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Abstract 
 

This thesis contains a series of journal papers in which a new segmental moment-rotation 
(M/θ) approach is developed for both instantaneous and long term loading. The analysis 
technique is based on the starting position of moment-rotation rather than moment-curvature 
and the assumption that plane sections remain plane, but not on the often applied corollary of 
a linear strain profile. Using the well-established mechanics of partial-interaction theory, the 
M/θ approach simulates the formation and gradual widening of cracks as well as tension 
stiffening, as the reinforcement slips relative to the concrete which encases it, and, using the 
mechanics of shear-friction theory, the approach simulates the formation and failure of 
concrete softening wedges. Moreover, being mechanics based, the M/θ approach can in 
theory be applied to any type of member, that is any cross section, with any concrete 
properties, and any reinforcement type with any bond characteristic. Hence using partial-
interaction and shear friction theories, the M/θ approach obviates the need for both 
empirically derived effective flexural rigidities and hinge lengths. This leads to the 
establishment of a new equivalent flexural rigidity that accounts for both concrete cracking 
and concrete softening and can be applied to both instantaneous and long term loading.  

Having established the equivalent flexural rigidity from segments of a member, it can then be 
used to predict the effective flexural rigidity of an entire member, and hence the load 
deflection behaviour through the application of a numerical segmental analysis procedure. It 
is further shown that with simplifying assumptions closed form solutions to describe the 
equivalent flexural rigidity of a segment can be obtained and member deflections described 
using standard analysis techniques.  

Having established that the M/θ technique can be applied using both numerical and closed 
form solutions, it is used to predict a broad range of reinforced concrete behaviours. These 
behaviours include: the instantaneous deflection of beams reinforced with both ductile steel 
and brittle fiber reinforced polymer bars and the instantaneous deflection of laterally and 
eccentrically loaded columns, including those in which second order effects are considerable 
and the long term deflection of simply supported beams. Through these broad applications, it 
is shown that the M/θ approach represents a mechanics based solution to reinforced concrete 
analysis, capable of accurately predicting both instantaneous and long term deflections from 
serviceability through to peak loading and collapse, where the only empirically derived 
requirements are material properties. Hence, the M/θ approach can be considered an 
extension of traditional analysis techniques in that it removes the need to empirically define 
effective flexural rigidities and hinge lengths to determine member behaviour. 
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Introduction and General Overview 
 

Current analysis techniques for the flexural analysis of reinforced concrete (RC) members are 
based on a full-interaction (FI) moment-curvature (M/χ) technique which assumes plane 
sections remain plane at all cross sections as well as the corollary of a linear strain profile. 
These assumptions mean that the M/χ approach cannot simulate what is seen in practice, that 
is, the formation and widening of cracks as the reinforcement slips relative to the concrete 
which surrounds it, and the formation and failure of concrete softening wedges. 
Consequently, the FI M/χ approach relies on empirically derived effective flexural rigidities 
and hinge lengths in order to determine member deflection. Being empirically derived, these 
should in theory only be applied within the bounds of the tests from which they were 
calibrated, and hence the FI M/χ approach requires large scale testing prior to its application 
to new materials, such as has been the case with the introduction of brittle FRP 
reinforcement. 

In this work, an alternative analysis technique: the partial-interaction (PI) moment-rotation 
(M/θ) approach is developed. The approach is based on the starting position of moment-
rotation rather than moment-curvature and the assumption that plane sections remain plane, 
but not the corollary of a linear strain profile. Using the well-established mechanics of 
partial-interaction theory, the formation and gradual widening of cracks as the reinforcement 
slips relative to the concrete which encases it is simulated, and, using the mechanics of shear-
friction theory, formation and failure of concrete softening wedges is considered. Being 
entirely mechanics based, the PI M/θ approach can therefore in theory be applied to any type 
of member, that is any cross section, with any concrete properties, and any reinforcement 
type with any bond characteristic. Hence, using partial-interaction and shear-friction theories, 
the PI M/θ approach obviates the need for both empirically derived effective flexural 
rigidities and hinge lengths required for the FI M/χ approach. Moreover, the application of 
this approach has lead to the establishment of a new mechanics based equivalent flexural 
rigidity, which accounts for both concrete cracking and concrete softening and can be applied 
to both instantaneous and long term loading.  

This thesis contains a collection of manuscripts published, accepted or submitted to 
internationally recognised journals. Each of the chapters 1-3, which are titled according to 
the research objective, contain: an introduction explaining the aim of the chapter and how the 
work fits into the overall objective; a list of manuscripts contained within the chapter; and 
finally the presentation of each manuscript.   

Chapter 1 provides background information on the current methods applied to the design of 
RC beams and details the alternative single crack PI M/θ approach. This approach can be 
applied to members where it is known that a weak bond exists between the reinforcement and 
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the surrounding concrete or as a reliable lower bounds approximation to the analysis of all 
members.  

Chapter 2 contains four journal papers which show how the PI M/θ approach can be used to 
derive cross-section behaviour or properties such as flexural rigidities. The first two of these 
papers develop the segmental PI M/θ approach, which is the major focus of this thesis, for 
the analysis of reinforced concrete beams and columns. The segmental approach is different 
from the single crack approach in that it simulates the partial interaction tension stiffening 
which takes place between a pair of cracks. The segmental approach is therefore more 
applicable to members in which a strong bond forms between the reinforcement and the 
concrete, and in which the moment gradient is shallow, the extremity of which would be a 
constant moment region. Importantly, these two papers outline the development of a new 
cross sectional equivalent flexural rigidity which can be used to predict member deflection 
using standard analysis techniques. The third paper covers the development of shear friction 
material properties which are required to carry out a M/θ analysis to failure, and finally, the 
fourth paper describes the development of a numerical partial-interaction approach which 
allows for load reversals and hence for analysis of the cyclic load case. 

Chapter 3 then focuses on the use of the equivalent flexural rigidity derived in Chapter 2 to 
describe member behaviour. The first paper in this chapter applies the segmental PI M/θ 
approach to both laterally and eccentrically loaded columns where second order effects are 
significant, and it is shown that the approach can accurately simulate the load-deflection 
behaviour from serviceability to peak loading and through to collapse.  The second and third 
publications in this chapter focus on the serviceability behaviour of reinforced concrete 
beams; they outline an extension of the segmental PI M/θ approach to allow for concrete 
shrinkage and creep, as well as the development of closed form flexural rigidity and 
deflection equations. Finally the fourth publication brings together the single crack and 
segmental PI M/θ approaches, showing how they can be used in conjunction to quantify, 
entirely through mechanics, the deflection of members at all limit states, as well as to 
quantify moment redistribution and energy absorption throughout.  
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Chapter 1 – Background 

Introduction 
This chapter contains the paper “FRP reinforced concrete beams – a unified approach based 
on IC theory” which provides background information on the fundamental mechanisms used 
throughout the remainder of this thesis as well as inducing the single crack M/θ approach. 
Significantly, it will be shown that the M/θ approach, through the use of mechanics, 
simulates what is observed in practice and hence can be used to develop numerical and 
closed-form models for: moment-rotation and confinement; crack widths, crack spacings and 
deflections; moment redistribution and energy absorption; the stirrup and concrete 
component of shear failure; and the effect of fibers in concrete. Being mechanics based it is 
also shown that the approach is generic and therefore can in theory be applied to any concrete 
or reinforcement, type.  

 

List of manuscripts 
Oehlers, D.J., Mohamed Ali M.S., Haskett, M., Lucas, W., Muhamad, R., and Visintin, P., 
(2011) “FRP reinforced concrete beams – a unified approach based on IC theory”. ASCE 
Composites for Construction , May/June, Vol. 15, No. 3, pp293-303. 
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FRP reinforced concrete beams – a unified approach based on IC theory 

Deric John Oehlers, Mohamed Ali M.S., Matthew Haskett, Wade Lucas, Rahimah Muhamad 
and Phillip Visintin 

 

ABSTRACT 

In general, steel reinforced concrete deals with a ductile steel material and a very strong and 
ductile bond between the steel reinforcement and concrete, so that debonding rarely governs 
the design. In contrast, FRP reinforcement is a brittle material with a weak and brittle bond 
so that debonding is a major issue. Consequently, there has been an extensive amount of 
research on FRP debonding and in particular intermediate crack (IC) debonding. This paper 
shows that the very good research by the FRP research community on the mechanics of IC 
debonding can be applied to a wide range of apparently disparate reinforced concrete 
behaviours to produce a unified approach. Hence a single mechanism, or unified approach, 
based on IC debonding is proposed in this paper for dealing with moment rotation, tension 
stiffening and deflections, member ductility and moment redistribution, shear capacity, 
confinement, and fibre concrete for FRP RC beams. 

Keywords: FRP; reinforced concrete beams; moment rotation; tension stiffening; deflection; 
ductility; moment redistribution; shear capacity; confinement; and fibre concrete.   

 

INTRODUCTION  

There has been an extensive amount of research over the past twenty years on FRP 
reinforced concrete (fib 2001; Teng et al 2002; Oehlers and Seracino 2004; Oehlers et al 
2008a; ACI 2008) which has encompassed the seemingly disparate problems of flexure, 
shear, moment redistribution, ductility, confinement and fibre concrete. It is shown in this 
paper that these apparently disparate behaviours can be modelled using a unified approach 
that is based on a partial-interaction (that is interface slip between the reinforcement and its 
surrounding concrete) structural mechanics mechanism that uses IC debonding as its main 
cornerstone. However, the model is not only concerned with the ultimate limit of IC 
debonding but also the partial-interaction (PI) behaviour (interface slip) from the 
commencement of crack widening to debonding which will be referred to as IC theory.  

The philosophy behind this unified approach is first described. It is then shown that central to 
this new model is the discrete rotation that occurs through crack widening at each individual 
crack and that crack widening is due to slip between the reinforcement and concrete that is IC 
theory. Furthermore, that IC theory and its associated discrete rotation can be used to 
develop structural mechanics numerical and closed form models not only for (i) moment 
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rotation but also for: (ii) crack spacings, crack widths and subsequently tension stiffening and 
member deflections; (iii) moment redistribution and the ability of a member to absorb 
energy; (iv) the shear deformation and capacity of a reinforced concrete (RC) member, where 
it is shown that shear failure is simply a limit to the moment rotation behaviour and not an 
alternative mechanism; (v) quantifying the confinement forces due to stirrups and wraps; and 
for (vi) quantifying the effect of fibres in concrete.  

In general, civil engineering research comprises the following steps. (1) The development of 
the mechanics model to simulate the mechanism being studied. (2) The qualitative validation 
of the mechanics model to show that it physically simulates the mechanism being studied that 
is it physically simulates what may be seen in practice; as an example, it may be necessary to 
show that the mechanics model has the ability to simulate crack development and spacings or 
to simulate rotations. This is followed by (3) the quantitative calibration of the mechanics 
model to ensure that the magnitudes predicted by the mechanics model are close to those 
determined by tests; for example this could be done by changing the coefficients or material 
properties used in the mechanics model. And finally, there is (4) the development of the 
design rules; these could be the direct use of the mechanics model, which would generally 
has a wide application, or the development of simple and more convenient design approaches 
from parametric studies using the mechanics models, which have a limited width of 
application within the bounds f the parametric study. It is felt that developing a mechanics 
model that closely simulates the actual behavior of the mechanism being studied (that is steps 
(1) and (2) and which is the thrust of this paper) is important in research as it should be easier 
to calibrate and to develop design rules (that is steps (3) and (4)). The aim of this paper is to 
qualitatively illustrate the IC theory structural mechanics mechanisms of this new unified 
approach for FRP reinforced concrete, that is Steps (1) and (2), and not to quantify the 
behaviour, that is Steps (3) and (4), which is given elsewhere in referenced published papers.  

 

PHILOSOPHY BEHIND UNIFIED APPROACH 

A two span continuous beam that had originally been plated with FRP externally bonded 
(EB) tension face plates that have now debonded is shown in Fig. 1. A reinforced concrete 
beam can be considered to consist of undisturbed regions between cracks and disturbed 
regions at each individual crack.  

The philosophy behind the unified approach is that the behaviour of reinforced concrete 
beams as in Fig. 2(a) can be separated into: undisturbed regions between cracks where linear 
strain profiles govern as in Fig. 2(b); and disturbed regions at each individual crack where 
discrete rotations occur through linear rigid body displacements as in Fig. 2(c). The 
deformation of the undisturbed regions is governed by elementary and well understood and 
documented fundamental full-interaction (that is no slip between the reinforcement and its 
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adjacent concrete) moment-curvature (M/χ) analyses (Oehlers and Seracino 2004; Oehlers 
2007). This full-interaction (FI) analysis is based on Bernoulli’s linear strain profiles where 
integration of the curvature along the beam, as in Fig. 2(b), can lead to continuity of rotations 
and deflections along the beam. In contrast, the deformation of a disturbed region is governed 
by a discrete rotation, that is a sudden change in rotation, that is directly proportional to the 
crack width at the level of the longitudinal reinforcement as shown in Fig. 2(c). In this case, 
the crack width is simply the partial-interaction (PI) slip between the longitudinal 
reinforcement and the concrete at each crack face and which is governed by IC theory. 
Hence, full-interaction (FI) analyses apply in undisturbed regions and partial-interaction (PI) 
analyses apply in disturbed regions.  

-ve region+ve region +ve region

 

Fig. 1. Two span FRP EB plated continuous beam  

 

2θ

(a) beam

(b) undisturbed region - curvature deformation

δuncracked

(c) disturbed region - discrete rotation at individual crack

δcrack

∆rebar

∆FRP

Prebar

PFRP

2θ2θ

ε
linear strain profile

rigid body 
displacement

 

Fig. 2. Unified approach philosophy 

It is the discrete rotation at each individual crack, that is governed by IC theory, which is 
central to this unified approach. The concept of hinge rotation is fundamental to 
understanding the behaviour of RC beams as it governs the ability to deform and redistribute 
moment and absorb energy. It can be seen in Fig. 1 that the rotation of the so called hinge in 
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the –ve or hogging region and the ‘hinge’ in the +ve or sagging region can comprise of 
numerous discrete rotations at each individual crack within the hinge region. However, 
yielding of any steel reinforcement can cause much of the rotation to be concentrated at an 
individual crack as in the +ve region in Figs. 1 and 2 and also at the crack in the fibre 
concrete beam in Fig. 3 that had been subjected to blast loads (Wu et al. 2007).   

 

DISCRETE ROTATION AT EACH INDIVIDUAL CRACK 

The components required for a discrete rotation at an individual crack are shown in Fig. 3. 
Even though the crack faces in the tension zone may be non-linear, flexure causes the crack 
faces to separate so that there is a linear variation in crack width from the soffit to the apex of 
the crack. To accommodate the crack width and further crack widening, slip must occur 
between the reinforcement and concrete; this is an absolutely essential prerequisite as 
straining or yielding of the reinforcement does not by itself widen a crack as this would 
require infinite strains. Furthermore, if the compressive forces in the concrete are large 
enough, wedges can form which can slide off to cause failure. These deformations form the 
basis for the discrete rotation model which is illustrated in Fig. 4. The discrete rotation model 
or mechanism in Fig. 4 is based on the following three well researched fundamental 
principals: rigid body displacements; shear friction or aggregate interlock; and IC theory. 

 

wedges

reinforcement
slip

flexural crack face

 

Fig. 3. Discrete rotation at a single crack 



10 

 

θ
rigid 
body 
rotation

concrete 
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ssoft

∆FRP

PFRP

Psoft

Prebar
∆rebar

sliding plane

hsoft
σn

τ

Lsoft

wcr

wsoft

 

Fig. 4. Discrete-rotation mechanism 

The opening of the vertical crack in Fig. 4 consists of two rigid bodies rotating as shown and, 
hence, is an example of a rigid body displacement. This rigid body rotation can also cause the 
wedges to slide across the sliding planes a distance ssoft and to separate across the sliding 
plane by w through aggregate interlock such as by wsoft; this relative movement between the 
softening wedge and the adjacent beam concrete is also an example of a rigid body 
displacement. Shear friction or aggregate interlock research simply quantifies the rigid body 
displacements and stresses across a sliding plane as shown in Fig. 5. Shear friction research 
is the relationship at a specific point in the sliding plane between the normal stress across the 
sliding plane σn, the shear stress across the sliding plane τ, and the rigid body slip and 
separation δ and w. These shear friction properties (σn, τ, δ and w) and their limits or 
capacities have been quantified for initially cracked interfaces (Mattock and Hawkins 1972; 
Walraven 1981; Walraven et al 1987; Haskett et al 2010a) such as across the flexural crack in 
Fig. 4 when subjected to shear, and also for initially uncracked interfaces (Mattock and 
Hawkins 1972; Haskett et al 2010a) such as at the wedge interface shown in Fig. 4 and also 
across the vertical plane in the compression zone above the crack when subjected to shear 
forces.  

δ w
τ

σn

σn

τ  

Fig. 5. Shear friction components 
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The third component of the discrete rotation model in Fig. 4 is the partial-interaction between 
the reinforcement and the concrete, that is IC theory, which allows the reinforcement to slip 
relative the crack face ∆ and without which the crack could not open or widen. It is the 
relationship between the force and slip in the reinforcement at the crack face, shown as P and 
∆ in Fig. 4.   

 

IC THEORY   

Figure 6 is an example of intermediate crack (IC) debonding for a near surface mounted 
(NSM) FRP plate. IC debonding may be defined as when there is sufficient separation of the 
reinforcement from the concrete to cause a reduction in the reinforcement strain. IC 
debonding deals with debonding of reinforcement that intercepts a crack due to stress 
concentrations that occur due to the sudden discontinuity between the reinforcement and the 
concrete at the crack face. We will define IC theory as not only what is happening at IC 
debonding but what is happening from the onset of the intermediate crack and its interception 
of the reinforcement all the way through to IC debonding.  

 

Fig. 6. IC debonding of FRP NSM side plate 

Central to IC debonding and IC theory is the material bond characteristics between the 
reinforcement and the concrete (De Lorenzis et al 2002; Lu et al 2005; Dai et al 2005; 
Seracino et al 2007; Haskett et al 2008; Rashid et al 2008; Oehlers et al 2008b; Eligehausen 
et al 1983; Malvar 1995, Harajli et al 2004) that is the shear-stress/slip (τ-δ) relationship. 
Examples of idealised bond-slip characteristics are show in Fig. 7 where: the peak shear 
stress τf occurs at a slip δ1; and δf is the peak slip beyond which the shear stress can be 
assumed to be zero. It is these τ-δ bond-slip characteristics that allow IC theory to be 
developed as it allows the variation of slip along the reinforcement, that is the partial-
interaction behaviour to be quantified which is the essence of IC theory. The fundamental 
characteristics of IC theory is illustrated in the following numerical simulation that uses a 
shooting approach. A shooting approach is useful as it incorporates all the structural 
mechanics principles and boundary conditions required to find a solution which, 

 NSM 
CFRP 
s ide 
face 

strips 
 

Centre support 
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consequently, can also be used to develop closed form structural mechanics solutions for IC 
theory. 

τ

δ

τf

δ1 δf

uni-linear ascending

uni-linear 
descending

bi-linear 

non-linear 

 

Fig. 7. Bond-slip characteristics 

A numerical simulation of partial-interaction IC theory (Haskett et al 2008) is illustrated in 
Fig. 8 for the case of a reinforcing bar (which can have any material property) of cross-
sectional area Ar which is being pulled out with a force Pr1 from a restrained concrete block 
of cross-sectional area Ac such that Pr1 equals Pc1. This simulates a standard test that is used 
to directly measure the bond-slip characteristics of FRP or steel reinforcement (Haskett et al 
2008). To understand the behaviour, the pull-test is sliced into very fine segments of length 
Ls such that Ls is much less than the length of the reinforcement Lr. Each segment is shown 
separated so that the forces between segments can be inserted and, furthermore, shear lag is 
ignored so that the strain in the concrete is uniform over a cross-sectional area Ac.  

εr1= f(Pr1)
Pr1

(1)

B1=f(∆1)

∆1

Ls

Pc1

Pr1-B1

Pc1-B1εc1= f(Pc1)

(ds/dx)1=εr1-εc1

δ∆1=(ds/dx)1Ls

εr2= f(Pr2)
Pr2

(2)

B2=f(∆2)

∆2=∆1−δ∆1

Ls

Pc2

Pr2-B2

Pc2-B2εc2= f(Pc2)

(ds/dx)2=εr2-εc2

δ∆2=(ds/dx)2Ls

εr2= f(Pr2)
Prn

(n)

Bn=f(∆ν)

Ls

Pcn

Pr2-B2

Pcn-Bnεcn= f(Pcn)

(ds/dx)n=εrn-εcn

δ∆n=(ds/dx)nLs

∆n=∆n-1−δ∆n-1

L r

ds/dx 
& ∆ 
tend to
zero

εr= 0
or
∆ = 0

∑ = 0P

crack
face

reinf.
end

 

Fig. 8. IC theory numerical simulation of pull-test 



13 

 

Lper Lper

Ar of EB plate
Ar of NSM plate

concrete surface

Lper

Arof bar

 

Fig. 9 IC debonding failure planes 

At the crack face in Fig. 8: the bar slips ∆1; the reinforcement strain is εr1 which is a function 
of Pr1; the concrete strain is εc1 which is a function of Pc1; the algebraic summation of Pr1 and 
Pc1 is zero; the slip-strain (ds/dx)1 is εr1-εc1; and the bond stress is τ1 which is a function of ∆1 
from the material bond-slip relationship such as in Fig. 7. For very thin segment lengths Ls: 
the bond force Bn in segment (1) is very close to  τnLperLs where Lper is the width of the 
failure plane encompassing the reinforcement as shown in Fig. 9 (Seracino et al 2007; 
Haskett et al 2008; Oehlers et al 2008b; Rashid et al 2008); the change in slip within a 
segment δ∆n in Fig. 8 is close to (ds/dx)nLs; so that the slip in segment n that is ∆n is ∆n-1-δ∆ 

n-1. Hence the variation along the reinforcement of the slip (∆), slip-strain (ds/dx), and strains 
εr and εc can be determined. Any of the following three boundary conditions can govern the 
behaviour. For long lengths of reinforcement Lr, full interaction conditions, that is both the 
slip-strain (ds/dx) and slip (∆) tend to zero at the same section and before the end of the 
reinforcement at Lr. For short reinforcing bars anchored at Lr such as may occur at a bend in 
the reinforcement, the boundary condition at Lr is ∆ = 0. And for short reinforcing bars not 
anchored at Lr but free, the boundary condition at Lr is εr1 = 0. In general, an iterative 
shooting approach is used to find a solution (Haskett et al 2008). These structural mechanics 
fundamental principles illustrated in this numerical analysis are the basis of IC theory.    

The partial-interaction numerical solution described above has been applied in Fig. 10 to the 
analysis of a pull-test in which an EB plate has been bonded to a concrete prism. In this case, 
the bi-linear bond-slip relationship in Fig. 7 has been used (Yuan et al 2004; Mohamed Ali 
M.S. 2008; Haskett et al 2008). The variation in the bond stress along the reinforcement as 
the slip at the crack face ∆1 is gradually extended is shown in Figs. 10(a) –(c). Figure 10(a) 
shows the distribution of shear stress (τ) at the start of loading where the full interaction 
boundary condition governs and Fig. 10(c) shows debonding where the unrestrained plate 
end boundary condition governs as shown. Often the cross-sectional area of the concrete Ac 
is several orders of magnitude greater than that of the reinforcement Ar so that the strains in 
the concrete in the numerical simulation in Fig. 8 can be ignored.   
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Fig. 10. Variation of shear stress in a pull test 

Having defined the behaviour and boundary conditions such as in Fig. 10, this IC theory 
procedure can be used to develop closed form solutions for a variety of bond-slip 
relationships and reinforcement material properties (Muhamad et al 2010). For example, the 
following equation uses the linear descending bond-slip relationship in Fig. 7 for any elastic 
reinforcement such as FRP or for steel prior to yield  
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and where Er is the Young’s modulus of the reinforcement. The P/∆ relationship from IC 
theory can now be used in the hinge model in Fig. 4 to determine the moment rotation 
relationship of a given reinforced concrete section.  

 

MOMENT DISCRETE-ROTATION 

The rigid body deformations shown in Fig. 4 are brought together in the analytically 
convenient form in Fig. 11 (Haskett et al 2008; Oehlers et al 2008c; Oehlers et al 2009;  
Haskett et al 2009a; Haskett et al 2009b; Haskett et al 2009c ). The position of the neutral 
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axis at level C can be determined from standard well established procedures. For example at 
serviceability, the neutral axis can be determined from the elastic analysis of the transformed 
cracked section. At the ultimate limit state the neutral axis can be determined from 
rectangular stress blocks and the well known gamma factor given in national codes and 
standards which also give the positions of the compressive forces. It can be seen that once the 
position of the neutral axis is established, the discrete rotation θ in the tension zone is directly 
proportional to the reinforcement slip ∆ or, inversely, for a given rotation θ the tensile 
reinforcement forces P can be determined from IC theory as ∆ is known. And consequently 
the moment M for that rotation θ. 
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Fig. 11. Moment/discrete-rotation analysis 

If the compression zone in Fig. 11 is unlikely to limit the rotation by compression failure 
(such as might occur in shallow slabs where the wedges or unlikely to slide or in reinforced 
concrete beams made with fibre concrete as fibre concrete is known to be highly ductile in 
compression) then the above analysis that is based solely on IC theory and rigid body 
displacements will suffice to give the moment/discrete-rotation. This is depicted in Fig. 12 
where the limits to the rotation are at either tension reinforcement fracture or debonding. 
However sliding failure of the compression wedge, as in the eccentrically loaded prism in 
Fig. 13 that is used to directly study concrete softening (Daniell et al 2008; Mohamed Ali 
M.S. et al 2010), can often precede reinforcement failure in beams that have normal concrete. 
In this case, it is necessary to directly link the rigid body deformations in the tension and 
compression zones in Fig. 11 as the rectangular stress block approach cannot predict the rigid 
body displacement at failure of the compression zone as it is strain based and not 
displacement based. 
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Fig. 12. Moment/discrete rotation 

 

 

Fig. 13. Sliding failure of wedge  

The concrete in the compression zone in Fig. 11 has two components. Immediately above the 
crack apex from C to B (below the sliding plane B-D) the concrete is in the ascending portion 
of its material stress-strain relationship which has a strain of εpk at its peak stress prior to 
softening as shown (Haskett et al 2009a). Hence immediately below and adjacent to the 
sliding plane and over the length of the wedge Lsoft the concrete strain is εpk. Above the 
sliding plane B-D, the concrete is softening as depicted by the wedge (Haskett et al 2009a; 
Mohamed Ali M.S. et al 2010). In this softening region, the force Psoft that a wedge of depth 
dsoft can resist has been found to depend on the Mohr Coulomb cohesive, c, and frictional, m, 
components of the concrete (Mattock et al 1972; Mattock 1974; Haskett et al 2009a; 
Mohamed Ali M.S. et al 2010) and is given by the following equation. 
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where the angle of the wedge α in both Eq. 3 and Fig. 11 is also a function of m and σlat is 
any lateral restraint imposed on the wedge which is discussed in the next section on 
confinement.  

The slip s along the wedge interface or sliding plane in Fig. 4 varies from zero above the 
vertical crack to ssoft at  the end of the wedge. As Psoft in Fig. 11 is known for a given dsoft so 
to is the stress in the wedge σsoft and from the ascending portion of the concrete stress-strain 
relationship the strain in the wedge εsoft. Hence from the slip-strain across the sliding plane 
εpk- εsoft, the maximum slip ssoft can be determined from (εpk- εsoft)Lsoft. For analytical 
considerations, this rigid body displacement ssoft is shown as point B in Fig. 11 and in line 
with the rigid body displacement of the crack face. Hence the rigid body displacement in the 
compression zone has now been linked to that in the tension zone so that the limit to the 
discrete rotation due to wedge sliding can also be incorporated in Fig. 12. There is one other 
limit to the discrete rotation which is labeled ‘shear failure’ in Fig. 12 which will be 
discussed later and where it will be shown that the shear capacity is directly related to the 
discrete-rotation and IC theory.  

Having now defined the discrete rotation as a function of both the softening wedge in the 
compression zone and IC theory in the tension zone it is now possible to derive closed form 
solutions. For example, for the following conditions (one level of reinforcement of area Ar 
which is at a distance h1 from the crack apex and d1 from the resultant compressive force; for 
a linear descending bond-slip characteristic as in Fig. 7; and for a linear elastic material at 
fracture such as FRP), the moment (Mf) and rotation (θf) at fracture is given by Eqs. 4 and 5:  

 1dfAM frf =        (4) 

where ff is the fracture stress 
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and where εf is the fracture strain. 

 

CONCRETE CONFINEMENT ON MOMENT/DISCRETE-ROTATION 

It is well known that FRP confinement of concrete in cylinders and prisms can increase the 
concrete ductility (Fam and Rizkalla 2001; Lam and Teng 2004; Griffith et al 2005; Wu et al 
2006) which in turn can increase the ductility or rotation capacity of a member (Wu et al 
2006; Haskett et al 2008). To illustrate the confinement mechanism that increases the 
member ductility, let us consider the beam in Fig. 14(a) which is wrapped externally with 
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FRP and confined internally with stirrups as in Fig. 14(c). The same discrete hinge 
mechanism as in Fig. 4 occurs in this wrapped member as shown in Fig. 14(b).  
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Fig. 14 Confinement mechanism 

Let us consider the line A-A in Fig. 14(a) that is drawn prior to sliding. After sliding, line A-
A moves to the two lines, shown as B-B with a slip separation s; the separation s is due to the 
different strains in the concrete above and below the sliding plane. For a smooth sliding plane 
interface, this slip s causes a vertical separation v as shown which depends on the angle of the 
wedge α. However, there is also a further vertical separation w induced by the slip s due to 
aggregate interlock as shown in Fig. 5 which can be quantified through the shear friction 
properties, σn, τ, δ and w, (Mattock et al 1972; Haskett et al 2010a; Mohamed Ali M.S. et al 
2010). Hence, the wedge rises at a section by v+w (Farrall et al 2008) as shown in Fig. 14(a). 
The wedge interface is simply an intermediate crack and, therefore, for a given separation 
(v+w) as in Figs. 14(a) and (c), IC theory can be used to determine the forces P in the wrap 
and in the stirrups which induces the lateral confinement σlat across the sliding plane. From 
shear-friction research (Mattock et al 1972; Jensen 1975; Haskett et al 2010a; Mohamed Ali 
M.S. et al 2010), this lateral confinement σlat can not only increase the force in the wedge 
Psoft in Fig. 14(b) as shown in Eq. 3 but it also suppresses sliding, ssoft in Fig. 14(b) and 
consequently sliding failure.  

It is this suppression of the sliding failure in the moment/discrete-rotation response in Fig. 12 
that can make the beam more ductile, that is it can rotate more without an increase in flexural 
strength. This increase in ductility is indicated in the analysis depicted in Fig. 14(b) where no 
axial forces are attributed to the wrap. It can now be seen that IC theory not only controls the 
behaviour in the tensile zone in Fig. 14(b) but also the confinement forces in the compression 
zone. Furthermore, that shear-friction properties and limits are required to quantify the 
movements and, therefore, the IC theory forces. And that the third prerequisite of rigid body 
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displacements are required to simulate the deformations in both the tension and compression 
zones to which IC theory can be applied. In short, the unified approach is based on three 
fundamental prerequisites: IC theory, shear-friction and rigid-body-displacements. 

 

CRACK SPACINGS, WIDTHS AND DEFLECTIONS  

Having illustrated how IC theory is central to the discrete rotation at a single crack, let us 
now consider multiple cracks as in the hinge vicinities in Fig. 1. A positive hinge region is 
shown in Fig. 15(a) where the first crack to form is at the centre after which primary and 
secondary cracks occur. It is common practice in tension stiffening research to first idealise 
the problem as that of a concentrically loaded prism (CEB-FIP 1985 & 1992, Eurocode 2, 
Chang 1996, David 2008, Gilbert 2007, Marti 1998, Wu 2009) as in Fig. 15(b) which is 
simply an IC theory problem. It may be worth noting that in the IC theory pull-test in Fig. 8 
the algebraic sum of forces at a section is zero, whereas, in the tension stiffening simulation 
in Fig. 15(b) the sum of forces at a section equals P. In all other respects the analysis is the 
same. 
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Fig. 15. IC theory simulation of tension stiffening 

The maximum stress in the concrete element in Fig. 15(b) occurs in the region where full-
interaction is approached that is the boundary condition where both the slip-strain and slip 
tend to zero as shown. This is, therefore, the minimum crack spacing Spr of the primary 
cracks as shown. After the primary cracks have formed at spacings Spr, we now deal with the 
partial-interaction model in Fig. 15(c) where by symmetry the boundary condition is that the 
slip at the centre at Spr/2 is zero as shown where the secondary crack would form if the bond 
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strength is sufficient. It can be seen that the formation of the primary cracks and secondary 
cracks require different boundary conditions.  

The distribution of cracks and crack widths can be determined using the same partial-
interaction numerical procedure as outlined in Fig. 8 which can also form the basis for 
structural mechanics closed form solutions. For example, a partial-interaction analysis of Fig. 
15(b) using a linear ascending bond-slip relationship in Fig. 7 gives the primary crack 
spacing as        
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where Er is the elastic modulus of the reinforcement and (EA)c is the axial rigidity of the 
concrete prism. It can be seen that the crack spacing is independent of the tensile strength of 
the concrete and directly dependent of the bond stiffness τf/δ1. Furthermore, an IC theory 
analysis of Fig. 15(c) gives the following primary half crack widths ∆pr in relationship to the 
force in the reinforcement at the crack Pr which is directly dependent on the primary crack 
spacing Spr. 
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where (EA)r is the axial rigidity of the reinforcement. 

Having now shown how IC theory can be used to quantify both the crack spacings and crack 
widths either numerically or through closed form solutions, the results can be used in Fig. 
2(c) to determine the deflection due to the discrete-rotation at each individual crack which 
can be added to that in the undisturbed region in Fig. 2(b) to derive the total deflection. 

 

MOMENT REDISTRIBUTION AND ENERGY ABSORPTION 

Moment redistribution is the ability of a hinge, such as that in the –ve region in Fig. 1, to 
rotate and hold much of its moment whilst the moment in another potential hinge region, 
such as that in the +ve region, achieves its required moment. Moment redistribution is 
illustrated in Fig. 16 for a continuous span of a beam which could be plated as shown in Fig. 
16(a). Within the span of the beam, there are four possible discrete-rotation hinges as in Fig. 
16(b). As described previously, it is now possible to derive the moment/discrete-rotation 
response, as in Fig. 12, for each possible hinge rotation from IC theory. The first hinges to 
form are labeled the ‘primary hinges’ in Fig. 16(b).  
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Fig. 16. Moment redistribution in a continuous beam 

Let us assume that the distribution of moment in the beam in Fig. 16(a) is known and varies 
from M1 to M2 as shown. Let us also assume that this distribution occurs after moment 
redistribution. It is a straightforward procedure to integrate the variation of curvature within 
the undisturbed region of flexural rigidity EI to determine the rotation θ1-χ in Fig. 16(c) that is 
required in the primary hinge to accommodate this distribution of moment. If the rotation 
capacity of the primary hinge is greater than θ1-χ then this moment redistribution can be 
accommodated. Alternatively, if the moment-rotation relationship, M-θ, of the primary hinge 
is known such as that shown in Fig. 12 then the moment redistribution capacity KMR can be 
determined (Oehlers et al 2010; Haskett et al 2010b; Haskett et al 2010c) as follows 
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where EI is the flexural rigidity of the undisturbed region of the beam and where KMR is the 
moment redistributed as a portion of the undistributed static moment, that is the well used 
‘percentage’ moment redistribution factor but not as a percentage here. Hence, knowing the 
moment-rotation response as in Fig. 12 it is possible not only to determine  the moment 
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redistribution factor KMR at its limit but also at the position of the maximum moment or at 
any moment. 

The ability to absorb energy depends on the ability to deform at all hinge locations as shown 
in Fig. 16(d). If the rotation capacity at the secondary hinges is θ2-θ then the primary hinge 
has to rotate θ1-χ+θ2-θ as shown. If this can be accommodated by the primary hinge then this 
is the deformation at failure. Hence, not only the ability to redistribute moment but also the 
ability to absorb energy can also be determined from IC theory.  

 

SHEAR DEFORMATION AND CAPACITY 

The moment/discrete-rotation response in Fig. 12 is not only limited by reinforcement 
fracture or debonding, and wedge sliding but can also be limited by shear failure. The 
discrete rotation analysis shown in Fig. 4 which is shown with a vertical crack can also be 
applied to inclined cracks as in Fig. 17. These cracks are subjected to both shear and flexure 
(Lucas et al 2010). To understand this flexure-shear mechanism, let us first consider a 
reinforced concrete beam with an inclined crack and with only longitudinal reinforcing bars 
as in Fig. 18 (Lucas et al 2010).   

 

Fig. 17. Discrete rotation at an inclined crack. 

Pfl Pfl

Pfl

Psh

Psh
Psh Psh

(a) Flexural deformation - discrete rotation (b) Shear deformation

2∆fl

2∆sh

IC theory
θ

potential
sliding plane

sliding planecompressive 
force  across 
sliding plane

compressive 
force  across 
sliding plane

A

B

Cwcr

A

C
 

Fig. 18. Flexure-shear mechanism 
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The analysis of the flexural deformation in Fig. 18(a) is the same as for the vertical crack in 
Fig. 11. A crack width wcr can be imposed at the soffit of the beam at C in Fig. 18(a) from 
which the total slip at the level of the reinforcement 2∆f can be determined. Consequently 
from IC theory, the force in the reinforcement Pfl can be determined which from longitudinal 
equilibrium is also the compressive force Pfl at an offset d for rotational equilibrium. From 
these forces and the beam properties can be determined both the applied moment Mapl and 
shear force Vapl at this hinge.  

The analysis of a uniform shear deformation is shown in Fig. 18(b) where through aggregate 
interlock the crack widens a further distance 2∆sh (to give a total slip of 2(∆fl+∆sh)). This 
widening further stretches the reinforcement to induce an increase in the tensile 
reinforcement force by Psh (to give a total force of Pfl+Psh) that can be derived from IC 
theory. For longitudinal equilibrium, there must be an additional equal compressive force Psh 
across the sliding plane the resultant of which must be in line with that in the reinforcement 
to ensure rotational equilibrium. 

The possible sliding plane A-C in Fig. 18 is subjected to a compressive force Pfl in the region 
A-B in Fig. 18(a) prior to sliding and then after sliding commences it is subjected to an 
additional compressive force Psh in Fig. 18(b). Hence, there is a total force when sliding 
commences of Pfl+Psh. It is these compressive forces across the sliding plane which govern 
the shear capacity of the sliding plane though shear friction theory (Walraven 1981, 
Walraven and Reinhardt 1981, Mattock and Hawkins 1972, Lucas et al. 2010b). The vertical 
component of this shear capacity is the commonly referred to ‘concrete component’ of the 
shear capacity Vc. It may also be worth noting that even though the compressive force after 
sliding commences Pfl+Psh is greater than that prior to sliding Pfl, the shear capacity after 
sliding may be less than that prior to sliding due to shear friction properties. This is because 
sliding reduces the shear resistance for a given normal force but sliding increases the normal 
force increasing the shear resistance. These two effects counteract each other so that the rate 
of change of each component determines whether sliding reduces or increases the shear 
capacity which explains the difference between rapid or gradual shear failure (Lucas et al 
2010; Zhang 1997). 

Let us now consider the case of a beam with both internal and external stirrups as shown in 
Fig. 17. The flexural behaviour is shown in Fig. 19. For an imposed crack width wcr, the 
reinforcement slips are ∆stp, ∆NSM and ∆long.fl as shown. Hence, from IC theory the 
reinforcement forces Pstp, PNSM and Plong.fl can be determined. It is the sum of the vertical 
components of the stirrup forces Pstp-fl and PNSM-fl which is the shear force directly resisted by 
the stirrups Vstir.  
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Fig. 19. Stirrup component of the shear capacity 

The analysis for the concrete component of the shear capacity is shown in Fig. 20. As 
explained in Fig. 18, the compressive forces across the potential sliding plane are shown as 
Pfl and Psh. These can be resolved as normal forces to the sliding plane N and as shear forces 
along the sliding plane S as shown. From shear-friction theory as explained previously, it is 
the normal forces N that determine the shear capacity along the sliding plane which is shown 
as (Vc)plane. However, this shear capacity must provide the shear forces S as shown leaving 
the capacity along the sliding plane to resist the vertical shear as (Vc)plane - ∑S = (Vc)β; the 
vertical component of which is the concrete component of the shear capacity Vc as shown.  
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Fig. 20. Concrete component of shear capacity 

It can be seen from the previous paragraph that using the total shear-friction shear capacity 
along the sliding plane (Vc)plane without allowance for the shear forces that are needed to 
maintain equilibrium ∑S will always overestimate the concrete component of the shear 
capacity. This maybe a reason why shear-friction is seldom used in practice to quantify the 
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concrete component of the shear capacity. It is also worth noting in Fig. 20 that the shear 
force  (Ssh)st associated with vertical stirrups is beneficial in that it increases (Vc)β while that 
associated with longitudinal bars (Ssh)long is detrimental that is it reduces (Vc)β. It can now be 
seen how IC theory controls both the stirrup and concrete components of the shear capacities.   

 

FIBRE CONCRETE 

Figure 3 shows the failure of a beam with fibre concrete. The effect of fibre on the tensile 
behaviour of concrete is often determined from tensile tests such as in Fig. 21. Gauges 
positioned at a-a can be used to measure the extension and consequently the strain εt up to 
cracking that is along O-A in Fig. 22; this is a material property. After cracking, the gauges 
not only record the extension due the strains in the uncracked concrete but also the extension 
due to the crack width wcr and, hence, are recording an effective strain. If the gauge length is 
increased from a-a to b-b in Fig. 21 the effective strain will reduce and, hence, there is no 
effective strain that can be used. However, what can be determined from these tests is the 
variation in stress with crack width as shown as B-C in Fig. 22 which is the IC theory P/∆ 
relationship described previously.  
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Fig. 21. Tensile test on fibre concrete 
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Fig. 22.  Fibre concrete tensile properties 
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Fibres are simply small bits of reinforcement although generally distributed in a random 
fashion. Hence the effect of fibre reinforcement across a crack is the same as the effect of 
reinforcement across a crack. Fibres cross the flexural crack in Fig. 3 and, hence, their 
contribution to the tensile forces in the moment/discrete-rotation analysis in Fig. 4 can be 
obtained from B-C in Fig. 22 which can be determined directly from tests (Schumacher et al 
2009, Suwannakarn 2009, Yuguang et al 2009) or from much good research on the 
micromechanics of fibre concrete (Bischoff 2003, Fantili et al 2009 & 2007, Jungwirth et al 
2004, Redaelli et al 2007) which is in many ways closely related to IC theory. Fibres also 
cross the wedge sliding plane cracks in Fig. 3 and, hence, their effect on wedges is the same 
as for stirrups and wraps as in Fig. 14. Consequently fibres provide an additional 
confinement stress σt from Fig. 22 which will inhibit wedge sliding and increase the ductility 
as has been found in practice (Yuguang 2009, Suwannakarn 2009). Finally, fibres cross the 
potential shear sliding planes. By so doing they induce: additional tensile forces transmitted 
by the fibres across the crack in Fig. 14 so that the stirrup resistance Vstir is increased; and 
additional compressive confinement forces in Fig. 20 which enhance the concrete component 
of the shear capacity Vc..  

It can be seen that fibres can increase the flexural capacity but in particular the flexural 
ductility and the shear capacity which has been found in practice. It has been shown that all 
the reinforced concrete behaviours described previously in terms of IC theory can also be 
used to explain the behaviour of reinforced concrete beams with fibre concrete. 

 

SUMMARY 

A unified reinforced concrete model for beams with FRP reinforcement or for steel 
reinforced concrete beams retrofitted with FRP reinforcement has been described. The model 
makes a direct distinction between the undisturbed region where conventional moment-
curvature analyses can be applied and disturbed regions at each individual crack where a new 
discrete moment-rotation model can be applied. The discrete-rotation is the step change in 
rotation at each individual crack due to widening of the flexural crack due to slip of the 
reinforcement. It is shown that the discrete rotation model depends on three fundamental 
principles: shear-friction, rigid-body-displacements and most importantly the IC theory 
developed specifically to prevent IC debonding of FRP reinforcement. It is shown that this 
discrete rotation approach can be used to develop numerical and closed form structural 
mechanics models for: moment-rotation and confinement; crack widths, crack spacings and 
deflections; moment redistribution and energy absorption; the stirrup and concrete 
component of shear failure; and the effect of fibres in concrete. The unified reinforced 
concrete model is generic as it can in theory be applied to any concrete or reinforcement but 
it was specifically developed for FRP reinforcement using IC theory developed in large by 
the FRP research community.  
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Chapter 2 – Cross Sectional Analysis 

Introduction 
In this chapter it is shown that the fundamental mechanisms outlined in Chapter 1, that is, 
partial-interaction and shear-friction, can be used to quantify the variation in flexural rigidity 
using a segmental approach. This segmental approach is fundamentally different from that 
presented in Chapter 1 in that partial-interaction theory is used to describe tension stiffening 
between a pair of cracks. Hence, the approach presented here more closely simulates the 
behaviour of a section with ductile reinforcement where a strong bond forms between the bar 
and concrete encasing it. This is in contrast to the analysis in Chapter 1 which more 
accurately simulates behaviour where a weak bond between the reinforcement and concrete 
exits, for example under the case for cyclic loading where the bond is degraded by load 
reversals. 

The first two papers contained in this chapter namely “A mechanics solution for hinges in 
RC beams with multiple cracks” and “A Mechanics Based Hinge Analysis for Reinforced 
Concrete Columns” develop the segmental PI M/θ approach for reinforced concrete beams 
and columns and describe the newly defined equivalent flexural rigidity. The derivation of 
the shear friction material properties required for the simulation of the softening wedge is 
then presented in the paper “Using shear-friction properties to simulate concrete softening in 
reinforced concrete flexural members”. Finally, a new cyclic partial interaction model is 
developed in the paper “The Reinforcement Contribution to the Cyclic Behaviour of 
Reinforced Concrete Beam Hinges” and the single crack PI M/θ approach is used to describe 
the load deflection behaviour of RC beams subjected to large load reversals. 
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A Mechanics Solution for Hinges in RC Beams with Multiple Cracks 
Visintin, P., Oehlers, D.J., Wu, C., and Haskett, M.. 

