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Abstract 
 

Hydrologic models are becoming increasingly important in the planning, 

design, operation and management of natural and engineered systems.  

However, development of such models is complicated by the fact that the 

underlying physical processes are extremely complex and that the observation 

and measurement of these processes are expensive and difficult.  

Consequently, simplified models are generally used in practice for purposes 

such as baseflow estimation and rainfall-runoff prediction. However, it is 

difficult to provide a rigorous assessment of how well such simplified models 

perform under a range of catchment characteristics (e.g. catchment area, soil 

type, slope) and hydrological inputs (e.g. rainfall, evaporation) and how well 

they are able to capture the underlying physical processes.  In addition, 

without such assessments, it is difficult to change model structure and 

parameterization in order to improve the models’ predictive capability and the 

ability to better represent physical processes. 

 

In order to address these shortcomings, in this research, generic frameworks 

for (i) evaluating and improving recursive digital filters (RDFs) for baseflow 

estimation and (ii) evaluating the internal dynamic performance of conceptual 

rainfall runoff (CRR) models are developed and applied. The underlying 

premise of the frameworks is that fully integrated surface water/groundwater 

(SW/GW) models are able to provide the best possible approximation to the 

physical processes of water flow within catchments and can therefore be used 

as a benchmark against which the performance of these simplified models can 

be assessed for a variety of physical catchment characteristics and 

hydrological inputs. 

 

The major research contributions are presented in three journal publications. 

These publications describe: 1) the development of frameworks to evaluate 
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and improve RDF performance for baseflow estimation based on catchment 

characteristics and hydrological inputs and their application to a single RDF 

under a limited number of catchment characteristics; 2) the application of the 

frameworks developed in the first paper to three RDFs under a larger range of 

catchment characteristics and hydrological inputs, as well as the development 

of regression equations for predicting RDF performance and optimal RDF 

parameters for improving RDF performance; and 3) the development and 

application of framework to evaluate the internal dynamic performance of one 

commonly used CRR model-Australian Water Balance Model (AWBM) 

under different calibration regimes under a larger range of catchment 

characteristics and hydrological inputs. Consequently, this research has 

developed a new way of evaluating and improving commonly used simplified 

hydrologic models for baseflow estimation and rainfall-runoff prediction. 
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Chapter 1 

1 Introduction 

 

1.1  Research background 

 

A good understanding of surface water and groundwater hydrology is 

important for water resources management, such as low flow and rainfall-

runoff prediction. Due to the difficulties associated with the observation and 

measurement of water movement processes within catchments, surface water 

and groundwater (SW/GW) have traditionally been studied and managed as 

isolated resources (Brodie and Hostetler, 2005). There is however an 

increasing recognition of the need to holistically study surface water and 

groundwater by using physically-based fully integrated SW/GW models, since 

the blueprint for such models suggested by Freeze and Harlan (1969) has been 

started to be realised in last decade. In the literature, many fully-integrated 

SW/GW models have been developed, including InHM (VanderKwaak and 

Loague, 2001), MODHMS (HydroGeoLogic, 2000), HydroGeoSphere 

(Therrien et al., 2009) [HGS] and ParFlow (Kollet and Maxwell, 2006). In 

general, these models can model the surface domain and the subsurface 

domain by using well-established physical laws that have mathematical 

representations. For example, the two-dimensional approximations of the St 

Venant equations are generally used to represent the surface flow component 

of overland flow, while the three-dimensional subsurface components, where 

there is variably saturated flow, can be represented by Richard’s equation 

(Freeze and Harlan, 1969; Sulis et al., 2010). A comprehensive description of 

the types of boundary conditions for fully coupling the surface and subsurface 

flow regimes is provided in Furman (2008). All of these governing equations 
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are solved simultaneously for each time step, which results in realistic, 

physically-based simulation of the movement of water on and within 

catchments (Therrien et al., 2009). In addition, they can be used to simulate 

physical processes for catchments with different characteristics and 

hydrological inputs. Therefore, fully integrated SW/GW models are able to 

provide a rigorous representation of the underlying physical processes of 

hydrologic systems (Furman, 2008; Sulis et al., 2010), and have been widely 

used for different applications, including losing and gaining stream analysis 

(Partington et al., 2011), SW/GW disconnection problems (Banks et al., 2011; 

Brunner et al., 2009), solute transport analysis (Blessent et al., 2009; 

Weatherill et al., 2008), the assessment of impacts of climate change on 

groundwater (Goderniaux et al., 2009) and evaluation and improvement of 

simplified conceptual models (Partington et al., 2012). 

 

However, firstly, development of such models is complicated by the fact that 

the underlying physical processes are extremely complex and that the 

observation and measurement of these processes, which are needed to develop 

such models, are expensive and difficult. In addition, fully integrated SW/GW 

models suffer from drawbacks due to large computational demands and 

potential over-parameterisation, all of which make them complex to calibrate 

and difficult to apply to real catchments. Consequently, simplified models are 

developed and generally used in practice.  

 

One of the most important applications of these simplified models is baseflow 

estimation. During most of the year, streamflow can generally be considered 

to comprise two main components. Water that can enter the river rapidly is 

termed as quickflow and is sourced from direct rainfall onto the river surface 

and catchment surface runoff. In contrast, baseflow is sourced primarily from 

groundwater discharge, and normally takes a longer time to reach the river 

(Gilfedder et al., 2009; McCuen, 2005). Quantifying baseflow contributions to 

streamflow and understanding baseflow dynamics are of great interest in 

many applications, such as the analysis of event runoff, recharge estimation, 

low flow forecasting, hydrogeologic parameter estimation, hydrologic model 

calibration, and identification of source areas, in particular where baseflow 
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supports important ecosystems and/or provides critical dry season water 

supply (Schwartz, 2007; Smakhtin, 2001; Werner et al., 2008). 

 

However, due to the complex hydrological processes and interactions between 

baseflow and different catchment physical properties, there is no easy way to 

continuously and accurately measure baseflow in the field (Dukic, 2006; 

McCallum et al., 2010). As a result, baseflow separation methods have been 

developed for catchments without detailed field data, but for which 

streamflow hydrograph data are available, since the early twentieth century. 

Such baseflow separation methods include graphical separation methods 

(Linsley et al., 1988), recursive digital filters (RDFs) (Arnold et al., 1995; 

Lyne and Hollick, 1979; Nathan and McMahon, 1990) and recession analysis 

(Tallaksen, 1995). Among these, RDFs are the most commonly used, due to 

their relatively easy and efficient implementation. RDFs generally regard total 

streamflow as being composed of a high frequency quickflow signal and a 

low frequency baseflow signal. Through applying a filter to the total 

streamflow, the quickflow can be removed, leaving the baseflow component. 

However, there are many subjectivities/shortcomings in using RDFs. First of 

all, RDFs are a function of one or more user-defined filter parameters. These 

filter parameters are either fixed values for all catchments, or determined 

using subjective methods based on physical catchment characteristics. 

Secondly, the basic mathematical principle underpinning RDFs lacks any 

physical basis, e.g. they are not based on the underlying physical processes 

and do not consider catchment physical and hydrological properties. Finally, 

the relative performance of different RDFs cannot be assessed in absolute 

terms, as baseflow cannot be measured easily in the field, due to practical 

reasons, as mentioned above. Thus, no guidelines exist that enable suitable 

RDFs to be selected for particular catchments. Consequently, there is a need 

to evaluate and improve the performance of commonly used RDFs for 

baseflow estimation and to provide guidance on which RDFs are suitable for a 

particular catchment.  

 

The ultimate goal of evaluating and improving commonly used RDFs is to 

obtain more accurate baseflow estimation for catchments with different 
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catchment characteristics and hydrological properties that have an impact on 

baseflow generation and thus RDF performance. Firstly, catchment area has a 

significant impact on aquifer storage capacity, and thus the sustained baseflow 

contribution to the stream. Secondly, catchment slope may affect the 

infiltration capacity and overland flow towards to the stream (Partington et al., 

2011), which will have an impact on how much groundwater discharges into a 

stream as baseflow. Thirdly, catchment aspect ratio, defined as the ratio of 

catchment width to length, is related to the distance between the catchment 

hillslope and the catchment outlet. As a result, the aspect ratio can also have a 

significant impact on baseflow generation by affecting travel time to the 

outlet. Fourthly, the amount of baseflow that a stream receives is closely 

linked to the permeability of the soil in the catchment (e.g. saturated hydraulic 

conductivity [Ks], van Genuchten parameters α and β). Finally, the hydrologic 

properties, such as rainfall and evapotranspiration (ET) (D'Odorico et al., 

2005; Guttal and Jayaprakash, 2007, 2009), have direct impacts on seasonal 

and longer term trends of baseflow. Consequently, evaluating and improving 

RDF performance under a range of catchment characteristics and hydrological 

properties listed above becomes necessary.  

 

The other significant application of simplified hydrological models is the 

estimation of rainfall-runoff. Conceptual rainfall runoff (CRR) models are the 

most widely utilized methods in practice for this purpose (Boughton, 2009; 

Ranatunga et al., 2008; Seibert, 1999). CRR models use a number of 

interconnected storages with associated empirical mathematical equations to 

conceptualise water movement processes. Similar to RDFs, most of the CRR 

model parameters have no physical interpretation or are not directly 

measurable (Delleur, 1982; Troutman, 1985), due to the fact that many 

complex catchment physical processes are lumped. Thus, CRR model 

parameters are generally obtained by calibration, as part of which a set of 

model parameters is determined that minimises an error measure between 

observed (measured) and predicted (modelled) total streamflow over a 

calibration period. Different optimisation methods can be implemented to 

obtain a well-defined optimal parameter set to get the best fit (Duan et al., 

1992; Gupta and Sorooshian, 1985). Therefore, the predictions obtained using 
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CRR models depend on model structure, the quantity and quality of the input 

data (i.e. streamflow time series, rainfall and ET) and the quality of the 

parameter estimates (i.e. obtained by calibration) (Muleta and Nicklow, 2005). 

However, firstly, without detailed information about all of the physical 

processes from rainfall arrival to runoff generation, it is difficult to examine 

CRR model structure by assessing how well it captures the physical processes. 

In addition, there may be equifinality problems when using traditional 

calibration methods (i.e. by matching the total streamflow time series with 

observations by varying all model parameters simultaneously) to obtain the 

optimal set of CRR model parameters, which can result in different 

combinations of parameters values that give similar objective function values 

(Beven, 1993). Furthermore, as stated previously, total streamflow time series 

are composed of different components, i.e. baseflow and quickflow. However, 

even though total streamflow time series might be predicted well with the 

optimal set of CRR model parameters obtained using traditional calibration 

methods, due to the difficulty of measuring the component hydrographs, it is 

difficult to estimate CRR model internal dynamic performance, i.e. whether a 

good total streamflow prediction is composed of the correct baseflow and 

quickflow predictions. Consequently, it is crucial to evaluate the internal 

dynamic performance of CRR models under a range of catchment 

characteristics and hydrological inputs and to test the efficacy of different 

calibration methods in improving internal dynamic performance.  

 

There are several considerations that need to be addressed in order to carry out 

this research. Firstly, in order to assess and improve commonly used RDF 

performance and CRR model internal dynamic performance under different 

catchment characteristics and hydrological inputs, generic approaches need to 

be developed. In addition, an appropriate benchmark for RDF performance 

and CRR model internal dynamic performance assessment must be selected, 

due to the lack of reliable physical processes measurement in the field (i.e. 

baseflow and quickflow). As stated previously, fully integrated SW/GW 

models can provide a rigorous representation of the underlying physical 

processes of hydrologic systems (Furman, 2008; Sulis et al., 2010), and have 

already been used successfully in the assessment of RDF performance 
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(Partington et al., 2012). While it is acknowledged that fully integrated 

SW/GW models are an approximation of the actual processes in real 

catchments, they are able to provide the first step towards being able to assess 

the performance of RDFs and the internal dynamic performance of CRR 

models under a range of physical conditions. Consequently, a fully integrated 

SW/GW model is used in this research to obtain estimates of streamflow, 

baseflow and quickflow time series for catchments with different 

characteristics and hydrological inputs as benchmarks, against which RDF 

performance and the internal dynamic performance of CRR models are 

assessed. 

1.2  Research aims 

 

The overall aim of this study is to evaluate and improve the predictive 

performance of simplified models, including RDFs for baseflow estimation 

and CRR models for rainfall runoff prediction, under the premise that fully 

integrated SW/GW models are able to provide the best possible 

approximation to the physical processes of water flow within catchments and 

can therefore be used as a benchmark against which the performance of these 

simplified models can be assessed for a variety of physical catchment 

characteristics and hydrological inputs. Ultimately, this research leads to a 

new way of evaluating and improving commonly used simplified models for 

baseflow estimation and rainfall-runoff prediction in real world practice. In 

order to fulfil the overall aim of this research, two main research aims have 

been developed, each with a number of sub-aims, as listed below. The linking 

of each of these objectives is shown in Figure 1.1. 

 

Aim 1: To evaluate and improve the performance of commonly used RDFs 

for baseflow estimation (Journal Papers 1 and 2). 

 

 Aim 1.1: To develop a framework for assessing and improving RDF 

performance by taking different catchment characteristics and 

hydrological inputs into account (Journal Paper 1). 
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Aim 1.2: To test the framework developed in 1.1 by applying it to one 

RDF and a synthetic catchment with different soil properties (Journal 

Paper 1). 

 

 Aim 1.3: To apply the framework developed in 1.1 to evaluate and 

improve the performance of three RDFs under a wider range of 

catchment characteristics and hydrological inputs (Journal Paper 2). 

 

 Aim 1.4: To develop regression equations for predicting RDF 

 performance and optimal RDF parameters based on the catchment 

 characteristics and hydrological inputs for the three RDFs investigated, 

which help to provide guidance on whether the use of a particular RDF 

is suitable for a particular catchment and if it is suitable, what the best 

filter parameter value is (Journal Paper 2). 

 

Aim 2: To evaluate and improve the predictive ability and internal model 

dynamics of CRR models (Journal Paper 3). 

 

Aim 2.1: To assess how well the Australian Water Balance Model 

(AWBM), which is a commonly used CRR model, is able to represent 

total-, base- and quick-flow under a wide range of catchment 

characteristics and hydrological inputs (Journal Paper 3). 

 

Aim 2.2: To assess the impact of a number of calibration regimes that 

take internal model dynamics into account in different ways on the 

accuracy of total-, base- and quick-flow hydrograph prediction for the 

AWBM under a wide range of catchment characteristics and 

hydrological inputs (Journal Paper 3). 
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1.3  Organisation of thesis 

 

This thesis is divided into 5 chapters. The main body of this thesis consists of 

Chapters 2 to 4, which correspond to three journal papers (Li et al. 2013a; Li 

et al., 2013b; Li et al., 2013c). Chapters 2 and 3 are related to the evaluation 

and improvement of the performance of commonly used RDFs for baseflow 

estimation (Aim 1). 

 

Chapter 2 (Li et al., 2013a) presents the generic framework for assessing and 

improving RDF performance by taking different catchment characteristics and 

hydrological inputs into account (Aim 1.1). In Chapter 2, this framework is 

tested by applying it to one commonly used RDF (the Lyne and Hollick Filter) 

and a synthetic catchment with different soil properties (saturated hydraulic 

conductivity (Ks), porosity, residual water content (θr), and van Genuchten 

parameters α and N(β)) under a single hydrological regime (rainfall from 

Adelaide, without evapotranspiration (ET)) (Aim 1.2). 

 

Chapter 3 (Li et al., 2013b) is an expansion of Chapter 2, which implements 

the framework developed in Chapter 2 to evaluate and improve the 

performance of three commonly used RDFs (the Lyne and Hollick, Boughton 

2-parameter and Eckhart filters)under a wider range of catchment 

characteristics (catchment area, hill slope, channel slope, aspect ratio, Ks, and 

van Genuchten parameters α and β) and hydrological inputs (rainfall and ET 

values from Adelaide, Brisbane, Darwin, Melbourne and Sydney) (Aim 1.3). 

In addition, regression equations are developed to predict the performance and 

the optimal filter parameters based on these catchment characteristics and 

hydrological inputs for the three RDFs investigated, in order to provide 

guidance on the suitability of each of these RDFs for a particular catchment 

and if it is suitable, the optimal filter parameter that should be used (Aim 1.4). 
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Chapter 4 (Li et al., 2013c) is concerned with addressing research aim 2. It 

introduces a framework to evaluate the internal dynamic performance of 

AWBM, a commonly used CRR model, by assessing its ability to predict 

total-, base- and quick-flow under a wider range of catchment characteristics 

and hydrological inputs (Aim 2.1). In addition, the impact of a number of 

calibration regimes that take internal model dynamics into account in different 

ways on the accuracy of total-, base- and quick-flow hydrograph prediction 

for AWBM under a wider range of catchment characteristics and hydrological 

inputs is assessed (Aim 2.2). 

 

The linking of each of the papers to the aims is depicted in Figure 1.1. 

Although the journal paper manuscripts have been reformatted in accordance 

with University guidelines, and sections renumbered for inclusion within this 

thesis, the material within this thesis is otherwise as in the published or 

submitted journal papers. Copies of the publications “as published” are 

provided in Appendix A 

 

The final chapter, Chapter 5, summarises the major contributions of this 

research. In addition, the publications produced and the limitations and future 

directions of this research are summarised.  
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Abstract 

 

Baseflow is often regarded as the streamflow component derived 

predominantly from groundwater discharge. The estimation of baseflow is 

important for water supply, water allocation, investigation of contamination 

impacts, low flow hydrology and flood hydrology. Baseflow is commonly 

estimated using graphical methods, recursive digital filters (RDFs), tracer 

based methods, and conceptual models. Of all of these methods, RDFs are the 

most commonly used, due to their relatively easy and efficient implementation. 

This paper presents a generic framework for assessing and improving the 

performance of RDFs for baseflow estimation for catchments with different 

characteristics and subject to different hydrological conditions. As part of the 

framework, a fully integrated surface water/groundwater (SW/GW) model is 

used to obtain estimates of streamflow and baseflow for catchments with 

different properties, such as soil types and rainfall patterns. A RDF is then 

applied to the simulated streamflow to assess how well the baseflow obtained 

using the filter matches the baseflow obtained using the fully integrated 

SW/GW model. In order to improve the performance of the filter, the user-

defined parameter(s) controlling filter operation can be adjusted in order to 

obtain the best match between the baseflow obtained using the filter and that 

obtained using the fully integrated SW/GW model (i.e. through calibration). 

The proposed framework is tested by applying it to a common SW/GW 

benchmarking problem, the tilted V-catchment, for a range of soil properties. 

HydroGeoSphere (HGS) is used to develop the fully integrated SW/GW 

model and the Lyne and Hollick (LH) filter is used as the RDF. The 

performance of the LH filter is assessed using the commonly used value of the 

filter parameter of 0.925, as well as calibrated filter parameter values. The 

results obtained show that the performance of the LH filter is affected 

significantly by the saturated hydraulic conductivity (Ks) of the soil and that 

calibrated LH filter parameter can result in significant improvements in filter 

performance. 
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2.1 Introduction  

Baseflow is often defined as the groundwater contribution to streamflow, 

however it is also referred to as slow flow, and sustained flow (Hall, 1968). 

Herein, the former definition of baseflow is adopted, i.e. the groundwater 

contribution to a stream. The estimation of baseflow can play a significant 

role in terms of understanding the interaction between surface water and 

groundwater (Evans and Neal, 2005; Gilfedder et al., 2009). In addition, 

baseflow estimation is important for a wide range of water and environmental 

management issues, such as water supply, water allocation, investigation of 

contamination impacts, low flow hydrology and flood hydrology (Linsley et 

al., 1988). One important application is the estimation of the baseflow index 

(BFI), which is the long term ratio of the volume of baseflow to total 

streamflow volume. This index was developed by the Institute of Hydrology 

(now CEH Wallingford), and was used in the UK Hydrometric Register, a 

comprehensive reference source to help assess the low flow characteristics of 

rivers and the catchment geology of the UK (Marsh and Hannaford, 2008). 

 

There is no easy way to continuously and accurately measure baseflow in the 

field (Dukic, 2006; McCallum et al., 2010). In the early twentieth century, the 

focus of baseflow estimation methods was primarily on graphical separation 

methods, including the constant discharge, constant slope and concave 

methods (Linsley et al., 1988). Although these methods are able to capture the 

perceived understanding of the underlying physical processes (Bako and Hunt, 

1988; Sloto and Crouse, 1996), their application is subjective in terms of the 

choice of appropriate starting and inflexion points. Since the 1980s, 

researchers have developed alternative baseflow separation algorithms by 

using automated techniques, such as recursive digital filters (RDFs) (Arnold et 

al., 1995; Nathan and McMahon, 1990). These methods regard total 

streamflow as being composed of both quickflow and baseflow and apply 

signal processing techniques to a streamflow time series in order to remove 

the high-frequency quickflow signal to obtain the low-frequency baseflow 
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signal. These RDFs are computationally efficient, easily automated, and can 

be applied to long continuous streamflow records. However, RDFs do not take 

into consideration the physical processes responsible for baseflow generation 

as their inputs, but are simply based on streamflow records and user-defined 

filter parameters. In addition, filters are often constrained by the condition that 

baseflow must not exceed total streamflow or become negative (Furey and 

Gupta, 2001).  Environmental isotopes and chemical tracers have also been 

utilised for streamflow separation by using end member mixing analysis 

(Chapman and Maxwell, 1996; McCallum et al., 2010; Murphy et al., 2009).  

These isotope and tracer approaches can be used to infer the various sources 

of streamflow, such as groundwater, interflow and direct rainfall. However, 

any uncertainty in the end member concentrations of these flow sources 

directly relates to the uncertainty of quantifying the groundwater component 

of streamflow (Jones et al., 2006; McCallum et al., 2010).   

 

Recently, greater attention has been given to physically based approaches for 

analysing baseflow, including fully integrated surface water/ground water 

(SW/GW) flow models, such as InHM (VanderKwaak and Loague, 2001), 

MODHMS (HydroGeoLogic, 2000), HydroGeoSphere (HGS) (Therrien et al., 

2009) and ParFlow (Kollet and Maxwell, 2006).  With precipitation, 

evapotranspiration (ET) and parameters representing catchment characteristics 

as inputs, these complex, spatially distributed models can simulate both 

surface flow and baseflow and give a more detailed physical representation of 

the processes of SW/GW interaction (Khan et al., 2009; Partington et al., 2011; 

Ravazzani et al., 2011). In order to enable the baseflow component of 

streamflow to be extracted accurately from such models, Partington et al. 

(2011) developed a hydraulic mixing-cell (HMC) method, which accounts for 

stream losses and time lags within the catchment. Consequently, use of the 

HMC method in conjunction with fully integrated SW/GW models is likely to 

provide the most accurate means of estimating baseflow.  However, the 

complexity of these models (e.g. the number of parameters that need to be 

obtained through calibration) requires increased data and computational 
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resources, which make them exceedingly difficult to calibrate and apply to 

real catchments.  

