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An Enhanced Physics-based Model to Estimate 
the Displacement of Piezoelectric Actuators 
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*, MORTEZA MOHAMMADZAHERI AND LEI CHEN  

School of Mechanical Engineering, University of Adelaide, 5005, Australia 

 
ABSTRACT: Piezoelectric actuators are the foremost actuators in the area of nanopositioning. However, 
the sensors, employed to measure the actuator displacement, are expensive and difficult if not impossible 
to be used. Mathematical models can map the easy-to-measure electrical signals to the displacements of 
these actuators as the displacement sensors are replaced with the models. In addition, these models can be 
used in model-based control system design. Two main groups of mathematical models are used for this 
purpose: black box models and physics-based models. As an advantage, the latter models have a much 
less number of parameters reducing computational demand. However, physics-based models suffer from 
(1) the relatively low accuracy of the models and, (2) non-standard and ad-hoc parameter identification 
methods. In this research, to improve the model accuracy, mathematical structure of the model is 
enhanced by adding two complementary terms inspired by the Preisach model. Then, a standard method 
based on the evolutionary algorithms is proposed to identify the model’s parameters. To this purpose, a 
well-known physics-based model, the Voigt model, is to be improved. The proposed ideas are 
substantiated to increase the applicability and accuracy of the model and they are easily extendable to 
other physics-based models of piezoelectric actuators. The newly proposed enhanced structure of the 
Voigt model doubles the estimation accuracy of the original model and results in accuracies comparable 
with black box models. 
 

INTRODUCTION 

piezoelectric materials are a class of smart materials         

coupling the electric voltage and mechanical force. If an 
electric voltage is applied to a piezoelectric material, the 
material starts to vibrate and deform. This can actuate the 
adjacent structures; thus, the piezoelectric material plays the 
role of an actuator (Kim et al., 2005). 
Nanopositioning, manipulating materials at nano/micro metre 
scale, is the main application area for piezoelectric actuators. 
(Karam, 1999). Nanopositioning plays a critical role in areas 
such as Atomic Force Microscopy (AFM) (Minne et al., 1995, 
Last et al., 2010) and highly precise manufacturing (Park and 
Moon, 2010). 
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In nanopositioning, the displacement of piezoelectric actuators 
should be accurately controlled. To this purpose, feedback 
control systems are employed needing highly accurate 
displacement sensors. However, the sensors are expensive 
and/or their application is limited by practical constraints such 
as non-accessible installation and difficult calibration 
(Boukari, 2010). Accordingly, these sensors can be replaced 
with mathematical models. The models estimate the 
displacement of piezoelectric actuators using the voltage 
across the actuators.  
Different types of mathematical models have been employed 
for the modelling purpose such as black box models designed 
through system-identification techniques (Mohammadzaheri 
et al., 2012a, Mohammadzaheri et al., 2012c). Moreover, a 
few physics-based models, inspired by physical phenomena, 
have been introduced to estimate the displacement of 
piezoelectric actuators. Physics-based models are superior to 
black box models in terms of offering physically interpretable 
and small numbers of parameters. Small numbers of 



parameter reduces the computation requirement for running 
the models and increases the potential use for real-time 
feedback control. Physics-based models are an analogy of 
either magnetic systems, e.g. the Preisach model (Farsangi 
and Saidi, 2012), or an analogy of mechanical systems 
including masses, springs and dampers, e.g. the Kelvin-Voigt 
model (Yeh et al., 2008) . 
One of the main challenges for physics-based models of 
piezoelectric actuators is the relatively low accuracy of the 
model, partially due to insufficient mathematical structure of 
the models. Accordingly, complementary terms/inputs are 
presented and justified to be added to a physics-base model 
constructing an enhanced structure for the model. 
The method for identifying the parameters of physics-based 
models is another primary challenge for these models. In 
general, the parameters of these models (which are usually 
nonlinear) are identified by ad-hoc and non-optimal methods.  
Hence, in this paper, a new structure, inspired by the Preisach 
model, is developed for physics-based models of piezoelectric 
actuators and, a universal approach based on an evolutionary 
algorithm is proposed to identify the model parameters. The 
enhanced model is used to model a stack piezoelectric 
actuator resulting in promising experimental results. 
 

BACKGROUND THEORY 

 Voigt model 
The Voigt model, also known as the Kelvin-Voigt model, is 
an analogical model originally designed for viscoelastic 
systems. This model consists of a series connection of spring-
dashpot units with the stiffness of k and damping coefficient 
of b per each, respectively (Wood et al., 2005). 
The governing equation of the Voigt model is presented by: 
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where bP and  are constant parameters related to energy 
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where ,  and   are Sigmoid parameters. Moreover, the 

physical units of  ,,, bP  and   are 1,,,1  Vm and 

V , respectively (Boukari et al., 2011). 
 