 
ABSTRACT 
The formation of hinges in reinforced concrete beams is important as hinges influence the 
ability of the beam and, subsequently, the frame to absorb energy and resist extreme loads 
such as hurricane or seismic loads. A common approach for quantifying the rotational 
capacity  of beams at the ultimate limit is to use a strain based moment-curvature analysis 
combined with an empirical hinge length to determine the rotation capacity of the member. 
Being empirically based, this approach is very restrictive as it can only be applied within the 
bounds of the tests from which they were derived. In this paper, a mechanics displacement 
based hinge approach is described that can simulate the formation of cracks, the discrete 
rotation at each individual crack and the formation of wedges. Being mechanics based, this 
hinge model can be applied to any type of reinforced concrete, such as those with brittle 
reinforcement and also to all strengths of concrete. This mechanics based model is shown to 
have good agreement with test results and can be used at all stages of loading from 
serviceability to failure. Furthermore, it can also used to develop closed form solutions that 
do not require the moment-curvature assumption of full interaction but specifically allow for 
partial interaction that is slip between the reinforcement and the concrete. 
 
Keywords: RC beams; RC hinges; ductility; concrete softening; reinforcement bond; shear 
friction; and partial interaction. 
 
INTRODUCTION 
A two span continuous beam that has been loaded beyond its peak strength is shown in Fig. 
1. In each of the regions between the points of contraflexure, the first flexural or initial crack 
occurs at a very early stage of loading and can be predicted using a full-interaction moment-
curvature (M/χ) analysis; full-interaction implies that there is no slip between the 
reinforcement and adjacent concrete so that the reinforcement and adjacent concrete are 
subject to the same strain. Subsequent flexural cracks depend on the bond and slip between 
the reinforcement and the concrete which is a partial-interaction consideration [1-13]; partial-
interaction implies that there is slip between the reinforcement and the adjacent concrete such 
that there is a step change in the strain between the reinforcement and the adjacent concrete. 
As such, the moment at which subsequent cracks occur and their spacings cannot be 
predicted by a full-interaction M/χ analysis. As the load is increased, these cracks widen 
through slip between the reinforcement and the concrete so that the full-interaction 
assumption implicit in a M/χ analysis cannot be used to predict crack widths.  Hence, it can 
be seen that a M/χ analysis can only directly predict the occurrence of the first crack in an 
uncracked region, after which the M/χ analysis has to be supplemented with empirical 
approaches to predict crack spacings and crack widths [4,14,15] 
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At the ultimate limit state, some of the cracks widen significantly so that most of the rotation 
is due to the discrete rotation between crack faces [16] as can be seen in Fig. 1. Hence this 
localised or concentrated rotation at high moment regions, often referred to as hinges, is 
primarily due to slip between the reinforcement and the concrete that a M/χ analysis cannot 
simulate. As a consequence, a M/χ analysis requires empirically derived hinge lengths [17-
23] over which the full-interaction curvature can be integrated in an attempt to simulate this 
partial-interaction discrete rotation. And finally, compression wedges form as can be seen in 
Fig. 1 where the wedge slides relative to the adjacent concrete [24,25]. This behaviour cannot 
also be simulated directly by a strain based M/χ analysis as this is a mechanism, but has to 
resort to the use of softening compression stress-strain relationships which are often found to 
be size dependent.  
 

 
 

Figure 1: Disturbed regions in RC beam 
 
It can be seen that a M/χ analysis does not directly simulate the behaviour of a reinforced 
concrete beam after the first crack has formed and as such has to resort to empirically derived 
components. Being empirically based, these M/χ approaches can only be applied within the 
bounds of the testing regimes from which they were derived and, consequently, are of limited 
help outside these bounds. Hence the need for a mechanics based approach which is the 
subject of this paper. 
 
In this paper, a mechanics approach is described which is based on the principle of plane 
sections remaining plane at discrete locations, that is the bisection of cracks and at the mid-
point between cracks, but not on the commonly used consequential assumption of a linear 
strain profile along the depth of the beam. Established partial-interaction theory 
[5,6,9,10,12,26,27], that is slip between the reinforcement and the concrete, is used to 
simulate the cracked region and established shear-friction theory [28-37] is used to simulate 
the formation of wedges. Hence this model can simulate the formation and widening of 
cracks and the formation of wedges. That is, this mechanics model can directly simulate, as 
opposed to indirectly simulate, what is actually seen in practice.  
 
This paper deals with flexural behaviour and failure. However, these mechanics hinges are 
equally applicable in the serviceability limit state [38], and can also be used to quantify shear 
failure but this is dealt with elsewhere [39]. The fundamental principles of the hinge 
mechanism are first described. This is then followed by idealisations that can be used, but do 

A
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not have to be used, to develop a mechanics solution. The mechanics model is then compared 
with test results of eccentrically loaded prisms and it is also shown how the mechanics model 
can be used to develop closed form solutions. 
 
HINGE MECHANISM 
The basic fundamental principles on which the hinge model is based, that is the fundamental 
mechanics that controls the hinge behaviour and which is independent of the material 
properties, is first described. This is followed by idealised assumptions that are required to 
develop mechanics based numerical models or mechanics based closed form solutions. It 
may be worth noting that these idealised assumptions are not an essential component of the 
model but can be refined in the long term to achieve better correlation with test results.  The 
major component of the rotation of a beam occurs over a very small region, as can be seen in 
Fig. 1, which can be two orders of magnitude smaller than the beam span. Hence, it is 
reasonable to assume that within the hinge region the moment is constant. This helps in the 
following explanation but it may be worth noting that variations in moment can be 
incorporated.  
 
Basic fundamental principles of hinge mechanism  
The beam, such as in Fig. 1, is divided by adjacent flexural cracks into elements of length Lcr 
of half length Ldef. Three adjacent elements are shown Fig. 2. They are in a constant moment 
region and, hence, have identical behaviours. Flexural cracks occur at Sections A-A and C-C; 
the behaviour at C-C is a  mirror image of that at A-A. Let us first consider Section A-A. 
Prior to bending, the left side of Element 1 is a single line c-h-k-n. An applied moment will 
cause the reinforcing bar to pull out of Element 1 by ∆ (which is the slip between the 
reinforcing bar and the crack face at h) and out of Element 2 by an equal amount ∆. 
Furthermore, the moment will cause the face of Element 1 to compress by the shaded region 
k-n-o, where D is the contraction at the top fibre, and Element 2 to compress an identical 
amount k-p-o. Hence by symmetry, b-g-k-o is a straight line and remains a straight line under 
varying moment, that is, the principle of plane sections remaining plane applies to b-g-k-o. In 
contrast, it can be seen that if a line were drawn adjacent to the crack face then this would 
deform to c-h-k-o which is not a straight line and, hence, the principle of plane sections 
remaining plane is not applicable. It needs to be stressed that the crack-face such as a-k or c-k 
does not need to be linear but that there is a linear variation in crack width such as that shown 
on the right hand side of element 3 where the crack width wcr varies linearly from zero at the 
crack apex to a maximum at the soffit of the beam. 
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Figure 2: Mechanics based beam hinge model in constant moment region 
 
A line drawn at the centre of an element such as e-j-m-r in Element 1 in Fig. 2(b) also 
remains straight as the moment is varied because of symmetry, that is because the 
deformation to the left at Section A-A is equal and opposite to the deformation to the right at 
Section C-C. Hence the section at mid-span of the element e-j-m-r also obeys the plane 
sections remain plane principle. In conclusion, the principle of plane sections remaining 
plane applies at a section that bisects the crack i.e. b-g-k-o and at a section that bisects the 
element i.e. e-j-m-r but does not apply elsewhere such as at d-i-l-q as this now has a bilinear 
shape. 
 
Having shown that plane sections remain plane at Sections A-A and B-B in Fig. 2, now let us 
consider the deformations encompassed by these sections. The length of this region is shown 
as Ldef which is simply half the crack spacing Lcr. There is a linear variation of deformation 
in the compression region k-n-o and a linear variation in deformation in the tension region k-
c-b. These deformations divided by the length of the region over which these deformations 
act ( Ldef) provides a linear variation of strain as plotted in the strain profile in Fig. 2(a) where 
at the top fibre the strain is D/Ldef and that at the level of the reinforcement of ∆/Ldef. It 
should be noted that these are either real strains or effective strains. Consider for example 
Element 3. If strain gauges were placed at G1 and G2 or at F1 and F2, where there are no 
disturbance at these levels associated with flexural cracking or the formation of wedges that 
is these are undisturbed levels, then the strains plotted in the strain profile in Element 2 at 
these levels are real strains as these are the strains that would be measured by the strain 
gauges. If strain gauges were placed at H1 and H2 within the flexural crack region, then these 
would not register the strains in the strain profile as they are mainly due to the deformation 
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due to crack widening and are, therefore, effective strains. Similarly if strain gauges were 
placed at E1 and E2 that is within a wedge and outside a wedge, they would measure the same 
value but would not be the same as in the strain profile as part of the deformation is due to 
sliding of the wedge shown as S. 
 
Hence the strain profile plotted in Element 2 in Fig. 2 is an effective (that is it cannot be 
physically measured) strain profile which gives effective curvatures χeff and effective flexural 
rigidities if required. It can also be seen that these effective values depend on the element 
length Ldef which depends on the spacing of cracks Lcr, reinforcement slip ∆ which depends 
on the bond-slip properties and on the slip of the wedge S which depends on shear-friction 
properties. Figure 2 summarises all aspects of the mechanics hinge model, where it can be 
seen that all aspects of reinforced concrete beam behaviour are simulated. Its application is 
described in the following section.  
 
Idealisations for a mechanics solution 
The mechanics hinge model is illustrated in Fig. 2. It is simply a question of rotating the 
element ends, such as c-h-k-n, by θ and adjusting the neutral axis depth at k until equilibrium 
is achieved. To help find a solution, it is often best to make reasonable assumptions which 
can often be improved with time but it needs to be stressed do not affect the fundamental 
mechanics of the hinge. Let us first consider  the tension region. 
 
Tension region 
The left hand side of Element 1 in Fig. 2(b) is shown in Fig. 3. The first component that is 
required for the analysis is the half crack spacing Ldef as this is the length of the element that 
the deformations shown at Section A-A have to be accommodated within. It is now common 
practice to derive the crack spacing from a partial-interaction analysis of the prism of depth 
dprism that is encapsulating the reinforcement [4,12,14,15]. The partial-interaction analysis is 
illustrated in Fig. 4(a) and depends on the bond-slip (τ/δ) characteristics which allows slip at 
the crack face ∆ for a given reinforcement force P to be derived. This analysis can be used to 
determine the variation in strain in the concrete and reinforcement εc and εr respectively 
along the prism, and in particular the variation in the slip-strain dδ/dx that is εc-εr and slip δ 
as shown. From this can be determined the position of full-interaction where both the 
interface slip and the interface slip-strain approaches zero which is also the position Lcr of the 
next crack when the strain in the concrete is equal to the cracking strain.  
 
Let us now impose a rotation θ, where the face a-b-c at Section A-A in Fig. 3(b) is linear, and 
in which the neutral axis is shown to be constant for ease of reading but which varies with the 
imposed actions. Let us keep rotating until the tensile strain capacity of the concrete εt is 
about to be achieved, that is D1 is almost εtLdef at deformation 1-1 in Fig. 3(a) where the 
rotation is θ1. The deformation 1-1 still has a linear variation d-b-e so the corresponding 
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strain distribution 1-1 in Fig. 3(a) is a real strain distribution εrl so that the Euler-Bernoulli 
elastic beam equation applies. However, increasing the rotation to θ2 that is deformation 2-2 
in Fig. 3(b) f-g-k-b-h will cause the strain profile 2-2 in Fig. 3(a) in which the strain over the 
cracked region dten-cr is an effective strain εeff and that over the uncracked region dten-uncr is a 
real strain distribution εrl. The crack face is now k-i-l where for example i-j  is the 
deformation in the concrete due to tensile stresses in the concrete. The tensile stresses in the 
concrete must be zero at the crack face and less than the tensile capacity at B-B otherwise 
another flexural crack would have occurred. Furthermore, if total debonding has occurred at 
the ultimate limit state then the tensile stress in the concrete at B-B would be zero. Hence the 
deformation i-j shown as d∆ can be assumed to be zero that is all of the deformation f-g-k-b 
is due to crack widening and slip ∆ of the reinforcement and, furthermore, the slip and crack-
width variation is linear. 
 

 
 

Figure 3: Idealised tensile deformations 
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Figure 4: Tension stiffening analysis 
 
The analysis in Fig. 4(b) gives the relationship between P and ∆ for an element between two 
cracks in which case the boundary condition is slip is zero at Ldef from the crack face as 
shown. The analysis in Fig. 4(b) represents the analysis of the tension region in Element 1 in 
Fig. 2(b) and, hence, gives the P/∆ relationship required for the analysis in Fig. 3(b). 
Numerical models have been developed that can cope with any bond-slip characteristic 
[6,10,27] and closed form solutions [12] have been derived for a range of idealised bond-slip 
characteristics. 
 
Compression region 
A wedge may form in the compression region of the mechanics hinge as can be seen in Fig. 1 
and illustrated in Fig. 2. This can be simulated indirectly by using a softening branch in the 
compressive stress-strain relationship or it can be simulated directly using well established 
shear-friction theory [30,31,35-37,40].  
 
To understand the shear-friction mechanism, let us first consider the rectangular prism in Fig. 
5(a) of height Ldef and width b and of a depth into the page that is much larger than Ldef, such 
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that the behaviour can be considered as two dimensional so that the deformations shown in 
Figs. 5(b) to (e) apply at any cross section throughout the depth of the prism. The prism can 
be loaded to failure and the stress-strain relationship recorded as in Fig. 6(a) where the strain 
is the overall contraction of the prism as a proportion of the prism height Ldef. There is an 
ascending path a-b-c in Fig. 6(a) up to the peak stress fc at a strain εpk. Followed by a 
horizontal component on further contraction of the prism where the stress fc is maintained 
whilst the concrete softens up to a strain εsft after which the concrete weakens with a 
descending stress with increasing strain.  

 
Figure 5: Shear friction mechanism 

 

Figure 6: Concrete material properties 
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The mechanism that causes the stress strain relationship in Fig. 6(a) is illustrated in Fig. 5. 
The ascending path a-b-c in Fig. 6(a) may be considered to be a material property such that 
the deformation in Fig. 5(b) of ε1Ldef and that in Fig. 5(c) of εpkLdef at the peak strength are 
due to the measurable strain in the concrete. Once the peak stress fc at εpk is achieved at Point 
c in Fig. 6(a) and at the deformation in Fig. 5(c), any further axial deformation can no longer 
be accommodated by the material, so wedges form and the corresponding stress strain 
relationship, c-d-e in Fig. 6(a) is a mechanism dependent on the shear friction properties in 
Fig 6(b). These wedges can form as in Fig. 5(c) or as in Fig. 5(d), depending on the restraints 
at the top and bottom of the prism and on the height to width ratio Ldef/b of the prism. The 
angle of the wedge α depends on the cohesive and frictional properties of the concrete [33] 
and also on the height Ldef which if small may force α to increase so that the wedge can be 
accommodated between the end restraints.  

Let us now increase the axial deformation of the prism to follow the path c-d in Fig. 6(a) in 
which the stress remains constant at fc. As the stress remains constant at fc, the strain in the 
concrete material remains constant at εpk as shown in Fig. 5(d), so that the additional 
deformation during softening S1 must be accommodated by sliding of the wedge H1, such 
that the vertical movement S1 is equal to (εsft-εpk)Ldef where εsft is defined in Fig. 6(a). Any 
further axial deformation as in Fig. 5(e) may cause the applied stress to drop to σ1 at the 
apparent strain εdes in Fig. 6(a). In this case, the strain in the concrete material is now ε1, from 
the concrete material property a-b-c in Fig. 6(a), as shown in Fig. 5(e). Hence the total axial 
deformation εdesLdef consists of the material deformation ε1Ldef plus that due to wedge sliding 
H2 such that S2 equals (εdes-ε1)Ldef.  

It can be seen that shear-friction theory can be used to simulate the formation of wedges. It 
also helps explain the difference between real strains εrl in Fig. 6(a), which are strains in the 
concrete that can be physically measured, and effective strains εeff, which are not the actual 
strains in the concrete material but which allow for disturbances, in this case wedge sliding. 
It can also be seen in Figs. 5(d) and (e) that these prism tests can also be used to quantify the 
shear-friction properties along the sliding plane that is the relationship between the normal 
stress, shear stresses and slip along the sliding plane (σn, τn, H) which can be given in the 
form shown in Fig. 6(b) [35-37].   

The application of the above shear-friction mechanism to the left hand side of beam element 
1 in Fig. 2(b) is illustrated in Fig. 7 for the compression region where for convenience the 
wedge is shown to the right. Furthermore, for convenience in the explanation, the position of 
the neutral axis has been drawn as unchanged but it will be shown later in the paper in the 
application of this procedure that this does change slightly and that the analysis can 
accommodate this change. Let us impose a rotation θ1 so that the face at A-A in Fig. 7(b) 
rotates to 1-1 at which point the strain in the top fibre reaches εpk in Fig. 7(a), and the 
deformation εpkLdef in Fig. 7(b). This deformation 1-1 can be accommodated by the concrete 
material as the strains lie within a-b-c in Fig. 6(a).  



44 

 

Let us now increase the deformation to 2-2 in Fig. 7(b) such that the effective top fibre strain 
is εsft in Fig. 6(a) so that the stress where the effective strain exceeds εpk remains at fc. The 
region 1-2-4 in Fig. 7(b) and which has been shaded is the deformation that cannot be 
accommodated by the material deformation as this has a maximum value of εpkLdef. Hence 
this deformation 1-2-4 has to be accommodated by slip of a wedge of depth (dw)sft shown as a 
broken line in Fig. 7(c). It is also worth noting that the stress in the beam over the depth 
(dw)sft remains at fc in the wedge and also outside the wedge. Furthermore, below the wedge 
the strains are real so that the stresses are given by a-b-c in Fig. 6(a).  

 

 

Figure 7: Idealised compression deformation 
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The force the wedge in Fig. 7(c) can resist can be determined from the shear friction 
properties illustrated in Fig. 6(b) where an iterative approach may be required to solve. For 
example, consider the element of wedge of depth de in Fig. 7(c) which is enlarged in Fig. 
7(d). Let the deformation at this level to be accommodated by wedge slip be estimated to be 
S2, as in Fig. 7(b), so that the remaining deformation required is ε1Ldef as shown and is due to 
the material strain ε1; hence ε1 is an estimated value (ε1)est derived for an estimated S2. For 
the contraction S2, the slip along the sliding plane at the angle α in Fig. 7(c) H2 can be 
determined as described in the following paragraph. It is then a question of moving vertically 
up the line at H2 in Fig. 6(b) to find the combination of (τn)2 and (σn)2 that gives a horizontal 
force component C in Fig. 7(d). From the force C can be determined the stress σ1 and from 
the material property a-b-c in Fig. 6(a) can be determine the material strain ε1 and if this is 
not what is required for S2 that is (ε1)est, S2 has to be iterated to find a solution. 

The relationship between the shear-friction sliding component H, and the non-material 
contraction S [36, 37] is illustrated in Fig. 7(e) for an element of depth de. Prior to sliding, 
points A and B are opposite and adjacent. Sliding H causes these points on adjacent planes to 
move apart hcr as shown due to aggregate interlock in addition to the dispalcement H. From 
the geometry in Fig. 7(e), it can be deduced that H is equal to the sum of S/cosα and hcrtanα. 
As hcr is an order of magnitude smaller than S it is convenient to assume that H is equal to 
S/cosα. However as for the relationship between τn, σn and H in Fig. 6(b) which is known 
[36, 37], the relationship between hcr, σn and H is also known [36, 37] and this can be used to 
the quantify the hcrtanα component of H if a greater degree of accuracy is required. 

Accommodation of multiple cracks 

The analysis procedure outlined above is also applicable when the softening wedge crosses 
multiple cracks. Let us consider the case shown in Figure 8(a) where the cracks can be 
considered to occur in a constant moment region within which there are five cracks. The 
deformation of each individual element, already described in Fig. 2, has been shown for the 
four elements in Fig. 8(a). The constant moment region consists of two symmetrical hinges 
that are to the left of A-A and to the right of A-A. If for example Fig. 8(a) was inverted by 
rotating about a horizontal axis, then A-A would be at the support of a continuous beam or 
encased beam in which the hinge at the support would be the left hand hinge that is from B-B 
to A-A. 
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Figure 8: Multiple cracks in hinge region 
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diameter and concrete cover, whereas, the depth of the wedge dw and consequently the length 
of the wedge Lw in Fig. 8(b) is a function of the depth of the compression zone and 
consequently a function of the depth of the beam. Hence the wedge length Lw encompasses 
more cracks at a spacing of 2Ldef as the depth of the beam increases. Hence deep beams 
require more slip than shallow beams like slabs. As slip reduces the wedge capacity as in Fig. 
6(b), deeper beams are more prone to wedge failure as seen in practice and which is a further 
behaviour that the M/χ approach cannot simulate.  

VALIDATION OF HINGE MODEL 

It is difficult to test hinges in isolation. Possibly the closest test model is an eccentrically 
loaded prism [23,24]. The hinge model is first applied to the analysis of eccentrically loaded 
prisms and then compared with test results. This paper is on the formation of hinges. 
However it may be worth noting that the moment rotation model depicted in Fig. 2 applies at 
all stages of loading that is at both serviceability and at ultimate.  This partial interaction 
model has been used to determine the deflection of beams at serviceability [38] using closed 
form solutions for the tension stiffening [12] and gives good correlation with test results. In 
these analyses the element lengths as depicted in Fig. 2 were equal to the theoretical crack 
spacing which are in general two orders of magnitude smaller than the beam span so that the 
assumption of a constant moment region between cracks was shown not to affect the 
deflection.  

Analysis of eccentrically loaded prism 

The analysis of an eccentrically loaded prism is summarised in Fig. 9 where the prism is of 
length 2Ldef. Thick steel plates are often glued to the specimen faces A-A of the concrete in 
Fig. 9(d) so that the interface can take tension. A load P is then applied at an eccentricity e 
which causes a rotation θ as shown. It is, therefore, simply a question of fixing the rotation θ 
and varying the neutral axis dn-a until the resultant force is in line with the position of the 
applied force P after which moments are taken. The deformation is shown in Fig. 9(c), the 
stresses from these deformations in Fig. 9(b) and the resulting forces in Fig. 9(a). It is 
common practice to ignore the tensile capacity of the concrete but this can be included if the 
serviceability behaviour is important. The analysis can cope with compression steel as the 
deformation at the level of the compression steel δreinf-comp gives the real strain in the 
compression reinforcement of δreinf-comp/Ldef and, consequently, the force in the reinforcement 
Preinf-comp. It is also worth noting that the rotation of the prism face θ is equal to the rotation of 
the adjacent crack face. Hence as the analysis also gives the height of the crack, the slip of 
the reinforcement ∆ and consequently the force in the reinforcement, should tension 
reinforcement be present, it can be determined from the partial interaction analyses depicted 
in Fig. 4. 
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The analysis in Fig. 9 will now be applied to eccentrically loaded prisms without any 
reinforcement as these are available in published literature. The tensile capacity of the 
concrete will be ignored as this has a very minor effect. Hence only the compressive material 
properties are required which are the ascending properties a-b-c in Fig. 6(a) and the shear-
friction properties in Fig. 6(b).  

 

Figure 9: Analysis of eccentrically loaded prism 

The analysis procedure can be split into two stages. Firstly for low levels of applied loads 
where the total rotation can be accommodated for through material deformation, the strain in 
the concrete remains within the ascending branch a-b-c in Fig. 6(a). Assuming Hognestad’s 
parabolic stress distribution [41] 
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in which the peak strain can been determined using, [42] 
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the compressive load Pasc  for a given depth of the neutral axis dn-a, width of beam b, and peak 
compressive strain εm, which occurs at the top surface in Fig. 9(d) and in which εm is less 
than εpk, can be determined as follows  
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In the second case, a softening wedge forms when the maximum material deformation has 
occurred, that is when the maximum effective strain in the concrete has exceeded the peak 
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material strain εpk. The force developed in the ascending region, Pasc in Fig. 9(a), is now be 
given by 

� !� �  2 3( ��# !�"      (4) 

where the depth of the ascending region dasc can be calculated from the displacement profile 
in Fig. 9(c) where dasc is the region where the displacement is less than εpkLdef. 

From the displacement profile in Fig. 9(c), the slip of the wedge can be determined; this is an 
iterative process and is carried out for each slice of the wedge. The analysis begins by 
guessing a concrete strain in the wedge ε2 in Fig. 9(c) of (ε2)g, and based on the length of 
deformation, Ldef, calculating the material deformation (ε2)gLdef. The wedge must then slip a 
distance S2 as shown to make up the total required deformation St.  

The analytical procedure has already been described previously using Fig. 7. The slip S2 is 
resolved to give the slip of H2 along the shear plane in Fig. 7(d). Hence from the shear-
friction properties in Fig. 6(b), the combination of σn and τn must lie along the vertical line at 
the slip H2. It is a question of finding the combination of σn and τn along this vertical line 
such that the resulting force C in Fig. 7(d) is horizontal, that is the algebraic sum of the 
vertical components of T and N in Fig. 7(d) is zero. The shear force T in Fig. 7(d) is given by 

) �  *+,-./01 2        (5) 

and the normal force N by  

3 �  4+,-./01 2        (6) 

where the angle of the wedge α which depends on the Mohr-Coulomb frictional property can 
be assumed to be 37 o and where the shear-friction properties are given by [37] and the units 
are in N and mm  

    5 � 67
30.142 � 51.623 4+9: ; <= 79:&>;>.?@ � 0.497��     (7)                       

Knowing the force C in Fig. 7(d) and, therefore, the stress developed in the wedge σ2, the 
strain ε2 in Fig. 9(d) can be determined using Eq. 1. If the strain is not equal to that which 
was initially guessed (ε2)g, the procedure has to be iterated until it does so. This procedure 
can be repeated for each wedge element to derive the wedge element forces C1 to Cn in Fig. 
9(a).  

Having found the forces developed in both the wedge and the ascending region in Fig. 9(a) 
and for the case where reinforcing bars are not present, the location of the resultant force can 
be determined, and the depth of the neutral axis dn-a adjusted until the resultant force lies in 
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line with the applied load P. If the length of the wedge Lw in Fig. 9(d) exceeds Ldef, then this 
forces the angle of the wedge to change to α3 as shown to allow sliding; this does not occur in 
beams but is peculiar to eccentrically loaded prisms. 

Comparison with test results  
In order to quantify the full range stress-strain behaviour of concrete, Debernardi and Taliano 
[24] conducted a series of compression tests under displacement controlled conditions on 
prisms with the dimensions of 500x200x100 with the middle 336mm of the section having a 
reduced cross section of 150x100mm. During these tests, the deformations were recorded 
using a series of extensometers placed along both the tension and compression faces, and the 
resulting deformations were used to construct moment-rotation plots as in Fig. 10 for 
specimens with eccentricities of 24, 36 and 48mm.  

The moment-rotation analysis depicted in Fig. 9 are shown as the ‘theoretical’ results in Figs. 
10 where the moment at the start of cracking and at the start of softening or wedge formation 
are also shown. Importantly it can be seen that the ‘theoretical’ results have the same shape 
as the experimental results as well as good correlations in magnitude over the entire range of 
behaviour, including post cracking and softening of the section especially considering the 
variation in experimental results. It is suggested that the good correlation in shape would 
imply that this mechanics model simulates the test results, in contrast to the magnitudes 
which are dependent on the accuracy of the measured material properties which can be 
refined with time.  
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Figure 10: Comparison of Debernardi and Taliano test results 

EXAMPLES OF MECHANICS SOLUTIONS 

As the moment-rotation analysis is mechanics based, it is possible to develop closed form 
solutions to describe member behaviours which are purely dependent on material properties. 
As an example, a closed form solution has been developed to determine the crack height for a 
singly reinforced section such as that shown in Fig. 11 under serviceability loads. 
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Figure 11: Idealisation for closed form solution 

From the tension region in Fig. 11, the crack rotation θ is given by  

A �  ∆,:B��        (8) 

where ∆ is the reinforcement slip relative to the crack face, dcr is the depth of the crack and 
dcr-c is the distance of the reinforcement from the crack apex. From the compression region 

A � CDE�,�,:B      (9) 

where δtop is the maximum deformation in the compression zone and d is the depth of the 
beam. From Eqs. 8 and 9 
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The maximum strain in the concrete is  
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where, Ldef  is half the crack spacing, which for a linear ascending bond stress distribution 
[11] is 
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in which ke is the bond stiffness and β2 is given by  

S� �  I�TB 7 @UB � TBU:T:;       (14) 

in which Lp is the perimeter of the reinforcing bar, Ar the area of the reinforcing bar, Er 
Young’s Modulus of the reinforcing bar, Ec Young’s Modulus of the concrete and Ac is the 
area of concrete surrounding the reinforcing bar which interacts with the bar. From Eqs. 11 
and 12, the force developed in the concrete is given by 

��H$� �  >.V∆�,�,:B�WNU:X�,:B���       (15) 

where Ec is the modulus of the concrete as we are dealing with serviceability conditions and 
b is the width of the beam.  

Now consider the tensile reinforcement in Fig. 11(a) which is surrounded by concrete of area 
Ac, as defined above, over a length 2Ldef  between adjacent cracks. The force developed for a 
given slip ∆ using partial interaction theory [12] is given by  

�YMZ$9�GM$! �  1∆TBUBNO[\1]�@�       (16) 

where n is the number of reinforcing bars and Er is the modulus of the steel reinforcement as 
we are dealing with serviceability.  It may be worth noting that the partial-interaction  
mechanics principles that are used to derive Eq. 16 for the force in a reinforcing bar between 
adjacent cracks, are the same as that used to derive the force in the reinforcing bar when only 
one crack exists by Mohamed Ali et al [43]. Hence the equivalent expression to Eq. 16 from 
[43] could be substituted when dealing with a single crack. 

 

As Pconc = nPreinf-tens at equilibrium, the crack height is given by  

#�Y � ,XU: [\1]�@�^$TBUB_`�,XU:$TBUB [\1]�@�^$WTBWUBW��XU:$TBUB� [\1]�@�
XU:  [\1]�@�   (17) 

It can be seen that the crack height is fixed for a given beam geometry and interestingly is 
independent of the applied moment and the bond characteristics. As a comparison, for a 
singly reinforced beam of depth 450 mm and width 300 mm with 4 No. 28 mm bars, Eq. 16 
based on partial-interaction gives a crack height of 249 mm which is in close agreement with 
the 276 mm obtained using full-interaction moment-curvature transformed sections. 

SUMMARY 
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A mechanics based moment rotation hinge model has been developed for beams at all stages 
of loading from serviceability to ultimate and during collapse. The mechanics hinge model is 
based on the principle of plane sections remaining plane and a linear real strain profile prior 
to the formation of disturbances such as flexural cracks in the tension zone and wedges in the 
compression zone. However after the formation of disturbances, the well established 
principle of plane sections remaining plane only applies at discrete locations and a linear 
effective, as opposed to real, strain profile is only applicable. The mechanics hinge model 
uses the well established principle of shear-friction to model concrete compressive failure 
and, hence, directly models the formation of wedges without the need for empirical hinge 
lengths or softening stress-strain concrete properties. Furthermore, the mechanics hinge 
model uses partial-interaction theory to model the development of flexural cracks and their 
widening and the consequential deflection of beams without the need for empirical models 
such as effective flexural rigidities or empirical hinge lengths. The mechanics based hinge 
model is shown to model the behaviour of eccentrically loaded prisms well and being a 
mechanics based model closed form solutions can be obtained as described. 

Unlike empirically based models which should only be used within the bounds of the tests 
from which they were developed, this mechanics based model can in theory be used for any 
type of reinforced concrete beam just as long as the material properties are available. Hence 
it should help in the rapid development of new products such as the application of new types 
of reinforcement and new types of concrete as well as better refinement of existing design 
rules. 
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A Mechanics Based Hinge Analysis for Reinforced Concrete Columns  
Visintin, P., Oehlers, D.J., Haskett, M. and Wu, C.. 

 
 
ABSTRACT 
The lateral deformation behaviour of a reinforced concrete column is particularly important 
as it not only magnifies the moment but also affects the ability of the column and, 
subsequently, frame to sway and absorb energy at all stages of loading. The lateral 
deformation is affected by disturbed regions, such as tensile cracks or compression wedges, 
which are often simulated with the help of hinges whose properties are derived empirically. 
Being empirical, these hinges can only be used within the bounds of the tests from which 
they were derived, and in this respect are of limited use. In this paper, a mechanics based 
hinge is developed which can be used at all stages of loading, that is, at serviceability through 
to ultimate and also during failure. The mechanics based model is based on the principle of 
plane sections remaining plane, shear-friction theory which quantifies the behaviour of 
reinforced concrete across sliding planes, and partial-interaction theory that allows for slip 
between the reinforcement and the encasing concrete. Being mechanics based, it can be used 
for any type of reinforced concrete column, that is for any type of reinforcement and for any 
type of concrete just as long as the material properties are known. The mechanics model is 
shown to be in good agreement with published test results and can simulate not only multiple 
cracks if necessary but also the formation of wedges.  
 
Keywords: reinforced concrete; reinforced concrete columns; reinforced concrete hinges; 
hinge lengths; shear friction; partial interaction; ductility; moment rotation.  
 
INTRODUCTION  
The resistance of a reinforced concrete frame against lateral loads such as earthquake and 
hurricane loads, depends not only on the applied lateral loads, but also on the position at 
which hinges form, whether in beams or columns, and also on the ability of these hinges to 
rotate and absorb energy, not just at the ultimate capacity but also during failure. It is 
common practice to use a strain based full-interaction moment-curvature analysis to quantify 
the curvature at the ultimate limit. And as this is a two-dimensional analysis, to then use an 
empirically derived hinge length over which the curvature can be integrated to ensure the 
rotation at the ultimate limit is equal to that determined experimentally at the ultimate limit. 
This approach has the following limitations. Being empirically based, this strain based 
approach can only be used within the bounds of the tests from which the empirical hinge 
lengths were derived and research has shown (Panagiotakos and Fardis 2001) that use outside 
these empirical bounds can lead to large scatter of results. These empirical hinge lengths 
generally only apply at the limit of the maximum moment capacity and so cannot be used at 
serviceability which means that very careful consideration has to be made as to where these 
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hinges occur and, furthermore, these empirical hinge lengths do not simulate the failure 
process. 
 
A displacement based partial-interaction moment-rotation approach for simulating reinforced 
concrete hinges is described in this paper. It is based on the fundamental principle of plane 
sections remaining plane but not on the corollary of a linear strain profile where disturbances 
such as cracks or wedges have formed. This mechanics model simulates what is actually seen 
in practice. The model simulates the formation of cracks and the widening of cracks through 
partial interaction theory (Bachmann 1970; Yuan et al. 2004; Oehlers et al. 2005; Mohamed 
Ali et al. 2008a,b; Haskett et al. 2009; Muhamad et al. 2011) and the development of 
compression wedges, which leads to concrete softening, through the use of shear-friction 
theory (Birkeland and Birkeland 1966; Hofbeck et al. 1969; Walraven and Reinhardt 1981; 
Walraven et al. 1987; Mansur et al. 2008; Haskett et al. 2010; Haskett et al. 2011a,b). The 
model quantifies reinforcement debonding, yield and fracture and the gradual formation of 
compression wedges and their sliding and eventual failure. The model can also cope with 
shear failure (Lucas et al. 2011) if required, but this has not been included in this paper. 
Furthermore extension to allow for cyclic loading is possible through the use of a cyclic 
partial interaction model such as Visintin et al. (2011). 
 
The basic fundamental mechanics principles of the mechanics hinge model for reinforced 
concrete columns are first described. A numerical simulation of this hinge model is then 
described although any convenient approach can be used. Furthermore, in order to simulate 
this hinge model, idealised assumptions are then given such as material properties which can 
be refined with time. The model is then validated with a comparison with tests on 
eccentrically axially loaded prisms. 
 
FUNDAMENTAL PRINCIPLES OF COLUMN HINGE MECHANISM 
An example of a hinge that occurs between column ends, which may occur in the case of an 
eccentrically loaded column, is shown in Fig. 1(a). The boundaries of the hinge A-A and B-B 
need to be placed at sections where the Euler-Bernoulli principle of plane sections remaining 
plane applies. It is convenient, but not essential in the analysis, to choose total hinge lengths 
or deformation lengths 2(Lhg)1 which encompass the disturbances within the column such as 
that due to major tensile cracking and that due to the formation of wedges should they occur. 
And, furthermore, to choose total hinge or deformation lengths in which the moment can be 
assumed to be constant which is generally the case as the disturbed region is usually at least 
an order of magnitude smaller than the length of the column. Hence unlike the moment-
curvature strain based approach where the hinge length is fixed for a given column cross-
section, in this approach any convenient hinge length can be chosen as long as it 
encompasses the softening wedge. For example, the hinge boundary could have been taken at 
C-C in which the total hinge length is 2(Lhg)2. In this case, the change in rotation between the 
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boundaries A-A and C-C is simply that due to the rotation between these boundaries which 
can be obtained by integrating the curvature should disturbances not occur within this region.  
 
As the hinge in Fig. 1(a) is symmetrical about the mid-hinge section at D-D, the deformation 
A’-A’ at rotation θA is the mirror image of that at B’-B’ so that plane sections remain plane at 
the mid-height D-D. Hence the deformation at the boundary A-A shown as A’-A’ has to be 
accommodated over the length (Lhg)1 and that due to B’-B’ over the adjacent length of equal 
magnitude. Hence the length Lhg has to accommodate the adjacent boundary deformations so 
it may be more convenient to consider Lhg as one hinge length such that in Fig. 1(a) there are 
in effect two identical hinges which form about an axis of symmetry at D-D and with each 
hinge having a length of (Lhg)1. The cracks in the upper hinge in Fig. 1(a) rotate by θc by slip 
between the reinforcement and the crack face of ∆ and the wedges at an angle α slip up to a 
maximum value of S as shown. The deformation A’-A’ has to accommodate not only the 
material strains within the hinge boundaries but also the non-material deformations due to the 
wedge slip S and reinforcement slip ∆. This non-material deformation only occurs in 
disturbed regions.  
 

 
Fig. 1 Column hinges 
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A hinge at the base of a column, which may occur for example in a cantilever column is 
shown in Fig. 1(b). In this case, there is only one hinge of length Lhg as no axis of symmetry 
exists around the hinge and hence the principle of plane sections remaining plane applies not 
only at E-E but also at the base at F-F. Hence the linear variation in deformation I-I which 
has to be accommodated over the length Lhg produces a linear variation in strain as shown. 
For example, the deformation at the compression face dc induces an overall strain dc/Lhg and 
that at the tension face dt/Lhg.  
 
If disturbances do not occur within the hinge such as over the depth dasc in Fig. 1(b), then the 
overall strains in this region in the strain profile are real strains and are what would be 
recorded by a strain gauge at J which is shown as point J on the strain profile in Fig. 1(b). 
Flexural cracks may form in the tension region of depth dtens making it a disturbed region. 
These cracks widen through slip between the reinforcement and the concrete which at the 
crack face is shown as ∆ and which causes the discrete rotation at each crack θ. Hence in the 
cracked region of depth dtens, the deformation is due to both strain in the concrete and crack 
widening that is the strain in this region is an effective strain such that strain gauge K would 
not measure the corresponding strain in the strain profile. Concrete softening takes place as 
wedges of depth dw form in the compression region. The wedges have a vertical component 
of slip S along the sliding plane such that the deformation I-I is a result of both this slip and 
the concrete strains so that the strains over dw are effective and are strains that would not be 
recorded by a strain gauge at L. 
 
In summary, when disturbances do not occur within the hinge, the strain profile in Fig. 1(b) 
is a real strain profile. Hence the corollary to the Euler-Bernoulli principle of a linear real 
strain profile, which gives real curvatures χ and real flexural rigidities EI, applies and which 
depends on material properties. In these circumstances a strain based approach is applicable. 
In comparison, when disturbances do occur, there is a linear effective strain profile, which 
gives an effective curvature and an effective flexural rigidity which depends not only on 
material properties but also on the crack widening mechanism and the wedge sliding 
mechanism. In these circumstances a deformation based approach is required, as presented in 
this paper.  
 
MODELLING OF MECHANICS HINGE  
A numerical procedure for quantifying the behaviour of hinges is proposed. The model is 
described for the full range of stress resultants that can be applied, which ranges from 
concentrically loaded hinges with zero moment (e.g. a column in pure compression), to 
hinges subjected to predominantly moment (e.g. a beam). As we are dealing with a small 
region of the column that is the hinge, it will be assumed, for convenience of explanation, 
that the hinge is in a constant moment region although variable moments can be 
accommodated. 
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Deformation of hinges under pure compression  
Consider the concentrically loaded hinge in Fig. 2(a) in which G-G and F-F are the Euler-
Bernoulli boundaries where plane sections remain plane. As the hinge boundary G-G is 
moved downwards under increasing applied stress, the contraction as a proportion of Lhg is a 
real strain so that the stress-strain relationship follows the ascending path O-A-B in Fig. 3 
which may be considered a material property. The peak stress fc in Fig. 3 is the maximum 
stress that the concrete material can resist and the peak strain εpk at the onset of fc is the 
maximum strain the concrete material can resist. Hence the maximum deformation the hinge 
material can resist is εpkLhg which is shown as line H-H in Fig. 2.  

 
Fig. 2 Concentrically loaded hinge 
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a mechanism where the material deformation is controlled by the stress-strain relationship A-
B in Fig. 3, and the non material deformation Se is controlled by the shear friction properties 
in Fig. 4.  

 

 
Fig. 3 Concrete material properties 

 

 
Fig. 4 Concrete shear-friction properties 
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shear stress across the sliding plane τn. Hence the shear-friction properties in Fig. 4 can be 
derived from this type of test (Haskett et al. 2010, Haskett 2011a,b).  
 
Conversely the shear-friction properties in Fig. 4 can be used to analyse the hinge in Fig. 
2(b). The applied displacement Te is accommodated by material strain εeLhg and the vertical 
component of the wedge slip Se which has a sliding component He; it may be worth noting 
that this is only a good approximation as it does not include the second order effect of the 
crack widening due to aggregate interlock (Haskett et al 2010). A solution can be found by 
iterating. Let us guess that to induce the applied displacement Te the applied stress is (σe)guess 
at which the material strain is (εe)guess. The vertical component of the wedge slip Se can be 
derived from Eq. 1 and consequently the sliding component of the slip He from Fig. 2(c). It is 
simply a question of moving along the vertical line at He in Fig. 4 until the combination of τn 
and σn when input into Fig. 2(d) gives a vertical component of Pe. If the resulting σe is not 
equal to (σe)guess then the procedure has to be iterated until it does so. 
 
Rotation of hinges whilst in compression 
The column hinge in Fig. 5(b) is subjected to a moment and axial load of magnitudes such 
that the extending displacements induced by the moment are less than the contracting 
displacements induced by the axial load, and therefore the remains purely in compression. 
This case allows for the  illustration of the formation of wedges. The axial load P is first 
applied at the hinge boundary G-G and the moment M gradually increased until the strain on 
the surface of the concrete on the right hand side just reaches the concrete material peak 
strain εpk in Fig. 3. This is shown as deformation I-I’ in Fig. 5(a) where the contraction G-I’ 
is equal to εpkLhg. Up to this point, the wedge has not formed as the deformation can be 
accommodated by the strain in the material. Hence a strain based moment-curvature (M/χ) 
analysis when integrated over the hinge length Lhg will give exactly the same results as the 
displacement based moment-rotation (M/θ) analysis. This is shown as O-A in Fig. 6 to 
emphasise the fact that there are no differences between the two approaches prior to 
disturbances being formed and also the fact that the M/θ applies at serviceability.  
 
Let us now increase the rotation in Fig. 5(a) to J-J’. Any component of the deformation that 
exceeds εpkLhg shown as the shaded region adjacent to I’-J’ cannot be accommodated by 
material deformation. This shaded deformation can only be accommodated by wedge slip so 
that a wedge of depth dw1 has to form. If in this example we assume that the peak material 
strength fc can be maintained over the depth dw1 such that we are moving along B-C in Fig. 3 
so that the material strain in this region remains at εpk, then the slip of the wedge at the 
surface of the column is I’-J’. 
 
Let us now increase the rotation in Fig. 5(a) to θK that is line K-K’ such that the stress on the 
right hand surface of the column is now reducing along C-D in Fig. 3, that is it is less than fc 
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so that the material strain is less than εpk. The deformation M-I’-K’ in Fig. 5(a) cannot be 
accommodated by material deformation as the deformation in this region exceeds εpkLhg so 
that the depth of wedge required is now dw2. Consider the element of the wedge of width d2 
where the strain is ε2 which is less than εpk so that the material can accommodate a 
deformation of ε2Lhg which means that the wedge has to take up the remaining deformation 
that is to accommodate a slip S2 as shown. Hence the slip that the wedge has to accommodate 
is now M-P-K’ being zero at M with a maximum value at the column surface of Ss as shown. 
 

 
Fig. 5 Rotation of hinge whilst in pure compression 

A numerical solution can be obtained by iteration. As an illustration, let us impose a 
displacement G-K on the left hand surface of the column in Fig. 5(a). Using K as a pivotal 
point, rotate K-K’, that is vary θK, until equilibrium is achieved. For example for the 
displacement K-K’, the effective strain variation is given in Fig. 5(c). For the longitudinal 
reinforcement on either side of the column and for the concrete where the strain is less than 
εpk, these are real strains so from their material properties the stresses in Fig. 5(d) can be 
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obtained so that the forces in Fig. 5(e) for Pr1, Pasc and Pr2 can be derived as explained 
previously. This leaves the force in the wedge region to be determined, as explained 
previously using Fig. 2, an iterative procedure, which has also been used in Visintin et al. 
(2011), can be used. Take the wedge element of width d2 in Fig. 5(b). Start by guessing the 
stress (σ2)guess from which the material strain ε2 can be determined using any material stress-
strain relationship, that is O-B in Fig.3. Since it is known the stress σ2 lies between 0 and fc 
and the material strain between 0 and εpk a simple bisection method can be used to iterate as 
follows. For the guessed stress the material deformation ε2Lhg in Fig. 5(a) is known and 
consequently for the given deformation shown in Fig. 5(a) so too is the vertical component of 
the wedge slip S2. From Fig. 2(c) can be derived the sliding component H2 and for this value 
of H2 in Fig. 4, it is a question of finding the combination of τn2 and σn2 that gives a vertical 
component of Pe in Fig. 2(d) that is P2. If the associated stress σ2 is not equal to (σ2)guess then 
iterate until it is. This gives the stress σ2 in Fig. 5(d) and Pe2 in Fig. 5(e). As a termination 
criterion, it is sufficient that the calculated stress is within 5% of the guessed stress, and 
convergence can often be achieved in less than 20 iterations. When implementing it is known 
that the strain in the wedge is initially close to εpk and hence an initial guess of close to εpk 

leads to a rapid solution, this solution can then be used as the initial starting guess for 
subsequent analyses where the rotation has increased.  
 
