteristic of the system
calculated with Eq. (8).

recalling that α = kv/ki is the stiffness ratio between the vertical
and inclined springs. This equation is depicted in Figure 3 for
a unity stiffness ratio (α = 1), where it can be seen that by
selecting the geometric ratio γ appropriately it is possible to
generate a local region of low stiffness at displacement ξ =
0, approaching the quasi–zero stiffness condition under ideal
circumstances. The calculation for γ∗, the value of the geometric
ratio γ for which quasi–zero stiffness is achieved, will be shown
later in Eq. (12).

The force curves in Figure 3 terminate at a certain point
in the negative displacement region, which corresponds to the
maximum possible compression of the vertical spring, given by
the condition H(0,zmin) = 0. In other words, the spring has been
compressed to zero length. This condition can be solved for zmin
and subsequently normalised for the equivalent ξmin, which are
given by

zmin = h−H0, ξmin = 1−η
√

γ2 +1. (9)

VERTICAL STIFFNESSES
The vertical stiffness characteristic, Kv, of the system is

calculated by differentiating the vertical force, Eq. (8), with
respect to vertical displacement z, yielding

(10)Kv = − d
dz

Ftv(x,z) ,

which can be written in non-dimensional form as

(11)
Kv

ki
= −2γ2

√
γ2 + 1

[γ2 + ξ 2]3
+ α + 2 .

Graphs of the normalised vertical stiffness Kv/ki versus
normalised displacement ξ are shown in Figure 4 for a range
of geometric ratios γ , which show that the stiffness at ξ = 0
varies from negative to positive as γ increases. The parameter
selection required to achieve a quasi–zero stiffness condition
in the vertical direction can be found by solving Eq. (11) for
Kv = 0 at ξ = 0. This results in the relation

γ∗ =
2√

α2 +4α
(12)
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Figure 4. Vertical stiffness characteristic for a range of geometric ratios
γ at α = 1, calculated with Eq. (11).
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Figure 5. The stable and unstable equilibrium points of the inclined
spring system near quasi–zero stiffness for ε ∈ {−0.1,0,0.1}. The
rest position will move from the unstable point to the stable point of
equilibrium.

which is used as the reference value of the geometric ratio γ for
the results shown in Figures 2, 3, 4 and 7.

Achieving exactly quasi–zero stiffness with this spring is
not feasible in practice as the stiffness characteristic becomes
negative for γ < γ∗, as shown in Figure 4. This is important as
the geometric ratio γ will have some uncertainty in its value due
to environmental conditions such as temperature and physical
imperfections such as creep. The deviation of γ from γ∗, ε , can
be defined by

γ = [1+ ε]γ∗. (13)

Figure 5 shows the total vertical force, Ftv , of the system for ε ∈
{−0.1,0,0.1}. It can be seen that negative values of ε (that is, a
geometric ratio less than that for quasi–zero stiffness) correspond
to negative stiffness at normalised displacement ξ = 0. A system
in this condition is in a position of unstable equilibrium, and will
move towards and remain at the position of stable equilibrium
indicated in the figure rather than the design point at ξ = 0.

Figure 6 plots the stiffness at this deviated equilibrium point
as ε varies; in the unstable zone, the system will move to the
equilibrium point shown in Figure 5 away from ξ = 0. (With
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Figure 6. The stiffness at equilibrium as ε varies; as the stiffness
becomes negative, the stiffness shown corresponds to the stable point
of equilibrium shown in Figure 5.

sufficient excitation the system will ‘snap though’ from one
equilibrium position to another with a resulting displacement
profile that is comparatively large given the excitation amplitude;
this mechanism has been proposed as a useful phenomenon
for energy harvesting purposes [9].) It can be seen that the
stiffnesses in the stable region for ε > 0 are smaller than the
stiffnesses in the equilibrium region for ε < 0. This highlights
the importance of never breaching the ε < 0 instability condition.
Therefore, a chosen value for the geometric ratio γ will approach
γ∗ but always be slightly greater in order to retain stability of
the equilibrium position.

