A Test of the Hutchinson Theory of Interspecific Competition

Richard John William Bosworth

B.Env.Sc. Honours (The University of Adelaide)

Submitted for the Degree of Doctor of Philosophy

In the School of

Animal and Veterinary Sciences,

Faculty of Sciences,

University of Adelaide

January 2012

Table of Contents

A Test of	f the Hutchinson Theory of Interspecific Competition	i
Table of	Contents	ii
List of T	ables	vi
List of F	ïgures	viii
Abstract		xx
Declarat	ion	xxiv
Acknow	ledgements	xxv
Chapter	1 General Introduction	1
1.1	Introduction	1
1.1.	.1 Project Aims	6
Chapter	2 Literature Review	7
2.1	Introduction	7
2.2	Competition	8
2.2.	.1 General Competition	8
2.2.	.2 Intra and Interspecific Competition	9
2.2.	.3 Resource partitioning	11
2.2.	.4 Dietary overlap	12
2.2.	.5 Metabolic rate	14
2.2.	.6 Summary	15
2.3	Hutchinson Theory	16
2.3.	.1 Background	16
2.3.	2 Scientific Debate	16
2.3.	.3 Competition Models	18
2.3.	.4 Alternative explanations	19
2.3.	.5 Summary	20
2.4	Agricultural expansion	21
2.4.	.1 Agricultural expansion in Australia and on Kangaroo Island	21
2.4.	.2 Herbivore impact in Australia and Kangaroo Island	22
2.4.	.3 Summary	24
2.5	Species of Interest	24
2.5.	.1 Tammar Wallaby (<i>Macropus eugenii</i> Desmarest)	24
2	2.5.1.1 Description	25
2	2.5.1.2 Diet, Habitat description and Distribution	26
2.5.	Western Grey Kangaroo (<i>Macropus fuliginosus</i> Desmarest, 1817)	26
2	2.5.2.1 Description	26
2	2.5.2.2 Diet, Habitat description and Distribution	27

2.5.3	Sheep (Ovis aries)	28
2.5.	3.1 Description	28
2.5.	3.2 Diet, Habitat description and Distribution	29
2.5.4	Goats (Capra hircus)	30
2.5.	4.1 Description	31
2.5.	4.2 Diet, Habitat description and Distribution	31
2.5.5	Summary	32
2.6 Ca	arrying Capacity	33
2.6.1	Variation in DSE units	33
2.6.	1.1 Domestic	33
2.6.	1.2 Wildlife	34
2.6.2	Summary	34
2.7 Co	ondition Score	34
2.7.1	Domestic	34
2.7.2	Wildlife	35
2.7.3	Summary	36
2.8 Ca	apture Techniques for Macropod species	36
2.8.1	Non Drug Capture	36
2.8.2	Drug Capture	37
2.8.3	Summary	40
Chapter 3 F	Processing Experimental Animals	41
3.1 As	ssessment of Body condition	41
3.2 So	ource of experimental animals	42
3.3 Tr	ansporting of experimental animals	43
3.4 Se	edation of Kangaroos	44
Chapter 4 F	Pasture Assessment on Kangaroo Island	47
4.1 In	troduction	47
4.2 M	ethods	49
4.2.1	Study sites	49
4.2.2	Transect specifications	51
4.2.3	Plant Cover Survey	51
4.2.4	Plant Cover Analysis	52
4.2.5	Rainfall and Temperature	52
4.3 Re	esults	52
4.3.1	Rainfall and Temperature	52
4.3.2	Pasture Comparison at three sites	54
4.3.	2.1 Spring 2006	55
4.3.	2.2 Summer 2007	57
4.3.	2.3 Autumn 2007	59

4.3.2	.4 Spring 2007	61
4.3.3	Pasture Comparison on both sides of a boundary fence	63
4.3.3	.1 Chris's paddock	63
4.3.3	.2 High Paddock	64
4.4 Dis	cussion	65
Chapter 5 D	ietary overlap of four herbivores on Kangaroo Island	69
5.1 Int	roduction	69
5.2 Me	thods	71
5.2.1	Faecal Collection Study Sites	72
5.2.2	Faecal Identification and Preparation	72
5.2.3	Tammar Wallaby (<i>Macropus eugenii</i>)	73
5.2.4	Western Grey Kangaroo (Macropus fuliginosus)	73
5.2.5	Sheep (Ovis aries)	73
5.2.6	Goat (Capra hircus)	73
5.2.7	Plant Reference Collection	74
5.2.8	Formal Identification of plant species	74
5.2.9	Cuticle Identification – Reference collection	74
5.2.10	Faecal Preparation	75
5.2.11	Histological Reference	75
5.2.12	Histological Analysis	76
5.3 Re	sults	77
5.3.1	Cuticle Analysis	77
5.3.1	.1 Spring 2006	78
5.3.1	.2 Summer 2007	83
5.3.1	.3 Autumn 2007	90
5.3.1	.4 Spring 2007	98
5.4 Dis	cussion	103
Chapter 6 C	ondition Score	108
6.1 Int	roduction	108
6.2 Me	thods	110
6.3 Re	sults	113
6.4 Dis	cussion	117
Chapter 7 C	ompetition Trials	122
7.1 Int	oduction	122
7.2 Me	thods	126
7.2.1	Site	126
7.2.2	Trial Pens	127
7.2.3	Capture and transportation of all herbivore species	128
7.2.4	Sowing of Trial Pens	128