The procedure needs to be repeated for the other elements of the wedge as unlike the 
concentrically loaded prism in Fig. 2, in the case in Fig. 5 the slips vary over the section 
depth. For the case of a column subjected to a fixed applied load P and then increasing 
moments, it is simply a case of rotating θK until the resultant force from Fig. 5(e) is P and 
then taking moments. Alternatively if an axial load P is applied gradually at an eccentricity e, 
then θK can be rotated until the resultant force from Fig. 5(e) is in line with the eccentricity e.  
 
The procedure described above can be repeated at different pivotal points such as I and J in 
Fig. 5(a) to derive the M/θ response such as in Fig. 6. This moment-rotation procedure gives 
the full range of M/θ: from serviceability to the peak capacity that is O-A; at the ultimate 
limit state whilst the maximum moment capacity Mmax is being maintained along A-B; and 
also during failure B-C. However, it may be worth bearing in mind that this is in contrast to 
the M/χ empirical hinge length approach which is normally only applied at the ultimate limit 
of the maximum moment Mmax to quantify the rotation capacity at B. 
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Fig. 6 Hinge moment-rotation 

 
Rotation of hinges that accommodate flexural cracks 
Figure 7 illustrates a column hinge in which flexural cracking has occurred. The deformation 
H-H has to accommodate flexural cracking and its associated tension stiffening that is the 
interaction between the tension reinforcement and the concrete. It is now common practice to 
simulate tension stiffening, that is the post cracking behavior of the concrete, by considering  
individual reinforcing bars of area Ar embedded in individual concrete prisms of area Ac and 
in which the bond-slip properties τ/δ allow for slip between the reinforcement and concrete 
(Gupta and Maestrini 1990; Wu et al 1991; Choi and Cheung 1996; Marti et al 1998; Yuan et 
al 2004; Oehlers et al 2005; Warner et al 2007; Mohamed Ali M.S. et al 2008a,b; Haskett et 
al 2008; Mohamed Ali M.S. et al 2011; Muhamad, R., 2011).  
 

 
Fig. 7 Rotation of hinge accommodating cracks 
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A numerical model that explains the mechanics behind the partial-interaction tension 
stiffening model (Haskett et al 2008; Oehlers et al. 2011) is illustrated in Fig. 8 where three 
elemets for the analusis and the associated equations are shown. The prism is sliced into 
elements of very short lengths Ls which are shown separated and where A-A is any crack 
face. The bar is pulled out from the crack face a distance ∆1 so that, from the known material 
bond-slip properties τ/δ, the bond force in the first element B1 can be determined. It is a 
question of finding the force Pr1 that induces this imposed crack face slip ∆1. This can be 
done by first guessing Pr1 in which case the stress in the bar and the accompanying strain εr1 
is known. At the crack face, the stress in the concrete is zero so that the strain in the concrete 
εc1 can be taken as zero as the element thickness Ls is deliberately very small. The slip-strain 
(ds/dx) is the algebraic difference in strain between the reinforcement and the concrete which 
for Element 1 is εr1-εc1 as shown. The change in slip over Element 1, δ∆1, is the integration of 
the slip-strain over Ls as shown. Hence both the slip and slip-strain in Element 1 are known. 
The analysis can be repeated for Element 2 where the force in the reinforcing bar Pr2 is now 
Pr1-B1, the force in the concrete prism Pc2 which is now B1 and the slip between the 
reinforcing bar and the concrete ∆2 is now ∆1-δ∆1 from which the bond force B2 can be 
derived. From these quantities can be derived the slip strain in Element 2 (ds/dx)2 and the 
increase in slip δ∆2 that affects the next element along.  
 

 
Fig. 8 Tension stiffening 
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The above analysis gives the variation in slip-strain, ds/dx, and slip, ∆, along the prism. It is a 
question of finding the force Pr1 such that the slip-strain and slip tend to zero at the same 
position shown as Scr in Fig. 8 as this is a position of full-interaction and it is also the position 
of the next crack that is the crack spacing Scr in Fig. 7(c). This analysis can also be used to 
determine the force in the reinforcing bar Pr1 in Fig. 8 that causes the concrete prism to crack 
at the tensile strength of the concrete fct so that it gives not only the crack spacing Scr in Fig. 
7(c) but also the force in the reinforcing bar in Fig. 7(d) that causes the crack at Fig. 7(b). 
Once the next crack or cracks at spacing Scr in the hinge occurs, the procedure illustrated in 
Fig. 8 can also be used to determine the P/∆ relationship at the cracks by simply changing the 
boundary condition to ∆ = 0 at Scr/2.  
 
Prior to disturbances being present, that is prior to the formation of flexural cracks or 
wedges, a strain based M/χ analysis and the displacement based M/θ analysis as illustrated in 
Fig. 5 will give the formation of the initial crack at F-F in Fig. 7(d). After this initial crack 
has formed, the strain based M/χ analysis will not give the formation of subsequent cracks as 
the hinge is now disturbed. In this case, the partial-interaction analysis in Fig. 8 can be used 
to: quantify the P/∆ relation at F-F in Fig. 7(d) shown enlarged in Fig. 7(i); when and where 
the next crack or cracks at the spacing Scr occur or should they occur; and also the P/∆ 
relationships at both F-F and at the position Scr shown enlarged in Fig. 7(h) after the cracks 
have formed. Full details are given elsewhere (Haskett et al 2008; Oehlers et al. 2011). 
 
The analysis of multiple cracks is similar to that described for Fig. 5. Point H in Fig. 7(a) can 
be used as a pivot and the Euler-Bernoulli boundary H-H rotated θH to find a solution. It is 
often convenient to assume that the tensile strain in the concrete over the cracked region of 
width dcr is zero. In this case, the imposed rotation θH is also the total rotation of the cracks 
which for the two cracks shown is 4θ. Hence from the linear variation in crack width, can be 
determined the slip of the reinforcement ∆ and from the analysis in Fig. 8, the force in the 
reinforcement at the crack face Pr1 as required in Fig. 7(g). As explained for the analysis in 
Fig. 5, it is simply a question of rotating θH to be in equilibrium with the applied forces and 
varying the displacement 4∆ to get the full moment rotation in Fig. 6. In this case, the M/χ 
and M/θ approaches give identical results in Fig. 6 until the initial crack or wedge occurs that 
is whichever occurs first. It may be worth noting that the crack faces in Fig. 7 have been 
drawn as straight lines for convenience. They could have been drawn as curved but what is 
important is that there is a linear variation in crack widths from zero at the apex to a 
maximum at the column surface.  
 
VALIDATION OF HINGE MECHANISM 
In order to validate the hinge mechanism, reinforced eccentrically loaded prisms, where 
second order effects are minimal, have been simulated. In the simulations, the following 
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material stress-strain relationship used for the ascending branch O-A-B in Fig. 3 is that of 
Hognestad (1955)  
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where the peak strain has been calculated using either the empirically derived relationship 
developed by Wee et al. (1996) 
 

25.000078.0 cpk f=ε      (3) 

or by Tasdemir et al (1998) 
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and the following shear-friction properties that were used, Fig. 4, are those of Haskett et al. 
(2011b) 
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where the units are in N and mm. Finally, the bond slip properties suggested by CEB (1992) 
have been used, as well as the stress-strain relationship developed by Dhakal and Maekawa 
(2002) to allow for buckling of the compression reinforcement. 
 
The eccentrically loaded prisms tested by Kim and Yang (1995) with a length of 240mm 
have been simulated. While longer specimens were also tested, these were not considered as 
the second order effects were found to be significant. The specimens all have 80mm x 80mm 
cross sections and are reinforced with 4 #2 bars to give a reinforcing ratio of 1.98%, or 8 #2 
bars to give a reinforcing ratio of 3.95%. For each reinforcing ratio, three concrete strengths 
were tested, namely 25.5MPa, 63.5MPa and 82.6MP.  
 
The theoretical results are shown as broken lines in Fig. 9 which also shows the onset of 
cracking, buckling and softening. In the case of the specimen with ρ = 1.98% and fc = 
25.5MPa, this test was reported to have failed prematurely which is in line with the 
theoretical prediction. In order to show the sensitivity of the analysis to the material 
properties, the peak strain models of both Wee et al. (1996) and Tasdamir et al.(1998) have 
been used and as can be seen can influence the magnitudes of the theoretical results 
significantly, particularly at higher concrete strengths. It can be seen that the theoretical 
results have the same shape as the experimental results which suggest that the mechanics 
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model is capable of simulating the tests. While a reasonable correlation with the magnitudes 
of the results is seen over the entire range of behavior, that is before cracking, after cracking 
and during softening, it can be expected that the magnitudes can be improved as the shear-
friction material properties are refined with time.  

 
Fig. 9 Simulation of reinforced eccentrically loaded prisms 

 
It is important to note, as seen in Fig. 10, that the M/θ relationship can be converted into a 
moment-equivalent flexural rigidity (EIequ) relationship. This is done by fist deriving the 
curvature, which is simply the rotation divided by the length over which is acts, that is χ = 
θ\Ldef. The equivalent EI is not the same as the effective EI derived from transformed 
sections as the M/θ approach accounts for partial interaction between the reinforcement and 
the concrete as well as the formation and failure of softening wedges. Having derived the 
(M/EIequ) relationship calculating member deflection simply becomes a matter of 
determining the curvature distribution for a given moment distribution and integrating twice 
as in a traditional analysis. 
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Fig. 10 Moment-EIequ relationships for eccentrically loaded prisms  

 
CONCLUSIONS 
A mechanics based model for hinges in reinforced concrete columns has been described and 
shown to simulate test results closely. The model is based on the Euler-Bernoulli principle of 
plane sections remaining plane. It is also based on the Euler-Bernoulli strain based corollary 
of a linear strain profile prior to the formation of flexural cracks or wedges but not after these 
disturbances have occurred. After disturbances, the mechanics model shows that an effective 
linear strain profile does occur but which does not just depend on strains but also on the 
partial-interaction mechanisms that allow wedges to form and reinforcement to slip allowing 
cracks to widen. The mechanics model also uses the well-established principles of partial-
interaction theory and shear-friction theory to model disturbances. Unlike current hinge 
models, this mechanics model can be applied at all stages of loading from initial loading at 
serviceability to the maximum capacity at ultimate and beyond to failure whilst softening. 
Being a mechanics based model it can be applied to any type of reinforced concrete column, 
with any type of reinforcement and any type of concrete. And being a mechanics based 
model it does not require empirical testing to develop components of the model but just to 
determine the material properties.  
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Using shear-friction to simulate concrete softening in reinforced concrete 
flexural members 

Haskett, M., Oehlers, D.J., Visintin, P. and Mohamed Ali M.S. 

 

ABSTRACT 

The stress-strain relationships of concrete in compression are of fundamental importance in 
modelling the behaviour of reinforced concrete members, and can be used confidently whilst 
modelling the behaviour of members up to peak load. However, the post peak behaviour that 
requires the softening properties is difficult to quantify as these stress-strain softening 
properties are both size and shape dependent. In this paper, axial and lateral stress-strain 
expressions are used to derive the shear-friction properties of unconfined concrete, an 
approach which has the benefit of allowing for specimen size and shape directly. These 
mathematical shear friction expressions are then used to back calculate axial stress-strain 
relationships for various sized concrete cylinders, highlighting the ‘size effect’ which is 
difficult to explain empirically. Finally, a practical example of the use of shear friction 
expressions is presented, where the softening behaviour that occurs in flexural members is 
simulated using these shear-friction expressions with excellent accuracy. 

Keywords: compressive strength; concrete; size effect; stress-strain relationship; material 
properties; softening, shear friction theory  

 

INTRODUCTION 

The ascending branch of the concrete compressive stress-strain relationship is relatively 
easily determined and has been quantified empirically (e.g. Hognestad 1951, Desayi and 
Krisnan 1964, Carreira and Chu 1985). However, the ability to accurately model the 
softening behaviour of concrete has been an ongoing research problem for many years. An 
example of an axial compressive stress-strain relationship obtained from a concrete cylinder 
is shown in Figure 1, where the ascending branch O-D-Z is considered to be a material 
property, and where the strain at the start of softening (εco or εpk) can be obtained from 
empirical expressions (Hognestad 1951, Attard and Settunge 1964). After the peak stress has 
been achieved, fco at εco in Figure 1, the cylinder starts to unload but the axial contraction of 
the cylinder continues to increase. This behaviour is shown as the softening branch Z-A-C-G 
in Figure 1, where the softening branch Z-A-C-G can be considered to be more of a 
mechanism rather than a material property (Daniell et al. 2008, Debernardi and Taliano 2001, 
Mohemed Ali. et at 2010) and is a function of the development of damage within the 
concrete post peak stress. 
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The softening branch Z-A-C-G in Figure 1 occurs due to the formation of sliding planes, 
which create increasing displacement after peak stress. In concrete cylinders, these sliding 
planes form softening wedges after the peak stress has been achieved and which are inclined 
at an angle α which depends on the frictional and cohesive properties of the concrete 
(Mohamed Ali et al 2010) and the restraints at the cylinder ends. This wedge idealisation is 
shown in Figure 2, where this wedge formation is also supported experimentally from 
concentrically loaded prism tests (Nurwidayati et al 2011) conducted at the University of 
Adelaide as in Figure 3 and by other researchers (Ferretti 2004). As softening progresses 
along Z-A-C-G in Figure 1, these sliding planes displace and separate, shown as ∆ and hcr 
respectively in Figure 2(b), and the ability to transfer forces across these planes reduces 
(Haskett et al. 2010, Haskett et al. 2011). This reduction in shear transfer capacity across the 
sliding planes is responsible for the reduction in axial stress along Z-A-C-G in Figure 1. 
Furthermore, this increasing displacement and crack separation of the sliding planes is 
responsible for the increasing “strain” along the softening branch Z-A-C-G in Figure 1 and 
that associated with dilation. The axial strain in Figure 1 is simply the axial contraction of 
each half of the cylinder, shown as δaxial in Figure 2(b), relative to the gauge length of the 
halfspecimen, Lprism/2, where the contraction of the specimen δaxial, is the algebraic sum of 
the contraction due to the real strain in the cylinder, Lprismεreal/2 in Figure 2(b), and the 
deformation due to sliding (∆) and crack separation (hcr), shown as aA-B in Figure 2(b). It can, 
therefore, be seen that the strains in the ascending branch in Figure 1 are real strains εreal and 
those in the softening branch are effective strains as the latter are due to both real strains in 
the concrete and axial contraction due to the formation of sliding planes. 

 

Figure 1: Idealised concrete compressive axial stress-strain relationship 
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Figure 2: Equilibrium of a wedge and cylinder deformations 

 

 

Figure 3: Experimental wedge formation in concrete prisms 
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In this paper, published empirical axial and lateral stress-strain relationships are used to 
extract the shear-friction properties of initially uncracked unconfined concrete. Mathematical 
expressions are developed which quantify the shear-friction properties, that is the 
relationships between the shear stress, τN in Fig. 2(a), and crack separation, hcr, in terms of 
the normal stress σN restraining the sliding plane, the displacement of the sliding plane, ∆, 
and the compressive strength of concrete, fco. These shear-friction properties are then 
developed in terms of the axial stress σsoft for the analysis of compression zones. An example 
of the application of these shear friction properties is then presented, where is it shown that 
the effect of cylinder size on the stress-strain relationship can be explained through the use of 
shear friction theory. Finally, the softening behaviour of eccentrically loaded unconfined 
concrete prisms, which behave in the same way as the compression zone of flexural 
members, is modelled using the shear friction properties of concrete developed in this paper. 

 

EXTRACTING THE SHEAR FRICTION PROPERTIES OF CONCRET E 

Shear Friction Mechanics 

The shear friction properties can be extracted from empirically derived axial and lateral 
stress-strain relationships (e.g. Popovics 1973, ACI 1992). For a given axial stress (σsoft), for 
example point A in Figure 1, the shear stress acting across the sliding plane as in Figure 2(a) 
can be determined from geometry (Haskett et al. 2011) 

ααστ cossinsoftN =     Equation 1 

where α for cylinder tests can be considered constant and approximately equal to 37° 
(Haskett et al. 2011) in this paper, but is known to be a function of the cohesion and frictional 
capacity of the concrete (Mohamed Ali et al. 2010). Similarly, the normal stress across the 
sliding plane is (Haskett et al. 2011) 

ασσ 2sinsoftN =     Equation 2 

Thus, for a given axial stress σsoft, both the shear stress τN and normal stress σN acting along 
or across the sliding plane are known. Now let us consider the axial and lateral strains 
corresponding to this axial stress. 

Consider points A and B in Figure 2(a) which are adjacent to each other and on either side of 
a potential sliding plane. When the wedges move as in Figure 2(b), the adjacent surfaces of 
the sliding plane move apart by hcr through aggregate interaction and slide relative to each 
other by ∆ as shown. This movement causes an axial contraction aA-B as shown and 
consequently an additional effective axial strain, and a lateral expansion lA-B as shown which 
provides an additional effective lateral strain. Resolving the displacement and crack 
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separation in the axial direction according to the angle α that the softening wedge forms, the 
total axial strain induced in the cylinder is the axial contraction of the cylinder δaxial in Figure 
2(b) divided by half the prism length, Lprism/2, and is given by (Haskett et al. 2011) 

real
prism

cr

prism
axial L

h

L
εααε ++∆= sin2cos2

   Equation 3 

in which the first two components of the strain are effective strains due to sliding and 
widening across the sliding plane resolved in the axial direction (aA-B in Figure 2b), and the 
third component is the real strain the concrete due to the stress σsoft. Consider for example the 
stress level σ1 in Figure 1. Whilst on the ascending branch, the strain is the strain in the 
concrete material shown as εreal-1. However when on the falling branch where the total strain 
is εtotal-1, the strain in the concrete material is still εreal-1 but there is an additional effective 
strain εeff-1 due to ∆ and hcr. 

A similar approach can also be used to resolve the displacement and crack separation in the 
lateral direction to find the total lateral strain 

realc
prism

cr

prism
lat d

h

d
εν

α
αε ++∆=

cos

2sin2
   Equation 4 

where vcεreal denotes the lateral strain due to the real strain εreal and vc is the Poisson ratio 
prior to concrete softening and can be taken as 0.2, and the remaining components are the 
effective strains due to ∆ and hcr in the lateral direction, shown as lA-B in Figure 2b. 

The relationship between the total axial and total lateral strains in Equations 3 and 4 
corresponding to the axial stress σsoft has been determined experimentally through much 
research. This empirical research can be used in conjunction with Equations 1 to 4 to 
determine the shear-friction properties of concrete. The following empirical models were 
used in the derivation of the shear friction properties. 

Empirical Softening Relationships 

The softening strain εsoft for a given axial softening stress σsoft is given by Popovics (1973) as 
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     Equation 5 

where the parameter r reflects the brittleness of concrete from Carreira and Chu (1985) and is 
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ε−
=      Equation 6 

where Ec is the elastic modulus of concrete and can be taken as (ACI 1993) 

69003320 += coc fE    Equation 7 

The relationship between axial and lateral strain is from Teng et al. (2007) 
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and the strain at which softening commences (εco) can be taken from any empirical 
expression, for example from the standard stress-strain relationship of Hognestad (1951), 

c

co
co E

f2=ε       Equation 9 

Thus, for a given softening stress, the shear and normal stress across the sliding plane can be 
determined from geometry using Equations 1 and 2. The axial and lateral strains for the given 
axial stress can be determined from empirical stress-strain relationships (Equations 5 and 8), 
and the displacement and separation of the sliding plane can therefore be determined from 
Equations 3 and 4. Hence, the shear friction properties of unconfined concrete can be 
obtained directly from empirical stress-strain expressions. These will be referred to as the 
experimental results throughout this paper  

This separation of strains into relative constituents is similar to the compressive damage zone 
(CDZ) model proposed by Markeset (1993) and summarised in Markeset and Hillerborg 
(1995), where the strain in a (relatively slender) concrete cylinder is the algebraic sum of the 
strain in the undamaged portion of the cylinder (εreal), and the strain in the damaged portion 
of the cylinder due to the formation of longitudinal cracking (which is what we refer to as hcr 
and ∆). In the following section, the shear friction expressions are developed for various 
empirical expressions for εco.  

 

SHEAR STRESS SHEAR-FRICTION PROPERTIES 

For concrete strengths in the range 30-70 MPa, varying combinations of compressive 
strength of concrete and softening axial stress were considered to obtain the experimental 
results from which the shear friction properties were derived. Softening stresses below 
50%fco were removed because the empirical expressions used to determine the shear friction 



86 

 

properties of concrete become less accurate at these high levels of softening, possibly 
reflecting the inaccuracies of these empirical models at very low softening stresses.  

Substituting Hognestad’s Equation 9 into Equation 6 and solving for the brittleness parameter 
(r), the brittleness parameter is a constant and equal to 2 for all concrete strengths. The 
brittleness parameter (r) is the primary mechanism responsible for influencing the shape of 
the softening stress-strain relationship and therefore, the softening stress-strain relationship is 
identical for all strengths of concrete when using Hognestad’s expression for εco. This 
behaviour does not reflect the typical softening response of varying strengths of concrete, 
where higher strength concrete experiences a more rapid reduction in strength after peak 
stress than lower strength concrete. This inaccuracy at high strength concrete is also noted by 
other researchers (Wee et al. 1996). Therefore, in order to accurately simulate the rapid 
reduction in strength for higher strength concrete, the brittleness parameter r must be a 
function of the compressive strength of the concrete. Hence, three different empirical 
expressions for strain at peak stress (Hognestad 1951, Wee et al. 1996, Tasdemir et al. 1998) 
are considered in this paper and discussed subsequently. 

Based on Hognestad’s empirical peak strain expression 

Experimental results were derived using Hognestad’s expression Equation 9 for strain at peak 
stress. From a statistical analysis of these experimental results, the following theoretical 
shear stress expression as a function of the displacement, normal stress across the sliding 
plane and the compressive strength of concrete was derived  
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
 +−= στ   Equation 10 

where the units are in Newtons (N) and millimetres (mm). The shear stresses from the 
experimental results τN(exp) are compared to the theoretical shear stresses τN(Pred) from 
Equation 10 in Figure 4 for varying displacements, where it can be seen that Equation 10 
accurately predicts the experimental shear stresses. The average value of τN(Pred)/τN(Exp) in 
Figure 4 is 1.00 with a coefficient of variation of less than 0.4%.  
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Figure 4: Comparison of shear stresses based on Hognestad’s expression for εco 

A more convenient expression for analysis for a specific wedge angle α can be developed in 
the form of the axial stress in terms of the normal stress σN, displacement ∆ and compressive 
strength of concrete fco. Referring back to Figure 2(a), for a given axial softening stress σsoft 
and wedge angle α, the shear stress τN is proportional to the axial softening stress σsoft 
according to Equation 1. Substituting Equation 10  into Equation 1 for τN provides  
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Furthermore, the axial stress can also be expressed independently of the normal stress by 
replacing σN in Equation 11 with Equation 2 and rearranging for σsoft yields 
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Equation 12 shows that the axial stress can be expressed independently of the normal stress 
and can be expressed solely in terms of the angle of the wedge α, the displacement ∆ of the 
sliding plane and the compressive strength of concrete fco which it will be shown later is 
convenient for analysis. Continuing this approach and from a statistical analysis of the 
experimental results, the following expression with the same variables can be obtained 
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cococosoft fff +∆−+∆−= )34.4026.0()92.46105.0( 2σ  Equation 13 

where the units are in N and mm, and ∆ is the displacement along the sliding plane and 
which is specific to a wedge with an angle of the sliding plane α of 37° as this was the angle 
used in deriving the experimental results. The predicted axial stress from Equation 13 is 
compared to the experimental axial stress for varying displacements in Figure 5, where the 
average value is 1.00 with a coefficient of variation of 1.2%. 

 

Figure 5: Comparison of axial stresses based on Equation 13 and Hognestad’s expression for 
εco 

From Figure 5, it can be seen that Equation 13 over predicts the axial stress at large values of 
softening, that is where there are 9 “groups” of data at increasing displacements where 
σsoft(Pred)/σsoft(Exp) deviates away from the expected value of 1. These 9 deviations represent 
varying compressive strengths of concrete (30, 35, 40, 45, 50, 55, 60, 65, and 70MPa) and 
where the concrete has softened such that the axial stress is less than 55%fco. If we only 
consider softening up to 55%fco, then this deviation is not evident and the average value of 
σsoft (Pred)/σsoft (Exp) is 1.00 with a corresponding coefficient of variation of less than 0.6%. 

 

The axial stresses from the experimental results σsoft(Exp) are compared to the theoretical axial 
stresses σsoft(Pred) from Equation 12 in Figure 6, where it can be seen that Equation 12 very 
accurately predicts the experimental axial stresses. The average value of σsoft (Pred)/σsoft (Exp) in 
Figure 4 is 1.00 with a coefficient of variation of less than 0.5%. As indicated by comparing 
Figures 5 and 6, the accuracy of Equation 12 is slightly better than Equation 13, where the 
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deviation of the results away from the expected value of 1 at increasing displacements is not 
as noticeable. However, Equation 13 is less complex. 

 

Figure 6: Comparison of axial stresses based on Equation 12 and Hognestad’s expression for 
εco 

In applying Equations 10, 11, 12 and and 13, it should be understood that at zero 
displacement ∆ the concrete has just commenced softening (that is the effective strain is the 
real strain and equal to εco) and, therefore, the corresponding axial stress must be equal to fco. 
This is clear in Equation 13, where at zero displacement the axial stress is fco, but this 
behaviour is less evident in Equation 10. At zero displacement, Equation 10 predicts a shear 
stress of 0.48fco. Assuming that the sliding plane forms at an angle α of 37º in a cylinder test, 
substituting Equation 10 with ∆=0 into Equation 1 and rearranging for the corresponding 
axial stress gives 
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Hence at zero displacement, a shear stress of 0.48fco acting along the sliding plane is 
geometrically equivalent to an axial stress of fco, which is as expected. 

Based on Wee’s empirical peak strain expression 

Following the same approach as described above but considering the strain at peak stress 
proposed by Wee et al. (1996)  
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where the units are in N and mm, the theoretical shear stress is given by  
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where again the units are in N and mm. The experimental shear stresses when compared to 
the theoretical shear stresses from Equation 16 in the form shown in Figure 4 give accurate 
predictions with an average value of 1.00 with a coefficient of variation of less than 0.6%. 

In a counterpart to Equation 13, a statistical analysis of the experimental results that were 
based on Wee’s peak strain expression gave 

cococosoft fff +∆−−+∆+−= )34.410.0()16.4034.4( 2σ   Equation 17 

where the units are in N and mm as before. Equation 17 is applicable to a sliding plane α of 
37° and when compared with the experimental results has a mean of 1.00 with a coefficient 
of variation of 0.8%. 

 

Based on Tasdemir’s empirical peak strain expression 

Repeating the same approach but considering Tasdemir et al’s (1998) expression for peak 
strain 

( ) 62 1010539.29)(067.0 −×++−= cococo ffε     Equation 18 

where the units are in N and mm , the theoretical shear stress is given by  
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where the units are in N and mm. Equation 19 also gives very accurate predictions with a 
mean of 1.00 and a coefficient of varation of 0.8%. Furthermore from a statistical analysis of 
the experimental results yields 

cococosoft fff +∆+−+∆−−= )19.120.0()49.8921.0( 2σ   Equation 20 

with units in N and mm. When compared to the experimental results, Equation 20 has a mean 
of 1.00 and a coefficient of variation of 1%. 
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It has been shown that shear-friction expressions can be derived using various empirical 
relationships with very good accuracy. These shear friction expressions are compared in the 
following section.  

 

Comparison of shear stress expressions 

Let us now compare the three shear stress expressions (Equations 10 based on Hognestad, 
Equation 16 on Wee and Equation 19 on Tasdemir) for various concrete strengths starting 
with a low concrete strength of 30 MPa in Figure 7. The softening properties in Equation 5 
depends on the brittleness parameter r in Equation 6 which itself depends on the strain εco 
which is given by Equation 9 (Hognestad), Equation 15 (Wee) and Equation 18 (Tasdemir). 
These strains εco and consequently r are reasonably close as shown in Figure 7 so that the 
variations in the shear stress τN in Figure 7 are also reasonably close particularly those based 
on Wee and Tasdemir, so that the variations in the axial stress from Equations 11( 
Hognestad), 17 (Wee) and 20 (Tasdemir) will be reasonably close at low concrete strengths. 

 

Figure 7: Influence of strain at peak stress (εco) on shear capacity for fco=30MPa 

Considering now 70MPa concrete in Figure 8. As the strain at peak stress (εco) varies much 
more between the three expressions, there is a corresponding wide variation in the brittleness 
parameter r. These properties mean that since Wee’s brittleness parameter is largest, Wee 
will provide a more rapid drop in stress for increasing displacements (and strain) as shown in 
Figure 8.  
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Figure 8:  Influence of strain at peak stress (εco) on shear friction for fco=70MPa  

Figures 7 and 8 display the same trends: Hognestad provides a more uniform reduction in 
shear (and therefore axial) stress for increasing displacements (or strains), while Wee et al. 
provides the most rapid reduction in shear (and similarly axial) stress for increasing 
displacements (or strains). It is known that in general weak concrete softens at a slower rate 
than strong concrete; this is clearly reflected in the results based on Wee and Tasdemir’s 
peak strains but not on Hognestad’s where r is independent of the concrete strength and, 
therefore, the same rate of softening occurs for all concrete. Hence it would be expected that 
using Wee’s and Tasdemir’s values for εco would give better results in the simulations at high 
concrete strengths as will be confirmed later. These behaviours highlight the sensitivity of the 
shear friction analysis to the concrete material properties used which can be refined over time 
if required. 

Various expressions have been presented which quantify the shear and axial stress transferred 
across a concrete interface for a given normal stress, compressive strength of concrete and 
sliding plane displacement. These expressions have been shown to very accurately model the 
experimental shear and axial stresses, and can be used with confidence to predict the shear or 
axial stress for a given displacement, concrete strength and normal confining stress. It was 
also shown that to accurately simulate the behaviour of higher strength concrete, it is 
preferable to use peak strain expressions that are independent of Ec. In the following section, 
an identical approach is used to derive expressions for the crack separation in terms of the 
same parameters. 
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CRACK SEPARATION EQUATIONS 

Having obtained the shear stress expressions, a similar approach can also be used to quantify 
the crack separation in terms of similar parameters. As before, excluding the experimental 
results where σsoft/fco<0.5 and considering Hognestad’s expression for strain at peak stress, 
the crack separation is given by  
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    Equation 21 

The accuracy of Equation 21 in predicting the crack separation is shown in Figure 9 for a 
range of crack separations. The average value of hcr(Pred)/hcr(Exp) is 1.005 with a coefficient of 
variation of less than 8% where the majority of the error is at very small crack separations.  

  

Figure 9: Accuracy of Equation 21 for various displacements 

Repeating the same approach but considering Tasdemir et al’s (1998) expression for peak 
strain the theoretical crack separation is given by  
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where the units are in N and mm. Equation 22 also gives accurate predictions with a mean of 
0.96 and a coefficient of variation of 20%. Note that Equation 22 is in a different format to 
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Equation 21 which was less dependent of the compressive strength of concrete. The term 
(fco/30)-1.042 in Equation 22 reflects the presence of a relationship between compressive 
strength of concrete and the brittleness parameter (r) when using Tasdemir’s expression for 
strain at peak stress.  

Repeating the same approach but considering Wee et al’s (1996) expression for peak strain 
the theoretical crack separation is given by  
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where the units are in N and mm. Equation 23 also gives relatively accurate predictions with 
a mean of 0.99 and a coefficient of variation of 24%. 

Having now obtained mathematical expressions for the shear-friction properties, the 
softening behaviour of concrete in compression can be simulated. As an example, the shear-
friction expressions can be used to model the softening stress-strain relationships for concrete 
cylinders of varying dimensions, and also to simulate the softening behaviour of concrete in 
an eccentrically loaded prism test. 

 

USING THE SHEAR FRICTION PROPERTIES TO DETERMINE AX IAL STRESS-
STRAIN RELATIONSHIPS 

The process to obtain the shear friction parameters of concrete from empirical stress-strain 
relationships has been presented. Conversely, it is possible to use the shear-friction properties 
of concrete to back-calculate the stress-strain relationships of concrete. As an example of the 
application of these shear-friction parameters, the influence of cylinder size on the softening 
behaviour of concrete, Z-A-C-G in Figure 1, can be quantified. This cannot be done using 
empirical stress-strain relationships because these empirical relationships are only applicable 
to specific cylinder dimensions from which they were obtained. 

The process to obtain the axial stress-strain relationship using the previously derived shear 
friction expressions is straightforward. For a given softening stress, for example A in Figure 
1, the shear stress and normal stress can be determined from Equations 1 and 2. Knowing the 
normal and shear stresses acting across or along the sliding plane, the corresponding 
displacement of the sliding plane can be determined by solving a shear stress expression for 
∆. For example, rearranging the shear-friction Equation 10, the displacement of the sliding 
plane for a given shear stress, normal stress and compressive strength of concrete is given by 
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The separation of the sliding plane hcr for this shear stress and displacement can be 
determined directly from Equation 21 for example, where ∆ in Equation 21 is from Equation 
24. Thus, for a given axial stress (and compressive strength of concrete) the displacement and 
separation of the sliding planes is known. Compatibility of the cylinder shown in Figure 2 is 
then used to determine the axial and lateral strains in the cylinder corresponding to this 
displacement and separation. The total axial strain is the sum of the effective axial strain due 
to ∆ and hcr and the real strain in the concrete εreal according to Equation 3. The real strain in 
the cylinder εreal for a given axial stress can be determined knowing the concrete properties in 
the ascending branch. For example, Hognestad (1951) modelled the ascending portion of the 
stress-strain relationship as a parabola. 
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Therefore, the real strain for a given axial stress σsoft, can be determined by solving 
Hognested’s stress-strain expression for εreal as 
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fff
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Thus, the axial strain for this given softening stress can be determined from Equation 3 since 
εreal, ∆ and hcr are all known. If required, the corresponding lateral strain can also be obtained 
from Equation 4, where the lateral strain is also a function of the real strain and displacement 
and separation of the sliding planes. The softening stress is then gradually reduced along Z-
A-C-G in Figure 1 to develop the complete axial stress-strain relationship for unconfined 
concrete for a given compressive strength. 

The axial stress-strain relationship obtained from shear-friction theory can be compared to 
any empirical axial stress-strain expressions previously developed for 200mm high and 
100mm diameter concrete cylinders. The theoretical shear friction stress-strain relationship 
are compared to an empirical stress-strain relationship from Popovics (1973) in Figure 10 for 
concrete strengths of 30 and 50MPa. As expected, the shear-friction and empirical stress-
strain relationships are almost identical. Given the accuracy of Equation 10 in predicting 
shear stress, the converse is also true: for a given axial stress (and therefore shear stress) the 
displacement of the sliding plane can be very accurately estimated. Knowing the 
displacement of the sliding plane, the crack separation can also be accurately estimated. 
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Hence, the “shear-friction” axial stress-strain relationships shown in Figure 10 are almost 
identical to the empirical stress-strain relationship. 

 

Figure 10:  Comparison of empirical and shear-friction stress-strain relationships  

The shear-friction expressions in this paper were developed from empirical axial and lateral 
stress-strain expressions considering 200x100mm concrete cylinders and hence these 
empirical expressions are only applicable to 200x100mm cylinders. However, the shear-
friction expressions are independent of size, since they are a measurement of the 
instantaneous shear stress able to be transferred across a sliding plane, and the corresponding 
separation of that sliding plane. Hence, the well known “size effect” (e.g. Yi et al. 2006, 
Bazant and Xiang 1997, del Viso et al. 2007, Van Mier and Man 2009) can also be 
investigated through the use of these shear friction expressions.  

The influence of cylinder dimensions on the axial stress-strain relationship can be best 
explained by considering Equation 3, where the total axial strain due to the contraction of the 
cylinder εaxial is the sum of the real strain in the concrete within the cylinder εreal and the 
effective strain induced by displacement ∆ and crack separation hcr. The dimension of the 
wedge in Figure 2 is independent of prism dimension. That is, the axial displacement aA-B in 
Figure 2 corresponding to an axial stress σsoft is size independent. Hence, the additional strain 
induced by this axial sliding plane deformation aA-B in a prism of length 2Lprism is one half 
that which would occur in a prism of length Lprism. The stress-strain relationships are also 
dependent on specimen shape, and this occurs when the prism restraints are close enough to 
influence the angle that the wedge forms, α. For example, for very short prisms, the wedge 
must be completely contained within the prism length, and therefore the angle at which the 
wedge develops increases to ensure the wedge is fully contained in a shorter prism length. 
This change in wedge angle influences the axial and lateral dilations aA-B and lA-B in Figure 
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2b. This influence of the restraint conditions on the failure behaviour of concrete cylinders 
has also been reported elsewhere (Roddenberry et al. 2011). These behaviours are the well 
known and commonly referred to as “size effect”, which can now be quantified through the 
use of the shear friction expressions. 

An example of the theoretical axial stress-strain relationship from shear friction expression 
for various sized concrete cylinders is shown in Figure 11. It is clear that the axial strain for a 
given softening stress reduces as the cylinder dimensions increase. At the commencement of 
softening (30MPa in this example) the majority of the axial shortening (δaxial in Figure 2) is 
from “real” strain in the concrete cylinder. The sliding plane has only just formed and 
therefore the axial deformation aA-B in Figure 2(b) tends to zero. As softening progresses (i.e. 
reducing stresses in Figure 11) the contribution of the individual components to the total 
strain changes: the axial displacement due crack separation and displacement (aA-B in Figure 
2b) increases, causing an increase in total axial strain, while the real strain in the cylinder 
reduces in response to the reducing stress. The real strain in the cylinder is not affected by 
cylinder size, which is as expected because the real strain in the cylinder is obtained from the 
material behaviour O-D-Z in Figure 1.  

 

Figure 11:  Influence of size on softening 

Essentially, irrespective of the cylinder dimension Lprism in Figure 2, for a given softening 
stress, the crack separation hcr and displacement ∆ are identical. However, when computing 
the corresponding axial strain in the prism, these axial deformations aA-B in Figure 2(b) cause 
a larger effective strain in a smaller dimensioned specimen which can also be deduced from 
Equation 3. This is the reason for the size effect and can be explained clearly through the use 
of shear friction parameters. 
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USING SHEAR FRICTION THEORY TO SIMULATE ECCENTRICAL LY 
LOADED CONCRETE PRISMS 

Shear friction expressions can also be used in a practical sense, for example to simulate 
concrete softening in a flexural member where there is a gradient in the strain as often 
simulated in eccentrically loaded concrete prism tests. Consider the concrete prism in Figure 
12(a) which is subjected to an applied load (P) at eccentricity (ecc) which causes a 
deformation as shown by the bold black lines which is also shown in the deformation profile 
Figure 12(b). The deformation varies linearly over the prism depth dprism from δtop at the top 
to δbottom at the base. The effective strain over the prism depth corresponding to this 
deformation can be determined as in Figure 12(c) where the strain is simply the deformation 
divided by the length over which it acts, which in this case is wprism/2. The corresponding 
rotation θ for this deformation can be determined from geometry as shown in Figure 12(a). 
Because of the eccentricity of load, material softening (which we refer to as the formation of 
a softening wedge) first forms on the loaded side of the prism, and where the depth of 
softening is a variable and shown as dwedge in Figure 12(a) and forms at an angle α.  
 

 
Figure 12: Eccentrically loaded concrete prism analysis technique 

 

According to the deformation profile shown in Figure 12(b), the depth of the softening 
wedge can be determined as it is known that softening commences when the effective strain 
exceeds the strain at peak stress, shown as εpk in Figure 12(c); this occurs at a deformation 
∆pk of εpkwprism/2. The corresponding stress at this position is fc, as shown in Figure 12(d). 
Hence, any deformation within the prism that is greater than ∆pk in Figure 12(b), that is over 
the depth dprism, signifies a region where concrete softening is occurring and, therefore, 
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requires the use of shear-friction properties to quantify the shear (or axial) stress for a given 
deformation. 

 
Let us first consider the behaviour below ∆pk in Figure 12(b). The linear deformation 
produces the effective linear strain distribution shown in Figure 12(c), where depending on 
the eccentricity (ecc) of the applied load (P), the entire prism may be in compression, or, as 
shown in Figure 12, a portion of the prism may be in tension. If the strain at the base, δbottom, 
is less than the cracking strain of concrete, then a crack has not developed, and the stress 
distribution in this tensile region can be determined knowing the tensile material properties. 
The corresponding tensile force, Ftension and the location of this force can therefore be 
determined. If we increase the deformation profile such that the effective strain at the bottom 
of the prism exceeds the tensile strain capacity of concrete, a crack has formed, and tensile 
stresses cannot be developed over the region where the strain exceeds this value. Hence, this 
analysis can also incorporate cracking if it occurs. 
 
Let us now consider the compression behaviour above the neutral axis. Consider level n, 
where the deformation exceeds ∆pk and, therefore, a wedge has formed and the total 
deformation is ∆n as shown in the deformation profile. A portion of this deformation (or 
contraction) is a result of the slip of the wedge, shown as τn-w, and the remaining contraction 
is accommodated by concrete material straining εn-mat as shown in Figure 12(c). The real 
strain profile over the softening depth is shown in Figure 12(c) as the bold black line, where 
for increasing deformations the real strain is reducing in response to reducing stresses as 
shown in Figure 12(d). That is, the deformation due to material straining is given by εn-mat 

wprism/2 and the remaining deformation is due to sliding contraction ∆n-w at the wedge 
interface as shown in Figure 12(a). It is simple a question of finding the stress σn in Figure 
12(d) such that the material contraction εn-mat wprism/2 plus the wedge contraction ∆n-w, is 
equal to the total required deformation ∆n in Figure 12(b), where the stress in the wedge is 
obtained from shear friction theory. For example, for an assumed wedge slip (∆n-w) the 
corresponding axial stress in the wedge can be determined from Equations 12 or 13. It also 
should be noted that the deformation ∆n-w in Figure 12 must be resolved at an angle α to 
obtain the displacement of the sliding plane for use in the shear friction equations since the 
displacement in these equations is measured along the sliding plane. For this axial stress, the 
material contraction can be determined εn-matwprism/2 and the total deformation must be equal 
to the total deformation ∆n. If this is not the case an iterative approach can be used to solve 
for ∆n-w until the sum of the wedge displacement and material contraction is equal to ∆n. This 
type of analysis procedure requires the softening region to be sliced into small segments of 
depth dx, where this procedure is repeated over the entire depth of the wedge to obtain the 
total force in the softening wedge Fwedge.  
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The forces in the non-softening region, Fasc, can be determined from any standard analysis 
procedure. The position of the resultant force in the prism can now be determined, where the 
resultant force is required to be in line with the applied external load P. If this is not the case, 
then the assumed displacement profile A-B is incorrect and the rotation needs to be changed 
until the resultant internal force is in line with the applied external force. When this occurs a 
single point on the moment-rotation relationship has been determined and this procedure is 
subsequently repeated for increasing displacements to obtain the complete moment-rotation 
relationship. 
 
The theoretical results for this analysis procedure for varying eccentricities (12mm, 24mm, 
36,mm and 48mm) and using various shear friction equations (Wee et al. 1996, Hognestad 
1951 and Tasdemir et al. 1998) are shown in Figure 13. It is clear that the softening portion 
of the prism test is accurately modelled using shear friction parameters, and the rate of 
softening varies according to the shear friction expression considered  

 

Figure 13:  Simulating eccentrically loaded prisms using shear-friction theory 

From Figure 13, the different shear friction expressions obtained by using different empirical 
expressions for strain at peak stress provide differing rates of softening. The use of Wee’s 
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expression for strain at peak stress results in a more rapid reduction in shear (and therefore 
axial) stress for increasing rotations, while Hognestad’s expression for strain at peak stress 
provides the least rapid reduction. These behaviours are consistent with the responses shown 
in Figures 7 and 8. Generally it appears that the use of Tasdemir et al’s expression for strain 
at peak stress most accurately simulates the experimental softening response. However, it 
should be noted, that all three expressions accurately model the softening trend shown in 
Figure 13, and that any of the shear friction expresssions presented in this paper can be 
refined through more accurate empirical expressions. The key finding is that shear friction 
theory can be used to simulate concrete softening that occurs in practice. 

 

CONCLUSION 

The shear-friction properties of initially uncracked unconfined concrete have been extracted 
from standard concrete cylinder tests and developed in a form that can be used to simulate 
and quantify the behaviour of unconfined concrete under compression. The advantage of this 
shear-friction approach over existing approaches is that it simulates what is actually seen in 
practice, that is: the formation of sliding planes in initially uncracked concrete; and the 
relationship across these sliding planes between the shear stress τN, normal stress σN, 
widening hcr and slip ∆. A further advantage is that this shear-friction approach is neither size 
nor shape dependent. It has been shown how shear-friction theory can be used to simulate the 
formation of wedges that occur during the softening of concrete under compression in 
cylinder tests and explains why the axial stress-strain relationship of concrete whilst 
softening that is extracted from cylinder tests is both size and shape dependent. It has also 
been shown how the shear-friction approach can be used to simulate the formation of wedges 
and the rotation that occurs in flexural members giving very good correlation with test results 
and without the need for empirically derived hinge lengths.  
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The Reinforcement Contribution to the Cyclic Behaviour of Reinforced 
Concrete Beam Hinges 

Visintin, P., Oehlers, D.J., Wu, C., and Griffith, M.C. 

 

ABSTRACT  

The cyclic behaviour of plastic hinges is an essential component in tracking the behaviour of 
reinforced concrete (RC) frames to failure, not only for monotonically increasing 
force/pressure loads such as under extreme wind loads but also for dynamic displacement-
driven loads such as under earthquake ground motions. In order to describe member 
deformations at ultimate loading, traditional moment-curvature techniques have required the 
use of an empirical hinge length to predict rotations, and despite much research a definitive 
generic expression for this empirical hinge length is yet to be defined. To overcome this 
problem, a discrete rotation approach, which directly quantifies the rotation between crack 
faces using mechanics, has been developed for beams and been shown to be accurate under 
monotonic loading. In this paper, the discrete rotation approach for monotonic loads is 
extended to cope with cyclic loads for dynamic analyses, and this has led to the development 
of a new partial interaction numerical simulation capable of allowing for reversals of slip of 
the reinforcing bars. This numerical tool should be very useful for the nonlinear analysis of 
reinforced concrete beams and reinforced concrete columns with small axial loads under 
severe dynamic loads. 

