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Abstract

This thesis contains a series of journal paperghith a new segmental moment-rotation
(M/6) approach is developed for both instantaneouslang term loading. The analysis
technique is based on the starting position of nrdmatation rather than moment-curvature
and the assumption that plane sections remain pbarienot on the often applied corollary of
a linear strain profile. Using the well-establishredchanics of partial-interaction theory, the
M/6 approach simulates the formation and gradual vindeof cracks as well as tension
stiffening, as the reinforcement slips relativetie concrete which encases it, and, using the
mechanics of shear-friction theory, the approachufates the formation and failure of
concrete softening wedges. Moreover, being mechabased, the M/ approach can in
theory be applied to any type of member, that ig aross section, with any concrete
properties, and any reinforcement type with anydooharacteristic. Hence using partial-
interaction and shear friction theories, the®Mipproach obviates the need for both
empirically derived effective flexural rigiditiesnd hinge lengths. This leads to the
establishment of a new equivalent flexural rigidityat accounts for both concrete cracking
and concrete softening and can be applied to IbstAmtaneous and long term loading.

Having established the equivalent flexural rigiditym segments of a member, it can then be
used to predict the effective flexural rigidity ah entire member, and hence the load
deflection behaviour through the application ofuemerical segmental analysis procedure. It
is further shown that with simplifying assumptiodesed form solutions to describe the

equivalent flexural rigidity of a segment can beaiied and member deflections described
using standard analysis techniques.

Having established that the ®&ifechnique can be applied using both numerical cosed
form solutions, it is used to predict a broad ran§eeinforced concrete behaviours. These
behaviours include: the instantaneous deflectiobeaims reinforced with both ductile steel
and brittle fiber reinforced polymer bars and thsetantaneous deflection of laterally and
eccentrically loaded columns, including those inchibsecond order effects are considerable
and the long term deflection of simply supportedrhs. Through these broad applications, it
is shown that the M/approach represents a mechanics based solutremforced concrete
analysis, capable of accurately predicting bottamsneous and long term deflections from
serviceability through to peak loading and collapstere the only empirically derived
requirements are material properties. Hence, thé Bfiproach can be considered an
extension of traditional analysis techniques irt theemoves the need to empirically define
effective flexural rigidities and hinge lengthsdetermine member behaviour.
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Introduction and General Overview

Current analysis techniques for the flexural analgéreinforced concrete (RC) members are
based on a full-interaction (FI) moment-curvatuk/y) technique which assumes plane
sections remain plane at all cross sections asasgelhe corollary of a linear strain profile.
These assumptions mean that thg Bdproach cannot simulate what is seen in pradties,
is, the formation and widening of cracks as thafoecement slips relative to the concrete
which surrounds it, and the formation and failuré @ncrete softening wedges.
Consequently, the FI M/approach relies on empirically derived effectilexd@iral rigidities
and hinge lengths in order to determine membeedidin. Being empirically derived, these
should in theory only be applied within the bourmfsthe tests from which they were
calibrated, and hence the Flj\dpproach requires large scale testing prior tapggication

to new materials, such as has been the case wehirtttoduction of brittle FRP
reinforcement.

In this work, an alternative analysis techniques partial-interaction (PI) moment-rotation
(M/0) approach is developed. The approach is basedherstarting position of moment-
rotation rather than moment-curvature and the apsamthat plane sections remain plane,
but not the corollary of a linear strain profilesibg the well-established mechanics of
partial-interaction theory, the formation and graldwidening of cracks as the reinforcement
slips relative to the concrete which encasessinsilated, and, using the mechanics of shear-
friction theory, formation and failure of concreseftening wedges is considered. Being
entirely mechanics based, the PIOMyoproach can therefore in theory be applied totyos

of member, that is any cross section, with any oetecproperties, and any reinforcement
type with any bond characteristic. Hence, usingigainteraction and shear-friction theories,
the Pl MP approach obviates the need for both empiricallyived effective flexural
rigidities and hinge lengths required for the FlyMpproach. Moreover, the application of
this approach has lead to the establishment ofwamechanics based equivalent flexural
rigidity, which accounts for both concrete crackargl concrete softening and can be applied
to both instantaneous and long term loading.

This thesis contains a collection of manuscriptdblished, accepted or submitted to
internationally recognised journals. Each of thapthrs 1-3, which are titled according to
the research objective, contain: an introductioplaring the aim of the chapter and how the
work fits into the overall objective; a list of masctripts contained within the chapter; and
finally the presentation of each manuscript.

Chapter 1 provides background information on theer methods applied to the design of
RC beams and details the alternative single crddkl/B approach. This approach can be
applied to members where it is known that a wealdbexists between the reinforcement and



the surrounding concrete or as a reliable lowemdsuapproximation to the analysis of all
members.

Chapter 2 contains four journal papers which show the Pl Mp approach can be used to
derive cross-section behaviour or properties sucteaural rigidities. The first two of these
papers develop the segmental PBMpproach, which is the major focus of this thefs,
the analysis of reinforced concrete beams and awdurfihe segmental approach is different
from the single crack approach in that it simulates partial interaction tension stiffening
which takes place between a pair of cracks. Thensatpl approach is therefore more
applicable to members in which a strong bond folbbasveen the reinforcement and the
concrete, and in which the moment gradient is stalthe extremity of which would be a
constant moment region. Importantly, these two papetline the development of a new
cross sectional equivalent flexural rigidity whichn be used to predict member deflection
using standard analysis techniques. The third pepezrs the development of shear friction
material properties which are required to carry @/ analysis to failure, and finally, the
fourth paper describes the development of a nu@epartial-interaction approach which
allows for load reversals and hence for analysihefcyclic load case.

Chapter 3 then focuses on the use of the equivéieentral rigidity derived in Chapter 2 to
describe member behaviour. The first paper in dhigpter applies the segmental PIOM/
approach to both laterally and eccentrically loadellimns where second order effects are
significant, and it is shown that the approach aanurately simulate the load-deflection
behaviour from serviceability to peak loading ahwbtigh to collapse. The second and third
publications in this chapter focus on the servidaggbbehaviour of reinforced concrete
beams; they outline an extension of the segmertdl/P approach to allow for concrete
shrinkage and creep, as well as the developmentlaged form flexural rigidity and
deflection equations. Finally the fourth publicatibrings together the single crack and
segmental Pl MY approaches, showing how they can be used in ccoiigunto quantify,
entirely through mechanics, the deflection of mersba&t all limit states, as well as to
guantify moment redistribution and energy absormtiooughout.



Chapter 1 — Background

Introduction

This chapter contains the paper “FRP reinforcectiimia beams — a unified approach based
on IC theory” which provides background informatiom the fundamental mechanisms used
throughout the remainder of this thesis as welindsicing the single crack M/approach.
Significantly, it will be shown that the M/approach, through the use of mechanics,
simulates what is observed in practice and hencebeaused to develop numerical and
closed-form models for: moment-rotation and confieat; crack widths, crack spacings and
deflections; moment redistribution and energy abisom; the stirrup and concrete
component of shear failure; and the effect of Bbi@rconcrete. Being mechanics based it is
also shown that the approach is generic and therefmn in theory be applied to any concrete
or reinforcement, type.

List of manuscripts
Oehlers, D.J., Mohamed Ali M.S., Haskett, M., Lucds, Muhamad, R., and Visintin, P.,

(2011) “FRP reinforced concrete beams — a unifiegr@ach based on IC theoryASCE
Composites for ConstructigrMay/June, Vol. 15, No. 3, pp293-303.
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FRP reinforced concrete beams — a unified approadbmased on IC theory

Deric John Oehlers, Mohamed Ali M.S., Matthew Hask&ade Lucas, Rahimah Muhamad
and Phillip Visintin

ABSTRACT

In general, steel reinforced concrete deals withuctile steel material and a very strong and
ductile bond between the steel reinforcement amt¢rete, so that debonding rarely governs
the design. In contrast, FRP reinforcement is til&nmnaterial with a weak and brittle bond
so that debonding is a major issue. Consequentérethas been an extensive amount of
research on FRP debonding and in particular intdiate crack (IC) debonding. This paper
shows that the very good research by the FRP @seammunity on the mechanics of IC
debonding can be applied to a wide range of apfgrelisparate reinforced concrete
behaviours to produce a unified approach. Hendaglesmechanism, or unified approach,
based on IC debonding is proposed in this papeddating with moment rotation, tension
stiffening and deflections, member ductility and memt redistribution, shear capacity,
confinement, and fibre concrete for FRP RC beams.

Keywords: FRP; reinforced concrete beams; mometatian; tension stiffening; deflection;
ductility; moment redistribution; shear capacitygrdinement; and fibre concrete.

