### Cardiac Flow Analysis Using Magnetic Resonance Imaging

by

### Kelvin K. L. Wong

B.Eng (Hons), Nanyang Technological University, 2001 Master Appl. I.T., The University of Sydney, 2003

Thesis submitted for the degree of

### **Doctor of Philosophy**

in

School of Electrical and Electronic Engineering, Faculty of Engineering, Computer and Mathematical Sciences The University of Adelaide

August, 2009



© 2009 Kelvin K. L. Wong All Rights Reserved



| Conten  | ts      |                                                    | i    | ii |
|---------|---------|----------------------------------------------------|------|----|
| Abstrac | ct      |                                                    | x    | i  |
| Statem  | ent of  | Originality                                        | xi   | ii |
| Acknow  | vledgme | ents                                               | X    | v  |
| Conven  | tions   |                                                    | xi   | X  |
| Awards  |         |                                                    | xx   | i  |
| Publica | tions   |                                                    | xxi  | ii |
| List of | Symbo   | ls                                                 | xx   | v  |
| Abbrevi | iations |                                                    | xxi  | X  |
| List of | Figures | ;                                                  | xxx  | i  |
| List of | Tables  |                                                    | xxxv | ii |
| Chapte  | r 1. In | troduction                                         | :    | 1  |
| 1.1     | Motiv   | ation for Flow Imaging in Cardiac Assessment       | •    | 2  |
| 1.2     | Review  | w of Current Technologies                          | •    | 5  |
|         | 1.2.1   | Velocity-Encoded Magnetic Resonance Imaging        |      | 5  |
|         | 1.2.2   | Colour Doppler Sonography                          | •    | 7  |
|         | 1.2.3   | Other Cardiovascular Flow Measurement Techniques   | . 8  | 8  |
| 1.3     | Cardia  | ac Flow Visualisation Based on Computer Simulation | . 8  | 8  |
| 1.4     | Applie  | cations and Motivation of This Study               | . 1  | 1  |
|         | 1.4.1   | Assessment of Myocardial Abnormalities             | . 1  | 1  |
|         | 1.4.2   | Assessment of Bio-Prosthetic Heart Valve Implants  | . 1  | 1  |

|        | 1.4.3   | Examination of Cardiac Functionalities                   | 12 |
|--------|---------|----------------------------------------------------------|----|
|        | 1.4.4   | Assessment of Cardiac Behaviour during Heart Exercise    | 12 |
| 1.5    | Outlir  | ne of Approach                                           | 13 |
| 1.6    | Overv   | iew of Research Strategy and Implementation              | 16 |
| 1.7    | Staten  | nent of Original Contributions                           | 19 |
|        | 1.7.1   | Original Contributions to Medical Imaging                | 19 |
|        | 1.7.2   | Contribution to Medical Science and Knowledge            | 20 |
| Chapte | r 2. TI | neory of Magnetic Resonance Imaging                      | 23 |
| 2.1    | Introd  | uction                                                   | 24 |
| 2.2    | Theor   | y of Nuclear Magnetic Resonance Imaging                  | 24 |
|        | 2.2.1   | Quantum Mechanics of Magnetic Resonance                  | 24 |
|        | 2.2.2   | Magnetic Resonance Imaging Protocols                     | 28 |
| 2.3    | Async   | chronous Precession of Proton in Turbulent Flow          | 30 |
| 2.4    | Appli   | cation of MRI onto Cardiac Diagnosis                     | 31 |
| 2.5    | Phase   | Contrast MRI Velocimetry                                 | 35 |
|        | 2.5.1   | Theory of Phase Contrast MRI                             | 36 |
|        | 2.5.2   | Phase Contrast MR Imaging of Cardiac Chambers            | 36 |
| 2.6    | Chapt   | er Summary                                               | 38 |
| Chapte | r 3. Im | plementation of Magnetic Resonance Fluid Motion Tracking | 41 |
| 3.1    | Introd  | uction                                                   | 42 |
| 3.2    | Overv   | iew of Optical Flow                                      | 42 |
| 3.3    | Lucas   | Kanade Optical Flow                                      | 44 |
| 3.4    | Multi-  | Resolution Motion Estimation                             | 46 |
|        | 3.4.1   | Definition of Problem                                    | 46 |
|        | 3.4.2   | Feature Tracking Using Pyramidal Optical Flow            | 47 |
| 3.5    | Pyran   | nidal Lucas Kanade Optical Flow                          | 49 |
|        | 3.5.1   | Initial Definition                                       | 49 |
|        | 3.5.2   | Pyramidal Representation of Images                       | 49 |
|        | 3.5.3   | Pyramidal Feature Tracking                               | 51 |

|         | 3.5.4   | Iterative Lucas Kanade Optical Flow                        | 52 |
|---------|---------|------------------------------------------------------------|----|
| 3.6     | Filtrat | ion of Flow Vector Outliers                                | 55 |
| 3.7     | MR Fl   | uid Motion Estimation Framework                            | 56 |
|         | 3.7.1   | Flow Estimation Using Magnetic Resonance Images            | 56 |
|         | 3.7.2   | Non-Stationary Patterns of Varying Intensity in Cine-MRI   | 57 |
|         | 3.7.3   | Motion Estimation of MR-Signals                            | 57 |
|         | 3.7.4   | Effect of Scan Resolution and Image Quality                | 58 |
|         | 3.7.5   | MR Fluid Velocity Field                                    | 59 |
| 3.8     | MR Fl   | uid Motion Tracking System Implementation                  | 61 |
| 3.9     | Discus  | ssion                                                      | 63 |
| 3.10    | Chapt   | er Summary                                                 | 64 |
| Chapter | r 4. Co | omputational Validation of Fluid Motion Tracking           | 65 |
| 4.1     | Introd  | uction                                                     | 66 |
| 4.2     | Data (  | Generation                                                 | 66 |
|         | 4.2.1   | Analytical Formulation of Vortex                           | 66 |
|         | 4.2.2   | Generating Vortex Tracks for Artificial Data               | 67 |
|         | 4.2.3   | Variation of Vortical Track Interval Size                  | 69 |
|         | 4.2.4   | Configuration of Tracking Features                         | 69 |
|         | 4.2.5   | Variation of Image and Optical Flow Window Size            | 70 |
|         | 4.2.6   | Variation of Noise Addition and Smoothing Filter Mask Size | 70 |
| 4.3     | Comp    | utational and Analytical Data Differencing                 | 71 |
|         | 4.3.1   | Fluid Motion Estimation Flow Predictions                   | 71 |
|         | 4.3.2   | Magnitude of Velocity Vectors in Radial Direction          | 71 |
|         | 4.3.3   | Magnitude of Velocity Vectors in Image Representation      | 72 |
|         | 4.3.4   | Direction of Velocity Vectors in Image Representation      | 72 |
| 4.4     | Comp    | utational Versus Analytical Results                        | 73 |
|         | 4.4.1   | Velocity in Image Representation                           | 73 |
|         | 4.4.2   | Velocity in Radial Direction                               | 75 |
| 4.5     | Limita  | ations of Study                                            | 84 |
| 4.6     | Chapt   | er Summary                                                 | 85 |