 

Keywords: Reinforced concrete; hinges; ductility; discrete rotation; cyclic loads; and 
hysteretic behaviour. 

INTRODUCTION 

The importance of ductility, that is the ability of reinforced concrete members to maintain 
strength under deflections/rotations beyond their yield point and, thereby, absorb energy 
inputs such as those from seismic and blast loads, has long been recognised as a key design 
aspect. Since the early 1960s, a significant amount of experimental and analytical research 
has been devoted to describing the hysteretic behaviour of reinforced concrete beams and 
beam column joints under cyclic loading well into the inelastic range. A key feature of the 
hysteretic response is the loss of stiffness associated with repeated reverse cyclic loading. It 
is well established [1] that the major causes of this loss of stiffness are: the Baushinger effect 
which describes the softening behaviour of steel following a reversal of load; concrete 
cracking and splitting along the reinforcing bars; cyclic deterioration of the bond between the 
reinforcing bars and the surrounding concrete; and shear sliding and crushing of the concrete.  
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Early experimental and analytical work in describing the hysteretic behaviour of reinforced 
concrete sections lead to the proposal of several moment-curvature models [2-5]. These 
strain-based approaches use standard beam analysis techniques with cyclic material models 
to describe the cyclic moment curvature response, and, are therefore capable of including the 
Baushinger effect. However, the moment curvature approach is limited when used to 
describe member rotation. This is because it is a two-dimensional analysis of a cross-section 
and, therefore, the hinge length over which the curvature is integrated to derive the rotation 
has to be determined empirically, as, in theory, it can be shown that the hinge is of zero 
length [6, 7]. Numerous empirical formulations for determining the hinge length have been 
suggested in the literature and while they show good accuracy when compared to the data set 
from which they were derived, when applied to a global data set correlations are poor [8].  

Following these early strain-based analyses, and subsequent to the identification of the 
importance of the influence of bond behaviour in the reduction of member stiffness during 
cyclic loading, an extensive experimental and analytical effort to describe the mechanics of 
the bond slip problem was undertaken [9-12]. The development of reliable cyclic bond slip 
relationships led to several finite element based hysteresis models being developed [13-15]. 
While these finite element models allow for the influence of the Baushinger effect, include 
bond slip effects, and are capable of considering the influence of shear [16] they are limited 
in the same way as the early curvature-based analyses, that is, they need a specified hinge 
length. This is because the inclusion of concrete material softening in a finite element 
formulation restricts the softening zone, which is in effect the hinge length, to the length of 
that element [6]. 

Recently, a partial-interaction discrete rotation approach has been developed that quantifies 
the discrete rotation between crack faces by allowing for the relative slip between the 
reinforcement and the concrete at the crack face, [17-27] and both numerical partial-
interaction models [22, 26] and mechanics partial interaction models [21, 29, 25] have been 
developed. Using these models, the discrete rotation approach has been shown to accurately 
predict the rotational response of members under monotonic loading. The aim of this paper is 
to show how the discrete rotation approach for beams can be extended to the cyclic load case.  

 

MOMENT DISCRETE ROTATION APPROACH 

Typically, reinforced concrete members can be considered to consist of two distinct regions: 
(1) the hinge, or disturbed region, characterised by wide flexural cracks and concrete 
crushing; and (2) the non-hinge, or undisturbed region, where small cracks occur but the 
concrete does not crush. It is in the hinge region where much of the rotation is concentrated 
and where the discrete rotation between cracks is applied. The discrete rotation approach 
treats the undisturbed region and the disturbed hinge regions separately [22, 25, 26, 28, 29]. 



 

In the undisturbed region beyond the hinge regions, it is sufficiently accurate to use the 
Euler-Bernoulli moment curvature approach that assumes full interaction between the 
reinforcing bars and the surrounding concrete to quantify the deforma
flexural rigidities if necessary to allow for minor cracking. In contrast, in the disturbed hinge 
region at the location of a wide flexural crack which is associated with hinges at the ultimate 
limit state, discrete rotation occurs b
widening of the tensile crack, which is itself caused by the relative slip between the 
reinforcing bar and the surrounding concrete, known as partial interaction behaviour. This is 
a rigid body displacement and as such the curvature approach does not apply as it assumes 
full interaction. In contrast to this the discrete rotation approach explicitly allows partial 
interaction and rigid body displacements, and therefore more accurately simulates the 
physical processes of concrete cracking.

 

The unified moment discrete rotation approach idealises the plastic hinge as in Figure 1 [26, 
28, 29], where each half of the hinge rotates as a rigid body about the apex of the flexural 
crack. The hinge is considered t
hinge is split into two regions. In the ascending region of depth d
rising branch of its stress-strain relationship and standard analysis techniques based on 
material properties can be applied to determine the force developed (
wedge of depth dsoft, the concrete is strain softening and shear friction theory is used to 
describe the relative movement between the softening wedge and the ascending region,
well as the stresses acting across the sliding plane and hence the force resisted by the wedge 
(Psoft). Finally, in the partial interaction tensile zone of depth h
reinforcing bars, Preinf-tens, for a given slip, 
theory [21, 24, 25, 28] between the reinforcing bar and surrounding concrete. 

Figure 

In the undisturbed region beyond the hinge regions, it is sufficiently accurate to use the 
Bernoulli moment curvature approach that assumes full interaction between the 

reinforcing bars and the surrounding concrete to quantify the deformations, using effective 
flexural rigidities if necessary to allow for minor cracking. In contrast, in the disturbed hinge 
region at the location of a wide flexural crack which is associated with hinges at the ultimate 
limit state, discrete rotation occurs between the crack faces. This rotation is caused by the 
widening of the tensile crack, which is itself caused by the relative slip between the 
reinforcing bar and the surrounding concrete, known as partial interaction behaviour. This is 

ement and as such the curvature approach does not apply as it assumes 
full interaction. In contrast to this the discrete rotation approach explicitly allows partial 
interaction and rigid body displacements, and therefore more accurately simulates the 
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The unified moment discrete rotation approach idealises the plastic hinge as in Figure 1 [26, 
28, 29], where each half of the hinge rotates as a rigid body about the apex of the flexural 
crack. The hinge is considered to have three distinct regions. The compressive zone of the 
hinge is split into two regions. In the ascending region of depth dasc the concrete is on the 

strain relationship and standard analysis techniques based on 
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, the concrete is strain softening and shear friction theory is used to 
describe the relative movement between the softening wedge and the ascending region,
well as the stresses acting across the sliding plane and hence the force resisted by the wedge 

). Finally, in the partial interaction tensile zone of depth hcrack, the load resisted by the 
, for a given slip, ∆reinf-tens, is determined using partial interaction 

theory [21, 24, 25, 28] between the reinforcing bar and surrounding concrete.  

 

Figure 1: Idealisation of plastic hinge 
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In the undisturbed region beyond the hinge regions, it is sufficiently accurate to use the 
Bernoulli moment curvature approach that assumes full interaction between the 
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For analysis, the hinge can be further idealised to consider a 
where the moment-rotation relationship is derived for increasing depths of the softening 
wedge, dsoft. For a specific value of d
rigid body displacement profile in
longitudinal equilibrium of the forces is achieved, thereby, allowing for the determination of 
the moment and rotation. The equations for calculating these forces are presented below; 
however a more detailed derivation of the fundamental principles can be found elsewhere 
[24, 28, 30] 

Figure 2: Hinge idealisation for moment rotation analysis

Concrete compression zone

The depth of the softening wedge, d
in the following equation where all unknowns are defined in Figure 2.

The force resisted by the softening wedge, P
[31],  

�!H9G �
where, wb is the width of the cross
of the Mohr-Coulomb failure plane for the concrete which can be deriv
testing [32], σlat is the lateral confinement provided to the wedge by stirrups and 
angle at which the wedge forms which is a function of the friction property as given in 
Equation 3.  

For analysis, the hinge can be further idealised to consider a single crack face as in Figure 2, 
rotation relationship is derived for increasing depths of the softening 

For a specific value of dsoft, which acts as the pivotal point for the analysis, the 
rigid body displacement profile in Figure2(b) can be rotated through θ
longitudinal equilibrium of the forces is achieved, thereby, allowing for the determination of 
the moment and rotation. The equations for calculating these forces are presented below; 

ed derivation of the fundamental principles can be found elsewhere 

 

 

Figure 2: Hinge idealisation for moment rotation analysis 

Concrete compression zone 

The depth of the softening wedge, dsoft in Figure 2 can be determined from the locus of 
where all unknowns are defined in Figure 2. 

#aH9G � ,′b�∆B-d+KeD-+fghDi+�j�^b      

The force resisted by the softening wedge, Psoft, may then be determined using Equation 2 

� kX#!H9G  6�^4liD�H!2�!Z$2^m�H!2�!Z$2��H!2�m!Z$2� =    

is the width of the cross-section, m and c are the friction and cohesion components 
Coulomb failure plane for the concrete which can be derived from material 

is the lateral confinement provided to the wedge by stirrups and 
angle at which the wedge forms which is a function of the friction property as given in 
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single crack face as in Figure 2, 
rotation relationship is derived for increasing depths of the softening 

, which acts as the pivotal point for the analysis, the 
Figure2(b) can be rotated through θ radians until 

longitudinal equilibrium of the forces is achieved, thereby, allowing for the determination of 
the moment and rotation. The equations for calculating these forces are presented below; 

ed derivation of the fundamental principles can be found elsewhere 

 

 

can be determined from the locus of ∆asc as 

 Equation 1 

, may then be determined using Equation 2 

 Equation 2 

are the friction and cohesion components 
ed from material 

is the lateral confinement provided to the wedge by stirrups and α is the 
angle at which the wedge forms which is a function of the friction property as given in 
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n � opqrost
u � √u� � 1w     Equation 3 

In the absence of specific material properties, typical values can be employed in the analysis, 
with a friction component m of 0.8, a cohesion component c of 0.17fc, and an angle of the 
failure plane, α of 26˚ [31]. 

Using the rigid body moment-rotation approach, the wedge does not fail when its strength 
Psoft is achieved, but rather has a limit to the slip ∆asc given by Equation 4 where ∆slide is the 
slip at failure [29].  

∆!xZ,M � 2.51 4liD9: � 0.61     Equation 4 

For reinforcement located in the softening region, the force developed can be calculated 
using a strain-based approach, extending a linear strain profile through the known strains at 
the softening wedge interface and the crack tip as in Figure 2(c). 

In the remainder of the concrete in compression, that is, over dasc in Figure 2, the concrete 
has not softened, and compressive stresses range from zero at the crack tip to the peak 
compressive strength, fc, at the strain shown as ε0 in Figure 2(c). While any ascending stress 
strain relationship may be used, the force developed using Hognestad’s parabolic distribution 
has been typically applied and is given by Equation 5 [33]. 

� !� � �& ��kX# !�    Equation 5 

For reinforcement located in the ascending regions the strain and consequently force can be 
calculated using the linear strain profile in Figure 2(c). 

Partial interaction (P-∆) tension region 

For reinforcement located in the cracked tension zone, a partial interaction intermediate crack 
(IC) approach must be used to determine the relationship between the slip of the bar, ∆reinf-tens, 
and the force Preinf-tens in Figure 2. Again, any appropriate partial interaction model can be 
applied, and for the monotonic load case closed form structural mechanics solutions are 
available for a variety of bond stress-slip characteristics [21, 25, 24, 31 34]. However, for the 
modelling presented, a numerical procedure [24, 35] has been applied as it is necessary to use 
a nonlinear cyclic bond stress-slip characteristic as outlined below to allow for reversals of 
load. For the tensile reinforcement, two limits to rotation are imposed; these are fracture and 
debonding of the bar, both of which can be determined based on the partial interaction 
model.  

The basic numerical shooting procedure [24, 35] is illustrated in Figure 3, where a bar of 
length Lr measured from the crack face is embedded in concrete of cross-sectional area Ac 
and is being pulled to a displacement at the crack face of ∆, such that a force Pr(1) is 



 

generated in the reinforcing bar, and P
numerical procedure which is required to find the force to develop the given slip, the bar in 
Figure 3 is sliced into elements of length 
length, and where each element shown has been separated to show the forces acting.

Figure 3: Partial interaction algorithm at an elemental element

The analysis begins by fixing the slip 
the load in the reinforcement that induces this slip. This is done by first guessing the 
reinforcement strain εr(1) and, hence, the force P
the correct Pr(1) to induce ∆(1).

This fixed slip of the bar ∆(1) is equal to the local slip 
a bond stress τ(1), which is a material property, and can be determined using a bond stress
slip relationship. As the numerical procedure 
distribution can be used, and in the case of the analysis to follow, the cyclic bond stress slip 
model of Eligehausen et al. [11] has been employed as it can simply describe the loss of 
strength and stiffness of the bond encountered during cyclic loading, as will be discussed 
further in the next section.  

Knowing the bond stress τ(1), the bond force, 
calculated. It is simply the bond stress integrated over the surface area 
Equation 6, where Lper is the circumference of the bar and dx is the length of the segment i.e.

Having determined the bond force acting at a given element, it is possible to determine the 
load in the reinforcing bar at the end of the element (n), and therefore, at the beginning of the 
next element (n+1) by equilibrium, as in Equation7.

It should also be noted at this point that as a result of cyclic loading the dir
force may change during unloading and reloading because of the influence of friction, and 
therefore, as will be shown in the results, the force in the bar can build up along the bar 
length instead of reducing.  

generated in the reinforcing bar, and Pc(1) is generated in the concrete. To describe the 
numerical procedure which is required to find the force to develop the given slip, the bar in 
Figure 3 is sliced into elements of length dx, which are much smaller than the overall bar 
length, and where each element shown has been separated to show the forces acting.

Figure 3: Partial interaction algorithm at an elemental element

The analysis begins by fixing the slip ∆(1) at the loaded end. It is then a question of finding 
the load in the reinforcement that induces this slip. This is done by first guessing the 

(1) and, hence, the force Pr(1) to cause this slip, and iterating to find 
∆(1). 

∆(1) is equal to the local slip δ(1) at the first element and generates 
(1), which is a material property, and can be determined using a bond stress

slip relationship. As the numerical procedure being outlined is generic any bond stress slip 
distribution can be used, and in the case of the analysis to follow, the cyclic bond stress slip 
model of Eligehausen et al. [11] has been employed as it can simply describe the loss of 

of the bond encountered during cyclic loading, as will be discussed 

Knowing the bond stress τ(1), the bond force, B, acting over the element may now be 
calculated. It is simply the bond stress integrated over the surface area 

is the circumference of the bar and dx is the length of the segment i.e.

y�s� �  5�s�#zL�MY      

Having determined the bond force acting at a given element, it is possible to determine the 
reinforcing bar at the end of the element (n), and therefore, at the beginning of the 

next element (n+1) by equilibrium, as in Equation7. 

�Y�s � 1� � �Y�s� 
 y�s�     

It should also be noted at this point that as a result of cyclic loading the direction of the bond 
force may change during unloading and reloading because of the influence of friction, and 
therefore, as will be shown in the results, the force in the bar can build up along the bar 
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(1) is generated in the concrete. To describe the 
numerical procedure which is required to find the force to develop the given slip, the bar in 

ich are much smaller than the overall bar 
length, and where each element shown has been separated to show the forces acting. 

 

Figure 3: Partial interaction algorithm at an elemental element 

1) at the loaded end. It is then a question of finding 
the load in the reinforcement that induces this slip. This is done by first guessing the 

(1) to cause this slip, and iterating to find 

(1) at the first element and generates 
(1), which is a material property, and can be determined using a bond stress-

being outlined is generic any bond stress slip 
distribution can be used, and in the case of the analysis to follow, the cyclic bond stress slip 
model of Eligehausen et al. [11] has been employed as it can simply describe the loss of 

of the bond encountered during cyclic loading, as will be discussed 

, acting over the element may now be 
calculated. It is simply the bond stress integrated over the surface area of the bar as in 

is the circumference of the bar and dx is the length of the segment i.e. 

 Equation 6 

Having determined the bond force acting at a given element, it is possible to determine the 
reinforcing bar at the end of the element (n), and therefore, at the beginning of the 

 Equation 7 

ection of the bond 
force may change during unloading and reloading because of the influence of friction, and 
therefore, as will be shown in the results, the force in the bar can build up along the bar 



112 

 

The corresponding strain in the reinforcement can then be found using a suitable cyclic stress 
strain relationship, and in this case the relationship presented by Filippou et al. [13] has been 
selected based on its simplicity, and will therefore be outlined further in the next section. 
Similar to the cyclic bond behaviour, it will be shown that the cyclic stress-strain relationship 
of the reinforcing bar significantly increases the complexity of the partial interaction 
behaviour, as following strain hardening it is possible for the bar to experience an extending 
strain while being in compression.  

Having determined the strain in the bar, and in order to calculate the change in slip occurring 
along the element, it is now necessary to determine the strain in the concrete. The force 
developed in the concrete surrounding the bar can be determined in a similar manner to that 
of the reinforcing bar; that is, knowing the bond force B and that no force is carried by the 
concrete at the crack face the force in the concrete can be found by equilibrium, as in 
Equation 8. 

���s � 1� �  ���s� � y     Equation 8 

The concrete strain can then be found simply by assuming a linear tensile stress strain 
relationship as in Equation 9, where it can be assumed that the concrete remains elastic 
because it is subjected to only tensile stresses. In order to simplify the analysis, it is also 
possible to ignore the strain developed in the concrete as the cross-sectional area of concrete 
is large enough that the strain developed tends to be insignificant compared to those in the 
reinforcement. 

���s� �  {:�$�U:T:       Equation 9 

The difference between the reinforcing bar and concrete strains is the slip strain which can 
now be found. 

,C�$�,| � �Y�s� 
 ���s�     Equation 10 

It is this difference in strain which causes the bar to slip, with the change in slip across the 
element simply being the integration of the slip strain across the element length, as in 
Equation 11. 

∆F�s� � } ,C�$�,| #z     Equation 11 

Therefore, the slip at the beginning of the next element is: 

F�s� � F�s� 
 ∆F�s�     Equation 12 

The numerical procedure is then repeated over the subsequent elements until the following 
boundary conditions are achieved: δ = dδ/dx = 0, where the embedment length is sufficient 



 

for full interaction to be achieved, and for short bars, 
on whether the bar end is free or fixed. In the following section the material models used in 
implementing the cyclic partial interaction model, that is the cyclic bond stress
stress-strain relationships will be outline
mechanics of the cyclic partial interaction model will be explained with the aid of an 
example. 

 

CYCLIC MATERIAL PROP

As the partial interaction model is generic, any model to describe the bond str
material stress strain behaviours can be used. Furthermore, as it is the aim of this paper to 
describe the mechanics of the hinge region under cyclic loading, only a qualitative 
description of the material properties will be outlined here whil
research are provided.  

Bond stress-slip relationship

There has been much research on the bond interface shear stress (
relationship under both monotonic and cyclic loading [9, 10, 11, 13, 36, 37]. The cycl
stress-slip relationship seen in Figure 4, developed by Eligehausen et al. [11], has been used 
in the cyclic partial interaction model described later as it has been shown to adequately, and 
simply, allow for the degradation of bond stress due to l

 

Figure 4: cyclic bond stress slip relationship

 

 

for full interaction to be achieved, and for short bars, ε = 0 or δ = 0 at the bar end depending 
on whether the bar end is free or fixed. In the following section the material models used in 
implementing the cyclic partial interaction model, that is the cyclic bond stress

strain relationships will be outlined in more detail, and then a full description of the 
mechanics of the cyclic partial interaction model will be explained with the aid of an 

CYCLIC MATERIAL PROP ERTIES 

As the partial interaction model is generic, any model to describe the bond str
material stress strain behaviours can be used. Furthermore, as it is the aim of this paper to 
describe the mechanics of the hinge region under cyclic loading, only a qualitative 
description of the material properties will be outlined here while references to the original 

slip relationship 

There has been much research on the bond interface shear stress (τ) interface slip (
relationship under both monotonic and cyclic loading [9, 10, 11, 13, 36, 37]. The cycl

slip relationship seen in Figure 4, developed by Eligehausen et al. [11], has been used 
in the cyclic partial interaction model described later as it has been shown to adequately, and 
simply, allow for the degradation of bond stress due to load reversals.  

Figure 4: cyclic bond stress slip relationship 
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on whether the bar end is free or fixed. In the following section the material models used in 
implementing the cyclic partial interaction model, that is the cyclic bond stress-slip, and steel 

d in more detail, and then a full description of the 
mechanics of the cyclic partial interaction model will be explained with the aid of an 

As the partial interaction model is generic, any model to describe the bond stress slip and 
material stress strain behaviours can be used. Furthermore, as it is the aim of this paper to 
describe the mechanics of the hinge region under cyclic loading, only a qualitative 
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slip relationship seen in Figure 4, developed by Eligehausen et al. [11], has been used 
in the cyclic partial interaction model described later as it has been shown to adequately, and 

 



 

Loading – positive monotonic envelope

The key feature of the model is the monotonic envelope, O
which is followed during initial loading. Upon loading, as the 
A and as shown in Figure 5(a), inclined cracks known as bond cracks which initiate at the tip 
of the bar ribs form. Moreover, this cracking is accompanied by crushing of the concrete 
keys which form between the bar ribs as sh

Figure 5: damage of concrete as bar pulled (a) formation of bond cracks, (B) formation of 

As the bar further slips in region A
to open and shear cracks form in the concrete keys in front of the bar ribs as in Figure 5(b). 
This behaviour results in the levelling off (region A
(region B-C) in the bond stress as the concrete keys are sheared off. 

For slips exceeding the clear spacing of the bar ribs, that is region C
crushing and shearing off of the concrete keys has occurred.
to the pulling out of the bar is friction, and as such the bond resistance is equal to the 
frictional resistance τfriction in Figure 4.

Unloading 

Upon unloading, such as at B’ on Figure 4, the bond properties follow a ve
branch B’-E to account for the recoverable elastic deformation. This elastic unloading branch 
is followed until the frictional branch is reached at E. At this point, the bar can be considered 
to be slipping in a previously damaged area, 
to the slipping of the bar is offered by friction which acts in the opposite direction to the 
change in slip δ, hence, the negative value of the frictional resistance shown in Figure 4. This 
frictional resistance strongly influences the partial interaction behaviour and as will be shown 
later can act to increase the force in the bar P
the same direction as the applied load. 

 

positive monotonic envelope 

The key feature of the model is the monotonic envelope, O-A-B-C-D shown in Figure 4 
which is followed during initial loading. Upon loading, as the bar begins to slip in region O
A and as shown in Figure 5(a), inclined cracks known as bond cracks which initiate at the tip 
of the bar ribs form. Moreover, this cracking is accompanied by crushing of the concrete 
keys which form between the bar ribs as shown in Figure 5(a). 

Figure 5: damage of concrete as bar pulled (a) formation of bond cracks, (B) formation of 
shear cracking 

As the bar further slips in region A-B-C on Figure 4, the bond cracks in Figure 5(a) continue 
to open and shear cracks form in the concrete keys in front of the bar ribs as in Figure 5(b). 
This behaviour results in the levelling off (region A-B in Figure 4) and eventually a reduction 

C) in the bond stress as the concrete keys are sheared off.  

For slips exceeding the clear spacing of the bar ribs, that is region C-D in Figure 4, complete 
crushing and shearing off of the concrete keys has occurred. At this point, the only resistance 
to the pulling out of the bar is friction, and as such the bond resistance is equal to the 

in Figure 4. 

Upon unloading, such as at B’ on Figure 4, the bond properties follow a very stiff unloading 
E to account for the recoverable elastic deformation. This elastic unloading branch 

is followed until the frictional branch is reached at E. At this point, the bar can be considered 
to be slipping in a previously damaged area, as shown in Figure 6, where the only resistance 
to the slipping of the bar is offered by friction which acts in the opposite direction to the 

, hence, the negative value of the frictional resistance shown in Figure 4. This 
ance strongly influences the partial interaction behaviour and as will be shown 

later can act to increase the force in the bar Pr as in Figure 6 where the shear stress is acting in 
the same direction as the applied load.  
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D shown in Figure 4 
bar begins to slip in region O-

A and as shown in Figure 5(a), inclined cracks known as bond cracks which initiate at the tip 
of the bar ribs form. Moreover, this cracking is accompanied by crushing of the concrete 

 

Figure 5: damage of concrete as bar pulled (a) formation of bond cracks, (B) formation of 

C on Figure 4, the bond cracks in Figure 5(a) continue 
to open and shear cracks form in the concrete keys in front of the bar ribs as in Figure 5(b). 

) and eventually a reduction 

D in Figure 4, complete 
At this point, the only resistance 

to the pulling out of the bar is friction, and as such the bond resistance is equal to the 

ry stiff unloading 
E to account for the recoverable elastic deformation. This elastic unloading branch 

is followed until the frictional branch is reached at E. At this point, the bar can be considered 
as shown in Figure 6, where the only resistance 

to the slipping of the bar is offered by friction which acts in the opposite direction to the 
, hence, the negative value of the frictional resistance shown in Figure 4. This 
ance strongly influences the partial interaction behaviour and as will be shown 

as in Figure 6 where the shear stress is acting in 



 

Figure 6: Bar slipping in previ

Loading – negative monotonic or reduced envelope

Once the slip of the bar has been reduced to a level where it has returned to its original 
position, point F on Figure 4, the bar ribs are again in contact with the surrounding concrete 
as in Figure 7. The loading path taken as the slip is further reduced, such that is it now 
slipping in the opposite direction, now depends on the maximum slip previously reached, 
point B’ on Figure 4. If the maximum slip is less than that to cause shear crac
is located within region O-A on Figure 4, any further reduction in slip will result in loading 
along the negative monotonic envelope F
cracks open as shown in figure 7. However, if the reve
shear cracks, that is, B’ is located within regions A
along the reduced monotonic envelope F

 

Figure 7: Slipping of bar in opposite directio

The reduced envelope O-G in Figure 4 is obtained by reducing the magnitude of the bond 
stresses of the monotonic envelope using a damage parameter to account for previous 
damage.  The damage parameter is related to the total energy dissipated during prev
loading; full details of which can be found in [11].

Reloading 

During reloading, along G’
unloading, where to account for the recovery of elastic deformation a stiff curve is followed 
until the bar’s only resistance is due to friction along H

 

Figure 6: Bar slipping in previously damaged area 

negative monotonic or reduced envelope 

Once the slip of the bar has been reduced to a level where it has returned to its original 
position, point F on Figure 4, the bar ribs are again in contact with the surrounding concrete 

in Figure 7. The loading path taken as the slip is further reduced, such that is it now 
slipping in the opposite direction, now depends on the maximum slip previously reached, 
point B’ on Figure 4. If the maximum slip is less than that to cause shear crac

A on Figure 4, any further reduction in slip will result in loading 
along the negative monotonic envelope F-G’, where the old bond cracks close and  new bond 
cracks open as shown in figure 7. However, if the reversal occurs following the formation of 
shear cracks, that is, B’ is located within regions A-B-C-D in Figure 4, loading will occur 
along the reduced monotonic envelope F-G as the existing bond cracks close.

 

Figure 7: Slipping of bar in opposite direction 

G in Figure 4 is obtained by reducing the magnitude of the bond 
stresses of the monotonic envelope using a damage parameter to account for previous 
damage.  The damage parameter is related to the total energy dissipated during prev
loading; full details of which can be found in [11]. 

During reloading, along G’-H on Figure 4, the same process is encountered as during 
unloading, where to account for the recovery of elastic deformation a stiff curve is followed 

bar’s only resistance is due to friction along H-I.  
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Once the slip of the bar has been reduced to a level where it has returned to its original 
position, point F on Figure 4, the bar ribs are again in contact with the surrounding concrete 

in Figure 7. The loading path taken as the slip is further reduced, such that is it now 
slipping in the opposite direction, now depends on the maximum slip previously reached, 
point B’ on Figure 4. If the maximum slip is less than that to cause shear cracking, that is B’ 

A on Figure 4, any further reduction in slip will result in loading 
G’, where the old bond cracks close and  new bond 

rsal occurs following the formation of 
D in Figure 4, loading will occur 

G as the existing bond cracks close. 

G in Figure 4 is obtained by reducing the magnitude of the bond 
stresses of the monotonic envelope using a damage parameter to account for previous 
damage.  The damage parameter is related to the total energy dissipated during previous 

H on Figure 4, the same process is encountered as during 
unloading, where to account for the recovery of elastic deformation a stiff curve is followed 



 

This friction branch is reduced in magnitude compared to that followed during unloading to 
account for further damage to the concrete. The magnitude of the reduction to the friction 
branch is also calculated by using a damage factor, where the magnitude of the reduction is 
related to the total energy dissipated while the bond resistance is due to friction; again full 
details of which can be found in [11].

Once the bar is again in contact with the concrete
is initially followed to allow for any elastic deformation before switching to the reduced 
monotonic envelope J-K, where the magnitude of the reduction is again based on the total 
energy dissipated by previous loading. 

Steel stress-strain relationship 

In addition to a cyclic bond stress
cyclic stress-strain relationship for the steel reinforcement. While numerous models have 
been published [38-41], a model which can accurately describe the features of the hysteretic 
stress strain behaviour, as seen in Figure 8 [40], is required, and as such the model of 
Filippou et al. [13] has been used in the modelling. 

The key features identified and shown in Figu
early departure from the linear elastic response; strain softening which refers to the 
degradation in the modulus following load reversals; and isotropic strain hardening which 
causes an increase in strength bey
Baushinger effect is responsible for a significant portion of the loss of stiffness observed at a 
member level under cyclic loading [1]. This is confirmed in the following cyclic partial 
interaction model where it is shown that a model capable of describing these behaviours is 
especially important as the behaviour of the steel strongly influences the partial interaction 
behaviour. 

 

Figure 8: Features of hysteretic steel stress

This friction branch is reduced in magnitude compared to that followed during unloading to 
account for further damage to the concrete. The magnitude of the reduction to the friction 

ated by using a damage factor, where the magnitude of the reduction is 
related to the total energy dissipated while the bond resistance is due to friction; again full 
details of which can be found in [11]. 

Once the bar is again in contact with the concrete at point I in Figure 4, a stiff reloading path 
is initially followed to allow for any elastic deformation before switching to the reduced 

K, where the magnitude of the reduction is again based on the total 
s loading.  

 

In addition to a cyclic bond stress-slip relationship, the partial interaction model requires a 
strain relationship for the steel reinforcement. While numerous models have 

model which can accurately describe the features of the hysteretic 
stress strain behaviour, as seen in Figure 8 [40], is required, and as such the model of 
Filippou et al. [13] has been used in the modelling.  

The key features identified and shown in Figure 8 are: the Baushinger effect which is the 
early departure from the linear elastic response; strain softening which refers to the 
degradation in the modulus following load reversals; and isotropic strain hardening which 
causes an increase in strength beyond the initial yield stress. It has been identified that the 
Baushinger effect is responsible for a significant portion of the loss of stiffness observed at a 
member level under cyclic loading [1]. This is confirmed in the following cyclic partial 

tion model where it is shown that a model capable of describing these behaviours is 
especially important as the behaviour of the steel strongly influences the partial interaction 

 

Figure 8: Features of hysteretic steel stress-strain behaviour 
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This friction branch is reduced in magnitude compared to that followed during unloading to 
account for further damage to the concrete. The magnitude of the reduction to the friction 

ated by using a damage factor, where the magnitude of the reduction is 
related to the total energy dissipated while the bond resistance is due to friction; again full 

at point I in Figure 4, a stiff reloading path 
is initially followed to allow for any elastic deformation before switching to the reduced 

K, where the magnitude of the reduction is again based on the total 

slip relationship, the partial interaction model requires a 
strain relationship for the steel reinforcement. While numerous models have 

model which can accurately describe the features of the hysteretic 
stress strain behaviour, as seen in Figure 8 [40], is required, and as such the model of 

re 8 are: the Baushinger effect which is the 
early departure from the linear elastic response; strain softening which refers to the 
degradation in the modulus following load reversals; and isotropic strain hardening which 

ond the initial yield stress. It has been identified that the 
Baushinger effect is responsible for a significant portion of the loss of stiffness observed at a 
member level under cyclic loading [1]. This is confirmed in the following cyclic partial 

tion model where it is shown that a model capable of describing these behaviours is 
especially important as the behaviour of the steel strongly influences the partial interaction 
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CYCLIC PARTIAL INTERACTION MODEL 

The monotonic partial-interaction P-∆ model has already been described with the help of 
Figure 3. A description of the mechanics of adapting this monotonic model for cyclic loads 
follows. It will be shown that the influence of strain-hardening and that of the friction 
component of the bond stress-slip relationship are critical in describing the overall load slip 
relationship at the crack face.  

An example of a theoretical cyclic partial interaction load-slip P-∆ curve is presented in 
Figure 9; the bar is initially loaded to a peak slip of 3mm at point p, unloaded to zero slip, 
and finally reloaded to a slip of 4mm. In addition, a monotonic envelope up to 4mm slip is 
shown so that the degradation of strength and stiffness that occurs during cyclic loading can 
be observed. Furthermore, points a-e in Figure 9 refer to points in the load cycle in which 
distinct changes in the partial interaction behaviour occur; these will be used as the points of 
discussion in the following description of the behaviour.  

 

Figure 9: Cyclic load-slip response of an infinitely long bar 

Initial loading phase 

The discussion begins with the establishment of the most basic behaviour which occurs 
throughout the initial loading phase and which results in the formation of the initial loading 
curve and monotonic envelope in Figure 9. The mechanics of the initial loading behaviour 
can best be described by considering adjacent elements numbered n and n+1 in Figure 10(a). 
These elements are similar to those in Figure 3, but in this case, to help in the description the 
strain in the concrete εc has been ignored as it tends to zero in comparison to the strain in the 
reinforcement. Hence, the slip strain is simply the strain in the reinforcing bar εr. 

 



 

Figure 10: Behaviour of Element A

During the initial stages of loading as shown in Figure 10(a), the bar slips a distance 
relative to the concrete as it is being pulled out with a force P
force B(n) to be developed which resists the pulling out of the bar, and thro
results in a reduction in the force carried by the bar from P
a reduction in stress and strain from element n to element n+1 as shown in Figure 10(b). 
Furthermore, as the strain in the bar is extending th
δ(n+1) as shown in the bond stress

During initial loading, the behaviour of the bar and the bond is confined to the first quadrant 
of their respective relationships shown in Figures 10(b) and (c). Hence, the behaviour 
described using the elements in Figure 10(a) is representative of the beh
along the bar from the crack face in Figure 3 to the point of full interaction. Figure 11 shows 
the distributions of the slip, slip strain, stress in the bar and the bond stress from the crack 
face to the point of full interaction for point
distance from the crack face increases which is typical of initial loading; where this occurs 
will be referred to as Zone A. It is worth noting that the force in the bar at the crack face and 
the slip of the bar at the crack face P
distance of zero. 

To find a solution to the shooting method illustrated in Figure 3 requires a specific boundary 
condition to be achieved. For example, for a full
used in Figure 11, both the slip and slip
in this case is at about 750 mm from the crack face as shown. Figure 11 encapsulates all the 
elemental properties required for th
consequently the conditions required for convergence of the analysis depicted in Figure 3 to 
find a solution in Figure 11 for Zone A. As will be shown later, these elemental conditions 
change depending on the quadrant of the bond
the reinforcement material properties in Figure 8 that the analysis is dealing with. All other 
possible conditions (Figures 13, 15, 16, 18, 20 and 21) will be covered in the following 
section. 

 

 

Figure 10: Behaviour of Element A 

e initial stages of loading as shown in Figure 10(a), the bar slips a distance 
relative to the concrete as it is being pulled out with a force Pr(n). This slip causes a bond 
force B(n) to be developed which resists the pulling out of the bar, and through equilibrium 
results in a reduction in the force carried by the bar from Pr(n) to Pr(n+1). This corresponds to 
a reduction in stress and strain from element n to element n+1 as shown in Figure 10(b). 
Furthermore, as the strain in the bar is extending the bar, the slip is reduced from 
(n+1) as shown in the bond stress-slip relationship in Figure 10(c). 

During initial loading, the behaviour of the bar and the bond is confined to the first quadrant 
of their respective relationships shown in Figures 10(b) and (c). Hence, the behaviour 
described using the elements in Figure 10(a) is representative of the behaviour anywhere 
along the bar from the crack face in Figure 3 to the point of full interaction. Figure 11 shows 
the distributions of the slip, slip strain, stress in the bar and the bond stress from the crack 
face to the point of full interaction for point a on Figure 9. All four distributions reduce as the 
distance from the crack face increases which is typical of initial loading; where this occurs 
will be referred to as Zone A. It is worth noting that the force in the bar at the crack face and 

the bar at the crack face Pr(1) and ∆(1) in Figure 3 is given in Figure 11 at the 

To find a solution to the shooting method illustrated in Figure 3 requires a specific boundary 
condition to be achieved. For example, for a full-interaction boundary condition which was 
used in Figure 11, both the slip and slip-strain must converge to zero at the same point, which 
in this case is at about 750 mm from the crack face as shown. Figure 11 encapsulates all the 
elemental properties required for the shooting method illustrated in Figure 3 and 
consequently the conditions required for convergence of the analysis depicted in Figure 3 to 
find a solution in Figure 11 for Zone A. As will be shown later, these elemental conditions 

uadrant of the bond-slip properties in Figure 4 and the quadrant of 
the reinforcement material properties in Figure 8 that the analysis is dealing with. All other 
possible conditions (Figures 13, 15, 16, 18, 20 and 21) will be covered in the following 
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e initial stages of loading as shown in Figure 10(a), the bar slips a distance δ(n) 
(n). This slip causes a bond 

ugh equilibrium 
(n+1). This corresponds to 

a reduction in stress and strain from element n to element n+1 as shown in Figure 10(b). 
e bar, the slip is reduced from δ(n) to 

During initial loading, the behaviour of the bar and the bond is confined to the first quadrant 
of their respective relationships shown in Figures 10(b) and (c). Hence, the behaviour 

aviour anywhere 
along the bar from the crack face in Figure 3 to the point of full interaction. Figure 11 shows 
the distributions of the slip, slip strain, stress in the bar and the bond stress from the crack 

on Figure 9. All four distributions reduce as the 
distance from the crack face increases which is typical of initial loading; where this occurs 
will be referred to as Zone A. It is worth noting that the force in the bar at the crack face and 

(1) in Figure 3 is given in Figure 11 at the 

To find a solution to the shooting method illustrated in Figure 3 requires a specific boundary 
n boundary condition which was 

strain must converge to zero at the same point, which 
in this case is at about 750 mm from the crack face as shown. Figure 11 encapsulates all the 

e shooting method illustrated in Figure 3 and 
consequently the conditions required for convergence of the analysis depicted in Figure 3 to 
find a solution in Figure 11 for Zone A. As will be shown later, these elemental conditions 

slip properties in Figure 4 and the quadrant of 
the reinforcement material properties in Figure 8 that the analysis is dealing with. All other 
possible conditions (Figures 13, 15, 16, 18, 20 and 21) will be covered in the following 
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Figure 11: Distribution of slip, slip strain, bar stress and bond stress during loading  
(point a) 

Having identified the conditions for convergence for the initial loading case on the elemental 
level, the behaviour during unloading and reloading of the bar can now be explained through 
the changes in the stress-strain and bond stress-slip relationships and their resulting changes 
at the elemental level. It should be noted that throughout the various stages of unloading the 
behaviour seen along the bar length, as in Figure 11, can be categorised into zones where 
distinct changes in behaviour occur; each of these zones is accompanied by a description of 
the behaviour on an elemental level. Where the behaviour along the portion of the bar length, 
that is zone, is the same as has been described previously, it will not be repeated, but instead, 
the description of the each phase will focus on the new behaviour and the reader is referred to 
previous descriptions where the behaviour is common to more than one phase.  

Unloading - phase I 

Point b in Figure 9 is in the first phase of unloading and occurs immediately after the loading 
is reduced. The behaviour in phase I is characterised by a reduction in slip at the crack face 
∆(1) being accompanied by a reduction in the applied load at the crack face Pr(1). That is, the 
slip is reduced without the need to push the bar in which is a case considered later. 

The initial response of the bar to the reduction in slip must be considered in two distinct 
stages, because, as shown in Figure 12, the behaviour is initially divergent in zone B, where 
the bond stress is acting to increase the bar stress before the distributions converge in Zone A 
to allow full-interaction to be achieved. Zone B is introduced in this unloading phase;  Zone 
A has already been outlined above and will, therefore, not be repeated.   



 

Consider an element in Zone B in Figure 12 as shown in Figure 13(a). The bar is being 
pulled but with a reduced force compared to that at which the peak slip (point 
is achieved. Furthermore, the slip is reduced to a level where the bond stress is located on the 
negative friction branch as in figure 13(c). 

Figure 12: Distribution of slip, slip strain, bar stress and bond stress during unloading phase I 

 

Figure 13: Behaviour of element B

This negative bond stress in Figure 13(c) means that the bond force is acting to increase the 
force in the bar as shown in Figure 13(a) where the force on the right hand side of each 
element is greater than that at the left hand side. This increase in forc
in the bar stress but a decrease in strain from n to n+1 in Figure 13(b). This reduction in 
strain can be explained using Figure 13(b) where it can be seen that each element has its own 
unloading curve. The shape of these stress
maximum stress achieved during loading, and therefore despite the increasing stress the 

Consider an element in Zone B in Figure 12 as shown in Figure 13(a). The bar is being 
pulled but with a reduced force compared to that at which the peak slip (point p on F
is achieved. Furthermore, the slip is reduced to a level where the bond stress is located on the 
negative friction branch as in figure 13(c).  

Figure 12: Distribution of slip, slip strain, bar stress and bond stress during unloading phase I 
(point b) 

Figure 13: Behaviour of element B 

 

This negative bond stress in Figure 13(c) means that the bond force is acting to increase the 
force in the bar as shown in Figure 13(a) where the force on the right hand side of each 
element is greater than that at the left hand side. This increase in force results in an increase 
in the bar stress but a decrease in strain from n to n+1 in Figure 13(b). This reduction in 
strain can be explained using Figure 13(b) where it can be seen that each element has its own 
unloading curve. The shape of these stress-strain relationships is dependent upon the 
maximum stress achieved during loading, and therefore despite the increasing stress the 
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Consider an element in Zone B in Figure 12 as shown in Figure 13(a). The bar is being 
on Figure 10) 

is achieved. Furthermore, the slip is reduced to a level where the bond stress is located on the 

 

Figure 12: Distribution of slip, slip strain, bar stress and bond stress during unloading phase I 

 

This negative bond stress in Figure 13(c) means that the bond force is acting to increase the 
force in the bar as shown in Figure 13(a) where the force on the right hand side of each 

e results in an increase 
in the bar stress but a decrease in strain from n to n+1 in Figure 13(b). This reduction in 
strain can be explained using Figure 13(b) where it can be seen that each element has its own 

rain relationships is dependent upon the 
maximum stress achieved during loading, and therefore despite the increasing stress the 
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strain reduces. Additionally, as the strain in the bar is an extending strain, the slip strain acts 
to reduce the slip of the bar.  

The behaviour outlined above continues from the crack face in Figure 12 until the bond stress 
is no longer negative. This switch to a positive bond stress can occur in two ways. Firstly, as 
the slip of the bar approaches the maximum slip previously achieved, shown in Figure 12 as 
the peak slip distribution which refers to point p on Figure 9, the bond stress switches to 
being on the unloading branch shown in Figure 4. Secondly, as the shape of the stress strain 
relationship, which controls the rate of reduction of the slip, has changed, it is possible that 
the slip of the bar at some point exceeds the peak slip. At this point, the bar is slipping further 
than it has before and as such the monotonic loading bond stress slip relationship is used. 

At this point, the bar is being pulled with a tensile force, the strain is an extending strain and 
the bond stress is positive. These are identical conditions to the initial loading case, that is 
Zone A, and consequently convergence onto the point of full interaction is achievable.  

Unloading – phase II 

As unloading continues, the load required at the crack face to reduce the slip of the bar at the 
crack face further reduces until it is such that the bar must be pushed. This occurs at point c 
on Figure 9, where the distributions along the bar are shown in Figure 14. It can be seen that 
the bar stress at the crack face and consequently Pr(1) is negative i.e. compressive even 
though ∆(1) that is the slip at the crack face is still positive. The additional complexity 
introduced at the elemental level, now that the bar is in compression, requires that the 
behaviour be considered in 4 separate zones along the bar length, as shown in Figure 14. 

Elements in Zone C in Figure 14 have the properties in Figure 15(a) where the bar has a 
compressive force applied to it such that the slip of the bar is reduced to δ(n) where the bond 
stress is again on the negative friction branch as in Figure 15(c). This negative bond stress 
yields a bond force which acts to resist the pushing in of the bar thereby reducing the force in 
the bar as shown in Figure 15(a). As shown in Figure 15(b), this reduction in bar force results 
in a reduction in compressive stress and a reduction in strain. It can be seen that this 
behaviour occurs inside the region where the bar has previously strain hardened and, 
therefore, the bar may experience a compressive stress with an extending strain. During this 
stage, as the strain is an extending strain, the slip in the bar also continues to reduce and it 
initially appears that the distributions shown in Zone C of Figure 14 are converging. This 
behaviour is, however, not convergent due to the short region over which the bar typically 
strain hardens.  

 

 



 

Figure 14: Distribution of slip, slip strain, bar stress and bond

 

Figure 15: Behaviour of element C

At the end of the region where the bar has undergone strain hardening, the bar may no longer 
experience a compressive stress and an extending strain. Therefore, the behaviour
elemental level must now change to that seen in Figure 16 as we are located in Zone D on 
Figure 14.  

 

Figure 16: Behaviour of element D

Figure 14: Distribution of slip, slip strain, bar stress and bond stress during unloading 
phase II (point c) 

Figure 15: Behaviour of element C 

At the end of the region where the bar has undergone strain hardening, the bar may no longer 
experience a compressive stress and an extending strain. Therefore, the behaviour
elemental level must now change to that seen in Figure 16 as we are located in Zone D on 

Figure 16: Behaviour of element D 
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stress during unloading  

 

At the end of the region where the bar has undergone strain hardening, the bar may no longer 
experience a compressive stress and an extending strain. Therefore, the behaviour at an 
elemental level must now change to that seen in Figure 16 as we are located in Zone D on 

 



 

In Zone D, the slip of the bar is still such that the bond stress remains on the friction branch 
and the bar is still being pushed. Therefore, the stress in the bar is still reducing in 
compression as shown in Figure 16(b). However and importantly, in this region, as the bar 
has not previously strain hardened, the strain must be a contracting strain. This contract
strain results in an increase in the slip of the bar as in Figure 16(a) and shown in Zone D of 
Figure 17 where the distribution of slip strain has been shown on a reduced scale to better 
show the change in behaviour. Hence, the slip and slip
from the point of full interaction. 