INTRODUCTION

There has been an extensive amount of research theepast twenty years on FRP
reinforced concrete (fib 2001; Teng et al 2002; I&shand Seracino 2004; Oehlers et al
2008a; ACI 2008) which has encompassed the seeynitigbarate problems of flexure,
shear, moment redistribution, ductility, confinernand fibre concrete. It is shown in this
paper that these apparently disparate behaviomdeanodelled using anified approach
that is based on a partial-interaction (that igriiatce slip between the reinforcement and its
surrounding concrete) structural mechanics mechatigt uses IC debonding as its main
cornerstone. However, the model is not only coregrmwith the ultimate limit of IC
debonding but also the partial-interaction (Pl) debur (interface slip) from the
commencement of crack widening to debonding whighb& referred to afC theory

The philosophy behind thisnified approachs first described. It is then shown that centoal
this new model is thdiscrete rotatiorthat occurs through crack widening at each indiaid
crack and that crack widening is due to slip betwie reinforcement and concrete thdts
theory Furthermore, thatC theory and its associatediscrete rotationcan be used to
develop structural mechanics numerical and closech fmodels not only for (i) moment
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rotation but also for: (ii) crack spacings, cradkitvs and subsequently tension stiffening and
member deflections; (iii) moment redistribution atite ability of a member to absorb
energy; (iv) the shear deformation and capacity tdinforced concrete (RC) member, where
it is shown that shear failure is simply a limitttee moment rotation behaviour and not an
alternative mechanism; (v) quantifying the confirgmforces due to stirrups and wraps; and
for (vi) quantifying the effect of fibres in contee

In general, civil engineering research comprisesfttiowing steps. (1) The development of
themechanics modeb simulate the mechanism being studied. (2) qurditativevalidation

of the mechanics model to show that it physicalywsates the mechanism being studied that
is it physically simulates what may be seen in ficacas an example, it may be necessary to
show that the mechanics model has the abilityrtaukite crack development and spacings or
to simulate rotations. This is followed by (3) theantitativecalibration of the mechanics
model to ensure that the magnitudes predicted byntechanics model are close to those
determined by tests; for example this could be donehanging the coefficients or material
properties used in the mechanics model. And findhgre is (4) the development of the
design rulesthese could be the direct use of the mechaniasemavhich would generally
has a wide application, or the development of singuid more convenient design approaches
from parametric studies using the mechanics modelich have a limited width of
application within the bounds f the parametric gtud is felt that developing a mechanics
model that closely simulates the actual behavidghefmechanism being studied (that is steps
(1) and (2) and which is the thrust of this pageiinportant in research as it should be easier
to calibrate and to develop design rules (thatdpss(3) and (4)). The aim of this paper is to
qualitatively illustrate thdC theory structural mechanics mechanisms of this newied
approachfor FRP reinforced concrete, that is Steps (1) é)d and not to quantify the
behaviour, that is Steps (3) and (4), which is giesewhere in referenced published papers.

PHILOSOPHY BEHIND UNIFIED APPROACH

A two span continuous beam that had originally bpkted with FRP externally bonded
(EB) tension face plates that have now debondesthasvn in Fig. 1. A reinforced concrete
beam can be considered to consist of undisturbgobne between cracks and disturbed
regions at each individual crack.

The philosophy behind thenified approachis that the behaviour of reinforced concrete
beams as in Fig. 2(a) can be separated into: wmbdexd regions between cracks where linear
strain profiles govern as in Fig. 2(b); and disadlregions at each individual crack where
discrete rotations occur through linear rigid bodigplacements as in Fig. 2(c). The
deformation of the undisturbed regions is goverbpgalementary and well understood and
documented fundamental full-interaction (that isshp between the reinforcement and its



adjacent concrete) moment-curvature Manalyses (Oehlers and Seracino 2004; Oehlers
2007). This full-interaction (FI) analysis is basad Bernoulli’s linear strain profiles where
integration of the curvature along the beam, dggn2(b), can lead to continuity of rotations
and deflections along the beam. In contrast, therd®tion of a disturbed region is governed
by a discrete rotation, that is a sudden changetation, that is directly proportional to the
crack width at the level of the longitudinal reirdement as shown in Fig. 2(c). In this case,
the crack width is simply the partial-interactio®l) slip between the longitudinal
reinforcement and the concrete at each crack fadewich is governed byC theory
Hence, full-interaction (FI) analyses apply in wstdibed regions and partial-interaction (P1)
analyses apply in disturbed regions.

+ve region -ve region +ve region
W amA
< ol

Fig. 1. Two span FRP EB plated continuous beam

(a) beam

/AN

¢ T
/ Arebar
«—

Pere Degp

(b) undisturbed region - curvature deformatio

£ o

. . N
linear strain proflle\

uncracked

—

rigid body
displacement

Fig. 2. Unified approach philosophy

It is the discrete rotationat each individual crack, that is governedl@8ytheory which is

central to this unified approach. The concept ofghi rotation is fundamental to
understanding the behaviour of RC beams as it gsve ability to deform and redistribute
moment and absorb energy. It can be seen in Ritatithe rotation of the so called hinge in
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the —ve or hogging region and the ‘hinge’ in theedor sagging region can comprise of
numerous discrete rotations at each individual kcraithin the hinge region. However,
yielding of any steel reinforcement can cause mfcthe rotation to be concentrated at an
individual crack as in the +ve region in Figs. ld&h and also at the crack in the fibre
concrete beam in Fig. 3 that had been subjectbthsh loads (Wu et al. 2007).

DISCRETE ROTATION AT EACH INDIVIDUAL CRACK

The components required for a discrete rotatioanaindividual crack are shown in Fig. 3.

Even though the crack faces in the tension zone lmeayon-linear, flexure causes the crack
faces to separate so that there is a linear vamiati crack width from the soffit to the apex of

the crack. To accommodate the crack width and déarttrack widening, slip must occur

between the reinforcement and concrete; this isalsolutely essential prerequisite as
straining or yielding of the reinforcement does bgtitself widen a crack as this would

require infinite strains. Furthermore, if the coegsive forces in the concrete are large
enough, wedges can form which can slide off to edadure. These deformations form the

basis for the discrete rotation model which issiliated in Fig. 4. The discrete rotation model
or mechanism in Fig. 4 is based on the followinge¢hwell researched fundamental
principals: rigid body displacements; shear friot@ aggregate interlock; am@ theory

flexural crack face

Ty @ - Sl

v reinforcement ~

Fig. 3. Discrete rotation at a single crack
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Fig. 4. Discrete-rotation mechanism

The opening of the vertical crack in Fig. 4 corssist two rigid bodies rotating as shown and,
hence, is an example of a rigid body displacemEms rigid body rotation can also cause the
wedges to slide across the sliding planes a distagg and to separate across the sliding
plane byw through aggregate interlock such as hyxwthis relative movement between the
softening wedge and the adjacent beam concretdses an example of aigid body
displacement. Shear friction or aggregate interl@search simply quantifies the rigid body
displacements and stresses across a sliding ptaskoavn in Fig. 5. Shear friction research
is the relationship at a specific point in the isigdplane between the normal stress across the
sliding planec,, the shear stress across the sliding plgnand the rigid body slip and
separations and w. These shear friction propertiesy,(t, 8 andw) and their limits or
capacities have been quantified for initially credknterfaces (Mattock and Hawkins 1972;
Walraven 1981; Walraven et al 1987; Haskett eD4l0a) such as across the flexural crack in
Fig. 4 when subjected to shear, and also for Ihjitiancracked interfaces (Mattock and
Hawkins 1972; Haskett et al 2010a) such as at #ege interface shown in Fig. 4 and also
across the vertical plane in the compression zémoeeathe crack when subjected to shear
forces.

Fig. 5. Shear friction components
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The third component of the discrete rotation madelig. 4 is the partial-interaction between
the reinforcement and the concrete, thdCigheory which allows the reinforcement to slip
relative the crack faca and without which the crack could not open or wid# is the
relationship between the force and slip in thefogoement at the crack face, shown as P and
Ain Fig. 4.

IC THEORY

Figure 6 is an example of intermediate crack (I€pahding for a near surface mounted
(NSM) FRP plate. IC debonding may be defined asnwthere is sufficient separation of the
reinforcement from the concrete to cause a reducitio the reinforcement strain. IC

debonding deals with debonding of reinforcementt tinéercepts a crack due to stress
concentrations that occur due to the sudden disaotyt between the reinforcement and the
concrete at the crack face. We will defil@ theory as not only what is happening at IC
debonding but what is happening from the onseh@fntermediate crack and its interception
of the reinforcement all the way through to IC dedhag.

NSM
CFRP
side
face\m/_z//
strips —w-

e .