7.2.5	Plant Survey	129
7.2.6	Analysis of Data	129
7.3 Res	ults	129
7.3.1	Plant survey: Mixed species grazing trial	129
7.3.1	.1 Plant by number in mixed grazer pens	129
7.3.1	.2 Plant by biomass in mixed grazer pens	132
7.3.2	Plant survey: Single species grazing trial	135
7.3.2	.1 Plant by number in single grazer pens	135
7.3.2	.2 Plant by biomass in single grazer pens	140
7.4 Dis	cussion	143
Chapter 8 Fo	od preference of four Kangaroo Island herbivores	149
8.1 Intr	oduction	149
8.2 Me	thods	150
8.2.1	Palatability Trial	150
8.2.1	.1 Trial sites	151
8.2.1	.2 Data collection and Analysis	151
8.2.2	Oat grain trial	152
8.2.2	.1 Trial site	152
8.2.2	.2 Capturing of Wallabies	152
8.2.2	.3 Data analysis	152
8.3 Res	ults	152
8.3.1	Palatability trial Ranked visits	152
8.3.1	.1 Wallaby	153
8.3.1	.2 Kangaroo	155
8.3.1	.3 Goat	157
8.3.1	.4 Sheep	159
8.3.1	.5 Food Varieties	161
8.3.1	.6 Summary	164
8.3.2	Oat grain trial	165
8.3.3	Summary	168
8.4 Dis	cussion	169
Chapter 9 Al	ternative explanation	172
9.1 Intr	oduction	172
9.2 Me	thods	173
9.2.1	Lower dental arcade width	174
9.2.2	Tongue length	174
9.2.3	Lip length	174
9.2.4	Incisor/Pad length	174
9.2.5	Data Analysis	174

9.3 Results	
9.4 Discussion	
Chapter 10 General Conclusion	
Appendix 1 Drug use and methods	
Appendix 2 Cuticle pictures and Pant Identification.	
References	

List of Tables

Table 1.1 Thesis Structure 6
Table 3.1 Description of the five stages of alpha-chloralose ingestion. 45
Table 4.1 Results of ANOVA analysis ($P = 0.05$ significance level) of pasture on both
sides of a recently erected boundary fence in Chris's paddock on a sheep property, Borda
Vale at Cape Borda. Abbreviations: Spr – Spring, Sum – Summer and Aut – Autumn 64
Table 4.2 Results of ANOVA analysis ($P = 0.05$ significance level) of pasture on both
sides of a recently erected boundary fence in High paddock on a sheep property, Borda
Vale at Cape Borda. Abbreviations: Spr – Spring, Sum – Summer and Aut – Autumn65
Table 5.1 List of plant species, common names and corresponding identification codes
from cuticle analysis of plants occurring at the study site. $D = Dicotyledon$ and $M =$
Monocotyledon. The order is not sequential in the monocotyledon section to enable plants
with the same genus to appear together77
Table 5.2 Diets of four herbivores on the north-western region of Kangaroo Island in
October 2006. Significant results are in bold red and plant species with dashes through the
square indicates the species was not present in the diets
Table 5.3 Pianka's index C on the dietary overlap among Tammar wallaby, Western Grey
Kangaroo, Goat and Sheep in the north-western region of Kangaroo Island during Spring
2006. $C = 0$ indicates no overlap and $C = 1$ indicates complete overlap
Table 5.4 Diets of four herbivores on the north-western region of Kangaroo Island in
January 2007. Significant results are in bold red and plant species with dashes through the
square indicates the species was not present in the diets

Table 5.7 Pianka's index C on the dietary overlap among Tammar wallaby, Western Grey Kangaroo, Goat and Sheep in the north-western region of Kangaroo Island during autumn 2007. C = 0 indicates no overlap and C = 1 indicates complete overlap......97

Table 5.9 Pianka's index C on the dietary overlap among Tammar wallaby, Western Grey Kangaroo, Goat and Sheep in the north-western region of Kangaroo Island during spring 2007. C = 0 indicates no overlap and C = 1 indicates complete overlap......103

 Table 6.1 Allocation of Condition Scores to animals on the basis of their Condition Score

 Index.