Preisach model 
In the early 1930s, the Preisach model was introduced to 
model the nonlinear behaviour of ferromagnetic materials 
placed in a magnetic field (Hegewald et al., 2008, Fontana, 

1995). Similarity between the behaviour of ferromagnetic 
materials and piezoelectric actuators resulted in introducing 
the Preisach model for piezoelectric actuators (Wolf et al., 
2011, Zelinka et al., 1987). According to the Preisach model, 
the actuator displacement y is estimated by: 
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where α and β, both represent the input voltage and ),(   

represents the Preisach density function (Mohammadzaheri, 
2011, Robert et al., 2001). Regarding the input voltage 
behaviour (ascending/descending voltage), Equation (3) is 
converted to: 
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where S is the integration area known as the Preisach plane, 

maxy  is the last local maximum when descending and miny  is 

the last local minimum when ascending (Zhang et al., 2009). 
In short, the original Preisach model can be described as 
follows: 

 ,,),()( extext yVtVfty   (6) 
where ext stands for extremum values of either the voltage or 
displacement (Miri et al., 2013a). This means that in the 
Preisach model, the model input includes extremum values of 
the voltage and displacement of the piezoelectric actuator.  
 

MODEL STRUCTURE 
The structure of the Preisach model, Equation (6), inspires the 
enhancement for physics-based models by adding 
terms/inputs, including extremum values of the 
voltage/displacement, to the models. For this purpose, the 
Voigt model is proposed to be improved.  
The new introduced model is presented as: 
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In the discrete domain, considering 
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Equation (7) is written as 

 

 ,)sgn(.)sgn(

)(

)()(
))(sgn()()1(

S

f

extext

h

ext

P

tyyeVVg

bkVd

ky

b

kV
kVkyky






















 (9) 

where g, h, e and f are the model parameters presenting the 
contribution of the extremum values of the piezoelectric 
voltage and displacement in the model. 
Therefore, Equation (9) is made based on the discrete form of 
the Voigt model Equation (1): 



  .
)(

)()(
))((

)()1(

S

P

t
bkVd

ky

b

kV
kVsign

kyky































 (10) 

In short, the Voigt model is enhanced by adding terms 
containing the extremum values of the displacement and 
voltage. This new model has nine independent parameters; 
five parameters of the Voigt model and four parameters of the 
extremum terms.  
Two reduced versions of the introduced model, only using the 
extremum of the piezoelectric voltage or displacement, are 
also presented in this research: 
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In Equation (11), the extremum values of the model input 
(voltage) are used as the model input; while in Equation (12), 
the extremum values of the model output (piezoelectric 
displacement) are used as the model input. In both models, 
numbers of parameters is seven, requiring identification. 

 

PARAMETER IDENTIFICATION 

In this paper, available recorded experimental input-output 
(piezoelectric voltage-piezoelectric displacement) data are 
used to identify the model parameters (Mohammadzaheri et 
al., 2012b). The model error is defined as the average of 
absolute discrepancy for the model output and the real output: 
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where m is the number of estimations. The small value of the 
model error is a sign of the closeness of the model parameters 
to their correct values. As a result, a ‘cost function’ or model 
error exists requiring minimisation through fine-tuning the 
values of the model parameters. This process is a classical 
optimisation algorithm. In other words, the parameter 
identification problem is converted into an optimisation 
problem.  
In system identification problems, in order to optimise the cost 
function, several numerical algorithms have been developed. 
From the range of algorithms, the Genetic Algorithm (GA) is 
employed because the GA is a global optimisation algorithm 
determining the global minimum of the cost function (Haupt 
and Haupt, 1998). 
 