 

RDFs are currently the most widely used method for estimating baseflow 

around the world, due to their minimal input requirements and simple and 

efficient implementation.  Such filters include the Lyne and Hollick (LH) 

filter (Lyne and Hollick, 1979; Nathan and McMahon, 1990), Chapman one-

parameter algorithm (Chapman and Maxwell, 1996), Boughton two-parameter 

algorithm (Chapman, 1999), Eckhardt two-parameter algorithm (Eckhardt, 

2005) and IHACRES three-parameter algorithm (Chapman, 1999). However, 

while there have been many studies comparing the performance of RDFs 

(Chapman, 1999; Eckhardt, 2005, 2008; Murphy et al., 2009; Nejadhashemi et 

al., 2003; Nejadhashemi et al., 2009; Partington et al., 2012), the relative 

performance of different RDFs cannot be assessed in absolute terms, as 

baseflow cannot be measured easily (Dukic, 2006; McCallum et al., 2010).  

This also makes it difficult to know which filters to select for particular 

applications. 

 

This problem is compounded by the fact that RDFs operate solely on the total 

streamflow hydrograph, without considering potential impacts of physical 

catchment characteristics.  However, by considering the hydrological 

processes driving baseflow, one might expect that physical catchment 

characteristics have a significant impact on baseflow.  For example, if the 

rainfall rate over a dry catchment with sandy soils is smaller than the rate of 

infiltration, direct runoff from the surface will be very small, and the baseflow 

contribution to streamflow significant. On the other hand, if soils are clayey 

and the antecedent moisture content is high, most of the streamflow will 

consist of overland flow, with little contribution from baseflow. Consequently, 

it is likely that the performance of RDFs will vary, depending on physical 

catchment characteristics.  However, at present, it is difficult to assess this. 

 

The performance of RDFs is also affected by one or more user-defined 

parameters, which are used to change the amount of attenuation in the 



2 Framework for assessing and improving the performance of recursive digital 

filters for baseflow estimation with application to the Lyne and Hollick filter 

(Paper 1) 

 

20 

 

low/high-frequency domain of the flow spectrum, and therefore have an 

impact on the baseflow hydrograph obtained.  However, determining 

appropriate values of these parameters is not straightforward and a range of 

values has been suggested in the literature.  For example, in relation to the LH 

filter, Lyne and Hollick (1979) suggested that a filter parameter between 0.75 

and 0.9 should be used. Arnold et.al. (1995) and Nathan and McMahon (1990) 

recommended using a filter parameter of 0.925. Mau and Winter (1997) found 

a value of 0.85 to be most appropriate and Tan et al. (2009a) suggested using 

the recession constant as the filter parameter value, which varies from 

catchment to catchment.  Common to all of these studies was the goal of 

choosing ‘suitable’ filter parameters in order to obtain a better match between 

the baseflow obtained using the LH filter and that obtained using traditional 

methods of baseflow separation, such as manual graphical baseflow 

separation methods. However, as there is no objective way of assessing how 

well RDFs predict actual baseflow, it is difficult to know which of the 

suggested values should be used. In addition, even though many authors have 

attempted to find an optimal value of the LH filter parameter that can be 

applied to all catchments, adjusting filter parameter values for different types 

of catchments is particularly important, as even a modest change in the LH 

filter parameter can result in an almost 100% change in baseflow for more 

ephemeral streams, for example. While the need to adjust filter parameters for 

catchments with different physical properties has been recognized for some 

RDFs, such as the Boughton two-parameter algorithm (Chapman, 1999) and 

the Eckhardt filter method (Eckhardt, 2005), there is still a need to develop a 

generic approach for determining appropriate values of these filter parameters 

and to assess the impact these values have on filter performance for various 

catchments with different physical properties. 

 

In order to address the shortcomings in filter based baseflow estimation 

outlined above, a generic framework for assessing and improving the 

performance of RDFs is introduced in this paper.  The proposed framework 

enables the performance of different RDFs to be assessed systematically and 

the optimal values of filter parameters to be determined for a range of physical 
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catchment characteristics.  In order to demonstrate the usefulness of the 

proposed framework, it is applied to a hypothetical case study. The remainder 

of this paper is organised as follows.  The proposed framework is introduced 

in Section 2.2, followed by a description of the case study in Section 2.3.  The 

results obtained for the case study are presented and discussed in Section 2.4 

and a summary and conclusions are given in Section 2.5. 

2.2 Generic framework for assessing and 

improving the performance of RDFs for 

baseflow estimation 

The underlying premise of the proposed framework for assessing and 

improving the performance of RDFs for baseflow estimation is that fully 

integrated SW/GW models can be used to obtain reasonably accurate 

estimates of actual baseflow, thereby providing a benchmark against which 

the performance of RDFs can be assessed.  This is a reasonable assumption, as 

fully integrated SW/GW models provide a rigorous representation of the 

underlying physical processes of hydrologic systems (Brookfield et al., 2009; 

Furman, 2008; Partington et al., 2012; Sulis et al., 2010; Therrien and Sudicky, 

1996).  While it is acknowledged that fully integrated SW/GW models are in 

themselves an approximation of the actual processes in real catchments, they 

provide the best means of quantifying the absolute volume of baseflow 

currently available (Ferket et al., 2010).  In addition, they can be used to 

obtain estimates of baseflow for catchments with different characteristics. 

Therefore they are able to provide the first step towards being able to assess 

the absolute performance of RDFs under a range of physical conditions.  The 

generic frameworks for using fully integrated SW/GW models for assessing 

and improving the performance of RDFs used for baseflow estimation are 

given in Sections 2.2.1 and 2.2.2, respectively. 
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2.2.1 Performance assessment 

The proposed framework for assessing the performance of RDFs under a 

range of physical catchment conditions is shown in Figure 2.1.  As mentioned 

above, the underlying premise of the proposed approach is that a fully 

integrated SW/GW model provides the best possible approximation to the 

physical processes of water flow within catchments and can therefore be used 

as an approximation to such processes subject to a variety of physical 

characteristics and forcings. This is because rainfall is allowed to partition 

into overland flow, streamflow, evaporation, infiltration and recharge in a 

physically based fashion (Therrien et al., 2009), without prior definition of 

flow generation processes or storage discharge relationships.  All of the 

governing flow equations implemented by the fully integrated SW/GW model 

are solved simultaneously to obtain the simulated streamflow ( q ) and 

baseflow ( sim

bq ) as a function of user-defined catchment characteristics (e.g. 

soil types, catchment size, catchment shapes) and hydrological inputs (e.g. 

rainfall patterns, antecedent moisture, evaporation) (Figure 2.1). 
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Figure 2.1 Schematic description of the framework for assessing the 

performance of RDFs for baseflow estimation 

 

The simulated streamflow obtained from the fully integrated SW/GW model 

(q) is then used as the input to the RDF in order to compute the filtered 

baseflow hydrograph ( filter

bq ) (Figure 2.1).  The proposed framework can be 

used to assess the performance of any RDF. In order to assess RDF 
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performance, the baseflow obtained with the aid of the RDF ( filter

bq ) can be 

compared with the ’real’ baseflow estimated using the fully integrated 

SW/GW model ( sim

bq ) (Figure 2.1). This comparison can be carried out using 

a number of different evaluation measures, such as the mean square error 

(MSE), Nash-Sutcliffe coefficient of efficiency (Ef) (Nash and Sutcliffe, 

1970), percent bias (PBIAS) (Guttal and Jayaprakash, 2009) or the 

decompositions of MSE and Ef (Gupta and Kling, 2011; Gupta et al., 2009), 

among others. The choice of which measures are most appropriate is case 

study dependent (e.g. whether accurate estimation of the peak, timing or 

volume of the baseflow hydrograph is most important). The performance 

assessment of a particular filter can be repeated for different physical 

catchment conditions and hydrological inputs (Figure 2.1), providing insight 

into how filter performance is affected by these factors and determining the 

range of conditions under which filter performance is acceptable.  

2.2.2 Performance improvement 

As mentioned previously, the performance of RDFs is generally a function of 

the values of one or more user-defined parameters. Some filter parameters are 

simply used to alter the magnitude and shape of the resulting baseflow 

hydrograph, such as the parameter of the LH filter (Lyne and Hollick, 1979; 

Nathan and McMahon, 1990) and one of the parameters ( C ) of the Boughton 

two-parameter algorithm (Chapman, 1999), while others have some physical 

meaning through a relationship with the recession constant or being defined 

relative to some of the underlying physical processes.  

 

In order to determine the best possible values of the filter parameters for a 

given catchment, the assessment framework introduced in the previous section 

can be extended, as shown in Figure 2.2.  Based on the assumption that the 

simulated baseflow obtained using the fully integrated SW/GW model ( sim

bq ) 

is representative of the ’real’ baseflow, the filter parameter(s) () can be 

adjusted to minimize an error measure between the ’real’ baseflow ( sim

bq ) and 
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the baseflow computed using the RDF ( filter

bq ). Any of the performance 

measures mentioned in Section 2.2.1 can be used for this purpose. 

Alternatively, a multi-objective approach can be adopted (e.g. (Gibbs et al., 

2012)).  This calibration process can be automated using various optimization 

methods, such as gradient based methods or evolutionary algorithms, 

depending on the complexity of the calibration problem (e.g. the number of 

parameters to be estimated). 

 

By calibrating the RDFs, it is possible to determine whether filter 

performance can be improved by using optimal parameter values, rather than 

those commonly used in the literature.  In addition, optimal filter parameters 

can be obtained for catchments with different physical characteristics, which 

will assist with providing an insight into the range of catchment properties for 

which different RDFs are applicable (i.e. perform adequately), provided the 

optimal filter parameters are used (referred to as the ’range of applicability’ of 

different RDFs) and the sensitivity of optimal values of filter parameters to 

various catchment properties. 
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Figure 2.2 Schematic description of the framework for improving the 

performance of RDFs for baseflow estimation 
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2.3 Case study 

In this section, a case study is used to illustrate the benefits of the proposed 

frameworks. The various components of the frameworks (Figure 2.1 and 

Figure 2.2) in relation to the case study are discussed in detail below. 

2.3.1 Catchment characteristics and hydrological properties 

The hypothetical catchment used in this study (shown in Figure 2.3) is loosely 

based on a common SW/GW benchmarking problem, the tilted V-catchment 

of Panday and Huyakorn (2004), which is based on DiGiammarco et al. 

(1996). Due to symmetry, the geometry of only half of the catchment is 

described here. The catchment is modified from the catchment given in 

Panday and Huyakorn (2004) in the following ways: The large slopes 

perpendicular and parallel to the channel have been reduced from 0.05m/m 

and 0.02m/m to 0.02m/m and 0.01m/m, respectively, in order to create a 

greater spatial distribution of the surface-subsurface exchanges throughout the 

catchment. The areal extent of the catchment has been increased from 

810,000m
2
 to 6,030,000m

2
, by enlarging the original length (y direction) and 

width (x direction) of the catchment from 1000m and 810m to 3000m and 

2010m, respectively. In order to obtain continuous baseflow contributions to 

the stream, the stream width was retained at 10m as in the original catchment, 

which can reduce the boundary effects and increase aquifer storage capacity. 

 

The underlying aquifer extends to a depth of 20m below the stream outlet 

location, and is homogenous and isotropic. Five different homogeneous soil 

types are considered, which are characterized by different values of saturated 

hydraulic conductivity (Ks), porosity, residual water content (θr), and van 

Genuchten parameters α and N(β).  The ranges and mean values of the soil 

parameters used are shown in Table 2.1, which were taken from Puhlmann et 

al. (2009).  A typical ten year period of daily rainfall data from Adelaide, 

South Australia was used as hydrological input for illustration purposes, 

which is shown in Figure 2.4. In view of the small size of the catchment 

studied, rainfall intensities have been assumed to be spatially uniform. It 
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should be noted that only the geometry of the catchment is based on the 

original test case presented in Panday and Huyakorn (2004), and that the other 

parameters, such as soil types and rainfall patterns, are described as above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Schematic representation of tilted V-catchment flow problem 

(refer to Panday and Huyakorn (2004)) 

 

Table 2.1 Soil types and ranges and means (shown in brackets) of soil 

properties considered for model simulations (taken from Puhlmann et al. 

(2009)) 

 
Soil 

Type 

Porosity θr Ks (m/s) α (m
-1

) N(β) 

Sand 0.261-0.4578 

(0.359) 

0-0.0072 

(0.004) 

1.27E-6-9.66E-4 

(1.6E-4) 

0.572-16.412 

(8.492) 

1.32-8.52 

(4.92) 

Sandy 

loam 

0.28-0.544 

(0.412) 

0-0.22 

(0.108) 

5.01E-7-1.26E-4 

(2.44E-5) 

0.47-11.75 

(6.11) 

1.2-5.16 

(3.18) 

Loam 0.29-0.818 

(0.554) 

0-0.456 

(0.228) 

6.31E-7-1.58E-4 

(3.07E-5) 

0.68-14.56 

(7.418) 

1.0822-2.252 

(1.682) 

Loamy 

sand 

0.341-0.569 

(0.455) 

0-0.1584 

(0.079) 

1.42E-6-1.84E-4 

(3.99E-5) 

0.544-17.344 

(8.944) 

1.2821-2.266 

(1.774) 

Silt 

loam 

0.35-0.65 

(0.5) 

0-0.3 

(0.15) 

1.51E-7-1.38E-5 

(3.01E-6) 

0.18-10.98 

(5.58) 

1.15-3.55 

(2.35) 
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Figure 2.4 Ten year daily rainfall data for Adelaide, South Australia, 

gauge number 23000 

2.3.2 Fully integrated SW/GW model 

HydroGeoSphere (HGS) was used as the fully integrated SW/GW model.  

HGS was considered suitable for this application, as it represents the physical 

catchment processes explicitly.  This is because HGS can solve the equations 

for both surface and variably-saturated subsurface flow regimes at each time 

step simultaneously, which results in realistic, physically-based simulation of 

the movement of water on and within catchments (Therrien et al., 2009). HGS 

has been applied successfully to losing/gaining stream analysis (Partington et 

al., 2011), SW/GW disconnection problems (Banks et al., 2011; Brunner et al., 

2009), the dynamics of river bank storage processes (Doble et al., 2012) and 

dual permeability systems (Schwartz et al., 2010).  

 

HGS uses the diffusion wave approximation to the 2D St. Venant equations to 

simulate surface flow (Therrien et al., 2009): 
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
                           (2.1) 

 

where 0  is the surface flow domain porosity; 0d  is the depth of water above 

the surface [L]; 0  is the volumetric fluid exchange rate with the subsurface 

[LT
-1

]; 0h  is the water surface elevation related to the datum [L] 
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( 000 zdh  , where 0z  is the bed/land surface elevation [L]); 0Q  is a 

volumetric flow rate per unit area representing external sources and sinks [LT
-

1
]. All of the above symbols represent state variables, except for oxK  and 

oyK , 

which are parameters representing surface conductance in the x- and y- 

directions [LT
-1

] and can be calculated by Manning’s equation or the Chezy 

equation. 

 

The following modified Richard’s equation is applied for subsurface flow 

(Therrien et al., 2009): 

 

)())((  S
t

QzkK sexr



                                           (2.2) 

 

where K  is the hydraulic conductivity tensor [LT
-1

]; rk is the relative 

permeability;   is the pressure head [L]; z  is the elevation head [L]; ex  is 

the volumetric subsurface fluid exchange rate with the surface domain [L
3
L

-

3
T

-1
]; Q  is a volumetric fluid flux per unit volume representing a subsurface 

source or sink [L
3
L

-3
T

-1
]; s  is the saturated water content and S  is the 

degree of water saturation. 

 

The degree of saturation can be determined by the Van Genuchten equations 

(van Genuchten, 1980): 

 

v

rr SSS  ]1)[1(


     for     <0                                               (2.3) 

S =1                                                 for     >0                                         (2.4) 



1
1v                                           for       >1                                         (2.5) 

 

where rS is the residual water saturation, and  ,   and v  are the van 

Genuchten parameters.  
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The surface and subsurface are coupled using either continuity of head or a 

conductance concept, with exchanges between the two domains. The latter 

concept was used in this study and is shown below (Therrien et al., 2009):  

 

)( 0d
l

Kk
q

e

zzr

e                                                                                       (2.6) 

 

where eq  is the exchange flux between the surface and subsurface domain 

[LT
-1

]; zzK  is the vertical saturated hydraulic conductivity [LT
-1

]; and el  is 

the coupling length [L]. 

 

All of the equations above are solved simultaneously at each time step 

utilising either a finite difference, control volume finite difference or finite 

element approach (Therrien et al., 2009).  For this study, the control volume 

finite difference method is used, due to its quick implementation on regular 

model grids and superior mass conservation (Partington et al., 2009). 

 

A 3-D HGS model of the tilted V-catchment (Section 2.3.1) was developed in 

order to obtain the required simulated streamflow and baseflow. As shown in 

Figure 2.3, the catchment is symmetrical.  As a result, all simulations were 

conducted for only half of the catchment, as shown in Figure 2.5. The 

simulated stream channel, which extends in the y direction, is 10m wide. In 

the x direction, perpendicular to the stream channel, the grid spacing is 50m 

from x=0-2000m and 10m from 2000-2010m. The grid spacing along the y 

axis is 50m. Therefore, the domain has 42 cells in the x direction and 61 cells 

in the y direction. In the z direction, there are 21 layers, with a discretisation 

of 0.5m for the first 10m below the surface and a single layer below this, with 

its thickness varying between 10 and 80m. Therefore, the maximum saturated 

thickness of the whole catchment is 90m. A critical depth boundary condition 

was utilized at the downstream end of the channel (nodes (2000,0,0) and 

(2010,0,0)) to allocate the surface head at these nodes to be at critical depth 
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( 0d ). The discharge 0Q  per unit width at the critical depth boundary is then 

given by: 

 

3

00 gdQ                                                                                                    (2.7) 

 

A no flow boundary condition was used for the bottom and lateral subsurface 

domain, meaning that water can only leave the catchment from the stream 

outlet (i.e. critical depth boundary). The surface friction was described using 

Manning’s roughness coefficients of 0.015 and 0.15 for the slope and channel, 

respectively, as was the case in Panday and Huyakorn (2004). The rill storage 

and obstruction storage heights for this model implementation were also set to 

quite small values of 0.001m and 0.0m, respectively, to reduce their effects on 

baseflow generation. The coupling length used was 1x10
-6

m, providing near 

continuity of pressure at the surface/subsurface interface. 

 

 

Figure 2.5 Catchment model for case study (modified version of the V-

catchment in Panday and Huyakorn (2004)) 

 

The HGS model was used to simulate streamflow for catchments with 

different soil properties and the baseflow was calculated using the HMC 

method, details of which can be found in Partington et al. (2011).  The two 

soil parameters that were varied include Ks and porosity (Table 2.1). For each 

soil type, each of the two parameters was varied over five values, the 

minimum, lower quartile, mean, upper quartile and maximum values of the 
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ranges given in Table 2.1, while keeping the other soil parameter constant at 

its mean value.  This resulted in 45 simulations in total; 9 for each of the five 

soil types in Table 2.1. 

 

The simulations with different soil characteristics were conducted in three 

steps. Firstly, to determine steady initial conditions, a spatially and temporally 

uniform rainfall with a relatively high intensity (i.e. 10.8mm/hour) was 

applied to the catchment, with an initial water table parallel to the bottom of 

the channel across the whole catchment. This simulation was run for 

approximately one year until the total streamflow did not change with time, 

and was then allowed to drain under gravity in the next phase when the actual 

rainfall was applied. 

 

Secondly, with the above initial conditions, the actual Adelaide rainfall record 

(see Section 2.3.1) was applied to the whole catchment and the model was run 

until a second equilibrium state based on the actual rainfall was reached, 

which required simulation periods between 2 and 35 years, depending on soil 

type. These simulations provided steady-state initial conditions for step three. 

It should be noted that, alternatively, initial conditions for different soil types 

can be obtained by directly applying the actual Adelaide rainfall to the 

catchment with a fully-saturated subsurface domain, and running the model 

until the catchment achieves a steady state. However, this method of deriving 

the initial condition takes much longer for some of the soil types considered, 

resulting in significantly diminished transient behaviour caused by the 

inconsistent boundary or initial conditions. Finally, based on these equilibrium 

states for the actual rainfall record, the simulation was run for a further ten 

years in order to obtain the data used for assessing and improving the 

performance of the RDF. For all of the simulations, adaptive time stepping 

with a maximum time step of 1000s was used to ensure that the maximum 

time step is significantly less than hourly. 
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2.3.3 Digital filter 

In this study, the LH filter was used as the RDF. Although the LH filter has 

some limitations compared with other RDFs, such as the Chapman one-

parameter algorithm (Chapman and Maxwell, 1996) and the Boughton two-

parameter algorithm (Chapman, 1999) (e.g. it is unable to estimate baseflow 

when there is no direct runoff, as discussed by Chapman and Maxwell 

(1996)), it is used extensively in practice and has already been incorporated 

into a number of software tools, including BaseJumper (Murphy et al., 2009) 

and ABScan (Parker, 2006).  The LH filter is a high-pass filter, which filters 

low frequency signals (i.e. baseflow) and transmits high-frequency input 

signals (i.e. quickflow).  Consequently, baseflow has to be obtained by 

subtracting the filtered quickflow from the original streamflow.  The 

corresponding equations are given by Nathan and McMahon (1990) as: 

 

)()()(

)()1()()1()( 0)(
2

1

ifiib

ifiiifif

qqq

qforqq
k

kqq






 
                                    (2.8) 

where i  is the time step, in days [T]; 
)(iq is the original total streamflow at 

time step i , [LT
-1

]; 
)(ifq  and 

)(ibq  are the filtered quickflow and 

corresponding baseflow at time step i , [LT
-1

]; and k  is the filter parameter, 

dimensionless, which is normally set in the range of 0.0-1.0.  

 

Referring to equation (2.8), the initial condition is set as the total streamflow 

being equal to baseflow (i.e. )1()1( qqb  ). In order to better understand the 

impact of the values of the filter parameter on filter performance, it is useful 

to examine the outputs obtained from the LH filter for the extreme values of 

the filter parameter. If the LH filter parameter is set to its maximum value of 

1.0, when )1()( qq i  , the baseflow obtained using the LH filter at each time 

step is always equal to the first value of total streamflow ( )1()( qq ib  ), even if 

there is a peak in the streamflow hydrograph. If )1()( qq i  , the filtered 
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baseflow is equal to the total streamflow ( )()( iib qq  ), due to the constrained 

condition that baseflow cannot exceed total streamflow or become negative. 

On the other hand, if the LH filter parameter is set to its minimum value of 0.0, 

for the rising limb of the total streamflow hydrograph, the baseflow obtained 

from the LH filter is attenuated by halving the sum of the values of the total 

streamflow at the current and previous time step (
2

)()1(

)(

ii

ib

qq
q





).  As for 

the descending limb, the filtered baseflow is equal to the streamflow at the 

current time step ( )()( iib qq  ). Therefore, when the filter parameter is 0.0, the 

filtered baseflow hydrograph always has a peak right under the peak of the 

streamflow hydrograph. Baseflow hydrographs obtained from the LH filter 

with values of the filter parameter between 0.0 and 1.0 lie between the 

baseflow hydrographs derived using filter parameters of 0.0 and 1.0. 

 

The filter can be passed forward and backward over a data set several times 

and the number of passes results in data smoothing and nullification of any 

phase distortion (Spongberg, 2000). Although some researchers have used a 

relatively large number of passes, such as Murphy et al. (2009), who 

implemented the LH filter with 9 passes across hourly data for eight case 

study catchments, most of the studies have used three passes (e.g. (Evans and 

Neal, 2005; Li et al., 2011; Spongberg, 2000; Tan et al., 2009a)), as suggested 

by Nathan and McMahon (1990). In this study, the filter was passed over the 

data three times in all of the analyses: forward, backward and then forward 

again. The time step ( 1i ) is replaced by ( 1i ) when conducting the 

“backward” pass, and after the first pass, )(iq  is substituted by the computed 

baseflow calculated from the previous pass. During the calculation, if )(ifq  is 

smaller than zero, the baseflow is equal to the current )(iq . 