List of Figures

Figure 2.1 Female tammar wallabies in the fauna yard pen at the Roseworthy Campus,
University of Adelaide
Figure 2.2 Kangaroo Island western grey kangaroos in holding yards at Roseworthy
campus, University of Adelaide
Figure 2.3 Merino sheep in a holding yard at the Roseworthy farm, University of
Adelaide
Figure 2.4 Distribution and density of sheep within Australia. Source
www.meares.com.au/resource/sheep01.htm. Accessed (21/8/06)
Figure 2.5 Feral goats in a holding yard at the Roseworthy campus of the University of
Adelaide
Figure 3.1 Capturing of the wallabies at Roseworthy campus fauna yards using nets. The
wallaby was placed into a hessian bag (in background hung on fence), hung on a frame
and transported
Figure 4.1 Satellite image of the two areas on the north-western side of Kangaroo Island,
Cape Borda property, the circled area on the left and De Mole River property, the circled
area on the right. Image courtesy of Google maps
Figure 4.2 First study site at Borda Vale, Chris's Paddock. Image courtesy of Google
maps
Figure 4.3 Second study site on Borda Vale, High Paddock. Image courtesy of Google
maps
Figure 4.4 Third study site, Duncan's Paddock. Image courtesy of Google maps51
Figure 4.5 Monthly rainfall (mm on Y axis) totals over an 18 month period from May
2006 until October 2007. Months with an asterisk indicate months when pasture
assessment occurred

Figure 4.6 Monthly mean overnight temperature (on the Y axis is in Celsius) for an 18
month period recorded at Cape Borda weather station which includes pasture assessment
months with an asterisk
Figure 4.7 Monthly mean day temperature (on the Y axis is in Celsius) for an 18 month
period recorded at Cape Borda weather station which includes pasture assessment months
with an asterisk
Figure 4.8 Percentage cover of moss in the pasture at the three sites in spring 2006
(P<0.001, df = 59). Different alphabetical characters indicate significant differences
(P<0.05, mean + SEM) among sites
Figure 4.9 Percentage cover of clover in the pasture at the three sites in spring 2006
(P < 0.001 df = 59) Different alphabetical characters indicate significant differences
(1 < 0.001, 01 = 57). Different alphabetear characters indicate significant differences
(r<0.05, mean + SEM) among sites
Figure 4.10 Percentage cover of daisy in the pasture at the three sites in spring 2006
(P < 0.001, df = 59). Different alphabetical characters indicate significant differences
(P<0.05, mean + SEM) among sites
Figure 4.11 Percentage cover of grass in the pasture at the three sites in spring 2006
(P= 0.006 , df = 59). Different alphabetical characters indicate significant differences
(P<0.05, mean + SEM) among sites
Eisen 4.12 Demonstrate a second film and the demonstrate data demonstrate demonstra
Figure 4.12 Percentage cover of bare ground in the pasture at the three sites during
summer 2007 ($P<0.001$, df = 59). Different alphabetical characters indicate significant
differences (P<0.05, mean + SEM) among sites
Figure 4.13 Percentage cover of moss in the pasture at the three sites in summer 2007
(P<0.001, df = 59). Different alphabetical characters indicate significant differences
(P<0.05 mean + SFM) among sites 58
(1 <0.05, filean + 51.14) among sites.
Figure 4.14 Percentage cover of daisy in the pasture at the three sites during summer 2007
($P < 0.001$, df = 59). Different alphabetical characters indicate significant differences
(P<0.05, mean + SEM) among sites
Figure 4.15 Percentage cover of bare ground in the pasture at the three sites in autumn
2007 (P< 0.001 , df = 59). Different alphabetical characters indicate significant differences
(P<0.05, mean + SEM) among sites

Figure 4.16 Percentage cover of moss in the pasture at the three sites in autumn 2007
(P <0.001, df = 59). Different alphabetical characters indicate significant differences
(P<0.05, mean + SEM) among sites60
Figure 4.17 Percentage cover of daisy in the pasture at the three sites in autumn 2007
(P <0.001, df = 59). Different alphabetical characters indicate significant differences
(P<0.05, mean + SEM) among sites
Figure 4.18 Percentage cover of grass in the pasture at the three sites in autumn 2007
(P <0.001, df = 59). Different alphabetical characters indicate significant differences
(P<0.05, mean + SEM) among sites
Figure 4.19 Percentage cover of moss in the pasture at the three sites in spring 2007
(P <0.001, df = 59). Different alphabetical characters indicate significant differences
(P<0.05, mean + SEM) among sites
Figure 4.20 Percentage cover of daisy in the pasture at the three sites in spring 2007
(P <0.001, df = 59). Different alphabetical characters indicate significant differences
(P<0.05, mean + SEM) among sites
Figure 5.1 Spring diet of sheep in Kangaroo Island's north-western region in 200678
Figure 5.2 Spring diet of goats in Kangaroo Island's north-western region in 200679
Figure 5.3 Spring diet of kangaroos in Kangaroo Island's north-western region in 2006.79
Figure 5.4 Spring diet of wallabies in Kangaroo Island's north-western region in 200680
Figure 5.5 Dicotyledon species Allocasuarina verticillata P=0.042 (df = 15) in diets of
four herbivores. The different alphabetical characters indicate significant differences
(P<0.05, mean + SEM) among species
Figure 5.6 Monocotyledon species Vulpia myuros in diets of four herbivores P=0.002 (df
= 15). The different alphabetical characters indicate significant differences (P <0.05, mean
+ SEM) among species
Figure 5.7 Monocotyledon genus <i>Ehrharta</i> in diets of four herbivores $P<0.001$ (df = 15).
The different alphabetical characters indicate significant differences (P<0.05, mean +
SEM) among species