Modelling Error Approaches 
   There are two approaches to estimate the model error. In one 
approach, all the inputs to the model are assumed to be known 
at a given instant, then the model output at the next instant 
(step) is estimated, and the output is compared with the real 
output of the system. The resultant discrepancy is called ‘One 
Step Prediction’ (OSP) error (Mohammadzaheri et al., 2012a). 
In the second approach to calculate the model error, after the 
first estimation, previously estimated value(s) of the system 
output(s) are used as model input(s) (instead of the measured 
values). The model error in this approach is called 
‘Simulation’ error (Mohammadzaheri et al., 2012a). 
In dynamic systems, the current value of the system output(s) 
depends on its (their) previous value(s). However, the 
previous values are not measured/available to be fed into the 
model during long-term simulations. Therefore for dynamic 
systems, previously model outputs are used as the model 
inputs to estimate the output at each instant; this approach is 
the Simulation approach. 
Let us consider a first order discrete model that represents a 
single-input-single-output (SISO) system: 

 )(),()1( kykVfkymodel  . (14) 
After the initial steps, in order to use the OSP approach, the 
model output to be used in (15) is calculated as: 

 )(),()1( kykVfkymodel  , (15) 
and for the Simulation approach: 

 )(),()1( kykVfky modelmodel  . (16) 
Figure 1 illustrates the difference between the OSP and 
Simulation approaches. The variables with hat are estimated 
values which are different in two approaches as shown in 
Equations (16) and (17). The value of the model error is found 
by Equation (13). 
Both approaches, presented by Equations (16) and (17), 
together with Equation (13), are used to find the model error. 
The model error is to be used both for the purpose of 
modelling, e.g. parameter identification, and model validation. 
In modelling, the parameters need to be identified so as to 
minimise the model error while in model validation, the model 
error shows the accuracy/validity of the model.  
The OSP model error is usually much lower than the 
Simulation model error, due to the error accumulation 
phenomenon in the Simulation approach. Nevertheless, the 
OSP approach is not applicable to validate the models of 
dynamic systems (Mohammadzaheri et al., 2012a). Therefore, 
in this research, to validate a model, the simulation approach 
is employed.  

 
Figure 1. Estimation of the model error through (a) One Step 
Prediction (OSP) and, (b) Simulation approaches. 



Parameter Identification to 
Optimisation 
In this research, a Genetic Algorithm (GA) is to be used for 
parameter identification through minimising the model error, 
because it is a global optimisation method. (Haupt and Haupt, 
1998). Moreover, the original binary GA is employed in 
which a binary number is assigned to each parameter so as to 
minimise the model error as presented in Equation (13). This 
binary number is called a gene. First, a number of bits with 
the value of 0 or 1 are assigned to each gene. The whole set of 
genes forms a chromosome, which is a full set of parameters 
and a probable solution to the optimisation problem. A 
number of chromosomes are made and tuned to solve the 
problem. The whole set of chromosomes is called the 
population and the mechanism for fine-tuning the genes and 
chromosomes is called evolution (Popov, 2005). The 
algorithm starts from assigning random values to the bits to 
form the initial population. Subsequently, the model error for 
each chromosome (set of parameters) is evaluated, then the 
chromosomes are evolved; that is, they go through a selection, 
cross over and mutation process*(Chipperfield and Fleming, 
1995, Homaifar et al., 1994), and a new population is 
generated. This sequence is repeated several times until it is 
demonstrated that there will be no further improvement 
through evolution; this happens when the ‘cost function’ does 
not decrease through more evolutions. Each time that the 
evolution is repeated it is called iteration. After several 
iterations, the best chromosome amongst the population (with 
the lowest model error) is chosen as the solution.  
As a subtle point, a gene with m bits may have a value 
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



1

0

2
m

i

i  (equal to )12 m , where m is the number 

of bits in a gene. Initially, an arbitrary binary population is 
created, and then the population is converted to decimal 
values. These values may fall obviously outside the 
constraints of some parameters. In order to address this issue, 
before evaluation of the chromosomes, the real value of each 
parameter (presented by a gene) is found by mapping the 
constraint presented by its associated gene onto its real 
constraint. For example, the value of a gene pb should go 
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constraint of [pmin, pmax]: 
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According to Equation (18), as the minimum absolute change 
of pb is 1, the minimum absolute change (MAC) of each 
parameter is: 
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Therefore, as the number of bits increases, the minimum 
absolute change for the parameters decreases, and 

consequently the global minima are less likely to be missed 
out by the algorithm. However, the number of bits is problem 
dependent initially generated by a random value (Cao and Wu, 
1999). 
 

SOLVING A REAL PROBLEM 

Experimental Setup and Data 
Gathering 
The experimental setup consists of a Nek AE0505D44H40 
stack piezoelectric actuator. A PHILTECH D20 optical sensor 
is employed to measure the displacement of the piezoelectric 
actuator. Both the sensor and actuator are connected to a PC 
via a dSpace (a DS1104 R&D Controller Board) and a voltage 
amplifier amplifies the output voltage of the dSpace before 
being applied to the actuator and after being received by the 
sensors. The excitation voltage, in different experiments, 
generates sinusoidal and triangular functions of time. For both 
aforementioned functions, three frequencies of 1, 10 and 100 
Hz were used and the voltage amplitude was within the range 
of V20 . Each experiment lasted 2 seconds. The data 
gathered through the excitation by the triangular voltage 
function at a frequency of 10Hz was used for the model 
validation. The rest of the data was employed for modelling.  