 

The 45 simulated streamflow hydrographs obtained from the HGS model for 

the different combinations of soil properties were used as inputs to the LH 

filter in order to obtain the corresponding filtered baseflow.  Two sets of 45 
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filtered baseflow hydrographs were obtained, one using optimal (calibrated) 

filter parameter values (see Section 2.3.4 for details) and one using a fixed 

filter parameter of 0.925, which is commonly used in the literature (Arnold 

and Allen, 1999; Murphy et al., 2009; Nathan and McMahon, 1990), in order 

to assess the potential benefits of obtaining calibrated filter parameter values. 

2.3.4 Error measure and optimization procedure 

The dimensionless coefficient of efficiency (Ef) was used as the error measure 

for evaluating the performance of filters with different parameters and applied 

to catchments with different soil conditions. This is because it is one of the 

most commonly used error measures in hydrology and provides a trade-off 

between objectives that emphasize different aspects of hydrographs (Gupta 

and Kling, 2011; Gupta et al., 2009). However, it should be noted that because 

of the nature of the LH filter, constrains are placed on the variability of the 

resulting baseflow hydrograph. For example, as discussed previously, the 

timing of the peak of the baseflow hydrograph always coincides with the 

timing of the peak of the total streamflow hydrograph and whenever baseflow 

is larger than the total streamflow, baseflow is forced to be equal to the total 

streamflow, thereby capturing the recession limb of the baseflow hydrograph. 

As a result, the only variability is in the magnitude of the baseflow 

hydrograph, which is controlled by the LH filter parameter, as discussed 

above (i.e. smaller values of the filter parameter result in larger peaks and vice 

versa).  

 

The equation of Ef was given by Nash and Sutcliffe (1970) as: 
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where obs

iY  is the i th observation of the flow rate being evaluated [LT
-1

], sim

iY  

is the i th simulated value of the flow rate being evaluated [LT
-1

], meanY  is the 
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mean of the observed data for the flow rate being evaluated [LT
-1

], i  is the 

time step [T], and n  is the total number of observations.  

 

When using Ef to evaluate the performance of RDFs, the observed data in 

equation (2.9) are given by the simulated baseflow results obtained from the 

fully integrated SW/GW model ( sim

bq ), while the baseflow results derived 

from the RDFs ( filter

bq ) correspond to the simulated values. Based on 

benchmark values available from other studies (Herron and Croke, 2009; 

Moriasi et al., 2007; Nejadhashemi et al., 2007), RDF performance can be 

judged as ‘perfect’ when Ef=1.0, while Ef values between 0.5 and 1.0 

correspond to ‘good’ filter performance; Ef values between 0.0 and 0.5 show 

‘acceptable’ filter performance and ‘unacceptable’ filter performance is 

represented by negative values of Ef. 

 

In order to estimate the uncertainty associated with estimates of the optimal 

LH filter parameters, the following linear estimate of uncertainty was used 

(Vugrin et al., 2005): 
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where k̂  is the optimal LH filter parameter, obtained by minimizing the sum 

of squared errors between the baseflow obtained from the LH filter and that 

simulated using the HGS model (equation (2.11)); p  is the number of 

parameters to be estimated, which is 1 in this case; n  is the number of data 

points, which is 3650 days in this case; and 


pnpF ,  is the upper α percent point 

of the F-distribution, which was set to 0.05.  
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The optimization method used in order to obtain the optimal values of the 

filter parameters was the golden section search method (Press et al., 1992), as 

there was only one model parameter. 

2.4 Results and discussion 

2.4.1 Relationship between optimal filter parameters and soil 

properties 

The optimal LH filter parameter values obtained for the different soil 

properties, as well as their linear estimates of uncertainty, are given in Table 

2.2 and Figure 2.6.  As can be seen, the uncertainty estimates are very small, 

indicating that the optimal values of the filter parameters are well defined and 

that the results obtained can be treated with confidence.  In addition, it can be 

seen that there is a distinct inverse relationship between Ks and optimal values 

of the LH filter parameter, which vary between 0.0025 and 0.997, while the 

optimal values of the LH filter parameter do not vary significantly for soils 

with different values of porosity. This can be explained by examining the 

relationship between soil properties and the resulting baseflow, as well as the 

relationship between the values of the LH filter parameter and filter 

performance (see below).  

2.4.1.1 Relationship between soil properties and resulting baseflow 

Soils with different values of porosity were found to have similar baseflow 

components. Although soils with larger porosity can store more subsurface 

water before they become saturated and also allow more groundwater to 

discharge into the stream, for a given value of Ks, their rate of change in 

storage was similar to that of soils with smaller porosity, resulting in similar 

baseflow components.  

 

In contrast, for soils with a given porosity, soils with larger values of Ks 

resulted in larger baseflow components.  This is because there is a positive 

relationship between Ks and the ease with which water can infiltrate into the 

soil, which means that larger Ks values enable water to infiltrate into the soil 
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more easily, resulting in increased soil saturation and groundwater exfiltration. 

This can be seen from the simulated streamflow and baseflow obtained from 

the HGS models (Figure 2.7). For catchments with sandy soil and mean 

values of Ks and porosity, most of the rain infiltrates into the ground, either 

percolating into the soil and staying in the catchment as groundwater or 

recharging the stream as baseflow.  Consequently, compared with other soil 

types, the peak streamflow for sandy soils was smaller, with a high proportion 

of baseflow and a low proportion of quickflow (surface runoff). In contrast, 

for catchments with soil consisting of silt loam, rain cannot infiltrate easily, 

but is converted to direct runoff, rapidly feeding streamflow. Therefore, such 

catchments had streamflow with a higher peak, with almost no baseflow 

contribution.  

 

This difference in the streamflow behaviour for the two different soil types 

can also be seen clearly by examining the corresponding flow duration curves, 

which are an estimate of the percentage of time a particular streamflow was 

equalled or exceeded, and therefore provide a graphical representation of the 

variability associated with streamflow (Vogel and Fennessey, 1994). As can 

be seen from Figure 2.8, the flow duration curve for the catchment with a 

sandy soil is very flat, indicating that streamflow is almost constant over time, 

which is representative of a stream that is fed primarily by baseflow. In 

contrast, the flow duration curve for the catchment consisting of silt loam 

indicates that flows are highly variable, with higher peak flows, but extended 

periods with little or no flow, which is indicative of a catchment that is 

dominated by surface flow. 
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Porosity

Ks

 

Figure 2.6 Values of the optimal LH filter parameter with the error bars 

obtained from the linear estimates of uncertainty for sand (a), sandy loam 

(b), loam (c), loamy sand (d) and silt loam (e) with different soil 

properties 
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Figure 2.7 Simulated streamflow and baseflow for catchments with sand 

(a) and silt loam (b) with their mean values of Ks and porosity 

 

 

 

 

Figure 2.8 Flow duration curves for catchments with sand and silt loam 

with their mean values of Ks and porosity 
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2.4.1.2 Relationship between the values of the LH filter parameter and 

filter performance 

As discussed above, larger values of Ks result in larger baseflow and vice 

versa, and as discussed in Section 2.3.3 and shown in Figure 2.9, for a 

catchment with sandy soil, smaller values of the LH filter parameter result in 

larger baseflow contributions and vice versa. Consequently, there exists an 

inverse relationship between Ks and the optimal LH filter parameter values, as 

shown in Figure 2.6. 

 

 

Figure 2.9 Impact of different values of LH filter parameter on baseflow 

for catchment with sand with minimum porosity 

 

To further confirm the inverse relationship between Ks and the optimal value 

of the LH filter parameter, five additional simulations (i.e. generation of 

simulated streamflow and baseflow using HGS, optimization of the LH filter 

parameter and the determination of filtered baseflow) were conducted with Ks 

values between the mean and upper quartile values of Ks for sand. The results 

obtained for all of the simulations conducted are shown in Figure 2.10, 

including the linear estimates of uncertainty, which are very small, indicating 

that the results obtained can be treated with confidence.  As can be seen, the 

additional results confirm the strong inverse relationship between the optimal 

value of the LH filter parameters and Ks, regardless of soil type, which is as 

expected, based on the discussion of the impact of Ks on baseflow and the 

way different filter parameter values affect the output from the LH filter given 
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above. However, as can be seen from Figure 2.10, the optimal values of the 

LH filter parameter are almost constant very close to their maximum value of 

1.0 for soils with small values of Ks, suggesting that for small values of Ks, 

baseflow estimates obtained using the LH filter might be inaccurate, as 

baseflow decreases with decreasing values of Ks, while the baseflow 

hydrographs obtained using the LH filter remain constant (also see Section 

2.4.2). In addition, it can be seen that the optimal values of the filter parameter 

can be significantly different from the value of 0.925 most commonly used in 

the literature (Murphy et al., 2009; Nathan and McMahon, 1990). 

 

 

Figure 2.10 Relationship between the optimal LH filter parameter and Ks 

with the error bars obtained from the linear estimates of uncertainty for 

different soil properties 

 

2.4.2 Relationship between filter performance and soil 

properties 

Since Ks has the most significant impact on baseflow among the different soil 

parameters investigated, only baseflow results obtained for soils with different 

values of Ks are discussed in this section. The Ef values between the baseflow 

obtained using the LH filter with optimal filter parameters and the simulated 

baseflow from HGS are summarized in Table 2.3. As can be seen, in most 

cases, the filtered baseflow is similar to that obtained from the HGS model, 

especially for soils with larger values of Ks.  For example, for sand with the 

maximum Ks value, the filtered baseflow obtained with the optimal filter 
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parameter of 0.0025 is almost identical to the simulated baseflow obtained 

using HGS (Figure 2.11), with an Ef of 0.9998 (Table 2.3).  In this case, the 

high Ks value results in most of the rain infiltrating into the ground and 

becoming groundwater, leading to increased exfiltration to the stream. As a 

result, surface runoff from the catchment is quite low, but the baseflow 

component of the streamflow is quite high. The same results can be observed 

from the flow duration curve for sand with maximum Ks (Figure 2.12). The 

flat slope of this curve throughout denotes the characteristics of a perennial 

stream, with continuous and significant baseflow discharge. Consequently, a 

very low value of the LH filter parameter is optimal, as discussed previously.  

Similar results were obtained for soils with Ks values greater than 2.44E-

05m/s, provided the optimal LH filter parameter was used.  Based on the 

results obtained, it is suggested that the baseflow obtained using the LH filter 

can provide a good approximation to the actual baseflow for perennial streams, 

in catchments with soils with relatively large values of Ks, as long as an 

appropriate value of the filter parameter is used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 Framework for assessing and improving the performance of recursive digital 

filters for baseflow estimation with application to the Lyne and Hollick filter 

(Paper 1) 

 

44 

 

Table 2.3 Comparison of LH filter performance for the case where the 

optimal filter parameter was used and a filter parameter of 0.925 was 

used for sand, sandy loam, loam, loamy sand and silt loam with different 

Ks 

 

Soil 

type 

Ks (m/s) 

Ef between simulated 

baseflow and that 

obtained using LH 

filter with the optimal 

filter parameter 

Ef between simulated 

baseflow and that 

obtained using LH 

filter with a filter 

parameter of 0.925 

Sand Min 1.27E-06 -2.266 -19.613 

Lower 

quartile  

8.26E-05 0.960 0.900 

Mean 1.60E-04 0.989 0.903 

Upper 

quartile 

5.65E-04 0.999 0.969 

Max 9.66E-04 0.9998 0.976 

Sandy 

loam 

Min 5.01E-07 -10.29 -73.56 

Lower 

quartile  

1.25E-05 -0.044 -1.945 

Mean 2.44E-05 0.290 -0.679 

Upper 

quartile 

7.51E-05 0.965 0.946 

Max 1.26E-04 0.981 0.900 

Loam Min 8.17E-06 -0.135 -2.704 

Lower 

quartile  

1.57E-05 0.010 -1.613 

Mean 3.07E-05 0.517 -0.078 

Upper 

quartile 

9.46E-05 0.958 0.888 

Max 1.58E-04 0.986 0.884 

Loamy 

sand 

Min 1.10E-05 -0.083 -2.136 

Lower 

quartile  

2.55E-05 0.137 -1.125 

Mean  3.99E-05 0.825 0.698 

Upper 

quartile 

1.12E-04 0.981 0.924 

Max 1.84E-04 0.991 0.906 

Silt 

loam 

Min 1.51E-07 -76.85 -489.41 

Lower 

quartile  

1.58E-06 -1.603 -14.84 

Mean  3.01E-06 -0.589 -6.966 

Upper 

quartile 

8.41E-06 -0.130 -2.651 

Max 1.38E-05 -0.029 -1.813 

 

The performance of the LH filter is not as good for soils with small values of 

Ks, with small and even negative values of Ef (Table 2.3).  For example, for 

silt loam with the minimum Ks value, the baseflow obtained using the filter 

with the optimal value of the filter parameter is much larger than the 
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simulated baseflow obtained using HGS at almost all time steps (Figure 2.11), 

resulting in an Ef of -76.85.  The reason for this is that Ks determines how 

much water infiltrates into the ground and how easily water moves through 

the subsurface of the catchment. Therefore, for a catchment with low Ks and 

high intensity rainfall, infiltration is low, which results in the generation of 

more surface runoff and the formation of sharp peaks in observed streamflow 

(Figure 2.11). Consequently, the simulated baseflow is quite small, with small 

fluctuations around the mean value at all time steps. This can be seen from the 

flow duration curve for silt loam with minimum Ks (Figure 2.12). This curve 

has a reasonably steep slope throughout, which intercepts the x-axis at around 

53% of time, indicating that all of the discharges are less than or equal to the 

discharge that occurs 53% of the time. This flow duration curve is indicative 

of a highly variable ephemeral stream, the flow of which is largely from direct 

runoff with very small contributions from baseflow. Streams like this may 

cease to flow for relatively long periods without rainfall events. However, as 

discussed previously, the baseflow obtained using the LH filter is based solely 

on streamflow and the value of the filter parameter, so that the variations in 

filtered baseflow follow the sharp variations in streamflow, resulting in an 

over-prediction of baseflow whenever the filter parameter is between 0.0 and 

1.0. Therefore, the LH filter does not appear to be suitable for catchments 

with Ks values smaller than 1.38E-05m/s that result in variable ephemeral 

streams with low baseflow contribution, even when the optimal filter 

parameter is used. This is an agreement with the discussion of Figure 2.10 in 

Section 2.4.1. It should be noted that, in practice, if the catchment has very 

little baseflow, there is generally no need to estimate it.  However, the 

simulations for low baseflow contribution catchments (e.g. silt loam with 

minimum Ks) are shown here in order to illustrate the sorts of features, such as 

soil properties, that cause the catchment to have little baseflow contribution. 
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Figure 2.11 Comparison of baseflow calculated from the HGS model 

simulation and the LH filter with two different values of the filter 

parameter for sand with maximum Ks (a) and silt loam with minimum Ks 

(b) 

 

 

Figure 2.12 Flow duration curves for catchments with sand with 

maximum Ks, and silt loam with minimum Ks 
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The performance of the LH filter with the most commonly used filter 

parameter of 0.925 is also shown in Table 2.3 and Figure 2.11.  As can be 

seen, by obtaining optimal values of the LH filter parameter for different soil 

properties, the performance of the LH filter can be improved significantly in 

certain situations.  This is to be expected, given that the optimal values of the 

filter parameter for soils with different properties span such a large range, as 

discussed above.  The results obtained indicate that the performance of the LH 

filter with a filter parameter of 0.925 is not adequate for most of the 

catchments with small values of Ks, but acceptable for catchments with Ks 

values greater than 3.99E-05m/s, with Ef values greater than 0.698.  However, 

the range of soil types over which the LH filter performs well can be extended 

by using the filter parameter that is most appropriate for the soil conditions.  

 

The results presented in this paper have utilized the simulations from the fully 

integrated SW/GW model as though they are the ‘true’ values. The results 

derived using this framework for this hypothetical case study illustrate the 

impacts of catchment soil properties on RDF parameters, and provide a 

clearer understanding that among catchment soil properties, Ks is likely to 

play a key role in determining the appropriate values of optimal filter 

parameters for catchments with different physical properties. Physical 

processes in real catchments are more complicated than those represented in 

the hypothetical case study, due to catchment heterogeneity, macropores, and 

vegetation; however, the dominant physical processes are captured by the 

fully integrated SW/GW model, which clearly identifies the need for a 

variable filter parameter, and to carefully consider the application of digital 

filtering approaches to determining baseflow.  

2.5 Summary and conclusions  

In this study, a generic framework for assessing and improving currently used 

RDFs for quantifying baseflow has been developed. This framework provides 

a procedure that enables research studies to be conducted in order to test the 

accuracy and improve the performance of various baseflow filter methods. 
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The framework makes use of fully integrated surface water and groundwater 

(SW/GW) models to obtain estimates of streamflow and baseflow for 

catchments with different properties (e.g. soil types and rainfall patterns). A 

recursive digital filter (RDF) is then applied to the simulated streamflow to 

estimate baseflow, which can be compared with the simulated baseflow 

obtained from the fully integrated SW/GW model in order to assess filter 

performance. Filter performance can be improved by adjusting the filter 

parameter(s) until the best match between the filtered baseflow hydrograph 

and the simulated baseflow hydrograph from the fully integrated SW/GW 

model is obtained. If a sufficient number of studies of this nature are 

conducted (i.e. using different RDFs, different fully integrated SW/GW 

models, different catchment hydrogeological properties, etc.), general 

guidelines for the applicability and improvement of RDFs can be developed. 

 

In order to demonstrate the usefulness of the proposed framework, it was 

applied to a commonly used hypothetical case study. A fully integrated 

SW/GW model of a hypothetical catchment was developed using HGS, which 

was used to generate streamflow and baseflow hydrographs for 45 different 

soil properties. The generated streamflow hydrographs were used as inputs to 

the LH filter, which was applied using two sets of filter parameters; a constant 

value of 0.925, which is the value most commonly used in the literature, and 

values that were calibrated in order to minimize the difference between the 

baseflow hydrograph obtained using the LH filter and that obtained using the 

HGS model for each of the soil types. The results obtained show that the 

optimal value of the LH filter parameter is sensitive to the saturated hydraulic 

conductivity (Ks), and should therefore be adjusted accordingly, thus better 

reflecting the actual physical processes producing the baseflow. The results 

obtained also show that the baseflow obtained using the LH filter can 

represent the baseflow simulated using the HGS model reasonably well for 

catchments with relatively large Ks. However, for catchments with small 

values of Ks, the LH filter does not appear to be suitable. Furthermore, when a 

fixed filter parameter of 0.925 is used, the range of soil properties over which 

the LH filter is applicable is reduced significantly.  
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It should be noted that the generalisability of the results is restricted by the 

range of factors considered in the analysis. For example, consideration of the 

impact of vegetation and thus transpiration is likely to affect seasonal and 

longer term trends in baseflow as a result of vegetation growth, which could 

result in significantly more complex interactions (D'Odorico et al., 2005; 

Guttal and Jayaprakash, 2007, 2009). One must also be aware of the fact that 

no calibration-evaluation was undertaken to independently assess the 

calibrated LH filter parameters. Also, it should be noted that repetition of the 

analysis conducted in this paper with different climate records would possibly 

lead to other optimal LH filter parameters for the same soil type. 

Consequently, this should be the focus of future studies. Furthermore, it 

should be noted that the optimal values of the LH filter parameter are likely to 

be influenced by a number of other factors, such as catchment size, slope and 

aspect ratio, streamflow routing, soil heterogeneity, maximum saturated 

thickness and depth to water table. The impact of these factors on the optimal 

LH filter parameter should be investigated in future studies. 
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Chapter 3 

 

 

3 Performance assessment and 

improvement of recursive digital 

baseflow filters for catchments with 

different physical characteristics 

and hydrological inputs (Paper 2) 
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Abstract 

 

 

Recursive digital filters (RDFs) are one of the most commonly used methods 

of baseflow separation in practice. However, how accurately they estimate 

baseflow and how to select appropriate values of filter parameters is generally 

unknown, as it is extremely difficult to obtain accurate measurements of 

baseflow in the field. In this paper, a previously developed framework for 

calibrating and assessing the accuracy of RDFs based on the output of fully 

integrated surface water/groundwater (SW/GW) models is used to obtain 

optimal parameters for, and assess the accuracy of, three commonly used 

RDFs, including the Lyne and Hollick (LH), Boughton two-parameter and 

Eckhardt filters, under a range of physical catchment characteristics and 

hydrological inputs. In addition, regression relationships are developed that 

enable the suitability of these RDFs, as well as the optimal values of the filter 

parameters, to be determined based on these catchment characteristics and 

hydrological inputs. The results obtained indicate that the LH filter performs 

better than the Boughton and Eckhardt filters, which are mathematically 

equivalent but with different parameters, over a larger range of conditions and 

that the optimal values of the filter parameters vary considerably for all three 

filters, depending on catchment characteristics and hydrological inputs.  In 

addition, optimal values of the filter parameters for the LH and Eckhardt 

filters, as well as the accuracy of all three filters, can be predicted very well 

based on physical catchment characteristics and hydrological inputs by using 

the developed regression models. 
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3.1 Introduction  

The estimation of baseflow plays an important role in the management of 

many environmental systems, including water supply (Linsley et al., 1988), 

low flow hydrology (Nathan and McMahon, 1992; Smakhtin, 2001), flood 

hydrology (Murphy et al., 2009), contamination investigation (Smakhtin, 

2001) and stream ecology (Price, 2011). There are various definitions of 

baseflow, including groundwater discharge (Chapman, 1999; Freeze, 1972), 

slow flow and sustained flow (Hall, 1968). In this study, groundwater 

discharge from aquifers represents the baseflow contribution to streamflow. 

 

Due to the difficulties associated with the estimation of baseflow in the field 

(Li et al., 2013a; Partington et al., 2012), various graphical and automated 

techniques have been developed for baseflow estimation from gauged 

streamflow data since the early twentieth century. Among these, recursive 

digital filters (RDFs) are one of the most commonly used methods for 

estimating baseflow in practice, due to their simplicity and ease of 

implementation (Arnold et al., 1995; Nathan and McMahon, 1990). The basic 

principle underpinning these RDFs is that streamflow hydrographs consist of 

a high frequency signal (i.e. quickflow) and a low frequency signal (i.e. 

baseflow) and that by applying a filter to the total streamflow hydrograph, the 

quickflow component can be removed, leaving the baseflow component. 

Many different RDF configurations have been proposed in the literature in 

order to achieve this, including the Lyne and Hollick (LH) filter (Nathan and 

McMahon, 1990), the Chapman one parameter algorithm (Chapman and 

Maxwell, 1996), the Boughton two-parameter filter (Boughton, 1993; 

Chapman, 1999) and the Eckhardt filter (Eckhardt, 2005). A common feature 

of all of these RDFs is that the baseflow hydrographs obtained are a function 

of one or more user-defined filter parameters. For some RDFs (Eckhardt, 

2005; Nathan and McMahon, 1990), fixed values of the filter parameters are 

used, while for others (Chapman, 1999; Eckhardt, 2005), values of some of 
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the filter parameters are selected based on various catchment and/or 

streamflow characteristics. 