I

Centre support

Fig. 6. IC debonding of FRP NSM side plate

Central to IC debonding ankC theoryis the material bond characteristics between the
reinforcement and the concrete (De Lorenzis etC8l22 Lu et al 2005; Dai et al 2005;
Seracino et al 2007; Haskett et al 2008; Rashal 2008; Oehlers et al 2008b; Eligehausen
et al 1983; Malvar 1995, Harajli et al 200hgat is the shear-stress/slipd) relationship.
Examples of idealised bond-slip characteristics slrew in Fig. 7 where: the peak shear
stresst; occurs at a slipy; and d¢ is the peak slip beyond which the shear stressbean
assumed to be zero. It is thes® bond-slip characteristics that alloM theory to be
developed as it allows the variation of slip alothg reinforcement, that is the partial-
interaction behaviour to be quantified which is #esence ofC theory The fundamental
characteristics ofC theoryis illustrated in the following numerical simulati that uses a
shooting approach. A shooting approach is usefulit ascorporates all the structural
mechanics principles and boundary conditions reguito find a solution which,
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consequently, can also be used to develop cloged $tructural mechanics solutions 1&
theory

ni-linear ascending

Tf -T\ 77777

t uni-lineai- bi-linear
descending

Fig. 7. Bond-slip characteristics

A numerical simulation of partial-interactid@ theory (Haskett et al 2008) is illustrated in
Fig. 8 for the case of a reinforcing bar (which deve any material property) of cross-
sectional area Awhich is being pulled out with a forcge;From a restrained concrete block
of cross-sectional area;Auch that R equals B. This simulates a standard test that is used
to directly measure the bond-slip characteristicBRP or steel reinforcement (Haskett et al
2008). To understand the behaviour, the pull-tesiced into very fine segments of length
Ls such that Lis much less than the length of the reinforcenhignEach segment is shown
separated so that the forces between segmentsecasdsted and, furthermore, shear lag is
ignored so that the strain in the concrete is unifover a cross-sectional area A

L,
L, L, L, o
2P=0 ) @ ©) —
Pule =Py B Peyle-tpy) KB Puyle-fp) RuBq &0
B.=f(A) B,=f(A,) B,=f(A) A=0
o |e=TP) ] |e~TP) e ed |e~fP) > reinf.
P, —— |p-B P, —" PpP,B, P, - B, e
] T DA, e o
Crﬁ ds/dx)=¢,,-€, —¥(ds/dx)=¢ €., —¥(ds/dx)=¢,-€,,  tend to
face PA=(ds/dx)L OA,=(ds/dx)L OA =(ds/dx)L zero

Fig. 8. IC theory numerical simulation of pull-test

12



A of EB plate  concrete surface
' P A, of NSM plate

Fig. 9 IC debonding failure planes

At the crack face in Fig. 8: the bar slipg the reinforcement strain & which is a function
of P.1; the concrete strain ig; which is a function of §; the algebraic summation of;Rnd
Pc1 is zero; the slip-strain (ds/dxXp g1-gc1; and the bond stresstdswhich is a function of\;
from the material bond-slip relationship such a&ig. 7. For very thin segment lengths L
the bond force Bin segment (1) is very close toLpels Where Ly is the width of the
failure plane encompassing the reinforcement asvshim Fig. 9 (Seracino et al 2007;
Haskett et al 2008; Oehlers et al 2008b; Rashidl &008); the change in slip within a
segmenbA, in Fig. 8 is close to (ds/da)s; so that the slip in segment n thai\isis Ap-1-0A

n-1. Hence the variation along the reinforcement efslip (A), slip-strain (ds/dx), and strains
g ande. can be determined. Any of the following three baany conditions can govern the
behaviour. For long lengths of reinforcement full interaction conditions, that is both the
slip-strain (ds/dx) and slipAj tend to zero at the same section and before rideoé the
reinforcement at L For short reinforcing bars anchored asuch as may occur at a bend in
the reinforcement, the boundary condition atdA = 0. And for short reinforcing bars not
anchored at Lbut free, the boundary condition at is €1 = 0. In general, an iterative
shooting approach is used to find a solution (Haiskeal 2008). These structural mechanics
fundamental principles illustrated in this numekigaalysis are the basis I theory

The partial-interaction numerical solution descdiladove has been applied in Fig. 10 to the
analysis of a pull-test in which an EB plate hasrbbonded to a concrete prism. In this case,
the bi-linear bond-slip relationship in Fig. 7 Haeen used (Yuan et al 2004; Mohamed Ali
M.S. 2008; Haskett et al 2008). The variation ia Hond stress along the reinforcement as
the slip at the crack fac®, is gradually extended is shown in Figs. 10(a) fayure 10(a)
shows the distribution of shear stresy gt the start of loading where the full interantio
boundary condition governs and Fig. 10(c) showsoddimg where the unrestrained plate
end boundary condition governs as shown. Ofterctbss-sectional area of the concrete A
is several orders of magnitude greater than th#éhefeinforcement Aso that the strains in
the concrete in the numerical simulation in Figa® be ignored.
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Fig. 10. Variation of shear stress in a pull test

Having defined the behaviour and boundary conditisnch as in Fig. 10, thi€ theory
procedure can be used to develop closed form sakitifor a variety of bond-slip
relationships and reinforcement material propergMshamad et al 2010). For example, the
following equation uses the linear descending bslimfelationship in Fig. 7 for any elastic
reinforcement such as FRP or for steel prior tédyie

Tf Lper . 5f _Areinf
P = Sinfarcco$——— (1)
A Sy
L
A, = /—Off pe @)
f (AE)r

and where Eis the Young’s modulus of the reinforcement. THa Relationship fromIC
theory can now be used in the hinge model in Fig. 4 tterd@ine the moment rotation
relationship of a given reinforced concrete section

where

MOMENT DISCRETE-ROTATION

The rigid body deformations shown in Fig. 4 areuglat together in the analytically
convenient form in Fig. 11 (Haskett et al 2008; [@ehet al 2008c; Oehlers et al 2009;
Haskett et al 2009a; Haskett et al 2009b; Haskedl 2009c ). The position of the neutral
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axis at level C can be determined from standard established procedures. For example at
serviceability, the neutral axis can be determifieth the elastic analysis of the transformed
cracked section. At the ultimate limit state theutn®l axis can be determined from
rectangular stress blocks and the well known ganfextor given in national codes and
standards which also give the positions of the gesgive forces. It can be seen that once the
position of the neutral axis is established, tleedite rotatio in the tension zone is directly
proportional to the reinforcement sligp or, inversely, for a given rotatiof the tensile
reinforcement forces P can be determined from Kdmh asA is known. And consequently
the moment M for that rotatiah

Lsoft
0]
Pl
o ; sliding
comp. plane

zone |

rigid body displacement

tension
zone
I:)rebar
G ]
\Arebar
¥ T
I:)EB i >

AEB
Fig. 11. Moment/discrete-rotation analysis

If the compression zone in Fig. 11 is unlikely bmit the rotation by compression failure
(such as might occur in shallow slabs where thegesdar unlikely to slide or in reinforced
concrete beams made with fibre concrete as fibrerete is known to be highly ductile in
compression) then the above analysis that is baséxy onIC theory and rigid body
displacements will suffice to give the moment/diterrotation. This is depicted in Fig. 12
where the limits to the rotation are at either t@mgeinforcement fracture or debonding.
However sliding failure of the compression wedge,rathe eccentrically loaded prism in
Fig. 13 that is used to directly study concretdesohg (Daniell et al 2008; Mohamed Ali
M.S. et al 2010), can often precede reinforcemaihure in beams that have normal concrete.
In this case, it is necessary to directly link tiggid body deformations in the tension and
compression zones in Fig. 11 as the rectangulessstslock approach cannot predict the rigid
body displacement at failure of the compressionezas it is strain based and not
displacement based.
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Fig. 12. Moment/discrete rotation

Fig. 13. Sliding failure of wedge

The concrete in the compression zone in Fig. 1llWwwasomponents. Immediately above the
crack apex from C to B (below the sliding plane BtBe concrete is in the ascending portion
of its material stress-strain relationship whicts l@astrain ok, at its peak stress prior to
softening as shown (Haskett et al 2009a). Henceediately below and adjacent to the
sliding plane and over the length of the wedgg: the concrete strain isx. Above the
sliding plane B-D, the concrete is softening asiated by the wedge (Haskett et al 2009a;
Mohamed Ali M.S. et al 2010). In this softeningieg the force By that a wedge of depth
dsoftCan resist has been found to depend on the Mohlo@ucohesiveg, and frictional,m,
components of the concrete (Mattock et al 1972;tdt&t 1974; Haskett et al 2009a;
Mohamed Ali M.S. et al 2010) and is given by thikdieing equation.

c+ 0, cosa(sina + mcosa)

P . .
sina(cosa - msina)

soft =d b

®3)

soft™soft
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where the angle of the wedgen both Eqg. 3 and Fig. 11 is also a functiomofndoy is
any lateral restraint imposed on the wedge whichdiggussed in the next section on
confinement.

