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Summary The maxillary lateral incisor is a variable tooth morphologically. This tooth fre-
quently shows reduction in size, and also various alterations in shape, for example, peg-shaped,
cone-shaped, barrel-shaped and canine-shaped. The lateral incisor variant can be analyzed by
family studies and using twin models, and these approaches have shown that genetic, epige-
netic and environmental factors can all contribute to variation in the trait. Discordance of the
phenotype in monozygotic twin pairs could be explained by the following two hypotheses: (1)
the embryological environment of monochorionic twin pairs who share the same placenta and
chorionic membrane during the prenatal period may differ, (2) phenotypic variation may be
caused by epigenetic influences. Possible developmental factors are discussed in this review.
Recent studies suggest that Msx1, Pax9 and Axin2 genes predispose to lateral incisor agenesis.
Tooth reduction and agenesis seem to represent inter-related complex multifactorial traits,

influenced by a combination of gene expression and function, environmental interaction and
developing timing. Thus, accumulation of large data banks of morphological data is needed to
support and clarify ongoing molecular genetic studies of dental development.

© 2014 Japanese Association for Dental Science. Published by Elsevier Ltd.
Open access under CC BY-NC-ND license.
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pairs was only 50—60%. Since the concordance rate within MZ
1. Introduction

The maxillary lateral incisor is a variable tooth morphologi-
cally. This tooth frequently shows reduction in size [1,2], but
it can occasionally be as large as the central incisor [3,4]. It
also frequently shows different crown shapes, for example,
peg-shaped, cone-shaped, barrel-shaped and canine-shaped
[1,2]. Interruption grooves and deep lingual pits are also
found more frequently on the lateral incisor than the central
[1,2]. Reduced size or shape of the maxillary lateral incisor
reflects the interaction of genetic, epigenetic and environ-
mental factors [5—9]. In this paper we describe some genetic
studies of reduced crown form in maxillary lateral incisors,
and discuss some developmental aspects.

2. Frequencies of occurrence of crown
reduction in the maxillary lateral incisor

Reduced crown form in maxillary lateral incisors has been
reported to occur in from 0 to 10 percent of individuals in
various populations but the anthropological interrelation-
ships of the different lateral incisor variants remain obscure
[10]. It has been thought that lateral incisor variants are
intermediate in form between normal and congenitally miss-
ing teeth [11]. The third molar is most frequently absent
in the permanent teeth, followed by the mandibular sec-
ond premolar [12]. In a Japanese population, agenesis of
the maxillary lateral incisor was ranked third, but its fre-
quency of absence (1.32—1.33%) was about half that of the
mandibular second premolar (2.84—3.26%) [13]. This result
is consistent with meta-analyses of the prevalence of den-
tal agenesis for many human populations from all over the
world [14,15]. Thus, the maxillary lateral incisor shows a
relatively common tendency to reduction in crown size, but
its frequency of congenital absence is low. In contrast, the
mandibular incisors are found to be congenitally absent rel-
atively frequently, but reduced form of these teeth is rarely
seen [2]. These facts suggest that crown reduction and con-
genital absence of a tooth do not necessarily appear at the
same pace.

3. Genetic analysis of maxillary lateral incisor
variants
The influence of genetic factors on missing maxillary lat-
eral incisors has been analyzed by family studies that have
shown a genetic influence on this trait, but have not been

t
c
t

ble to discover any evidence of a single gene being involved
16,17]. The expression of this trait is best explained by a
olygenic, multifactorial model, and non-syndromic simple
ypodontia and tooth size can be considered as representa-
ive dental quantitative traits [8,18]. It is considered that
ther maxillary lateral incisor variants are also likely to be
est explained by a polygenic model.