 

A number of studies have compared the performance of different RDFs 

(Chapman, 1999; Eckhardt, 2008; Evans and Neal, 2005; Murphy et al., 2009; 

Tan et al., 2009b). However, determining the relative performance of different 

filters in terms of their ability to estimate baseflow accurately is not easy, 

primarily because it is extremely difficult to measure baseflow in the field 

(Dukic, 2006; McCallum et al., 2010), thereby making it almost impossible to 

determine an appropriate benchmark against which filter performance can be 

assessed. In order to overcome this problem, a number of different approaches 

have been used. Nathan and McMahon (1990), Chapman (1999), Eckhardt 

(2008) and Schwartz (2007) subjectively used the physical plausibility of the 

resulting baseflow hydrographs to evaluate RDF performance. Szilagyi (2004) 

and Ferket et al. (2010) applied the outputs of lumped and semi-distributed 

catchment models as a basis of comparison. Other authors have used process-

based models as a performance benchmark. For example, Furey and Gupta 

(2003) used a process-based model of a hill-slope to evaluate the physically-

based baseflow separation method developed by Furey and Gupta (2001). 

Most recently, Partington et al. (2012) used the baseflow simulated from a 

fully integrated surface water and groundwater (SW/GW) model at the 

catchment scale in order to evaluate the performance of simple automated 

baseflow estimation methods. While significant research efforts have been 

devoted to the assessment of the overall performance of different RDFs with 

commonly used values of filter parameters, there has been limited research on 

the impact of the values of the filter parameters on RDF performance.  

 

In order to address this shortcoming, Li et al. (2013a) developed a calibration 

framework for RDFs. As part of this framework, optimal values of filter 

parameters can be obtained by minimising the difference between the 

baseflow hydrograph predicted by the RDF under consideration and the 

baseflow hydrograph obtained from a fully integrated SW/GW model. This 

assumes that fully integrated SW/GW models can provide reasonably accurate 
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estimates of actual baseflow. They also tested this framework on a synthetic 

catchment with different soil properties in order to determine appropriate 

values of these filter parameters and to assess the impact these values have on 

filter performance for various catchments with different soil properties. They 

found that there was a strong relationship between the optimal filter parameter 

value and saturated hydraulic conductivity (Ks). Also, the optimal values of 

the filter parameter obtained using the framework for various catchments with 

different soil types were quite different from the commonly used constant 

value suggested by other researchers. Their findings showed that the proposed 

framework has promise in terms of enabling optimal filter parameter values to 

be selected a priori based on physical catchment characteristics. However, Li 

et al. (2013a) only tested their calibration framework on a single RDF, the 

most commonly used LH filter, and did not consider a range of catchment 

characteristics that are likely to have an impact on optimal filter parameter 

values, such as catchment size, slopes, aspect ratio and van Genuchten 

parameters α and β. In addition, Li et al. (2013a) only tested their approach on 

a single hydrological record and did not consider the impact of 

evapotranspiration (ET), which could affect the seasonal and longer term 

trends in baseflow (D'Odorico et al., 2005). While other studies have attempt 

to predict certain baseflow properties as a function of catchment 

characteristics (e.g. (Lacey and Grayson, 1998; Longobardi and Villani, 2008; 

Mazvimavi et al., 2005; Mwakalila et al., 2002)), they have focused on 

summary statistics, such as the baseflow index (BFI), rather than the optimal 

parameters of RDFs. 

 

In order to overcome the shortcomings of previous studies outlined above and 

to test the generality of the results obtained by Li et al. (2013a), the objectives 

of this paper are (i) to determine optimal values of the filter parameters for, 

and assess the overall performance of, different RDFs under a wider range of 

physical catchment characteristics (e.g. catchment slopes, area, aspect ratio 

and soil properties) and hydrological inputs (e.g. rainfall and ET) using the 

frameworks developed by Li et al. (2013a), and (ii) to develop regression 

relationships that will enable the suitability of different RDFs and the optimal 
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values of filter parameters to be determined based on physical catchment 

characteristics and hydrological inputs.  The remainder of this paper is 

organised as follows: the methodology is presented in Section 3.2, followed 

by the results and discussion of the study in Section 3.3. A summary and 

conclusions are given in Section 3.4. 

 

3.2 Methodology 

As stated in the introduction, in order to obtain optimal values of the filter 

parameters and assess overall RDF performance under a range of physical 

catchment characteristics and hydrological inputs, the calibration and 

assessment framework introduced by Li et al. (2013a) is used, as shown in 

Figure 3.1.  As part of the framework, a fully integrated SW/GW model is 

used to generate streamflow and baseflow hydrographs for a catchment with 

particular physical properties, given a particular hydrological input.  Both of 

these hydrographs are assumed to provide the best possible representation of 

the actual streamflow and baseflow hydrographs, as discussed in Li et al. 

(2013a).  It should be noted that in order to obtain the most accurate estimate 

of the baseflow hydrographs, the hydraulic mixing cell (HMC) method 

developed by Partington et al. (2011) is used. 

 

The streamflow hydrograph obtained from the fully integrated SW/GW model 

( q ) is used as the input to the RDF and the baseflow hydrograph obtained 

from the fully integrated SW/GW model using the HMC method ( sim

bq ) is 

used as the benchmark for the calibration of the filter parameters and the 

assessment of overall RDF performance.  As part of the calibration of the 

RDF filter parameters, an appropriate error measure between the baseflow 

hydrograph obtained using the fully integrated SW/GW model ( sim

bq ) and that 

obtained using the RDF ( filter

bq ) is minimised by adjusting the RDF filter 

parameter(s) using a suitable optimization algorithm.  This minimised error 

measure is also used to assess the overall performance of the calibrated RDF. 
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As part of this study, the above process is repeated for different combinations 

of (i) physical catchment characteristics, including the saturated hydraulic 

conductivity (Ks) and van Genuchten parameters α and β (van Genuchten, 

1980) of the soils, the area and aspect ratio of the catchment and the slopes 

along and perpendicular to the channel, and (ii) hydrological inputs, including 

rainfall and ET.  Given the large number of possible combinations of the 

different catchment characteristics and hydrological inputs investigated and 

the long computer run times associated with each simulation of the fully 

integrated SW/GW model, a suitable sampling strategy (Figure 3.1) is used in 

order to obtain representative combinations of the catchment characteristics 

and hydrological inputs considered, while keeping the total computational 

effort to a manageable level. After obtaining optimal filter parameter values 

and corresponding RDF performances (i.e. error measures), regression models 

are developed for predicting optimal filter parameter values and filter 

performance based on catchment characteristics and hydrological inputs. The 

calibration, assessment and regression model development procedure is 

repeated for three different RDFs, including the LH filter considered by Li et 

al. (2013a), as well as the Boughton two-parameter and the Eckhardt filters. 

Details of the various steps in the methodology are given in the subsequent 

sections. 
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Figure 3.1 Schematic representation of the adopted methodology 

 

3.2.1 Selection of catchment characteristics and hydrological 

inputs  

3.2.1.1 Synthetic catchment description 

In this study, a synthetic catchment, which is loosely based on a benchmarked 

integrated surface-subsurface hydrology problem, the tilted V-catchment test 

case (Figure 3.2), is used (Panday and Huyakorn, 2004) (P&H). The P&H 

case has the same surface geometry features as diGiammarco et al. (1996). In 

this study, modifications are made to the P&H case as follows: The original 

roughness coefficients used for the hill-slope and channel domains cause 

overland flow to be preponderant parallel and adjacent to the stream, rather 

than in the stream (Gaukroger and Werner, 2011), which was also mentioned 

as unrealistic by Panday and Huyakorn (2004). Thus, the same roughness 

coefficient (0.015 s/m
1/3

) is used for both the overland flow and channel 

domains. Furthermore, the horizontal water table used in the P&H case 

represents an unrealistic (overly dry) initial condition (Partington et al., 2012). 

To start the model from more realistic initial conditions, the catchment is fully 

saturated and allowed to drain with a long time series of representative rainfall 
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and ET events until the average annual discharge is stable (Partington et al., 

2012). In order to reduce the influence of the coarse discretisation on the 

surface and subsurface flow, the unsaturated subsurface domain should have a 

finer discretisation. As a result, the original discretisation of the subsurface 

domain of the P&H catchment model is changed from 11 layers to 41 layers, 

with the top 20m being formed with 40 uniform permeable layers of soil. 

Similar P&H case problems and the corresponding modifications are 

discussed in Gaukroger and Werner (2011), Partington et al. (2012) and Li et 

al. (2013a). Below the 40 permeable soil layers is a single impermeable layer 

with variable thickness due to the different catchment slopes used, as detailed 

in Section 3.2.1.2. Details of the different catchment areas and aspect ratios 

investigated are also given in Section 3.2.1.2.   

 

The top 20 m permeable soil layer is homogeneous and isotropic, and is 

underlain by a single impermeable layer.  
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Figure 3.2 Schematic representation of tilted V-catchment flow problem 

(refer to Panday and Huyakorn (2004)) 

 

3.2.1.2 Physical catchment characteristics and hydrological inputs 

Baseflow is a function of a large number of variables, including topographic, 

geological, soil and climatic factors, as well as vegetation. In this study, 
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physical catchment characteristics are represented by seven variables: 

catchment area (A), catchment hill slope (S1, which is perpendicular to the 

channel), catchment channel slope (S2, which is parallel to the channel), 

catchment aspect ratio (AR), and soil type, which includes Ks and van 

Genuchten parameters α and β. Details of the different values of these 

physical catchment characteristics and hydrological inputs considered in this 

study are given in Table 3.1 and Table 3.2. 

 

The impact of different catchment areas on optimal filter parameter values and 

filter performance is assessed as larger catchment areas increase aquifer 

storage capacity, and therefore promote sustained baseflow contribution to the 

channel, when exposed to spatially uniform rainfall patterns.  Five discrete 

catchment areas are included in this study, including: 6km
2
, 48km

2
, 80km

2
, 

120km
2
 and 192km

2
. These catchment areas are selected in order to test the 

generality of the results obtained by Li et al. (2013a) for catchments with 

different areas. In addition, there are limits on the range of applicability of 

some of the filters when their commonly used filter parameters are used. 

These limits are used to select the extreme values of the areas investigated.  

For example, Chapman (1991) indicated that the LH filter with its commonly 

used filter parameter of 0.925 gives satisfactory baseflow separation for 

catchments ranging in area from 4.2 to 210km
2
. 

 

The impact of different hill slopes (S1) and channel slopes (S2) on optimal 

filter parameter values and filter performance is assessed, as these slopes 

affect infiltration capacity and control the rate at which soil water moves 

downslope.  Consequently, they have an impact on the proportion of 

precipitation entering the channel as direct runoff and the proportion 

infiltrating into the ground and discharging into the channel as baseflow. In 

this study, five discrete values are considered for each slope, including 0.005, 

0.008, 0.012, 0.016, 0.02 for S1, and 0.0025, 0.004, 0.006, 0.008, 0.01 for S2. 

All of these values are smaller than those used in the original P&H case study 

in order to avoid groundwater discharge being concentrated around the 

channel outlet.  
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The impact of different catchment aspect ratios (i.e. ratios of catchment 

widths to lengths (x/y, as shown in Figure 3.2)) on optimal filter parameter 

values and filter performance is evaluated as these values are related to the 

length of the channel and the distance between the hill slope and the channel, 

and therefore affect the travel time of baseflow to the channel outlet.  Five 

discrete aspect ratio values are investigated, including 0.5, 0.75, 1.0, 1.25 and 

1.5, as they cover conditions ranging from a rectangular shape for which the 

width (x) is smaller than the length (y), to a rectangular shape for which the 

width (x) is greater than length (y), including a square catchment. 

 

The impact of different soil types, including Ks and van Genuchten parameters 

α and β, on optimal filter parameter values and filter performance is also 

considered. The previous study by Li et al. (2013a) on the sensitivity of 

baseflow to soil properties showed that Ks has a significant impact on 

baseflow and is a key parameter. The van Genuchten parameters, α and β, are 

included in this study as they affect the relative permeability of the soil and 

are therefore also likely to have an impact on baseflow response. In addition, 

their effect on baseflow was not investigated in Li et al. (2013a). Five values 

of Ks are considered, including 2.44E-05m/s, 3.99E-05m/s, 1.12E-04m/s, 

2.11E-04m/s and 9.66E-04m/s, which represent sand, sandy loam and loamy 

sand. These values are chosen in order to cover all regions of the plot of Ks 

versus the optimal LH filter parameter given by Li et al. (2013a). Based on the 

ranges of α for sand (0.572-16.412), sandy loam (0.47-11.75) and loamy sand 

(0.544-17.344), five discrete values, including the minimum, lower quartile, 

mean, upper quartile and maximum values of the range of overlapping values 

for these soil types (i.e. 0.572-11.75), are considered for α (see Table 3.1). 

The same method is used for obtaining the five discrete values for β (see 

Table 3.1). It should be noted that all of the values used for Ks, α and β are 

obtained from the values originally given in Puhlmann et al. (2009), to be 

consistent with Li et al. (2013a). 
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Table 3.1 Different physical catchment characteristics considered 

 

Catchment 
Characteristic  

Unit Explanation Values Considered 

Ks m/s Saturated hydraulic 

conductivity 

2.44E-05, 3.99E-05, 1.12E-04, 

2.11E-04, 9.66E-04 

α - van Genuchten 

parameter 

0.572, 3.366, 6.161, 8.955, 

11.75 

β - van Genuchten 

parameter  

1.32, 1.556, 1.793, 2.029, 

2.266 

A km
2
 Catchment area 6, 48, 80, 120, 192 

S1 - Hill slope 

(perpendicular to the 

channel) 

0.005, 0.008, 0.012, 0.016, 

0.02 

S2 - Channel slope (along 

the channel) 

0.0025, 0.004, 0.006, 0.008, 

0.01 

AR - Ratio of catchment 

width to length (x/y) 

0.5, 0.75, 1.0, 1.25, 1.5 

 

Five discrete patterns of the hydrological inputs are represented in terms of 

the ratio of the actual rainfall and potential ET (R/ET) from five Australian 

cities, including Adelaide, Melbourne, Sydney, Brisbane and Darwin, as they 

represent the full range of the climate classification groups for Australian 

capital cities (i.e. temperate, sub-tropical, tropical) (Table 3.2). Areal rainfall 

and ET for each city are derived from the same gauges, and no attempt is 

made to assess the sensitivity of the optimal filter parameter and optimal filter 

performance to spatial variability in rainfall and ET patterns. A typical ten 

year period of daily rainfall data is obtained for these five cities from the 

Australian Bureau of Meteorology National Climate Centre and the 

corresponding daily potential ET data are obtained based on the average 

seasonal daily potential ET for these five cities. Details of the gauges from 

which the data are obtained, as well as the average annual rainfall and 

potential ET for each of these five cities, are given in Table 3.2.  
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Table 3.2 Different hydrological inputs considered 

 

City Climate 
(1)

 
Gauge 
No. 

Average 
annual 
rainfall 
(mm/a) 

Average 
annual 
potential 
ET (mm/a) 

R/ET (average 
annual 
rainfall/average 
annual 
potential ET) 

Adelaide Temperate 023011 510.16 1470.97 0.347 

Melbourne Temperate 086071 525.33 911.33 0.576 

Sydney Temperate 066062 1095.85 920.90 1.190 

Brisbane Sub-Tropical 031011 2238.22 2077 1.078 

Darwin Tropical 014015 1667.16 2056.37 0.811 

1) Based on the Köppen classification of the major classification groups of Australian 

climate zones 

(http://www.bom.gov.au/climate/environ/other/kpn_group.shtml) 

 

3.2.1.3 Sampling strategy 

In order to cover all possible combinations of physical catchment 

characteristics and hydrological inputs detailed in Table 3.1 and Table 3.2, 5
8
 

simulations using the fully integrated SW/GW model would be required, 

where 8 is the number of inputs considered (i.e. the hydrological input and the 

7 different catchment characteristics considered) and 5 is the number of 

options available for each input.  Given that the runtime of the simulation 

model varies between 7,200 and 43,200 minutes, depending on model inputs, 

the total runtime required to perform all of these simulations would be 

approximately 168,750,000 hours (19,263 years).  Consequently, as stated 

previously, it is necessary to sample the space of possible catchment 

characteristics and hydrological inputs in order to reduce computational effort 

to an acceptable level, while still obtaining a set of representative 

combinations of different catchment characteristics and hydrological inputs. 

 

Several sampling strategies are suitable for this purpose, including random 

sampling, the Sobol’ method (Sobol, 1993), the Morris method (Morris, 1991) 

and Latin Hypercube Sampling (LHS) (McKay et al., 1979; Stein, 1987).  

Among these approaches, LHS is very popular for use with computationally 
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demanding models, as is the case here, due to its efficient stratification 

properties, which enable a large amount of sensitivity information to be 

extracted with a relatively small sample size (Helton et al., 2006).  

Consequently, LHS is used as the sampling strategy in this study. 

 

When LHS is used, each input is divided into N equi-probable, non-

overlapping intervals, with N representing the number of necessary parameter 

combinations. One parameter value is taken from each interval, and combined 

randomly with the values of the other investigated parameters to obtain N 

parameter sets, which can guarantee that the complete input space (i.e. all 

different combinations of catchment characteristics and hydrological inputs in 

this case) can be explored using as few samples as possible. Yu et al. (2001) 

found that LHS produces similar results to random sampling methods with 

only 10% of the samples. LHS has also been used successfully for the 

sensitivity analyses of hydrological and environmental models by Sieber and 

Uhlenbrook (2005), Wagener and Kollat (2007) and Manache and Melching 

(2008). Further details about LHS are given in McKay et al. (1979), Stein 

(1987), Iman and Shortencarier (1984) and Isukapalli and Georgopoulos 

(1999). 

 

The LHS design involves sampling without replacement; therefore, if there 

are K uncertain parameters, the lower limit of the value of N (where N equals 

the number of necessary parameter combinations) should be at least K+1. An 

exact formula for calculating N does not exist in the literature, although 

various empirical guidelines are given in relation to the number of samples 

required when implementing LHS. Janssen et al. (1992) recommended that a 

sample size of 4/3 times the number of inputs should be used, Iman and 

Helton (1985) suggested that this figure should be two to five times the 

number of inputs and SIMLAB (2010) recommended a range for the sample 

size between 1.5 and 10 times the number of inputs.  In this study, a sample 

size of 70 (i.e. 8.75 times the number of inputs) is adopted, which is near the 

upper end of the sample sizes recommended in the literature, to ensure that a 
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good coverage of the input space is obtained, while keeping computational 

effort to reasonable levels.  

3.2.2 Fully integrated SW/GW model 

HydroGeoSphere (HGS) is used as the fully integrated SW/GW model in 

order to simulate the 3D synthetic V-catchment’s response to rainfall and ET 

inputs for different catchment characteristics, as it can be used to simulate the 

hydrological processes within the catchment in a physically based manner 

(Therrien et al., 2009). HGS has been used successfully in previous research 

for the comparison of baseflow estimation methods (Partington et al., 2011; 

Partington et al., 2012), SW/GW disconnection problems (Banks et al., 2011; 

Brunner et al., 2009), bank storage dynamic processes analysis (Doble et al., 

2012) and the study of dual permeability systems (Schwartz et al., 2010).  

 

In HGS, surface flow is simulated using the diffusion wave approximation to 

the 2D St. Venant equations, and the modified 3D Richard’s equation is 

applied for variably-saturated subsurface flow. The surface and subsurface 

flow are coupled using a conductance concept with exchanges between the 

two domains. By using a finite difference method to solve all of the equations 

for both surface and subsurface flow regimes at each time step simultaneously, 

HGS can represent the physical catchment processes explicitly.  Actual ET is 

considered as a function of leaf area index, soil moisture and root depth. 

Further description of the code and its numerical formulation can be found in 

Therrien et al. (2009) and Brunner and Simmons (2012). 

 

As shown in Figure 3.2, the catchment used in this study is symmetrical.  As a 

result, all simulations are conducted for only half of the catchment, as shown 

for one example of the catchment configurations considered in Figure 3.3. The 

reported fluxes are correspondingly half of those expected when accounting 

for both sides of the stream. The grid spacing along the x and y axes is 

different for the different catchment areas and aspect ratios investigated. For 

instance, the grid spacings along the x and y axes for the catchment with an 

area of 6km
2
 range from 40m and 50m to 50 and 100m, respectively, while 
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for the catchment with an area of 192km
2
, the grid spacings along the x and y 

axis range from 150m and 200m to 200m and 300m, respectively. However, 

the width for the channel is constant at 10m. As discussed in Section 3.2.1.1, 

the bottom layer of the catchment is impermeable, therefore, all of the 

simulations for the 70 models developed for catchments with different 

combinations of catchment characteristics and hydrological inputs are 

conducted for the first 20m of permeable soil below the catchment surface, 

which has 40 horizontal layers, with a spacing of 0.5m for each layer to 

provide discretisation in the unsaturated zone, as shown in Figure 3.3. Grid 

convergence checks have been undertaken and indicated that there is less than 

1% difference compared with the finer discretisation for the total streamflow 

and baseflow outputs.  

 

The time steps used in the model vary in accordance with an adaptive time-

stepping approach (HydroGeoLogic, 2000). A maximum step of 3,600 

seconds is used to ensure that the maximum time step is significantly less than 

daily. A critical depth boundary condition is utilised at the downstream end of 

the channel to allocate the surface head at these nodes to be at critical depth. A 

no flow boundary condition is used for the bottom and lateral subsurface 

domain, meaning that water can only leave the catchment from the stream 

outlet. Relatively small values of rill storage and obstruction height are used 

in order to reduce their effects on baseflow generation, and a reasonably small 

coupling length is used to provide near continuity of pressure at the 

surface/subsurface interface (Table 3.3). Properties for ET inputs for this 

model are also included in Table 3.3, which are obtained from Partington et al. 

(2012).  

 

Initially, the whole catchment is fully saturated, as discussed in Section 

3.2.1.1.  The fully saturated catchments are then drained by repeatedly 

applying a representative ten year pattern of rainfall and potential ET for each 

of the five cities. This pattern is applied over a period ranging from 10 to 50 

years, until the average annual discharge is stable in the simulated 

hydrographs. With these initial conditions, the simulation is then run for a 
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further ten years with the same ten year record in order to obtain the data used 

for calibrating and assessing the performance of the RDFs. 

 

Table 3.3 Surface and subsurface parameters for the synthetic catchment 

model (refer to Partington et al. (2012)) 

 

Parameter Value 
Surface  
Manning’s roughness 0.015 s/m

1/3
 

Rill storage height 0.001 m 
Obstruction storage height 0.0 m 
  
Transpiration fitting parameter c1 0.3 
Transpiration fitting parameter c2 0.2 
Transpiration fitting parameter c3 10 
  
Leaf area index 2.08 
  
Wilting point 0.1 
Field capacity 0.15 
Oxic limit 0.9 
Anoxic limit 1.0 
Limiting saturation (minimum) 0.2 
Limiting saturation (maximum) 0.32 
  
Canopy storage parameter 0.0 m 
Initial interception storage 0.0 m 
  
Subsurface  
Evaporation depth (quadratic decay 
function) 

3 m 

Root depth (quadratic decay function) 6 m 
  
Surface/Subsurface coupling  
Coupling length 0.001m 
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Figure 3.3 3D Catchment model (modified version of the V-catchment in 

Panday and Huyakorn (2004)) 

 

The HGS model is used to obtain the simulated streamflow (q) hydrographs 

for the catchments with the 70 sets of different catchment characteristics and 

hydrological inputs generated using LHS, as described above. These 

simulated streamflow hydrographs are then used as the inputs to the RDFs in 

order to estimate the filtered baseflow hydrographs ( filter

bq ).  The simulated 

baseflow hydrograph ( sim

bq ) is extracted from the HGS model using the HMC 

method (Partington et al., 2011), based on the nodal fluid mass balance 

obtained from the model simulations. The HMC method is able to account for 

storage effects and time lags within catchments, which provides a means of 

estimating baseflow from fully integrated SW/GW models. Details of the 

HMC method can be found in Partington et al. (2011). 

