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Abstract: MODIS enhanced vegetation index (EVI) and land surface temperature (LST) are 

key indicators for monitoring vegetation cover changes in broad ecosystems. However, there 

has been little evaluation of these indices for detecting changes in a range of land covers in 

tropical regions. In this study, we investigated the characteristics and seasonal responses of 

LST and EVI for four different land covers in Lao tropical forests: native forest, rubber 

plantation, mixed wooded/cleared areas and agriculture. We calculated long-term averages 

of MODIS LST and EVI 16-day time series and compared their monthly transitions over the 

seven-year period from 2006 to 2012. We also tested whether these indices can be used to 

classify these four land covers. The findings demonstrate the complex interrelationship of 

LST and EVI and their monthly transitions for different land covers: they each showed 

distinctly different intra-annual LST and EVI variations. Native forests have the highest EVI, 

and the lowest LST throughout the year. In contrast, agricultural areas with little or no 

vegetation cover have the highest LST. The transition of LST/EVI for the land covers other 

than native forests showed marked seasonality. Linear discriminant analysis (LDA) showed 

that there was high overall accuracy of separation of land covers by these indices (86%). The 

encouraging results indicate that the combined use of MODIS LST and EVI holds promise 

for improving monitoring of changes in a Lao tropical forest. 
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1. Introduction 

Vegetation cover changes in tropical regions are among the most significant contributors to global 

climate change [1–4]. These changes have resulted in changes in carbon stock, land degradation and 

rapid loss of biodiversity [1]. Understanding how ecological systems are changing requires effective 

monitoring of vegetation changes in space and time [5]. Our knowledge of these changing events and 

processes can be improved using information from satellite observations. The majority of remote sensing 

approaches to monitoring these changes have used vegetation indices, most commonly the normalized 

difference vegetation index (NDVI) or enhanced vegetation index (EVI) [1,6,7]. However, many studies 

have suggested that use of additional parameters such as land surface temperature (LST) improves 

monitoring of land covers [8–10]. 

Used together, these indices may be suitable for monitoring land cover change in tropical regions. In 

tropical regions, EVI is more suitable than NDVI to study vegetation, as it has been shown to have 

improved sensitivity to high biomass through a de-coupling of the canopy background signal and a 

reduction in atmospheric influences [11–16]. LST is used to measure the heat energy flux from the 

Earth’s surface [17–20]. It appears to be strongly correlated to the density of the canopy of various land 

covers [21]. Using a combination of these two parameters can provide insight into surface energy fluxes 

and vegetation cover changes at regional and global scales [6,7,11,20]. 

Several studies have applied these indices successfully to detect vegetation dynamics in broad 

landscapes including boreal, semiarid, arid and temperate forests [6,7,11,18,22–24]. Several studies 

suggest that the combination of measurements of temperature and vegetation indices provides a better 

classification and observation of land covers in the African continent [25,26], Sub-Saharan Africa [27] 

and over the continental United States [28]. The most recent studies also used these two parameters to 

analyze global vegetation cover changes [8,29]. In addition to these studies, LST and NDVI has been 

used to detect changes in land covers between non-forested and forest areas in Brazilian tropical 

forests [21]. It was found that LST data can provide key information for classifying non-forested and 

forest areas, and can be further used for detecting long-term changes in land covers. However, although 

the combined use of LST and vegetation indices has provided better monitoring of land covers at broad 

scales, application of LST and EVI in a wider range of land cover types in tropical regions has not been 

adequately assessed. Frequent cloud cover, high levels of atmospheric water, and aerosol haze can be 

issues when employing these indices in tropical forest environments [21,30,31]. Furthermore, the 

vegetation cover and soil exposure for different land uses can vary substantially from dry to wet seasons. 

Thus, detecting the characteristics, distribution and variation of vegetation cover in tropical forests 

remains challenging. 