| Chapter | r <b>5. Vi</b> s | sualisation Methods for Cardiac Flow                    | 87  |
|---------|------------------|---------------------------------------------------------|-----|
| 5.1     | Introd           | uction                                                  | 88  |
| 5.2     | Segme            | ntation of Intra-Cardiac Flow Region                    | 89  |
|         | 5.2.1            | Introduction to Active Contour Technique                | 89  |
|         | 5.2.2            | Energy Minimisation of Parametric Snake                 | 89  |
|         | 5.2.3            | Implementation of Parametric Snake Model                | 90  |
|         | 5.2.4            | Segmentation of Cardiac Chamber Using Active Contouring | 91  |
| 5.3     | Two-D            | Vimensional Flow Image Reconstruction                   | 93  |
| 5.4     | Three-           | Dimensional Flow Image Reconstruction                   | 96  |
|         | 5.4.1            | Cartesian Grid for Image and Flow Display               | 96  |
|         | 5.4.2            | Computation of Flow Grid                                | 99  |
| 5.5     | System           | Limitations                                             | 102 |
| 5.6     | Chapte           | er Summary                                              | 103 |
| Chapter | r <b>6. Sy</b> : | stem Design for Visualisation of Vorticity              | 105 |
| 6.1     | Introd           | uction                                                  | 106 |
| 6.2     | Metho            | ds for Visualisation of Vortices                        | 107 |
| 6.3     | Differe          | ential Quantities of Flow                               | 108 |
|         | 6.3.1            | First Order Finite Differentiation                      | 108 |
|         | 6.3.2            | Vorticity                                               | 111 |
|         | 6.3.3            | Shear Strain Rate                                       | 112 |
|         | 6.3.4            | Normal Strain Rate                                      | 113 |
| 6.4     | Statisti         | cs of Differential Flow Map                             | 114 |
| 6.5     | Vortex           | Visualisation Using Theoretical Formulation             | 117 |
|         | 6.5.1            | Formulation of Vortex Flow Field                        | 117 |
|         | 6.5.2            | Variation of Flow Field Resolution                      | 118 |
|         | 6.5.3            | Configuration for Vorticity Measurement                 | 119 |
| 6.6     | Discus           | sion                                                    | 136 |
|         | 6.6.1            | Reliability of Vorticity Measurement                    | 136 |
|         | 6.6.2            | Comparison of Vorticity Measurement                     | 137 |
|         | 6.6.3            | Effect of Grid Resolution on Vorticity Measurement      | 142 |
|         | 6.6.4            | Limitations of Study                                    | 144 |
| 6.7     | Chapte           | er Summary                                              | 145 |

| Chapte | r <b>7.</b> M | ethods of Cardiac Flow Analysis                                   | 147 |
|--------|---------------|-------------------------------------------------------------------|-----|
| 7.1    | Introd        | uction                                                            | 148 |
|        | 7.1.1         | Importance of Cardiac Flow Analysis                               | 148 |
|        | 7.1.2         | Details of Methods and Analysis in General                        | 149 |
| 7.2    | Vortici       | ty Visualisation System Implementation                            | 150 |
|        | 7.2.1         | Visual Tools for Presentation of Flow Fields                      | 151 |
|        | 7.2.2         | System Integration                                                | 151 |
| 7.3    | Experi        | ments                                                             | 154 |
|        | 7.3.1         | Case Study and MRI Scan Procedure                                 | 154 |
|        | 7.3.2         | Flow Grid Representation                                          | 157 |
|        | 7.3.3         | Parameters for Data Analysis                                      | 160 |
| 7.4    | Flow A        | Analysis Based on Phase Contrast MR Imaging                       | 161 |
|        | 7.4.1         | Flow in the Right Atrium                                          | 161 |
|        | 7.4.2         | Circulation of Blood in the Right Atrium and Ventricle            | 164 |
|        | 7.4.3         | Analysis of Vorticity in Left Atrial Flow                         | 165 |
| 7.5    | Introd        | uction to Cardiac Flow Component Analysis                         | 176 |
|        | 7.5.1         | Colour-Based <i>K</i> -Means Clustering Segmentation              | 176 |
|        | 7.5.2         | Segregation of Vortices                                           | 177 |
|        | 7.5.3         | Component Flow Analysis Results                                   | 178 |
|        | 7.5.4         | Statistics of Component Flow                                      | 180 |
|        | 7.5.5         | Mechanics of Flow with Reference to the Cardiac Events $\ldots$ . | 181 |
|        | 7.5.6         | Limitations of Study                                              | 182 |
| 7.6    | Valida        | ting Intra-cardiac Flow Tracking Using Velocity-encoded Imaging   | 190 |
|        | 7.6.1         | Imaging and Flow Visualisation Parameters                         | 190 |
|        | 7.6.2         | Implementation of Vorticity Field Differencing                    | 192 |
|        | 7.6.3         | Experimental Parameters for Flow Comparison                       | 194 |
|        | 7.6.4         | Comparison of Flow-Imaging Results                                | 194 |
|        | 7.6.5         | Discussion of System Performance                                  | 199 |
| 7.7    | Chapt         | er Summary                                                        | 200 |

| Chapter 8. | Study of | Cardiac | Flow in | a Heart with | <b>Atrial Septal Defect</b> | 203 |
|------------|----------|---------|---------|--------------|-----------------------------|-----|
|------------|----------|---------|---------|--------------|-----------------------------|-----|