Figure 17: slip strain distribution of point 

While the slip of the bar is such that the bond stress is located on the negative friction branch, 
the force in the bar continues to increase unt
and, since this behaviour is occurring outside the previously strain hardened region, an 
extending strain. At this point, the behaviour again changes to that seen in Zone E on Figure 
14, where the slip of the bar can now be seen to be reducing. The behaviour occurring in this 
region is outlined using Figure 18, where it can be seen that the bar is again experiencing a 
tensile stress and extending strain. As the slip is still significantly less than that ach
during previous loading, the bond stress is located on the negative friction branch as in 
Figure 18(c) and results in a bond force which acts to increase the force in the bar. 
Importantly, in this region, as the strain is again an extending strain th
reduced across the elements, as seen in Figure 14.  

This behaviour continues until the slip of the bar at an element is sufficient that either the 
bond stress is located on the positive portion of 
a given element is greater than that experienced during previous loading. At this point, the 
behaviour is as in Zone A and convergence is achieved.

 

In Zone D, the slip of the bar is still such that the bond stress remains on the friction branch 
s still being pushed. Therefore, the stress in the bar is still reducing in 

compression as shown in Figure 16(b). However and importantly, in this region, as the bar 
has not previously strain hardened, the strain must be a contracting strain. This contract
strain results in an increase in the slip of the bar as in Figure 16(a) and shown in Zone D of 
Figure 17 where the distribution of slip strain has been shown on a reduced scale to better 
show the change in behaviour. Hence, the slip and slip-strain can be seen to be diverging 
from the point of full interaction.  

Figure 17: slip strain distribution of point c 

While the slip of the bar is such that the bond stress is located on the negative friction branch, 
the force in the bar continues to increase until the bar once again experiences a tensile stress 
and, since this behaviour is occurring outside the previously strain hardened region, an 
extending strain. At this point, the behaviour again changes to that seen in Zone E on Figure 

the bar can now be seen to be reducing. The behaviour occurring in this 
region is outlined using Figure 18, where it can be seen that the bar is again experiencing a 
tensile stress and extending strain. As the slip is still significantly less than that ach
during previous loading, the bond stress is located on the negative friction branch as in 
Figure 18(c) and results in a bond force which acts to increase the force in the bar. 
Importantly, in this region, as the strain is again an extending strain the slip of the bar is 
reduced across the elements, as seen in Figure 14.   

Figure 18: Behaviour of element E 

This behaviour continues until the slip of the bar at an element is sufficient that either the 
bond stress is located on the positive portion of the unloading branch or the slip of the bar at 
a given element is greater than that experienced during previous loading. At this point, the 
behaviour is as in Zone A and convergence is achieved. 
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In Zone D, the slip of the bar is still such that the bond stress remains on the friction branch 
s still being pushed. Therefore, the stress in the bar is still reducing in 

compression as shown in Figure 16(b). However and importantly, in this region, as the bar 
has not previously strain hardened, the strain must be a contracting strain. This contracting 
strain results in an increase in the slip of the bar as in Figure 16(a) and shown in Zone D of 
Figure 17 where the distribution of slip strain has been shown on a reduced scale to better 

be seen to be diverging 

 

While the slip of the bar is such that the bond stress is located on the negative friction branch, 
il the bar once again experiences a tensile stress 

and, since this behaviour is occurring outside the previously strain hardened region, an 
extending strain. At this point, the behaviour again changes to that seen in Zone E on Figure 

the bar can now be seen to be reducing. The behaviour occurring in this 
region is outlined using Figure 18, where it can be seen that the bar is again experiencing a 
tensile stress and extending strain. As the slip is still significantly less than that achieved 
during previous loading, the bond stress is located on the negative friction branch as in 
Figure 18(c) and results in a bond force which acts to increase the force in the bar. 

e slip of the bar is 

 

This behaviour continues until the slip of the bar at an element is sufficient that either the 
the unloading branch or the slip of the bar at 

a given element is greater than that experienced during previous loading. At this point, the 
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Unloading – phase III     

As unloading continues, such as at Point d on Figure 9, the compressive force required to 
reduce the slip further increases. This changes the overall convergence behaviour as the bar 
begins to slip in the opposite direction locally, shown as a negative slip on the Figure 19. 

 

As can be seen in Figure 19, the majority of the behaviour seen in phase III is identical to that 
observed in phase II and it will, therefore, not be outlined in great detail here. Instead, the 
additional behaviour which occurs in Zones F and G will be focused upon. The behaviour is 
initially identical to that seen in phase II where in Zone C the bar is pushed with a 
compressive force which generates an extending strain and the slip is such that the bond 
stress is on the negative friction branch. Together these conditions act to reduce the slip and 
slip strain and the behaviour appears to be convergent. However, in phase III the magnitude 
of the initial slip is low and, therefore, the bar may begin to slip in the opposite direction as 
shown in Zone F of Figure 19, where a typical element of this region can be seen in Figure 
20(a). 

 

Figure 19: Distribution of slip, slip strain, bar stress and bond stress during unloading  
(point d) 

 



 

As the bar is now slipping in the opposite direction, 
now located on either the negative monotonic envelope or the reduced negative monotonic 
envelope depending on the previous maximum slip, that is point p on Figure 9. With the 
force in the bar being in compression, t
force in the bar. Since Element F is located whin a previously strain hardened portion of the 
bar, the strain is an extending strain and, therefore, the slip of the bar is further reduced 
across the element. 

This behaviour continues into region G on Figure 19 where the element under consideration, 
Figure 21(a), is located outside the region which has previously undergone strain hardening. 
As the force in the bar is compressive, the negative bond force acts
and, therefore, both the stress and strain across the element as shown in Figure 21(a) and 
Figure 21(b). Moreover, as the strain is now a contracting strain, the slip of the bar begins to 
increase as in Figure 19.  

 

At this point, the slip of the bar is now positive and the stress compressive on the linear 
elastic portion of the stress strain curve. This behaviour is identical to that seen in Zone D of 
Phase II and, therefore, the remainder of the
Zones D, E and F seen in Phase II and will not be described again here.

Unloading – phase IV   

The final stage of unloading is characterised by small slips and large compressive forces. A 
typical distribution of the slip, slip strain, bar stress and bond stress along the bar is shown in 
Figure 22 which corresponds to point 

Figure 20: Behaviour of element F 

As the bar is now slipping in the opposite direction, as shown in Figure 4, the bond stress is 
now located on either the negative monotonic envelope or the reduced negative monotonic 
envelope depending on the previous maximum slip, that is point p on Figure 9. With the 
force in the bar being in compression, the bond force, by equilibrium, acts to increase the 
force in the bar. Since Element F is located whin a previously strain hardened portion of the 
bar, the strain is an extending strain and, therefore, the slip of the bar is further reduced 

This behaviour continues into region G on Figure 19 where the element under consideration, 
Figure 21(a), is located outside the region which has previously undergone strain hardening. 
As the force in the bar is compressive, the negative bond force acts to reduce the bar force 
and, therefore, both the stress and strain across the element as shown in Figure 21(a) and 
Figure 21(b). Moreover, as the strain is now a contracting strain, the slip of the bar begins to 

Figure 21: Behaviour of element G 

At this point, the slip of the bar is now positive and the stress compressive on the linear 
elastic portion of the stress strain curve. This behaviour is identical to that seen in Zone D of 
Phase II and, therefore, the remainder of the behaviour seen in Phase III is identical to that of 
Zones D, E and F seen in Phase II and will not be described again here. 

The final stage of unloading is characterised by small slips and large compressive forces. A 
ution of the slip, slip strain, bar stress and bond stress along the bar is shown in 

Figure 22 which corresponds to point e on Figure 9.  
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as shown in Figure 4, the bond stress is 
now located on either the negative monotonic envelope or the reduced negative monotonic 
envelope depending on the previous maximum slip, that is point p on Figure 9. With the 

he bond force, by equilibrium, acts to increase the 
force in the bar. Since Element F is located whin a previously strain hardened portion of the 
bar, the strain is an extending strain and, therefore, the slip of the bar is further reduced 

This behaviour continues into region G on Figure 19 where the element under consideration, 
Figure 21(a), is located outside the region which has previously undergone strain hardening. 

to reduce the bar force 
and, therefore, both the stress and strain across the element as shown in Figure 21(a) and 
Figure 21(b). Moreover, as the strain is now a contracting strain, the slip of the bar begins to 

 

At this point, the slip of the bar is now positive and the stress compressive on the linear 
elastic portion of the stress strain curve. This behaviour is identical to that seen in Zone D of 

behaviour seen in Phase III is identical to that of 

The final stage of unloading is characterised by small slips and large compressive forces. A 
ution of the slip, slip strain, bar stress and bond stress along the bar is shown in 
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Figure 22: Distribution of slip, slip strain, bar stress and bond stress during unloading (point 

e) 

The elemental behaviour for stage IV will not be outlined here as it is identical to that seen at 
the beginning of phase III (Zones C,F and G). However in this case, as can be seen in Figure 
22, full interaction is achieved where the bar is shortening and being pushed in the opposite 
direction to its initial loading over almost the entire length from the crack face to the point of 
full interaction. 

Reloading phase 

During reloading, identified as the reloading curve on Figure 9, the mechanics behind each of 
the unloading phases also apply. Therefore a detailed description of the behaviour will not be 
presented. Instead, it should be noted that the reloading branch has been developed by 
seeking out the same distributions of slip and slip strain as shown in each of the unloading 
phases but in reverse (from phase IV to phase I).   

Comparison of strain hardening and linear elastic material 

As much of the mechanics of the load-slip behaviour presented above arises due to strain 
hardening, a comparison of the behaviour of a linear elastic and a strain hardening 
reinforcement material is presented in Figure 23. Both materials had initially the same elastic 
Young’s modulus and, hence, initially followed the same path up until the yield point of the 
strain hardening material, after which they were loaded up to a slip of 3mm, unloaded to a 
zero slip and then reloaded to a slip of 4mm. 
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Figure 23: Comparison of load slip relationship for a linear elastic and strain hardening 
material 

The linear elastic curve has been generated by applying the same loading and unloading 
phases as presented for the strain hardening material but the behaviour is limited to elements 
where strain hardening played no influence namely Elements A, D and E. A comparison of 
the behaviour of the linear elastic and the strain hardening curves shows that if the linear 
elastic material were to be unloaded from the same load level as the strain hardening 
material, for example after being loaded to  1.2kN, as in Figure 23a, a significant reduction in 
energy dissipated would occur. However, if allowed to slip to the same amount, that is, up to 
3mm before being unloaded as in Figure 23b, the linear elastic material is  capable of 
absorbing a considerable proportion of the energy absorbed by a strain hardening material. 

 

CYCLIC MOMENT-DISCRETE ROTATION APPROACH 

The moment discrete rotation approach as illustrated in Figures 1 and 2 has been described 
previously. Its application depends on the P-∆ relationship of the reinforcement crossing the 
tensile crack which can be derived from numerical analyses as illustrated in Figure 3 or 
mechanics solutions [26, 28, 34].  The same analysis can be used for cyclic loads whilst the 
crack first widens then closes with the P-∆ relations from the cyclic partial interaction model 
such as that derived in Figure 9. 

At some stage of cyclic loading, a full depth crack develops to allow the tension region to go 
into compression and vice versa as depicted in Figure 24. In order to maintain equilibrium, 
the uncracked concrete section in Figure 1 must move into tension. This results in a 
mechanism where the section is cracked through its full depth and only the layers of tension 



 

and compression reinforcing are interacting as in Figure 24. The P
to the originally ‘tension’ reinforcement which is now in compress
intercepts this reinforcement and P
P-∆ relationship now also applies to the originally ‘compression’ reinforcement as a crack 
now intercepts this reinforcement allowing the
face.  

Figure 24: Idealisation of unloading following full depth cracking

For a given slip of the ‘tensile’ reinforcement, the load carried by the bar is known from the 
partial interaction P-∆ analysis and sin
maintain equilibrium, the slip of the ‘compression’ reinforcement can be determined based 
on its load-slip relationship. Knowing both the slip of the ‘tensile’ and ‘compressive’ 
reinforcement the rotation can be found using Equation 13, where all unknowns are as 
defined on Figure 24. 

A �
The analysis continues by incrementally reducing the slip of the ‘tensile’ reinforcement until 
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can be attributed to the cyclic behaviour of the reinforcement and its bond. As a further 
comparison the test result was also simulated using the well known unloading and reloading 
rules outlined by Clough (1966) where the initial loading curve has been taken as a bi-linear 
approximation of the initial loading curve generated using the moment-rotation approach. It 
can be seen that while the simplified approach certainly follows the same trend as the 
experimental result it fails to capture the significant reduction in moment capacity brought 
about by the degradation of the bond and the Baushinger effect. 

 

Figure 25: Comparison of theoretical and experimental 

CONCLUSION   

A generic moment rotation model has been developed for cyclic loads on RC beams. The 
model allows for the discrete rotation at an individual crack and can, therefore, allow directly 
for the cyclic bond properties and for the cyclic reinforcement material properties. The model 
is generic as it can cope with any type of bond and reinforcement properties. The model has 
been shown to be in good agreement with cyclic test results where the hinge behaviour is 
dominated by the reinforcement behaviour. The development of a cyclic partial interaction 
mechanics based model should be useful in the understanding of reinforced concrete seismic 
behaviour. The model has shown that strain hardening plays an important role in defining the 
partial interaction behaviour. Furthermore, that a linear elastic reinforcement material with a 
high strength and strain capacity, through friction at the bond interface, is capable of 
dissipating a similar amount of energy as a strain hardening reinforcement material.  
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Chapter 3 – Member Analysis 

Introduction 
In this chapter it is shown how the equivalent flexural rigidity which was derived using the 
segmental PI M/θ approach in Chapter 2 can be used to predict member deflection. This is 
first shown for both laterally loaded and eccentrically loaded columns loaded to failure in the 
paper “A moment-rotation approach for analysing the behaviour of RC columns” 

The second publication “Simulating the partial-interaction time dependent behaviour of 
reinforced concrete beams” focuses on the serviceability deflection of beams, specifically the 
deflections which occur due to concrete creep and shrinkage with time. Significantly, in this 
paper a new numerical partial-interaction technique, which allows for the prediction of 
tension stiffening behaviour including time effects is presented, as well as a new mechanics 
based approach to predicting the time dependent deflection of RC beams. 

In the third publication “Partial-interaction short term serviceability deflection of FRP RC 
beams” closed form solutions are developed for the segmental PI M/θ. These equations can 
be used to predict the cracked flexural rigidity and deflection of RC beams under 
serviceability loading, and it is shown that being mechanics based they are equally applicable 
to members reinforced with ductile steel or brittle FRP bars.   

Finally, in “The fundamental mechanisms that govern the flexural ductility of all RC 
members” the work on the single crack and segmental M/θ approaches is brought together 
and it is shown how when used in conjunction they provide a mechanics based solution of the 
analysis of RC members under all load cases. 
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A moment-rotation approach for analysing the behaviour of RC columns  
Visintin, P., Oehlers, D.J., Haskett, M., Wu, C. and Chen, J.F.  

 
 
ABSTRACT 
The behaviour of reinforced concrete columns is complex as any errors in simulating the 
column deformations are compounded by the magnified moments. Hence it is particularly 
important to simulate the stiffness and ductility of the column accurately which is the subject 
of this paper. A moment-rotation approach which simulates the formation of cracks, crack 
widening and crack rotation through slip between the reinforcement and the concrete using 
partial-interaction mechanics is described. The model also simulates the formation of wedges 
associated with concrete softening using shear-friction mechanics. The moment-rotation 
model shows good correlation with tests results at all stages of loading. 
 
Keywords: reinforced concrete columns; serviceability; ultimate; collapse.   
 
 INTRODUCTION 
The Euler-Bernoulli principal of plane sections remaining plane and in particular its corollary 
of a linear strain profile and the associated moment-curvature (M/χ) analysis and 
consequential flexural rigidity (EI) are commonly used to simulate the behaviour of 
reinforced concrete columns [1-3]. A difficulty in using this approach is to decide on an 
appropriate effective flexural rigidity (EIeff) to allow for the tension stiffening effects that 
occur in the vicinity of a flexural crack, and which are generally determined empirically 
[4,5]. A further difficulty is deciding on a hinge length over which the curvature at the 
ultimate limit can be integrated to quantify the rotation, this too is generally determined 
empirically [3, 6-9] 
 
In this paper, a moment-rotation (M/θ) approach is developed that is based on the Euler-
Bernoulli principal of plane sections remaining plane [10]. This M/θ approach uses the 
established mechanics of partial-interaction theory [11-24], which considers the slip between 
the reinforcement and the concrete, to allow for the discrete rotation at cracks first proposed 
by Bachman [25]. It also uses the established mechanics of shear-friction theory [26-30] to 
allow for the softening of concrete that is associated with the formation of wedges. Hence the 
mechanics of the M/θ approach [31] can quantify the rotation at all stages of loading that is at 
serviceability, ultimate and failure without the need for empirical components of the model 
such as effective flexural rigidities (EIeff) and hinge lengths. Consequently, the moment-
rotations from the M/θ approach can be converted to moment-curvatures and their equivalent 
flexural rigidities (EIequ) at all stages of loading so that the M/θ approach can be considered 
as extending and refining the M/χ approach. 
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Prior to cracking or softening, the M/θ approach and the M/χ approach give exactly the same 
results and consequently exactly the same flexural rigidities (EI). After cracking, the 
equivalent flexural rigidities (EIequ) derived directly from the M/θ approach replace the need 
for empirically derived effective flexural rigidities (EIeff) as required in the M/χ approach. 
Furthermore at the commencement of softening, the M/θ approach directly provides the 
rotation without the need for empirical hinge lengths associated with the M/χ approach. 
Hence the M/θ approach can be used to replace the empirical components of the M/χ 
approach and lead to its wider application.  
 
The moment-rotation of a segment of a reinforced concrete column is first developed and the 
reader is referred to several papers on the development of the M/θ approach for further 
discussion of the subject [22, 31, 32]. Columns are then divided into segments and the 
behaviour of a column is then derived from that of the individual segments. The moment-
rotation analysis is then compared with test results where it is shown that all stages of loading 
can be simulated, and the variation of the flexural rigidity along the length of the column 
determined.  
 
MOMENT-ROTATION OF A SEGMENT 
Consider the column in Figure 1, which has an applied axial load P and moment M such that 
both concrete cracking and concrete softening is occurring. To determine member 
deformation, the column is divided into small segments of length Ldef over which the moment 
is assumed to be constant. The moment-rotation relationship for each segment can then be 
determined for each stage of loading as follows. 
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Figure 1: Column idealisation 

 
Prior to softening and cracking 
Let us firstly consider a loading of the column in Figure 1 where the combination of the 
applied axial load Pseg and moment Mseg on the segment is not yet significant enough to cause 
either concrete cracking or concrete softening. A segment taken from the column is shown in 
Figure 2(a) where the application of an axial load and moment causes a shortening and 
relative rotation between the segment ends θ from A-A to B-B.  
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Figure 2: Uncracked segment behaviour 
 
The deformation profile B-B in Figure 2(a) can be converted to a strain as in Figure 2(b) by 
dividing the deformation from A-A to B-B by the length Ldef. These are real strains, that is, 
these are the strains the material is accommodating and as such would be measured by strain 
gauges. Having obtained the distribution of strain in Figure 2(b), and because the strains are 
real strains, the distribution of stress can be determined using material stress-strain 
relationships, yielding the stress profile in Figure 2(c) and, hence, the internal forces shown 
in Figure 2(d). Knowing the internal forces the maximum displacement in the concrete δconc 
can be varied, thereby adjusting the neutral axis depth until internal equilibrium is achieved 
for the given rotation θ. This analysis yields a single point on the moment-rotation 
relationship such as point A in Figure 3(a) and can be repeated for increasing rotations until: 
either the section cracks when the maximum tensile strain exceeds the concrete cracking 
strain εt and the crack tip reaches a layer of reinforcement; or until the maximum 
compressive strain exceeds the peak strain of the concrete εpk that is the strain prior to 
softening.  
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Figure 3: Moment-rotation of segment 

It is also important to note that, as shown in Figure 3(b), the moment-rotation relationship 
can be converted into a moment-curvature relationship by dividing the rotation by the 
deformation length Ldef. At the uncracked stage, the relationship obtained from a moment-
rotation analysis and that obtained form a traditional moment-curvature analysis are identical 
and, hence, so too are the uncracked flexural rigidities (EI)uncr shown in Figure 3(c). This is 
important as in the uncracked case the moment-curvature analysis technique is a 
mechanically correct approach, that is, no empirically derived factors are required in order to 
determine member deflection. This also means that at this stage the deformation length Ldef 
can be any length. 
 
It can be seen that as at this stage the M/θ analysis yields exactly the same results as the 
traditional M/χ analysis the length Ldef used in the analysis depicted in Figure 3 is irrelevant 
as any length gives the same M/χ. It is also worth noting that prior to cracking and whilst the 
material stays elastic the flexural rigidity is that of the uncracked section EIuncr as obtained 
from elementary transformed section and shown in Figure 3(c). Furthermore, this analysis 
still applies after the start of cracking but until the crack tip reaches a layer of reinforcement 
shown as point B in Figure 3. After the crack tip has reached a layer of reinforcement, 
partial-interaction theory has to be used to determine the force in the tension reinforcement as 
explained in the following section. 
 
Accommodation of cracking 
Let us now consider what happens when cracking occurs, that is when the tensile strain 
exceeds εt and the crack intercepts the reinforcement as in Figure 4(a). The force in the 
reinforcing bar now depends on the slip of the reinforcing bar at the crack face ∆reinf which 
depends on the bond-slip (τ/δ) property between the reinforcing bar and the concrete 
encasing it. The relationship between the reinforcement force at the crack face Preinf-tens and 
the slip ∆reinf can be determined through the partial-interaction analysis of a reinforcing bar of 
area Ar encased in a prism of area Ac and depth dprism in Figure 4(a) as illustrated in Figure 5 
[10]. 
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Figure 4: Cracked element idealisation 

 

Figure 5: Partial-interaction numerical procedure 

The prism of length Lbd in Figure 5 is sub-divided into elements of length Ls, which are much 
smaller than Lbd, and a displacement of the bar ∆1 representing a slip of the bar at the crack 
face is set. It is now a matter of determining the force Pr1 that induces the imposed slip at the 
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crack face. From the known bond slip (τ-δ) properties [32] and for the given displacement ∆1, 

the bond force in the first element B1 is determined. Making an initial guess for Pr1, the stress, 
and therefore the accompanying strain in the bar εr1 is known. At the crack face the strain in 
the concrete is zero, and since the element length has been chosen to be very small the strain 
in the concrete for the first element can be taken to be zero. The slip-strain (ds/dx) is the 
algebraic difference in strain between the reinforcement and the concrete εr1-εc1, and the 
change in slip over element 1, δ∆1, is the integration of the slip-strain over Ls. Hence, both 
the slip and slip-strain in element 1 are known. The analysis is then repeated for element 2 in 
which the force in the reinforcing bar Pr2 by equilibrium is Pr1-B1 and the force in the prism 
Pc2 is B1. The slip of the reinforcement ∆2 is then ∆1-δ∆1, from which the bond force B2 can 
be derived. The analysis can then be repeated over subsequent elements to give the variation 
in slip ∆ and slip strain ds/dx, and the initial guess for Pr1 adjusted until a known boundary 
condition is achieved. 

The analysis depicted in Figure 5 can be used to determine the crack spacing of primary 
cracks as this occurs where the full-interaction boundary condition is achieved that is where 
both the slip-strain (ds/dx) and the slip ∆ tend to zero at the same position. This position Lbd 
in Figure 5 is, therefore, the crack spacing Scr of the primary cracks in Figure 1. Hence it can 
be seen that Ldef is half Scr as shown in Figure 4 that is the length of the segment in this part 
of the analysis has to be half the crack spacing. It is also worth noting that as the crack 
spacing Scr may be one or two orders of magnitude smaller than the length of the column, the 
moment may therefore be considered to be constant over this length, thus by symmetry the 
reinforcement slip mid-way between cracks is zero. Hence the slip ∆ at the base of the prism 
in Figure 4 at Ldef = Scr/2 from the crack face is zero as shown. This new boundary condition 
can be used in the analysis in Figure 5 to determine the P/∆ relationship that is required for 
the analysis in Figure 4. This analysis can also be used to determine the reinforcement force 
to cause cracking at Ldef that is to cause secondary cracks and also the P/∆ should secondary 
cracks occur. 

The analysis procedure for the cracked segment in Figure 4(a) can now proceed using the 
same approach as for the uncracked segment. The combination of the applied axial load and 
moment cause a change in deformation from A-A to B-B with a rotation of θ, and this 
deformation is used to determine the strain profile given in Figure 4(b), by dividing by the 
deformation length Ldef. In the compressive and uncracked tension regions, this strain is a real 
strain and, hence, material stress strain relationships can be used to determine the stress and 
forces developed as in Figure 4(c) and Figure 4(d). For the cracked tension region, the slip of 
the reinforcement from the crack face ∆reinf can be determined from simple geometry, and for 
the given slip, the load developed can be found using the tension stiffening partial-interaction 
model in Figure 5. Having determined the internal forces, the maximum deformation in the 
concrete δconc can again be adjusted until equilibrium is achieved. The rotation in Figure 4 
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can be gradually increased to derive the moment-rotation relationship from B to C in Figure 
3(a) at which point softening commences which is dealt with in the following section.  

Using the partial-interaction theory, the M/θ approach in Figure 4 represents a structural 
mechanics based solution to concrete cracking, as it simulates the crack spacing and crack 
widening as the reinforcement slips relative to the concrete. Furthermore if the strain profile 
in Figure 4(b) is examined, it can be seen that the M/θ approach simulates what is seen in 
practice, that is, the real strain profile is linear only in the uncracked tension and compression 
region. In the cracked tension region, the real strain is zero at the crack face, and increases 
until the midpoint between the cracks following the partial-interaction theory. This is in 
contrast to a full-interaction M/χ approach which smears the cracking deformation to produce 
a single linear effective strain profile shown as the dashed line in Figure 4(b).  

Once again, the moment-rotation relationship from B to C in Figure 3(a) can be converted 
into an equivalent moment-curvature relationship as in Figure 3(b) by dividing by Ldef. In this 
case, the relationship derived from a M/θ analysis and that derived from a traditional M/χ 
approach will not be the same for the reasons described above. The M/θ analysis can also be 
used to define an equivalent flexural rigidity (EIequ) in Figure 3(c) for use in analysis, this 
equivalent flexural rigidity (EIequ) is different from the effective flexural rigidity (EIeff) found 
using typical approaches such as Branson’s equation as it uses structural mechanics to 
account for concrete cracking rather than being empirically based. It may also be worth 
noting that even though the M/θ analysis is based on a segment of length Scr/2 in Figure 4 
and on a segment subjected to a constant moment, it can be conveniently converted to a 
moment-curvature with continuously varying flexural rigidity from B to C in Figure 3 which 
may be much more convenient for analysis in a column with a continuously varying moment. 

Accommodation of softening 
An idealised stress strain relationship for concrete is shown in Figure 6(a). The deformation 
in the ascending branch O-C, that is, up to the strain εpk at the peak stress fc can be assumed 
to be accommodated directly by the material deformation. In the descending branch C-D, the 
concrete material is still governed by O-C so that any additional deformation can only be 
accommodated by sliding of the wedges associated with softening [10]. Hence, the strain 
along C-D such as (ε2)eff is an effective strain which allows for the reduction in strain due to 
sliding of the wedges. To impose a rotation beyond point C in Figure 3 requires a 
deformation in the segment in Figure 4(a) in the concrete in the compression zone that 
exceeds εpkLdef, that is a deformation that exceeds that which can be accommodated by the 
peak material strain capacity εpk. This can only be accommodated by the formation of a 
wedge as shown in Figure 7(a) which is associated with concrete softening.  This wedge has 
a depth of dwdg and length Lwdg and forms at an angle of α which is dependent upon the 
cohesive and frictional properties of the concrete [33].  
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Figure 6: Concrete stress-strain and shear friction material properties 

 
Figure 7: Softening and cracked element idealisation 

 
The concrete contained within the softening zone in Figure 7(a) is traditionally simulated 
within a M/χ analysis indirectly through the use of both an empirically derived softening 
branch of the compressive stress-strain relationship and an empirically derived hinge length. 
However using the moment-rotation relationship, it can be directly simulated using the well 
established shear friction theory [26-30]. 
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To understand the shear-friction mechanism, let us consider an element from Figure 7(a) 
within the depth of the wedge dwdg which itself has a depth of dele. As has been shown in the 
previous two load cases in Figures 2 and 4, prior to softening the deformation taking place 
over this element, δele in Figure 7(a), can be divided by the deformation length Ldef to give the 
corresponding real strain ε1 in Figure 6(a). Since this deformation can be accommodated for 
entirely by the material, a stress-strain relationship such as in Figure 6(a) can be used to 
determine the stress σ1 developed. This behaviour continues until the peak strain εpk 
corresponding to the peak stress fc in Figure 6(a) is attained. At this point no further increase 
in material deformation is possible and a softening wedge must form to accommodate the 
additional deformation required. The gradual formation and failure of this softening wedge, 
which is seen in practice, allows for non-material deformation to take place. 
 
This non-material deformation, shown for the element in question in Figure 7(e), takes place 
in the form of sliding along the shear friction plane a distance of H such that an additional 
vertical deformation S occurs. This non-material deformation allows the strain in the material 
to drop below εpk such that the stress developed decreases to σ2 in Figure 6(a). Hence the total 
deformation δele consists of a material deformation ε2Ldef plus that due to wedge sliding S 

giving a total effective strain in the concrete of ε2eff = ε2+S/Ldef . The magnitude of the stress 
developed for a given slip can be determined using well defined the shear-friction theory 
illustrated in Figure 6(b) [10,26-30]. Figure 6(b) quantifies the shear-friction properties 
required for the analysis depicted in Figure 7(e), which provides a relationship between the 
displacement H along the sliding plane and the shear stress τn and normal stress σN 
transferable across the cracked plane. It may be worth noting that the sliding plane in Figure 
7(e) also opens up through aggregate interlock but the effect of this movement on the overall 
longitudinal effective strain is at least one order of magnitude less than that due to the slip S 
and consequently can be ignored [29,30].  
 
An example of the analysis using this shear friction theory is as follows. Let us guess that a 
stress of (σele)guess occurs in the element of width dele of Figure 7(a), now shown in Figure 
7(e), which is required to induce the displacement δele. From the material stress strain 
relationship in Figure 6(a), the strain to cause this stress is known to be (εele)guess. Hence, the 
material deformation is known to be (εe)guessLdef, and, consequently, the deformation required 
by sliding S = δele-(εele)guessLdef. Knowing the angle of formation of the wedge α [33] in 
Figures 7(a) and 7(e) and S, the sliding displacement H can be determined from simple 
geometry. It is then simply a matter of finding a combination of τn and σN which gives the 
vertical component Pele in Figure 7(e) and iterating until the stress σele is equal to (σele)guess. 
This solution has also been defined in a closed form by Haskett et al. [30]. 
 
Having established how shear friction theory can be used to describe the softening behaviour 
of a single element of the softening wedge, we can again consider the whole segment. The 
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applied combination of axial load and moment again cause a change in displacement from A-
A to B-B in Figure 7(a) causing both concrete cracking and softening. In the non-softening 
compression region and the uncracked tension region, the strain developed can again simply 
be determined by dividing the deformation by Ldef to give a real strain as in Figure 7(b) 
which are used in a material stress strain relationship to give the stress profile in Figure 7(c). 
Similarly the force developed in the tensile reinforcement can be determined as previously 
shown through the application of partial interaction theory by determining the slip of the 
reinforcement ∆reinf based on the deformation profile B-B. Finally in the softening region, the 
wedge is split into a number of slices and for each slice the slip of the wedge H determined 
so that the shear friction theory described can be applied. Again for the analysis of the 
segment, it is then simply a matter of adjusting the maximum displacement in the concrete 
δconc until equilibrium of the forces shown in Figure 7(d) is achieved.  
 
Depending on the magnitude of the axial load, softening can occur prior to or post concrete 
cracking, and this in turn affects the deformation length Ldef. For the case when softening 
occurs after cracking, the wedge must be entirely contained within the deformation length. 
Hence if Lwdg it is greater than Ldef  in Figure 7(b), the deformation length Ldef must be 
incrementally increased [10], that is Lwdg must be less than n times Ldef. When softening 
occurs prior to cracking, Ldef must be chosen so that it is greater than the Lwdg. In this case, it 
may be easier to choose a multiple of the crack spacing so that the length does not need to 
change once cracking does occur after softening. 
 
Similar to the cracked case in Figure 4, it can be seen that the moment rotation approach in 
Figure 7 simulates what is actually seen in practice, that is, the formation and failure of the 
softening wedge. Considering the strain profile in Figure 7(b), the strain in the concrete 
within the softening region is given by the real strain which can be seen to be reducing, until 
it eventually drops to zero as the slip increases, this is what is measured in practice. In a 
traditional moment-curvature analysis, the strain considered is the effective strain given by 
the dashed line which is a combination of the material and non-material deformations and, 
hence, an empirically derived hinge length is required to determine member deflection. 
Similar to the previous load cases, the moment-rotation result can be converted to an 
equivalent moment-curvature relationship, and in this case provides an equivalent flexural 
rigidity as in Figure 3(c) from C to D. However as we are now dealing with softening, that is 
C to D in Figure 6(a) and C to D in Figures 3(a) and (b), the region over which this occurs 
that is Ldef in the column must be specifically defined. That is, within this softening region C-
D in Figure 3(c) applies, whilst outside this region, where the moments may be the same, A-
C applies. The length Ldef once softening has occurred is in effect a hinge length, but it only 
occurs in regions where softening is taking place, and in this case is derived from the shear-
friction theory as opposed to the empirical hinge lengths required in the M/χ approach.   
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With the three stages of the analysis presented, it is now possible to produce moment M 
flexural rigidity (EIequ) relationships for a segment, as shown in Figure 3(c), which accounts 
for concrete cracking and softening using structural mechanics and which applies to all of the 
segments in the column in Figure 1. This M-EIequ variation can be used in a traditional 
manner to determine member deflection without the need of an empirically derived flexural 
rigidity EIeff or hinge length and shows the potential of the moment-rotation approach to be 
used to improve traditional analysis techniques which are based on the Euler-Bernoulli 
assumption of plane sections remaining plane. 
 
MOMENT ROTATION ANALYSIS OF A COLUMN 
Having now described the moment-rotation procedure for a segment, it will now be shown 
how the approach can be applied to describe the load deflection behaviour of laterally and 
eccentrically loaded columns, including those with significant second order effects. The 
column shown in Figure 8(a) of height L, which has been divided into segments of length 
Ldef, represents either a laterally loaded cantilever column with a fixed base or half of an 
eccentrically loaded column with hinged ends, where the maximum deflection corresponds to 
the deflection at mid-height. 
 

 
 

Figure 8: Numerical procedure for analysing member deflection  
 
The first step of the analysis is to generate a M/θ relationship which can be used to determine 
the change in rotation of each segment as described previously. For the case of the laterally 
loaded column, the analysis proceeds by setting the tip deflection of the column δlat as in 
Figure 8(a) and guessing the lateral load V. The magnified moment M1 in Figure 8(b) in the 
first element (1) at the base of Figure 8(a) is VL+Pδlat. Hence from the moment-rotation 
relationship and for this moment can be determined the change in rotation δθ1 for this 
element in Figure 8(c). With the boundary condition that at the base of the column the 
rotation is zero, the change in rotation δθ1 in Figure 8(c) for the first element is also the total 
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rotation θ1 in Figure 8(d). The integration of this rotation over the element length Ldef gives 
the lateral displacement δ1. Hence in element (2), the component of the moment due to the 
axial load is now P(δlat-δ1) so that the magnified moment M2 in Figure 8(b) can be 
determined, consequently from the moment-rotation analysis δθ2 in Figure 8(c) and so on up 
the column until the tip deflection is found, and if it is not equal to that which was initially 
set the lateral load V must be changed until it is. 
 
The analysis for an eccentrically loaded column with a varying axial load follows a similar 
procedure. A mid-height deflection δlat is set and an axial load P to give this deflection is 
guessed. For this axial load P, a segmental moment rotation relationship is developed and as 
above the deflection is determined, this time with the boundary condition that at mid-height 
the rotation is zero and knowing that at the end of the column the deflection should be zero; 
if not the analysis is repeated for a new guess of P. 
 
It is also important to note that it is possible to determine the deflection of the member using 
a moment-curvature analysis, where, instead of determining the change in rotation of each 
element the curvature is found. It is then simply a matter of integrating the curvature to get 
the deflection as in a traditional analysis. When using this approach it is, however, required 
that the element at which softening takes place be of equal length to that which was used to 
derive the moment rotation relationship. An alternative moment-curvature approach is to use 
a standard analysis package where the flexural rigidity can be varied along the length of the 
column as in Figure 8(f) and the same boundary conditions used to iterate towards a solution. 
It may also be worth noting that this approach can be incorporated into finite difference 
analysis where each segment is allocated a flexural rigidity as in Figure 3(c). 
 
APPLICATION TO TEST SPECIMENS 
The moment-rotation approach has been used determine the load deflection response of both 
laterally loaded columns, as tested by Atalay and Penzien [34], and eccentrically loaded 
slender columns, as tested by Kim and Yang [5]. 
 
Throughout the previous explanation only a qualitative description of the moment-rotation 
approach has been described. In order to develop a M/θ relationship, an example of which is 
shown in Figure 9(a) along with a corresponding moment-EIequ relationship (M/EIequ) in 
Figure 9(b), several material models are required. It is important to note that these are not 
critical to the application of the moment-rotation approach, any material model can be used 
and as these are refined better results can be expected. 
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Figure 9: Typical moment-rotation response 

 
Material properties 
Prior to cracking, a linear elastic tensile stress (σ) strain (ε) relationship has been assumed for 
concrete in tension, and in compression that of Hognestad [35] as in Eq. 1 has been used  
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where the strain εpk corresponding to the onset of concrete softening at fc in Figure 6(a) and 
the formation of a softening wedge has been determined using the empirical model of 
Tasdamir [36] as in Eq. 2, where fc is the peak concrete strength in MPa. This has replaced 
that suggested by Hognestad [35] as it was derived over a wider range of concrete strengths. 
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Once the concrete has cracked, the partial interaction analysis requires the definition of a 
bond stress slip (τ/δ) relationship. The model used in the present analysis is that suggested by 
the CEB for deformed bars [32] and given by Eq. 3-6.  
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Where δ1=1, δ2=3, δ3 is the clear spacing between ribs, which can be taken as 10.5 if 
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For concrete softening, the closed form solution given by Eq. 7, which was derived by 
Haskett et al. [30], gives the relationship between the total material and non material 
deformation, δele in Figure 7(a) and stress developed 
analysis the angle at which the wedge forms (
 

∆� �ε�� 
 `

 
Finally when the depth of the softening wedge d
compression reinforcement, it is assumed that the bars are unrestrained and can therefore 
buckle once they have yielded. To allow for buckling the empirically derived stress 
relationship of Dhakal and Mae
point (ε*,σ*) be determined using Eq. 8 and Eq. 9.
 

��
�� � 55
4�
4l� � �

 
where εy is the yield strain of the bar, f

D is the diameter of the longitudinal reinforcement and 
strain ε* if buckling is ignored
 
For strains ε less than ε* , the stress 
using Eq.10, where σl is the stress developed in the bar for the strain 
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softening, the closed form solution given by Eq. 7, which was derived by 
Haskett et al. [30], gives the relationship between the total material and non material 

in Figure 7(a) and stress developed σele in Figure 7(c). For the present 
ysis the angle at which the wedge forms (α) has been taken as 30°. 
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Finally when the depth of the softening wedge dwdg in Figure 7(a) exceeds the cover to the 
compression reinforcement, it is assumed that the bars are unrestrained and can therefore 
buckle once they have yielded. To allow for buckling the empirically derived stress 
relationship of Dhakal and Maekawa [37] is used. This model requires that an intermediate 
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is the yield strain of the bar, fy is the yield stress, L is the spacing between stirrups, 

D is the diameter of the longitudinal reinforcement and  is the stress corresponding to the 
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is the stress developed in the bar for the strain ε if buckling is ignored.  
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Examining the M/θ and M/EIequ relationships in Figure 9, the points at which concrete 
cracking, yield of the tensile reinforcement, commencement of concrete softening and wedge 
failure can be clearly seen. It may be of interest to note that the point at which concrete 
softening commences does not necessarily correspond to the peak moment, but rather the 
moment continues to increase following the commencement of concrete softening. This 
occurs because initially the slip of the wedge is small, and hence, it is possible that the 
average stress in the softening wedge may remain close to fc. The ability of the section to 
maintain this increase in moment following the commencement of concrete softening is 
highly dependent upon the behaviour of the compression reinforcement. Without 
compression reinforcement, a falling moment rotation relationship is seen immediately after 
the commencement of concrete softening as show in. When heavily reinforced in the 
compression region, or when the reinforcement has a large strain hardening modulus, a 
greater proportion of the total compressive force is taken by the reinforcement and, hence, 
both the depth and slip of the wedge are reduced leading to a more significant rising branch 
post concrete softening 
 
A further significant feature of the analysis shown in Figure 9 is the failure of the wedge. 
Wedge failure occurs as beyond a certain slip, which can be determined using Eq 3, the 
elements of the wedge can no longer sustain any load. It therefore follows that as rotations 
increase, portions of the wedge, as in Figure 7(a), gradually reach this limit and stop 
contributing to the resistance of the applied actions. Again depending on the amount and 
properties of the compression reinforcement, the failure of a small portion of the wedge can 
lead to a rapid increase in wedge depth and therefore a sudden drop in moment capacity as 
seen in Figure 9(a). 
 
Laterally loaded columns 
Figure 10 shows the application of the above technique to the three columns tested by Atalay 
and Penzien [34], where each column had a height of 1676mm and cross section of 
305mmx305mm and was reinforced longitudinally with 4 No. 22mm bars and transversely 
with stirrups at 127mm centres and the axial load ranged from 262 to 801kN. 
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Figure 10: Comparison of experimental and simulated results for laterally loaded columns 
tested by Atalay and Penzien [34] 

 

Figure 11: Moment-EIequ relationships for columns tested by Atalay and Penzien [34] 

It can be seen from the comparison of the experimental and theoretical results in Figure 10 
that the moment rotation approach is capable of accurately predicting the response of the 
columns both in terms of shape and magnitude on the rising branch and under low axial loads 
up until the ultimate limit. The simulation under higher axial loads, however, predicts a far 
more rapid loss of strength than seen in practice. This may be attributed to the fact that the 
influence of stirrups has not been included in the present analysis, that is the confining effect 
of stirrups has not been included in Eq. 3 which was derived from laterally unconfined 
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concrete [16]. If stirrups were included it could be expected that a more gradual failure of the 
wedge would occur as stirrups would act to reduce wedge slip through their confining action.  

Also shown in Figure 11 is the M/EIequ relationship for a segment of each column. It can be 
seen that with increasing axial loads the section cracks later and initially shows a more 
gradual reduction in flexural rigidity; this is an example of how the M/θ approach 
automatically allows for the effects of tension stiffening at all stages of loading and for any 
axial load. Once the reinforcement begins to yield there is a rapid deterioration in the flexural 
rigidity. In the case of the tree columns tested, because the compression reinforcement has 
yielded and the bars have a low strain hardening modulus meaning that as the section 
continues to rotate a larger proportion of the compressive force must be carried by the 
concrete, which in turn leads to the peak strain being reached at lower rotations. The earlier 
commencement of concrete softening also means that the wedge begins to fail at lower 
rotations and so the rapid reduction in flexural rigidity, indicating wedge failure, occurs 
earlier. 

Eccentrically loaded columns 
This analysis technique has also been applied to the columns tested by Kim and Yang [5], 
which had heights of either 1440mm or 2400mm and cross sections of 80mm x 80mm. The 
columns were reinforced with either four 6.4mm bars to give a reinforcing ratio of 1.98%, or 
eight 6.4mm bars to give a reinforcing ratio of 3.95% and had stirrups at 60mm spacing. The 
columns had concrete strengths of either 25.5MPa or 63.5MPa. 

From the load deflection results presented in Figure 12, it can be seen that the present 
approach accurately predicts both the general behaviour and the magnitude of these test 
results. It is, however, expected that both the results for the laterally loaded columns, as well 
as the results for the eccentrically loaded columns can be improved with time as the shear 
friction properties are developed such that stirrups can be considered. It can also be seen 
from the first test results in Figure 12 that the moment rotation approach used is capable of 
predicting behaviour up until a complete loss of strength is observed that is it can follow the 
collapse. 
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Figure 13: Application of moment-rotation analysis to columns tested by Kim and Yang [5]  

In the analysis of eccentrically loaded columns, it was necessary to generate a family of M/θ 
responses with varying axial loads. Some of the results in terms of M/EIequ are shown in 
Figure 14. Once again it can be seen that this approach automatically allows for tension-
stiffening and concrete softening on the flexural rigidity without the need for empirically 
derived components for the model such as hinge lengths and effective flexural rigidities. In 
the case of these eccentrically loaded columns, unstable sliding of wedge does not occur. 
Wedge failure is prevented as the sections have a higher reinforcement ratio than those of 
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Atalay and Penzien. Consequently, as in Figure 14, even under higher axial loads the flexural 
rigidity gradually approaches zero. It may be noted that for both laterally loaded and 
eccentrically loaded columns failure of the wedge could be delayed by the addition of 
stirrups. 

 

 

Figure 14: Moment-EIequ relationships for varying axial loads  

CONCLUSIONS 
In this paper, a M/θ approach has been developed for the analysis of reinforced concrete 
columns and has been validated by comparison with both laterally and eccentrically loaded 
column tests. This M/θ approach uses the established mechanics of partial-interaction theory 
and shear-friction theory to allow for cracking and softening of concrete and for tension-
stiffening. Hence the M/θ approach can quantify the rotation at all stages of loading, that is, 
at serviceability, ultimate and failure without the need for empirical components such as 
effective flexural rigidities and hinge lengths. Furthermore, the moment-rotations from the 
M/θ approach can be converted to moment-curvatures and equivalent flexural rigidities at all 
stages of loading so that the M/θ approach can be considered as extending the M/χ approach 
by automatically allowing for tension-stiffening and concrete softening on the flexural 
rigidity of a member. 
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Partial-interaction time dependent behaviour of reinforced concrete beams 
Visintin P., Oehlers D.J. and Haskett M. 