In this study, our main goal was to investigate the characteristics and seasonal responses of EVI and 

LST for four different land covers in a tropical location: native forest, rubber plantation, mixed 

wooded/cleared areas and agriculture. This allowed us to gain a better understanding of how these 



Remote Sens. 2015, 7 6028 

 

tropical land covers influence the responses of these indices. We analyzed MODIS EVI and LST 16-day 

time series for a Lao tropical region over the seven-year period from 2006 to 2012. We compared 

monthly transitions of EVI and LST data for these four land covers within our study area. We also 

evaluated whether the combined use of these indices can classify these land covers. This knowledge will 

be potentially useful for further detection of deforestation in tropical forests, information which is 

essential for forest management and combating deforestation in developing countries in the tropics. 

2. Methods 

2.1. Study Area 

The focus of our investigations was the tropical forest lands of Champasack Province, in the south of 

Lao PDR. The study site covers an area of 2500 km2, from 14°44'20"N to 15°25'52"N latitude and from 

105°42'7"E to 106°0'30"E longitude (Figure 1). Comprehensive mapping of land cover types is not yet 

available for Laos, although monitoring of forest resources and land clearance is a high national priority, 

calling for development of suitable remote sensing approaches for land cover inventory and monitoring. 

Champasack Province has experienced rapid changes in land cover in recent years including clearance 

of native forest and large expansions of rubber plantations. Consequently it provided an ideal study area 

to test the suitability of our remote sensing land cover discrimination. In addition, we needed 

independent information to validate the MODIS coarse-resolution analysis. In the absence of 

comprehensive field data, Google EarthTM high resolution images were the only available source of land 

cover information, so our specific study area was determined by the availability of Google Earth images 

of the same site for two dates, in 2006 and 2012. 

This area covers the northern part of the province and includes five administrative districts: Pakse, 

Xanasomboun, Bachieng, Pathumphon and Phonthong. The study area has relatively flat terrain 

comprising two different landscapes: about 10% of the area is upland and 90% is flat lowland. The 

altitude ranges from 10 to 922 m, but the majority of land is between 10 and 250 m above sea level. 

There are two distinct seasons in this location: rainy (May–October) and dry (November–April). During 

the rainy season, it is often windy and humidity is high, with average minimum and maximum 

temperatures of 21 °C and 31 °C respectively. Roughly 300–450 mm of precipitation falls per month in 

this season. In the dry season, conditions are mostly sunny, average minimum and maximum 

temperatures are 19 °C and 35 °C respectively and there is little rainfall (less than 100 mm per month). 

From the high resolution images we identified four main types of land cover: native forest, rubber 

plantation, mixed wooded/cleared area and agriculture. Agricultural lands mainly comprise areas of 

irrigated rice cultivation. 

2.2. Satellite Imagery 

The research made use of two Moderate Resolution Imaging Spectroradiometer (MODIS) data 

products: the 16-day composite time series of EVI (MOD13A2) and the 8-day composite of LST 

(MOD11A2), from 2006–2012, both of which have a spatial resolution of 1 km. The study area was 

covered by MODIS tile h28v07. Data was downloaded from the National Administration and Space 

Aeronautics Administration (NASA) website (http://reverb.echo.nasa.gov/reverb). MODIS data was 
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reprojected to WGS84, UTM zone 48 North using the MODIS reprojection tool (version 4.01). Data 

quality was checked before further analysis and only good quality MODIS EVI and LST data (as rated 

by the MODIS quality flag) was used to reduce noise in our analysis. 

 

Figure 1. Location of the study area in the south of the Lao PDR. 

2.3. Method Overview 

Two major research components were undertaken: (1) examination of long-term averages of seasonal 

responses of LST and EVI 16-day composite data and the monthly transitions for the four dominant land 

cover types, and (2) investigation of the effectiveness of using MODIS LST and EVI data to discriminate 

and classify these land cover types. 

2.3.1. Temporal Response of LST and EVI for Different Land Cover Types 

We identified the four dominant land cover types on a high resolution colour Google EarthTM image 

from 2012: native forest, rubber plantation, mixed wooded/cleared land and agriculture (Table 1,  

Figures 2 and 3). Their distinguishing features are as follows: (1) native forest is usually a dense and 

homogeneous canopy of vegetation containing a number of tree species; (2) rubber plantations show 

consistent canopy patterns and textures comprising similar tree ages, with regular planted tree spacing; 

(3) mixed wooded/cleared areas are fragmented, usually with low vegetation cover and may include 

partly cleared areas, with some parts containing a mixture of trees, shrubs, grass and bare soils; and  

(4) agriculture includes mainly paddy fields and minor areas of shrubs, trees and water. 
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Table 1. Description of the four land cover types in the study area. 