| 8.1     | Introd  | uction                                                 |  |
|---------|---------|--------------------------------------------------------|--|
| 8.2     | Overvi  | iew of Atrial Septal Defect 204                        |  |
| 8.3     | Currer  | nt Methods in Diagnosing Atrial Septal Defect          |  |
|         | 8.3.1   | Echocardiogram                                         |  |
|         | 8.3.2   | Cardiac Magnetic Resonance Imaging                     |  |
|         | 8.3.3   | Chest Radiography                                      |  |
|         | 8.3.4   | Computed Tomography                                    |  |
| 8.4     | Metho   | dology                                                 |  |
|         | 8.4.1   | Subject for Case Study                                 |  |
|         | 8.4.2   | MRI Scan Procedure                                     |  |
|         | 8.4.3   | Clinical Investigation                                 |  |
|         | 8.4.4   | Parameters for Data Analysis                           |  |
|         | 8.4.5   | Investigation Procedure                                |  |
|         | 8.4.6   | Flow Visualisation System Implementation               |  |
| 8.5     | Result  | s and Discussion                                       |  |
| 8.6     | Flow A  | Analysis                                               |  |
|         | 8.6.1   | Qualitative Flow Analysis                              |  |
|         | 8.6.2   | Quantitative Flow Analysis                             |  |
|         | 8.6.3   | Statistical Comparison of Vorticity Maps               |  |
| 8.7     | Summ    | ary of Cardiac Investigation                           |  |
| 8.8     | Discus  | sion of Investigation                                  |  |
| 8.9     | Chapte  | er Summary                                             |  |
| Chapter | · 9. Co | onclusion 237                                          |  |
| 9.1     | Introd  | uction                                                 |  |
| 9.2     | Thesis  | Summary                                                |  |
| 9.3     | Resear  | rch Novelty                                            |  |
|         | 9.3.1   | Motion Estimation of Degradable Non-Rigid Objects      |  |
|         | 9.3.2   | Measures from Cardiac Flow Field                       |  |
|         | 9.3.3   | Three-Dimensional Grid Reconstruction Using Images 242 |  |
| 9.4     | Genera  | ation of Interest to Scientific Community              |  |
|         |         |                                                        |  |

|          | 9.4.1 Clinical Relevance                                                 | 243 |
|----------|--------------------------------------------------------------------------|-----|
| 9.5      | Future Directions                                                        | 244 |
| 9.6      | Summary of Original Contributions                                        | 246 |
| 9.7      | In Closing                                                               | 248 |
| <b>A</b> | lin A. Saftware lumplamentation of Madflower                             | 251 |
| Append   | IX A. Software implementation of Mednovan                                | 251 |
| A.1      | Imaging and Visualisation Computing Libraries                            | 252 |
|          | A.1.1 OpenGL                                                             | 252 |
|          | A.1.2 OpenCV                                                             | 252 |
| A.2      | DICOM Decoder Library                                                    | 255 |
| A.3      | The Medflovan Software Architecture                                      | 255 |
|          | A.3.1 Package Diagram                                                    | 256 |
|          | A.3.2 Use Case Diagram                                                   | 258 |
|          | A.3.3 Component Class Diagrams                                           | 268 |
| Append   | lix B. Procedures for MRI Preparation and Processing                     | 283 |
| R1       | MRI Fauinment                                                            | 284 |
| B.1      | Imaging and Analysis Procedures                                          | 201 |
| D.2      |                                                                          | 204 |
| Append   | lix C. Flow Visualisation of Blood in Normal Atrium                      | 289 |
| Append   | lix D. Visualisation of Right Atrial Flow (Pre-Atrial Septal Occulsion)  | 309 |
| Append   | lix E. Visualisation of Right Atrial Flow (Post-Atrial Septal Occulsion) | 313 |
|          |                                                                          | 017 |
| Append   | lix F. Supplementary Video Clips                                         | 317 |
| Append   | lix G. Particle Image Velocimetry Based on Fluid Motion Estimation       | 323 |
| G.1      | Fluid Motion Estimation Using Particle Images                            | 324 |
|          | G.1.1 Particle Image Velocimetry                                         | 324 |
|          | G.1.2 Cross-Correlation Versus Pyramidal Optical Flow                    | 324 |
| G.2      | Results Generated by Particle Image Velocimetry                          | 326 |
| G.3      | Results Generated by Optical Flow                                        | 327 |
|          | - 1                                                                      |     |

| Bibliography         | 331 |
|----------------------|-----|
| Index                | 355 |
| Résumé               | 359 |
| Scientific Genealogy | 361 |

## Abstract

Many types of cardiac abnormality have an implication on blood flow. However, most present-day diagnostic modalities analyse myocardial structures and not the cardiac flow within to detect heart defects *in vivo*. Currently, various imaging modalities, such as echocardiography, single photon emission computed tomography (SPECT), positron emission tomography (PET), X-ray computed tomography (CT), and cardiac magnetic resonance imaging (CMRI) provide a non-invasive approach for scanning humans with heart abnormalities, and are utilised in the management of cardiac patients. There is a need to develop a visualisation system for analysing flow of blood within the human heart. Motional properties of blood can be measured against normal controls and patients with cardiac abnormalities in order to discover underlying cause of these flow phenomena. This can potentially extend medical knowledge of the defects and their hemodynamic behaviour.

We characterise motion patterns of blood in the human heart and analyse the flow properties, by means of tracking, using a series of time dependent magnetic resonance images. An indication of flow vortices can be provided by numerical computation of vorticity values within the defined region of blood flow. The global estimation of parametric motion flow fields over the whole image provides useful information on the presence of vortices within the heart chamber that can be used to assess cardiac functions. In this study, the crucial strategies for this approach are implemented, and the achievable diagnostic results and quality of assessment are investigated. The developmental stages of the framework and system design of each component for cardiac diagnosis are detailed in this thesis. The key objectives of the research and development for this diagnostic system are implemented herein:

- Realisation of a non-invasive technique to compute flow features within cardiac structures. System evaluation and velocity calibration of the flow tracker are incorporated in the study. Verification of calculated flow in time-resolved cardiac vessels is performed by error analysis using flow fields constructed by velocityencoded magnetic resonance imaging velocimetry.
- 2. Measurement of cardiac vorticities in heart chambers is performed for investigation of flow phenomena. We examine the time-dependent behaviour of cardiac

flow structures in the heart. The variation of flow patterns that are associated with myocardial wall deformations and pressure changes is analysed.

3. Realisation of a statistical framework for examining variations of flow due to myocardial defects in the heart. The quantification of flow will offer the potential to complement diagnostic methods that analyse cardiac defects and evaluate patient condition after surgical intervention.