HORIZONTAL STIFFNESS
CHARACTERISTIC DUE TO VERTICAL
DISPLACEMENT

Now that the vertical stiffness characteristics of the system
have been analysed and a condition derived to achieve
quasi–zero stiffness in that direction, the same approach will be
taken for the horizontal behaviour. Only vertical displacements
will be considered in assessing the horizontal stability. This
can be justified by considering how instability in the horizontal
direction arises: as the vertical spring is compressed it generates
lateral forces as the load becomes off-centre. These lateral forces
correspond to a negative stiffness that has greatest magnitude
for zero horizontal displacement, and therefore for a position
of stable equilibrium a small deviation will not result in sudden
instability.

In order to calculate the horizontal stiffness of the system, the
force from the vertical spring needs to be represented in terms of
both vertical and horizontal displacements. This force, aligned
in the direction of the nominally-vertical spring, is

Fv(x,z) =
[

ηL0 −
√

x2 +[−h+ z+ηL0]
2
]

kv, (14)

recalling that x is the displacement of the mass in the horizontal
direction. Substituting x = 0 into Eq. (14) yields the previous
Eq. (7). The horizontal component of this force is

(15)Fvh(x,z) = Fv(x,z)
x

H(x,z)
.

Similarly, the horizontal component of the force from the
inclined spring on the left (referring to Figure 1) is given by

(16)Fih(x,z) = Fi(x,z)
w + x
L(x,z)

,

and the horizontal component of the force from the inclined
spring on the right is

(17)Fih(x,z)
∣∣∣∣
right

= −Fih(−x,z) .

The stiffness characteristic in the horizontal direction, Kh, is
derived in a similar fashion to the vertical stiffness. The total
force in the horizontal direction is

(18)Fth(x,z) = Fih(x,z)− Fih(−x,z) + Fvh(x,z) .

Differentiating with respect to horizontal displacement x and
evaluating at x = 0 gives the horizontal stiffness characteristic
as the vertical displacement varies,

Kh

ki
=−2ξ 2

√
γ2 +1

[γ2 +ξ 2]3
+

α [ξ −1]

η
√

γ2 +1+ξ −1
+2. (19)

This horizontal stiffness is shown in Figure 7 as a function of
vertical displacement. Comparing this to the vertical stiffness
results (Figure 4), it can be seen that while the vertical stiffness
is zero at normalised displacement ξ = 0 and geometric ratio
γ = γ∗ (which is as derived), the horizontal stiffness exhibits
separate behaviour, and can even be negative (that is, unstable)
for values of γ lower than around 1.25γ∗.

Since the vertical stiffness and horizontal stiffness are
independent, further analysis into the behaviour of the horizontal
stiffness at the vertical quasi–zero stiffness condition is
warranted. Substituting the quasi–zero stiffness condition of
Eq. (12) into Eq. (19) at displacement ξ = 0 gives the normalised
horizontal stiffness as a function of stiffness ratio α:

Kh

ki

∣∣∣∣
V. QZS

= 2−α

[
[α +2]η√
α [α +4]

−1

]−1

. (20)
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Figure 7. Horizontal stiffness characteristic for a range of geometric
ratios γ at α = 1, calculated with Eq. (19).
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Figure 7. Horizontal stiffness characteristic for a range of geometric
ratios γ at α = 1, calculated with Eq. (19).
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This equation is depicted in Figure 8; it can be seen that the
horizontal stiffness of the spring may be chosen by varying
both the spring stiffness ratio α and the spring length ratio η .
Since the length ratio η is not found in Eq. (11), the horizontal
and vertical stiffnesses may be tuned independently in order to
achieve quasi–zero stiffness in both simultaneously.

To obtain zero stiffness in the horizontal direction at the
nominal position, Eq. (20) is solved for Kh = 0, showing a
relationship between α and η when the quasi–zero stiffness
condition is achieved in both the vertical and the horizontal
directions.