Class Description 

Native Forest 
Native forest is exclusively native vegetation, with little or no clearance.  

It usually comprises a mixture of tree species with a dense homogeneous canopy. 

Plantation 

Plantations predominantly comprise trees established through planting and/or deliberate seeding  

of introduced species. Rubber plantations are common in this region. They display homogeneous  

canopy patterns and textures comprising similar tree ages and regularly planted spaces. They have  

dense canopies, with texture, pattern and homogeneity easily distinguished from natural forests. 

Mixed Wooded/ 

Cleared Area 

Comprises small or moderate patches of shrubs and trees and large areas of clearances.  

It usually has low vegetation cover comprised of small trees, grass and bare soils. 

Agriculture 

Exclusively agricultural utilizations. This class includes mainly paddy fields and water or  

irrigation channels. There is a large area of exposed soils and it is readily distinguished from  

other land covers. 

 
(a) (b) 

 
(c) (d) 

Figure 2. Photos of the four land covers taken in the study area by Faculty of Forestry team 

researchers, May–June 2012. (a) native forest, (b) rubber plantation, (c) mixed 

wooded/cleared area, and (d) agriculture. 
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Figure 3. Google Earth TM images in 2012 representing the four land covers: (a) native 

forest, (b) rubber plantation, (c) mixed wooded/cleared area, and (d) agriculture. 

We digitized the distribution of these four land covers as polygons on the 2012 image. Next, we used 

the Hawths Analysis Tools for ArcGIS 10.2.1 software to generate 800 random samples of the digitized 

data, stratified to give 200 samples of each of the four land cover types. To ensure sample representation 

of each land cover class, we set selection rules. These rules were: (1) each location must be the central 

point of a MODIS pixel of 1 × 1 km and at least 2 km away from any other selected location; and (2) 

the land cover must be homogeneous and cover 100% of the MODIS pixel. These procedures were then 

repeated for the Google EarthTM 2006 image of the same site. This was to ensure we selected only 

samples representing the four land covers in both periods (2006 and 2012). Finally, corresponding pixel 

values of both LST and EVI time series (2006–2012) were extracted from the samples. In total 161 

MODIS EVI (23 per year) and 322 LST composite images (46 per year) were used. LST scenes were 

averaged to 16-day composites to ensure an equivalent number of EVI and LST scenes and dates. 

Finally, we calculated long-term averages and standard deviations of LST and EVI for the 16-day 

composites for the four different land cover types over the period 2006–2012. In addition, we further 

investigated the monthly transitions of these indices throughout the year for the four land covers. An 

analysis was undertaken of the hysteresis patterns based on the monthly long-term average of EVI 

plotted against the monthly long-term average of LST. These plots show the relationship over time of 

the two indices. 

(a) (b)

(c) (d)
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2.3.2. Discriminating the Different Land Cover Types Using LST and EVI 

In order to test whether LST and EVI can provide sufficient information to separate the four different 

land cover types, we applied linear discriminant analysis (LDA), using the LDA package in R software 

(Vienna University of Economics and Business, Vienna, Austria, http://www.r-project.org/, 

http://www.statmethods.net/advstats/discriminant.html). We used the overall seven-year means of EVI 

and LST as the two independent variables in our model to discriminate and classify the four different 

land covers. Prior probabilities of groups or a number of group variables were equal proportions (25% 

or 200 samples for each land cover type). The resultant confusion matrix and error rate of the land cover 

classification was summarized. 

3. Results 

3.1. Temporal Response of LST and EVI for Different Land Cover Types 

The 2006–2012 16-day averages and standard deviations of the MODIS EVI and LST show the  

intra-annual responses of the native forest, rubber plantation, mixed wooded/cleared areas and 

agriculture (Figure 4a–c). Figure 4 shows that each of these land cover types has distinctly different EVI 

and LST trajectories throughout the year. 