3.2.3 RDFs 

In this study, three commonly used RDFs are calibrated and evaluated by 

comparing the baseflow extracted from these RDFs ( filter

bq ) with that obtained 

from the HGS simulations ( sim

bq ) with the different combinations of catchment 

characteristics (see Table 3.1) and hydrological inputs (see Table 3.2) 

obtained using LHS (see Section 3.2.1.3) as inputs. The RDFs considered 
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include the LH filter (Nathan and McMahon, 1990), the Boughton two-

parameter filter (Boughton, 2004; Chapman, 1999) and the Eckhardt filter 

(Eckhardt, 2005). These RDFs are selected as they are readily available and 

commonly used. In addition, there is some subjectivity in determining 

appropriate values of the parameters for these filters, making them suitable 

candidates for calibration.  Detailed descriptions of the RDFs can be found in 

the references given above, thus only a brief overview of these methods is 

provided below. 

3.2.3.1 Lyne and Hollick (LH) filter 

The LH filter applies signal processing techniques to a streamflow time series 

in order to remove the high-frequency quickflow signal so as to obtain the 

low-frequency baseflow signal. The corresponding equations are given by 

Nathan and McMahon (1990) as: 
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                         (3.1) 

 

where i [T] is the time step; q(i) [L
3
T

-1
] is the original total streamflow at time 

step i; qf(i) and qb(i) [L
3
T

-1
] are the filtered quickflow and corresponding 

baseflow at time step i; and a is the filter parameter to be calibrated, 

dimensionless, which is normally set within the range 0.0-1.0.  As can be seen 

from equation (3.1), larger values of the filter parameter result in smaller 

values of baseflow and vice versa. An additional property of the LH filter is 

that the peak of the resulting baseflow hydrograph generally coincides with 

that of the streamflow hydrograph. The LH filter can be passed forward and 

backward over the data set several times resulting in data smoothing and 

nullification of any phase distortion (Spongberg, 2000). Three passes are used 

in this study: forward, backward and forward, as suggested by Nathan and 

McMahon (1990).  
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3.2.3.2 Boughton two-parameter filter 

 

The Boughton two-parameter filter (Boughton, 2004) is based on the 

Chapman one parameter algorithm (Chapman and Maxwell, 1996), but has an 

additional parameter (C) so that the algorithm can be used more flexibly for 

hydrograph separation. The resulting equation is as follows (Chapman, 1999): 
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C

C
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k
q 
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


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(3.2) 

 

where k is the recession constant, which is determined using the method 

outlined in Eckhardt (2008) in this study, and C is the filter parameter to be 

calibrated. It should be noted that k could also be considered as a parameter to 

be calibrated, which would result in a multi-objective calibration problem. 

However, in this study, only C is calibrated. As can be seen from equation 

(3.2), larger values of the filter parameter result in larger values of baseflow 

and vice versa. However, unlike the parameter in the LH filter, for adequately 

sampled long time series, the parameter of this filter not only affects the 

magnitude of the peak of the baseflow hydrograph, but also its timing, with 

larger values of C resulting in more rapid increases in the rising limb of the 

filtered baseflow hydrograph and vice versa.  Consequently, the peak of the 

filtered baseflow hydrograph does not necessarily coincide with that of the 

streamflow hydrograph from which it is derived.  This filter is passed over the 

data only once.  

 

3.2.3.3 Eckhardt filter  

 

Eckhardt (2005) developed a two-parameter algorithm based on the 

assumption that outflow from an aquifer is linearly proportional to its storage. 

The resulting equation is given by: 
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where k is the recession constant, which is determined using the method 

outlined in Eckhardt (2008) in this study, and BFImax is the maximum value of 

the baseflow index (BFI is the ratio of the volume of baseflow to the volume 

of total streamflow), which is the parameter obtained by calibration in this 

study, as the BFI is generally not known with certainty due to the difficulties 

associated with measuring baseflow. It should be noted that k could also be 

considered as a parameter to be calibrated, which would result in a multi-

objective calibration problem. However, in this study, only BFImax is 

calibrated. 

 

It is interesting to note that the Eckhardt filter is mathematically equivalent to 

the Boughton two-parameter filter (Eckhardt, 2005).  However, as a result of 

the reformulation of the filter equation, the BFImax parameter in the Eckhardt 

filter has a physical interpretation, whereas the C parameter in the Boughton 

filter does not.  As can be seen from equation (3.3), larger values of BFImax 

result in larger values of baseflow and vice versa.  As is the case with the 

Boughton filter parameter, values of BFImax not only affect the magnitude of 

the filtered baseflow hydrograph, but also its timing.  The Eckhardt filter is 

passed over the data once.  

3.2.4 Calibration and performance assessment 

Various measures can be used for assessing model performance, such as the 

Nash-Sutcliffe coefficient of efficiency (CoE) (Nash and Sutcliffe, 1970), 

percent bias (PBIAS) (Gupta et al., 1999), least squares (Stigler, 1986) and 

mean square error (MSE). The CoE is one of the most widely used 

dimensionless metrics and has been implemented successfully in hydrologic 

model calibration and evaluation (Gupta and Kling, 2011; Li et al., 2013a; 

Moriasi et al., 2007; Partington et al., 2012). However, there have been 

concerns regarding the use of the CoE as a metric in the literature (Gupta et al., 

2009; Legates and McCabe, 1999; McCuen et al., 2006). One of the main 

concerns is its use of the observed mean as a baseline, which can lead to 

overestimation of model skill for highly seasonal variables (Legates and 

McCabe, 1999). In addition, the CoE has often been criticized for varying 
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over an unbounded range, in particular becoming negative and potentially 

approaching -∞ under extreme circumstances. In order to address this issue, 

Gupta and Kling (2011) introduced a normalized CoE (Ef) to constrain its 

range within [-1,1]. Detailed information of the derivation of Ef can be found 

in Gupta et al. (2009) and Gupta and Kling (2011). In this study, Ef is used as 

the error measure during the filter parameter optimization (calibration) 

process by adjusting the RDF parameters to be calibrated (i.e. a (LH), C 

(Boughton) and BFImax (Eckhardt)) until the best match between the filtered 

baseflow hydrograph ( filter

bq ) and the simulated baseflow hydrograph from the 

fully integrated SW/GW ( sim

bq ) model is obtained.  In addition, Ef is used to 

assess the performance of the calibrated RDFs.  The equation for Ef is as 

follows (Gupta and Kling, 2011): 
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where 
obs

ibq
)(

 [L
3
T

-1
] is the simulated baseflow obtained from the HGS model 

using the HMC method at time step i [T], 
sim

ibq
)(

 [L
3
T

-1
] is the baseflow derived 

from the RDFs at time step i, 
obs

bq  and 
sim

bq  [L
3
T

-1
] are the mean values of 

obs

ibq
)(

 and 
sim

ibq
)(

 over the n observations, respectively.  It should be noted that 

in this study, only data during rainfall periods are used in the calculation of Ef, 

as suggested by Partington et al. (2012), as comparison between simulated and 

filtered baseflow is not meaningful in recession periods because the baseflow 

obtained using RDFs matches the simulated baseflow perfectly, due to the 

constraints that are part of the formulation of the RDFs. Consequently, the 

value of n varies from 1846 to 3650 in this study. 

 

During the calibration process, the error measure is minimised by optimising 

the value of the filter parameter to be obtained by calibration (i.e. a (LH), C 
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(Boughton) and BFImax (Eckhardt)) using the golden section search method 

(Press et al., 1992). This method is used as there is only a single parameter 

that requires calibration. In addition, it has been used successfully for this 

purpose previously (Li et al., 2013a).  The Ef values of the calibrated RDFs 

are used to assess filter performance.  As suggested by Moriasi et al. (2007), 

RDF performance can be judged as ‘perfect’ when Ef =1.0, while Ef values 

between 0.5 and 1.0 correspond to ‘good’ filter performance; Ef values 

between 0.0 and 0.5 show ‘acceptable’ filter performance and ‘poor’ filter 

performance is represented by negative values of Ef. In order to account for 

any uncertainties associated with the estimates of the optimal filter parameters, 

linear estimates of uncertainty are obtained using the procedure outlined in Li 

et al. (2013a). However, as the resulting errors are very small, as was the case 

for the analysis conducted by Li et al. (2013a), the bounds are not presented in 

the Results and Discussion section of this paper. In addition, multiple 

calibration runs from different random starting positions in parameter space 

are conducted in order to ensure the globally optimal solution is found. As 

expected for such a simple calibration problem with a single parameter, the 

results suggest that the error surface is smooth with a single global optimum. 

 

It should be noted that of the 70, 10-year streamflow time series obtained by 

running HGS with the 70 different combinations of catchment characteristics 

and hydrological inputs generated by LHS, 4 result in zero flow, and are 

therefore excluded from the model calibration and evaluation process.  

Consequently, the RDF calibration and evaluation process is carried out 198 

times, 66 times for each of the three RDFs investigated. 

 

3.2.5 Development of regression models 

Regression models are developed in order to predict (i) values of the optimal 

(calibrated) filter parameters and (ii) the performance of the calibrated RDFs 

(see Section 3.2.4) as a function of the catchment characteristics (Table 3.1) 

and ratios of R/ET (Table 3.2) considered.  Individual models for optimal 

filter parameter prediction are developed for the three RDFs.  However, only 
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two models are developed for predicting filter performance, one for the LH 

filter and one for the Boughton and Eckhardt filters, as the performance of the 

Boughton and Eckhardt filters is the same, due to their identical mathematical 

formulations, as discussed previously.  

 

Initial trials are conducted with different functional forms of regression 

models.  Based on the results of these trials, the following underlying 

regression equation is adopted: 

 

Y = 1lnX1 + 2lnX2 + ...... + nlnXn + n+1                                                    (3.5) 

 

where Y is the predicted model output (i.e. optimal values of a, C and BFImax 

in the case of the models predicting optimal filter parameter values and Ef (LH) 

and Ef (Boughton/Eckhardt) for the models predicting filter performance), i 

are the regression coefficients (model parameters), which are obtained by 

calibration, and Xi are the independent variables/model inputs (e.g. (R/ET), Ks, 

S1, S2, A). It should be noted that more flexible model structures, such as 

artificial neural networks (Maier et al., 2010), could not be considered in this 

instance as a result of the limited set of available data (i.e. 66 data points). 

 

Two different sets of model inputs are considered.  Firstly, all eight 

independent variables, including the seven catchment characteristics in Table 

3.1 and the ratio of R/ET, are used. Secondly, a reduced number of inputs is 

used, as some independent variables might not have a significant impact.  In 

addition, from a practical perspective, it might be difficult to obtain data on all 

eight inputs and having a smaller number of inputs might make the regression 

equations more easily applicable.  

 

In order to identify the most important of the 8 potential model inputs, the 

partial mutual information (PMI) algorithm introduced by Sharma (2000) is 

used.  This is because it has been found to perform well in a number of studies 

(Bowden et al., 2005; May et al., 2008a; May et al., 2008b).  In order to strike 

an appropriate balance between model performance and complexity, the 
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Akaike Information Criterion (AIC) based stopping criterion introduced by 

May et al. (2008a) is used. 

 

The results of the PMI analysis indicate that Ks and (R/ET) are the only 

significant inputs for all models, including the models predicting model 

performance and those predicting optimal filter parameter values for all RDFs.  

As the ratio of R/ET is a significant input for all models, two additional input 

sets that include Rainfall and ET as separate inputs are included, as shown in 

Table 3.4. This is done to check whether the inclusion of Rainfall and ET as 

separate inputs, rather than as a ratio, improves model performance.  

Consequently, four different inputs sets are used (Table 3.4). As a result, 12 

regression models are developed for the prediction of the optimal filter 

parameters (i.e. 4 models with different inputs for each of the three RDFs) and 

8 regression models are developed for the prediction of filter performance (i.e. 

4 models with different inputs for the LH filter and 4 models for the 

Boughton/Eckhardt filters). 

 

Table 3.4 Different input sets considered for the development of all 

regression models 

 

Input Set Number of 

Inputs 

Inputs 

1 2 (R/ET), Ks 

2 3 Rainfall, ET, Ks 

3 8 (R/ET), Ks, S1, S2, A, AR, α, β 

4 9 Rainfall, ET, Ks, S1, S2, A, AR, α, β 

 

All regression models are calibrated using the generalised reduced gradient 

algorithm implemented in Excel Solver, with Ef as the objective function.  

3.3 Results and discussion 

3.3.1 Simulated streamflow and baseflow 

As mentioned in Section 3.2.4, of the 70, 10-year streamflow time series 

generated using HGS for the different catchment characteristics and 
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hydrological inputs, 4 streamflow time series are zero, and are therefore 

excluded from further analysis. The maximum, median and minimum values 

of daily streamflow, daily baseflow and BFI for the 66 records, as well as the 

percentage of these records containing periods of zero flow, are shown in 

Table 3.5, categorised by city (i.e. hydrological inputs). 

 

As can be seen, among these five cities, the hydrological response obtained 

using the Adelaide climate inputs has the lowest maximum and minimum 

daily streamflow and baseflow, but with the highest maximum and minimum 

baseflow index (BFI). Also, only the Adelaide response has some percentage 

of hydrographs with periods of zero streamflow (49.04%, 39.32% and 0.14% 

of the time). This is because the Adelaide climate data have the smallest 

average annual rainfall, but relatively large average annual potential ET, with 

a ratio of R/ET of 0.347. In addition, Adelaide has cool, rainy winters and hot, 

dry summers. Consequently, for simulations during periods without rainfall in 

summer, most of the streams have zero streamflow. However, during periods 

without rainfall in winter, most of the streams are fed by baseflow. 

Simulations subject to the Brisbane climate drivers have the highest maximum 

daily streamflow and baseflow, but with the smallest maximum and minimum 

BFI values. This is because Brisbane has the largest average annual rainfall 

and a ratio of R/ET of 1.078. Due to Brisbane’s humid subtropical climate, 

more rainfall becomes direct runoff and streams have less baseflow 

contribution relative to total streamflow. The Sydney climate response has the 

second highest maximum total daily streamflow, but the largest minimum 

total daily streamflow and baseflow. The reason for this is that Sydney has the 

highest ratio of R/ET of 1.190. However, rainfall in Sydney is evenly 

distributed throughout the year, so that more water infiltrates into the soil and 

flows into the stream as baseflow, compared with other cities. Consequently, 

although Sydney has the highest minimum baseflow, the BFI value is 

relatively small.   

 

As the results in Table 3.5 can be physically and reasonably explained based 

on the climate data, it is assumed that the 66 streamflow time series obtained 
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using HGS for catchments with different catchment characteristics and 

hydrological inputs provide a rigorous and robust platform for determining the 

optimal filter parameters and assessing the overall performance of the RDFs 

over a wide range of conditions. In addition, HGS has been successfully used 

for simulating a variety of physical catchment processes by a number of 

researchers, as mentioned in Section 3.2.2, and has been used successfully in 

previous studies to simulate realistic hydrographs that cover a wide range of 

catchment characteristics and hydrological inputs (Li et al., 2013a; Panday 

and Huyakorn, 2004; Partington et al., 2012; VanderKwaak, 1999).  
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3.3.2 Optimal filter parameters 

3.3.2.1 Values of optimal filter parameters 

The maximum and minimum values of the calibrated filter parameters, which 

correspond to the low and high baseflow contributions obtained for the five 

different cities, as well as the corresponding values of BFI (shown in 

brackets), are summarised in Table 3.6. As can be seen, higher values of the 

calibrated LH filter parameter correspond to lower baseflow contributions and 

vice versa, which is as expected, based on the way the LH filter works (see 

Section 3.2.3). Conversely, higher values of the calibrated Boughton and 

Eckhardt filter parameters correspond to higher baseflow contributions and 

vice versa, which is also expected, based on the way the filters work (see 

Section 3.2.3). 

 

It can also be seen from Table 3.6 that there is generally considerable 

difference between the minimum and maximum optimal filter parameter 

values, suggesting that use of a constant filter parameter value is inappropriate 

and that the optimal value of the filter parameters is a function of catchment 

characteristics and hydrological inputs. It should be noted that in some 

instances for the Boughton and LH filters, the same optimal filter parameter 

values are obtained for a range of BFI values (as indicated by the ranges in 

BFI values in Table 3.6), suggesting that the parameters might not be as well 

defined at the extreme ranges.  However, the same does not apply to the 

Eckhardt filter. Actually, the fact that the value of the Eckhardt filter 

parameter (BFImax) is better defined for different values of BFI is not 

surprising, given that the Eckhardt filter was designed so that there is a close 

correspondence between the value of the filter parameter, which corresponds 

to BFImax, and BFI.  The strong relationship between the Eckhardt BFImax 

filter parameter and BFI can be observed from the values in Table 3.6 and 

Figure 3.4. 
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Table 3.6 Maximum and minimum optimal values of filter parameters 

corresponding to high and low flows and the corresponding value of BFI 

(shown in brackets) 

 

City Baseflow 
LH Boughton Eckhardt 
a C BFImax 

Adelaide 
Low 

0.945 
(0.462) 

0.024 
(0.462) 

0.549 
(0.462) 

High 
0.0001 
(0.981-0.997) 

3.97 
(0.982) 

0.999 
(0.997) 

Melbourne 
Low 

0.997 
(0.124) 

0.0006 
(0.124) 

0.126 
(0.124) 

High 
0.0001 
(0.946-0.977) 

1.302 
(0.947) 

0.994 
(0.993) 

Sydney 
Low 

0.996 
(0.014) 

0.0001 
(0.014-0.046) 

0.015 
(0.014) 

High 
0.555 
(0.973) 

0.158 
(0.973) 

0.979 
(0.973) 

Brisbane 
Low 

0.997 
(0.002) 

0.0001 
(0.002-0.013) 

0.0013 
(0.002) 

High 
0.419 
(0.963) 

0.190 
(0.963) 

0.968 
(0.963) 

Darwin 
Low 

0.998 
(0.031) 

0.0002 
(0.031) 

0.028 
(0.031) 

High 
0.0001 
(0989) 

0.581 
(0.989) 

0.993 
(0.989) 

 

 

Figure 3.4 Scatter plot of BFI and Eckhart BFImax filter parameter 

 

3.3.2.2 Prediction of optimal filter parameter values 

The predictive performance of the 12 regression models for the prediction of 

optimal filter parameters in terms of CoE is summarised in Table 3.7 and the 

resulting equations and scatter plots of actual versus predicted values of 
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optimal filter parameters for the best models with the lower (i.e. 2 or 3) and 

higher (i.e. 8 or 9) number of inputs are given in Figure 3.5.  

 

As can be seen from Table 3.7, the optimal parameters of both the LH and 

Eckhardt filters can be predicted very well, with CoE values ranging from 

0.65 to 0.78 and 0.77 to 0.91, respectively, for the four models with different 

inputs. In contrast, the predictability of the optimal Boughton filter parameter 

is significantly worse, with CoE values ranging from 0.24 to 0.38. The 

marked difference in the predictability of the optimal Boughton and Eckhardt 

filter parameters is interesting, given that both filters are equivalent from a 

mathematical perspective. However, it appears as though the Eckhardt 

formulation, in which the filter parameter has an explicit physical meaning 

(i.e. BFImax), makes it much easier to be predicted based on catchment 

characteristics and hydrological inputs. While both the optimal LH and 

Eckhardt filter parameters can be predicted very well, the predictability of the 

Eckhardt filter is consistently better for all four models with different inputs, 

which is likely to be due to the physical meaning that can be attributed to the 

Eckhardt filter parameter, as discussed previously. 

 

Table 3.7 Predictive performance (CoE) of regression models for the 

prediction of optimal filter parameter values 

 

Input Set LH Boughton Eckhardt 
1 0.65 0.24 0.772 
2 0.67 0.25 0.81 
3 0.76 0.37 0.87 
4 0.78 0.38 0.91 

 

The results in Table 3.7 also show that using rainfall and ET as separate 

inputs, rather than a ratio (i.e. R/ET), improves model performance, both for 

the models with the small number of inputs selected using the PMI algorithm 

(i.e. Input Sets 1 and 2) and the models with all inputs (i.e. Input Sets 3 and 

4). Consequently, the regression equations and scatter plots for the models 

using Input Sets 2 and 4 are given in Figure 3.5. 
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The scatter plots in Figure 3.5 confirm that the optimal Eckhardt filter 

parameter (BFImax) can be predicted very well, that the optimal LH filter 

parameter can be predicted reasonably well and that the optimal Boughton 

filter parameter (C) is difficult to predict. In general, lower values of the 

optimal values of all three filter parameters are over-predicted, while larger 

values are under-predicted.  The under-prediction of larger filter parameter 

values is particularly pronounced for the Boughton filter. The scatter plots and 

CoE values also indicate that while the majority of the variance in the data is 

captured by the three inputs identified as significant by the PMI algorithm, 

there is a reasonable improvement in predictive ability when all inputs are 

included. However, this increased accuracy is at the expense of increased 

model complexity, and a balance between the two has to be struck, which is 

what the AIC stopping criterion used as part of the PMI algorithm is trying to 

achieve. In practice, the more complex model is likely to be more difficult to 

apply, as some of the required input information (e.g. catchment slopes and 

values of van Genuchten parameters) might be difficult to obtain and is 

generally not uniform over the catchment.  

 

As can be seen from the regression equations in Figure 3.5, the signs of the 

coefficients of the majority of the input variables are in opposite directions for 

the LH and Boughton/Eckhardt filters. This is as expected, as large values of 

the filter parameters for the LH and Boughton/Eckhardt filters have the 

opposite effect on baseflow magnitude (i.e. for the LH filter, large values of 

the filter parameter result in small baseflow contributions, while the opposite 

applies to the Boughton and Eckhardt filters) (see Section 3.2.3). In general, 

the signs (i.e. positive and negative) of the coefficients are in agreement with 

the underlying physics. The two exceptions are the signs of the coefficients 

for β and S2 for the Eckhardt filter, which are the same as those for the LH 

filter and opposite to those for the Boughton filter.  