Figure 5.8 Summer diet of sheep in Kangaroo Island's north-western region in 200784
Figure 5.9 Summer diet of goats in Kangaroo Island's north-western region in 200784
Figure 5.10 Summer diet of kangaroos in Kangaroo Island's north-western region in 2007
Figure 5.11 Summer diet of wallabies in Kangaroo Island's north-western region in 2007.
Figure 5.12 Micotyledon species <i>Acacia leiophylla</i> in diets of four herbivores P=0.004 (df = 14). The different alphabetical characters indicate significant differences (P<0.05, mean + SEM) among species
Figure 5.13 Monocotyledon species <i>Vulpia myuros</i> in diets of four herbivores P=0.012 (df = 14). The different alphabetical characters indicate significant differences (P<0.05, mean + SEM) among species
Figure 5.14 Monocotyledon species <i>Vulpia bromoides</i> in diets of four herbivores $P<0.001$ (df = 14). The different alphabetical characters indicate significant differences ($P<0.05$, mean + SEM) among species
Figure 5.15 Monocotyledon species <i>Bromus hordeaceus</i> in diets of four herbivores $P=0.002$ (df = 14). The different alphabetical characters indicate significant differences ($P<0.05$, mean + SEM) among species
Figure 5.16 Unidentified monocotyledon species in diets of four herbivores P=0.039 (df = 14). The different alphabetical characters indicate significant differences (P<0.05, mean + SEM) among species
Figure 5.17 Autumn diet of sheep in Kangaroo Island's north-western region in 200791
Figure 5.18 Autumn diet of goats in Kangaroo Island's north-western region in 200791
Figure 5.19 Autumn diet of kangaroos in Kangaroo Island's north-western region in 2007.
Figure 5.20 Autumn diet of wallabies in Kangaroo Island's north-western region in 2007.

Figure 5.21 Dicotyledon species <i>Trifolium subterraneum</i> $P=0.001$ (df = 15) in diets of
four herbivores. The different alphabetical characters indicate significant differences
(P<0.05, mean + SEM) among species
Figure 5.22 Dicotyledon species Allocasuarina verticillata $P=0.038$ (df = 15) in diets of
four herbivores. The different alphabetical characters indicate significant differences
(P<0.05, mean + SEM) among species94
Figure 5.23 Dicotyledon species <i>Dodonaea viscosa</i> $P=0.003$ (df = 15) in diets of four
herbivores. The different alphabetical characters indicate significant differences (P<0.05,
mean + SEM) among species
Figure 5.24 Dicotyledon species Astroloma conostephiodies $P=0.019$ (df = 15) in diets of
four herbivores. The different alphabetical characters indicate significant differences
(P<0.05, mean + SEM) among species
Figure 5.25 Monocotyledon species Vulpia myuros in diets of four herbivores P=0.044 (df
= 15). The different alphabetical characters indicate significant differences ($P < 0.05$, mean
+ SEM) among species
Figure 5.26 Unidentified monocotyledon species in diets of four herbivores $P<0.001$ (df =
15). The different alphabetical characters indicate significant differences (P<0.05, mean +
15). The different alphabetical characters indicate significant differences (P<0.05, mean + SEM) among species
 15). The different alphabetical characters indicate significant differences (P<0.05, mean + SEM) among species
 15). The different alphabetical characters indicate significant differences (P<0.05, mean + SEM) among species
 15). The different alphabetical characters indicate significant differences (P<0.05, mean + SEM) among species
 15). The different alphabetical characters indicate significant differences (P<0.05, mean + SEM) among species
 15). The different alphabetical characters indicate significant differences (P<0.05, mean + SEM) among species
 15). The different alphabetical characters indicate significant differences (P<0.05, mean + SEM) among species
 15). The different alphabetical characters indicate significant differences (P<0.05, mean + SEM) among species
 15). The different alphabetical characters indicate significant differences (P<0.05, mean + SEM) among species
 15). The different alphabetical characters indicate significant differences (P<0.05, mean + SEM) among species
 15). The different alphabetical characters indicate significant differences (P<0.05, mean + SEM) among species
 15). The different alphabetical characters indicate significant differences (P<0.05, mean + SEM) among species

Figure 6.2 Comparison of the initial mean body weight (kg) of 11 wallabies that were	
lactating at capture with their mean body weight after six months non-lactating on a hi	gh
quality diet (Paired T-Test P < 0.001, SEM = 0.330)	.114

Figure 6.4 Change in the spectra of condition scores of wallabies captured during a	
drought and after 6 months on high quality feed.	116

Figure 6.5 Correlation between CSI (Condition Score Index) on the Y axis and KFI	
(Kidney Fat Index) on the X axis ($R^2 = 0.48$)	116

Figure 7.1 Diagram of pen layout. Each single species pen had 4 animals except for wallaby pen that had 16 animals and had approximately similar grazing pressure to the 3 and 4 species pens. Mixed 4 spp. pens contained 1 kangaroo, 1 goat, 1 sheep and 4

tammar wallabies while the mixed 3 spp. pens contained 1 kangaroo, 1 goat and 1 sheep.