 
ABSTRACT 
When a concrete member is subjected to a load its response is both instantaneous and time 
dependent. The influence of time dependent deformation is particularly import because it 
may lead to serviceability failures in structural members where deflections or crack widths 
are excessive. Current analysis techniques for reinforced concrete members are built around a 
moment-curvature (M/χ) approach that is based on the assumption of full-interaction (FI), 
that is, the reinforcement does not slip relative to the concrete which encases it and, 
consequently, the widening of cracks and their effect on deflection cannot be simulated 
directly. Hence in order to determine member deflection, empirically derived expressions for 
the flexural rigidity of a member (EIemp) are required to allow for the tension stiffening 
associated with cracking. In contrast to this FI M/χ approach, a moment-rotation (M/θ) 
approach has been developed which allows for slip between the reinforcement and concrete, 
that is partial-interaction (PI) and which, consequently, obviates the need for the empirically 
derived flexural rigidities (EIemp). The PI M/θ approach simulates directly, through partial-
interaction structural mechanics, the formation and widening of cracks as the reinforcement 
pulls from the concrete at crack faces and, consequently, automatically allows for tension 
stiffening. Hence the PI M/θ approach is a useful improvement of the current FI M/χ 
approach as it quantifies the flexural rigidities associated with tension stiffening which can 
then be used in standard analysis techniques.  It is also shown in this paper that the moment 
rotation approach can be used to derive flexural rigidities that account for the long term 
effects of creep and shrinkage as well as predicting the effects of creep and shrinkage on 
cracks widths and spacings.  

Keywords: reinforced concrete beams; creep; shrinkage; deflection; serviceability; partial 
interaction theory   

SYMBOLS 

Ar – Area of tensile reinforcement 
B – Bond force 
Ec – Elastic modulus of concrete  
Er – Elastic modulus of reinforcing 
EI – Flexural rigidity 
EIemp – Empirically derived effective EI 
EIequ – Equivalent EI 
EIuncr – Uncracked EI 
Lbd - Length of concrete prism to FI boundary condition 
Ldef - Deformation length 
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Lp – Perimeter of all reinforcing bars 
LT  - Total length of reinforcing bar to FI boundary condition 
Ls - Segment length for numerical PI analysis 
M - Moment 
Mseg –Moment applied to a segment 
Pconc – Force developed in the concrete in compression  
Pconc-tens - Force developed in the concrete in tension 
Pr – Force in the reinforcing bar in the PI model 
Preinf - Force developed in reinforcing bar at crack face 
Preinf-tens - Force developed in the tension reinforcement 

Preinf-comp Force developed in the compression reinforcement 

 
ds/dx – Slip strain 
(ds/dx)FI – Full interaction slip strain 
fc – Peak concrete stress 
t – Time  
t0 – Time at which load is first applied 
 
∆ – Slip of reinforcing bar in a segment from the numerical PI model 
∆reinf –Slip of the reinforcement form the crack face 
 
δ - Slip of the reinforcement in the numerical PI model 
δ1, δ2, δ3 – slip of the reinforcement which define the (τ/δ) characteristic 
δc – Extension of the concrete from the base line 
δ∆ – Change in slip of the reinforcement over a segment  
δr - Contraction of the reinforcement from the base line 
δtop – Deformation of concrete at the top fiber  
χ - Curvature 
χsh – Curvature due to shrinkage alone 
(εr)FI – Full interaction strain in the reinforcing bar 
(εc)FI – Full interaction strain in the concrete 
εsh – Shrinkage strain 
εpk –Strain corresponding to the peak stress fc 

ϕ – Creep coefficient 

θ - Rotation 
θsh – Rotation due to shrinkage alone 
τ – Bond stress 
τmax –Maximum bond stress 
τf – Frictional bond stress 
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INTRODUCTION 

When concrete is subjected to a sustained load, time dependent strains due to creep and 
shrinkage develop. These creep and shrinkage strains have considerable impact on the 
performance of structural members, causing increased crack widths and deflections which 
may result in serviceability failure. The unfavourable nature of time effects on reinforced 
concrete means it has been an area of research interest for more than 80 years, with much 
effort devoted to the development of models to predict the changes in concrete material 
behaviour with time (Bazant and Panula 1979a-c; Neville et al. 1983; Eurocode 2; ACI 1982; 
CEB-FIP 1994; RELIM 1995a,b Gardner and Lockman 2001; Standards Australia 2009) and 
to methods of incorporating these changes into sectional analyses (Faber 1927; Whitney 
1932; Bresler and Selna 1964; Ghali 1967; Bazant 1972; Branson 1977; Neville 1983; 
Gilbert 1988; Westerberg 2008; Gilbert 2011). These cited approaches utilise methods of 
varying complexity to determine the change in concrete material properties with time and, 
hence, cross sectional behaviour. However in mechanics terms, all of these approaches are 
based on a moment-curvature (M/χ) analysis technique: in which there is a linear strain 
profile; and in which there is full interaction (FI), that is, the reinforcement does not slip 
relative to the concrete so that there is a uni-linear strain profile. These assumptions mean 
that the techniques are unable to describe crack spacing or widening directly and, therefore, 
must resort to empirically derived approaches to do so. Thus these approaches ultimately rely 
on the definition of an effective flexural rigidity (EIemp), which must be defined empirically, 
to determine member deflection.  
 
In contrast to the FI M/χ approach, a partial interaction (PI) moment-rotation (M/θ) approach 
for simulating reinforced concrete behaviour under instantaneous loading has been developed 
by the authors (Oehlers et al. 2011; and Visintin et al. 2012a,b); this approach directly 
simulates what is seen in practice, that is, the formation and widening of cracks using partial-
interaction theory (Bachmann 1970; Yuan et al. 2004; Oehlers et al. 2005; Mohamed Ali et 
al. 2008a,b; Haskett et al 2008; Muhamad et al. 2011). In the following paper, the PI M/θ 
approach is extended to account for the influence of creep and shrinkage. It is first shown 
how the PI M/θ approach can be applied to a segment of a member to derive the equivalent 
flexural rigidity of a cross section (EIequ) to allow for tension-stiffening, creep and shrinkage; 
these equivalent flexural rigidities (EIequ) are a replacement of the empirically derived 
effective flexural rigidities (EIemp) used in the FI M/χ approach. The equivalent flexural 
rigidity of a cross section is then used to describe the load deflection behaviour of an entire 
member through the application of standard analysis techniques. Finally, the approach is used 
to predict the behaviour of beams tested by Gilbert and Nejadi (2008) under a sustained load 
and FRP reinforced beams tested by Barris et al. (2009) under instantaneous loads, where the 
PI M/θ approach is used to predict the additional deflections which take place due to 
shrinkage.  
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MOMENT-ROTATION ANALYSIS OF A SEGMENT 

The PI M/θ analysis is illustrated in Figure 1(b) for a segment of a beam of outline A-A-A-A, 
of length 2Ldef and of the cross section in Figure 1(a). The segment is symmetrical and 
symmetrically loaded about E-E so that all deformations can be measured relative to E-E 
which in effect remains stationary. Prior to any deformations taking place, either as a result 
of shrinkage or the application of an external load, both the concrete and the reinforcement 
are of length 2Ldef. If a shrinkage strain εsh is allowed to take place and the concrete were free 
of any restraint from the reinforcement, a deformation of the concrete of magnitude εshLdef 
from A-A to B-B would take place over each half of the segment A-E. However, due to the 
presence of internal reinforcement, which in this case is non-symmetrically placed, the 
concrete is restrained and, hence, the actual deformation of the concrete is from A-A to C-C 
causing a rotation θsh. If a constant moment Mseg is now applied over the segment, a further 
rotation takes place such that the total rotation is θ and the deformation is to D-D. By 
symmetry, the deformations at each end of the segment shown shaded are equal, so that 
relative to E-E at the mid-length of the segment they produce the same strains or effective 
strains. Hence it is only necessary to consider one half of the segment which is of length Ldef 
in the following analyses. Let us first consider the behaviour of the segment prior to 
cracking, beginning with the case where the applied moment Mseg is zero and, hence, all 
deformations are the result of shrinkage alone. 

 

Figure 1: Segmental M/θ  

SEGMENTAL ANALYSIS PRIOR TO CRACKING 

The left hand side of the segment in Figure 1(b) is shown in Figure 2(a). The segment has an 
original length Ldef; hence prior to any deformation, both the reinforcement and the concrete 
are of this length. Since any deformation of the reinforcement from this initial length causes a 
stress to be induced, A-A becomes the baseline for deformations which induce a stress in the 
reinforcement. Similarly if the concrete were free to shrink without restraint, then it would 
reduce in length εshLdef from A-A to B-B. This shortening would not induce a stress. Hence 
any deformation of the concrete away from B-B induces a stress in the concrete and, 
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therefore, B-B becomes the baseline for concrete deformations which induce a stress in the 
concrete.  

 

Figure 2: Analysis of an uncracked segment  

Prior to the application of any external loads, it is therefore a question of finding a 
deformation C-C in Figure 2(a), which has a rotation of θsh, such that for longitudinal 
equilibrium the moment Mseg is zero. To do this, an iterative process is required. The 
procedure begins by fixing θsh and guessing the location δtop, thereby, fixing the position of 
the deformation profile C-C in Figure 2(a). Since the section is uncracked, the deformations 
can be divided by the deformation length Ldef to give the strain profiles in Figure 2(b). It 
needs to be stressed, however, that two strain profiles exist, one for the reinforcement and 
one for the concrete. Since it has been established that any deformation away from A-A 
results in a strain to cause a stress in the reinforcement, the deformation from A-A to C-C 
divided by Ldef gives the strain profile for the reinforcement, that is, F-F in Figure 2(b). 
Similarly, since any deformation away from B-B results in a strain to cause a stress in the 
concrete, the deformation from B-B to C-C divided by Ldef gives the strain profile G-G in 
Figure 2(b). It can also be seen in Figure 2(b) that these profiles are parallel and located εsh 
apart. As the section is uncracked, these strains are real material strains, that is, they would 
be measured by strain gauges placed on the member. Knowing the distribution of strain in the 
segment, and because all the strains are real strains, the distribution of stress in Figure 2(c) 
can be determined using any conventional material stress-strain relationship and, hence, the 
internal forces in Figure 2(d) can be determined. If the algebraic sum of these forces is not 
equal to zero, then the maximum deformation at the top face δtop can be adjusted, thereby 
shifting the depth of the neutral axis, until equilibrium of the internal forces is achieved that 
is they sum to zero. If at this point of longitudinal equilibrium the moment is not zero then θsh 

must be adjusted and the analysis repeated until it does so. Hence both longitudinal and 
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rotational equilibrium have to be achieved to find the deformation C-C, and in this case both 
stress resultants are zero.  

The analysis above provides the initial rotation of the segment due to shrinkage alone, that is 
θsh at point O in Figure 3(a), and is applicable when the shrinkage strain is insufficient to 
cause concrete cracking. The shrinkage rotation θsh in figure 3(a) can be converted into a 
shrinkage curvature χsh in figure 3(b) by dividing by the deformation length Ldef in Figure 
2(a). As the section is uncracked, this initial curvature is the same as that which could be 
derived using a standard full interaction analysis. Hence the deformation length Ldef used in 
the analysis in Figure 2 is irrelevant as any deformation length will provide the same initial 
curvature.   

 

 

Figure 3: Variation of rotation, curvature and EI 

Let us now consider what happens when a moment Mseg is applied to the segment in Figure 
2(a) and sustained for some period of time t. The combination of shrinkage and the applied 
moment causes a total rotation θ in Figure 2(a), such that the total deformation of the 
segment face is now from A-A to D-D. The same analysis as outlined for the case of 
shrinkage alone can now be applied. However in this case θ is varied until the resulting 
moment is now Mseg. Hence the longitudinal equilibrium requirement remains at zero whilst 
rotational equilibrium requires a moment of Mseg; an alternative approach would be to fix θ 
and vary δtop until there was longitudinal equilibrium after which the moment could be taken 
for that fixed or imposed θ. Therefore by repeating the analysis for increasing rotations, the 
moment-rotation relationship O-A in Figure 3(a) is established. It should also be noted, that 
in order to allow for creep, when determining the stress in the concrete, a reduced elastic 
modulus must be used where the magnitude of this reduction is determined by any 
convenient method.  
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Again, as shown in Figure 3(b), the M/θ relationship O-A in Figure 3(a) can be converted 
into an equivalent M/χ relationship by dividing the rotations by the deformation length Ldef. 
At the uncracked stage, the result obtained from the M/θ analysis and a traditional FI M/χ 
analysis are identical as both are FI analyses. The deformation length Ldef used in the analysis 
from O to A is, therefore, irrelevant as any length will give the same M/χ. Furthermore, as 
both approaches are identical so too are the uncracked flexural rigidities (EIuncr) as shown in 
Figure 3(c), these could therefore also be obtained from the traditional FI M/χ analysis. It is 
important to emphasise that both approaches are identical for uncracked segments, because, 
at the uncracked stage, a traditional FI M/χ analysis does not rely on empirically derived 
factors such as those required to determine deflections in particular EIemp. Hence, a M/θ 
analysis carried out on a segment subjected to a constant moment, can be used to determine 
the variation in the local flexural rigidity of the cross section with moment, which can in turn 
can be used to determine the deflection of the member for any moment distribution. Bearing 
in mind of course that that the member is already subjected to a shrinkage curvature χsh along 
its length that induces deflection.  
 

The analysis in Figure 2 is applicable following cracking, but only to the point at which the 
crack tip just crosses the tensile reinforcement. After this point, partial-interaction theory 
must be used to determine the force developed in the tension reinforcement. The use of 
partial-interaction theory allows for slip of the reinforcement relative to the surrounding 
concrete which in practice is what allows cracks to open.  

ACCOMMODATION OF CRACKING WITHIN SEGMENTAL ANALYSIS   

Again consider the left hand side of the beam segment in Figure 1(b), now shown in Figure 
4(a), which is cracked to a level above the reinforcing bar. Partial interaction theory must 
now be used to describe the behaviour of the tensile reinforcement. This is because the load 
developed in the reinforcement is now dependent on the slip of the bar at the crack face, ∆reinf 
in Figure 4(a), which in turn depends on the bond slip (τ/δ) properties between the bar and 
the concrete surrounding it.  
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Figure 4: Cracked segment analysis 

Tension stiffening model 

Full-interaction boundary condition 

The partial interaction load-slip behaviour allowing for the influence of both creep and 
shrinkage can be determined through the adaptation of a well established numerical 
technique (Haskett et al. 2008; and Oehlers et al. 2011). To make this adaptation and in order 
to establish boundary conditions which differentiate the partial interaction and full interaction 
regions, we must first consider the case of full interaction. Consider a reinforcement bar of 
axial rigidity ErAr embedded in a prism of axial rigidity EcAc as in Figure 5(a). We will 
assume that the stiffness of the bond is infinite so that the build up of stress is over zero 
length; the gradual build up of stress to reach a full-interaction position is dealt with in the 
next section.  

 

Figure 5: Full interaction boundary condition 
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Prior to shrinkage, the concrete and reinforcement in Figure 5 are of length Lpr. If no bond 
were present and if a shrinkage strain of εsh were to develop, the end of the reinforcement at 
A-A would remain stationary while the concrete would shorten by εshLpr to B-B relative to a 
fixed boundary E-E. Through bond however, the contraction of the concrete is resisted by the 
reinforcing bar which goes into compression, and hence it only shortens to C-C. Moreover, 
as we are dealing with full interaction, that is an infinitely stiff bond exists, the concrete must 
go into tension, extending from B-B to C-C. Hence the reinforcing bar has contracted by δr 
from its base line position A-A and the concrete has extended by δc from its base line 
position B-B. Hence by compatibility at E-E, the force in the reinforcement Pr and the force 
in the concrete Pc are 

�Y � CBI�B �Y¡Y       (1) 

�� � C:I�B ��¡�       (2) 

where all unknowns are as defined in Figure 5. From equilibrium Pr = Pc, hence equating 
Eqs. 1 and 2 gives the contraction of the reinforcement δr and the extension of the concrete δc 
as 

FY � C:U:T:UBTB                       (3) 

F� � CBUBTBU:T:        (4) 

From Figure 5(b), it can also be seen that 

ε/]L�Y �  δ� � δY      (5) 

Substituting for δr from Eq. 3 yields the strain in the concrete at full interaction (εc)FI 

C:I�B � ����¢£ � �f¤@^¥:¦:¥B¦B
      (6) 

Similarly, substituting for δc into Eq. 5 yields the full interaction strain in the reinforcement 
(εr)FI 

CBI�B � ��Y�¢£ � �f¤@^¥B¦B¥:¦:
      (7) 

The full interaction slip strain (ds/dx)FI is the difference between the strain in the 
reinforcement and the adjacent concrete and is, therefore, equal to  

7,!,|;¢£ � ��Y�¢£ 
 ����¢£    (8) 
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As we are dealing with a full-interaction analysis, that is an infinitely stiff bond, the slip of 
the reinforcement relative to the concrete is also known to be zero, that is ∆=0.  

Let us now consider the prism in Figure 6(a) in which the bond stiffness is no longer infinite. 
Hence a finite length of prism Lbd is required for the stresses to stabilise from where the 
reinforcement load Pr is applied to E-E beyond which the stresses and deformations remain 
unchanged. This is the full-interaction region where the slip ∆=0 and the slip strain is given 
by Eq. 8. The analysis of the partial-interaction region which is given in the following section 
requires this full-interaction boundary condition. 

 

 

Figure 6: Tension stiffening behaviour 

 

 

Partial-interaction tension-stiffening model  

Let us now consider the behaviour in the partial interaction region in Figure 6(a) which is 
shown divided into elements of length Ls in Figure 7 which are small enough so that the slip 
can be considered to be constant over each element. It is now a question of finding the 
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relationship between the slip of the reinforcement at the crack face, ∆1, and the load Pr1 for 
use in the segmental analysis in Figure 4. 

 

Figure 7: Partial-interaction numerical procedure  

As with the M/θ analyses in Figures 2 and 4, for each element of the prism in Figure 7 a base 
line needs to be established for deformations which cause a stress in the reinforcement and a 
stress in the concrete. This can be done by considering the localised deformations that occur 
within a single element, that is, the deformations due to the stresses and strains within that 
element, as shown in Figure 8. As in Figures 2 and 4, the deformations are measured relative 
to E-E. Prior to any applied loads or shrinkage, both the reinforcing bar and the concrete are 
of length Ls, so that their left faces relative to E-E are at A-A. Hence, any deformation 
relative to A-A would cause stresses to develop. Let us now apply a shrinkage strain of εsh. If 
there is no restraint between the concrete and the reinforcement, that is the bond force Bx is 
zero, then the concrete face at A-A would move εshLs to B-B. Therefore A-A is the base line 
to measure deformations to cause stress in the reinforcement and B-B is the base line to cause 
stress in the concrete. The average of the concrete forces on the left and right of the element 
causes a strain εcr. This strain, if tensile, causes the concrete face to extend εcxLs as shown. 
Similarly the average of the reinforcement forces on the left and right cause a strain εrx and if 
this strain is tensile it would cause the reinforcement face to extend εrxLs. The distance 
between the reinforcement face and the concrete face shown as δ∆x is the slip induced within 
an element. This is equal to (εsh+εrx-εcx)Ls where the term (εsh+εrx-εcx) is the slip-strain 
(ds/dx).      
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Figure 8: Element localised deformations 

The analysis of the prism in Figure 7 now begins by setting a displacement of the bar ∆1 at 
the crack face and guessing the force in the reinforcement Pr1 to cause this crack face slip; ∆1 
is not the increase in slip within an element shown as δ∆ in Figure 8 but is the accumulation 
of slip of all the elements to the right in Figure 7. As the displacement of the bar at the first 
element is known to be ∆1, the bond force in the first element B1 can be determined from the 
known bond slip (τ/δ) properties, which as an example have been defined for steel 
reinforcement in CEB (1994); that is B1 is LsLperτ1 where Lper is the perimeter length of the 
reinforcement as in Figure 7 and τ1 is the shear stress for a slip of ∆1 which can be obtained 
from the bond-slip properties. The force in the reinforcement in Element 1, therefore, varies 
from Pr1 to Pr1-B1 such that the mean stress and, hence, strain εr1 can be determined. 
Moreover, the force in the concrete at the crack face is zero and at the right hand side of 
Element 1 it is B1. Hence the mean stress and consequently strain εc1 can be determined as in 
Figure 8. The slip strain in Element 1 (ds/dx)1 is the difference between the strain in the 
reinforcement and the total strain in the concrete, that is, εr1+εsh-εc1 as shown in Figure 8 and 
the change in slip over the first element δ∆1 is the slip strain integrated over Ls also shown in 
Figure 8. The slip and the slip strain are therefore both known for the first element. The 
procedure can be repeated for Element 2, in which it is known that the force in the 
reinforcing bar Pr2 is Pr1-B1 and the force in the prism Pc2 is B1. It is also known that the slip 
of the reinforcement ∆2 is ∆1- δ∆1 from which the bond force B2 can be determined. The 
analysis can then be repeated over subsequent elements to give the variation in slip ∆ and slip 
strain ds/dx, and the initial guess for Pr1 adjusted until a known boundary condition is 
reached as outlined below.  

The partial interaction analysis outlined in Figure 7 can be used to determine the primary 
crack spacing Scr-p. The stresses in the concrete build up from zero at the crack face C-C in 
Figure 6(a) to a maximum value where full-interaction boundary condition is achieved at E-
E. Hence a crack can occur anywhere beyond E-E. The same analysis can also be used to 
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determine the force in the reinforcement to cause cracking which in this case is the force to 
cause primary cracking when the strain in the concrete at E-E exceeds the tensile rupture 
strain. It is important to stress that the partial interaction approach in Figure 7 produces the 
minimum crack spacing because a crack can form anywhere in the full interaction region 
shown in Figure 6(a). In beams subjected to a constant moment this leads to the random 
nature of cracking. However in beams subjected to a varying moment, cracks tend to occur in 
the full-interaction region where the moment is maximum and, hence, will tend to occur at 
Lbd. The implications of the random nature of cracking have been further investigated in 
Visintin et al. (2012b).  

Once a crack has formed at Lbd = Scr-p in Figure 6(a), a prism of length equal to the crack 
spacing, as shown in Figure 6(b), now applies. The analysis of this prism in Figure 6(b) is 
identical to that in Figure 6(a) except that the boundary conditions changes to ∆ = 0 at Scr-p/2. 
Hence, the tension stiffening behaviour of the prism in Figure 6(b) can be determined using 
the partial-interaction analysis in Figure 7 as it is known that if the reinforcement is pulled 
from each crack face with an equal force P, and by symmetry, the slip of the reinforcement at 
Scr-p/2 must be zero. Hence, the analysis now provides the relationship between the total 
length of the reinforcing bar TL and the load developed Preinf required for the M/θ analysis in 
Figure 4(a), as the total length of the bar can be determined from the known εr distribution 
obtained from the PI analysis. Similarly, when the strain in the concrete to cause a stress εc 
exceeds the tensile cracking strain at the mid point of the prism, that is at Scr-p/2 a secondary 
crack will form. The analysis can be applied to determine the tension stiffening behaviour as 
it is known that a point of full interaction where ∆ = 0 must exist at Scr-p/4 as shown in Figure 
6(c).  

M/θ analysis of a cracked section 

Having defined the tension stiffening behaviour above using PI theory, the M/θ analysis can 
be applied to the cracked section in Figure 4 bearing in mind that Ldef in Figure 4(a) is equal 
to Scr-p/2 in regions where only primary cracks occur and is equal to Scr-p/4 in regions where 
secondary cracks occur. For a given rotation θ, the analysis in the uncracked portion of the 
beam is identical to that presented for the uncracked beam in Figure 2. In the cracked tension 
region however, the load developed in the reinforcing bar Preinf in Figure 4(d) is based on the 
total length of the reinforcement TL and must be determined using the partial interaction 
theory described above and where LT in Figure 4(a) can be determined from simple 
geometry.  Hence, the analysis in Figure 4(a) can be applied for increasing rotations θ to 
determine the moment rotation relationship for the cracked section from B-C in Figure 3(a).  

 

The same analysis can also be applied to the case where shrinkage alone causes the member 
to crack. When this occurs, it is simply a matter of iterating the analysis to determine the 
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rotation θsh in Figure 4(a) where at the point of longitudinal equilibrium the moment 
developed is zero as was described for the uncracked.  

Again the M/θ relationship obtained from this analysis can be converted to an equivalent M/χ 
relationship, as in Figure 3(b), by dividing by the deformation length Ldef; and the results in 
Figure 3(b) used to derive the variation of the equivalent flexural rigidity EIequ with moment. 
Importantly, the variation of these flexural rigidities (EIequ) derived from this PI M/θ analysis 
are not the same as those obtained through a standard FI M/χ analysis. This is because when 
cracked, the M/θ approach uses partial-interaction theory that incorporates the effects of 
shrinkage to allow for crack formation and widening and, hence, represents a mechanics 
based solution to describing the behaviour of cracked concrete that includes time effects. 

PARAMETRIC STUDY OF TIME DEPENDENT BEHAVIOUR 

Material properties 

In order to apply the M/θ analysis several material models must be defined, these material 
models are not a critical component of the M/θ approach and any desired material models 
may be substituted to achieve greater accuracy. The following have been used in the ensuing 
parametric study to illustrated the time dependent behaviour of cracked reinforced concrete.  

The elastic modulus of concrete at any point in time Ec(t,t0) has been defined using an 
effective modulus method where at some time t the elastic modulus of the concrete is given 
by  

���r, r>� � U:�Gh�@^¨�G,Gh�     (9) 

in which t0 is the time at first loading and ϕ is the creep coefficient at time t for concrete first 

loaded at time t0. 

The change in elastic modulus due to creep has been applied to both concrete in compression 
and in tension as suggested by Gilbert and Ranzi (2011). For concrete in tension, a linear 
elastic stress-strain relationship has been assumed, and in compression the following 
parabolic distribution of Hognestad (1955) employed 

� � � ����	 
 � ���	��
      (10) 

where ε is the strain in the concrete which causes a stress and εpk is the strain which 
corresponds to the peaks stress fc, and has been taken as that defined by Tasdamir (1998) for 
instantaneous loading 

��� � �
0.067�� � 29.9�� � 1053�10��    (11) 



176 

 

In Eq. 11 fc is in MPa and the strain εpk must be increased according to the decrease in elastic 
modulus as defined by Eq. 9. 

Once cracking has occurred, the partial interaction analysis requires a bond stress slip (τ/δ) 
property. These have been taken as that defined by CEB (1994) for deformed steel bars, that 
is, 

5 � 5m | 7 CCO;>.� F � F@     (12) 5 � 5m |  F@ � F � F�     (13) 5 � 5m | 
 t5m | 
 59w 7 C�CWC��CW; F� � F � F&    (14) 5 � 59 F � F&       (15) 

where, δ1=1 mm, δ2=3 mm, δ3 is the clear spacing between ribs which can be taken as 10.5 
mm if unknown, the maximum bond stress τmax = √fc MPa and the frictional component of 
the bond stress τf = 0.4τmax MPa. 

 
Tension stiffening analysis  

Let us firstly investigate the influence of shrinkage and creep individually on the tension 
stiffening analysis by considering the example of a 16 mm steel reinforcing bar embedded in 
concrete prism of area 6666 mm2 which has a concrete strength of 30 MPa. The variation in 
the primary crack spacing (Scr-p) with shrinkage strain can be seen in Figure 9(a) and the 
corresponding load in the reinforcing bar to cause cracking in Figure 9(b).  

 

 

Figure 9: Influence of shrinkage strain on Scr-p 

It can be observed in Figure 9 that for increasing shrinkage strains both the crack spacing and 
the load to cause primary cracking reduces as would be expected. It can be seen in Figure 8 
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that the change in slip within an element δ∆x increases with εsh which means that the rate of 
change of slip in Figure 6(a) is greater and, therefore, the partial-interaction length which is 
also the crack spacing Scr-p is shorter. The reason for the reduced load to cause cracking is 
that cracking occurs in the full-interaction region as illustrated in Figure 5; this analysis has 
already shown that δc increases with εsh, that is there is a residual tensile strain and 
consequently tensile stress prior to the reinforcement being loaded so that the force to cause 
the reinforcement to increase the stress to the tensile fracture stress is reduced.  

The half total length LT in Figure 6(b) is required in the segmental analysis in Figure 4 and 
consequently the effect of shrinkage on the total length is important. Shrinkage affects the 
crack spacing, so to illustrate the effect of shrinkage by itself on the total length let us use the 
half crack spacing of 153 mm which would occur if there were no shrinkage. Using the 
tension stiffening analysis for a section with primary cracks as in Figure 6(b) the relationship 
between the reinforcement force and total length LT for varying shrinkage strains can be 
obtained as in Figure 10. 

 

Figure 10: Influence of concrete shrinkage on tension stiffening  

It can be seen in Figure 10 that prior to shrinkage, that is, for a shrinkage strain εsh = 0 the 
total length of the bar when no load is applied corresponds to half the crack spacing, which in 
this case is 153mm. For all shrinkage strains, the bar initially shortens as the concrete 
surrounding it contracts due to shrinkage, and hence, for any shrinkage strain above zero, the 
reinforcing bar is initially subjected to a contracting strain and a compressive stress. When 
the bar begins to be pulled at the crack face in Figure 6(b), the average strain over LT in the 
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bar remains contracting and the force is compressive. This occurs as initially the load 
required to induce a small slip ∆ in the opposite direction to the contraction due to shrinkage 
is small, and so the applied load P acts only to reduce the compressive load induced by 
shrinkage. If the slip ∆ is increased, the applied tensile load P must also increase such that it 
may be tensile. This however does not necessarily mean that the bar is immediately 
extending, because, although the bar may be extending at the loaded end, the strain induced 
by the load P reduces over the bars length while the contraction due to shrinkage remains 
constant, therefore the average strain may be contracting despite a tensile load developing at 
the loaded end. As the slip ∆ is further increased the load P must eventually increase to a 
level such that the net strain in the reinforcing over the bar length is extending and at this 
point LT must be extending, that is LT is greater than 153 mm in Figure 10. It can be seen that 
tension-stiffening can be simulated at all stages of loading and even when there is only 
shrinkage.  

The load at which secondary cracking occurs can be determined from the analysis in Figure 
6(b). The effect of shrinkage on this load is very small as can be seen in Figure 10. This is 
because for the large loads at which secondary cracking occurs the LT/Preinf relationship is 
essentially independent of the shrinkage strain because the strain in the reinforcement is 
typically two orders of magnitude larger than the total strain in the concrete.    

The effect of concrete creep is illustrated in Figure 11 where ϕ is the creep coefficient in Eq. 
9. It can be seen that similar to shrinkage, concrete creep leads to a reduction in both the 
crack spacing and the load to cause cracking.  
 

 

Figure 11: Influence of concrete creep on crack spacing 
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the reinforcement are generally an order of magnitude larger than the strains in the concrete, 
even in the serviceability range, hence any change to the strain in the concrete due to creep 
has little influence on the slip strain and hence slip.  

 

Figure 12: Influence of concrete creep and secondary cracking  

Concrete creep does, however, have a significant influence on the secondary cracking 
behaviour, causing a large reduction in the load to cause secondary cracking as well as the 
slip at which secondary cracking occurs as shown in Figure 12. This is because the reduction 
in elastic modulus means the concrete strain to cause a stress builds more rapidly and, hence, 
the concrete strain exceeds the tensile rupture strain at a lesser load in the reinforcement P 
and slip ∆ in Figure 6(b). Hence creep can increase deflections not just through material 
flexibility but also through additional cracking.  

Sectional properties  

Now let us look at the effect of shrinkage and creep individually on the M/θ behaviour of a 
segment. Figure 13 shows the change in the M/θ, M/χ and M/EI relationships for increasing 
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Firstly consider Figure 13(a) which shows the M/θ relationships. It can be seen that for 
increasing shrinkage strains the shrinkage rotation θsh, that is the rotation at zero moment, 
increases. Prior to cracking, all M/θ relationships have the same slope. Following cracking it 
can be seen that there is a rapid loss of moment which represents instability of the crack. This 
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occurs because, as shown in Figure 10, immediately following cracking the reinforcing bar is 
in compression and the bar is contracting in length. During this period, the total compressive 
force in the reinforcement must be balanced by tensile forces in the concrete and so large 
changes in the neutral axis depth and, hence, the location of the tensile lever arm may occur 
resulting overall in a reduction in moment. Upon further increases in rotation, the crack 
stabilises as the load in the reinforcing bar becomes tensile and it can be seen that for all 
shrinkage strains the M/θ relationships are generally parallel to each other. It is also 
important to note the case of higher shrinkage strains, such as εsh = 800µε in Figure 13(a), 
that the shrinkage strain is significant enough that shrinkage alone causes the cross section to 
crack and, hence, the entire M/θ relationship is for a cracked section. 

 

Figure 13: Variation in M/θ, M/χ and M/EI with shrinkage strain 

As explained previously, the moment-rotation in Figure 13(a) can be converted to a moment-
curvature in Figure 13(b) by dividing by the segment half length which in turn can be 
converted to equivalent flexural rigidities in Figure 13(c). These are flexural rigidities which 
give the correct deformational allowing for tensions stiffening and time effects for use in 
member analyses. Hence the segmental analysis gives the residual curvature χsh and 
equivalent flexural rigidity EIequ at a section for a member analysis.  The effects of creep are 
shown in Figure 14 and as can be seen the results can be converted to EIequ for member 
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analysis. In practice, creep and shrinkage will be applied simultaneously to derive χsh and 
EIequ for member analysis  

 

Figure 14: Variation in M/θ, M/χ and M/EI with concrete creep 

Beam analysis  

Having determined the variation in EIequ with moment as well as the equivalent curvature of 
the section due to shrinkage alone χsh, it is now a straightforward procedure to determine 
member deflection. Consider the simply supported member in Figure 9(a). Prior to the 
application of any load and due to concrete shrinkage alone, a uniform curvature χsh as in 
Figure 15(d) is developed. Upon the application of a sustained point load P in Figure 15(a) 
the moment distribution in Figure 15(b) is developed and, hence, from the M/EIequ 

relationship the distribution of EI in Figure 15(c) is also known. Dividing the flexural 
rigidities in Figure 15(c) by the moments in Figure 15(b) gives the variation in curvature, 
which must be added to χsh to give the total curvature profile in Figure 15(d). The variation in 
curvature can then be integrated to give the member deflection at some point in time and the 
analysis repeated with a new M/EIequ relationship for each desired point in time. The 
alternative is to use a finite element package that can cope with variations in EI.  
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Figure 15: Numerical analysis of beam deflection 

 

The section properties derived above will now be used to show the influence of shrinkage 
and creep on member deflection up to concrete softening. A beam with a span of 4 m and a 
single point load that is applied rapidly at mid span has been considered. Significantly, 
Figure 16 shows considerable increases in member deflection due to concrete shrinkage, 
particularly in the case of the section subjected to a shrinkage strain of 800µε, which is fully 
cracked occurs prior to the addition of any load.  

 

 

Figure 16: influence of creep and shrinkage on member deflection 
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It can also be seen in Figure (b) that the additional deflection due to creep increases with 
applied load. This is in contrast to the case of shrinkage in Figure 16(a) where the increase in 
deflection was relatively constant over the entire loading range. The deflection due to a 
combination of creep and shrinkage is also shown in Figure 16(c) 

COMPARISON WITH TEST RESULTS 

For validation of the M/θ approach on beams, the method has been applied to a series of six 
beams tested by Gilbert and Nejadi (2008). These beams were simply supported over a span 
of 3500mm and loaded at the third points for a period of 394 days. Beams B1a and B1b were 
reinforced with 2No. 16 mm bars with 48 mm cover, beams B2a and B2b were reinforced 
with 2No. 16 mm bars with 33mm cover and beams B3a and B3B were reinforced with 3No. 
16mm bars with 33mm cover. All were all loaded at an age of 14 days when the concrete 
strength was 18.3MPa which increased to 28MPa by day 28. Specimens B1a and B2a were 
loaded with 2 point loads of 18.6kN, B2a and B2b with point loads of 11.8kN, beam B3a 
with point loads of 27.0kN and beam B3b with point loads of 15.2kN. Creep coefficients and 
shrinkage strains were also determined periodically by testing and can be found in Gilbert 
and Nejadi (2008).  

The PI M/θ approach was used to determine the variations in M/χ and M/EIequ for each cross 
section in Figure 17 which were used to predict the deflections of the beams in Figure 18. In 
general it can be seen in Figure 18 that the PI M/θ approach is able to reasonably predict the 
deflection of the beams over time. Of interest, it can be seen in Figure 18 that the major 
disparity between the predicted and recorded results come following secondary cracking. It 
has been shown in Visintin et al. (2012b) that, due to the random nature of cracking, the 
crack spacing my be greater than the minimum predicted using the partial interaction 
approach, particularly for members with a constant moment region such as those simulated. 
In this case, secondary cracking occurs at a reduced moment but the stiffness of the cross 
section increases, this may mean that in sustained loading analyses as presented here, the 
deflection may be reduced due to the random nature of crack formation.   
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Figure 17: M/χ and M/EI relationships for beams tested by Gilbert and Nejadi (2008) 
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Figure 18: Predicted deflection of beams tested by Gilbert and Nejadi (2008)  

Finally and in order to show the influence of concrete shrinkage for a beam subjected to 
instantaneous loading, the M/θ approach has been compared to a pair of tests carried out by 
Barris et al. (2009) on FRP reinforced beams under 4 point bending where the loads were 
applied at 300mm from the centre point. These beams had a span of 1800mm, a depth of 
190mm, and were reinforced with 2No. 16mm ribbed GFRP bars with an elastic modulus of 
64,153MPa. Beam C-216-D1 had a concrete strength of 56.3MPa, a width of 140mm and 
cover to the reinforcing of 20mm while beam C-216-D2 had a concrete strength of 61.7MPa 
a width of 160mm and cover to the reinforcing of 40mm. For each case, the shrinkage strain 
has been determined according to AS 3600-2009 (Standards Australia 2009) where it has 
been assumed that the member was loaded to failure on day 28. Figure 19 shows that 
allowing for shrinkage, member deflection is significantly increased, particularly following 
cracking, and more closely matches the experimental behaviour. 
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Figure 19: Variation in deflection of instantaneously loaded beams with shrinkage 

CONCLUSIONS 

A numerical partial-interaction (PI) moment-rotation (M/θ) approach has been developed to 
quantify the short and long term flexural rigidities (EIequ) of a reinforced concrete beam 
through mechanics. This PI M/θ approach is versatile as it can cope with cracked and 
uncracked sections and with the time effects of shrinkage and creep. Prior to cracking this PI 
M/θ approach gives exactly the same flexural rigidities as a conventional full-interaction (FI) 
moment-curvature (M/χ) approach. However its strength is in the fact that it can quantify, 
through the derivation of equivalent flexural rigidities EIequ, the effects of cracking and, in 
particular, the effects of creep and shrinkage on cracked sections. This is in contrast to the 
conventional FI M/χ approach which relies on empirically derived flexural rigidities EIemp to 
allow for cracking and the effects of creep and shrinkage on cracking. In effect the PI M/θ 
approach replaces the FI M/χ EIemp with mechanics derived EIequ. Hence this PI M/θ 
approach can be considered to enhance the existing FI M/χ by providing better estimates of 
the cracked flexural rigidities with creep and shrinkage. This enhancement can be seen by the 
fact that once the equivalent flexural rigidities have been determined, the analysis procedure 
of the member is exactly the same as in a conventional FI M/χ approach.     
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Partial-interaction short term serviceability deflection of FRP RC beams  

Visintin, P., Oehlers, D.J. Muhamad, R. and Wu, C. 
 
 
ABSTRACT 
A widely accepted approach for quantifying the serviceability short term deflection of RC 
beams is to use some combination of the flexural rigidities of the uncracked (EIfi-uncr) and 
cracked (EIfi-cr) sections that are obtained from a full-interaction analysis of transformed 
sections; a full-interaction analysis implies that there is no slip between the reinforcement 
and concrete. The combination of EIfi-uncr and EIfi-cr, that is the effective flexural rigidity 
(EIeff) to be used for calculating the deflection, has to be determined purely from testing. In 
this paper partial-interaction theory, which allows for slip between the reinforcement and 
concrete and consequently the bond-slip characteristics, is used to determine the partial-
interaction flexural rigidity of a cracked section (EIpi-cr). It is shown that: by replacing the 
cracked section EIfi-cr with EIpi-cr obviates the need to determine EIeff directly from testing; 
the replacement of EIfi-cr by EIpi-cr allows closed form solutions to be derived for EIeff and also 
allows for the distinction between the formation of primary and secondary cracks. The partial 
interaction approach also provides a way of determining, through mechanics, the minimum 
crack spacing and hence can be used to study the random component of cracking and its 
influence on member deflection. The partial-interaction flexural rigidity should be a 
convenient tool for not only refining existing deflection procedures but also for quantifying 
the deflection of RC beams with new types of reinforcement and new types of bond, in 
particular those associated with FRP reinforced members.   
 
LIST OF SYMBOLS 
a – Distance from support to the location of a point load 
Ac – Area of concrete which interacts with reinforcement in a PI analysis 
Ar – Total area of reinforcement in the tension region 
B – Bond force 
b – Width of the section 
c – Cover to the centre of reinforcement 
d – Depth of the section 
dcr-p – Primary crack height 
dcr-s –Secondary crack height 
ds/dx – Slip strain 
Ec – Elastic modulus of concrete  
EI – Flexural rigidity 
EIcr – Cracked EI 
EIeff – Effective EI for a member 
EIfi-uncr – Uncracked EI from a FI analysis 
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EIfi-cr – Cracked EI derived from a FI analysis 
EIpi-cr – Cracked EI from a PI analysis 
EIpi-p– Cracked EI from a PI analysis for primary cracking 
EIpi-s– Cracked EI from a PI analysis for secondary cracking 
Er – Elastic modulus of reinforcement 
fc –Peak concrete stress 
FI – Full interaction 
Ifi-cr - Cracked moment of inertia from a FI analysis 
Ifi-uncr – Uncracked moment of inertia from a FI analysis 
Ke – Bond stiffness 
Lbd – Length of concrete prism to FI boundary condition 
Ldef – Deformation length  
Lp – Total perimeter of all reinforcing bars  
Ls - Segment length for numerical PI analysis 
M – Applied moment 
Mcr – Moment to cause, taken as the minimum of that from a FI or PI analysis 
Mcr-p – Primary cracking moment from PI analysis 
Mcr-s –Secondary cracking moment from PI analysis 
M fi-cr –FI cracking moment 
Mseg – Moment applied to a segment of a member 
P – Applied load 
Pconc – Force developed in the concrete in compression 
Pconc-tens – Force developed in the concrete in tension 
PI – Partial interaction 
Pr – Force in the reinforcing bar in the numerical PI model 
Preinf  - Force developed in reinforcing bar at crack face 
Preinf-cr-p – Force in reinforcement to cause primary cracking 
Preinf-cr-s – Force in reinforcement to cause secondary cracking 
xuncr – Uncracked length of member 
xcr-p – Length of member with primary cracks 
xcr-s – Length of member with primary and secondary cracks 
y – Member deflection 
yuncr - Deflection of uncracked member 
ypi-p - Deflection of member with primary cracks 
ypi-s - Deflection of member with primary and secondary cracks 
Scr-p – Primary crack spacing 
 
β – Geometric constant 
χpi-p – Curvature from PI analysis following primary cracking 
χpi-s – Curvature from PI analysis following secondary cracking 
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∆ – Slip of reinforcing bar in a segment from the numerical PI model 
∆reinf –slip of the reinforcement form the crack face 
δ∆ – Change in slip of the reinforcement over a segment  
δconc –Deformation of concrete 
δ – Local interface slip  
δ1 – interface slip at τmax 
εc – Concrete strain 
εpk – Strain at fc 
εr – Reinforcement strain 
λ – Bond stiffness constant 
τ – Bond stress 
τmax – Maximum bond stress 
θ – Rotation 
θpi-p – Rotation from PI analysis following primary cracking 
θpi-s – Rotation from PI analysis following secondary cracking 
 
INTRODUCTION 
The design of members for serviceability deflections has become increasingly important in 
recent years as the use of new higher strength materials has led to a decrease in both member 
depth and reinforcement ratio. Traditional analysis techniques for determining the short term 
deflection of steel reinforced members can be split into two categories: those in which an 
effective flexural rigidity (EIeff) is used in conjunction with an elastic deflection equation [1-
10]; and those in which the curvature is integrated to determine the distribution of deflection 
along a member’s length [11-14]. Most design codes currently use the following effective 
moment of inertia originally proposed by [1] 
 

ªM99 � ª«$�Y�9Z 7¬:B¬ ;& � ª9Z��Y �1 
 7¬:B¬ ;&  ;   ªM99 � ª«$�Y�9Z     (1) 

 
which was calibrated empirically and represents the transition from the transformed 
uncracked moment of inertia (Ifi-uncr) to the transformed cracked moment of inertia (Ifi-cr) for 
the applied moment M following cracking which takes place at Mcr.  
 
Branson’s equation typically provides a reasonable estimate of deflection when used within 
the bounds of the experimental results from which it was calibrated. However outside this 
range its application can lead to significant discrepancies between the predicted deflection 
and that seen in practice. Branson’s equation tends to under predict deflections for low 
reinforcement ratios because tension stiffening is overestimated and, therefore, so too is EIeff. 
The problem of over prediction of tension stiffening becomes particularly apparent when 
Branson’s equation is applied to FRP reinforced members which, due to the high strength of 
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the bars, are generally lightly reinforced, and because of the low elasticity of the bars have 
low member stiffness [2].  
 
Much research, most recently by the FRP community, has been devoted to developing a new 
approach to determining service deflections by either adapting or replacing Branson’s 
equation [2-10] or by proposing methods to simply integrate member curvature [11-14]. 
These approaches have had varied success and typically are not applicable to a wide range of 
member type and reinforcement ratio, and the vast majority cannot be applied to both steel 
and FRP reinforced members.   
 
In this paper, a partial-interaction (PI) moment-rotation (M/θ) approach is outlined which is 
based on the Euler-Bernoulli principal of plane sections remaining plane, but not directly on 
the corollary of a linear strain profile [15]. This M/θ approach uses the well defined 
mechanics of partial-interaction theory [16-28] to simulate the slip between the 
reinforcement and the surrounding concrete and hence, through mechanics, allows for the 
formation and widening of primary and secondary cracks. This approach can, therefore, 
quantify serviceability behaviour without the need for empirically derived effective flexural 
rigidities EIeff. Moreover, this approach is applicable to any type of member, with any type of 
reinforcement and with any type of bond-slip characteristic and, consequently, is ideally 
suited for FRP reinforcement where these characteristics can vary widely.  
 