Long-term annual means of EVI for native forest (0.47) and rubber plantation (0.45) were relatively 

similar (Figure 4a,b), higher than those of mixed wooded/cleared land (0.39) and agriculture (0.30) 

(Figure 4c,d). 

A strong seasonal pattern of EVI is illustrated in all land cover classes except forest lands. The 

temporal EVI profile of native forests differed substantially from the other classes, with only weak 

seasonality. Although EVI values of native forests were highest and generally maintained throughout 

the year, there were higher variations in the signal during the rainy period (May–October) (Figure 4a). 

In contrast, EVI values of the other land covers increased from May to Oct (Figure 4b–d) and dropped 

to their minima between December–April (dry season). Rubber plantations and mixed wooded/cleared 

areas had similar seasonal patterns of EVI, but these land cover types could be distinguished in the dry 

season. EVI for the mixed wooded/cleared area was relatively low and closely similar to that of 

agricultural areas in the dry season, while rubber plantations still retained their greenness. The EVI was 

just lower than that of native forest lands. 

The annual average LST of native forests was markedly lower than that of the other land cover types 

(25 °C) (Figure 4a–c). In contrast, annual average LST for the three other land cover types was relatively 

similar. Agricultural lands had the highest LST (30 °C), followed by that of rubber plantations (29 °C) 

and mixed wooded/cleared areas (28.5 °C). 
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Figure 4. The average temporal responses of land surface temperature (LST) and enhanced 

vegetation index (EVI) from 2006–2012 in four different forest covers: (a) native forest,  

(b) rubber plantation, (c) mixed wooded/cleared area, (d) agriculture (the red line is LST in 

Celsius and its standard deviations (SD), while the black line is EVI and its SD), and  

(e) average temporal responses of rainfall and temperature, (f–i) are hysteresis patterns of 

LST/EVI for these land covers, (j) seasonal transitions of average rainfall and temperature. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) Native forest

(g) Rubber plantation 

(h) Mixed wooded/cleared area 

(i) Agriculture

(j) Rainfall and temperature 

Rainfall (mm) Months 

EVI  Month
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The seasonal pattern of LST was quite distinctive for each land cover. Native forest LST varied less 

throughout the year than that of the other land cover types (Figure 4a), with highest temperatures in late 

summer (February–April). The annual LST pattern of variation for the other three land covers showed 

some similarities. This pattern started to increase gradually from February–March and reached a peak 

(March–April). In contrast, LST was lowest during the rainy season. LST for all land cover types 

appeared to drop from May until October, and then repeated the seasonal cycle. Although the three land 

covers have similar patterns of LST, the period of LST maximum differed for each: in March for rubber 

plantations, in early February for mixed wooded/cleared and agricultural areas. The LST for agricultural 

lands tended to increase rapidly after its minimum in May–October (Figure 4d). This may be a result of 

rice harvesting activities, which start from November–January. Agricultural lands are left untouched 

until land preparation in May or June (depending on rainfall), followed by rice cultivation activities. The 

rice growing season usually starts from June–October. 

3.2. Monthly Transition of LST and EVI 

The monthly transitions of LST and EVI across the four different land covers in this study are 

exhibited in hysteresis plots (Figure 4f–i). These plots show the complex relationships and intra-annual 

variation of average LST and EVI for these land covers. The hysteresis loop behaviour of all land covers 

other than forests is in the same clockwise direction, but the loops differ in width. The similar pattern of 

rising and falling limbs in the LST and EVI trajectories tends to depend on seasonality. The width of the 

hysteresis loop for each land cover shows some variations resulting from the differences in LST and EVI 

over the course of the year. 