The slips along the wedge interface or sliding plane in Higearies from zero above the
vertical crack to g« at the end of the wedge. Aso#in Fig. 11 is known for a givensgk so

to is the stress in the wedge; and from the ascending portion of the concretesststrain
relationship the strain in the wedggq Hence from the slip-strain across the slidingipla
Epk- Esofty, the maximum slip ¢ can be determined fromey(- eso)lsor. FOr analytical
considerations, this rigid body displacemegt & shown as point B in Fig. 11 and in line
with the rigid body displacement of the crack fadence the rigid body displacement in the
compression zone has now been linked to that intehsion zone so that the limit to the
discrete rotation due to wedge sliding can alsinberporated in Fig. 12. There is one other
limit to the discrete rotation which is labeled esin failure’ in Fig. 12 which will be
discussed later and where it will be shown thatghear capacity is directly related to the
discrete-rotation antC theory

Having now defined the discrete rotation as a fiencof both the softening wedge in the
compression zone an@ theoryin the tension zone it is now possible to derilsed form
solutions. For example, for the following conditso(one level of reinforcement of area A
which is at a distance, firom the crack apex and ttom the resultant compressive force; for
a linear descending bond-slip characteristic aBign 7; and for a linear elastic material at
fracture such as FRP), the moment)(&hd rotationt) at fracture is given by Egs. 4 and 5:

My =Af.d (4)

where fis the fracture stress

o, =i{1_ ’1_MJ (5)
hl Lperrféf

and where; is the fracture strain.

CONCRETE CONFINEMENT ON MOMENT/DISCRETE-ROTATION

It is well known that FRP confinement of concratecylinders and prisms can increase the
concrete ductility (Fam and Rizkalla 2001; Lam dmehg 2004; Griffith et al 2005; Wu et al
2006) which in turn can increase the ductility otation capacity of a member (Wu et al
2006; Haskett et al 2008). To illustrate the coafirent mechanism that increases the
member ductility, let us consider the beam in Hig(a) which is wrapped externally with
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FRP and confined internally with stirrups as in .Figd(c). The same discrete hinge
mechanism as in Fig. 4 occurs in this wrapped membshown in Fig. 14(b).

C lat
AAAAAA N\
‘ N (I e
- ! T T 1ot |7
; “Pstirrup Pstirrur}' \ Pwrap
IC theory
IC theory &
Pebar
=2 [N\rTArrrrr
/ Are;r 7
‘ . N <
(a) wedge restraints (b) wedge deformation (c) ICgeecbnfinement

Fig. 14 Confinement mechanism

Let us consider the line A-A in Fig. 14(a) thatismwn prior to sliding. After sliding, line A-

A moves to the two lines, shown as B-B with a siparatiors, the separationis due to the
different strains in the concrete above and belmsliding plane. For a smooth sliding plane
interface, this slifs causes a vertical separatias shown which depends on the angle of the
wedgeo. However, there is also a further vertical sepanalv induced by the slig due to
aggregate interlock as shown in Fig. 5 which cambentified through the shear friction
propertieson, 1, 6 andw, (Mattock et al 1972; Haskett et al 2010a; MoharA&dV.S. et al
2010). Hence, the wedge rises at a sectiomHay(Farrall et al 2008) as shown in Fig. 14(a).
The wedge interface is simply an intermediate craic#t, therefore, for a given separation
(v+w) as in Figs. 14(a) and (dc theorycan be used to determine the forces P in the wrap
and in the stirrups which induces the lateral amrhientsy; across the sliding plane. From
shear-friction research (Mattock et al 1972; Jerid®fb; Haskett et al 2010a; Mohamed Ali
M.S. et al 2010), this lateral confinemeny; can not only increase the force in the wedge
Psot in Fig. 14(b) as shown in Eq. 3 but it also suppes sliding, ss¢ in Fig. 14(b) and
consequently sliding failure.

It is this suppression of the sliding failure iretthoment/discrete-rotation response in Fig. 12
that can make the beam more ductile, that is itrotate more without an increase in flexural
strength. This increase in ductility is indicatadhe analysis depicted in Fig. 14(b) where no
axial forces are attributed to the wrap. It can rmseen thdC theorynot only controls the
behaviour in the tensile zone in Fig. 14(b) bubdle confinement forces in the compression
zone. Furthermore, that shear-friction propertiesl #imits are required to quantify the
movements and, therefore, th& theoryforces. And that the third prerequisite of rigioldly
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displacements are required to simulate the defoomsin both the tension and compression
zones to whichC theorycan be applied. In short, the unified approacbhased on three
fundamental prerequisitekC theory shear-frictionandrigid-body-displacements

CRACK SPACINGS, WIDTHS AND DEFLECTIONS

Having illustrated howC theoryis central to the discrete rotation at a singlckr let us
now consider multiple cracks as in the hinge vigsiin Fig. 1. A positive hinge region is
shown in Fig. 15(a) where the first crack to forgnat the centre after which primary and
secondary cracks occur. It is common practice msiten stiffening research to first idealise
the problem as that of a concentrically loadednpri€EB-FIP 1985 & 1992, Eurocode 2,
Chang 1996, David 2008, Gilbert 2007, Marti 1998y \2009) as in Fig. 15(b) which is
simply anIC theoryproblem. It may be worth noting that in thl& theorypull-test in Fig. 8
the algebraic sum of forces at a section is zel®reas, in the tension stiffening simulation
in Fig. 15(b) the sum of forces at a section eq&alt all other respects the analysis is the
same.

12
(c) second boundary condition %
P A l |A
«— K —>
5=0 |ds/dx & s tend to O
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+— : ; H>
| | i
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secondary |\ pri
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Fig. 15. IC theory simulation of tension stiffening

The maximum stress in the concrete element in Bsgb) occurs in the region where full-
interaction is approached that is the boundary it@mdwhere both the slip-strain and slip
tend to zero as shown. This is, therefore, the mumn crack spacingpsof the primary
cracks as shown. After the primary cracks have &t spacings,s we now deal with the
partial-interaction model in Fig. 15(c) where byrsyetry the boundary condition is that the
slip at the centre at,® is zero as shown where the secondary crack woutd if the bond
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strength is sufficient. It can be seen that thenttion of the primary cracks and secondary
cracks require different boundary conditions.

The distribution of cracks and crack widths can dstermined using the same partial-
interaction numerical procedure as outlined in FBgwhich can also form the basis for
structural mechanics closed form solutions. Fonga, a partial-interaction analysis of Fig.
15(b) using a linear ascending bond-slip relatignsh Fig. 7 gives the primary crack
spacing as

= 2 ®)

S
Te boe| 1 A
\/51' A [Er (EA)j
where E is the elastic modulus of the reinforcement and)(Hs the axial rigidity of the
concrete prism. It can be seen that the crack sgasiindependent of the tensile strength of
the concrete and directly dependent of the borfthesist:/5,. Furthermore, anC theory

analysis of Fig. 15(c) gives the following primarglf crack widthsAy, in relationship to the
force in the reinforcement at the crackvwhich is directly dependent on the primary crack

spacing §.

_ Ptanh@)S,
S )

where (EA) is the axial rigidity of the reinforcement.

Having now shown houC theorycan be used to quantify both the crack spacindsceack
widths either numerically or through closed formusions, the results can be used in Fig.
2(c) to determine the deflection due to the digeretation at each individual crack which
can be added to that in the undisturbed regiongnZb) to derive the total deflection.

MOMENT REDISTRIBUTION AND ENERGY ABSORPTION

Moment redistribution is the ability of a hinge,chuas that in the —ve region in Fig. 1, to
rotate and hold much of its moment whilst the motriananother potential hinge region,
such as that in the +ve region, achieves its requmoment. Moment redistribution is
illustrated in Fig. 16 for a continuous span ofealm which could be plated as shown in Fig.
16(a). Within the span of the beam, there are pmssible discrete-rotation hinges as in Fig.
16(b). As described previously, it is now possitdederive the moment/discrete-rotation
response, as in Fig. 12, for each possible hintgion fromIC theory The first hinges to
form are labeled the ‘primary hinges’ in Fig. 16(b)
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Fig. 16. Moment redistribution in a continuous beam

Let us assume that the distribution of moment entikam in Fig. 16(a) is known and varies
from M; to M, as shown. Let us also assume that this distributiccurs after moment
redistribution. It is a straightforward proceduceintegrate the variation of curvature within
the undisturbed region of flexural rigidity El tetérmine the rotatio6,., in Fig. 16(c) that is
required in the primary hinge to accommodate théridution of moment. If the rotation
capacity of the primary hinge is greater tiag then this moment redistribution can be
accommodated. Alternatively, if the moment-rotatietationship, M8, of the primary hinge
is known such as that shown in Fig. 12 then the smamedistribution capacity g can be
determined (Oehlers et al 2010; Haskett et al 2pHalskett et al 2010c) as follows

2(El)6

MR = (ENG+M L (®)

where El is the flexural rigidity of the undistutbeegion of the beam and whergKis the
moment redistributed as a portion of the undistedustatic moment, that is the well used
‘percentage’ moment redistribution factor but nstaapercentage here. Hence, knowing the
moment-rotation response as in Fig. 12 it is pdssilot only to determine the moment
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redistribution factor Igr at its limit but also at the position of the maxim moment or at
any moment.