Kondo et al. [7] have reported the findings of a genetic
nalysis that focused on maxillary lateral incisor variants in
sample of Japanese twins (Figs. 1 and 2). The classical

win model, where similarities in monozygotic twin pairs
re compared with similarities in dizygotic twin pairs, is
ery useful to clarify the contribution of genetic and envi-
onmental influences to variation in the size and shape of
eeth. Monozygotic (MZ) twin pairs are assumed to share all
he same genes whereas dizygotic (DZ) twin pairs only share
0% of their genes on average, similar to other sibling pairs.
arious twin research study designs, including comparisons
f the similarities within MZ and DZ twin pairs, have enabled
esearchers to further quantify the relative contributions of
enetic, epigenetic and environmental factors to variation
n maxillary lateral incisors [6].

Among 1005 twin pairs, a reduced form of the maxillary
ateral incisor was seen in 121 twin pairs [7]. In this study,
reduction was defined as being present if it was seen in at

east one side of either member of a twin pair. The reduction
as divided into size and shape elements, so that these fea-

ures could be assessed separately. Size was classified into
hree types by calculating the ratio of the crown sizes of the
ateral incisor compared with the central incisor as follows:
ormal (>80%), small (70.0—79.9%) and diminutive (<70%).
hape was classified as normal, canine-shaped, peg-shaped
nd cone-shaped. Anything other than normal shape was
onsidered to represent an example of the reduced trait.
oncordance rates of the reduced form between right and

eft sides, and between co-twins of a pair were calculated.
The concordance rates between right and left sides

anged from 52.5% to 71.9%, and were not significantly
ifferent between MZ and DZ twin pairs (Table 1). The con-
ordance rate between twin pairs was significantly larger
ithin MZ twin pairs than within DZ twin pairs (Table 2),

uggesting a genetic basis to variation but environmental
nd/or epigenetic factors were considered to also be impor-
ant because the percentage concordance within MZ twin
win pairs was larger for the size element than for the shape
omponent, it is possible that hereditary factors influence
ooth size more strongly than shape, but more sophisticated
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Figure 1 Two cases of maxillary lateral incisor variation in male MZ twin pairs. (1) All four lateral incisors from right and left
sides of two members of a twin pair were reduced in size and were peg-shaped (arrows). Apparently, the dental morphology was
more affected by genetic factors than by environmental factors. (2) Only one of four teeth was reduced in size and was peg-shaped
(arrow). In this case, apparently the dental morphology was more affected by environmental factors and/or epigenetic factors than
by genetic factors.

Figure 2 An example of maxillary lateral incisor reduction
in a pair of male MZ twins and their father (labial view) In
the father (F), the lateral incisors on both right and left sides
were reduced in size and conical-shaped (arrow). In twin A, only
the left side (arrow) was reduced. In twin B, both sides were
normal in size and shape. The lateral incisor variants in this
case are apparently influenced by heredity factors but also by
environmental and/or epigenetic factors.

Table 1 Concordance rates of lateral incisor reduction
between right and left sides.

MZ DZ

Size Shape Size Shape

Sample number
Concordant (++) 41 31 13 8

(−−) 31 29 10 17
Discordant (+−) 16 28 9 7
Total 88 88 32 32

Concordance ratesa 71.9% 52.5% 59.1% 53.3%

Reproduced from Kondo et al. [7].
(+) Indicates reduced form, and (−) indicates normal.

a Concordance rate indicates (++)/{(++) + (+−)}× 100.

Table 2 Concordance rates of lateral incisor reduction
between members of a twin pair.

Size Shape

MZ DZ MZ DZ

Side numbersa

Concordant (++) 73 18 59 9
(−−) 56 12 59 26

Discordant (+−) 37 33 48 28
Total 166 63 166 63

Concordance rateb 66.4%** 35.3% 55.1%** 24.3%

Reproduced from Kondo et al. [7].
(+) Indicates reduced form, and (−) indicates normal.

a The side number shows in the table as a sample number, not
an individual number.

b Concordance rate indicates (++)/{(++) + (+−)}× 100.
** P < 0.01 (Chi-square test between MZ and DZ).
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Table 3 Reduced tooth number on right and left sides in
both members of twin pairs.