Modelling: Sampling Time and 
Parameter Identification 
The sampling time tS appearing in the models, presented by 
Equations (9), (10), (11) and (12), should be defined before 
identifying the model parameters. The sampling time has a 
crucial role in models: too large and too short sampling times 
make the model unable to capture the system dynamics. 
In this case study, the natural/resonant frequency of the 
actuator is 34 kHz and driving frequencies up to about 1/3×34 
kHz is possible (Micromechatronics, 2013). Therefore, a 
dSpace (DS1104 R&D Controller Board) on a PC-compatible 
computer with a sampling rate of 10 kHz was used to generate 
the digital driving voltage for the actuator; i.e., an 
experimental sampling rate every s410  (Mohammadzaheri et 
al., 2012c). In the literature, the range of sampling time for the 
models of piezoelectric actuator is between s5103.3   and 

s310  (Mohammadzaheri et al., 2012a). Therefore, to find the 
optimum sampling time for the current model, the modelling 
was performed for a few sampling times of larger than s410  
and the model error was identified for each of them. Table 1 
summarises MAEs of the model validation for different 
sampling times and Figure 2 shows these results. Based on 
these outcomes, a sampling time of 4105  s was selected for 
the model. (Miri et al., 2013b). 
As explained in Section Parameter Identification to 
Optimisation, a constraint should be defined for each 
parameter. Considering the literature (Boukari et al., 2011), 



after trial and error, the parameter constraints were defined as 
seen in Table 2. The full constraints and minimum absolute 
changes for each parameter are listed in this table.  
The OSP model error, explained in Section Modelling Error 
Approaches, and the experimental data, explained in Section 

Experimental Setup and Data Gathering, were used during the 
optimisation/identification process. 
 

 
Table 1: Mean Absolute Errors (MAEs) of the model simulation for different sampling times. 

Sampling time –ts (s ) 410
 

4102  4105  310  3102  3105   
210 

 
MAE( m ) 0.5063 0.6129 0.3811 0.5054 0.6470 0.4777 1.0365 

 

 
Figure 2. Validation errors for different sampling times (the circle refers to the optimum sampling time). 

 
Table 2‐ Parameter constraints and minimum absolute changes (MACs). 

Parameters Min    Max      Range   MAC 
    

)(  
100 2500 2400 2.35 

  
200 1000 800 0.78 

  0.001 0.01 0.009 8.79   
b  5000 200000 195000 190.61 
P  0.1 1.2 1.1 0.0011 

)(g  
5 150 145 0.142 

h  0.02 1.6 1.58 0.0015 
e  500 1000 500 0.489 
f  

0.1 1.3 1.2 0.0012 

 

 
 
 
 
 
 
 



Table 3: Identified parameters of the models. 

Model Equation (10) Equation (11) Equation (12) Equation (9) 
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Simulation 
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Table 4: Validation errors of the models made through the OSP approach. 

Model Structure Equation(10) Equation (11) Equation (12) Equation (9) 
Error Indicator MAE MAX MAE MAX MAE MAX MAE MAX 

Error value ( m ) 0.3324 0.9937 0.299 1.02 0.381 0.778 0.163 0.586 

 

Table 5: Validation errors of the models made through the Simulation approach. 

Model Structure Equation (10) Equation (11) Equation (12) Equation (9) 
Error Indicator MAE MAX MAE MAX MAE MAE MAE MAX 

Error value ( m ) 0.3357 0.9313 0.294 0.973 0.365 1.041 0.252 0.804 
 
 

Simulation Results and Analysis 
The parameters of the model Equations (9), (10), (11) and (12) 
were identified based on minimising the model error obtained 
through two aforementioned approaches in Section Modelling 
Error Approaches: the OSP and Simulation. These parameters 
are shown in Table 3. 
Accuracy of the new model(s) was verified by validating the 
model for arbitrary inputs. The validation errors for these 
models are presented in Tables 4 and 5. These tables present 

two representatives of the model error: the mean of absolute 
error (MAE) and the maximum of absolute error (MAX). 
As seen in Table 4, the model Equation (9) offers the best 
accuracy of the estimations while according to the model 
Equation (10), the Voigt model results in the minimum MAE 
of 0.3324 m . The model Equation (11) decreases the 