As an alternative to established medical imaging-based diagnostic techniques such as chest X-rays, and pulsed or continuous wave Doppler ultrasound scans for cardiac diagnosis, we develop a magnetic resonance imaging based approach and perform flow quantification to analyse the heart, *vis-à-vis* blood movement in chambers based on a measured flow field. This framework offers potential for non-invasive flow visualisation in cardiac structures. We validate this methodology specifically for analysing flow characteristics within a human heart case study. We also demonstrate the potential for non-invasive assessment of cardiac abnormality for a pathological case of the heart.

# **Statement of Originality**

This work contains no material that has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of the thesis, when deposited in the University Library, being available for loan, photocopying, and dissemination through the library digital thesis collection, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Thesis Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed

Date

## Acknowledgments

My supervisors during the course of the PhD study are Professors Jagannath Mazumdar, Derek Abbott, Richard Malcolm Kelso, Stephen Grant Worthley, and Prasthanthan Sanders. Apart from them, a great number of people have collaborated to make this thesis possible. Their support, encouragement, and exchange of ideas have been mind enriching and paved the way for a fruitful research during my study at the University of Adelaide.

### **Supervision and Mentorship**

I would like to convey my warmest appreciation to **Prof Jagannath Mazumdar** for encouraging me to broaden my range of knowledge in medical imaging, biomechanics, and flow visualisation. His advice has motivated me to effectively integrate them into a successful research thesis that I present here. He has also assisted me in establishing important working relationships with medical experts and paved the ways for research collaboration with professional bodies. For his practical contribution, moral support and ever lasting friendship, I owe him a great depth of gratitude.

I am deeply indebted to **Prof Derek Abbott** for his support in my mental and career development. He has imparted to me his invaluable experience and knowledge that has allowed me to develop a unique philosophy of excelling in research. Apart from his patient guidance throughout these years, he has also strengthened my motivation to be knowledgeable in the field of computer tomography and medical image visualisation. Therefore, I also acknowledge him to be an important person to have influenced and groomed my research career.

Special appreciation is extended to **Assoc Prof Richard M. Kelso** from the School of Mechanical Engineering for imparting his knowledge in fluid mechanics, as well as image velocimetry, which are utilised in the development of the techniques used in this study. I sincerely thank his generous contribution of time in my education. He has taught me the important concepts used in flow visualisation methods and groomed me to be a confident and motivated researcher. I look up to him as the best teacher in fluid mechanics.

#### Acknowledgments

I have the pleasure of working in the Cardiovascular Research Centre (CRC) and Faculty of Health Science that is based at the Royal Adelaide Hospital and the University of Adelaide. **Prof Prashanthan Sanders** and **Prof Stephen G. Worthley** in the School of Medicine have supervised and supported me in the technical and instrumental portions of this thesis, particularly in magnetic resonance imaging. I thank them sincerely for providing me with a fertile environment to crystallise ideas and transforming them into successful outcomes.

### **Financial Support**

I gratefully acknowledge that my scholarship was personally funded by **Prof Derek Abbott** and partly by the Cardiovascular Research Centre (CRC). In additional, the funding for the purchase of software, textbooks and equipment during the course of my work was provided by **Prof Derek Abbott** and **Prof Stephen G. Worthley**. Travel funding to conferences was contributed by Prof Abbott and the School of Electrical & Electronic Engineering.

#### Commercialisation

I also convey appreciation to **Dr Matthew Chong** from the Adelaide Research and Innovation Pty Ltd for his useful advice in relation to technology transfer and intellectual property rights. He has assisted me in commercialisation of the software deliverable from my research.

#### **Proof Reading and Discussion**

It is also a great pleasure to express my gratitude to **Professor Derek Abbott** and **Dr Peter Cooke** at the School of Electrical & Electronic Engineering, as well as **Assoc Prof Richard M. Kelso** for proof reading this thesis. Their advice in scientific writing and referencing has been tremendously helpful.

I thank **Dr Pawel Kuklik** at the Faculty of Health Science and School of Medicine for his encouragement and interest in this work. He has streamlined the discussion of important concepts used in my research. I am delighted to acknowledge **Dr Mathias Baumert** for checking the technical accuracy of my publications and this thesis.

### **MRI Scanning and Data**

The assistance during the scanning of test subjects that is rendered by **Dr Payman Molaee** and **Mr Angelo Carbone** at the Faculty of Health Science and School of Medicine has been invaluable. The supply of magnetic resonance images by the Royal Adelaide Hospital is appreciated. I also thank them for imparting to me their knowledge of medical imaging.

### Software Development and Programming

Appreciation is extended to my colleague **Mr Shaoming Zhu** for his assistance in programming the statistical library package of the medical image processing software that is used in my work, and also to **Ms Yumay Chen** for her input in data preparation during program testing. Thanks are also due to **Mr Ishwor Gurung** for his patient help in debugging during the development of graphical user interface for the subsequent version of the software. The advice given by my colleagues **Mr Withawat Withayachumnankul**, **Ms Shaghik Atakaramians** and **Ms Gretel Png**, during the typesetting of my thesis in Latex, is gratefully acknowledged.

### **Emotional and Mental Support**

Special appreciation goes out to the rest of my colleagues in the Centre for Biomedical Engineering for their friendship and emotional support during my study in Adelaide.

Finally, and most importantly, I would like to thank my parents for their support during my PhD study. If not for their kind encouragement and concern during the occasions when I was facing difficulties, I may not have been able to complete all the work presented in this thesis.

# Conventions

- 1. **Typesetting:** This thesis is typeset using the LATEX2e software. TeXnicCenter 1 Beta 6.31 (Firenze) was used as an interface to LATEX. Processed plots and images were generated using Matlab 7.0 (Mathsworks Inc.). Adobe Illustrator (Adobe Systems Incorporated) was used to produce schematic diagrams and other drawings. Medflovan medical image processing software was developed using C++ programming language—Borland C++ Builder Version 6.0 (Borland Software Corporation). The OpenGL library (Silicon Graphics, Inc) is the application programming interface for plotting colour contour and vector flow maps.
- 2. **Spelling:** Australian English spelling has been adopted throughout, as defined by the Macquarie English Dictionary (A. Delbridge, Ed., Macquarie Library, North Ryde, NSW, Australia, 2001).
- 3. **Referencing:** Harvard style is used for referencing and citation in this thesis.