α∗(η) = 2
[√

η2 +1−1
]
, or

η∗(α) =
1
2

√
α [α +4].

(21)

As a consequence, increasing η (say, in order to reduce the
compression of the vertical spring) results in an increasing value
of the vertical spring stiffness in order to remain at quasi–zero
stiffness.

Using α∗ from Eq. (21) in the stiffness equations (11) and (19)
allows the stiffness characteristics of the system in the two
directions to be compared when both have quasi–zero stiffness
simultaneously. Considering the vertical stiffness first in
Figure 9, it can be seen that increasing the length ratio η
increases the vertical stiffness gradient, which is an important
parameter to be kept small in order to mitigate possible nonlinear
dynamic effects that may arise due to a large rate of change of
stiffness over displacement.

The graph of horizontal stiffness versus vertical displacement
is shown in Figure 10. Note that contrary to the vertical case,
the horizontal stiffness curves are not symmetric around zero
vertical displacement. This is caused by the effect of the vertical
spring; with negative vertical displacement (compression of the
vertical spring) a horizontal perturbation results in an unstable
horizontal force, whereas with positive vertical displacement
(extension of the vertical spring) any horizontal forces act in a
restoring sense.

Figure 10 illustrates that the quasi–zero stiffness condition
is always marginally unstable in the horizontal direction since
negative vertical displacement will result in negative horizontal
stiffness. In practice this requires that the system be tuned
slightly away from the quasi–zero stiffness condition in the
horizontal direction after accommodating for the maximum
disturbance displacement of the isolator. It is possible to do
this without compromising the quasi–zero stiffness condition in
the vertical direction because the spring length ratio η does not
affect the vertical stiffness.

As an example, Figure 11 shows the horizontal stiffness for
a stiffness ratio detuned by five percent below that required
for quasi–zero stiffness (that is, α = 0.95α∗). In comparison
with Figure 10, the spring has a stable displacement range of
approximately ξ = ±0.025. Provided that the spring length
ratio η is large enough, the horizontal stiffness at ξ = 0 is still
significantly reduced.

Therefore, there is a direct compromise between the
nonlinearity of the stiffness in the vertical direction (which
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Figure 8. Horizontal stiffness characteristic versus stiffness ratio α at
the vertical quasi–zero stiffness condition for varying length ratio η ,
calculated with Eq. (20).
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Figure 9. Vertical stiffness characteristics at quasi–zero stiffness in
both directions, for a range of spring length ratios η .
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Figure 10. Horizontal stiffness characteristics at quasi–zero stiffness
in both directions, for a range of spring length ratios, η . Note that
negative displacement will result in negative stiffness.
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Figure 11. Normalised horizontal stiffness of the system at α = 0.95α∗

in order to obtain a small range of displacement around ξ = 0
with positive stiffness. The vertical quasi–zero stiffness condition
is unaffected.

increases with η) and the amount of stiffness reduction in the
horizontal direction (which decreases with η).

CONCLUSION

This paper has analysed the horizontal stiffness characteristics
of a common quasi–zero stiffness arrangement that uses linear
mechanical springs. This system has been analysed extensively
in the literature with respect to its vertical stiffness properties and
its suitability for vibration isolation; this work has shown that
with correctly tuned spring stiffnesses, low horizontal stiffness
can be achieved simultaneously with low vertical stiffness.
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Figure 11. Normalised horizontal stiffness of the system at α = 0.95α∗

in order to obtain a small range of displacement around ξ = 0
with positive stiffness. The vertical quasi–zero stiffness condition
is unaffected.

increases with η) and the amount of stiffness reduction in the
horizontal direction (which decreases with η).

CONCLUSION

This paper has analysed the horizontal stiffness characteristics
of a common quasi–zero stiffness arrangement that uses linear
mechanical springs. This system has been analysed extensively
in the literature with respect to its vertical stiffness properties and
its suitability for vibration isolation; this work has shown that
with correctly tuned spring stiffnesses, low horizontal stiffness
can be achieved simultaneously with low vertical stiffness.
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