The ability to absorb energy depends on the akiitgeform at all hinge locations as shown
in Fig. 16(d). If the rotation capacity at the sedary hinges i9,4 then the primary hinge
has to rotat®:.,+6,4 as shown. If this can be accommodated by the pyimiage then this
is the deformation at failure. Hence, not only #tlity to redistribute moment but also the
ability to absorb energy can also be determinechi© theory

SHEAR DEFORMATION AND CAPACITY

The moment/discrete-rotation response in Fig. 12as only limited by reinforcement
fracture or debonding, and wedge sliding but ceso dle limited by shear failure. The
discrete rotation analysis shown in Fig. 4 whiclsi®wn with a vertical crack can also be
applied to inclined cracks as in Fig. 17. Theseksare subjected to both shear and flexure
(Lucas et al 2010). To understand this flexure-shmachanism, let us first consider a
reinforced concrete beam with an inclined crack aith only longitudinal reinforcing bars
as in Fig. 18 (Lucas et al 2010).

Fig. 17. Discrete rotation at an inclined crack.
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Fig. 18. Flexure-shear mechanism
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The analysis of the flexural deformation in Fig(d)8is the same as for the vertical crack in
Fig. 11. A crack width w can be imposed at the soffit of the beam at Cign E8(a) from
which the total slip at the level of the reinforcamh 2A; can be determined. Consequently
from IC theory the force in the reinforcemenj Pan be determined which from longitudinal
equilibrium is also the compressive force & an offsed for rotational equilibrium. From
these forces and the beam properties can be detnioth the applied momentyjland
shear force Y, at this hinge.

The analysis of a uniform shear deformation is shawrig. 18(b) where through aggregate
interlock the crack widens a further distanag2to give a total slip of 2(4+Asp)). This
widening further stretches the reinforcement tougel an increase in the tensile
reinforcement force by & (to give a total force of §*Ps,) that can be derived fronC
theory. For longitudinal equilibrium, there must be amliéidnal equal compressive force,P
across the sliding plane the resultant of whichtnimesin line with that in the reinforcement
to ensure rotational equilibrium.

The possible sliding plane A-C in Fig. 18 is sulgelcto a compressive forcg B the region
A-B in Fig. 18(a) prior to sliding and then aftdidsng commences it is subjected to an
additional compressive forcesFin Fig. 18(b). Hence, there is a total force wisiding
commences of FPsp,. It is these compressive forces across the sliglage which govern
the shear capacitpf the sliding plane though shear friction theoM/alraven 1981,
Walraven and Reinhardt 198¥%attock and Hawkins 1972, Lucas et al. 2010b). Tértical
component of this shear capacity is the commonfigrred to ‘concrete component’ of the
shear capacity ¥ It may also be worth noting that even thoughdbmpressive force after
sliding commences #Ps, is greater than that prior to sliding,Rhe shear capacity after
sliding may be less than that prior to sliding doeshear friction properties. This is because
sliding reduces the shear resistance for a givemaloforce but sliding increases the normal
force increasing the shear resistance. These tigotefcounteract each other so that the rate
of change of each component determines whetheinglicteduces or increases the shear
capacity which explains the difference betweendapi gradual shear failure (Lucas et al
2010; Zhang 1997).

Let us now consider the case of a beam with bd#rnal and external stirrups as shown in
Fig. 17. The flexural behaviour is shown in Fig. For an imposed crack widthcwthe
reinforcement slips aré\sy, Ansm and Apngn as shown. Hence, froniC theory the
reinforcement forcessB, Pusm and Rngqn can be determined. It is the sum of the vertical
components of the stirrup forcespR and Rism-n which is the shear force directly resisted by
the stirrups V.
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The analysis for the concrete component of the rshepacity is shown in Fig. 20. As
explained in Fig. 18, the compressive forces actiosgotential sliding plane are shown as
Pq and R, These can be resolved as normal forces to thimglplaneN and as shear forces
along the sliding plan8& as shown. From shear-friction theory as explaimeyiously, it is
the normal forcedl that determine the shear capacity along the gliglane which is shown
as (M)plane However, this shear capacity must provide theaskercesS as shown leaving
the capacity along the sliding plane to resistubgical shear as (Ypiane- 2.S = (Vo)p; the
vertical component of which is the concrete compbé the shear capacity.\ds shown.

vertical steel or FRP stirrup

longitudinal
reinforcement

forces to
v be resisted (Ssh)st

(Vc)plane(Psh)Iong .
shear capacity of sliding plane T Vv
R

interface capacity t()VC)B
resist direct shear

Fig. 20. Concrete component of shear capacity

It can be seen from the previous paragraph thaigusie total shear-friction shear capacity
along the sliding plane Qfiane Without allowance for the shear forces that areded to
maintain equilibrium} S will always overestimate the concrete compondnthe shear
capacity. This maybe a reason why shear-frictiogeldom used in practice to quantify the
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concrete component of the shear capacity. It is aisrth noting in Fig. 20 that the shear
force (Sp)st associated with vertical stirrups is beneficiathat it increases (Y while that
associated with longitudinal barsseng is detrimental that is it reducesdy. It can now be
seen howC theorycontrols both the stirrup and concrete componefiise shear capacities.

FIBRE CONCRETE

Figure 3 shows the failure of a beam with fibre @ete. The effect of fibre on the tensile
behaviour of concrete is often determined from itentests such as in Fig. 21. Gauges
positioned at-a can be used to measure the extension and condgbgtienstraing; up to
cracking that is along O-A in Fig. 22; this is ateral property. After cracking, the gauges
not only record the extension due the strains énuincracked concrete but also the extension
due to the crack width ywvand, hence, are recording an effective straithdfgauge length is
increased froma-a to b-b in Fig. 21 the effective strain will reduce aneénhe, there is no
effective strain that can be used. However, what lma determined from these tests is the
variation in stress with crack width as shown a€ By Fig. 22 which is théC theoryP/A
relationship described previously.

' gauge length

29 BN

fibres : < fibres

IC theorybehaviour after cracking

Fig. 21. Tensile test on fibre concrete

standard tensile IC theory
material properties material properties

fl_ A
C)'t /
onset of

cracking

0 & crack width w,=2A

Fig. 22. Fibre concrete tensile properties
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Fibres are simply small bits of reinforcement althlo generally distributed in a random
fashion. Hence the effect of fibre reinforcementoas a crack is the same as the effect of
reinforcement across a crack. Fibres cross theufééxcrack in Fig. 3 and, hence, their
contribution to the tensile forces in the momestidete-rotation analysis in Fig. 4 can be
obtained from B-C in Fig. 22 which can be deterrdidé@ectly from tests (Schumacher et al
2009, Suwannakarn 2009, Yuguang et al 2009) or frooch good research on the
micromechanics of fibre concrete (Bischoff 2003ntHaet al 2009 & 2007, Jungwirth et al
2004, Redaelli et al 2007) which is in many wayssely related tdC theory Fibres also
cross the wedge sliding plane cracks in Fig. 3 &edce, their effect on wedges is the same
as for stirrups and wraps as in Fig. 14. Consedpefibres provide an additional
confinement stress; from Fig. 22 which will inhibit wedge sliding andcrease the ductility
as has been found in practice (Yuguang 2009, Suakamn 2009). Finally, fibres cross the
potential shear sliding planes. By so doing theduge: additional tensile forces transmitted
by the fibres across the crack in Fig. 14 so thatdtirrup resistanceg¥is increased; and
additional compressive confinement forces in Fi@which enhance the concrete component
of the shear capacity.V

It can be seen that fibres can increase the fléaapacity but in particular the flexural
ductility and the shear capacity which has beemdoin practice. It has been shown that all
the reinforced concrete behaviours described pusiyoin terms ofiC theorycan also be
used to explain the behaviour of reinforced comcbetams with fibre concrete.