## Awards

### Young Investigator Award

**Title:** Blood flow assessment in the aortic heart valve based on magnetic resonance images using optical flow analysis

**Authors:** Kelvin K. L. Wong, Pawel Kuklik, Richard M. Kelso, Stephen G. Worthley, Prashanthan Sanders, Jagannath Mazumdar & Derek Abbott

**Conference:** XVth International Conference on Mechanics in Medicine and Biology (15th ICMMB), Singapore, 6-8th Dec 2006.

**Publication:** Proceedings of the XVth International Conference on Mechanics in Medicine and Biology, ISBN 1-930746-05-9, Volume 15, pages 74-76, 2006.

### **Outstanding Paper Award**

Title: Flow imaging and validation of MR fluid motion tracking

**Authors:** Kelvin K. L. Wong, Richard M. Kelso, Stephen G. Worthley, Prashanthan Sanders, Jagannath Mazumdar & Derek Abbott

**Conference:** 13th International Conference on Biomedical Engineering (ICBME 2008), Singapore, 3-6th Dec 2008.

**Publication:** Proceedings of the International Federation for Medical and Biological Engineering and the 13th International Conference on Biomedical Engineering, ISBN 1680-0737, Volume 23, pages 569-573, 2008.

## **Publications**

#### **Journals**

- WONG-K. K. L., KELSO-R. M., WORTHLEY-S. G., SANDERS-P., MAZUMDAR-J., AND ABBOTT-D. (2009). Noninvasive cardiac flow assessment using high speed magnetic resonance fluid motion tracking, *PLoS ONE*, 4(5), Article No. e5688.
- WONG-K. K. L., KELSO-R. M., WORTHLEY-S. G., SANDERS-P., MAZUMDAR-J., AND ABBOTT-D. (2009). Medical imaging and processing methods for cardiac flow reconstruction, *Journal* of Mechanics in Medicine and Biology, 9(1), pp. 1–20.
- WONG-K. K. L., KELSO-R. M., WORTHLEY-S. G., SANDERS-P., MAZUMDAR-J., AND ABBOTT-D. (2009). Cardiac flow analysis applied to phase contrast magnetic resonance imaging of the heart, Annals of Biomedical Engineering, doi: 10.1007/s10439-009-9709-y.
- WONG-K. K. L., KELSO-R. M., WORTHLEY-S. G., SANDERS-P., MAZUMDAR-J., AND ABBOTT-D. (2009). Theory and validation of magnetic resonance fluid motion estimation using intensity flow data, *PLoS ONE*, 4(3), Article No. e4747.
- WONG-K. K. L., MAZUMDAR-J., PINCOMBE-B., WORTHLEY-S. G., SANDERS-P., AND ABBOTT-D. (2006). Theoretical modeling of micro-scale biological phenomena in human coronary arteries, *Medical & Biological Engineering & Computing*, 44(11), pp. 971–982.
- IKBALA-M., CHAKRAVARTYA-S., WONG-K. K. L., MAZUMDAR-J., AND MANDAL-P. K. (2008). Unsteady response of non-Newtonian blood flow through a stenosed artery in magnetic field, Journal of Computational and Applied Mathematics, doi:10.1016/j.cam.2008.11.010.

#### Conferences

- WONG-K. K. L., KELSO-R. M., WORTHLEY-S. G., SANDERS-P., MAZUMDAR-J., AND ABBOTT-D. (September 2009). A novel measurement system for cardiac flow analysis applied to phase contrast magnetic resonance imaging of the heart, *Proceedings of the World Congress on Medical Physics and Biomedical Engineering*, Munich, Germany.
- WONG-K. K. L., KELSO-R. M., WORTHLEY-S. G., SANDERS-P., MAZUMDAR-J., AND ABBOTT-D. (2008). Cardiac flow characterisation based on statistical analysis of vorticity maps, Proceedings of the SPIE Microelectronics, MEMS, and Nanotechnology (Complex Systems II), Melbourne, Australia, 7270, Article No. 72700W.
- WONG-K. K. L., KELSO-R. M., WORTHLEY-S. G., SANDERS-P., MAZUMDAR-J., AND ABBOTT-D. (2008). Flow imaging and validation of MR fluid motion tracking, *Proceedings of the*

International Federation for Medical and Biological Engineering and the 13th International Conference on Biomedical Engineering (ICBME 2008), Singapore, **23**, pp. 569–573.

- WONG-K. K. L., KELSO-R. M., WORTHLEY-S. G., AND ABBOTT-D. (2008). The effect of noise and sampling size on vorticity measurements in rotating fluids, *Proceedings of the International Conference on Experimental Mechanics (ICEM 2008)*, Nanjing, China.
- WONG-K. K. L., KELSO-R. M., WORTHLEY-S. G., SANDERS-P., MAZUMDAR-J., AND ABBOTT-D. (2008). MR fluid motion tracking of blood flow in right atrium of patient with atrial septal defect, Proceedings of the 5th International Conference on Information Technology and Applications in Biomedicine (ITAB 2008), Shenzhen, China, 1253, Article No. 1253.
- WONG-K. K. L., KELSO-R. M., WORTHLEY-S. G., SANDERS-P., MAZUMDAR-J., AND ABBOTT-D. (2007). Flow in left atrium using MR fluid motion estimation, *Proceedings of the SPIE Microelectronics, MEMS, and Nanotechnology (Complex Systems II),* Canberra, Australia, 6802, Article No. 68021H.
- WONG-K. K. L., MOLAEE-P., KUKLIK-P., KELSO-R. M., WORTHLEY-S. G., SANDERS-P., MAZUMDAR-J., AND ABBOTT-D. (2007). Motion estimation of vortical blood flow within the right atrium in a patient with atrial septal defect, *Proceedings of the IEEE/ICME International Conference on Complex Medical Engineering (CME 2007),* Beijing, China, pp. 862–869.
- WONG-K. K. L., KUKLIK-P., KELSO-R. M., WORTHLEY-S. G., SANDERS-P., MAZUMDAR-J., AND ABBOTT-D. (2006). Blood flow assessment in a heart with septal defect based on optical flow analysis of magnetic resonance images, *Proceedings of the SPIE Biomedical Applications of Micro- and Nanoengineering III*, Adelaide, Australia, 6416, Article No. 64160L.
- WONG-K. K. L., KUKLIK-P., KELSO-R. M., WORTHLEY-S. G., SANDERS-P., MAZUMDAR-J., AND ABBOTT-D. (2006). Blood flow assessment in the aortic heart valve based on magnetic resonance images using optical flow analysis, *Proceedings of the XVth International Conference on Mechanics in Medicine and Biology (15th ICMMB)*, Singapore, **15**, pp. 74–76.
- WONG-K. K. L., MAZUMDAR-J., AND ABBOTT-D. (2005). A study of the relationship between geometrical variation of atherosclerotic arteries and flow resistance, *Proceedings of the International Federation for Medical and Biological Engineering and the 12th International Conference on Biomedical Engineering (12th ICBME 2005),* Singapore, **12**, Article No. 3A5– 01.