Figure 7.2 Mean rye grass plant numbers present (m^2) between 3 species and 4 species pens ($P = 0.578$ at 0.05 significance level, means + SEM, df = 5). No significant difference was detected between species pens
Figure 7.3 Mean young Oat grass plant numbers present (m^2) between 3 species and 4 species pens ($P = 0.929$ at 0.05 significance level, means + SEM, df = 5). No significant difference was detected between species pens
Figure 7.4 Mean caltrop plant numbers present (m^2) between 3 species and 4 species pens $(P = 0.82 \text{ at } 0.05 \text{ significance level, means} + \text{SEM}, \text{df} = 5)$. No significant difference was detected between species pens
Figure 7.5 Mean lucerne plant numbers present (m^2) between 3 species and 4 species pens $(P = 0.681 \text{ at } 0.05 \text{ significance level, means} + \text{SEM}, \text{ df} = 5)$. No significant difference was detected between species pens
Figure 7.6 Mean marsh mallow plant numbers present (m^2) between 3 species and 4 species pens ($P = 0.23$ at 0.05 significance level, means + SEM, df = 5). No significant difference was detected between species pens
Figure 7.7 Mean potato weed plant numbers present (m^2) between 3 species and 4 species pens ($P = 0.46$ at 0.05 significance level, means + SEM, df = 5). No significant difference was detected between species pens
Figure 7.8 Mean wire weed plant numbers present (m^2) between 3 species and 4 species pens (P = 0.282 at 0.05 significance level, means + SEM, df = 5). No significant difference was detected between species pens
Figure 7.9 Young Oat grass plant mean weight (g) between 3 species and 4 species pens $(P = 0.8 \text{ at } 0.05 \text{ significance level, means} + \text{SEM}, \text{ df} = 5)$ there was no significant difference between species pens
Figure 7.10 Potato weed mean weight (g) between 3 species and 4 species pens ($P = 0.161$ at 0.05 significance level, means + SEM, df = 5). No significant difference was detected between species pens

Figure 7.13 Caltrop mean weight (g) between 3 species and 4 species pens (P = 0.207 at 0.05 significance level, means + SEM, df = 5). No significant difference was detected between species pens. 134

Figure 7.16 Mean number of Lucerne plants present (m^2) in all single species and control pens. Different alphabetical characters indicate significant differences (P <0.001 at 0.05 significance level, means + SEM, df = 69) among single species pens. Graph legend Wallaby – W, Kangaroo – K, Goat – G, Sheep – S and Ungrazed Control – UGC....... 136

Figure 7.17 Mean number of Rye grass plants present (m^2) in all single species and control pens. Different alphabetical characters indicate significant differences (P<0.001 at 0.05 significance level, means + SEM, df = 69) among single species pens. Graph legend Wallaby – W, Kangaroo – K, Goat – G, Sheep – S and Ungrazed Control – UGC. 136

Figure 7.18 Mean number of young Oat grass present (m^2) in all single species and control pens (P = 0.259 at 0.05 significance level, means + SEM, df = 69). Graph legend Wallaby – W, Kangaroo – K, Goat – G, Sheep – S and Ungrazed Control – UGC. 137

Figure 7.19 Mean number of Caltrop plants present (m^2) in all single species and control pens. Different alphabetical characters indicate significant differences (P = 0.024 at 0.05 significance level, means + SEM, df = 69) among single species pens. Graph legend Wallaby – W, Kangaroo – K, Goat – G, Sheep – S and Ungrazed Control – UGC.......137

Figure 7.21 Mean number of Potato weed plants present (m^2) in all single species and control pens. Different alphabetical characters indicate significant differences (P<0.001 at 0.05 significance level, means + SEM, df = 69) among single species pens. Graph legend Wallaby – W, Kangaroo – K, Goat – G, Sheep – S and Ungrazed Control – UGC. 139

Figure 7.22 Mean number of Wire weed plants present (m^2) in all single species and control pens. Different alphabetical characters indicate significant differences (P<0.001 at 0.05 significance level, means + SEM, df = 69) among single species pens. Graph legend Wallaby – W, Kangaroo – K, Goat – G, Sheep – S and Ungrazed Control – UGC....... 139

Figure 7.23 Mean weight (g) of Lucerne plants present (m^2) in all single species and control pens. Different alphabetical characters indicate significant differences (P<0.001 at 0.05 significance level, means + SEM, df = 69) among single species pens. Graph legend Wallaby – W, Kangaroo – K, Goat – G, Sheep – S and Ungrazed Control – UGC. 140