Size Shape

MZ DZ MZ DZ

Pair number
0a 20 2 16 9
1—3 28 22 43 19
4 29 7 18 3
Total 77 31 77 31

Percentage of 4 teeth (exclude 0 tooth)50.9%*24.1%29.5%13.6%

Reproduced from Kondo et al. [7].
a This table shows the number of reduced lateral incisors, when

there was evidence on at least one side and in at least one co-
twin, for either size reduction or shape reduction, or the reverse
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* P < 0.05 (Chi-square test between size and shape).

genetic modelling approaches would be needed to explore
these relationships further. Since considerable phenotypic
variation is found in the reduced lateral incisor, tooth shapes
within MZ co-twins can be very similar or quite different, as
Saheki [19] noted. Table 3 shows the frequency of reduced
maxillary lateral incisors when considering all four teeth in
both members of a twin pair. All four teeth showed the
reduced type more frequently in MZ twin pairs than in DZ
twin pairs (P < 0.05).

4. Discordance of phenotypic expression in
MZ co-twins

Discordance of reduced tooth form in the maxillary lateral
incisor between co-twins of MZ pairs has been discussed
from genetic, epigenetic and environmental perspectives.
In this paper we consider two hypotheses: (1) environmen-
tal factors influencing tooth formation, and (2) phenotypic
variation caused by epigenetic influences.

4.1. Is the embryonic environment identical for
both members of an MZ twin pair?

Townsend et al. [20] have discussed discordance between
MZ co-twins due to differences in their embryonic envi-
ronment. Monochorionic twins are MZ twins who share the
same placenta and chorionic membrane during prenatal
development. Although the twins have a common placenta,
their blood supply is usually well-balanced [21]. However,
in 5—15% of monochorionic pregnancies, twin transfusion
syndrome associated with anterio-venous anastomoses, can
lead to one member of a twin pair receiving better nourish-
ment than the other. Differences in blood flow to developing
tooth germs at critical stages of their formation, resulting
in nutritional discrepancies, could presumably also influ-
ence the resultant dental phenotypes. This could lead to

one member having well-developed lateral incisors, but the
other having less-developed lateral incisors. For example,
uptake of glucose into dental epithelial and mesenchymal
cells, mediated by glucose transporters, has been shown
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o play an important role in early dental development and
ubsequent determination of tooth size in mice [22].

.2. Epigenetic influences may explain
iscordance between MZ co-twins

ownsend et al. [23] noted that there was evidence of one
issing maxillary lateral incisor or mandibular second pre-
olar in 24 of the 278 MZ twin pairs who they examined, with

1 of these pairs showing discordant expression (87.5%). By
ocusing on the differences between MZ co-twins rather than
heir similarities, they postulated that epigenetic events
uring odontogenesis might account for the distinct differ-
nces between members of MZ twin pairs. Epigenetics refers
o heritable changes in gene activity that are not caused
y changes in the DNA sequence [24,25]. Variation due to
enetic influences is classically based on changes to the DNA
equence (the genotype), but alterations in gene expression
r alterations in the nature of cellular interactions at a local
issue level, both of which can be referred to as epigenetic
actors, have other causes.

The science of epigenetics includes the many regulatory
ystems of the body involving DNA methylation and histone
odification. Although twins are epigenetically indistin-

uishable during the early years of life, older MZ twins can
xhibit quite remarkable differences in their overall con-
ent and genomic distribution of 5-methylcytosine DNA and
istone acetylation, affecting their gene-expression portrait
26,27]. This fact indicates that tooth formation of the later-
eveloped maxillary lateral incisor may be more likely to be
ffected by epigenetic influences than the early developing
eeth.