The hysteresis loop for native forests shows characteristics that are quite different from the other 

plots. There is little change in EVI and LST across the seasons. However, the hysteresis loops for the 

other land covers depict pronounced seasonal transition cycles in their EVI/LST trajectory. LST in the 

falling limb has a higher corresponding EVI value, but in the rising limb LST has a lower corresponding 

EVI. This response type indicates changes in vegetation cover and land surface temperature during the 

annual seasonal cycle. However, the width of the hysteresis loops starts to decrease when EVI increases 

towards 0.45 or at LST of 28 °C for rubber plantation and mixed wooded/cleared area. 

The width of the hysteresis loops for three land covers (plantation, mixed wooded/cleared area and 

agriculture) differs and the loops occupy different spaces throughout the year. For mixed wooded/cleared 

lands, the hysteresis loop of LST/EVI is wider than those for the other land covers. This indicates more 

variations in LST and EVI in each month of the year (Figure 4h). Agriculture and plantations have a 

similar shape and width of LST/EVI trajectory (Figure 4i,g). This similar hysteresis pattern indicates a 

similar seasonal transition over time. However, their loops are located in different spaces, which show 

the different values of EVI/LST for these two land covers. 

Figure 4e,j show the long-term averages of rainfall and temperature from 2006 to 2012 and their 

monthly transitions. The rainy season runs from May–October and the dry season from November to 

April. In the rainy season, an increase in EVI begins when rainfalls starts while LST starts to decrease, 

for example in rubber plantation, mixed wooded/cleared area and agriculture. A point of inflection of 

the hysteresis loops occurs at the maximum of EVI when LST is close to about 26 °C–28 °C. During 
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rainy period, the hysteresis loops for these three land covers remain stable until late September, as a 

result of less variation in EVI and LST. 

3.3. Discriminating the Different Land Cover Types Using LST and EVI 

The 2006–2012 long-term averages of LST and EVI for the 200 samples of the four land covers are 

illustrated in Figure 5. In general, the four land covers appear to be well separated in the plot, although 

there are some overlaps of EVI and LST among them. Forests have the highest values of long-term average 

of EVI but the lowest LST. Rubber plantation is the second highest for EVI and the second lowest for LST, 

followed by mixed wooded/cleared area. Agriculture shows the highest LST but with lower EVI than the 

others. Thus this comparison potentially enables separation or classification of these land cover classes. 

Table 2 summarizes the result of linear discriminant analysis (LDA) on 800 samples of long-term 
averages of LST/EVI. The LDA output shows that LST and EVI can be used to classify the differences 

between the four land covers. The first discriminant function (LD1) achieved 83.37% separation between 

the four land covers, with the second discriminant function (LD2) improving the separation of the groups 

by a further 16.63%. The variable with the largest standardized regression coefficients is the one that 

contributes most to the prediction of group membership. In our case, EVI is clearly the greater 

contributor to the discrimination of the four land covers (coefficients of 19.96 and 29.52 in LD1 and 

LD2), while those of LST were −0.53 and 1.00 respectively. The analysis revealed significant differences 

between the four land cover classes, with 86% overall accuracy in group classification. Misclassification 

occurred in only 14% for the samples overall. 
The native forest had the highest accuracy of classification (95%), followed by agriculture and 

plantation (92% for both classes). However, mixed wooded/cleared class was lowest (67%) (Table 2). 

Misclassification is seen in 4% of the native forest class, 7% of rubber plantation, 8% of agriculture and 

24% of mixed wooded/cleared areas. The findings indicate that there is a high possibility of separating 

these land covers in tropical forests by using a combination of EVI and LST. 

 

Figure 5. Long-term means (2006–2012) of LST and EVI for 800 MODIS samples within 

the four land cover types. 
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Table 2. Summary of accuracy of classification predicted by LDA. 