3 Performance assessment and improvement of recursive digital baseflow 

filters for catchments with different physical characteristics and hydrological 

inputs (Paper 2) 

 

87 

 

a=-0.168ln(Ks)+0.37ln(rainfall)-

0.139ln(ET)-2.353

(a)  LH a Parameter (Input Set 2)

a=-0.178ln(Ks)+0.033ln(α)-0.049ln(β)+0.062ln(A)-

0.105ln(S1)+0.107ln(S2)+0.138ln(AR)+

0.331ln(rainfall)-0.0791ln(ET)-2.783

(b)  LH a Parameter (Input Set 4)

C=0.145ln(Ks)-

0.502ln(rainfall)+0.404ln(ET)+2.09

(c)  Boughton C Parameter (Input Set 2)

C=0.148ln(Ks)-0.208ln(α)

+0.324ln(β)+0.002ln(A)+0.027ln(S1)-0.209ln(S2)-

0.027ln(AR)-0.545ln(rainfall)+0.488ln(ET)+0.958

(d) Boughton C Parameter (Input Set 4)

BFImax=0.191ln(Ks)-

0.465ln(rainfall)+0.252ln(ET)+3.662

(e) Eckhardt BFImax Parameter (Input Set 2)

BFImax=0.175ln(Ks)-0.002ln(α)-0.054ln(β)-

0.048ln(A)+0.19ln(S1)+0.114ln(S2)-0.129ln(AR)-

0.408ln(rainfall)+0.179ln(ET)+5.33

(f) Eckhardt BFImax Parameter (Input Set 4)
 

Figure 3.5 Regression models for the prediction of optimal filter 

parameter values using input sets 2 and 4 
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3.3.3 Filter performance 

3.3.3.1 Assessment of filter performance 

The performance of the three filters in terms of their ability to match the 

baseflow hydrograph obtained using HGS for the 66 cases investigated is 

given in Table 3.8 and Figure 3.6 in terms of Ef. The results are split into three 

categories, including good filter performance (i.e. Ef ≥0.5), acceptable filter 

performance (i.e. 0< Ef <0.5) and poor filter performance (i.e. Ef ≤0). It should 

be noted that the same performance was obtained for the Boughton and 

Eckhardt filters, as they are mathematically equivalent. Consequently, 

combined results are presented for these two filters. As can be seen from 

Table 3.8 and Figure 3.6, the overall performance of the LH filter is better 

than that of the  Boughton and Eckhart filters.  It results in good performance 

in 77.3% of cases, compared with 53.0% of cases for the Boughton and 

Eckhart filters, and in poor performance in 10.6% of cases, compared with 

16.7% for the Boughton and Eckhart filters.  

 

In general, the performance of both filters deteriorates for smaller values of 

simulated HGS baseflow (see Section 3.1.3.2). However, the performance of 

the Boughton and Eckhardt filters deteriorates more quickly as baseflow 

decreases. This is because of the different way in which the filter parameters 

affect the magnitude and shape of the resulting baseflow hydrographs. When 

the LH filter is used, the timing of the peak of the baseflow hydrograph 

generally coincides with that of the streamflow hydrograph. However, this is 

not the case for the Boughton and Eckhardt filters, where the value of the 

filter parameter affects both the magnitude and timing of the baseflow 

hydrograph. As can be seen from equations (3.2) and (3.3), the filter 

parameters affect the rate of rise of the rising limb of the baseflow 

hydrograph. Consequently, if the magnitude of the peak of the HGS simulated 

baseflow is small, the values of the filter parameters also have to be small in 

order to match the peak as best as possible. However, small values of the filter 

parameters also result in a small rate of rise in the rising limb of the baseflow 

hydrograph, resulting in a mismatch in the timing of the HGS simulated peak 

of the baseflow hydrograph and that obtained using the Boughton and 
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Eckhardt filters in some instances. However, if the value of the filter 

parameter is increased in order to ensure the timing of the peak is correct, the 

peak will be overpredicted. Consequently, there appears to be a tradeoff 

between being able to match the timing and magnitude of the baseflow 

hydrograph when using the Boughton and Eckhardt filters for catchments with 

small baseflow contribution. The same problem does not appear to exist with 

the LH filter. 

 

Table 3.8 Performance of LH and Eckhardt/Boughton filters 

 

Filter Performance Ef LH Bougthon & Eckhardt 

Good ≥0.5 77.3% 53.0% 

Acceptable >0&<0.5 12.1% 30.3% 

Poor ≤0 10.6% 16.7% 

 

 

Figure 3.6 Plot of cumulative distribution functions of Ef values for the 

different RDFs investigated 

 

3.3.3.2 Prediction of filter performance 

The predictive performance of the 8 regression models for the prediction of 

model performance is summarised in Table 3.9 and the resulting equations 

and scatter plots of actual versus predicted values of optimal filter parameters 

for the best models with the lower (i.e. 2 or 3) or higher (i.e. 8 or 9) number of 

inputs are given in Figure 3.7.  
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As can be seen from Table 3.9, the performance of all RDFs can be predicted 

quite well, with all CoE values ranging from 0.70 to 0.82 for the LH filter and 

from 0.60 to 0.76 for the Boughton and Eckhart filters. The results in Table 

3.9 show that using rainfall and ET as separate inputs, rather than a ratio, 

improves model performance, both for the models with the small number of 

inputs selected using the PMI algorithm (i.e. Input Sets 1 and 2) and the 

models with all inputs (i.e. Input Sets 3 and 4). Consequently, the regression 

equations and scatter plots for the models using Input Sets 2 and 4 are given in 

Figure 3.7.  

 

Table 3.9 Predictive performance (CoE) of regression models for the 

prediction of optimal filter performance (in terms of Ef) 

 

Input Set LH Boughton & Eckhardt 

1 0.70 0.60 

2 0.71 0.69 

3 0.81 0.73 

4 0.82 0.76 

 

The scatter plots shown in Figure 3.7 confirm that the performance of all three 

filters can be predicted quite well and that model performance can be 

improved by the inclusion of all inputs, which is confirmed by the CoE 

values. However, as was the case for the models for the prediction of the 

optimal filter parameters, this increased accuracy is at the expense of 

increased model complexity, and a balance between the two must be arrived 

at, depending on input data availability and required model accuracy.  

 

It should be noted that from a practical perspective, the primary purpose of the 

models predicting filter performance would most likely be an assessment of 

the suitability of a particular filter for the catchment characteristics and 

hydrological inputs under consideration. Consequently, it is not so much the 

actual performance value that is of interest, but whether filter performance is 

likely to be good (i.e. Ef ≥0.5) or not (i.e. Ef <0.5). Such an assessment for the 

models with Input Sets 2 and 4 is provided for the different filters in  

Table 3.10. As can be seen, when the models with all inputs are used, the 

performance of the LH and Boughton/Eckhardt filters are classified correctly 
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as either good or not in 96.1% and 94.3% of cases, respectively. The value of 

96.1% drops to 94.1% for the LH filter when only 3 inputs are used. However, 

the drop in performance when only 3 inputs are used, compared with 9 inputs, 

is more marked for the Boughton/Eckhardt filters, where the percentage of 

correct classification drops from 94.1% to 85.7%. 

 

As can be seen from the regression equations in Figure 3.7, all of the signs of 

the coefficients of the input variables are in the same directions for the LH 

and Boughton/Eckhardt filters. This is as expected, as large values of Ef have 

the same effect on the overall performance for the LH and Boughton/Eckhardt 

filters (i.e. large values of Ef result in better performance for the LH and 

Boughton/Eckhardt filters), as discussed above. Therefore, the signs of the 

coefficients are in agreement with the underlying physics. For catchments 

with high baseflow contribution, all three RDFs can estimate baseflow quite 

well, with higher values of Ef.  
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Ef_LH=0.273ln(Ks)-

0.64ln(rainfall)+0.979ln(ET)+0.685

(a)  LH Filter Performance (Input Set 2)

Ef_LH=0.303ln(Ks)-0.129ln(α)-0.202ln(β)-

0.17ln(A)+0.015ln(S1)+0.173ln(S2)-0.0004ln(AR)-

0.699ln(rainfall)+1.118ln(ET)+2.409

(b)  LH Filter Performance (Input Set 4)

Ef_B&E=0.223ln(Ks)-

0.722ln(rainfall)+0.8ln(ET)+1.827

(c) Boughton and Eckhardt Filter 

Performance (Input Set 2)

Ef _B&E=0.226ln(Ks)-0.064ln(α)-0.121ln(β)-

0.125ln(A)+0.11ln(S1)+0.145ln(S2)-0.089ln(AR)-

0.687ln(rainfall)+0.744*ln(ET)+3.943

(d) Boughton and Eckhardt Filter Performance

(Input Set 4)
 

Figure 3.7 Regression models for the prediction of optimal filter 

performance (in terms of Ef) using input sets 2 and 4 

 

Table 3.10 Percentage of correct prediction of good filter performance 

(i.e. Ef ≥0.5) using the regression models 

 

Input Set LH Boughton & Eckhardt 

2 94.1 85.7 

4 96.1 94.3 
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3.3.4 Practical implications 

From a practical perspective, the regression models developed in this research 

might be able to be used to assess whether use of a particular RDF is suitable 

for the catchment characteristics and hydrological inputs under consideration 

and if so, to determine what filter parameter value should be used. The 

procedure for achieving this is given in Figure 3.8 and described below. 

 

Ef = f (catchment characteristics, 

hydrological inputs)

Ef ≥ 0.5
No

Yes

Selected RDF 

unsuitable

θoptimal  = f (catchment characteristics, 

hydrological inputs)

RDFs

Estimate baseflow
 

Figure 3.8 Procedure for checking filter suitability and estimation of 

optimal filter parameter values 

 

Procedure: 

 

Use the appropriate regression model to determine whether a particular RDF 

will be a good predictor of baseflow or not (i.e. if Ef ≥0.5 or not).  Two 

different models can be used for this purpose, depending on the amount of 

information available and the desired level of accuracy.  The simpler model 

only requires rainfall, ET and Ks as inputs, whereas the more complex model 

also requires information on catchment area, hillslope, channel slope, aspect 

ratio and van Genuchten parameters α and β. 

 



3 Performance assessment and improvement of recursive digital baseflow 

filters for catchments with different physical characteristics and hydrological 

inputs (Paper 2) 

94 

 

If Ef <0.5, the selected RDF is not suitable to be used, as the filtered baseflow 

obtained is likely to provide a poor estimate of actual baseflow. Other RDFs 

or baseflow estimation methods should be tried. 

 

If Ef ≥ 0.5, the selected RDF can be used, as the filtered baseflow obtained is 

likely to provide a good estimate of actual baseflow.  

 

If the RDF can be used, the optimal value of the filter parameter can be 

estimated using the corresponding regression equation and the RDF used for 

baseflow estimation.   

 

Given that the predictive performance of the Eckhardt and Boughton filters is 

equivalent and that the optimal filter parameter can be estimated much more 

easily for the former, the Boughton filter is least preferred. Consequently, of 

the RDFs considered in this research, the choice will be between the LH and 

Eckhardt filters. In addition, compared with the Eckhardt filter, the LH filter is 

likely to be suitable for a wider range of conditions. However, if both filters 

are found to be suitable, the Eckhardt filter should probably be used, as its 

optimal filter parameter value can be estimated with greater accuracy. In 

addition, given the strong correlation between BFI and the optimal values of 

the BFImax parameter in the Eckhart filter (Figure 3.4), the regional 

relationships between catchment characteristics and BFI developed in other 

studies (e.g. Lacey and Grayson, 1998; Longobardi and Villani, 2008; 

Mazvimavi et al., 2005; Mwakalila et al., 2002) can also be used to obtain the 

optimal filter parameter for the Eckhart filter,  making it more widely 

applicable. 

 

However, it should be noted that the results obtained are a function of the 

adopted error measure, the conceptualisation of the underlying physical 

processes used in HGS, as well as the range of conditions tested.  While the 

number of physical catchment characteristics and hydrological inputs 

investigated is larger than that used in Li et al. (2013a), it is by no means 

exhaustive.  Consequently, there is a need to test the robustness of the results 
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obtained under a wider range of conditions, such as such as heterogeneity of 

catchment properties and hydrological inputs, more complex catchment 

geometries, non-uniform slopes, different climates etc., before they can be 

applied with any degree of confidence. 

3.4 Summary and conclusions 

The estimation of baseflow is important in many environmental and water 

resources settings.  Recursive Digital Filters (RDFs) are a commonly used 

method for achieving this, as they are quick and simple to implement. 

However, due to the difficulties in measuring baseflow in the field, it is not 

possible to assess the accuracy of these RDFs, nor is it possible to determine 

the most appropriate values of the parameters that control RDF output, based 

on measured data.  In order to overcome this shortcoming, the baseflow 

extracted from the outputs of a fully integrated surface water/groundwater 

(SW/GW) model using the HMC method are used to obtain optimal filter 

parameter values by calibration and as a benchmark against which to assess 

RDF performance. This is done for a synthetic catchment with 70 

combinations of different catchment characteristics (e.g. saturated hydraulic 

conductivity (Ks), catchment area, aspect ratio, slopes, van Genuchten 

parameters) and hydrologic inputs (e.g. rainfall and evapotranspiration (ET)) 

obtained using Latin hypercube sampling (LHS).  HydroGeoSphere (HGS) is 

used as the fully integrated SW/GW model and the calibration and assessment 

procedure is applied to three different RDFs, including the Lyne and Hollick 

(LH), Boughton two-parameter and Eckhardt filters. It is recognised that the 

baseflow generated using HGS is only an approximation to reality, but given 

that HGS represents physical processes explicitly, this is very likely to be the 

best approximation to reality that we have at present. 

 

The outputs from the RDF calibration and performance assessment procedures 

are used to develop regression models predicting RDF performance (i.e. how 

well each RDF can predict the HGS generated baseflow) and optimal values 

of the filter parameters (i.e. the calibrated values of the filter parameters that 
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result in the best match between RDF and HGS generated baseflow) as a 

function of the different catchment characteristics and hydrological inputs 

investigated. Models are developed that use all, as well as a subset, of the 

catchment characteristics and hydrological values considered as inputs.  The 

subset of the most significant inputs is obtained using a partial mutual 

information (PMI) input selection procedure and results in the selection of 

only two inputs, including the ratio of rainfall/ET and Ks, indicating that these 

factors have the biggest influence on both filter performance and the optimal 

values of the filter parameters. 

 

The results obtained show that the values of the optimal filter parameters vary 

significantly as a function of catchment characteristics and hydrological input, 

with rainfall, Ks and ET having the largest influence, as mentioned above.  

This variation is able to be predicted very well for the LH (CoE=0.78) and 

Eckhardt (CoE=0.94) filters using the regression models.  However, the 

models are less successful in predicting optimal values of the Boughton filter 

parameter, with CoE=0.38.  The difference in the predictability of the 

Boughton and Eckhardt filter parameters is despite the fact that both filters 

produce equivalent outputs. The likely reason for this is that the filter 

parameter in the Eckhardt formulation has a physical meaning (i.e. BFImax), 

and is therefore more likely to be a function of physical catchment 

characteristics and hydrological inputs than the filter parameter in the 

Boughton formulation, which does not have any physical meaning. 

 

The results also indicate that the LH filter is able to better match the HGS 

derived baseflow than the other two filters, the performance of which is 

equivalent.  Over the 66 trials included in the analysis, the LH filter performs 

well (i.e. Ef >0.5) 77.3% of the time and poorly (i.e. Ef ≤0) 10.6% of the time.  

In contrast, the Boughton/Eckhardt filters result in good and poor performance 

53.0% and 16.7% of the time, respectively.  The regression models are able to 

predict the performance (in terms of Ef) of all three RDFs very well, with CoE 

values of 0.82 and 0.76 for the models predicting the performance of the LH 
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and Boughton/Eckhardt filters, respectively.  Again, the ratio of rainfall/ET 

and Ks have the largest influence, as mentioned above. 

 

The ability of the regression models to provide good predictions of filter 

performance and optimal filter parameters has potential practical applications.  

For example, the models predicting model performance can be used to assess 

whether the use of a particular filter is suitable, given the catchment 

characteristics and hydrological inputs considered.  If use of a particular filter 

is considered adequate (e.g. if the value of Ef predicted using the regression 

model >0.5), then the optimal value of the filter parameter can be predicted 

using the appropriate regression model.  Given that the output, and hence 

performance, of the Boughton and Eckhardt filters is equivalent and that the 

optimum Eckhardt filter parameter can be predicted with more accuracy, the 

Eckhardt filter should be used in preference to the Boughton two-parameter 

filter in practice. In addition, the Eckhart filter is likely to be more widely 

applicable than the other two filters, as regional relationships between 

catchment characteristics and BFI, which is strongly related to optimal values 

of the optimal filter parameters for the Eckhart filter, have been developed in 

previous studies (e.g. Lacey and Grayson, 1998; Longobardi and Villani, 2008; 

Mazvimavi et al., 2005; Mwakalila et al., 2002). 

 

One limitation of using the regression models for determining whether use of 

a particular filter is appropriate or not, and for determining values of the 

optimal filter parameters, is that they require input information on the seven 

catchment characteristics, as well as rainfall and ET, some of which might be 

difficult to obtain, especially representative values of parameters that are 

spatially heterogeneous.  However, the models that only use rainfall, ET and 

Ks as inputs perform only marginally worse than the models using all 9 input 

variables and might therefore be easier to use in practice. 

 

The performance of the Boughton/Eckhardt filter could possibly be improved 

further by also considering the recession constant as a parameter to be 

calibrated.  However, this might make estimation of the optimal filter 
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parameters more complicated.  It would also be interesting to assess the 

impact of spatial variability in catchment characteristics and hydrological 

input on the performance of the regression relationships developed in this 

research.  However, given that RDFs are currently applied without any 

knowledge of their likely accuracy, nor any knowledge of how to select 

appropriate values of the filter parameters, the predictive relationships 

presented in this paper provide a first step towards maximising filter 

performance and increasing confidence in the accuracy of the baseflow 

obtained using RDFs.  Consequently, it would be useful to develop such 

relationships for other RDFs.  

 

Finally, it must be acknowledged that results and conclusions are based on the 

outputs from a model that was run under a limited number of catchment and 

hydrological conditions.  Consequently, the robustness and generality of the 

results need to be tested under a wider range of model conceptualisations, 

catchment characteristics and hydrological inputs and, where possible, using 

actual data. 
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Abstract 

 

Conceptual rainfall runoff models (CRRs) are used extensively in practice, as 

they provide a good balance between transparency on one hand and 

computational and data requirements on the other.  However, even though 

such models are based on a conceptual representation of the principal physical 

processes affecting rainfall and runoff, the degree to which these processes are 

captured by the model structure and calibrated model parameters is not well 

understood.  This is because the performance of such models is generally 

assessed based on their ability to match total streamflow hydrographs, rather 

than how well they match component processes, such as baseflow and 

quickflow.  In this paper, the ability of the Australian Water Balance Model 

(AWBM), which is a commonly used CRR, to represent baseflow and 

quickflow is assessed for 66 synthetic catchments with different physical 

characteristics and hydrological inputs under seven calibration regimes that 

consider internal model dynamics during the calibration process in different 

ways .  The “observed” total-, base- and quick-flow hydrographs for these 

catchments are generated using the fully integrated surface water/groundwater 

(SW/GW) model Hydrogeosphere (HGS) under the assumption that such 

models provide a realistic representation of the underlying physical processes.  

The results obtained indicate that while AWBM is generally able to match 

total streamflow hydrographs very well, the same does not apply to baseflow 

and quickflow, hydrographs, suggesting that these processes are not 

represented particularly well by AWBM.  Consideration of the internal model 

dynamics during the calibration process results in some improvements in the 

representation of baseflow and quickflow. 
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4.1 Introduction 

Modelling approaches for estimating runoff from rainfall and 

evapotranspiration (ET) can be broadly classified into three types: black box 

models, physical process based models and conceptual rainfall runoff (CRR) 

models (Beven, 2005).  While all of these approaches have been shown to be 

able to predict total streamflow successfully, the degree to which they are able 

to represent underlying streamflow generating mechanisms is highly variable. 

 

Black box modelling approaches, such as artificial neural networks (Maier et 

al., 2010), are at one end of the spectrum while physically based approaches 

are at the other end. Black box models produce streamflow outputs solely as a 

function of their inputs and transfer characteristics without any knowledge or 

understanding of the underlying physical processes, but they are generally 

computationally efficient and can be developed using limited data. Physically 

based approaches attempt to simulate the detailed mechanisms of the 

component physical processes within the hydrologic cycle using well-

established physical laws, with numerical solutions of the mathematical 

representation of these processes (Jayatilaka et al., 1998). Such approaches 

include fully integrated surface water/ground water (SW/GW) models, such as 

InHM (VanderKwaak and Loague, 2001), MODHMS (HydroGeoLogic, 

2000), HydroGeoSphere (HGS) (Therrien et al., 2009) and SHE (Abbott et al., 

1986). However, there are problems with the application of these models in 

practice due to the difficulties and expense associated with obtaining the data 

required (e.g. due to limitations of existing instrumentation and intrinsic 

uncertainty in the measurements), their high computational demands, as well 

as the inability to derive the formation from first principles.  

 

CRR models represent a compromise between the high data and 

computational requirements of physical process based models and the lack of 

transparency of black-box models.  They are more computationally efficient 

and less data intensive than process based models, as they do not attempt to 

represent all physical processes explicitly.  However, they are more 
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transparent than black-box models, as they represent the underlying physical 

processes in a conceptual manner, generally in the form of a number of 

interconnected storages that are linked with empirical mathematical equations 

to conceptualise the movement of water into, between and out of a catchment. 

Many different CRR models have been proposed in the literature, such as the 

Australian Water Balance Model (AWBM) (Boughton, 1993, 2004), the Soil 

Moisture and Accounting Model (SMAR) (Tuteja and Cunnane, 1999), 

SIMHYD (Chiew et al., 2002) and GR4J (Oudin et al., 2005), for example. 

 

Among the different rainfall-runoff modelling approaches mentioned above, 

CRR models are the most widely utilized in practice, due to their relatively 

simple structure, small number of parameters and production of reasonable 

results. A common feature of CRR models is that most of their model 

parameters have no direct physical interpretation and are not directly 

measurable (Delleur, 1982; Troutman, 1985), due to the fact that many 

complex catchment physical processes are lumped together. Therefore, CRR 

model parameters are generally estimated by calibration, by comparing the 

modelled total streamflow time series to the corresponding observed data until 

a good fit has been obtained. Most of the time, this fit is measured using a 

single objective function, which generally aggregates the time-series residuals 

over the whole calibration period. Significant research effort has been directed 

towards obtaining a well-defined optimal parameter set, including local-type 

direct search optimisation methods and globally based optimisation methods 

(Duan et al., 1992).  However, because CRR models are usually calibrated 

using only observed total streamflow time series, while internally they 

calculate a number of additional states and fluxes, such as baseflow and 

quickflow, there may be many combinations of parameter values that give 

similar objective function values.  This phenomenon is called ‘equifinality’ 

(Beven, 1993), and is caused by problems such as over-parameterisation of 

models, data limitations and structural faults in the model. As a result, even 

though the structure of CRR models is based on a conceptual representation of 

underlying physical processes, how well these processes are represented by 

calibrated models is generally unknown, as a good match to total streamflow 
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does not necessarily mean that the component processes are being modelled 

accurately.  For example, similar total streamflow time series can be obtained 

with very different combinations of baseflow and quickflow.  

 

While there have been many studies comparing the performance of CRR 

models (Ferket et al., 2010; Knapp et al., 1991; Post et al., 2007; Ranatunga et 

al., 2008) using total streamflow time series, very few attempts have been 

made to use baseflow or quickflow estimates for CRR model internal dynamic 

performance assessment, due to the difficulty of accurately measuring 

baseflow or quickflow in the field (Dukic, 2006; McCallum et al., 2010). 