SUMMARY

A unified reinforced concrete model for beams wRRP reinforcement or for steel
reinforced concrete beams retrofitted with FRPfoeoement has been described. The model
makes a direct distinction between the undisturbsglon where conventional moment-
curvature analyses can be applied and disturbedn®gt each individual crack where a new
discrete moment-rotation model can be applied. diserete-rotation is the step change in
rotation at each individual crack due to widenirfgttte flexural crack due to slip of the
reinforcement. It is shown that the discrete rotatmodel depends on three fundamental
principles: shear-friction, rigid-body-displacem&nand most importantly the IC theory
developed specifically to prevent IC debonding BPFreinforcement. It is shown that this
discrete rotation approach can be used to developerical and closed form structural
mechanics models for: moment-rotation and confimgmerack widths, crack spacings and
deflections; moment redistribution and energy abisomn; the stirrup and concrete
component of shear failure; and the effect of #bre concrete. The unified reinforced
concrete model is generic as it can in theory h@iegh to any concrete or reinforcement but
it was specifically developed for FRP reinforcemasing IC theory developed in large by
the FRP research community.
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Chapter 2 — Cross Sectional Analysis

Introduction

In this chapter it is shown that the fundamentatimamisms outlined in Chapter 1, that is,
partial-interaction and shear-friction, can be useduantify the variation in flexural rigidity
using a segmental approach. This segmental appliedatimdamentally different from that
presented in Chapter 1 in that partial-interactioeory is used to describe tension stiffening
between a pair of cracks. Hence, the approach meséhere more closely simulates the
behaviour of a section with ductile reinforcemefitene a strong bond forms between the bar
and concrete encasing it. This is in contrast te #malysis in Chapter 1 which more
accurately simulates behaviour where a weak bonhadsm the reinforcement and concrete
exits, for example under the case for cyclic logdwhere the bond is degraded by load
reversals.

The first two papers contained in this chapter dgrf¥® mechanics solution for hinges in
RC beams with multiple cracks” and “A Mechanics &hd1inge Analysis for Reinforced
Concrete Columns” develop the segmental P® Bidproach for reinforced concrete beams
and columns and describe the newly defined equivdlexural rigidity. The derivation of
the shear friction material properties required thog simulation of the softening wedge is
then presented in the paper “Using shear-frictimperties to simulate concrete softening in
reinforced concrete flexural members”. Finally, ewncyclic partial interaction model is
developed in the paper “The Reinforcement Contitlbutto the Cyclic Behaviour of
Reinforced Concrete Beam Hinges” and the singlekcRd M® approach is used to describe
the load deflection behaviour of RC beams subjetiddrge load reversals.
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A Mechanics Solution for Hinges in RC Beams with Mliiple Cracks
Visintin, P., Oehlers, D.J., Wu, C., and Haskett, M

ABSTRACT

The formation of hinges in reinforced concrete bgasimportant as hinges influence the
ability of the beam and, subsequently, the framalisorb energy and resist extreme loads
such as hurricane or seismic loads. A common apprdar quantifying the rotational
capacity of beams at the ultimate limit is to asstrain based moment-curvature analysis
combined with an empirical hinge length to detemnihe rotation capacity of the member.
Being empirically based, this approach is veryriets¢e as it can only be applied within the
bounds of the tests from which they were derivedthis paper, a mechanics displacement
based hinge approach is described that can simthatéormation of cracks, the discrete
rotation at each individual crack and the formatadrwedges. Being mechanics based, this
hinge model can be applied to any type of reinfdrcencrete, such as those with brittle
reinforcement and also to all strengths of concrébes mechanics based model is shown to
have good agreement with test results and can bd a$ all stages of loading from
serviceability to failure. Furthermore, it can alssed to develop closed form solutions that
do not require the moment-curvature assumptiorulbiriteraction but specifically allow for
partial interaction that is slip between the reinéament and the concrete.

Keywords:RC beams; RC hinges; ductility; concrete softeniagnforcement bond; shear
friction; and partial interaction.

INTRODUCTION

A two span continuous beam that has been loadeaghbeys peak strength is shown in Fig.
1. In each of the regions between the points ofraflexure, the first flexural or initial crack
occurs at a very early stage of loading and caprédicted using a full-interaction moment-
curvature (My) analysis; full-interaction implies that there 0 slip between the
reinforcement and adjacent concrete so that th&oreement and adjacent concrete are
subject to the same strain. Subsequent flexuraksrdepend on the bond and slip between
the reinforcement and the concrete which is a g@airiteraction consideration [1-13]; partial-
interaction implies that there is slip betweennd#iaforcement and the adjacent concrete such
that there is a step change in the strain betwsemeinforcement and the adjacent concrete.
As such, the moment at which subsequent cracksroand their spacings cannot be
predicted by a full-interaction M/analysis. As the load is increased, these cradldenw
through slip between the reinforcement and the m@acso that the full-interaction
assumption implicit in a M/analysis cannot be used to predict crack widtHence, it can

be seen that a M/analysis can only directly predict the occurrentehe first crack in an
uncracked region, after which the jManalysis has to be supplemented with empirical
approaches to predict crack spacings and crachwidt14,15]
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At the ultimate limit state, some of the cracks vicignificantly so that most of the rotation
is due to the discrete rotation between crack fit@sas can be seen in Fig. 1. Hence this
localised or concentrated rotation at high momegiians, often referred to as hinges, is
primarily due to slip between the reinforcement #mel concrete that a llanalysis cannot
simulate. As a consequence, ayMhalysis requires empirically derived hinge lesgith7-

23] over which the full-interaction curvature caa iptegrated in an attempt to simulate this
partial-interaction discrete rotation. And finallgompression wedges form as can be seen in
Fig. 1 where the wedge slides relative to the adjaconcrete [24,25]. This behaviour cannot
also be simulated directly by a strain baseg BHalysis as this is a mechanism, but has to
resort to the use of softening compression stregagigelationships which are often found to
be size dependent.

Figure 1: Disturbed regions in RC beam

It can be seen that a féanalysis does not directly simulate the behavimfua reinforced
concrete beam after the first crack has formedaanslich has to resort to empirically derived
components. Being empirically based, thesg Bfiproaches can only be applied within the
bounds of the testing regimes from which they wieved and, consequently, are of limited
help outside these bounds. Hence the need for danms based approach which is the
subject of this paper.

In this paper, a mechanics approach is describadhwil based on the principle of plane
sections remaining plane at discrete locationd,iththe bisection of cracks and at the mid-
point between cracks, but not on the commonly usBtequential assumption of a linear
strain profile along the depth of the beam. Essilgld partial-interaction theory
[5,6,9,10,12,26,27], that is slip between the m@ioément and the concrete, is used to
simulate the cracked region and established shetich theory [28-37] is used to simulate
the formation of wedges. Hence this model can sateuthe formation and widening of
cracks and the formation of wedges. That is, théemanics model can directly simulate, as
opposed to indirectly simulate, what is actuallgrsen practice.

This paper deals with flexural behaviour and faludowever, these mechanics hinges are
equally applicable in the serviceability limit s#488], and can also be used to quantify shear
failure but this is dealt with elsewhere [39]. Thendamental principles of the hinge

mechanism are first described. This is then folldwg idealisations that can be used, but do
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not have to be used, to develop a mechanics solufiee mechanics model is then compared
with test results of eccentrically loaded prismd &ns also shown how the mechanics model
can be used to develop closed form solutions.

HINGE MECHANISM

The basic fundamental principles on which the hingelel is based, that is the fundamental
mechanics that controls the hinge behaviour andchvig independent of the material
properties, is first described. This is followed ibgalised assumptions that are required to
develop mechanics based numerical models or mexhdngised closed form solutions. It
may be worth noting that these idealised assumgtama not an essential component of the
model but can be refined in the long term to acdhileetter correlation with test results. The
major component of the rotation of a beam occues awery small region, as can be seen in
Fig. 1, which can be two orders of magnitude smalan the beam span. Hence, it is
reasonable to assume that within the hinge rediemtoment is constant. This helps in the
following explanation but it may be worth notingathvariations in moment can be
incorporated.