In the following, the PI M/θ approach is firstly developed numerically for a segment of a 
beam and it is shown how this M/θ relationship can be used to give a mechanics based 
flexural rigidities which account for the partial interaction behaviour of the reinforcement 
(EIpi-cr). It will then be shown that the numerical approach can be simplified into closed form 
solutions to give the cracked flexural rigidity of a segment for both primary (EIpi-p) and 
secondary (EIpi-s) cracking. The flexural rigidities of the uncracked (EIfi-uncr) and cracked 
(EIpi-cr) segments are then used to derive the deflection of an entire member. The deflections 
predicted using the closed form solutions are finally compared to experimental results for 
both FRP and steel reinforced sections.  It should be noted that the influence of creep and 
shrinkage is not considered here, but can be included in the numerical approach as in Visintin 
et al [29]. 
 
SEGMENTAL M/ θ NUMERICAL ANALYSIS 
The PI M/θ analysis [15] is illustrated in Fig. 1(b), for a beam with the cross-section in Fig. 
1(a). For analysis, a segment of the beam of length 2Ldef, is subjected to a constant moment 
Mseg which causes the ends of the segment to rotate by θ from A-A to B-B. By symmetry, C-
C at mid-way can be considered to be stationary, such that imposed deformations shown 
shaded are measured relative to C-C. As the behaviour to the left of C-C is identical to that to 
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the right it is only necessary to consider one half of the segment of length Ldef. Let us first 
consider the behaviour prior to concrete cracking.  
 

 
 

Figure 1: M/θ analysis 
 
Prior to cracking 
The left half of the segment in Fig. 1(b) is shown in Fig. 2(a). The segment end A-A is 
rotated by θ to B-B. The deformation B-B, such as δconc, can be converted into a strain 
profile, shown in Fig. 2(b), by dividing by the deformation length Ldef. Since the section is 
uncracked these strain are real strains, that is, they would be measured by strain gauges 
placed on the member. Knowing the distribution of strain in the segment, and because all the 
strains are real strains, the distribution of stress in Fig. 2(c) can be determined using any 
conventional material stress-strain relationship giving the internal forces in Fig. 2(d). 
 
 

 
Figure 2: Uncracked segment for M/θ analysis 

 
Having determined the internal forces in Fig. 2(d), the maximum displacement of the 
concrete δconc can be varied for a fixed value of θ, effectively adjusting the neutral axis depth 
until internal equilibrium is achieved. This analysis gives a single point on the M/θ 
relationship, between O and A in Fig. 3(a) and is repeated for increasing rotations until a 
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crack develops when the maximum tensile strain in the concrete reaches the tensile cracking 
strain, and the crack tip reaches the tensile reinforcement. 
 

 
Figure 3: Equivalent M/χ and EI 

 
The moment-rotation relationship in Fig. 3(a) can be converted into the moment-curvature 
(M/χ) relationship in Fig. 3(b) by dividing by the deformation length Ldef. At the uncracked 
stage, the result obtained form this M/θ analysis and a traditional M/χ analysis are identical. 
The deformation length Ldef used in the analysis is, therefore, irrelevant as any length will 
give the same M/χ. Furthermore, as both approaches are identical so too are the uncracked 
flexural rigidities (EIfi-uncr), as shown in Fig. 3(c) which could also be obtained from the 
traditional transformed section approach. It is important to emphasise that both approaches 
are identical for uncracked segments, because, at the uncracked stage a traditional M/χ 
analysis does not rely on empirically derived factors for the model, such as those required to 
determine deflections in cracked members. Hence, the M/θ analysis conducted on a segment 
subjected to a constant moment can be used to determine the flexural rigidity of the cross 
section, which can in turn be used to determine the deflection of the member for any moment 
distribution. 
 
Accommodating cracking  
Now consider the case shown in Fig. 4(a) where the moment Mseg has increased to a level 
which causes the crack tip to intercept the reinforcing bar. Partial interaction theory must be 
used to describe the behaviour of the reinforcing bars because the load developed is now 
dependent on the slip of the bar at the crack face ∆reinf, which in turn depends on the bond-
slip (τ/δ) properties between the bar and the concrete surrounding it. 
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Figure 4: Cracked segment for M/θ analysis 
 

The partial-interaction load-slip behaviour can be determined through the application of a 
well established partial interaction analysis technique [23,30] by considering the behaviour of 
reinforcement of total area Ar embedded with a total perimeter Lp in a prism of total area Ac 
as in Fig. 1(a) along the length of the member as in Fig. 1(b). The analysis is depicted in Fig. 
5 where the prism in Fig. 1(b) is broken into elements of length Ls in Fig. 5 which are 
deliberately very small so that the slip along Ls can be assumed to be uniform. It is now a 
question of finding the relationship at the crack face, that is, at the left face of Element 1, 
between the reinforcement force Pr1 and the slip at the crack face ∆1. 

 

 
 

Figure 5: Partial interaction numerical approach 
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the force in the reinforcement Pr1 guessed. As the displacement of the bar ∆1 has been set, the 
bond force in the first element B1 can be determined from the known bond slip (τ-δ) 
properties, that is B1 is equal to LpLsτ where τ depends on ∆1 which have been defined for 
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both steel and FRP bars [31-33]. Hence, the force in the reinforcement in Element 1 varies 
from Pr1 to Pr1-B1, such that the mean stress, and consequently strain εr1 can be determined. 
Furthermore, the force in the concrete in Element 1 varies from zero on the left side to B1 on 
the right, so the mean strain in the concrete εc1 can also be determined. The slip-strain in 
Element 1 (ds/dx)1 is the algebraic difference in strain between that of the reinforcement and 
the concrete εr1-εc1, and the change in slip over Element 1, δ∆1, is the integration of the slip-
strain over Ls, that is, (εr1-εc1)Ls. Hence, both the slip and slip-strain in Element 1 are known. 
The analysis can then be repeated for Element 2 in which, on the left hand side, the force in 
the reinforcing bar Pr2 is Pr1-B1 and the force in the concrete Pc2 is B1. Furthermore, the slip of 
the reinforcement ∆2 is ∆1-δ∆1, from which the bond force B2 can be derived. The analysis 
can then be repeated over subsequent elements to give the variation is slip ∆ and slip strain 
ds/dx, and the initial guess for Pr1 adjusted until a known boundary condition is achieved as 
explained below. 

The partial interaction analysis depicted in Fig. 5 can be used to determine the primary crack 
spacing Scr-p because primary cracks form where the full interaction boundary conditions are 
met, that is, the slip-strain (ds/dx) and the slip ∆ tend to zero at the same position. This 
corresponds to the length Lbd in Fig. 5. It is also important to note that this approach produces 
the minimum crack spacing as it is assumed that a varying moment distribution exists over 
the prism length. However it is possible to apply any desired crack spacing when carrying out 
the M/θ analysis. 

The same analysis procedure is also employed to provide a relationship between the slip of 
the reinforcement ∆reinf in Fig. 4(a) and the load developed Preinf in the reinforcement in Fig. 
4(d). In this case, Ldef in Fig. 1(b) is Scr-p/2 so that in Fig. 5 the boundary condition at Lbd 
from the crack face is now ∆ = 0 at Scr-p/2 as shown. This analysis in turn can be used to 
predict the load at which secondary cracks form, that is, when the strain in the concrete at Scr-

p/4 equals the cracking strain. Similarly when the partial interaction analysis is carried out 
with the boundary condition that the slip of the bar ∆ = 0 at Scr-p/4, then the tension stiffening 
(P/∆) behaviour of the secondary cracks is given. It should also be noted that although 
debonding has not been considered here, as we are dealing with a serviceability limit, 
debonding of FRP bars can occur due to the high bond stiffness compared to ribbed steel 
bars. Debonding is more likely to occur following secondary cracking as for a given slip of 
the bar the total bond force must be higher in order to reach the boundary condition of ∆ = 0 
over the length Scr/4 instead of over Scr/2 which is the case for primary cracking. 

Having derived the partial interaction behaviour of the reinforcing bars, the analysis of the 
cracked segment in Fig. 4(a) can proceed in the same manner as that for the uncracked 
segment. The applied moment Mseg causes a change in deformation from A-A to B-B with a 
rotation θ. This deformation profile can be converted to a strain profile, shown in Fig. 4(b), 
by dividing by the deformation length Ldef, which in the case of the cracked segment must be 
equal to half the primary crack spacing, that is, Scr-p/2. In the compressive and uncracked 
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tension regions, the strains are real strains and, therefore, the stresses in Fig. 4(c) and internal 
forces in Fig. 4(d) can be determined through the application of any appropriate stress-strain 
relationship. In the cracked tension region, the slip of the reinforcement ∆reinf can be 
determined from simple geometry, and for the given slip, the load developed determined 
through the application of the partial-interaction theory described above and illustrated in 
Fig. 5. Knowing all the internal forces, the maximum deformation in the concrete can again 
be adjusted until internal equilibrium is achieved.  

The above analysis gives a single point on the M/θ relationship in Fig. 3(a) and must be 
repeated for increasing rotations to generate the curve B-C. If secondary cracking takes place 
the same analysis procedure is followed, but the deformation length Ldef is equal to Scr-p/4 
and the partial-interaction load slip behaviour of the bar must be obtained using the boundary 
conditions for secondary cracking. This analysis gives the M/θ relationship in Fig. 3(a) from 
point D-E. The cracked segment analysis can be applied until the maximum strain in the 
concrete reaches the strain εpk at the peak stress fc. As the purpose of this paper is to derive 
closed form solutions to describe serviceability behaviour, concrete softening will not be 
considered. However a numerical model which accounts for concrete softening using shear 
friction theory can be found in Visintin et al. (2012a).  

Again it is possible to convert the M/θ relationship into an equivalent M/χ relationship, as in 
Fig. 3(b), by dividing the rotations by the deformation length Ldef. Importantly, this M/χ 
relationship derived from a M/θ analysis is not the same as those obtained from a standard 
M/χ analysis. This is because when cracked, the M/θ approach produces an equivalent 
curvature which simulates the cracking processes seen in practice, that is, using the 
mechanics of partial- interaction theory, the slip of the reinforcing relative to the concrete 
which is responsible for both concrete cracking and crack widening is simulated. Thus the 
M/θ approach can be used to derive equivalent flexural rigidities for primary EIpi-p and 
secondary EIpi-s cracking, as in Fig. 3(c), which are different from the cracked flexural 
rigidity EIfi-cr found using typical approaches such as transformed sections which assumes 
full interaction.  
 
Having described the PI M/θ approach for a segment using a numerical approach, we will 
now consider how, by assuming that at serviceability material properties remain linear-
elastic, a closed form approach can be constructed.  
 
SEGMENTAL M/ θ CLOSED FORM SOLUTIONS 
As it has been established that the behaviour predicted by the M/θ and traditional M/χ 
analyses are identical prior to cracking, the uncracked flexural rigidity determined using 
transformed sections (EIfi-uncr) can be used in a mechanics based determination of deflections 
prior to cracking. However, after cracking, as illustrated in the segment in Fig. 6, partial-
interaction behaviour as illustrated by Fig. 5, needs to be used in order to simulate the 
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mechanics of crack formation and widening because the reinforcement slips relative to the 
concrete. As we are still dealing with the behaviour at serviceability, a linear bond-slip (τ-δ) 
characteristic is also assumed, that is, the bond stiffness ke = τ/δ is constant. Closed form 
solutions for the partial-interaction behaviour in Fig. 5 have been developed for the case of a 
linear bond-slip (τ-δ) characteristic [28] and are given in Appendix A. These are used in the 
following segmental analyses to develop a closed form solution for the flexural rigidity of the 
cracked segment in Fig. 6.  
 

 
 

Figure 6: Idealisation for closed form solutions 
 
For the tension region in Fig. 6, the crack rotation is given by 
 A �  ∆­®¯°�,:Be���       (2) 

 
where ∆reinf is the reinforcement slip relative to the crack face, dcr-p is the depth of the crack 
when it is a primary crack and  dcr-p-c is the distance of the reinforcement from the crack 
apex. Similarly for the compression region 

A � C:E+:,�,:Be�       (3) 

where δconc is the maximum deformation in the compression region and d is the depth of the 
beam.  

 

From Eqs. 2 and 3  

F�H$�  � ∆­®¯°�t,�,:Be�Bdw,:Be�Bd��      (4) 
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The maximum strain in the concrete is therefore  

��H$� �  C:E+:IJ-K        (5) 

where, Ldef  is half the crack spacing, which for a linear ascending bond stress distribution, as 
shown in Appendix A, is 

L,M9 �  @NO       (6) 

in which, 

P@ �  QRMS�        (7) 

where ke is the bond stiffness τ/δ of the linear bond-slip and β2 is given by  

S� �  I�TB 7 @UB � TBU:T:;       (8) 

where: Ac is the area of concrete surrounding the reinforcing bars which interact with it, as 
illustrated in Fig. 6, this area can be taken as the product of the width of the section b and 
twice to cover to the centre of the bar c; Ar is the sum of all the cross sectional areas of the 
reinforcing bars within Ac; Lp is the sum of all the perimeters of the reinforcing bars within 
Ac;  Er is the modulus of the reinforcing bars; and Ec the modulus of the concrete.  

The force developed within the concrete compression region, Pconc in Fig. 6, can be 
determined as follows from Eqs. 5 and 6  

��H$� �  >.V∆­®¯°�t,�,:Be�wWNU:Xt,:Be���w       (9) 

For the tensile reinforcement, the force developed for a given slip ∆reinf using PI theory is 
given by Eq. 10 (Appendix A). 

�YMZ$9 �  ∆­®¯°�TBUBNO[\1]�@�       (10) 

As Pconc = Preinf, from Eq. 9 and Eq. 10 the crack height is given by  

#�Y�� � ,XU: [\1]�@�^TBUB±`�,XU:TBUB [\1]�@�^TBWUBW��XU:TBUB� [\1]�@�
XU:  [\1]�@�    (11) 

Knowing the crack height, the moment in the section is simply 
 ² � 
��H$� 7,�,:Be�& ; � �YMZ$9�# 
 q�      (12) 
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Substituting Eqs. 9 and 10 into Eq. 12, the rotation for a given moment is  
 
 A�Z�� � �¬ [\1]�@�³U:X [\1]�@�t�,�^&,W,:Be��&,,:Be�W ^,:Be�� w^�TBUBt,,:Be��,:Be���,�^�Ww´NO   (13) 

 
 

 
and knowing that the curvature is equal to θ/Ldef gives the curvature 
 
 µ�Z�� � �¬ [\1]�@�U:X [\1]�@�t�,�^&,W,:Be��&,,:Be�W ^,:Be�� w^�TBUBt,,:Be��,:Be���,�^�Ww   (14) 

 
and hence the equivalent cracked flexural rigidity can be given by  
 

�ª�Z�� � U:X [\1]�@�t�,�^&,W,:Be��&,,:Be�W ^,:Be�� w^�TBUBt,,:Be��,:Be���,�^�Ww� [\1]�@�    (15) 

 

 
The cracked flexural rigidity given by Eq. 15 is applicable for primary cracking, which 
occurs following first cracking. The moment at which primary cracks first occur (Mcr) is 
taken as the lesser of that obtained through a standard full-interaction transformed section 
analysis and that obtained from a partial interaction analysis (Appendix A) as follows 
 �YMZ$9��Y�� � TBUBNOWCO9DT:*%i¶I�        (16) 

 
The primary cracking moment can therefore be given by Eq. 17 
 ²�Y�� � �YMZ$9��Y��YtW�# � O�,:B��w     (17) 

 
which simplifies to Eq. 18 when the load in the reinforcement to cause primary cracking is 
given by Eq. 16. 
 ²�Y�� � �U:T:^TBUB�9D��,^,:B�&��&U:     (18) 

 
 
Similarly, the secondary cracking load is given by (Appendix A) 
 �YMZ$9��Y�! � TBUBNOWCO9DT:>.&V�*%i¶I�        (19) 
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and, hence, as above the secondary cracking moment is given by  
 

 ²�Y�! � �YMZ$9��Y�!M�tW�# � O�,:B��w     (20) 

 
which simplifies to  
 ²�Y�! � @�V�U:T:^TBUB�9D��,^,:B�&��@&�U:      (21) 

 
 
Once the secondary cracking moment is reached, the crack spacing is half the primary crack 
spacing (Appendix A). As described for the numerical procedure, and shown in Appendix A 
for the closed form solutions, the change of boundary condition changes the load developed 
in the bar for a given slip to that in Eq. 22. 
 �YMZ$9 �  ∆­®¯°�TBUBNO[\1]�>.V�       (22) 

 
This change means the crack height, rotation, curvature and flexural rigidity also change as 
shown; the derivation being identical to that for primary cracking. 
 

#�Y_! � �,XU: [\1]�>.V�^TBUB±`�,XU:TBUB [\1]�>.V�^TBWUBW��XU:TBUB� [\1]�>.V�
�XU:  [\1]�>.V�    (23) 

 A�Z�! � &¬ [\1]�>.V�³U:X [\1]�>.V�t�,�^&,W,:Bef�&,,:BefW ^,:Bef� w^&TBUB�,,:Bef�,:Bef��,�^�W�´NO    (24) 

 

 µ�Z�! � �¬ [\1]�>.V�U:X [\1]�>.V�t�,�^&,W,:Bef�&,,:BefW ^,:Bef� w^&TBUB�,,:Bef�,:Bef��,�^�W�    (25) 

 

 

�ª�Z�! � U:X [\1]�>.V�t�,�^&,W,:Bef�&,,:BefW ^,:Bef� w^&TBUBt,,:Bef�,:Bef��,�^�Ww� [\1]�>.V�      (26) 

 
Importantly, it can be seen that the flexural rigidity when considering partial interaction for 
primary (EIpi-p) and secondary cracking (EIpi-s), as in Eqs. 15 and 26, is independent of the 
bond-slip stiffness (ke = τ/δ). This is significant. Although we are allowing for the slip of the 
reinforcement relative to the concrete through the use of partial interaction theory, by making 
the assumption of a linear ascending bond characteristic, we do not need to define the bond 
properties to determine the flexural rigidity and consequently the load deflection behaviour. 
The independence of the flexural rigidity to the bond-slip stiffness can be explained through 
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the example presented in Fig. 7 where the closed form PI equations have been used to 
describe the M/θ, M/χ and M/EI behaviour of a segment of a beam. The beam has a cross 
section of width of 200 mm, depth of 300 mm and an elastic modulus for the concrete of 
25MPa. The section has been reinforced with 3 16mm bars of elastic modulus of 200GPa and 
bond stiffness ke of either 13.7 N/mm, which is a linear simplification of the nonlinear bond 
characteristic suggested by [31] for ribbed steel bars embedded in 30MPa concrete, or, 92.7 
N/mm which is the linear simplification of the nonlinear bond characteristic for sand coated 
FRP bars [32].  
 

 
Figure 7: Influence of bond characteristic 

 
If we consider a member reinforced with the bars of low bond stiffness of 13.7 N/mm, that is 
the ribbed bar, cracks form at a spacing of 404 mm and for the bar with a high bond stiffness 
of 92.7 N/mm, that is the sand coated bar, cracks form at a spacing of 155 mm. A segment 
reinforced with each type of bar, which is of a length of half the crack spacing, is taken and a 
moment applied as explained previously for the segmental analysis. For the segment with a 
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low bond stiffness, for any given moment following cracking, the slip of the reinforcement is 
greater than that of the segment with high bond stiffness and therefore the rotation, as shown 
in Fig. 7(a), is larger. Converting this rotation to a curvature by dividing by the segment 
length yields identical curvatures shown in Fig. 7(b). It can be seen that the curvature is 
independent of the bond characteristic, that is, both M/θ relationships yield identical M/χ 
relationships. This can also be shown by considering Eq. 6 and Eq. 13 which define the 
segment length and rotation of the segment for a given moment respectively. Both 
relationships are inversely proportional to λ, which is a function of the bond stiffness and so 
defining the curvature as the rotation per unit length of segment, that is, dividing Eq. 13 by 
Eq. 6 yields a curvature which is independent of  λ and hence the bond properties. Finally, 
since the curvature is independent of the bond so too is the flexural rigidity of the segment, 
seen in Fig. 7(c). Similar behaviour was also noted in [27], where the deflection of a beam 
was determined by summing the discrete rotations about each crack. It was observed that 
with increasing bond stiffness more cracks formed but at each crack the discrete rotation 
reduced because the cracks were narrower and, hence, the overall behaviour became 
independent of the bond stiffness. 
 
Hence, it can be seen in Fig. 7 that varying the bond-slip stiffness may vary the moment-
rotation of a segment but does not vary the moment-curvature and consequently the flexural 
rigidity. This is because increasing the bond stiffness simply causes more cracks to occur but 
these cracks are narrower. Also of importance is the independence of the moment to cause 
primary and secondary cracking on the bond stiffness. As seen in Eqs.18 and 21 this is the 
case because the crack spacing is proportional to the bond stiffness, hence, for a stiff bond 
the crack spacing is small but the bond builds rapidly, and therefore, the load transferred 
from the bar to the concrete rapidly reaches that required to cause cracking. This can be 
shown mathematically by substituting Eqs. 7 and 8 into Eq. 16. 
 
COMPARISON OF SECTIONAL PROPERTIES 
The three major sectional properties that affect the deflection of a beam for short term loads 
are the uncracked flexural rigidity EIfi-uncr, the cracked flexural rigidity EIcr and the moment 
to cause cracking Mcr. The derivation of the uncracked flexural rigidity EIfi-uncr is based on 
the Euler-Bernoulli principle of plane sections remaining plane and its corollary of a linear 
strain profile, so that the M/θ and M/χ approaches give exactly the same values which can be 
obtained from transformed sections. The difficulty in quantifying deflection arises in the 
cracked properties, that is, EIcr and Mcr and these are studied below for different elastic 
moduli, namely 200GPa and 40GPa, and varying reinforcement ratios.  
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Sectional flexural rigidity (EI cr) 
It can be seen in Fig. 9 that for both the 200GPa and 40GPa reinforcement the flexural 
rigidity obtained from full interaction (EIfi-cr) lies below that obtained from a partial 
interaction analysis for both primary cracking (EIpi-p) and secondary cracking (EIpi-s).  
 
 

 
Figure 9: Variation in EIcr for with reinforcement ratio and Er. 

 
Importantly, Fig. 9 shows the partial interaction approach does not predict a single flexural 
rigidity of the cracked section, but rather, the partial interaction flexural rigidity has a step 
change reduction as secondary cracking occurs that is from EIpi-p to EIpi-s. To fully understand 
the implications of secondary cacking, the recognised randomness of cracking needs to be 
considered using the tension-stiffening analysis in Fig. 5. 
 
The distance Lbd from the crack face in Fig. 5, is the distance where full-interaction (ds/dx = 
∆ = 0) first occurs, that is beyond Lbd there is full-interaction. The region where there is full-
interaction is important as this is where the maximum tensile stresses in the concrete occurs 
and, consequently, where there is the most likelihood of cracking. If we are dealing with a 
constant moment region, then all we know is that the primary crack spacing Scr-p ≥ Lbd. 
However if we are dealing with a moment gradient, then Scr-p → Lbd as cracking would tend 
to occur where the moment is highest, that is towards the region where the initial crack face 
is. Hence, there is a degree of randomness in quantifying the primary crack spacing Scr-p in 
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Fig. 5. This degree of randomness flows onto the analysis of secondary cracks where the 
boundary condition is now ∆ = 0 at Scr-p/2. Hence there is a degree of randomness, beyond 
that due to variation in material properties, in EIpi-p and EIpi-s in Fig. 9. The numerical 
segmental analysis provides the tools to study the effect of this randomness but is not the 
major focus of this paper. 
 
As a simple example of the influence of crack spacing, consider the M/θ, M/χ and M/EI 
relationships shown in Fig. 10, which have been produced using the numerical approach for 
the 200x300mm cross section with an Ec of 25MPa and reinforced with 3 16mm bars with an 
Er of 200 GPa and ke of 13.7 N/mm. It can be seen in Fig. 10(c) that increasing the crack 
spacing from Scr-p to 1.2Scr-p leads to an increase in the stiffness of the cracked section, but 
reduces the moment to cause secondary cracking. This increase in stiffness can be explained 
by considering the prism in Fig. A.2(b) in Appendix A. It can be seen that by increasing the 
crack spacing, the bond force builds over a greater bar length. Hence for a given slip, the load 
required to reach the boundary condition ∆ = 0 at Scr-p/2 is reduced, thus a softer P/∆ 
relationship is obtained. This also means that the M/θ relationship, as in Fig. 10(a), softens 
for increasing crack spacing. As shown in Fig. 10(b), this does not, however, lead to a softer 
M/χ relationship; this is because the rotation takes place over a larger deformation length Ldef 

in Fig. 4. As shown in Fig. 10(c), the stiffer M/χ relationship in turn leads to an increase in 
EIpi-s and EIpi-s. 
 
It is also important to note in Fig. 10(c) that the moment to cause secondary cracking has 
reduced. This reduction can again be explained by considering the numerical partial 
interaction analysis in Fig. 5. It is known that secondary cracking occurs once the strain in 
the concrete exceeds the tensile rupture strain at the boundary condition ∆ = 0 at Scr-p/4. As 
the crack spacing is increased, for a given slip, the total bond force over the prism length Scr-

p/4 is higher, hence so too is the strain in the concrete strain. This means that the load in the 
reinforcement to cause secondary cracking is reduced and hence so too is the moment, as in 
Fig. 10(a). Importantly, this shows that EIpi-cr and Mcr-pi are only independent of the bond τ/δ 
properties when considering the minimum crack spacing. If the randomness of cracking is 
allowed for by increasing the crack spacing, the cracked flexural rigidity is increased and the 
moment to cause secondary cracking is reduced, with the magnitude of these changes is 
depending on the bond properties. It can be seen that the effect of the random nature of 
cracking is complex but this partial interaction segmental analysis does provide a tool for 
studying it.   
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Figure 10: The influence of crack spacing on EI 

 
Moment to cause cracking (Mcr) 
The cracking moment is important as it affects the extent of cracking along the span of a 
member. The full-interaction moment to cause cracking Mcr-fi in Fig. 11 is based on the cross-
sectional area of concrete, that is it ignores the reinforcement as recommended in codes. 
There is reasonable correlation with the partial-interaction values of Mcr-p, but it should be 
noted that for analysis the cracking moment is taken as the lesser of the Mcr-p and Mcr-fi. 
However, as with the flexural rigidities discussed above, the major discrepancy is with the 
secondary cracks Mcr-s and particularly for low reinforcement modulus such as for the 40 GPa 
reinforcement where secondary cracking, and the consequential major reduction in stiffness, 
can occur at relatively low moments. As outlined above, and shown in Fig. 10(c), the random 
nature of cracking can further decrease Mcr-s from that shown in Fig. 11, leading to an earlier 
reduction in EIpi-cr and hence increase in member deflection.  
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Figure 11: Variation in Mcr with reinforcement ratio and EI 

 
MODELLING THE DEFLECTION OF BEAMS (EI eff) 
Having determined the section properties Mcr, Mcr-s and EIpi-cr above, it is now a 
straightforward procedure to quantify the deflection, as illustrated in Fig. 12 for a simply 
supported beam with the point load P in Fig. 12(a) which induces the moment distribution M 
in Fig. 12(b). The primary and secondary cracking moments Mcr-p and Mcr-s define the extent 
of cracking in Fig. 12(b) where Xuncr is the uncracked region, Xcr-p is the region where 
primary cracks occur and Xcr-s is the region where both primary and secondary cracks occur. 
Within these regions, the flexural rigidities are as shown in Fig. 12(c) where EIfi-uncr is the 
full-interaction uncracked flexural rigidity from transformed sections, EIpi-p is the partial-
interaction flexural rigidity in the region where only primary cracks occur and EIpi-s is the 
partial interaction flexural rigidity where both secondary and primary cracks exist. Dividing 
the flexural rigidities in Fig. 12(c) by the moment distribution M in Fig. 12(b) gives the 
variation in curvature in Fig. 12(d) which can be integrated to determine the deflection. It 
should be noted that the random nature of cracking has not been included in this analysis but 
as mentioned previously it could be included in a numerical simulation.    
 
 

0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018
5

10

15

20

25

30

35

40

45

reinforcement ratio

C
ra

ck
in

g 
m

om
en

t 
(k

N
m

)

 

 

M
cr-s

 (200 GPa)

M
cr-s

 (40 GPa)

M
cr-p

 (200 GPa)

M
cr-p

 (40 GPa)

M
cr-f i

 (200 GPa); M
cr-f i

 (40 GPa)



212 

 

 
 

Figure 12: Deflection of a simply supported member 
 
Using the moment area method, it is also possible to derive closed form solutions for 
determining the maximum deflection y at all load levels, that is uncracked yuncr, cracked with 
only primary cracks ypi-p and cracked with primary and secondary cracks ypi-s. As an 
example, this has been carried out for the simply supported load case in Fig. 12, yielding Eqs. 
27-29 where, Mcr is the lesser of the full interaction cracking moment Mfi-cr and the partial 
interaction primary cracking moment Mcr-p. 
 

«̧$�Y � {I�
�¹U£Kdeº+:B      (27) 

 ¸�Z�� � ��¬:B� tU£�de��U£Kdeº+:Bw^{�I�U£Kdeº+:B�¹U£Kdeº+:B{WU£�de�      (28) 

 
  ¸�Z�! � ��¬:B� U£�deftU£�de��U£Kdeº+:Bw^��U£Kdeº+:B¬:Bef� tU£�def�U£:Be�w^{�I�U£�de�U£Kdeº+:B�¹U£�defU£�de�U£Kdeº+:B{W   

  (29) 
 

 
Finally by equating Eq. 28 and Eq. 29 with the uncracked elastic load case of Eq. 27, it is 
possible to solve for a single effective flexural rigidity EIeff, over the entire span of the 
member which accounts for the cracked and uncracked regions. This yields Eq. 30 for 
primary cracking, and Eq. 31 for primary and secondary cracking.  
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 �ªM99�� � {�I�U£�de�U£Kdeº+:B��¬:B� tU£�de��U£Kdeº+:Bw^{�I�U£Kdeº+:B    (30) 

 
   �ªM99�! � U£�defU£�de�U£Kdeº+:B{WI�

��¬:B� U£�deftU£�de��U£Kdeº+:Bw^��U£Kdeº+:B¬:Bef� tU£�def�U£�de�w^{�I�U£�de�U£Kdeº+:B  
 (31) 

 
Also presented in Eqs. 32-34 are the deflections of a simply supported member subjected to 4 
point loading and in Eq. 35 and Eq. 36 the effective flexural rigidities, where a is the distance 
from the support to the location of the point load. 
 

«̧$�Y � { t� W�&IWw��U£Kdeº+:B       (32) 

 ¸�Z�� � 
 ¹¬:B� tU£Kdeº+:B�U£�de�w^{� t�U£Kdeº+:B W�&U£Kdeº+:BIWw��U£Kdeº+:BU£�de�{W     (33) 

 
  ¸�Z�! �


 ¹¬:BU£�deftU£Kdeº+:B�U£�de�w^¹U£Kdeº+:B¬:Beft¬:BefW U£�de��U£�defw^{�U£Kdeº+:BU£�de� t� W�IWw��U£�defU£�de�U£Kdeº+:B{W  

 (34) 
 
 �ªM99�� � {� U£Kdeº+:BU£�de�t� W�&IWw¹¬:B� tU£Kdeº+:B�U£�de�w^{� t�U£Kdeº+:B W�&U£Kdeº+:BIWw   (35) 

 
 �ªM99�! � {� U£Kdeº+:BU£�de�U£�deft� W�&IWw¹¬:BU£�deftU£Kdeº+:B�U£�de�w^¹U£Kdeº+:B¬:Beft¬:BefW U£�de��U£�defw^{�U£Kdeº+:BU£�de� �� W�IW�     (36)

  
  
DEFLECTION OF BEAMS 
Comparison with design rules for member deflection 
A simply supported beam of span 4 m with a central point load was used in the following 
analyses; the cross-section of the beam was the same as that used for the analyses in Fig. 7 
that is, with a width of 200 mm, depth of 300 mm and Ec = 25 MPa. To investigate the 
influence of reinforcement modulus, the reinforcement has been considered to have either Er 
= 40 GPa with ke = 92.7 N/mm, or Er = 200 GPa with ke = 13.7 N/mm, and to investigate 
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reinforcement ratio the section has been reinforced with either 2 or 3No. 16 mm bars giving a 
reinforcement ratio of 0.74% or 1.1% respectively.  
 
Firstly let us consider the cross section with 1.1% reinforcing and a reinforcement modulus 
of 200GPa. Fig. 13(a) shows the variation in effective flexural rigidity (EIeff) derived using 
Eqs. 30 and 31, as well as EIeff derived from the ACI approach [34] given by the following 
equations 
 

ªM99 � 7¬:B¬ ;& ª9Z�«$�Y � �1 
 7 ¬¬f;&  ª9Z��Y;   ªM99 � ª9Z�«$�Y    (37) 

 S, � 0.5 7UBUf � 1;        (38) 

in which Eq.38 is a reduction factor allowing for application to FRP bars. Furthermore, Fig. 
13(a) shows a comparison with Bischoff’s [2] approach, which is given by  
 ªM99 �  £:B@�t@�£Kde:B £»⁄ w�¬:B ¬⁄ �W       (39) 

 
It can be seen from Fig. 13(a) that for the 200 GPa bars there is a negligible difference in 
EIeff when using either of the full interaction (FI) approaches, that is, the ACI or Bischoff’s 
approach. This is in contrast to the partial interaction (PI) approach, which, immediately 
following primary cracking predicts approximately the same stiffness as the FI approaches 
but rapidly asymptotes to a stiffer EIeff prior to secondary cracking. Following secondary 
cracking, it can be seen that EIeff softens and approaches that of the fully cracked section 
predicted by the FI approaches. This behaviour is to be expected as both the PI and FI 
approaches predict the same cracking moment, and, as seen in Fig. 9, the PI approach 
predicts a higher cracked flexural rigidity for both primary and secondary cracking. Fig. 
13(b) also shows that the PI approach predicts almost identical deflection y for a given 
moment M as the FI approaches immediately following primary cracking; this is despite the 
fact that, as show in Fig. 9, EIcr-p is significantly higher. This is because the extent of 
cracking from the FI analysis is larger than that from the PI analyses which offsets the 
difference in stiffnesses. 
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Figure 13: M/EIeff and M/y for varying Er 

 
Now consider Fig. 13(c) which shows the effective flexural rigidity for the same cross 
section but this time reinforced with 40 GPa bars. Firstly considering the FI approaches, it 
can be seen that the ACI and Bischoff’s approaches predict significantly different effective 
flexural rigidities following primary cracking, which in turn, as shown in Fig. 13(d), leads to 
a substantial difference in the deflection. It can also be seen in Fig. 13(c) that EIeff predicted 
by Bischoff closely matches the PI approach. However since the cracked flexural rigidities 
are higher using the PI approach, as shown in Fig. 9, EIeff becomes comparably stiffer as the 
applied moment increases. Again this suggests that using an elastic deflection equation for a 
beam with a single point load at mid span leads to an over prediction of the proportion of the 
beam which is cracked.  
 
Now let us consider the influence of reinforcement ratio by reducing the ratio to 0.74%. Only 
the 40 GPa cross section will be considered here as it can be seen in Fig. 9 that for both the 
200 GPa and 40 GPa bars the variation in behaviour with reinforcing ratio is similar. Fig. 
14(a) shows that as was the case for 1.1% reinforcement in Fig. 13(c) Bishoff’s approach 
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closely matches the PI approach immediately following primary cracking. This would again 
suggest that Bischoff’s approach is better able to predict the deflection immediately 
following primary cracking. Considering Fig. 14(b) it can be seen that at approximately the 
moment at which  secondary cracking is predicted in the PI approach, the FI approaches 
begin to rapidly converge on each other until both predict the same deflection when the beam 
is considered to be fully cracked. A comparison of the responses in Figs. 13(c) and (d) and in 
Figs.14 (a) and (b) show very little difference in behaviour occurs with the change in 
reinforcement ratio. This is because both the flexural rigidity if the section, and the moments 
to cause cracking, as shown in Figs. 9 and 11, change very little with reinforcing ratio. 
 

 
 

Figure 14: M/EIeff and M/y for reduced reinforcement ratio 
 

Finally, by considering the same 4m long member reinforced with 3 40GPa bars, this time 
loaded in 4-point bending, where the point loads are applied at 1.33 m centres, it is possible 
to investigate the influence of the loading configuration. By comparing Fig. 13(c) and Fig. 
15(a), it can be seen that the FI approaches predict identical EIeff in both loading scenarios. 
This is because they do not allow for the influence of the shape of the moment distribution 
when proportioning the uncracked and cracked segments of the member. This is not the case 
in the PI approach; hence, member stiffness is significantly lower following primary cracking 
because a greater portion of the beam is considered to be cracked. In Fig. 15(b) it can be seen 
that this translates to a significant step change in deflection following both primary and 
secondary cracking; this behaviour cannot be predicted using the FI approaches. It should 
also be remembered that the PI equations developed are based on the minimum crack 
spacing, and, as shown in Fig. 10(c), if the crack spacing is increased a minor increase in 
cross sectional stiffness is observed but a significant reduction in the cracking moment takes 
place. This combination may lead to a significant increase in member deflection. 
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Figure 15: M/EIeff and M/y when subjected to 4-point bending 

 
Since the prediction of EIeff using the FI approaches is independent of the moment 
distribution, it can also be concluded that empirically adjusting the coefficient of the Mcr/M  

ratio in Eqs. 37 and 39 may not lead to a generic improvement in the prediction of member 
deflection. This is because the moment distribution, which controls the proportion of the 
beam which is uncracked or cracked is ignored, and the use of an elastic deflection equation 
assumes a continuous distribution of curvature that cannot allow for the step changes 
associated with cracking which are shown in Fig. 12(d). 
 
Comparison with experimental results 
The PI approach has been compared to a pair of tests carried out by [35] on FRP reinforced 
beams under 4 point bending where the loads are applied at 300mm from the centre point. 
These beams had a span of 1800mm, a depth of 190mm, and were reinforced with 2 16mm 
ribbed GFRP bars with an elastic modulus of 64,153MPa. Beam C-216-D1 had a concrete 
strength of 56.3MPa, a width of 140mm and cover to the reinforcing of 20mm while beam C-
216-D2 had a concrete strength of 61.7MPa a width of 160mm and cover to the reinforcing 
of 40mm. 
 
Fig. 16 compares EIeff predicted by the ACI, Bischoff’s and the PI approaches, as well as 
their predicted deflections with the experimental results. It should be noted that to allow for 
some randomness of cracking, the PI approach has been presented for crack spacings Scr and 
1.2Scr. In Fig.s 16(a) and 16(c), it can be seen that the PI approach for both Scr and 1.2Scr 
predict a far softer member response than the FI approaches immediately following primary 
cracking because a larger proportion of the beam is considered to be cracked. This in turn 
leads to the step change in deflection seen in Figs. 16(b) and 16(d). Similar behaviour is also 
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seen following secondary cracking. As the applied loads increase, however, the PI approach 
predicts a progressively stiffer response. It can also be noted from Figs. 16(b) that the 
increase in crack spacing from Scr to 1.2Scr significantly reduces the secondary cracking 
moment and hence between primary and secondary cracking the response for the PI approach 
with 1.2Scr is softer despite the stiffness of the section being higher. The PI approach tends 
to underestimate the deflection at high loads. However, this can be attributed to the effects of 
shrinkage which can be shown to considerably reduce the stiffness of the cracked section 
[29].  
 

 
 

Figure 16: Comparison with tests by Barris et al. [35] 
 
CONCLUSIONS 
A serviceability partial-interaction approach that allows for slip between the reinforcement 
and concrete has been developed to quantify the flexural rigidity of a cracked section with 
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primary and secondary cracks and the moment to cause subsequent cracking. It has been 
shown how this partial-interaction procedure can be used to predict the minimum crack 
spacing and consequently used to give closed form solution for the serviceability deflection, 
as well as how it can be used to study the random component of cracking. It has also been 
shown how this partial-interaction approach can be used to derive closed form solutions for 
the effective flexural rigidity for use in design and how this depends on the distribution of the 
applied load. Surprising outcomes from this partial-interaction approach are that the flexural 
rigidity and the load to cause subsequent cracking are not dependent on the bond-slip 
stiffness at serviceability which should considerably simply the development of deflection 
rules for FRP reinforced members. This should be particularly useful for prediction the 
deflection of FRP reinforced members where a wide range of FRP material properties exist.   
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APPENDIX A: PARTIAL-INTERACTION TENSION-STIFFENING ANALYSIS  

Governing equation 
The fundamental equations for tension stiffening can be derived by considering the equations 
of equilibrium of a bonded joint such as that shown in Fig. 17(a) [28]. The equations 
governing this problem involve four fields: the axial stresses in the reinforcement (σr) and 
concrete (σc); the axial strains in the reinforcement (εr) and concrete (εc); the interface shear 
across the bonded length (τ) and the interface slip (δ) which is the difference between the 
axial displacement of the bar (ur) and the concrete (uc). 
 
Examining Fig. A.1(b) and Fig. A.1(c) [28], the equilibrium equations for a prism under pure 
tension can be written as: ,4B,| � *I�TB        (A.1) 

and ,4:,| � 
 *I�T:        (A.2) 

  
and from Fig. A.1 (a) by equilibrium, the load acting at any section is: 
 �Y � ��¡� � �Y¡Y      (A.3) 
 
where, Ar and Ac are the cross sectional areas of the reinforcing bar and prism respectively 
and Lp is the circumference of the reinforcement.  
 

 
 

Figure A.1: Free body diagrams of partial interaction prism 
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The axial force Pr induces a relative slip between the bar and the surrounding concrete, that 
is, 
 F � ½Y 
 ½�       (A.4) 

 
Differentiating the slip δ gives the following slip strain  
 ,C,| � ,«B,| 
 ,«:,|       (A.5) 

 

As ,«B,|  is simply the reinforcing strain and 
,«:,|  is the concrete strain, and since the elastic 

moduli of the bar (Er) and concrete (Ec) are known, the stress in the bar and in the concrete 
are as follows 
 �Y � �Y�Y � �Y ,«B,|         (A.6) 

 �� � ���� � �� ,«:,|        (A.7) 

 
 
Substituting Eqs. A.6 an A.7 into Eq. A.5 gives: 
 

 
,C,| � 4BUB 
 4:U:       (A.8) 

and differentiating yields 
 ,WC,|W � @UB 7,4B,| ; 
 @U: 7,4:,| ;      (A.9) 

 
Substituting Eqs. A.1 and A.2 into Eq. A.9 gives the governing equation 
 ,WC,|W 
 S�5 � 0      (A.10) 

where  
 S� � I�TB 7 @UB � TBU:T:;     (A.11) 

 
The governing equation (Eq. A.10) can then be solved using a known bond slip (τ-δ) 
relationship and knowing the boundary condition to the specific tension stiffening problem.  
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Crack spacing 
Fig. A.2 [28] shows the boundary conditions for the formation of primary cracks. In the 
uncracked member, an initial crack is assumed to form at some location at x = 0; at the initial 
crack, the strain in the concrete equals zero and, therefore, the slip strain is simply the strain 
in the bar where the force is Pr, that is, 
 

 
,C,| �  {BTBUB and F �  Δ¿ at x = 0     (A.12) 

 
The minimum crack spacing Sp is then defined as the point of full interaction some distance 
from the crack face where both the slip strain and the slip tend towards zero, that is, 
   ,C,| �  0 and F �  0 at x = Sp      (A.13) 

 
This point Sp represents the minimum crack spacing as it is the point at which the concrete 
stress is at its maximum, hence the crack can form anywhere in the full interaction region 
shown in Fig. A.2(a). The crack spacing is, however, taken to be equal to Sp, that is, the 
minimum value is taken, as beams are normally subjected to a moment gradient.  
 

 
 

Figure A.2: Tension stiffening for concrete prism 
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Once a primary crack has formed at Sp from the initial crack in Fig. A.2, the problem now 
becomes that shown in Fig. A.2(b) which is that of a symmetrically loaded prism of length 
Sp. Since the prism is symmetrically loaded, the boundary condition at the midpoint of the 
prism, that is at the secondary crack spacing Ss becomes  
 ,C,| À  0 and F �  0 at x = Sp/2 = Ss    (A.14) 

 
Finally if the bond is sufficiently strong such that secondary cracks can form at the midpoint 
of the prism of length Ss, that is at St in Fig. A.2(c), the boundary condition becomes 
 ,C,| À  0 and F �  0 at x = Sp/4 = St    (A.15) 

 
Having now derived the boundary conditions for the formation of primary cracks, as well as 
tension stiffening for both primary and secondary cracks, it is possible to solve Eq. A.10 to 
determine the crack spacing and load-slip behaviour for the specific case of a linear 
ascending bond-slip.  
 
Solutions for linear ascending bond slip characteristic 
The bond slip for a linear ascending characteristic [17,20,24] can be written as 
 5 �  RMF       (A.16) 
 
where ke is the stiffness of the bond slip (τ/δ) characteristic.  
 
Substituting Eq. A.16 into Eq. A.10 yields  
 ,WC,|W 
 S�RMF � 0      (A.17) 

 
which can be solved to give the following variation 
 F�z� � o cosh�P@z� � " sinh�P@z�     (A.18) 
 
where  
 P@ � QRMS�       (A.19) 

 
Differentiating Eq. A.18 yields  
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,C,| � P@o sinh�P@z� �P@" cosh�P@z�    (A.20) 

 
and substituting Eq. A.18 into Eq. A.16 gives 
 

 5�z� � RMÆo cosh�P@z� � " sinh�P@z�Ç    (A.21) 
 

The constants a and b in Eqs. A.19 and A.21 can now be solved through the substitution of 
the boundary conditions as follows.  
 