. Developmental factors for the maxillary
ateral incisor variant and agenesis

utler [28] was a pioneer in describing the concept of
orphogenetic fields to account for the gradients in size

nd shape of teeth evident in the dentitions of different
pecies (reviewed by Townsend et al. [29]). Dahlberg [30,31]
dapted Butler’s concepts to the human dentition and pro-
osed that there was a field of influence operating on each
f the tooth classes. The key tooth in each tooth class
s considered to be the most stable tooth compared with
he other more variable teeth. Butler’s field concept has
een re-interpreted in the light of recent molecular findings
32—34]. An odontogenetic homeobox code model of tooth
atterning has been developed from studies in mice propos-
ng that certain genes play specific roles in morphogenesis
or each incisor and molar pathway. However, the mouse
entition is highly specialized with a long toothless diastema
egion instead of canine and premolar teeth, so some care
s needed when translating findings to humans. Yamanaka
t al. [35] used an insectivora (house shrew, Suncus mur-
nus) as a model for mammalian heterodonty because it
isplays all tooth classes, and they showed that Sonic hedge-
og expression localized to the presumptive tooth-forming

egions for each tooth class.

Sofaer et al. [36] discussed tooth reduction over the
ourse of human evolution. Reduction in size of the jaws
uring hominid evolution has been accompanied by a general
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eduction in tooth size, and the reduction process appears
o be more rapid in the most posterior teeth of each jaw.
n each tooth class, the most posterior member starts to
evelop after the most anterior member, with exception of
he mandibular incisors. Therefore, the most posterior tooth
f each class reflects the effects of variation in the amount
f available space.

Brook and colleagues [8,37] have suggested that the
ifferent prevalence of anomalies in different regions of
he dentition could be associated with developmental tim-
ng, later-developing teeth displaying more variability than
arly-developing teeth in the same class. The maxillary lat-
ral incisor is the most posterior and latest developed tooth
n the incisor region, and its greater variability is likely to be
ue to a greater environmental influence on variation [38].

The maxillary lateral incisor forms in the location of the
oundary between the premaxillary (primary palate) and
axillary processes [39], and this local factor may relate

o the greater variability of the lateral incisor in both size
nd shape [20]. Interestingly, however, Mizoguchi [40] noted
hat the deciduous lateral incisor was as stable as the cen-
ral incisor in size. He speculated that the deciduous incisors
ad some important function which was not shared by the
ermanent incisors but was required during the infant period
hen only the deciduous incisors were present. Although the
umber of congenitally missing teeth tends to be substan-
ially greater in the permanent dentition than in the primary
entition, the most frequently missing teeth in the primary
entition are the incisors, while the premolars of the perma-
ent dentition are most commonly absent, if one excludes
he third molar teeth [41].

.1. Compensatory interactions between teeth

he early-developed tooth tends to behave as an environ-
ental factor for the adjacent later-developing tooth [42].
rüneberg [43] stated that if the first molar of the mouse,
hich was the largest and the earliest developed in the
olar row, was reduced, then the second and third molars

ended to grow larger than in a normal mouse. Sofaer et al.
44] showed that when a lateral incisor was missing on
ne side, the central incisor adjacent to the missing tooth
ended to be larger than the central incisor on the other
ide. These researchers also proposed that agenesis of a
ooth might lead to an increased growth potential of neigh-
ouring teeth, reflecting a compensatory effect in growth
f adjacent developing tooth germs.

Hanihara [3] analyzed the relationship in the mesiodistal
rown diameters between the maxillary lateral incisor and
he other permanent teeth, and showed the size of lateral
ncisor was highly correlated with the size of the other teeth,
.e. when the lateral incisor is reduced, remaining teeth also
end to be reduced. Garn et al. [45,46] showed that agenesis
f the third molar tooth was not an isolated anomaly, but
ather a polymorphism related to the frequency of other
issing teeth.
Mizoguchi [47] tested the compensatory interaction
ypothesis by using path analysis in a Japanese population
nd he concluded that there was no, or little, compensatory
rowth of the later-developing teeth in the tooth row from
entral incisor to second molar in each jaw, but only the
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hird molar grew to compensate for a whole dentition of
ertain length. Yamada et al. [48] demonstrated that tooth
ize of the remaining teeth was greater in a sample with
hird molar agenesis than in a group where all four third
olars were present, with the exception of the maxillary