# List of Symbols

| Notation              | Description                                      |
|-----------------------|--------------------------------------------------|
| <i>B</i> <sub>0</sub> | Static magnetic field                            |
| $B_1$                 | Magnetic field at right angles to $B_0$          |
| $M_z$                 | Net magnetisation in longitudinal alignment with |
|                       | $B_0$                                            |
| $\mu_m$               | Nuclear magnetic moment in an applied magnetic   |
|                       | field B <sub>0</sub>                             |
| $\Delta E$            | Energy difference between the two spin states    |
| 8                     | Lande g-factor                                   |
| ħ                     | Bohr magneton constant                           |
| Ε                     | Energy of a RF photon                            |
| h                     | Plank's constant                                 |
| ν                     | Frequency of a RF photon                         |
| x, y, z               | Image plane coordinate system                    |
| t                     | Time of first exposure                           |
| δt                    | Exposure time delay                              |
| р                     | Orientation index of image set                   |
| Ι                     | Image intensity field of first exposure          |
| J                     | Image intensity field of second exposure         |
| $\epsilon$            | Higher order terms                               |
| $ec{v}$               | Motion of a point feature in space               |
| $\nabla I$            | Intensity spatial gradient                       |
| Ω                     | Interrogation spatial region                     |
| $	au_D$               | User specified threshold                         |
| $ec{w}$               | Optical flow interrogation window size           |
| $\vec{d}$             | Intensity image displacement                     |
| L                     | Level number of the image pyramid                |
| $n_{x}$               | Image width                                      |
| n <sub>y</sub>        | Image height                                     |
| М                     | Number of rows                                   |
| Ν                     | Number of columns                                |

| Notation                  | Description                                                |
|---------------------------|------------------------------------------------------------|
| $\omega(r)$               | Angular velocity of vortex                                 |
| $v_{	heta}(r)$            | Tangential velocity of vortex                              |
| Г                         | Circulation of vortex                                      |
| а                         | Characteristic core radius                                 |
| r                         | Radius from vortex core                                    |
| θ                         | Angle of vortex rotation                                   |
| W                         | Pyramidal optical flow sampling window size                |
| $W_v$                     | Velocity inteerogation window size                         |
| Econtour                  | Energy function of active contour                          |
| E <sub>int</sub>          | Internal energy function of active contour                 |
| E <sub>ext</sub>          | External energy function of active contour                 |
| Fint                      | Internal force of active contour                           |
| F <sub>ext</sub>          | External force of active contour                           |
| α                         | Tension of active contour deformation                      |
| β                         | Rigidity of active contour deformation                     |
| Р                         | Potential associated with the external forces              |
| X, Y, Z                   | Image plane grid system                                    |
| Т                         | Image time grid                                            |
| $v^{Axial}$               | Two-dimensional velocity grid in axial orientation         |
| v <sup>Sagittal</sup>     | Two-dimensional velocity grid in sagittal orienta-<br>tion |
| <sub>V</sub> Coronal      | Two-dimensional velocity grid in coronal orienta-          |
|                           | tion                                                       |
| V                         | Three-dimensional velocity grid system                     |
| $V_R$                     | Resultant vector magnitude                                 |
| ω                         | Vorticity of fluid                                         |
| $\omega_{ m Abs}$         | Magnitude value of vorticity                               |
| $\omega_{\mathrm{Dir}}$   | Polarised value of vorticity                               |
| $\omega_N$                | Ratio of $\omega_{\rm Dir}$ to $\omega_{\rm Abs}$          |
| Φ                         | Shear strain rate of fluid                                 |
| Ψ                         | Normal strain rate of fluid                                |
| μ                         | Mean of histogram                                          |
| т                         | Median of histogram                                        |
| $\overline{\omega}_{\mu}$ | Mean of vorticity map                                      |

| Notation                                  | Description                                          |
|-------------------------------------------|------------------------------------------------------|
| $\overline{\omega}_m$                     | Median of vorticity map                              |
| $\overline{\sigma}_{\mu}$                 | Standard deviation from mean of vorticity map        |
| $\overline{\sigma}_m$                     | Standard deviation from median of vorticity map      |
| $\langle \overline{\omega}_{\mu} \rangle$ | Temporal average of $\overline{\omega}_{\mu}$ values |
| $\langle \overline{\omega}_m \rangle$     | Temporal average of $\overline{\omega}_m$ values     |
| $\langle \overline{\sigma}_{\mu} \rangle$ | Temporal average of $\overline{\sigma}_{\mu}$ values |
| $\langle \overline{\sigma}_m \rangle$     | Temporal average of $\overline{\sigma}_m$ values     |
| ρ                                         | Reliability of measurement                           |
| $\gamma$                                  | Ratio of true vorticity grid variance to a measured  |
|                                           | one                                                  |
| $\Lambda_s$                               | Vorticity grid of resolution s                       |
| Δ                                         | Normalised error function of two vorticity grids     |
| $p_s$                                     | Pixel spacing                                        |
| $t_s$                                     | Trigger time interval                                |
| S                                         | Slice thickness                                      |
| $p_k$                                     | Percentage of pixels in segmented flow map           |
| A                                         | Percentage area of region                            |
| C <sub>j</sub>                            | Data cluster centroid with label $j$                 |
| Gj                                        | Data cluster group based on $c_j$                    |
| D                                         | Discrimination of spatial separation during data     |
|                                           | clustering                                           |
| $n_t$                                     | Time frame index                                     |