Figure 7.24 Mean weight (g) of Rye grass plants present (m^2) in all single species and control pens. Different alphabetical characters indicate significant differences (P<0.001 at 0.05 significance level, means ± SEM, df = 69) among single species pens. Graph legend Wallaby – W, Kangaroo – K, Goat – G, Sheep – S and Ungrazed Control – UGC....... 140

Figure 7.27 Mean weight (g) of Marsh mallow plants present (m^2) in all single species and control pens. No significant differences (P = 0.92 at 0.05 significance level, means +

SEM, df = 69) among single species pens. Graph legend Wallaby – W, Kangaroo – K, Goat – G, Sheep – S and Ungrazed Control – UGC......142

Figure 7.28 Mean weight (g) of Potato weed plants present (m^2) in all single species and control pens. Different alphabetical characters indicate significant differences (P<0.001 at 0.05 significance level, means + SEM, df = 69) among single species pens. Graph legend Wallaby – W, Kangaroo – K, Goat – G, Sheep – S and Ungrazed Control – UGC....... 142

Figure 7.29 Mean weight (g) of Wire weed plants present (m^2) in all single species and control pens. Different alphabetical characters indicate significant differences (P<0.001 at 0.05 significance level, means + SEM, df = 69) among single species pens. Graph legend Wallaby – W, Kangaroo – K, Goat – G, Sheep – S and Ungrazed Control – UGC. 143

Figure 8.4 Mean time spent in seconds by kangaroos at the food range available ($P =$	
$0.003 \pm SEM$, n=5, df = 19). The different alphabetical characters indicate significant	
differences (P<0.05) among the fodder varieties	155

igure 8.7 Mean time spent in seconds by goats at the fodder range available (P = $0.251 \pm$
EM, n=5, df = 19)157

Figure 8.8 Mean number of bites taken by goats at each variety of the food range offered
$(P = 0.403 \pm SEM, n=5, df = 19).$ 158
Figure 8.9 Mean number of steps taken by goats to reach each variety of the food range
offered (P = $0.537 \pm SEM$, n=5, df = 19)158
Figure 8.10 Mean time spent in seconds by sheep at the selection of fodder available ($P <$
$0.001 \pm \text{SEM}$, n=5, df = 19). The different alphabetical characters indicate significant
differences (P<0.05) amongst the fodder varieties
Figure 8.11 Mean number of bites taken by sheep at each variety of the food range
offered (P < 0.001 \pm SEM, n=5, df = 19). The different alphabetical characters indicate
significant differences (P<0.05) among the fodder varieties
Figure 8.12 Mean number of stans taken by sheep to reach each variety of the food range
Figure 8.12 Weat number of steps taken by sheep to reach each variety of the root range f_{1}
offered (P = $0.005 \pm \text{SEM}$, n=5, df = 19). The different alphabetical characters indicate
significant differences (P<0.05) among the fodder varieties
Figure 8.13 Standardised time percentage each of the four herbivore species spent
consuming the pasture plant Lucerne
Figure 8.14 Standardised time percentage each of the four herbivore species spent
consuming the pasture plant Rye grass
Figure 8.15 Standardised time percentage each of the four herbivore species spent
consuming the posture plant Oat gross
Consuming the pasture plant Oat grass
Figure 8.16 Standardised time percentage each of the four herbivore species spent
consuming Oat seeds
Figure 8.17 Wallaby weight in kg at each weighing period for the oat trial
Figure 8.18 Mean weight (kg) loss of wallabies $(n = 6)$ at the data collection days
compared to the mean of inital weight. Each weighing day recorded significant weight
loss. The different alphabetical characters indicate significant differences ($P < 0.001$ at the
0.05 significance level means + SEM df = 5) among weighting times 166
100
Figure 8.19 Change in wallaby condition score over the duration of the oat seed trial.
Numbers on the X axis represent the wallaby while numbers on the Y axis represent
Condition Scores (CS)

Figure 8.20 Total percentage of weight loss for each wallaby during the oat trial. The
wallaby order is the same as fig. 8.19
Figure 9.1 Comparison of the four test species' mean body weight (kg). Different
alphabetical characters indicate significant differences (P < 0.001 at 0.05 significance
level, means + SEM, n=20, df = 19) among species
Figure 9.2 Average lip length (mm) of of the four species (P <0.001, means + SEM,
n=20, df = 19). Different alphabetical characters indicate significant differences (at 0.05)
significance level) among species176
Figure 9.3 Standardised lip length (mm) to body weight (kg) ($P = 0.036$, mean + SEM,
n=20, df = 19). Different alphabetical characters indicate significant differences (at 0.05
significance level) among species176
Figure 9.4 Mean left incisor/pad row length (mm) (P <0.001, means + SEM, n=20, df =
19). Different alphabetical characters indicate significant differences (P < 0.001 at 0.05
significance level) among species177
Figure 9.5 Standardised incisor row length (mm) to body weight (kg) of the four test
species (P<0.001, mean + SEM, n=20, df = 19). Different alphabetical characters indicate
significant differences (at 0.05 significance level) among species177
Figure 9.6 Mean tongue length (mm), $n=20$, df = 19. Different alphabetical characters
indicate significant differences (P < 0.001 at 0.05 significance level, means + SEM)
among species
Figure 9.7 Standardised tongue length to body weight of the four test species (P<0.001,
mean + SEM). Different alphabetical characters indicate significant differences (at 0.05
significance level) among species
Figure 9.8 Mean lower jaw width (mm) (P< 0.001 , means + SEM), n= 20 , df = 19.
Different alphabetical characters indicate significant differences (at 0.05 significance
level) among species179
Figure 9.9 Standardised width of dental arcade to body weight of the four test species
(P<0.008, mean + SEM). Different alphabetical characters indicate significant differences
(at 0.05 significance level) among species