Recently, Ferket et al. (2010) used baseflow estimated from a physically-

based digital filter (Furey and Gupta, 2001) to validate the internal dynamics 

of two CRR models (HBV and PDM) for a subcatchment of the Dender 

catchment in Belgium.  As part of the study, two optimisation algorithms 

(SCE-UA and MWARPE) were used to calibrate the models by matching total 

streamflow to observations. They concluded that no clear picture emerged of 

which model produced the best results of simulating total streamflow, but that 

the MWARPE calibration algorithm and the HBV model led to the best 

baseflow estimates, giving the best internal model dynamics, at least when 

compared with the results obtained using the Furey and Gupta filter. 

 

This study builds on the research by Ferket et al. (2010) by assessing (i) how 

well the Australian Water Balance Model, which is a commonly used CRR, is 

able to represent total-, base- and quick-flow for 66 synthetic catchments with 

different catchment characteristics and hydrological inputs and (ii) the impact 

of seven different calibration regimes that take internal model dynamics into 

account in different ways on the accuracy of total-, base- and quick-flow 

hydrograph prediction.  While the methodology is illustrated for this particular 

case study, its generic nature means it could easily be adapted and applied to 

other CRR models around the world. The remainder of this paper is organized 

as follows. The methodology is given in Section 4.2, followed by the results 

and discussion in Section 4.3 and summary and conclusions in Section 4.4. 
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4.2 Methodology 

The underlying premise of the proposed method for assessing the internal 

dynamic performance of AWBM under a range of calibration approaches is 

that a fully integrated SW/GW model can simulate all of the hydrological 

processes within a catchment, such as the partitioning of rainfall into different 

components, including overland flow, streamflow, evaporation, infiltration 

and recharge, as well as subsurface discharge to surface water features (e.g. 

lakes and streams), in a physically realistic fashion (Therrien et al., 2009). 

This is a generally accepted assumption, as these models typically represent 

3D variably saturated subsurface flow with the Richards’ equations, and 1D 

and 2D surface flow with the diffusion wave approximation to the St. Venant 

equations. All of the governing flow equations implemented by the fully 

integrated SW/GW model are solved simultaneously to obtain reasonably 

accurate estimates of total streamflow, which can be used to calibrate AWBM, 

and baseflow and quickflow, which can be used to assess and improve the 

performance of the internal dynamics of AWBM (e.g. whether flow 

components that make up total streamflow are predicted accurately). 

 

The steps in the methodology adopted for assessing the internal dynamic 

performance of AWBM are given in Figure 4.1.  As shown, initially synthetic 

total streamflow ( obs

Tq ), baseflow ( obs

Bq ) and quickflow (
obs

Qq ) hydrographs are 

generated using a fully integrated SW/GW model for a number of catchments 

with different physical properties and hydrological inputs in order to ensure 

the results are as generic as possible. Next, AWBMs are developed for the 

same catchments by using the same hydrological inputs, but different 

calibration methods. Finally, the performance of the AWBMs calibrated using 

the different methods is compared in terms of their ability to predict total-, 

base- and quick-flow hydrographs accurately.  Details of each step in the 

methodology are given in subsequent sections. 

 



4 Assessment of the internal dynamics of the Australian Water Balance Model 

under different calibration regimes (Paper 3) 

 

109 

+

-

Error

Fully integrated 

SW/GW Model

AWBM

obsq simq
)(tq

t

Tq

Bq

Catchment 

Characteristics

&

Hydrological 

Inputs

obs

Bq

obs

Tq

sim

Bq

sim

Tq

Calibration 

Procedure
Ѳ

Qq

sim

Qq

obs

Qq

 

Figure 4.1 Schematic representation of steps in the proposed 

methodology 

 

4.2.1 Catchment characteristics and hydrological inputs 

In this study, the 66 synthetic catchments with different physical 

characteristics and hydrological inputs developed by (Li et al., 2013a) are 

used. These catchments have drainage areas ranging from 6 to 192 km
2 

and 

are loosely based on a benchmarked integrated surface-subsurface hydrology 

problem, the V-catchment test case as shown in Figure 4.2 (Panday and 

Huyakorn, 2004). A detailed description of these catchments can be found in 

Li et al. (2013b), thus only a brief overview is provided here. Different 

physical catchment characteristics are represented using seven variables: 

catchment area (A), catchment hill slope (S1, which is perpendicular to the 

channel), catchment channel slope (S2, which is parallel to the channel), 

catchment aspect ratio (AR), and soil type, which includes Ks and van 

Genuchten parameters α and β. The hydrological inputs are represented using 

the ratio of daily rainfall to ET from five Australian cities (Li et al., 2013b), 

which are obtained from the Australian Bureau of Meteorology National 

Climate Centre. Details of the different values of the physical catchment 

characteristics considered are given in Table 4.1 and the characteristics of the 

hydrological inputs used are given in Table 4.2. Li et al. (2013b) used Latin 

Hypercube Sampling (LHS) to generate the 66 catchments with different 

physical catchment characteristics and hydrological inputs used in this study 

by sampling from these catchment characteristics and hydrological inputs. 
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Figure 4.2 Schematic representation of tilted V-catchment flow problem 

(adopted from Panday and Huyakorn (2004)) 

 

Table 4.1 Catchment characteristics considered (adopted from (Li et al., 

2013b)) 

 
Catchment 
Characteristic  

Unit Explanation Values Considered 

Ks m/s Saturated hydraulic 
conductivity 

2.44E-05, 3.99E-05, 1.12E-04, 
2.11E-04, 9.66E-04 

α - van Genuchten 
parameter 

0.572, 3.366, 6.161, 8.955, 
11.75 

β - van Genuchten 
parameter  

1.32, 1.556, 1.793, 2.029, 
2.266 

A km
2
 Catchment area 6, 48, 80, 120, 192 

S1 - Hill slope 
(perpendicular to the 
channel) 

0.005, 0.008, 0.012, 0.016, 
0.02 

S2 - Channel slope (along 
the channel) 

0.0025, 0.004, 0.006, 0.008, 
0.01 

AR - Ratio of catchment 
width to length (x/y) 

0.5, 0.75, 1.0, 1.25, 1.5 
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Table 4.2 Hydrological inputs considered (adopted from (Li et al., 2013b)) 

 

City 
Gauge 
No. 

Average 
annual rainfall 
(mm/a) 

Average annual 
potential ET 
(mm/a) 

R/ET (average 
annual 
rainfall/average 
annual potential ET) 

Adelaide 023011 510.16 1470.97 0.347 
Melbourne 086071 525.33 911.33 0.576 
Sydney 070062 1095.85 920.90 1.190 
Brisbane 031011 2238.22 2077 1.078 
Darwin 014015 1707.16 2056.37 0.811 

4.2.2 Fully integrated SW/GW model 

Hydrogeosphere (HGS) is used as the fully integrated SW/GW model to 

model the 66 synthetic catchments’ response to rainfall and ET inputs under 

different catchment characteristics and hydrological regimes. This is because 

HGS can be used to simulate hydrological processes within catchments in a 

physically based manner (Therrien et al., 2009). HGS has been applied 

successfully to various studies, such as the comparison of baseflow estimation 

methods (Li et al., 2013b; Partington et al., 2011; Partington et al., 2012), 

SW/GW disconnection problems (Banks et al., 2011; Brunner et al., 2009), 

bank storage dynamic processes analysis (Doble et al., 2012) and the study of 

dual permeability systems (Schwartz et al., 2010). Further description of the 

code and its numerical formulation can be found in Therrien et al. (2009) and 

Brunner and Simmons (2012). 

 

As shown in Figure 4.2, the catchment used in this study is symmetrical.  As a 

result, all simulations are conducted for only half of the catchment, as shown 

for one example of the catchment configurations considered in Figure 4.3, and 

the reported fluxes are correspondingly half of those expected when 

accounting for both sides of the stream. Detailed information of the catchment 

model with the selected values of the HGS parameters can be found in Li et al. 

(2013b). 
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Figure 4.3 An example of 3D catchment model for case study (adopted 

from Li et al. (2013b)) 

 

As mentioned previously, the HGS models are used to obtain the ‘observed’ 

streamflow ( obs

Tq ), baseflow ( obs

Bq ) and quickflow (
obs

Qq ) hydrographs for the 

66 catchments. The baseflow hydrograph ( obs

Bq ) is extracted from the model 

using the HMC method (Partington et al., 2011), based on the nodal fluid 

mass balance obtained from the model simulations. The HMC method is able 

to capture the storage effects and time lags within catchments, which provides 

a means of estimating baseflow from fully integrated SW/GW models. Details 

of the HMC method can be found in Partington et al. (2011). The quickflow 

(
obs

Qq ) is taken as the difference between the total streamflow ( obs

Tq ) and 

baseflow ( obs

Bq ). 

4.2.3 Australian Water Balance Model (AWBM) 

AWBM is a saturation overland flow model developed by Boughton (1993, 

2004) and is now one of the most widely used CRR models in Australia 

(Marshall et al., 2004; Ranatunga et al., 2008). AWBM is available in two 

versions. The first version uses a daily time step and is used for modelling 

catchment runoff yield, while the second version uses an hourly time step and 
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is used for flood management (Boughton, 2004). The first version is used for 

this study. 

 

As can be seen in Figure 4.4, AWBM uses rainfall and actual 

evapotranspiration as inputs and principally consists of a configuration of 

three different surface storages. The depths of these storages correspond to the 

parameters C1, C2 and C3. A fraction of the total area is associated with each 

surface storage, as represented by the parameters A1, A2 and A3. Moisture 

capacity variation over the catchment is described by the combination of the 

surface storages and the related fractional areas. An important feature of 

AWBM is the ability to account for baseflow when predicting streamflow by 

using a baseflow index (BFI), which is the ratio of the amount of baseflow to 

the total amount of streamflow and determines the proportion of excess 

moisture at each time step that is returned to the baseflow. The daily baseflow 

recession constant (KBase) and daily routed surface runoff recession constant 

(KSurf) are used to describe the daily discharge from baseflow and surface 

runoff (quickflow) storage. A summary of the AWBM parameters and their 

ranges used is given in Table 4.3.  In this study, AWBM is implemented using 

the Rainfall Runoff Library (RRL) developed by the Cooperative Research 

Centre on Catchment Hydrology (www.toolkit.net.au/rrl). 
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Figure 4.4 Structure of AWBM 

 

Table 4.3 AWBM parameter description and ranges 

 

Parameter Description Parameter range 
A1 Partial Area 0-1 
A2 Partial Area 0-1 
BFI Baseflow Index 0-1 
C1 Surface Storage Capacity 0-50 
C2 Surface Storage Capacity 0-200 
C3 Surface Storage Capacity 0-500 
KBase Daily Baseflow Recession Constant 0-1 

KSurf 
Daily Surface Flow Recession 
Constant 0-1 

 

4.2.4 Calibration of Australian Water Balance Model (AWBM) 

As stated previously, the effectiveness of calibration methods that take 

internal model dynamics into account in different ways is investigated in this 

study. The calibration methods are summarised in Table 4.4 and detailed 

below.  It should be noted that details of the optimisation method and error 

measure used in the calibration methods are given Sections 4.2.4.2 and 4.2.4.3, 

respectively. 
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4.2.4.1 Calibration methods 

Values of all of the eight parameters listed in Table 4.3 are obtained as part of 

the different calibration methods investigated.  Five of these parameters (A1, 

A2, C1, C2 and C3) are related to the moisture capacity of the catchment, two 

(BFI and KBase) affect baseflow generation and one (KSurf) affects the 

routed surface runoff, which is referred to as quickflow in this study. In order 

to be able to assess the impact of calibration methods that take internal model 

dynamics into account in different ways on the ability to predict total-, base- 

and quick-flow hydrographs, a calibration approach that does not take internal 

model dynamics explicitly into account is used to provide a basis of 

comparison (Method 1).  In Method 1, all parameters are calibrated 

simultaneously so as to minimise the selected error measure between the total 

streamflow obtained using AWBM ( sim

Tq ) and that obtained using HGS ( obs

Tq ) 

using the selected optimisation method.  The aim of this calibration method is 

to provide the best possible fit to total streamflow, without any consideration 

of internal model dynamics. 

 

In order to take internal model dynamics into account explicitly during 

calibration, six different methods (Methods 2 to 7) are used.  In each of these 

methods, a two-step process is adopted as follows: 

 

In the first step, values of two of the model parameters, BFI and KBase, are 

estimated.  BFI and KBase are selected for this step as they control the 

separation of rainfall excess into quickflow/baseflow storage and the baseflow 

component of total streamflow, respectively, and are therefore the two 

parameters that have a direct effect on the baseflow hydrograph produced by 

AWBM. Consequently, by estimating values of these parameters first, an 

attempt is made to obtain the best possible match to the baseflow hydrograph. 

 

In the second step, BFI and KBase are fixed at the values obtained in the first 

step and the remaining parameters are calibrated simultaneously so as to 

minimise the selected error measure between the total streamflow obtained 
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using AWBM ( sim

Tq ) and that obtained using HGS ( obs

Tq ) using the selected 

optimisation method. 

 

The methods used for obtaining values of BFI and KBase for Methods 2 – 7 

can be divided into three broad categories.  Methods 2 to 4 belong to the first 

category, in which BFI and KBase are calibrated to baseflow extracted using 

recursive digital filters (RDFs).  In order to do this, KSurf, which determines 

the magnitude of the quickflow component within total streamflow (Figure 

4.4), is set as 1.0, so that the total streamflow produced by AWBM is 

comprised solely of baseflow. Method 5 belongs to the second category, in 

which BFI and KBase are estimated using regression relationships with 

catchment characteristics and hydrological inputs.  Methods 6 and 7 belong to 

the third category, in which BFI and KBase are either estimated by calibration 

to baseflow extracted using RDFs, as in Methods 2 to 4, or by regression, as 

in Method 5, based on the predicted accuracy of the RDF.  Details of the 

different methods for estimating BFI and KBase in the first step of the two-

step process described above are given below. 

 

Method 2: 

In Method 2, BFI and KBase are calibrated simultaneously so as to minimise 

the selected error measure between the baseflow obtained using AWBM ( sim

Bq ) 

and that obtained using the Lyne and Hollick (LH) as RDF (Nathan and 

McMahon, 1990), with the filter parameter set to its default value of 0.925 

( )925.0(_ LHobs

Bq ), using the selected optimisation method.  The LH filter is used 

to obtain the baseflow hydrograph as it is one of the most widely used RDFs 

and has been found to give good results in a number of case studies (Arnold 

and Allen, 1999; Li et al., 2013b; Murphy et al., 2009).  During this 

calibration process, the remaining parameters are set to the optimal values 

obtained using Method 1. 

 

Method 3: 

Method 3 is identical to Method 2, except that the LH filter parameter is 

estimated using the regression relationship developed by Li et al (2013b), 
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which provides an estimate of the optimal filter parameter as a function of 

catchment characteristics and hydrological inputs, rather than using the 

default value of 0.925.  Consequently, the “observed” baseflow is given by 

( )(_ optLHobs

Bq ). 

 

Method 4: 

Method 4 is identical to Method 3, except that the Eckhart filter (Eckhardt, 

2005) is used to obtain the hydrograph of “observed” baseflow ( )(_ optEckobs

Bq ), 

rather than the LH filter.  The Eckhart filter is used as it is mathematically 

identical to the Boughton filter (Boughton, 1993), which has been 

recommended for the purposes of estimating BFI for AWBM by Boughton 

(2004), but has a filter parameter (BFImax) that can be estimated more easily 

from catchment characteristics and hydrological inputs than the corresponding 

filter parameter in the Boughton filter (Li et al., 2013b). 

 

Method 5: 

In Method 5, values of BFI and KBase are obtained directly (i.e. without 

calibration) by developing regression models predicting KBase and BFI as a 

function of the catchment characteristics (Table 4.1) and hydrologic inputs 

(Table 4.2) investigated, similar to the regression relationships for predicting 

filter performance and optimal filter parameters developed by Li et al. (2013b) 

used in Methods 6 and 7. Values of BFI are calculated as the ratio of the 

volume of baseflow to the volume of total streamflow obtained from HGS and 

KBase is obtained by performing recession analysis on the total streamflow 

hydrographs obtained from HGS.  The resulting regression equations and 

scatter plots are shown in Figure 4.5. As can be seen, BFI can be predicted 

very well and KBase can be predicted reasonably well. These results also 

indicate that BFI and KBase are closely related to catchment characteristics 

and hydrological inputs. 
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BFI=1.551ln(Ks)-0.076ln(α)-0.839ln(β)-

0.513ln(A)+1.206ln(S1)+0.574ln(S2)-

0.472ln(AS)-2.773ln(rainfall)+1.203ln(ET)+35.84

(a)  BFI

Kbase=0.213ln(Ks)+0.451ln(α)+1.038ln(β)

+0.104ln(A)+0.373ln(S1)+0.217ln(S2)

+0.497ln(AS)+0.836ln(rainfall)-1.727ln(ET)+14.48

(b)  KBase
 

Figure 4.5 Nonlinear regression models for the prediction of BFI and 

KBase 

 

Method 6: 

In Method 6, a modified version of the procedure for improving baseflow 

estimation using RDFs suggested by Li et al (2013b) is used in order to 

improve the baseflow estimates obtained using the LH filter in Method 5.  

First, the regression relationship developed by Li et al. (2013b) is used to 

determine whether the LH filter can provide satisfactory estimates of baseflow 

for a particular catchment based on catchment properties and hydrological 

inputs.  If the performance of the LH filter is predicted to be acceptable, 

Method 3 is used to obtain estimates of BFI and KBase.  However, if this is 

not the case, Method 5 is used. 

 

Method 7: 

Method 7 is identical to Method 6, except that Method 4 (Eckhart filter) is 

used instead of Method 3 (LH Filter). 

 

In order to be able to assess the absolute performance of the different 

calibration methods in terms of their ability to predict base- and quick-flow 

hydrographs accurately, and to be able to assess the degree to which the 

structure of AWBM is able to represent base- and quick-flow processes, two 

benchmarks are developed. As part of the benchmark development process, 
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the parameters that affect baseflow and quickflow are calibrated to the 

“observed” base-and quick-flow hydrographs produced by HGS, which are 

also used to assess the performance of the different calibration methods.  A 

two-step calibration process similar to that used for Methods 2-4 is used in 

order to obtain the benchmark base- and quick-flow hydrographs.  The only 

difference is in the way the parameters affecting baseflow (i.e. BFI and KBase) 

are estimated in step 1 of the procedure for obtaining the baseflow benchmark 

(Benchmark 1) and the way the parameters affecting quickflow (BFI and 

KSurf) are estimated in step 1 of the procedure for obtaining the quickflow 

benchmark (Benchmark 2), as detailed below: 

 

Benchmark 1 (Baseflow): 

BFI and KBase are calibrated simultaneously so as to minimise the selected 

error measure between the baseflow obtained using AWBM ( sim

Bq ) and that 

obtained HGS ( HGSobs

Bq _ ), using the selected optimisation method. 

 

Benchmark 2 (Quickflow): 

BFI and KSurf are calibrated simultaneously so as to minimise the selected 

error measure between the quickflow obtained using AWBM (
sim

Qq ) and that 

obtained using HGS (
HGSobs

qq _
), using the selected optimisation method. In 

order to do this, KBase, which determines the magnitude of the baseflow 

component within total streamflow (Figure 4.4), is set as 1.0, so that the total 

streamflow produced by AWBM is comprised solely of quickflow. 
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Table 4.4 Summary of calibration methods 

 

Calibration 

method 

Details 

1 Calibrate all parameters simultaneously to total streamflow. 

2 First calibrate BFI and KBase to baseflow obtained using 

LH filter with default filter parameter (0.925) and then 

calibrate remaining parameters to total streamflow. 

3 First calibrate BFI and KBase to baseflow obtained using 

LH filter with optimal filter parameters and then calibrate 

remaining parameters to total streamflow. 

4 First calibrate BFI and KBase to baseflow obtained using 

Eckhart filter with optimal filter parameters and then 

calibrate remaining parameters to total streamflow. 

5 Estimate BFI and KBase based on regression relationships 

with catchment characteristics and hydrological inputs and 

then calibrate remaining parameters to total streamflow. 

6 Use the regression relationship developed by Li et al. 

(2013b) to determine whether the LH filter can provide 

satisfactory estimates of baseflow.  If so, use Method 3.  If 

not, use calibration Method 5. 

7 Identical to Method 6, except that Method 4 is used instead 

of Method 3. 

 

4.2.4.2 Optimisation method 

Model calibration is conducted using the shuffled complex evolution (SCE-

UA) algorithm, because it has been proven to be both accurate and efficient in 

previous studies (Hapuarachchi et al., 2001). In addition, SCE-UA is widely 

recognized as being one of the best search procedures for use in CRR 

modelling applications (Ajami et al., 2004; Franchini et al., 1998). The SCE-

UA algorithm is based on the strengths of several existing search procedures, 

including genetic algorithms (GAs) (Goldberg, 1989) and the Nelder& Mead 

Simplex downhill search scheme (Nelder and Mead, 1965), but also 

introduces the concept of complex shuffling (Duan et al., 1992). A detailed 

description of this method can be found in Duan et al. (1992). 

 

In this study, SCE-UA is implemented using the Rainfall Runoff Library 

(www.toolkit.net.au/rrl).  The number of complexes is set equal to the number 

of calibration parameters to reduce the chance of premature termination of the 

search algorithm, as suggested by Kuczera (1997). All of the other parameters 
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are set to the recommended values in Duan et al. (1994). In order to check 

whether parameter equifinality is a potential problem and to ensure near 

globally optimal solutions are obtained, each calibration run is repeated ten 

times. Another important aspect in the application of SCE-UA is that a 

parameter space needs to be defined, in which the algorithm searches for the 

optimal parameter combination. The ranges of all of the eight AWBM 

parameters used are based on the suggestions in the Rainfall Runoff Library 

(www.toolkit.net.au/rrl) and are listed in Table 4.3. 

 

The length of streamflow data available for AWBM calibration is 10 years (Li 

et al., 2013b). AWBM runs on a daily time step, and therefore, is calibrated 

against daily streamflow. The calibration period requires a warm up period to 

account for the residual soil moisture present in the catchments. This allows 

the models to account for residual water in the catchment by partially filling 

their storages, which primes the models for the calibration period. Initial 

testing demonstrates that a 1 year warm up period is sufficient for model 

calibration. Chronologically, the warm up period directly proceeds the 

calibration period. 

4.2.4.3 Error measure 

The Nash-Sutcliffe coefficient (Ef) (Nash and Sutcliffe, 1970) is chosen as the 

performance criterion, as it is one of the most highly used performance 

measures in hydrology. Ef values are calculated by comparing the difference 

between the ‘observed’ (e.g. outputs from HGS simulations) and simulated 

time series for each time step for total streamflow, baseflow and quickflow 

from AWBM. As suggested by Moriasi et al. (2007), Ef values between 0.5 

and 1.0 correspond to ‘good’ model performance; Ef values between 0.0 and 

0.5 show ‘acceptable’ model performance and ‘poor’ model performance is 

represented by negative values of Ef. However, Gupta and Kling (2011) 

indicated that high values of Ef can give poor model performance. 