Crack spacing 
Substituting the boundary conditions at the initial crack face, which are shown in Fig. A.2(a) 
and are given by Eq. A.12, into Eq. A.20 gives  
 " �  {BTBUBNO       (A.22) 

 
which along with the full interaction boundary conditions given in Eq. A.13 can be 
substituted in Eq. A.18 and Eq. A.20 yielding 
 o coshtP@È�w � {BTBUBNO  sinhtP@È�w � 0     (A.23) 

 P@o sinhtP@È�w � {BTBUB  coshtP@È�w � 0     (A.24) 

 
Since the hyperbolic equations have no analytical solution, it has been assumed the solution 
is achieved at 97% of the numerical solution and this gives a primary crack spacing of 
 È� � �NO     (A.25) 

 
Load to cause primary cracking 
Substituting Eq. A.25 back into Eq. A.22 yields  
 o �  
 {BTBUBNO�[\1] ��      (A.26) 

 
The relationship between the force in the bar Pr at the initial crack located at x = 0 and the 
force in the bar Pr1 and Pc at the initiation of the primary crack at x = Sp in Fig. A.2(a) can be 
written as  
 �Y 
 } 5L�#z � �Y@|Éa�|É>      (A.27) 
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where, 
 �Y � �Y@ � ��      (A.28) 
 
in which the integral in Eq. A.27 is the bond force and can be given by Eq. A.29 by solving 
Eq. A.27 and Eq. A.28 and in which the tensile cracking stress of the concrete is fct 
 

  } 5L�#z � ��G¡�|Éa�,af|É>      (A.29) 

 
Since the full interaction condition is achieved at Sp it is also known that the strain in the 
reinforcement and the strain in the concrete are the same, and therefore, 
 �Y@ � 4:T: ¡Y�Y      (A.30) 

 
Knowing the crack will form once the stress in the concrete equals the tensile cracking stress 
and substituting Eq. A.29 and Eq. A.30 into Eq. A.27 allows for the determination of the load 
to cause a principle crack Pr_cr. 

 �Y_�Y � 9:DU: ¡Y�Y � ��G¡�    (A.31) 

 
For a linear ascending bond, the relationship between the bond force and the concrete force is 
given by Eq. A.28, and so substituting Eq. A.21 into Eq. A.29 gives the load to cause primary 
cracking based on partial interaction. 
 �Y_�Y � TBUBNOWCO9:DT:*%i¶I�       (A.32) 

 
For the prism of length Sp shown in Fig. A.2(b), a secondary crack will form at Ss = Sp/2 = 
1/λ1 when the stress in the concrete reaches the tensile cracking stress and the same 
procedure is followed to determine the load to cause secondary cracking. Substituting Eq. 
A.22 and Eq. A.14 into Eq. A.18 gives the constraint a which in this case refers to a prism of 
length Sp. 

 o � 
 {BTBUBNO tanh�1�      (A. 33) 

 
Substituting Eq. A.32 and Eq. A.22 into Eq. A.21 and again into Eq. A.29 for the changed 
boundary conditions gives the load to cause a secondary crack as  
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�Y_�Y � TBUBNOWCO9:DT:>.&V�*%i¶I�      (A.34) 

 
 

Load slip behaviour 
For a prism of length Sp, which corresponds to primary cracking, the slip ∆r for a given load 
can be determined by substituting the constraints a and b given by Eq. A.33 and Eq. A.22 
into Eq. A.18 where x = 0 to give  
 ΔY � {B [\1]�@�TBUBNO        (A.35) 

 
Now considering the prism of length Ss in Fig. A2(c), by symmetry a tertiary crack will occur 
at St = Sp/4 = 1/2λ1. Substituting Eq.A.22 and the boundary conditions for tertiary cracking as 
in Eq. A.15 into Eq. A.18 gives the unknown a in Eq. A.36. 
 o � 
 {BTBUBNO tanh�0.5�    (A.36) 

 
The slip for a given load for a prism of length Ss can then be given by Eq. A.37 which is 
obtained by substituting Eq. A.22 and Eq. A.36 into Eq. A.18 at x = 0. 
 ΔY � {B [\1]�>.V�TBUBNO       (A.37) 
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The fundamental mechanisms that govern the  flexural ductility of RC 
members 

D. J. Oehlers, P. Visintin, M. Haskett and W. M. Sebastian 
 
 
ABSTRACT 
Flexural ductility in reinforced concrete members may be defined as concentrations of 
rotation at discrete positions. As such, it affects all aspects of reinforced concrete behaviour 
at all limit states including: serviceability deflections, sectional and member strengths, 
moment redistribution and collapse. The ductility design rules developed for steel reinforced 
concrete members that use a full-interaction (FI), that is no slip between the reinforcement 
and the adjacent concrete, moment curvature (M/χ) approach are empirically based as at least 
one major component of each model, not including the material properties, such as the hinge 
length or effective flexural rigidity (EIemp) has to be determined through tests. Being 
empirically based, these ductility models for steel RC members can only be used within the 
bounds of the tests from which they were developed, and as such, are of little use beyond 
these bounds, such as for FRP RC members. As an example, it will be shown that steel RC 
members rely on the ductility of the steel material to achieve member ductility. In contrast 
even though FRP as a material is brittle, FRP RC members can be designed to be ductile 
through weak bond. To understand this problem, in order to find a solution, the fundamental 
principles that govern the flexural ductility of reinforced concrete members with any type of 
reinforcement are first described. To overcome the empiricism of the current FI M/χ 
approach, a mechanics based partial-interaction (PI), that is there can be slip between the 
reinforcement and the concrete, moment-rotation (M/θ) model has been developed using the 
well established theories of partial-interaction and shear-friction. It will be shown that this 
purely mechanics based PI M/θ model can quantify the deflection of members at all limit 
states that is at serviceability, ultimate and at collapse, as well as quantify moment 
redistribution and energy absorption. Furthermore, it will be shown that the results from the 
PI M/θ approach can be used to derive equivalent flexural rigidities (EIequ) to replace the 
empirical flexural rigidities EIemp required for the FI M/χ approach; such that the PI M/θ 
approach can be considered as an extension or refinement of the FI M/χ approach by 
eliminating empirical components such as the hinge lengths or effective flexural rigidities. 
Being mechanics based, this model can cope with any type of reinforcement such as any type 
of FRP, any bond-slip characteristic and even with fibre reinforced concrete.  
 
Keywords: reinforced concrete; ductility; tension-stiffening; concrete softening; and partial-
interaction. 
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INTRODUCTION  
What is ductility? There is the classic concept which consists of linear elastic behaviour, O-A 
in Fig. 1, followed by unlimited perfect plasticity A-B. This can be applied to: the material 
within a member where the stress is maintained over A-B, that is the material ductility; to a 
section of a member where the curvature is maintained over A-B, that is the sectional 
ductility; and to a member where the rotation is maintained, that is the member ductility. 
Unfortunately, reinforced concrete members do not exhibit any of these classic properties as 
illustrated in Fig. 1. Cracking, creep and shrinkage generally occurs at an early stage so that 
rarely is there linear elasticity. Furthermore, there is no reason why there should be a plastic 
plateau, and even if one could be approximated, it is at best of limited length due to concrete 
softening or reinforcement failure; and of such a limited length that it can affect the overall 
behaviour of the member. 
 

 
Fig.1 Ductility concepts 

 
Member ductility is associated with concentrations of rotation often referred to as hinges or 
plastic hinges [1,2] which allow moment redistribution and energy absorption within 
members and frames. However, it may be worth noting that concentrations of rotation occur 
at all limit states after cracking has occurred, not just at the ultimate limit, causing a step 
change in member slope i.e. rotation between crack faces [3] across the crack. So when does 
ductility occur, or, what is ductility? A further problem is that material ductility does not 
necessarily provide sectional ductility, which does not necessarily provide member ductility. 
For example, there is no guarantee that using a ductile material will ensure member ductility 
and there is absolutely no reason to assume that a brittle material will automatically lead to a 
brittle structure. So what causes ductility?  
 
To illustrate what actually occurs in practice, let us look at the behaviour of two span 
continuous beams reinforced internally with steel reinforcing bars but strengthened externally 
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over the hogging region with externally bonded (EB) fibre reinforced polymer (FRP) plates 
as in Fig. 2  [4,5]. FRP is a brittle material and EB plates are known to have a weak bond [6]. 
As such, guidelines tend to suggest that these FRP plated members should be treated as 
brittle so that no moment redistribution should be allowed. To evaluate the brittleness of the 
plated member, moment redistribution is a good gauge of ductility as it requires 
concentrations of rotation to occur. The variation of the percentage moment redistribution 
with the applied load, Mstatic, as a proportion of the theoretical ultimate load, (Mstatic)u, is 
shown in Fig. 3 for 7 beam tests; it is clear that large amounts of moment redistribution are 
occurring at ultimate. FRP is a brittle material, so if member ductility is directly related to 
material ductility, then there should, in theory, be no redistribution in Fig. 3. Therefore, what 
mechanism is providing this ductility? It can also be seen that moment redistribution does not 
only occur at the ultimate limit, but rather starts from the onset of cracking so that ductility 
occurs at all load levels. Once again, what mechanism is causing this ductility prior to the 
formation of “hinges” at ultimate.  
 

 
Fig. 2 Two span continuous beam strengthened with FRP plates 

 

 
Fig. 3 Moment redistribution in beam with EB FRP plates 

 
The results from two span continuous beams similar to those in Fig. 2, but this time 
strengthened with near surface mounted brittle FRP plates which have stronger and more 
ductile bond properties than FRP EB plates [6]  are shown in Fig. 4 [5,7]. The results are 
similar to those in Fig. 3, which were strengthened with EB FRP plates, but are also in some 
ways better, showing in Fig. 4 large amounts of moment redistribution being maintained over 
wide ranges of load.  
 

Plate

M /(M )static static u 1

50%
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Fig. 4 Moment redistribution in beam with NSM FRP plates 

 
What is providing the increasing ductility in Figs. 3 and 4? Fig. 5 shows the hogging region 
of the beam in Fig. 2 which has been strengthened with a longitudinal pair of NSM FRP 
plates the positions of which have been marked on the top surface [5]. Flexural/shear cracks 
which are as wide as the beam can be seen to be intercepting the FRP reinforcement. It can 
also be seen on the top surface between these flexural cracks a herringbone formation of 
much smaller cracks on either side of the NSM reinforcement. This herringbone formation of 
cracks is associated with debonding [6] and it will be shown that it is this debonding 
mechanism that allows these FRP reinforced beams to redistribute moment that is to act in a 
ductile fashion. 

 
 

Fig. 5 Debonding of NSM plates 
 
It is not just flexural cracking as in Fig. 5 that induces concentrations of rotation and 
consequently ductility but another major contributor to ductility is the formation of 
compression wedges as in Fig. 6 [8] which allows the concrete compression zone to 
accommodate within a member, for example, the large rotations between crack faces. It will 
be shown that it is this shear-friction mechanism associated with wedge formation [9] which 
also controls or limits the ductility, that is the ability to rotate.  
 

50%

M /(M )static static u 1
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Fig. 6 Formation of wedges leading to concrete softening 
 
It is suggested that member ductility is a mechanism and it can only be quantified through the 
study of the member ductility mechanism which is the subject of this paper. Hence material 
ductility by itself and sectional ductility by itself can never be used to quantify member 
ductility by themselves and as such these approaches will always have to resort to empirical 
components for the model. However once the member ductility mechanism has been 
quantified, it will be shown that it can be converted to convenient equivalent sectional 
properties or equivalent material properties for use in ductility analysis or design.      
 
The fundamental mechanisms that control the behaviour of reinforced concrete members 
subjected to flexure and/or axial loads is first described. This section helps illustrate the 
importance of the partial-interaction (PI) bond-slip characteristics between the reinforcement 
and the concrete, that is the slip between the reinforcement and its adjacent concrete, which 
is often neglected. Although the same mechanisms can be extended to quantify the shear 
behaviour [10], it is felt that this is outside the scope of this paper. Methods for quantifying 
the ductility mechanism due to flexural cracking by considering the PI behaviour of a 
localised segment of the member are then explained. This section helps distinguish between 
the different debonding mechanisms that occur: that in which debonding is localised and 
does not reduce or limit the force in the reinforcement and which will be referred to as a 
‘strong’ bond mechanism although ‘strong’ refers to the debonding mechanism and not the 
bond strength; and those in which debonding reduces or limits the force in the reinforcement 
and which will be referred to as a ‘weak’ bond mechanism in which ‘weak’ refers to the 
debonding mechanism and not the bond material strength. The ductility due to the concrete 
softening associated with the formation of wedges is then explained using shear-friction 
theory in the segmental approach. This helps illustrate how concrete softening is a 
mechanism that can be simulated using shear-friction theory. Finally the effect of the 
localised rotations which have been quantified through the segmental approach are applied to 
the analysis of members. This helps illustrate what is known in practice that ductility occurs 
as soon as flexural cracking or concrete softening occurs, and it also illustrates how these 
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ductility mechanisms can be applied to all RC members that is in theory to any type of 
concrete, to any type of reinforcement, with any bond-slip characteristics, and at any load 
stage from serviceability through to collapse.  
 
FUNDAMENTAL MECHANISMS WITHIN RC MEMBERS 
There would appear to be three fundamental mechanisms that contribute to the ductility of a 
member: (1) the interaction between flexural cracks through the reinforcement connecting 
the cracked regions; (2) concrete softening through the formation of wedges; and (3) 
confinement of the wedges through, for example, stirrups or FRP wrap.  
 
(1) Flexural cracking in a beam 
Let us consider the development of flexural cracks in an RC beam, although, the same 
principles apply to columns as well. To simulate the behaviour, we need a numerical model 
that simulates the bond-slip between the reinforcement and its adjacent concrete, that is 
partial-interaction, as this allows: cracks to widen; the gradual formation and development of 
cracks at discrete positions; and importantly the interaction between cracks [11-13]. This 
simulation requires a bond-slip property such as the idealised bond-slip property is shown in 
Fig. 7 where ke is the elastic bond stiffness, τb.max is the maximum bond shear stress and sf is 
the bond slip beyond which the shear stress is zero and it is, importantly, the slip at which 
debonding can be considered to commence. 
 

 
Fig. 7 Idealised bond-slip properties 

 
A typical result of a numerical partial-interaction simulation of a loaded beam is illustrated in 
Fig. 8 [12]. The beam is initially uncracked on first loading. The central initial crack first 
forms where the moment is greatest and the load at which this occurs can be determined from 
elementary FI M/χ analyses such as used in transformed sections. The initial crack causes 
slip, that is partial-interaction, between the reinforcement and the concrete which controls the 
formation of the adjacent cracks referred to as the primary cracks. The region within which 
slip occurs has been labelled the partial-interaction region such that the slip s and slip-strain 
ds/dx are not zero. Beyond this region is the full-interaction region where both the slip and 
slip-strain are zero as shown. Between cracks, the slip reverses in direction as in A-B-C. If 
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the cracked region was in a constant moment region, then the slip distribution A-B would be 
equal and opposite to B-C as the force in the reinforcement at each crack is the same; this 
also occurs in tension-stiffening tests as in Fig. 9 [14,15]. From the primary crack to the full-
interaction region in Fig. 8, slip is only in one direction D-E which is similar to that obtained 
in pull-tests [16,17].      
 

 
 

Fig. 8 Idealised behaviour of an RC beam 
 

 
Fig. 9 Tension stiffening tests 

 
Let us look at what happens after the formation of the initial crack in Fig. 8 [5,12]. The bond 
slip properties in Fig. 7 were used in which the maximum shear stress τb.max is 6 MPa and the 
slip at debonding sf is 0.2 mm. The following results in Figs. 10 to 12 [12] are only for the 
region of the beam to the right of the initial crack in Fig. 8 as what happens to the left is a 
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mirror image. Furthermore, they are shown for increasing half crack widths scr that is at 
0.05mm which is prior to debonding, 0.2mm which is at the onset of debonding and at 
0.5mm in which debonding has occurred over O-C in Fig. 11. As the crack widens, the slip 
distribution gradually increases as in Fig. 10 causing the gradual build up of bond stress in 
Fig. 11 until the bond stress is fully developed at O-A-B at a half crack width of 0.2 mm; the 
force in the reinforcement to cause this full build up of the bond-stress is often referred to as 
the intermediate-crack (IC) debonding resistance PIC and the strain in the reinforcement at the 
crack face at which this occurs is εIC in Fig. 12 [16,18,19]. Any further increase in the half 
crack width such as at 0.5 mm in Fig. 11 causes the bond stress distribution to move along 
the reinforcement from the fully developed O-A-B to C-D-E that is debonding occurs over 
O-C in Fig. 11 which is also shown in Fig. 12 as Ldbd where the strain in the reinforcement 
εIC remains constant. However, the shape of the bond stress distribution C-D-E remains 
unchanged whilst debonding, that is it is the same as when the bond is first fully developed as 
in O-A-B. 
 

 
 

Fig. 10 Slip in beam with a single crack 
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Fig. 11 Bond stress in beam with a single crack 

 

 
Fig. 12 Reinforcement strain in beam with single crack 

 
Importantly, the half crack width, such as scr = 0.5 mm in Fig. 12, consists of two 
components. The half crack width at which the IC debonding resistance is first fully 
developed that is sf, which in this case is 0.20 mm, and which occurs at a strain of εIC which 
is approximately 0.0027 in Fig. 12. Plus the extension of the plate over the debonded region 
Ldbd, that is, εIC Ldbd, which in this case is approximately 0.3 mm. It can be seen that the crack 
widening due to debonding along Ldbd of 0.3 mm is the same order of magnitude as the half 
crack width of 0.20 mm required to induce the IC debonding resistance. This crack widening 
directly contributes to the rotation between crack faces and consequently the ductility. It is 
this combination of slips which can provide ductility in members which contain both brittle 
materials (e.g. FRP) and brittle bond characteristics (e.g externally bonded plates), 
suggesting that ductility can be greatly enhanced by debonding.  
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When multiple cracks form, the slip distribution in a segment between cracks starts off as in 
the reverse slip distribution A-B-C in Fig. 8. If the segment is in a constant moment region, 
then the slip distribution remains symmetrical as in Fig. 9 and debonding can occur within a 
segment when the slip exceeds the slip capacity of the reinforcement sf in Fig. 9. However, 
each segment of length Lp between cracks acts individually, preventing debonding between 
segments even if the bond is weak. When multiple cracks form in a constant moment region, 
the force in the reinforcement at each crack location must be identical so that the slip 
distribution, and consequently the bond stresses, must be equal and opposite about B at Lp/2. 
This behaviour can also be assumed to apply in members with low moment gradients and to 
members with very strong bond where debonding between segments does not occur prior to 
the reinforcement yielding or the concrete crushing. In these circumstances, debonding can 
only occur within a segment as illustrated in Fig. 9 and the force in the reinforcement is not 
limited by the bond characteristics. As the force in the reinforcement is not limited by the 
bond, this behaviour will referred to as the strong bond mechanism and as has been explained 
it can occur not only with strong bond but also with weak bond should the variation in the 
stress resultants be favourable.   
 
If the bond is weak and there is also a steep moment gradient, then the slip can vary as in Fig. 
13 [12], where crack 1 is the initial crack and cracks 2 and 3 are primary cracks; these cracks 
divide the beam into segments as shown. The slip distribution A has a slip at the initial crack 
face of 0.19 mm, as can be seen at the intercept with the ordinate, and reverses in direction in 
Segments 1 and 2. Part of slip distribution B exceeds sf but it still reverses in direction. At 
slip distribution C, the slip in Segment 1 is now in one direction and the step change shown is 
the total crack width of crack 2 which is about 0.67 mm. At slip distribution D, the slip on 
either side of crack 2 is the same so that crack 2 has now closed. It can be seen that 
debonding allows cracks to close.   
 
The slip distributions in Fig. 13, induce the reinforcement strains in Fig. 14. As the 
reinforcement load is increased, the slips A, B and C in Fig. 13 induce the corresponding 
strain distributions in Fig. 14. The strains can exceed the IC debonding strain εIC as can be 
seen in distributions B and C but once the crack closes as in D in Fig. 13, then the strains are 
limited by εIC as in D in Fig. 14. Distributions A, B and C represent the strong bond 
mechanism whilst distribution D represents the weak bond mechanism. The more cracks 
there are, the closer the mechanism resembles that of a tension stiffening test in Fig. 9, where 
in theory, there is an unlimited strain capacity in the reinforcement due to the symmetry of 
the slip. However, as the cracks close, the mechanism moves from that of multiple cracking 
in Figs. 9 and 14 to that of a single crack in Fig. 12 where the IC debonding resistance and 
behaviour controls. Hence, the IC debonding behaviour for an individual crack is equal to, or 
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a lower bound to that which occurs in beams, and will provide a useful conservative design 
(Liu et al 2007a).  
 

 
Fig. 13 Slip in a beam with multiple cracks 

 
 

  
Fig. 14 Reinforcement strain in a beam with multiple cracks 

 
(2) Concrete softening mechanism 
The mechanisms responsible for providing ductility in the tension region have been 
explained previously. In order for a beam to be ductile, the compression region must also 
display ductility. Concrete resists excessive compressive strains beyond its material 
deformation capacity by forming wedges as in Fig. 6. In deep beams, these wedges tend to 
slide off soon after forming and this can severely reduce the member ductility at the ultimate 
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limit. In contrast, shallow beams can remain stable through large rotations even after a wedge 
has formed and allow the member to behave in a ductile fashion. It is known that internal 
steel stirrups such as that illustrated in Fig. 6, even when not required for shear, can further 
increase the flexural ductility by inhibiting the wedges from sliding off. The same effect can 
occur when the RC member is wrapped in either steel or FRP and this is often referred to as 
confinement. This concrete ductility and the effect of confinement on this ductility can be 
explained through a shear-friction mechanism [20-22]. 
 
Let us consider the behaviour of a cylinder or prism of height Lpr that is being subjected to an 
axial stress σaxl and maybe a lateral stress σlat as in Fig. 15 [20]. It is common practice 
experimentally to measure the total axial contraction along A-A in Fig. 15(b) in order to plot 
the behaviour as a stress-strain relationship as in Fig. 16, in which there is an ascending 
branch, which may be considered as a material property, and a descending or softening 
branch, which is often considered to be size dependent and represents the formation of 
wedges.  
 

 
Fig. 15 Shear-friction mechanism 

 

 
Fig. 16 Idealised concrete stress-strain relationship 
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The angle of a possible wedge, α in Fig. 15(a) depends on the Mohr Coulomb frictional 
properties as does the residual strength in Fig. 16 [9]. In the shear-friction mechanism, line 
A-A in Fig. 15(b) can keep contracting until the peak stress fc at the strain εfc in Fig. 16 is 
achieved. The material itself cannot accommodate a strain greater than εfc, that is, the 
material cannot accommodate a contraction greater than εfcLpr.  Hence if a greater contraction 
is required, then this is accommodated by sliding of the wedges ∆sm as in Fig. 15(c) with a 
corresponding opening of the sliding planes due to aggregate interlock hcr as in Fig. 15(d). 
The same can be said for the lateral dilation along L-L in Fig. 15(b) which is governed by the 
material Poisson effect ν and sliding ∆sm and crack widening hcr. The axial and lateral 
stresses σaxl and σlat in Fig. 15(a) induce, through equilibrium, stresses normal to the sliding 
plane σN and shear stresses along the sliding plane τN which act in conjunction with ∆sm and 
hcr. These four parameters (σN, τN, ∆sm and hcr) are the shear friction properties as illustrated 
in Fig. 17 which when derived from prism tests as in Fig. 15 are for the case of initially 
uncracked concrete. They do not represent failure but are combinations of the shear-friction 
parameters that exist together much the same way as the stress-strain relationship in Fig. 16 
are combinations that exist. It can be seen that softening in Fig. 16 is no longer considered to 
be purely a material property but rather a shear-friction mechanism, where excessive 
deformations are accommodated through the formation of wedges.  
      

 
Fig. 17 Idealised shear friction properties 

 
 
(3) Confinement of wedges 
Let us now consider the situation when a reinforcing bar crosses a sliding plane such as 
would occur if a the stirrup crosses the sliding plane formed by the wedge as illustrated in 
Fig. 6. The behaviour, illustrated in Fig. 18, is governed by both shear-friction theory and by 
partial-interaction theory [10,23]. For example, let us impose a crack width hcr on the 
mechanism in Fig. 18. The reinforcing bar slips hcr/2 at each crack face. Knowing the bond-
slip properties (τ/δ) and the material properties of the bar, the force in the bar P can be 
derived for that crack face slip hcr/2 [17,24]. This induces an equal and opposite compressive 
force P across the sliding plane and consequently the normal confining stress σN is known. 
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Hence (σN)1 and (hcr)1 are known in Fig. 17 so there is only one vale of (∆sm)1 and one value 
of (τN)1 that corresponds as illustrated in Fig. 17. Hence a combination of shear-friction 
theory and partial-interaction theory can be used to simulate the effect of confinement due to 
stirrups or FRP wrap on the concrete in compression, where the presence of stirrups or FRP 
wrap increases the normal force across the sliding plane, delaying concrete failure in the 
form of unstable sliding [23]. 
 

 
Fig. 18 Interaction between shear-friction and partial-interaction 

 
SEGMENTAL ANALYSIS 
The fundamental mechanisms within RC members described above, can be incorporated in a 
segmental analysis procedure [22, 25] to quantify the variation in flexural rigidity (EI) of a 
section for use in design. In order to do this, let us consider the behaviour of a short segment 
of a member of length 2Ldef as illustrated in Fig. 19, which is subjected to an applied constant 
moment M and axial load P. As this segment is symmetrically loaded, the deformations at 
both the ends from A-A to C-C, which cause a rotation θ, are equal and opposite. Hence 
through symmetry, the mid-section of the segment B-B can be considered to remain 
stationary and the deformation to the right is identical to that on the left. 
 
 

P P

hcr

∆sm

( / )τ δ

τN

σN(P)



246 

 

 
Fig. 19 Segment of a member 

 
Segmental analysis of an uncracked element 
First consider a segment which is uncracked as in Fig. 20 which corresponds to the right 
hand side of the segment in Fig. 19. Let us impose a rotation θ as shown in Fig. 20(a) in 
order to determine the moment M corresponding to this rotation for a known axial load P. 
The deformation from A-A to C-C induces the strain profile in Fig. 20(b) which can be used 
with the material properties to derive the stress distribution in Fig. 20(c), and consequently 
the force distribution in Fig. 20(d). It is a question of moving the deformation C-C in Fig. 
20(a) up and down until the forces in Fig. 20(d) are in longitudinal equilibrium with P, after 
which the moment can be derived from Fig. 20(d) for the imposed rotation θ. This rotation 
can be divided by Ldef to get the curvature χ and the moment divided by this curvature to get 
the flexural rigidity EI corresponding to the applied moment M and axial force P. The 
rotation can be increased to derive the Mθ A-B of the uncracked section in Fig. 21(a), the 
M/ relationship A-B in Fig. 21(b) prior to cracking and subsequently EI of the uncracked 
section as in Fig. 21(c). Importantly this segmental moment-rotation (M/θ) analysis prior to 
cracking or softening gives exactly the same results as the full-interaction (FI) moment-
curvature (M/χ) analysis [26] that is commonly used by structural engineers, simply because 
the M/θ analysis is being used in its FI form. 
 

 
Fig. 20 Segmental analysis without cracking or softening 
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Fig. 21 Variations in member properties 
 
It is very easy to include the effect of concrete shrinkage in this segmental analysis [27]. For 
example, a concrete shrinkage strain of εsh would cause the unrestrained concrete to contract 
by εshLdef to D-D in Fig. 20(a). Hence the concrete deformation along C-C should now be 
measured relative to D-D and not A-A, whilst that for the reinforcement should still be 
measured relative to A-A; in other respects, the analysis is the same and will yield a flexural 
rigidity that automatically allows for concrete shrinkage [27].  
 
Single crack segmental analysis – weak bond mechanism 
Let us now keep rotating the segment in Fig. 20(a) until the concrete tensile strain in Fig. 
20(b) causes cracking. We will assume that a single crack develops at the centre as shown in 
Fig. 22(a). The analysis above the crack tip in Fig. 22 is exactly as that in Fig. 20, in that the 
forces above the crack tip depend on the material properties, that is, their stress-strain 
relationships. Below the crack tip, the force in the reinforcing bar Frb depends on the 
interaction between the reinforcing bar, the crack width and the surrounding concrete. This 
behaviour is referred to as tension-stiffening and depends on the bond-slip (τ/δ) 
characteristics of the reinforcement.  
 

 
Fig. 22 Segmental analysis with a single crack 
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Tension-stiffening is often studied [15, 18, 28-39] by considering the partial-interaction 
behaviour of a reinforcing bar embedded in a concrete prism as indicated in Fig. 22(a). 
 
The prism in Fig. 22(a) is shown in Fig. 23 where c is the cover provided to the 
reinforcement, b the section width and the bond-slip is τ/δ. The force in the reinforcement Frb 
causes the reinforcement to slip relative to the crack face by scr. This interface slip diminishes 
along the length of the reinforcement, until at some point shown at the distance LFI from the 
face, the slip tends to zero after which there is full-interaction. Over this region LFI, the axial 
stress in the concrete builds up to its maximum value as in C in Fig. 23(d). As Frb, and 
consequently scr is increased, the bond stresses increase and reach their maximum 
distribution shown as C in Fig. 23(c). The load in the reinforcement corresponding to this slip 
and stress distribution is the IC debonding resistance FIC, and this force occurs at a specific 
crack face slip sIC, (sf in Fig. 7) and reinforcement strain εIC Any imposed crack face slip 
greater than sIC, shown as ∆s in Fig. 23(b), can only be accommodated by debonding along 
the length Ldbd, such that the increase in slip beyond sIC, that is ∆s, is equal to εICLdbd and is 
accommodated over the partial-interaction region  Lpi. It can be seen that debonding is a form 
of plasticity as the force PIC is maintained with increasing reinforcement slip allowing 
increasing beam rotation.     
 

 
 

Fig. 23 Tension-stiffening behaviour with single crack. 
 
The relationship between the reinforcement force Frb and the slip at the crack face scr in Fig. 
23 can be derived from numerical procedures which can cope with any bond-slip 
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hardening. Closed form solutions for specific shapes of bond-slip characteristics [37] and 
allowing for yield [33, 29] have also been developed. These partial-interaction approaches 
can then be used to derive Frb in Fig. 22 where the segmental length Ldef in Fig 22 must be 
greater than the length LFI in Fig. 23 from the tension stiffening analysis. To accommodate 
debonding in the segmental analysis procedure, the length Ldef in Fig. 22 must exceed Lpi. 
Using this analysis procedure, the variation in flexural rigidity for increasing moments post 
cracking can be determined, shown as B-C in Fig. 21. Hence, the segmental approach 
automatically allows for the variation in flexural rigidity due to tension-stiffening. It may 
also be worth noting that the inclusion of shrinkage in the tension-stiffening behaviour in Fig. 
23 is very easy as the shrinkage strain is simply an additional slip-strain [27]. Concrete creep 
is also very easily accommodated in Fig. 22 by changing the concrete modulus and, hence, 
the time dependent variations in concrete can easily be incorporated both prior to and after 
cracking.  
 
Steel reinforcing ribbed bars generally have good bond such that the reinforcement yields 
prior to debonding. The tension-stiffening models described above show that the slip at yield 
is relatively small, but, that yielding can increase this slip by an order of magnitude [33]. The 
same tension stiffening models show that FRP EB plates reach their IC debonding resistance 
at small slips, but, this can be increased by an order of magnitude through localised 
debonding around the crack face that is over a localised region Ldbd in Fig. 23. Hence, steel 
reinforced beams rely on steel material ductility for member ductility, and this is in contrast 
to FRP RC members which rely on weak bond.  
 
Double crack segmental analysis – strong bond mechanism 
The deformation imposed on the segment in Fig. 20 can be increased until cracks occur at 
both ends of the segment as shown in Fig. 24 where the crack spacing which is the segment 
length in Fig. 19 is now 2Ldef. From the single crack tension stiffening behaviour in Fig 23, 
the transfer of bond stresses from the bar to the adjacent concrete reduces the force in the bar 
as we travel away from the crack face, and correspondingly increases the tensile stresses in 
the concrete as shown at C in Fig. 23(d) until concrete cracking occurs. Hence this analysis 
gives the load in the reinforcement to cause primary cracking and, hence, the moment in the 
beam at which primary cracks occur. Primary cracks develop at LFI in Fig. 23(d) and when 
the stress in the concrete exceeds the tensile capacity of the concrete. The load at the initial 
crack face corresponding to the formation of this crack is Frb-pi. The corresponding minimum 
crack spacing is Lcr-pi which occurs at the position of full-interaction that is LFI [22,25]. 
Hence, the segment length 2Ldef in Fig. 19 is the crack spacing LFI. The left hand side of the 
segment in Fig. 19 is shown in Fig. 24 where Ldef is LFI/2.  
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Fig. 24 Segmental analysis with a pair of cracks 

 
After these primary cracks have developed on each side of the initial crack, the force in the 
reinforcement is now derived from the PI tension-stiffening analysis in Fig. 25(a), where the 
boundary condition is that the slip at mid-length is zero as in Fig. 25(b). The bond stress is 
also symmetrical as in Fig. 25(c). The region over which it acts can diminish from that in A 
where the bond stress acts over the whole length of reinforcement because the slip does not 
exceed sf, to that in B where it acts over the region C-O-C where the slip is less than or equal 
to sf. It can be seen that as the force in the reinforcement is increased, the bond force reduces 
but it does not limit the force in the reinforcement; this is the strong bond mechanism.  
 

 
 

Fig. 25 Tension-stiffening behaviour with a pair of cracks. 
 
The tension-stiffening analysis described above provides the relationship between crack 
width and reinforcement forces when primary cracks have formed, and is used in the 
segmental analysis in Fig. 24 to derive the sectional properties in regions of multiple cracks, 
that is, region B-C in Fig. 21. Numerical procedures are also available for the tension-
stiffening and moment-rotation analyses [8,16,22,24,25,27,33] as well as closed form 
solutions [38]. It can be seen that the fundamental difference between the behaviour of a 
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single crack in Fig. 22 and that of multiple cracks in Fig. 24 are the tension stiffening 
behaviours shown in Figs. 23 and 25.  
 
Segmental analysis with concrete softening 
Concrete softening can be incorporated into the segmental analysis through the use of a 
softening stress-strain relationship if a reliable softening branch and its associated hinge 
length can be found. An alternative is to use shear-friction theory, which unlike softening 
stress-strain relationships and hinge lengths models the actual behaviour.  
 
Compression wedges can also be incorporated into the segmental model as in Fig. 26(a). Let 
us impose a deformation B-B such that the deformation divided by Ldef induces the effective 
strains D-E in Fig. 26(b). Let the maximum compressive strain that the concrete can resist as 
a material be εfc as in Fig. 16. Hence, the portion of the member below the strain of εfc in Fig. 
26(b) can accommodate this deformation purely through material contraction; so the force in 
this concrete Fc in Fig. 26(d) can be determined from the ascending stress-strain relationship 
in Fig. 16. However, the portion above εfc in Fig. 26(b) cannot accommodate this 
deformation purely through material contraction, so a wedge of depth dw must form to 
accommodate this non-material deformation through the mechanism of wedge sliding. At the 
base of the wedge, the entire deformation imposed on the segment can be accommodated by 
material straining and, hence, the wedge deformation ∆ is zero. In contrast, the top of the 
wedge slides a maximum value of ∆m as shown in Fig. 26(a). For the shear-friction analysis, 
it is convenient to slice the wedge into n small elements of depth de and to assume that the 
slip within an element is constant as shown in Fig. 26(e).  
 

 
Fig. 26 Segmental analysis with concrete softening 
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The behaviour of the shear-friction wedge in Fig. 26(e) is identical to that in the top right 
hand corner of the prism in Fig. 15. The element of depth de in Fig. 26(a) is required to 
contract by δe as shown and which is also shown in Fig. 26(e). Let us guess that the axial 
stress in this element is σe so that from the material properties the strain is εe. Hence the 
contraction to be accommodated by sliding He is δe - εeLdef. Depending on the angle of the 
wedge α [9] this has a sliding component ∆e. Furthermore for an axial stress σe and the 
known angle α, σN-e and τN-e are known through equilibrium as in Fig. 16(a). To determine 
whether this guess of σe is correct, we have to use the shear friction properties in Fig. 17. 
 
To illustrate how a solution is found, let us first assume that the component of hcr in Fig. 
26(e) in the horizontal direction is negligible in comparison with the component of the slip ∆ 
that is H in the horizontal direction; this is found to be the case in practice where the crack 
width component in the horizontal direction is at least an order of magnitude smaller than the 
sliding component H. Using Fig. 17. For the required ∆e from above, that is (∆sm)1 in Fig. 17 
equals ∆e, and the required σe from above, that is (σN)1 in Fig. 17 equals σe, can be derived a 
value of (τN)1 in Fig. 17. If  (τN)1 is not equal to the required τN-e from above, then the initial 
guess of σe has to be changed, that is iterated, until it is. If a more accurate analysis that 
incorporates crack widening hcr is required, then this analysis also gives (hcr)1 for ∆e to (∆sm)1 
in Fig. 17 so that the contribution of hcr on the contraction can be incorporated. However, a 
further iteration is required to converge.   
 
This segmental analysis can also incorporate confinement. For example if steel stirrups 
crossed the wedge sliding plane as in Fig. 26(a) and they could be assumed to have yielded, 
then the confining stress σlat is known and this could be included in the equilibrium 
component of the analysis as in Fig. 16(a). This is equivalent to a hydrostatically or actively 
confined concrete. If the hydrostatic pressure is not known directly, then a more thorough 
analysis is to assume the vertical component of hcr in Fig. 26(e) is the crack width and use 
partial-interaction analysis as depicted in Fig. 18 to determine the force in the reinforcement 
and consequently σlat. This can now be done only because the shear-friction properties as in 
Fig. 17 fully define the equilibrium and compatibility components.  
 
The inclusion of concrete softening into the segmental analysis will give C-D in Fig. 21(a). 
As explained before, this can be converted to equivalent curvatures and flexural rigidities for 
the falling branch properties C-D in Figs. 21(b) and (c) for use in design. Care must be taken 
in using falling branch properties. As with all falling branch properties, these falling branch 
properties must be used in a defined length of member which in this case is Ldef in Fig. 26 
which must encompass the softening wedge [25]. It can be seen that the analysis can be done 
for any length Ldef but the material properties extracted are peculiar to that length only, that is 
they will only give the correct rotations or hinge rotations for segments of that length only.  
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ANALYSIS OF MEMBERS 
It has been shown how the effects of tension-stiffening, debonding, concrete softening and 
concrete confinement can be simulated in a PI M/θ segmental analysis to give sectional 
properties such as curvatures or flexural rigidities. The next step is to use these properties in 
the ductility design of members or frames which includes both energy absorption and 
moment redistribution.  
 
Simply supported beam – energy absorption  
To illustrate the application of this analysis procedure in evaluating ductility in the form of 
energy absorption in an RC member, let us consider the example of a simply supported beam 
with a uniformly distributed load, a 5m  span and a cross section of 300mm x 200mm 
reinforced with 2No. 16 mm bars in the tension region. A PI M/θ segmental analysis with 
double cracks, that is a strong bond mechanism has been assumed, has been used to derive 
the M/EI relationship in Fig. 27 for this section.  
 

 

Fig. 27: Variation in (EI)equ from a PI M/θ analysis 
 
Line A-B in Fig. 27 is the flexural rigidity of the uncracked section. Mcr-FI at B is the moment 
to cause the initial crack from a FI M/χ analysis or the FI M/θ analysis in Fig. 20. Mpri at D is 
the moment to cause a primary crack from the PI M/θ analysis in Fig. 22 using the tension-
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stiffening component in Fig. 23. Subsequent primary cracking after the initial crack has 
formed depends on the lesser of Mpri and Mcr-FI. The variation C-D-E-F is from a PI M/θ 
analysis in which Ldef  in Fig. 24 is half the primary crack spacing and the tension stiffening 
component is from Fig. 25. The same analysis gives the moment at which secondary cracks 
form that is Msec at Point E. The variation G-H-I-J is from the same analysis as that for C-D-
E-F except that Ldef in Fig. 24 is now a quarter the primary crack spacing. The steel 
reinforcement yields at I and the concrete starts to soften at J. In this analysis, confinement of 
the wedge is ignored which leads to a rapid reduction in moment along J-K.  
 
For a specific applied load and consequently distribution of moment, can be derived, using 
the sectional properties in Fig. 27,  the variation in EI along the member for specific applied 
loads as illustrated in Fig. 28(a). Prior to cracking, Line A, the flexural rigidity of the 
uncracked section EIuncr applies throughout. Line B is where primary cracks have formed at 
the centre or mid-span but remains uncracked on either side. Line C is where there are 
primary and secondary cracks at the centre, with primary cracking on either side and the 
uncracked region is very small. In Line D, softening at the centre further reduces EI. It can be 
seen in Fig. 28 how the centre of the beam softens, that is sectional softening when EI 
reduces, from the very early stages of loading which assists in the ability to absorb energy. 
The variation in EI in Fig. 28(a) can be used to derive the deflections in Fig. 28(b).  
 

 
Fig. 28: Energy absorption in a simply supported beam 

 
Continuous beam – energy absorption and moment redistribution 
The simply supported beam in the previous example has now been built in at its ends. The 
variation in EI is shown in Fig. 29(a) for increasing loads from A to C. The results from Fig. 
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29(a) have been used to plot the deflection in Fig. 29(b). It can be seen in both figures in Fig. 
29 that softening occurs at an early stage and in particular in Fig. 29(a) where sectional 
softening is concentrated in relatively small areas which is conducive to moment 
redistribution as this requires concentrations of rotation. Furthermore, this concentration of 
softening occurs at low loads which explains why moment redistribution occurs at very early 
stages of loading as in Figs. 3 and 4.  
 

 
Fig. 29: Energy absorption in a built in beam 

 
The ability of a statically indeterminate member to redistribute moment has been defined 
mathematically through structural mechanics [40-42]. The percentage moment redistribution 
at all stages of loading is a function of the concentration of rotation (conc) and moment (M) 
that is at all stages of loading as well as other properties of the member such as span, load 
distribution and serviceability flexural rigidities.  
 
As can be seen in Fig. 30, the PI M/θ segmental analysis gives the moment M and rotation θ 
in a segment at all stages of loading. The rotation when there are secondary cracks appear to 
be less than when there are primary cracks alone this is because the rotation when there are 
secondary cracks is calculated for a segment that is half the length as that for the primary 
cracks. The information in Fig. 30 can be used to quantify the concentration of rotation θconc 
required for a moment redistribution analysis [40-42]. Hence these analyses can be used to 
quantify moment redistribution without the need for empirical approach such as the neutral 
axis depth factor currently used in practice.   
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Fig. 30: M/θ of a segment 

 
General application to members and frames 
It has been shown how ductility can be quantified through PI M/θ segmental analyses. 
Furthermore that there are two segmental analyses that have to be considered. The single 
crack segmental analysis which allows for debonding along a member which has been 
referred to as the weak bond mechanism approach as the moment and rotation are limited by 
debonding. Furthermore, there is the double crack segmental analysis in which the behaviour 
is not limited by debonding and as such has been referred to as the strong bond mechanism.  
 
The question is how do we use these two approaches in the analysis of a member or a frame. 
It is suggested that the weak bond mechanism approach be used to determine whether 
debonding along a member will occur. If this weak bond analysis shows that debonding does 
not occur, that is debonding along the member does not precede concrete crushing or 
reinforcement fracture, then the strong bond mechanism approach can be used throughout as 
in the examples above. If the weak bond mechanism analysis shows that debonding along the 
member will precede concrete crushing or reinforcement fracture then the sectional 
properties from this analysis should be used in the regions of the beam where the moments 
are at a maximum to limit the force in the reinforcement but at the same time allowing for 
rotation. In the remainder of the beam the sectional properties from the strong bond 
mechanism analysis should be used.  
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CONCLUSIONS  
It has been shown how partial-interaction, that is slip between the reinforcement and the 
concrete, affects the ductility of reinforced concrete members to such an extent that it may be 
considered vital in simulating and quantifying ductility. It has also been shown how ductility 
occurs at virtually all load stages and as such affects energy absorption and moment 
redistribution at all load stages. A partial-interaction moment-rotation approach has been 
described that can quantify ductility in terms of flexural rigidity at all load stages so the 
results can be used in standard full-interaction moment-curvature approaches. The partial-
interaction moment-rotation approach is generic in that it can be applied to any type of 
reinforcement with any bond-slip characteristic and to any type of concrete. Hence it is 
suitable for quantifying the ductility of new types of reinforced concrete members such as 
those with FRP reinforcement and those with polymer fibre concrete. 
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Chapter 4 – Concluding Remarks 
In this body of work a new segmental M/θ analysis technique has been developed for both 
instantaneous and long term loading. Unlike the traditionally applied M/χ approaches which 
are typically based on the assumptions of plane sections remain plane at all locations and the 
corollary of a linear strain profile, the M/θ does not assume a linear strain profile. Using the 
well-established mechanics of partial interaction and shear friction theories, the M/θ 
approach simulates what is seen in practice, that is, the formation and gradual widening of 
cracks as the reinforcement slips relative to the concrete which encases it and the formation 
and failure of concrete softening wedges. Hence using partial-interaction and shear friction 
theories, the M/θ approach obviates the need for both empirically derived effective flexural 
rigidities and hinge lengths and has lead to the development of a new equivalent flexural 
rigidity which accounts for both concrete cracking and concrete softening and can be applied 
to both instantaneous and long term loading. 

Being mechanics based, the M/θ approach can, in theory, be applied to any type of member, 
that is any cross section, with any concrete properties, and any reinforcement type with any 
bond characteristic. The M/θ approach has been applied to a wide range of member 
behaviour including: the instantaneous deflection of beams reinforced with both ductile steel 
and brittle fiber reinforced polymer bars; the cyclic behaviour of beams with steel 
reinforcing; the instantaneous deflection of laterally and eccentrically loaded columns, 
including those in which second order effects are considerable; and the long term deflection 
of simply supported beams.  

Through these broad applications, it has been shown that the M/θ approach represents a 
widely applicable mechanics based solution to reinforced concrete analysis, capable of 
accurately predicting both instantaneous and long term deflections from serviceability 
through to peak loading and collapse, where the only empirically derived requirements are 
material properties. Hence, the moment rotation approach can be considered an extension of 
traditional analysis techniques in that it removes the need to empirically define effective 
flexural rigidities and hinge lengths to determine member behaviour. 

Having developed a broad base for the application of the M/θ approach much research is to 
follow. Importantly the next step in this research is the inclusion of confinement using the 
approach outlined in Chapter 1; this is a particularly important consideration for the analysis 
of columns where the close stirrup spacings may mean confinement is high. It is also possible 
that this research into confinement could provide a new mechanics based approach to 
predicting the behaviour of sections confined with FRP wraps. Following on from the 
research on the instantaneous beams and column behaviour a further extension of the 
approach to allow for frame analysis is to follow including the adaptation of the M/θ 
approach to a finite element analysis framework. 
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