Abstract

Kangaroo Island is of high conservational significance with the largest remaining interface between native vegetation and agriculture in South Australia. The two main native herbivores on Kangaroo Island are the western grey kangaroo and the tammar wallaby. Two introduced herbivores, sheep and feral goat, also contributed to the study. All animal species coexist in the north western districts of Kangaroo Island. All species coexisted at the Borda Vale property, Cape Borda and Correll property de Mole River field sites.

Competition between mammals on Kangaroo Island was investigated to determine if the Hutchinson Theory of Interspecific Competition could be either rejected or not-rejected. Hutchinson's theory states that an animal needs to be at least 2.1 times either larger or smaller in body weight than another competitor in the same environment to escape the influences of interspecific competition. The current investigation was two pronged; comprising field studies with subsequent analysis of plant cuticles from faecal matter, and secondly scientific trials on the mainland held at The University of Adelaide, Roseworthy campus, South Australia. The *in situ* field studies involved collecting faecal samples from each species and pasture comparison at three sites. The pasture structure on both sides of the recently erected boundary fence at two sites on Borda Vale was determined. Plant cuticles from faecal samples provide insight to the dietary composition for each species, and any dietary overlap between species. The body condition of all herbivores in the trial was assessed prior to the pen trials. Recognised body condition assessment methods for sheep and goat were available, but not for the macropods. Therefore, a condition score system (CS) was devised utilising biological indices as the basis of the CS system. Pen

trials included species-specific pens and mixed species pens, a total of eleven half hectare pens. Each pen had the same pasture plant structure with a plant survey determining the level of competition among the four species. A palatability/cafeteria trial of the pen plant species was undertaken by placing replicated plant specific pots in a test arena to record food preference for each animal species. Animals from each of the four species had mouth characteristic data recorded to detect any morphological differences which could provide an alternative explanation to the Hutchinson theory.

Pasture at all three sites fluctuated with seasonal condition, with the exception of bryophytes, that were only present in pastures on Borda Vale. The dietary overlap results (average C 0.14) indicated a low dietary overlap among the four herbivores throughout the four seasons. However, the greatest average seasonal dietary overlap result was between pairs of herbivores, occurring in spring (C 0.76 and C 0.85), when regrowth is at its greatest. In summer (C 0.70) and autumn (C 0.67) the dietary overlap decreased slightly, due to diversification of plant species eaten, with the increase of native browse vegetation in the diet. The wallaby, the smallest competitor, is in direct competition with the three larger competitors, with the greatest competition for resources being with the kangaroo (C 0.90) throughout the seasons.

The condition score (CS) indices were applied to both macropods. However; the focus was mainly on the CS system for the tammar wallaby. The development of the CS system included four body indices. The system has five condition score levels, ranging from level one, representing an animal in very poor body condition, to level five, representing an animal in optimal condition. The boundary between being fit for this trial work and not fit occurred at CS 2 and CS 3. Locomotive performance was impaired below CS 3.

Therefore, animals that failed to achieve CS 3 status were rejected from inclusion in the trials.

The two pen trials, one replicated and one pseudo-replicated, indicated that all herbivore species ate all of the pasture species on offer. Only a proportion of the competitive interactions between the mammalian grazing herbivores of Kangaroo Island were consistent with the predictions of the Hutchinson Theory. The results of the study produced some instances in which the smallest animal was the more effective forager. In several instances, no differences were detected, and in two instances (*Althaea officinalis* and *Heliotropium europaeum*) two of the larger grazers were more effective than the wallaby. Also, there was an instance in which one large herbivore had an advantage over another large herbivore for *Tribulus terrestris*. However, it appeared that the wallaby ate none of the oat grain (*Avena sativa*) even though it was the most abundant potential food source available in the trial pens. Further investigations of the palatability of fodder in the pen trial are indicated.

Further investigation into the association between the wallaby and ingestion of oat grain were undertaken. Wallabies ate oat grain only as a last resort, and were not able to maintain good body condition on a diet of oats. The finding that wallabies find oat grain unpalatable has ramifications for the farmers and conservation management on Kangaroo Island during drought condition, when hand feeding of oat grain is the major form of supplementary feeding of sheep.