Basic fundamental principles of hinge mechanism

The beam, such as in Fig. 1, is divided by adjafiertiral cracks into elements of length L
of half length lger. Three adjacent elements are shown Fig. 2. Theynaa constant moment
region and, hence, have identical behaviours. Féaracks occur at Sections A-A and C-C;
the behaviour at C-C is a mirror image of thalAaA. Let us first consider Section A-A.
Prior to bending, the left side of Element 1 isragke line c-h-k-n An applied moment will
cause the reinforcing bar to pull out of Elemenbyl A (which is the slip between the
reinforcing bar and the crack face gt and out of Element 2 by an equal amount
Furthermore, the moment will cause the face of Eleini to compress by the shaded region
k-n-o, where D is the contraction at the top fibre, &ldment 2 to compress an identical
amountk-p-0. Hence by symmetrya-g-k-ois a straight line and remains a straight lineasnd
varying moment, that is, the principle of planetsets remaining plane appliesteg-k-a In
contrast, it can be seen that if a line were dradjacent to the crack face then this would
deform toc-h-k-o which is not a straight line and, hence, the ppiecof plane sections
remaining plane is not applicable. It needs totlessed that the crack-face suctadsor c-k
does not need to be linear but that there is atimariation in crack width such as that shown
on the right hand side of element 3 where the cvadkh w, varies linearly from zero at the
crack apex to a maximum at the soffit of the beam.
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Figure 2: Mechanics based beam hinge model in anhstoment region

A line drawn at the centre of an element suchegsn-r in Element 1 in Fig. 2(b) also

remains straight as the moment is varied becaussyofmetry, that is because the
deformation to the left at Section A-A is equal appbosite to the deformation to the right at
Section C-C. Hence the section at mid-span of tkenente-j-m-r also obeys the plane

sections remain plane principle. In conclusion, gnciple of plane sections remaining
plane applies at a section that bisects the crack-+g-k-oand at a section that bisects the
element i.ee-j-m-r but does not apply elsewhere such ag-iakq as this now has a bilinear

shape.

Having shown that plane sections remain plane eti®es A-A and B-B in Fig. 2, now let us
consider the deformations encompassed by thesersecthe length of this region is shown
as Lget Which is simply half the crack spacing.LThere is a linear variation of deformation
in the compression regidan-oand a linear variation in deformation in the tensiegionk-
c-b. These deformations divided by the length of thgion over which these deformations
act ( Lgef) provides a linear variation of strain as plottedhe strain profile in Fig. 2(a) where
at the top fibre the strain is Dj& and that at the level of the reinforcementAGE g It
should be noted that these are either real stiredfective strains. Consider for example
Element 3. If strain gauges were placed ataBd G or at ik and k, where there are no
disturbance at these levels associated with flé>xareeking or the formation of wedges that
is these are undisturbed levels, then the strdwitefd in the strain profile in Element 2 at
these levels are real strains as these are thiassttzat would be measured by the strain
gauges. If strain gauges were placed aait H within the flexural crack region, then these
would not register the strains in the strain peofis they are mainly due to the deformation
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due to crack widening and are, therefore, effecsitrains. Similarly if strain gauges were
placed at £and E that is within a wedge and outside a wedge, theyldvmeasure the same
value but would not be the same as in the straifilpras part of the deformation is due to
sliding of the wedge shown as S.

Hence the strain profile plotted in Element 2 ig.R2 is an effective (that is it cannot be
physically measured) strain profile which givesetive curvaturegesand effective flexural
rigidities if required. It can also be seen thatsth effective values depend on the element
length Lges Which depends on the spacing of cracks leinforcement slip\ which depends

on the bond-slip properties and on the slip ofwleglge S which depends on shear-friction
properties. Figure 2 summarises all aspects ofrteehanics hinge model, where it can be
seen that all aspects of reinforced concrete beamaviour are simulated. Its application is
described in the following section.

Idealisations for a mechanics solution

The mechanics hinge model is illustrated in Figltds simply a question of rotating the
element ends, such ash-k-n by 6 and adjusting the neutral axis deptlk aitil equilibrium

is achieved. To help find a solution, it is ofteesbto make reasonable assumptions which
can often be improved with time but it needs tosbressed do not affect the fundamental
mechanics of the hinge. Let us first consider témsion region.

Tension region

The left hand side of Element 1 in Fig. 2(b) iswhan Fig. 3. The first component that is
required for the analysis is the half crack spadiggas this is the length of the element that
the deformations shown at Section A-A have to ®ewnodated within. It is now common
practice to derive the crack spacing from a patiedraction analysis of the prism of depth
dprism that is encapsulating the reinforcement [4,12 34, The partial-interaction analysis is
illustrated in Fig. 4(a) and depends on the boipl{sld) characteristics which allows slip at
the crack face\ for a given reinforcement force P to be derivekisTanalysis can be used to
determine the variation in strain in the concretel aeinforcement. and g, respectively
along the prism, and in particular the variatiorthe slip-strain &/dx that isec-&, and slipd

as shown. From this can be determined the posiiorfull-interaction where both the
interface slip and the interface slip-strain apphes zero which is also the positiof af the
next crack when the strain in the concrete is etjutiie cracking strain.

Let us now impose a rotatidhwhere the faca-b-cat Section A-A in Fig. 3(b) is linear, and
in which the neutral axis is shown to be constanehse of reading but which varies with the
imposed actions. Let us keep rotating until thesitenstrain capacity of the concredgis
about to be achieved, that is B almostelLqer at deformation 1-1 in Fig. 3(a) where the
rotation is6;. The deformation 1-1 still has a linear variatidi-e so the corresponding
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strain distribution 1-1 in Fig. 3(a) is a real strdistributiong, so that the Euler-Bernoulli
elastic beam equation applies. However, increasiagotation t®, that is deformation 2-2

in Fig. 3(b)f-g-k-b-hwill cause the strain profile 2-2 in Fig. 3(a)vich the strain over the
cracked region ¢ is an effective straines and that over the uncracked regiqg.-gheris a
real strain distributioney. The crack face is nowk-i-l where for example-j is the
deformation in the concrete due to tensile stressése concrete. The tensile stresses in the
concrete must be zero at the crack face and |lessttie tensile capacity at B-B otherwise
another flexural crack would have occurred. Furtiage, if total debonding has occurred at
the ultimate limit state then the tensile strestherconcrete at B-B would be zero. Hence the
deformationi-j shown as d can be assumed to be zero that is all of the oefionf-g-k-b

is due to crack widening and sipof the reinforcement and, furthermore, the slig arack-
width variation is linear.

(@) (b)

strain profile deformation profile

tens-uncr

d

. tens-cr —
| dprism
3

A Ldef B

1

Figure 3: Idealised tensile deformations
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The analysis in Fig. 4(b) gives the relationshipagen P and\ for an element between two
cracks in which case the boundary condition is ®igero at kesfrom the crack face as

shown. The analysis in Fig. 4(b) represents théyaiseof the tension region in Element 1 in
Fig. 2(b) and, hence, gives theAPrelationship required for the analysis in Fig. )3(b

Numerical models have been developed that can eoffe any bond-slip characteristic

[6,10,27] and closed form solutions [12] have bderived for a range of idealised bond-slip
characteristics.

Compression region

A wedge may form in the compression region of tleehanics hinge as can be seen in Fig. 1
and illustrated in Fig. 2. This can be simulatedirectly by using a softening branch in the
compressive stress-strain relationship or it carsibmulated directly using well established
shear-friction theory [30,31,35-37,40].

To understand the shear-friction mechanism, Idirsisconsider the rectangular prism in Fig.
5(a) of height ker and widthb and of a depth into the page that is much larggn Ly, SUCh
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that the behaviour can be considered as two diraeabkso that the deformations shown in
Figs. 5(b) to (e) apply at any cross section thhoug the depth of the prism. The prism can
be loaded to failure and the stress-strain relatignrecorded as in Fig. 6(a) where the strain
is the overall contraction of the prism as a prtiparof the prism height de. There is an
ascending patla-b-c in Fig. 6(a) up to the peak stressat a straine,. Followed by a
horizontal component on further contraction of gresm where the stresg is maintained
whilst the concrete softens up to a straip after which the concrete weakens with a
descending stress with increasing strain.
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The mechanism that causes the stress strain reghiin Fig. 6(a) is illustrated in Fig. 5.
The ascending path-b-cin Fig. 6(a) may be considered to be a materiapg@rty such that
the deformation in Fig. 5(b) afiLq4er and that in Fig. 5(c) ofpklqer at the peak strength are
due to the measurable strain in the concrete. @reepeak stress atepy is achieved at Point
cin Fig. 6(a) and at the deformation in Fig. 5@y further axial deformation can no longer
be accommodated by the material, so wedges formth@dcorresponding stress strain
relationship, c-d-e in Fig. 6(a) is a mechanismetglent on the shear friction properties in
Fig 6(b). These wedges can form as in Fig. 5(@soin Fig. 5(d), depending on the restraints
at the top and bottom of the prism and on the heighwvidth ratio lgef/b of the prism. The
angle of the wedge depends on the cohesive and frictional propedfethe concrete [33]
and also on the heightyd: which if small may forcex to increase so that the wedge can be
accommodated between the end restraints.