estimation error to 0.299 m  implying that introducing 

extremum values of the voltage, in the form of new terms, to 
the Voigt model boosts the model accuracy. However, the 
influence of adding the extremum terms of the displacement, 
as presented in Equation (12), does not meaningfully increase 



the accuracy, as shown in Tables 4 and 5, probably due to 
displacement measurement noises. Nonetheless, the 
estimation accuracy increases considerably by adding both 
aforementioned terms including the extrema; as presented in 
the last columns of Tables 4 and 5. The estimated 
displacement through the enhanced model of Equation (9) 
shows a significant improvement of the model accuracy 
compared with the Voigt model. This accuracy is comparable 
with similar studies using black box models 
(Mohammadzaheri et al., 2012a). 
Furthermore, the comparison between Table 4 and 5, i.e. 
Equations (11) and (12), shows that there is not a meaningful 
difference between two introduced modelling approaches: 
both OSP and Simulation approaches result in models with 

rather similar accuracies. However, according to Tables 4 and 
5, the model Equation (9) made through the OSP approach 
demonstrates the highest accuracy among the presented 
models. As the OSP approach is also less computationally 
demanding, it is recommended for modelling in similar 
research work.  
Real and estimated displacement values of piezoelectric 
actuators, generated through the Voigt and other three 
different models, are illustrated in Figures (3)-(6). In these 
figures, the measured and simulated displacements by the 
models are graphed using bold dashed and solid lines, 
respectively. The validation error for each model is shown by 
narrow dashed lines.  
 

 
 
 
 

 
Figure 3. Real and estimated displacement values of the piezoelectric actuator made through Equation (10). 

(Parameter tuning by the GA with minimal model error achieved through the (a) OSP and, (b) Simulation approach.)

  
Figure 4. Real and estimated displacement values of the piezoelectric actuator made through Equation (11). 

(Parameter tuning by the GA with minimal model error achieved through the (a) OSP and, (b) Simulation approach.) 



 
Figure 5. Real and estimated displacement values of the piezoelectric actuator made through Equation (12). 

(Parameter tuning by the GA with minimal model error achieved through the (a) OSP and, (b) Simulation approach.)

 
Figure 6. Real and estimated displacement values of the piezoelectric actuator made through Equation (9). 

(Parameter  tuning  by  the  GA  with  minimal  model  error  achieved  through  the  (a)  OSP  and,  (b)  Simulation  approach.)

 

CONCLUSION 
In this paper, improving the accuracy for a physics-based 
model of piezoelectric actuators was addressed. The model 
was enhanced though the modification of the model structure. 
The model structure was modified by adding two terms, 
including four new parameters, inspired by another physics-
based model. The new structure has a total of nine parameters. 
Subsequently, the parameters were identified through the 
optimisation method using the genetic algorithm. The 
proposed parameter identification is not ad-hoc and may be 
used for other physics-based models. 
The models’ errors were defined through two approaches: 
‘One-Step-Prediction’ and ‘Simulation’. Both approaches and 
the new structure were assessed appropriately. 
 

 
 
 
Improving black box models by adding new inputs had been 
proven to increase the model accuracy. However, physics-
based models are popular due to physically interpretable and a 
small number of parameters in comparison with black box 
models. Accordingly, a physics-based model was enhanced in 
this research. The enhanced model, on a rather similar basis 
with black box models, doubled the estimation accuracy. 
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*Note: Evolution encompasses three major stages: Selection, 
Crossover and Mutation: In the Selection stage, the 
chromosomes are selected to be mated. Roulette Wheels, 



Tournament, Boltzmann, Ranking and Steady State are 
different strategies of Selection. In all methods, the Selection 
deals with the chromosomes according to their cost function. 
In this research, a Roulette Wheel is employed which is one of 
the most famous methods used to select the parents. In this 
method, each chromosome is represented by a slice 
proportional to the chromosome’s ‘cost function’. In this 
method, over a long period of time, the least cost functions are 
selected (Cao and Wu, 1999). Crossover is an important stage 
in which new generations are created. The crossover point is 
selected in the opted parents. This point is a random place in 
the string in which the values of two strings are replaced with 
each other. Different methods of crossover include single-
point, two-point, multi point, uniform and matrix methods, 
while there is no difference among them (Chipperfield and 
Fleming, 1995). In this research, the single-point method has 
been adopted for Crossover. At the Mutation stage, each point 
in the string could mutate with a random probability but this 
probability is usually low. A mutation operator changes the bit 
code from ’0’ to ‘1’ or vice-versa (Fraser, 1960). 