Many factors may explain the lack of support for the Hutchinson Theory of size displacement in this study. The absolute morphological characteristics of lip length, incisor length, tongue length and lower dental arcade width of the wallaby were statistically smaller than all the larger herbivores species in this study. Although the morphological differences (corrected for scale) in mouth structures revealed some statistically different characteristic among the four herbivores with no wallaby characteristic being statistically smaller or larger than all of the larger herbivores species. Other factors that could explain species diet separations, thereby reducing direct competition, are discussed including, height of reach, eye sight, height of vegetation preferences, temporal and diurnal separation.

The Hutchinson Theory is not supported in the current field study either, with the wallaby clearly in direct competition with the three larger herbivores on Kangaroo Island with the greatest competitor of the wallaby being the kangaroo. The pen trials only provided weak support for the Hutchinson Theory which provides only one explanation of competitive separation. Therefore, this theory is simplistic when there are many alternative explanations that allow dietary separation and reduce direct interspecific competition. This research highlights management issues that have important implications for the farmer and conservation managers on Kangaroo Island.

Declaration

This work is the result of my own investigation. The content herein has not been accepted for the award of any other degree or diploma in any university or other tertiary institution to Richard Bosworth and, to the best of my knowledge and belief, contains no material previously written or published by any other persons except where due reference is made in the text.

I give my consent for this thesis when deposited in the University Library, being made available for loan or photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australian Digital Thesis Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Richard Bosworth

January 2012

Acknowledgements

The birth of the Aboriginal Flag occurred at Tarndanyangga / Victoria Square, Adelaide, in July 1971 at a land rights rally. Later that same year, the Aboriginal Flag was flown at the Aboriginal Tent Embassy in Canberra. Today, the Aboriginal Flag has become a powerful symbol for Reconciliation and hope for many Indigenous and non-Indigenous people throughout Australia.

The Aboriginal Flag was designed by Harold Thomas. Harold is a Luritji man who currently resides in the Northern Territory. Harold was born in Alice Springs and was the first Aboriginal person to graduate from an Australian Art School.

The Aboriginal Flag is divided horizontally into two equal halves of black and red, with a yellow circle in the centre. The black symbolises Aboriginal people; the red symbolises the mother earth and the ochre, which is used by Aboriginal people in ceremonies, the yellow, the sun, the constant giver and renewer of life.

I would like to acknowledge the Ngarrindjerri and Kaurna people who are the traditional owners of the land where my research work was conducted and completed. I am also very respectful of the sensitivity of conducting research on a sacred site and I am grateful for the Elders of the Ngarrindjerri Nation for giving me permission to access Kangaroo Island, for without this permission I would not have undertaken this research project.

Throughout my tertiary educational journey, Wilto Yerlo at the University of Adelaide has provided cultural support, a sense of where I belong and personal support without any reservations since 2000, when I started this journey with the Foundation Science course. To Professor Roger Thomas, Dean of Aboriginal Education: Wilto Yerlo and the whole team both past and present, thank you. Daniel Turner your support and friendship have made this journey possible, you have always had a friendly ear to listen to my problems (except when you have been on bloody holidays) and I sincerely thank you with all of my being. To all the members of the Indigenous Research Focus Group, thank you, for your words of wisdom, encouragement and cultural grounding.

To my supervisory team Dr Philip Stott and Professor Gordon Howarth thank you for your help, assistance and advice through my candidature. I am eternally grateful to Phil who passed on so much knowledge in dealing with the many animal husbandry problems that arose with the four herbivore species both wild and domestic.

Financial support has been a vital component for my research, for without the support this research would not have been possible. I am very proud and yet humbled and astounded to be the first Indigenous PhD Candidate in the Faculty of Sciences at the University of Adelaide. The University of Adelaide through the Faculty of Sciences has provided a Divisional Scholarship for my living cost for the three and a half years of my research, while the Federal Government has provided essential assistance for both living expenses through Abstudy and my total project cost through the Discovery Indigenous Researchers Development Grant from the Australian Research Council.

This project was authorised by the University of Adelaide Animal Ethics Committee, approval numbers S-103-2006 and S-047-2008 and scientific research permit for the capture and keeping of wildlife from the Department for Environment and Heritage, permit number G25303.

To the staff at Animal and Plant Control Board on Kangaroo Island, especially Keith Hodder and Pip Masters, thank you for your assistance in helping me to find property owners where all four herbivore species were present, and were also willing to help with this research. Property owners Duncan and Coral Correll at Western River and Borda Vale manager Neil and Annie Arnald at Cape Borda, thank you for hospitality and for providing access to your properties for faecal collection on the many occasions, enabling the establishment of the extent of competition in the area.

Thank you to all of the people, too many to name individually, that have assisted with this project in various ways, your contributions were very much appreciated.

To my family; especially Lois, my wife and life partner: I am grateful to you all for your love, encouragement and patience. Thank you for your understanding and always being there for me. Lois you are my rock and an inspiration to me by the way you push through adversity and never let your health issues prevent you from providing assistance to my project when required. I am eternally grateful for your companionship during the field trips on Kangaroo Island and your assistance with capturing and handling of my research animals.