ateral incisor. Their results could be explained to some
xtent by compensatory interactions within molar tooth row,
ut it is interesting that the maxillary lateral incisor was
educed in individuals with third molar agenesis. Thus, the
axillary lateral incisor and the third molar are reduced

ynchronously. There is a tendency for the size of remain-
ng teeth to be more reduced as the number of missing teeth
ncreases, but tooth size in individuals with one or two teeth
issing is generally larger than in individuals with all 32
ermanent teeth [49]. These findings indicate that the rela-
ionship between agenesis and the sizes of remaining teeth
s likely to be complex.

Kondo and Hanamura [4] analyzed the mesiodistal crown
iameters of the maxillary incisors and first molars in
01 Japanese individuals, and examined the existence of
ompensatory tooth size interaction between the early-
eveloped central incisor and the later-developed lateral
ncisor. The central incisor and first molar in the group that
ad reduced lateral incisors were not smaller than those in
he other groups who had normal or large lateral incisors.
hus, the reduced lateral incisor did not always lead to the
eduction of the other teeth. The central incisor was larger
n the group who had reduced lateral incisors than in the
roup who had normal-sized lateral incisors. This result indi-
ates that the size of the lateral incisor was likely to reflect
compensatory response related to a large central incisor.
Fluctuating asymmetry in size of the lateral incisor was

reater in the reduced lateral incisor group than in the
ormal lateral incisor group. Compensatory growth of the
ateral incisors was noted in those groups where the lat-
ral incisors showed strong asymmetry in their size and also
n the group who displayed reduced lateral incisors. It was
uggested by the authors that the compensatory growth was
elated to right and left side asymmetry in the lateral incisor.
orrelations among teeth in the same tooth class, and cor-
elations between right and left sides of the same tooth,
ere relatively high but the correlations among other tooth
lasses were low. It was thought that the reduction and
ompensatory growth of the lateral incisor were limited
ithin the same tooth class, but rarely influenced the whole

ooth row. In conclusion, it is proposed that reduced maxil-
ary lateral incisors grow to compensate for the size of the
djacent central incisor in some cases, but their reduction
lso reflects reduction of the whole dentition in other cases
Fig. 3, Table 4).

.2. Inhibitory cascade model

avanagh et al. [50] constructed an inhibitory cascade
odel by uncovering the activator-inhibitor logic of sequen-

ial tooth development. Their hypothesis was based on
xperiments of tooth development in the laboratory mouse

nd supports the important role of epigenetic influences dur-
ng odontogenesis. Mouse molars develop sequentially and
he dental lamina, extending posteriorly from the devel-
ping first molar, gives rise to the second molar. When the
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Figure 3 Two cases of twin pairs displaying compensatory growth in maxillary incisors. In both cases, the lateral incisors of twin
B are reduced in size. Mesiodistal crown diameters are shown in Table 4. (a) Male MZ twin pairs: Twin B has larger central incisors
than twin A, and the lateral incisors are reduced in size, but the first molars are almost the same size. In twin B, there is evidence
of compensatory interaction between the central and lateral incisors. (b) Female DZ twin pairs. Twin B has smaller central and

on is

a
m

lateral incisors, and first molars than twin A. The whole dentiti
Reproduced from Kondo and Hanamura [4].

second molar was cultured apart from dental lamina of the
first molar, the second molar developed faster and grew

larger than in the intact situation. These authors proposed
that the mesial molars inhibit development of the distal
molars. This model explains the relative size of mandibular
molars by a balance of inhibitor and activator substances,

a

m
t

Table 4 Tooth dimensions of two cases of twin pairs in Fig. 3 (mm

Right side

M1 I2

a
A 10.55 6.90
B 10.65 5.80
Difference between A and B (A − B) −0.10 1.10

b
A 10.95 7.45
B 10.35 5.25
Difference between A and B (A − B) 0.60 2.20

Reproduced from Kondo and Hanamura [4].
reduced in twin B.

nd predicts evolutionary patterns in the dentition. The
odel has been tested from both paleontological [51,52]
nd comparative anatomical [53] perspectives.
In a study of delayed erupted maxillary first molars, Ras-

ussen used the term ‘‘9-year-molar’’ [54]. The eruption
imes of the teeth reported were between that of the first

).