## **Abbreviations**

| A-P   | Anterior-Posterior                         | 36                  |
|-------|--------------------------------------------|---------------------|
| F-H   | Foot-Head                                  | 36                  |
| 2C    | 2-chamber                                  | 32                  |
| 3C    | 3-chamber                                  | 32                  |
| 4C    | 4-chamber                                  | 32                  |
| SA    | Short axis                                 | 32                  |
| LVOT  | Left ventricular outflow tract view        | 32                  |
| HLA   | Horizontal long axis                       | 32                  |
| ROI   | Region of interest                         | 6, 89, 288          |
| CW    | Clockwise                                  | 162, 229            |
| CCW   | Counter-clockwise                          | 162, 229            |
| RA    | Right atrium                               | 32, 205             |
| LA    | Left atrium, Long axis                     | 32, 205             |
| RV    | Right ventricle                            | 32                  |
| LV    | Left ventricle                             | 32                  |
| AS    | Anterior septum                            | 32                  |
| IS    | Inferior septum                            | 32                  |
| SD    | Septal defect                              | 11                  |
| ASD   | Atrial septal defect                       | 204, 213            |
| ASO   | Atrial septal occlusion                    | 204, 205, 211       |
| FOV   | Field of view                              | 59, 60              |
| OF    | Optical flow                               | 324                 |
| CFD   | Computational fluid dynamics               | 8                   |
| ECG   | Electrocardiogram                          | 6, 31, 56, 148, 161 |
| СТ    | Computed tomography                        | xi, 10, 204, 210    |
| PET   | Positron emission tomography               | xi, 204             |
| SPECT | Single photon emission computed tomography | xi, 204             |
| NMR   | Nuclear magnetic resonance                 | 24, 26              |
| MRI   | Magnetic resonance imaging                 | 38, 238, 255        |
| CMRI  | Cardiac magnetic resonance imaging         | xi, 204             |
| PCMRI | Phase contrast magnetic resonance imaging  | 3                   |

| MRIV      | Magnetic resonance image velocimetry           | 5, 13, 15         |
|-----------|------------------------------------------------|-------------------|
| MRV       | Magnetic resonance velocimetry                 | 5                 |
| MRA       | Magnetic resonance angiography                 | 245               |
| FID       | Free induction decay                           | 28                |
| T1W       | $T_1$ weighted                                 | 29                |
| T2W       | T <sub>2</sub> weighted                        | 29                |
| TE        | Echo time                                      | 29                |
| TR        | Repetition time                                | 29                |
| PDW       | Proton density weighted                        | 29                |
| SSFP      | Steady state free precession                   | 29, 219, 245, 284 |
| GCFP      | Global coherent free precession                | 245               |
| SNR       | Signal-to-noise ratio                          | 6                 |
| RF        | Radio frequency                                | 24, 26            |
| VENC      | Velocity encoding                              | 5, 35, 219        |
| PIV       | Particle image velocimetry                     | 5, 15, 243, 323   |
| API       | Application Programming Interface              | 252               |
| MIP       | Medical image processing                       | 251               |
| IIL       | Intel imaging library                          | 252               |
| IPP       | Intel integrated performance primitives        | 252               |
| DICOM     | Digital imaging and communications in medicine | 60, 190           |
| True FISP | Fast imaging with steady-state free precession | 29, 284           |
| MEDFLOVAN | Medical flow visualisation and analysis        | 255               |

# List of Figures

| 1.1  | Overview of the thesis structure                                         | 17 |
|------|--------------------------------------------------------------------------|----|
| 2.1  | Quantum mechanical spin in an applied magnetic field                     | 25 |
| 2.2  | Larmor precession and resonance phenomenon                               | 27 |
| 2.3  | Profile of longitudinal and transverse magnetisation during relaxation . | 28 |
| 2.4  | Nature of precessing blood proton spins                                  | 31 |
| 2.5  | Cardiac events with relation to the electrocardiogram                    | 33 |
| 2.6  | Cardiac magnetic resonance imaging based on different configurations .   | 34 |
| 2.7  | Cardiac magnetic resonance image views                                   | 35 |
| 2.8  | Phase contrast MRI velocimetry                                           | 35 |
| 2.9  | Phase contrast MRI of a cardiac chamber                                  | 37 |
| 2.10 | Velocity field of cardiac chamber                                        | 38 |
|      |                                                                          |    |
| 3.1  | Estimating spatial motion of pixel using optical flow                    | 43 |
| 3.2  | Multi-resolution motion estimation using pyramid implementation          | 48 |
| 3.3  | Motion estimation of in-plane MR-signals                                 | 58 |
| 3.4  | Components of MR fluid motion tracking system                            | 62 |
|      |                                                                          |    |
| 4.1  | Velocity characteristics of a Lamb-Oseen vortex                          | 68 |
| 4.2  | Artificial flow grid based on Lamb-Oseen vortex formulation              | 68 |

- 4.5 Tracking accuracy of rotation using motion estimation algorithm . . . . 79
- 4.6 Tracking accuracy of rotation based on variation of noise in image . . . . 83

#### List of Figures

| 5.2 | A cardiac velocity visualisation system                                 | 94  |
|-----|-------------------------------------------------------------------------|-----|
| 5.3 | Cardiac flow visualisation using streamlines                            | 95  |
| 5.4 | Three-dimensional image grid reconstruction                             | 97  |
| 5.5 | Reconstruction of flow using vectors from three orientations            | 98  |
| 5.6 | Construction of image matrix based on five dimensions                   | 99  |
| 5.7 | Intersection nodes of a three-dimensional grid                          | 100 |
| 5.8 | Geometrical representation of plane intersection                        | 101 |
| 5.9 | Measured flow vectors in a three-dimensional space through image planes | 102 |

| 6.1  | First order differentiation using averaging of sampled graph gradients .     | 109 |
|------|------------------------------------------------------------------------------|-----|
| 6.2  | Multi-step first order differentiation for graph with a point of inflexion . | 110 |
| 6.3  | Vorticity computation using finite elements                                  | 112 |
| 6.4  | Shear strain computation using finite elements                               | 113 |
| 6.5  | Normal strain computation using finite elements                              | 114 |
| 6.6  | Histogram of vorticity distribution                                          | 116 |
| 6.7  | Artificially generated single Lamb-Oseen vortex velocity flow field maps     | 121 |
| 6.8  | Artificially generated double Lamb-Oseen vortices velocity flow field        |     |
|      | maps                                                                         | 122 |
| 6.9  | Variation of grid resolution for single Lamb-Oseen vortex velocity flow      |     |
|      | field map                                                                    | 123 |
| 6.10 | Vorticity field of Lamb-Oseen vortex (0% noise)                              | 125 |
| 6.11 | Vorticity field of Lamb-Oseen vortex (10% noise)                             | 127 |
| 6.12 | Vorticity field of Lamb-Oseen vortex (20% noise)                             | 129 |
| 6.13 | Vorticity field of double Lamb-Oseen vortices (0% noise)                     | 131 |
| 6.14 | Vorticity field of double Lamb-Oseen vortices (10% noise)                    | 133 |
| 6.15 | Vorticity field of double Lamb-Oseen vortices (20% noise)                    | 135 |
| 6.16 | Reliability test for single vortex flow fields                               | 138 |
| 6.17 | Reliability test for double vortex flow fields                               | 139 |
| 6.18 | Comparison of histograms for single vortex flow fields                       | 141 |
| 6.19 | Comparison of histograms for double vortices flow fields                     | 142 |