Actual 
Predicted 

Agriculture Native Forest Plantation Wooded/Cleared 

Agriculture 0.92 0 0.03 0.05 

Native Forest 0 0.95 0.04 0 

Plantation 0 0 0.92 0.07 

Wood/Cleared 0.14 0.1 0.09 0.67 

Overall accuracy    0.86 

4. Discussion 

The analysis of LST and EVI from the MODIS time series in this study showed promise in 

characterizing the temporal responses of the four different land cover types. There are distinctly different 

EVI and LST temporal responses for these land covers. Dense vegetation cover such as native forest 

tends to have the lowest LST and the highest EVI throughout the year compared to the others. In contrast, 

agricultural land has the lowest EVI and the highest LST. This finding is similar to those of previous 

studies that non-forested areas have higher temperatures than forested lands [19,23,26]. This indicates 

that if vegetation cover is reduced due to clearance, it can contribute to an increase in heat energy 

transferred from the land surface. Our finding was also similar to that of Julien and Sobrino [29] which 

suggested that the closed canopy of tropical rainforests plays an important role in regulating and 

maintaining its LST constant throughout the year. Native forests maintain their leaves or canopies with 

adequate soil moisture and evapotranspiration throughout the year, allowing regulation of temperature. 

Temporal patterns of EVI and LST for rubber plantations and mixed wooded/cleared areas are similar 

in the rainy season, and these land covers can be distinguished only in the dry season, when there is less 

greenness in mixed wooded/cleared areas than rubber plantations. In the dry season, rubber plantation 

may have less greenness than native forests, but still more than mixed wooded/cleared areas. The mixed 

wooded/cleared area consists of some deciduous trees and great extent grassland in cleared areas. They 

become greener with higher EVI in the rainy season compared with the dry season. 

We found a complex relationship between monthly averages of LST and EVI for the four land covers. 

The hysteresis loops of LST/EVI for three of the four land covers tended to be determined by seasonality, 

but not for forests (Figure 4f–i). The study shows that in the rainy season there is more photosynthesis 

activity of vegetation in the three land covers: rubber plantation, mixed wooded/cleared area and 

agriculture than in forests. Native forest shows higher EVI throughout the year, while the other land 

covers show seasonal patterns and more variations. This result suggests that the changes in vegetation 

covers in these three land covers are associated with changes in temperature and rainfall. In the hysteresis 

loops, we found that EVI increases as annual precipitation increases, but LST decreases. In contrast, 

when LST begins increasing and reaching its maximum in the dry period, EVI correspondingly 

decreases. However, this synchronization is not found in native forest. A similar result was also found 

in our previous research [27]. This suggests that rainfall and the resulting soil moisture and ground water 

from the wet season are sufficient for native forest plants to maintain almost full canopy during the dry 

season. There is approximately 300–450 mm of average precipitation per month. However, in dry season 

from November to April, there is the minimum growth of vegetation (or low EVI) due to low 
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precipitation (less than 100 mm per month) and high temperature (up to 30 °C–35 °C). Between 

November and December, there is little or no rainfall and coolest temperatures. Mixed wooded/cleared 

areas consist of deciduous trees that usually lose their leaves during this period. This hysteresis behavior 

of LST/EVI was also found similarly in the West African woodlands [26]. 

The second research question concerned whether we can use the information of EVI and LST to 

classify the four land covers, which could allow us to identify and detect land cover changes in tropical 

regions. The LDA implemented on the long-term averages of LST/EVI shows a high classification 

accuracy for the four land cover classes (86%). This accuracy was similar to a study of Julien, et al. [32] 

which used NDVI/LST for crop type classification (87%), although Landsat-5 data time series and 

different approaches were used. 

5. Conclusions 

Detection of land cover change in tropical regions is an important application of remote sensing 

methods. Using a combination of MODIS EVI and LST may improve monitoring of changes in tropical 

vegetation cover. In this study, we examined the long-term averages (2006 to 2012) of EVI and LST 

time-series data 16-day composites and their intra-annual seasonal transitions for four different land 

covers in Lao tropical forests. Finally, we applied LDA to test whether the information from EVI and 

LST can be used to discriminate the major land covers in our study area. The results show that EVI 

contributed most to discrimination of cover types, with LST making a smaller contribution. When used 

in combination with LST and EVI provided detailed information on the characteristics and temporal 

responses of the four land covers. Using these two indices we can classify the four land covers with high 

overall accuracy (86%). The outcomes of this study thus contribute to improving our understandings of 

tropical vegetation changes and responses to climate conditions. This study is a pathfinder toward 

providing an improved option for monitoring and detecting land cover changes in tropical regions. 
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