Left side

I1 I1 I2 M1

9.25 9.10 7.25 10.50
10.10 9.75 6.10 10.55
−0.85 −0.65 1.15 −0.05

8.90 9.05 7.55 11.10
8.25 8.30 5.80 10.25
0.65 0.75 1.75 0.85
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nd second molars, and the morphological configurations
ere found to be closest to that of the second molar. This led

o the question ‘‘Are the aberrant teeth really first molars?’’
amada [55] reported similar cases, and thought that the
berrant teeth were early-developed second molars. The
nhibitory cascade model is useful in interpreting these
ases, as a congenitally missing first molar would lead to
ltered development of the second molar.

The inhibitory cascade model could also be applied to the
ncisor region, e.g. when the early-developed central incisor
s large, development of the later-developed lateral incisor
ay be inhibited, so that the lateral incisor will tend to be

educed in size.

. Molecular genetics of tooth agenesis

on-syndromic tooth agenesis includes different pheno-
ypes: hypodontia is the term used for congenital absence of
ne to six teeth excluding third molars; oligodontia refers to
he absence of more than six teeth excluding third molars;
nd all teeth are missing in anodontia [56,57]. The molecu-
ar basis of agenesis is not completely understood, despite
dentification of several mutations in Msx1 and Pax9 genes
hat seem to be crucial for tooth agenesis, and mutation
n the Axin2 gene that causes oligodontia together with a
redisposition to colo-rectal cancer (reviewed by Matalova
t al. [56] and Shimizu and Maeda [57]).

Msx1 and Pax9 are transcription factors necessary for
ormal tooth development. Msx1 is a member of the
uscle segment homeobox family, members of which are

epetitively expressed during organogenesis. Pax9 plays an
mportant role as a regulator of cellular pluripotency and dif-
erentiation during embryonic patterning and organogenesis
nd also in post-natal life. The protein product of the Axin2
ene is a negative regulator of the Wnt-signalling pathway.
he Wnt-signalling pathways are signal transduction path-
ays made of proteins that pass signals from outside a cell

hrough cell surface receptors to the inside of the cell.
A case—control study with the largest number of genes

nd single-nucleotide polymorphisms assessed in the same
opulation was performed recently to identify the causes
f maxillary lateral incisor agenesis [58]. No significant
llelic genotypic or haplotypic associations were found
egarding Axin2, TGFA, and Msx1 genes, but two strong sig-
ificant interactions between TGFA-Axin2 and Msx1-TGFA
ere revealed. Pax9, EDA, Spry2, Spry4 and Wnt10A were
oted as risk factors for maxillary lateral incisor agene-
is. These results suggest that genes involving hypodontia
nd/or oligodontia are also involved in maxillary lateral
ncisor agenesis.

Advances in molecular genetic analysis may identify can-
idate genes that participate not only in maxillary lateral
ncisor agenesis but also in its reduction. In recent years, the
rogress of gene studies has been remarkable, but under-
tanding of the morphological expression of traits is also
mportant. Tooth reduction and agenesis appear to repre-
ent a complex multifactorial phenotype, influenced by a

ombination of gene function, epigenetic influences, envi-
onmental interaction and developing timing [59]. While
his paper has focused on anthropological evidence to sup-
ort the influence of genetic, epigenetic and environmental

[
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actors on the development of maxillary lateral incisors, it
s clear that studies based on both molecular biology as well
s anthropology are needed to provide further insights into
he interactions between these factors during odontogene-
is [60]. For example, accumulation of large databases of
uman dental morphological data is needed to support the
olecular genetic studies that are being carried out using

xperimental animals.
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