| 6.20 | Reliability and error deviation for multi-resolutional single vortex flow |     |
|------|---------------------------------------------------------------------------|-----|
|      | fields                                                                    | 143 |

| 7.1  | Cardiac events with relation to scan time frames                             | 150 |
|------|------------------------------------------------------------------------------|-----|
| 7.2  | Cardiac vorticity visualisation system                                       | 153 |
| 7.3  | MRI scan through heart for case study 1                                      | 155 |
| 7.4  | MRI scan through heart for case study 2                                      | 157 |
| 7.5  | Flow visualisation of normal right atrium                                    | 170 |
| 7.6  | Flow quantification of normal right atrium                                   | 171 |
| 7.7  | Chart of normalised vorticity mean based on a cardiac cycle                  | 172 |
| 7.8  | Qualitative visualisation of flow in the right atrium and ventricle $\ldots$ | 173 |
| 7.9  | Qualitative visualisation of right atrial flow circulation                   | 174 |
| 7.10 | Flow quantification of normal left atrium and left ventricle                 | 175 |
| 7.11 | Localisation and analysis of vortices                                        | 183 |
| 7.12 | Component analysis of normal right atrium flow                               | 184 |
| 7.13 | Global analysis for normal right atrium flow                                 | 185 |
| 7.14 | Component analysis for normal right atrium flow                              | 187 |
| 7.15 | Variation of global vorticity mean and circulation                           | 188 |
| 7.16 | Variation of vorticity mean and circulation of vortex components             | 189 |
| 7.17 | Magnetic resonance images of normal right atrium                             | 191 |
| 7.18 | Validation system for imaging modality based on vorticity differencing .     | 192 |
| 7.19 | Vorticity differencing based on MR fluid motion field and phase contrast     |     |
|      | MR image field                                                               | 196 |
| 7.20 | Reliability of computed flow field                                           | 198 |
| 7.20 | MR image field                                                               |     |

| 8.1 | Circulation in a heart with atrial septal defect              | 205 |
|-----|---------------------------------------------------------------|-----|
| 8.2 | Schematic illustration of atrial septal occlusion             | 206 |
| 8.3 | Myocardial discontinuity in a heart with atrial septal defect | 207 |
| 8.4 | Planar dissection of heart based on three MR scan slices      | 214 |
| 8.5 | Cardiac vorticity visualisation system for ASD investigation  | 217 |

#### **List of Figures**

| 8.6  | MRI Scans of right atrial flow pre- and post-ASO                               | 220 |
|------|--------------------------------------------------------------------------------|-----|
| 8.7  | Vector flow plot of right atrial flow pre- and post-ASO                        | 222 |
| 8.8  | Streamline visualisation of right atrial flow pre- and post-ASO                | 224 |
| 8.9  | Vorticity visualisation of right atrial flow pre- and post-ASO $\ldots \ldots$ | 227 |
| 8.10 | Time-variation of vorticity properties for pre- and post-ASO flow maps .       | 232 |
| 8.11 | Summary of ASD investigation                                                   | 234 |
|      |                                                                                |     |

| 9.1 | Stages leading to successful deliverables in the thesis              |
|-----|----------------------------------------------------------------------|
| A.1 | Three-dimensional display of MR image planes                         |
| A.2 | Segmentation of cardiac chamber imaged by MRI 253                    |
| A.3 | Velocity and vorticity flow maps superimposed onto MR image 254      |
| A.4 | Medflovan package diagram 257                                        |
| A.5 | Medflovan use case diagram                                           |
| A.6 | TMRI_Table class    269                                              |
| A.7 | TMRI_Active_Contour, TMRI_Statistics and TMRI_Draw_Parts classes 270 |
| A.8 | TMRI_Flow class                                                      |

- C.1 Flow visualisation of normal right atrium based on one cardiac cycle  $\ . \ . \ 297$
- C.2 Normal atrial flow visualisation using different vorticity measurements 307

| D.1 | Slice = 1 and time frame indices $n_t$ = 10 to 13 of pre-ASO scan | 310 |
|-----|-------------------------------------------------------------------|-----|
| D.2 | Slice = 2 and time frame indices $n_t$ = 10 to 13 of pre-ASO scan | 311 |
| D.3 | Slice = 3 and time frame indices $n_t = 10$ to 13 of pre-ASO scan | 312 |

| E.1 | Slice = 1 and time frame indices $n_t$ = 10 to 13 of post-ASO scan | 314 |
|-----|--------------------------------------------------------------------|-----|
| E.2 | Slice = 2 and time frame indices $n_t$ = 10 to 13 of post-ASO scan | 315 |

| E.3 | Slice = 3 and time frame indices $n_t = 10$ to 13 of post-ASO scan 316 |
|-----|------------------------------------------------------------------------|
| F.1 | Thumbnails of supplementary videos                                     |
| G.1 | Double vortices flow field using particle image velocimetry            |
| G.2 | Double vortices flow field computed by optical flow                    |
| G.3 | Single vortex flow field computed by optical flow                      |

## **List of Tables**

| 3.1 | MRI DICOM information used for calibration of MR fluid motion           | 61  |
|-----|-------------------------------------------------------------------------|-----|
| 4.1 | Configuration characteristic of gray-scale track grid                   | 70  |
| 7.1 | Configuration of phase contrast magnetic resonance imaging 1            | 58  |
| 7.2 | Configuration of phase contrast MRI and MR fluid motion tracking 1      | .93 |
| 8.1 | MR imaging and fluid motion tracking properties of ASD case subject . 2 | 215 |
| G.1 | PIV measurement of double vortices particle images                      | 325 |
| G.2 | Multi-resolution OF measurement of double vortices particle images 3    | 325 |
| G.3 | Multi-resolution OF measurement of single vortex particle images 3      | 326 |