Consequently, although more subjective than the use of statistical measures of 

goodness-of-fit, plots of simulated and observed hydrographs are also 

inspected following optimisation.  
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4.2.5 Evaluation of model performance 

As mentioned previously, the performance of AWBM models calibrated using 

the different methods outlined in Section 4.2.4.1 is compared in terms of 

overall model predictive performance (i.e. how well the total streamflow 

generated using AWBM ( sim

Tq ) matches the corresponding streamflow 

generated using HGS ( obs

Tq )) and the accuracy of the resulting internal model 

dynamics (i.e. how well the AWBM generated baseflow ( sim

Bq ) and quickflow 

(
sim

Qq ) hydrographs match the corresponding hydrographs obtained using HGS 

(i.e. ( obs

Bq  and 
obs

Qq )) (Figure 4.1).  The performance of models developed 

using the different calibration methods is assessed using Ef and by visual 

inspection. 

4.3 Results and discussion 

The performance of the AWBMs calibrated with the seven different methods 

investigated, as well as that of the two benchmarks, is summarised in Figure 

4.6.  As can be seen, the results are presented in terms of the percentage of 

models developed for the 66 catchments resulting in “good” (Ef≥ 0.5), 

“acceptable” (0≤Ef<0.5) and “poor” (Ef<0) performance, for each of the total-, 

base- and quick-flow hydrographs.  It can also be seen that two sets of results 

are presented for Method 1.  This is because there are two distinct sets of 

model parameters that result in similar model performance in terms of total 

streamflow during the 10 calibration trials conducted for some of the 66 

catchments.  This is because when Method 1 is used, there is no control on 

internal model dynamics and the only objective is to find a set of model 

parameters that provides the best match to the “observed” total streamflow 

hydrograph, as discussed previously. However, as shown in Figure 4.4, the 

AWBM total streamflow is the sum of routed surface runoff and baseflow, 

both of which are modelled in an identical fashion, each with a single 

parameter (KBase for baseflow and KSurf for routed surface runoff).  

Consequently, similar total streamflow can be obtained by exchanging 



4 Assessment of the internal dynamics of the Australian Water Balance Model 

under different calibration regimes (Paper 3) 

 

123 

parameter values for KBase and KSurf, resulting in model equifinality, as 

observed in the calibration results for Method 1. 

 

An example of this is given in Figure 4.7.  As can be seen in Figure 4.7 (a) 

and (b), good overall model performance is obtained for both parameter sets 

in terms of matching total streamflow. However, the internal network 

dynamics are much better when parameter set 1 is used, as indicated by 

significantly better matches to the base-and quick- flow hydrographs.  It is 

clearly evident that the baseflow and quickflow patterns are reversed for the 

models with the different parameter sets (e.g. the pattern of baseflow obtained 

with parameter set 1 is very similar to the pattern of quickflow obtained with 

parameter set 2). In Figure 4.6, all of the results with parameters that result in 

better internal model dynamics (e.g. as in Figure 4.7(a)) are represented by Set 

1, whereas the results with parameters that result in poorer internal model 

dynamics (e.g. as in Figure 4.7(b)) are represented by Set 2. 

 

Overall, the results show that total streamflow is predicted well using all 

calibration methods investigated, with “poor” model performance for fewer 

than 10% of the catchments, except when Method 5 (Regression) is used, in 

which case 15% of catchments result in poor model performance (Figure 4.6a).  

For most of the catchments (54%-68%) “good” performance is obtained.  

However, the internal model dynamics are not presented as well, especially 

for baseflow, where “poor” performance is obtained for more than half (58%-

74% (ignoring Method 1 with parameter set 2)) of the catchments and “good” 

performance for fewer than 20% of the catchments (Figure 4.6b).  The ability 

of AWBM to represent quickflow is slightly better, with good performance for 

32%-41% of the catchments when the calibration methods that consider 

internal model dynamics explicitly (i.e. Methods 2 to 7) are used and poor 

performance for fewer than 30% of the catchments (12%-29%) (Figure 4.6c).  

It should be noted that when Method 1 is used, “good” performance is only 

obtained for 12% of catchments, but “acceptable” performance is achieved for 

the vast majority of the remaining catchments (71%), with poor performance 

for only 17% of the catchments. 
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Method 1 is the best-performing calibration approach in terms of matching 

total streamflow (Figure 4.6a).  This is not surprising, as the method calibrates 

all of the model parameters simultaneously in order to obtain the best match to 

total streamflow.  However, this is at the expense of internal model dynamics.  

As discussed above, there is a potential problem with equifinality as a result 

of the structure of AWBM.  However, even if the results for Set 1 are 

considered, the method results in the second highest percentage of catchments 

with “poor” model performance for baseflow estimation and the lowest 

percentage of catchments with “good” model performance for quickflow 

estimation.  Nevertheless, the performance of Method 1 is comparable with 

that of the other methods in terms of baseflow estimation, as baseflow is 

estimated poorly, irrespective of the method used.  In relation to quickflow 

estimation, even though Method 1 results in significantly lower catchments 

with “good” performance compared with the other calibration methods, as 

mentioned above, there is only a small percentage of catchments with “poor” 

model performance.  Consequently, the overall performance of the method is 

best in terms of total streamflow prediction and reasonable compared with that 

of the other methods in terms of baseflow and quickflow prediction.  However, 

the equifinality problem requires careful attention, as very poor internal model 

dynamics can be obtained (e.g. “poor” performance for 100% of the 

catchments in terms of baseflow prediction and for 50% of the catchments in 

terms of quickflow prediction) if the “wrong” parameter set (Method 1 (Set 2)) 

is used. 

 

The methods as part of which BFI and KBase are calibrated to baseflow 

extracted using RDFs (i.e. Methods 2-4) result in the best match to baseflow.  

This indicates that the RDFs are able to produce reasonably accurate estimates 

of baseflow, which is evidenced by the fact that the performance of Methods 

2-4 is only slightly worse than that of Benchmark 1 (i.e. where BFI and 

KBase are calibrated to the baseflow produced by HGS, which is the same 

baseflow used for performance assessment).  It also indicates that there is 

some benefit in terms of improving internal model dynamics by constraining 
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BFI and KBase to ensure that baseflow is matched as well as possible.  

However, the poor performance for Benchmark 1 (i.e. “poor” performance for 

57% of the catchments) tends to suggest that the improvement that is possible 

by adopting this approach is rather limited, possibly due to problems with the 

conceptual representation of the underlying physical processes associated with 

baseflow in AWBM. 

 

Of the three methods considered, Method 2, which uses the LH filter with its 

default filter parameter value of 0.925, performs worst, while the performance 

of the other two methods (i.e. LH and Eckhart filters with optimal filter 

parameters) is very similar.  The Eckhart filter performs slightly better, with a 

slightly larger percentage of catchments with “good” performance and a 

slightly smaller percentage with “poor” model performance.  This supports the 

suggestion by Boughton (2004) that the Boughton filter, which is 

mathematically identical to the Eckhart filter, as mentioned previously, is well 

suited to use with AWBM.   

 

While use of Methods 2-4 is able to produce the best results in terms of 

baseflow estimation, there are some trade-offs in terms of the ability to match 

total streamflow and quickflow. Even though use of Methods 2-4 results in a 

significant increase in the percentage of catchments with “good” performance 

in terms of quickflow prediction compared with Method 1, there is also a 

slight increase in the percentage of catchments with “bad” performance.  In 

relation to total streamflow, use of Methods 2-4 also results in a slight 

reduction in performance compared with Method 1.  Overall, the LH method 

with optimal filter parameter values produces the best trade-offs in 

performance between matching total-, base- and quick-flow among Methods 

2-4.  However, a disadvantage of this method compared with Method 2 is that 

information on catchment properties and hydrological inputs is needed in 

order to apply the regression equations used to obtain optimal filter parameter 

values, making it more difficult to apply. 

 



4 Assessment of the internal dynamics of the Australian Water Balance Model 

under different calibration regimes (Paper 3) 

 

126 

 

(a) Total streamflow

(b) Baseflow

(c) Quickflow
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Figure 4.6 Performance of AWBMs for the different calibration methods 

investigated 
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Figure 4.7 Example of total-, base- and quick- flow hydrographs obtained 

for two distinct parameter sets obtained using Method 1 for one of the 66 

catchments investigated 

 

The regression method (Method 5) results in the best performance in terms of 

matching quickflow, performing only slightly worse than the quickflow 

benchmark (Benchmark 2). The method results in the smallest percentage of 

catchments with “poor” performance and second highest percentage of 

catchments with “good” performance. However, it is also the worst-

performing method in terms of matching total- and quick-flow. An advantage 

of the method is that it does not require estimates of baseflow hydrographs 

(only total streamflow hydrographs are needed), but a disadvantage is that 

information on catchment properties and hydrological inputs is needed in 

order to apply the regression equations used to obtain values of BFI and 

KBase as part of the calibration process. 



4 Assessment of the internal dynamics of the Australian Water Balance Model 

under different calibration regimes (Paper 3) 

 

128 

 

 

The two methods combining aspects of the filter (Methods 2-4) and regression 

(Method 5) methods (Methods 6-7) provide a good compromise in terms of 

performing reasonably well on all three hydrographs (i.e. total-, base- and 

quick-flow).  While they are not the best-performing methods for any of the 

three hydrographs, their performance is more consistent than that of any of the 

other methods and not far from that of the best-performing method in each 

case.  Of the two methods, the method using the LH filter (Method 6) 

performs better than the method using the Eckhart filter (Method 7) overall.  A 

disadvantage of these methods is that they are more complex to apply than the 

other methods, as they require baseflow extraction using a RDF, as well as 

data on catchment characteristics and hydrological inputs in order to apply the 

regression equations for predicting filter performance, obtaining the optimal 

filter parameters and obtaining direct estimates of BFI and KBase in the case 

where predicted filter performance is poor. 

 

Overall, the results suggest that while total streamflow can be predicted very 

well over a wide range of catchment characteristics and hydrological inputs 

using AWBM, the component hydrographs are not modeled very well, 

particularly baseflow.  This raises questions about the way the processes 

associated with these streamflow components are conceptualized in AWBM. 

 

Of the methods investigated, Methods 3 and 4, as part of which BFI and 

KBase are calibrated to the baseflow obtained using the LH and Eckhart 

filters with optimal filter parameters, provide the best performance in terms of 

baseflow hydrograph prediction.  The regression method (Method 5) provides 

the best match to the quickflow hydrographs and the hybrid method using the 

LH filter with optimal filter parameters and the regression approach (Method 

6) provides the best overall trade-offs in terms of matching all three 

hydrographs. 



4 Assessment of the internal dynamics of the Australian Water Balance Model 

under different calibration regimes (Paper 3) 

 

129 

4.4 Summary and conclusions 

In this paper, the impact of seven different calibration methods on the ability 

of AWBM to predict total-, base- and quick-flow hydrographs is assessed for 

66 catchments with different physical properties and hydrological inputs.  The 

results indicate that total streamflow can generally be predicted to an 

acceptable level for more than 90% of the 66 catchments.  In contrast, 

baseflow is predicted poorly, with acceptable performance levels ranging 

from 26% to 41% for the different calibration methods investigated. However, 

prediction of quickflow is much better, with acceptable performance levels 

ranging from 71% to 88%.  This disparity in performance between baseflow 

and quickflow prediction is despite the fact that the hydrographs for the 66 

catchments consist of approximately equal contributions both 

(0.006<BFI<0.997, Median BFI=0.53), suggesting that the way AWBM 

represents baseflow processes could be improved. 

 

Use of the calibration methods that take internal model dynamics into account 

explicitly (Methods 2 – 7) results in improved prediction of the component 

hydrographs.  This improvement is particularly significant in terms of 

producing “good” estimates of quickflow, with the percentage of catchments 

for which good performance is obtained increasing from ~10% to ~40% for 

most methods.  However, as AWBM is unable to provide good predictions of 

baseflow in general, as discussed above, the improvements obtained by using 

Methods 2 – 7 is only small (generally < 5%). 

 

Which calibration method should be used is a function of which components 

of the hydrograph are most important for the study under consideration.   

 

If total streamflow prediction is most important, Method 1 (i.e. simultaneously 

calibrating all parameters to total streamflow) should be used.  However, in 

order to obtain reasonable internal model dynamics, the problem of 

equifinality needs to be addressed. 

 



4 Assessment of the internal dynamics of the Australian Water Balance Model 

under different calibration regimes (Paper 3) 

 

130 

 

If baseflow is most important, the methods that calibrate BFI and KBase to 

baseflow extracted using recursive digial filters (RDFs) (Methods 2 – 4) 

should be used.  Of these methods, the methods that use the optimal filter 

parameters obtained using the regression equations developed by Li et al. 

(2013b) (Methods 3 and 4) perform best.   

 

If quickflow prediction is the primary objective, the regression method 

(Method 5) should be used. 

 

If performance on all three hydrographs is important, the hybrid method using 

the Lyne and Hollick (LH) filter with optimal filter parameters and the 

regression method (Method 6) is likely to perform best. 

 

However, it should be noted that most of the methods that perform best 

require information on catchment characteristics and hydrological inputs in 

order to apply the regression equations for obtaining optimal filter parameters 

(Methods 3, 4 and 6), predicting BFI and KBase directly (Methods 5 and 6) 

and estimating the level of performance of the LH filter with optimal filter 

parameters (Method 6), which makes them difficult to apply if the required 

information is not readily available.  However, use of Method 2 (LH filter 

with default filter parameter of 0.925) can be used in order to achieve 

reasonable improvements in internal model dynamics in such cases. 

 

Finally, it is important to highlight a number of limitations of this study that 

provide avenues for future studies.  Firstly, it is worth pursuing other 

calibration methods that aim to take the internal model dynamics into account 

explicitly.  For example, changes could be made to the objective function to 

ensure known features of the total streamflow hydrograph are captured, or 

different transformations could be applied to the data.  Secondly, the fact that 

synthetic data are used in this study limits its complexity and realism.  

However, there is a trade-off between realism and the ability to assess model 

dynamics accurately.  For real catchments, the actual base- and quick- flow 

hydrographs are generally unknown and have to be estimated using a variety 
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of methods.  However, the approach adopted in this study enables the base- 

and quick- flow hydrographs to be known with certainty, enabling an accurate 

assessment of the internal dynamics of AWBM to be obtained in a simplified 

setting.  Lastly, while the computational experiments are conducted for a 

range of catchment characteristics and hydrological inputs, these values are 

also represented in a simplified manner (e.g. uniform rainfall, homogeneous 

soils, uniform slopes etc.) and the effect of additional complexity on the 

results obtained should be investigated in future studies. 
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Chapter 5  

 

 

5 Conclusions  

 

 

Hydrologic models are becoming increasingly important for the planning, 

design, operation and management of natural and engineered systems.  

However, due to the complexity of the underlying physical processes, it is 

difficult to develop such models. Consequently, simplified models are 

generally used in practice for purposes such as baseflow estimation and 

rainfall-runoff prediction. However, it is difficult to provide a rigorous 

assessment of the performance of such simplified models under a range of 

catchment characteristics (e.g. catchment area, soil type, slope) and 

hydrological inputs (e.g. rainfall, evaporation) and further improve the 

models’ predictive capability and the way they represent underlying physical 

processes. Therefore, generic frameworks for i) evaluating and improving 

recursive digital filters (RDFs) for baseflow estimation and (ii) evaluating the 

internal dynamic performance of conceptual rainfall runoff (CRR) models are 

developed and applied. 
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5.1 Research contributions 

 

The overall contribution of this research is the development of methods for 

evaluating and improving the predictive performance of simplified hydrologic 

models, including RDFs for baseflow estimation and CRR models for rainfall 

runoff prediction, under the premise that fully integrated surface 

water/groundwater (SW/GW) models are able to provide the best possible 

approximation to the physical processes of water flow within catchments and 

can therefore be used as a benchmark against which the performance of these 

simplified models can be assessed for a variety of physical catchment 

characteristics and hydrological inputs. The details of specific contributions of 

this research are as follows: 

 

1. A generic framework is developed for evaluating and improving the 

performance of RDFs for baseflow estimation by taking different 

catchment characteristics and hydrological inputs into account. It is then 

applied to a commonly used RDF (the Lyne and Hollick filter) for a 

synthetic catchment with different soil properties (saturated hydraulic 

conductivity (Ks), porosity, residual water content (θr), and van 

Genuchten parameters α and N(β)). The results show that the 

performance of the Lyne and Hollick filter is sensitive to soil properties 

and that performance can be improved by optimising values of the filter 

parameter based on soil properties (particularly Ks), rather than using the 

default value of 0.925.  This research provides the first step towards being 

able to assess the performance of RDFs and investigate the improvement 

of RDFs by finding optimal values of filter parameters under a range of 

catchment characteristics and hydrological inputs.  

 

2. Continuing from the above research, the framework developed is further 

applied to three commonly used RDFs (the Lyne and Hollick, Boughton 

2-parameter and Eckhart filters) for the same synthetic catchment but 

with a larger range of catchment characteristics (catchment area, hill 
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slope, channel slope, aspect ratio, Ks, and van Genuchten parameters α 

and β) and hydrological inputs (rainfall and evapotranspiration for 

Adelaide, Brisbane, Darwin, Melbourne and Sydney). The outputs from 

the RDF calibration and performance assessment procedures over these 

catchment characteristics and hydrological inputs show that the 

commonly used RDF parameter values cannot provide satisfactory 

baseflow estimates. Therefore, nonlinear regression equations are 

developed for predicting RDF performance and optimal RDF parameters 

based on these catchment characteristics and hydrological inputs for the 

three RDFs investigated, in order to help with providing guidance on 

checking RDF suitability for a particular catchment and estimation of the 

value of the optimal RDF parameter for practical applications. 

 

3. A framework is developed for assessing and improving the predictive 

ability and internal model dynamics of CRR models. This framework is 

developed for the Australian Water Balance Model (AWBM), a 

commonly used CRR model. Through using this framework, how well 

AWBM is able to predict total-, base- and quick-flow is assessed under a 

wide range of catchment characteristics and hydrological inputs. In 

addition, the impact of a number of calibration regimes that take internal 

model dynamics into account in different ways on the accuracy of total-, 

base- and quick-flow hydrograph prediction is evaluated for AWBM 

under the same range of catchment characteristics and hydrological inputs. 

The results obtained show that consideration of the internal model 

dynamics during the calibration processes is able to result in 

improvements in model internal dynamics with representation of 

baseflow and quickflow. While the methodology is illustrated for this 

particular case study, its generic nature means it could easily be adapted 

and applied to other conceptual rainfall runoff (CRR) models around the 

world.  
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5.2 Publications 

 

Apart from the three journal articles which form the main body of this thesis, 

one conference papers has also resulted from this research. A list of all of the 

publications arising from this research is presented below. 

 

Journal articles: 

 

1. Li, L., Maier, H.R., Lambert, M.F., Simmons, C.T., and Partington, D. 

(2013). "Framework for assessing and improving the performance of 

recursive digital filters for baseflow estimation with application to the 

Lyne and Hollick filter." Environmental Modelling & Software, 41, 163-

175. 

 

2. Li, L., Maier, H.R., Partington, D., Lambert, M.F., and Simmons, C.T. 

(2013). "Prediction of accuracy and optimal parameter values of recursive 

digital baseflow filters based on physical catchment characteristics and 

hydrological inputs." Environmental Modelling & Software (submitted). 

 

3. Li, L., Lambert, M.F., Maier, H.R., Partington, D., and Simmons, C.T. 

(2013). “Assessment of the internal dynamics of the Australian Water 

Balance Model under different calibration regimes.” Environmental 

Modelling & Software (submitted). 

 

 

Conference article: 

 

1. Li, L., Maier, H.R., Lambert, M.F., Simmons, C.T., and Partington, D. 

(2011). "Sensitivity of optimal baseflow filter parameter to catchment soil 

characteristics." Proceedings of the 34th IAHR World Congress, 

Engineers Australia, Brisbane, Australia. 
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5.3 Research limitations 

 

The limitations of this research are discussed below: 

 

1. A main limitation of this research is that the frameworks developed in 

this research are under the premise that fully integrated SW/GW models 

are able to provide the best possible approximation to the physical 

processes of water flow within catchments and can therefore be used as a 

benchmark against which the performance of RDFs for baseflow 

estimation and CRR models for rainfall runoff prediction can be assessed 

for a variety of physical catchment characteristics and hydrological 

inputs. In addition, this study is only conducted for a synthetic catchment 

with uniform catchment characteristics and hydrological inputs. 

Consequently, the results obtained from this research cannot be validated 

using field data.  

 

2. Development of the predictive nonlinear regression relationships for 

determining whether use of a particular filter is appropriate and for 

determining optimal RDF parameter values for a synthetic catchment case 

study provides a first step towards maximising RDF performance and 

increasing confidence in the accuracy of the baseflow obtained using 

RDFs. However, firstly, the impacts of spatial variability in catchment 

characteristics (e.g. heterogeneous soil type, slopes and vegetations, 

convergent and divergent catchment shapes) and hydrological inputs (e.g. 

spatially different rainfall and evapotranspiration (ET)) on the 

performance of the regression relationships developed in this research are 

not considered. In addition, these regression equations require data on a 

number of catchment characteristics and rainfall and evapotranspiration 

(ET), some of which are spatially heterogeneous and difficult to obtain in 

practice. Furthermore, due to the lengthy model run-times that result from 

solving the highly nonlinear differential equations describing flow, only 

70 samples are generated for developing these regression equations. 

Lastly, only three RDFs are considered, and it would be useful to develop 
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such relationships for other RDFs. All of these limitations need to be 

addressed in future work. 

 

3. Similar to the limitations stated above, most of the calibration methods 

adopted for assessing the internal dynamic performance of AWBM are 

based on the regression equations, which require information of 

catchment characteristics and hydrological inputs. This makes them 

difficult to apply in practice if the required information is not available. In 

addition, it is worth pursuing other calibration methods that aim to take 

the internal model dynamics into account explicitly, e.g. different data 

transformation, or different objective functions to ensure known features 

of the total streamflow hydrograph are captured. Furthermore, no 

validation procedure has been performed for AWBM after being 

calibrated using different methods. Lastly, only AWBM is considered, 

and it would be useful to assess and validate other CRR models using the 

approach presented in this thesis.   

5.4 Recommendations for future work 

 

A number of the limitations of the current research presented in the previous 

section also represent opportunities for future research, including: 

 

1. There is no doubt that the consideration of actual catchment conditions, 

rather than just a hypothetical catchment for numerical experimentation 

using fully integrated SW/GW models, will enable the results obtained to 

be validated using field data. Fully integrated SW/GW models have been 

used for real catchments with different applications (Pérez et al., 2011; 

Partington et al., 2012; Thompson et al., 2004). Future work should 

consider using data generated from case studies developed for real 

catchments for validating the results obtained from this research.  

 

2. The catchment characteristics and hydrological inputs used for all of the 

simulations carried out in this research are spatially and temporally 

uniform. Further studies should aim to investigate the impacts of 
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variations in geology, topography and vegetation on the current results. 

This can be done by incrementally by adding layers of complexity to 

similar models. 

 

3. The determination of relationships between optimal values of hydrologic 

model parameters and catchment characteristics and hydrological inputs 

rely on a large number of samples. 70 samples based on a synthetic 

catchment with different catchment characteristics and hydrological 

inputs have been generated and used in this thesis. Such work should 

continue to obtain a larger number of samples with different catchment 

characteristics and hydrological inputs, which can help with the 

development of more flexible predictive models, such as artificial neural 

networks (ANN) or genetic programming, rather than the regression 

relationships developed here.  

 

4. Future work is required to consider additional RDFs and CRR models. In 

addition, deeper investigations should be conducted for these simplified 

models, e.g. whether the performance of simplified models can be 

improved by modifying their structures. 
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