Let us now increase the axial deformation of thierprto follow the patle-d in Fig. 6(a) in
which the stress remains constant.atds the stress remains constantcatte strain in the
concrete material remains constantegt as shown in Fig. 5(d), so that the additional
deformation during softening;Snust be accommodated by sliding of the wedggeddch
that the vertical movement, $ equal to €sr-epk)Lder Wherees is defined in Fig. 6(a). Any
further axial deformation as in Fig. 5(e) may catlse applied stress to drop ¢@ at the
apparent straingesin Fig. 6(a). In this case, the strain in the gete material is now;, from
the concrete material properyb-cin Fig. 6(a), as shown in Fig. 5(e). Hence thaltakial
deformationeged-qerconsists of the material deformatiesiqer plus that due to wedge sliding
H, such that Sequals €gese1)Lger

It can be seen that shear-friction theory can leel ds simulate the formation of wedges. It
also helps explain the difference between realrsteg in Fig. 6(a), which are strains in the
concrete that can be physically measured, andtaféestrainsee Which are not the actual
strains in the concrete material but which allow desturbances, in this case wedge sliding.
It can also be seen in Figs. 5(d) and (e) thatetlpeism tests can also be used to quantify the
shear-friction properties along the sliding plahattis the relationship between the normal
stress, shear stresses and slip along the slidarwe &, T, H) which can be given in the
form shown in Fig. 6(b) [35-37].

The application of the above shear-friction meckianio the left hand side of beam element
1 in Fig. 2(b) is illustrated in Fig. 7 for the cpression region where for convenience the
wedge is shown to the right. Furthermore, for caoreece in the explanation, the position of
the neutral axis has been drawn as unchanged huilt ive shown later in the paper in the
application of this procedure that this does chastightly and that the analysis can
accommodate this change. Let us impose a rotéti®o that the face at A-A in Fig. 7(b)
rotates to 1-1 at which point the strain in the fipe reaches in Fig. 7(a), and the
deformationepilqer in Fig. 7(b). This deformation 1-1 can be accomated by the concrete
material as the strains lie withab-cin Fig. 6(a).
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Let us now increase the deformation to 2-2 in F{@) such that the effective top fibre strain
iS esit In Fig. 6(a) so that the stress where the effecsivain exceeds, remains atdf The
region 1-2-4 in Fig. 7(b) and which has been shaidethe deformation that cannot be
accommodated by the material deformation as thésehenaximum value of,lqer. Hence
this deformation 1-2-fias to be accommodated by slip of a wedge of del)s: shown as a
broken line in Fig. 7(c). It is also worth notinlgat the stress in the beam over the depth
(dw)st remains atfin the wedge and also outside the wedge. Furthrernb@low the wedge
the strains are real so that the stresses are Qivatb-cin Fig. 6(a).
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Figure 7: Idealised compression deformation

Let us now further increase the rotation to 3-Fig. 7(b) such that the effective fibre strain
€des N the top fibre exceedsy in Fig. 6(a). The depth of the wedge now incredsdsly)ges

in Fig. 7(b) below which the deformation can beammodated by material contraction. In
this case, the contraction of the material overdépth (d)desis in part less thaeplger i.€.

the line 1-4-5 but reduces to 7-6-5 so that thegeeslip required increases from the shaded
region 1-2-4 to 1-2-3-5-6.
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The force the wedge in Fig. 7(c) can resist candbtermined from the shear friction
properties illustrated in Fig. 6(b) where an iteratapproach may be required to solve. For
example, consider the element of wedge of deptim dFig. 7(c) which is enlarged in Fig.
7(d). Let the deformation at this level to be acoordated by wedge slip be estimated to be
S, as in Fig. 7(b), so that the remaining deformatieguired is;Lgef aS shown and is due to
the material straim;; henceg; is an estimated value,jes; derived for an estimated,.S-or
the contraction § the slip along the sliding plane at the anglen Fig. 7(c) B can be
determined as described in the following paragr#ipk.then a question of moving vertically
up the line at KHin Fig. 6(b) to find the combination of.j> and 6,). that gives a horizontal
force component C in Fig. 7(d). From the force @ ba determined the stressand from
the material propertg-b-cin Fig. 6(a) can be determine the material steaiand if this is
not what is required for:.8hat is €1)ess S has to be iterated to find a solution.

The relationship between the shear-friction slide@mponent H, and the non-material
contraction S [36, 37] is illustrated in Fig. 7fey an element of depth..dPrior to sliding,
points A and B are opposite and adjacent. Slidingatises these points on adjacent planes to
move apart has showrdue to aggregate interlock in addition to the dsgaent H. From

the geometry in Fig. 7(e), it can be deduced thé efjual to the sum of S/eoand ktan.

As h; is an order of magnitude smaller than S it is ement to assume that H is equal to
S/cos.. However as for the relationship betwegno, and H in Fig. 6(b) which is known
[36, 37], the relationship betweeg, s, and H is also known [36, 37] and this can be used
the quantify the ftaro component of H if a greater degree of accuracgdgsiired.

Accommodation of multiple cracks

The analysis procedure outlined above is also egiplié when the softening wedge crosses
multiple cracks. Let us consider the case showikrigure 8(a) where the cracks can be
considered to occur in a constant moment regiohimwitvhich there are five cracks. The
deformation of each individual element, alreadycdégd in Fig. 2, has been shown for the
four elements in Fig. 8(a). The constant momentoregonsists of two symmetrical hinges
that are to the left of A-A and to the right of A-K for example Fig. 8(a) was inverted by
rotating about a horizontal axis, then A-A would dethe support of a continuous beam or
encased beam in which the hinge at the supportddaeithe left hand hinge that is from B-B
to A-A.
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Figure 8: Multiple cracks in hinge region

Let us consider the left hand hinge in Fig. 8(ar Bach element of length &k the top
compressive fibre deforms 2D, the reinforcing lqaull out by 2\ and the crack faces rotate
by 20. Hence for this specific hinge comprising of twiermsents and length 4k, the total
contraction of the top fibre is 4D, the total ratat is 4 and the total slip of the
reinforcement is A as shown in Fig. 8(b). Hence the compression pbhength 4lyer within
the hinge has to accommodate a deformation of 4. Maximum compressive strain that
the material can withstand isx as in Fig. 6(a). Hence the maximum compressive
deformation this hinge of length 4d:can withstand isy4Lger Which is shown as 40n Fig.
8(b). If a further rotation is imposed to cause tleformation 4B, then the deformation
shown shaded must be accommodated by the left artineowedge; the right arm of the
wedge accommodates the deformation in the righd hamge should it exist.

For the double hinge shown in Fig. 8(b) which isminonstant moment region, in theory the
wedge can occur anywhere within the constant momegibn. However only one wedge
will form as seen in practice; this behaviour canip@ simulated with the strain basedyM/
approach. The maximum slip the wedge has to accatataas 4(R-gpklde) Which is the
accumulation of the slips from each half elementenigth L. The deeper the beam the
more elements the hinge encompasses. The crackngp2ies is a function of the bar

46



diameter and concrete cover, whereas, the deftieaffedge g and consequently the length

of the wedge | in Fig. 8(b) is a function of the depth of the quession zone and
consequently a function of the depth of the beaendé the wedge length,lencompasses
more cracks at a spacing of gias the depth of the beam increases. Hence deepsbeam
require more slip than shallow beams like slabsslAsreduces the wedge capacity as in Fig.
6(b), deeper beams are more prone to wedge faikigeen in practice and which is a further
behaviour that the M/approach cannot simulate.

VALIDATION OF HINGE MODEL

It is difficult to test hinges in isolation. Poskilithe closest test model is an eccentrically
loaded prism [23,24]. The hinge model is first agglto the analysis of eccentrically loaded
prisms and then compared with test results. Thigepas on the formation of hinges.
However it may be worth noting that the momenttrtotamodel depicted in Fig. 2 applies at
all stages of loading that is at both serviceagbidihd at ultimate. This partial interaction
model has been used to determine the deflectidieaims at serviceability [38] using closed
form solutions for the tension stiffening [12] agides good correlation with test results. In
these analyses the element lengths as depicte).ir?2 kvere equal to the theoretical crack
spacing which are in general two orders of mageitsihaller than the beam span so that the
assumption of a constant moment region betweenksra@as shown not to affect the
deflection.

Analysis of eccentrically loaded prism

The analysis of an eccentrically loaded prism msarised in Fig. 9 where the prism is of
length 2lger. Thick steel plates are often glued to the specifaees A-A of the concrete in
Fig. 9(d) so that the interface can take tensiotoa® P is then applied at an eccentri@ty
which causes a rotatighas shown. It is, therefore, simply a questionixihify the rotatiord
and varying the neutral axis,.guntil the resultant force is in line with the pasit of the
applied force P after which moments are taken. défermation is shown in Fig. 9(c), the
stresses from these deformations in Fig. 9(b) dv&dresulting forces in Fig. 9(a). It is
common practice to ignore the tensile capacityhefd¢oncrete but this can be included if the
serviceability behaviour is important. The analys@s cope with compression steel as the
deformation at the level of the compression st&gh.comp gives the real strain in the
compression reinforcement &tin.comdLder and, consequently, the force in the reinforcement
Preint-comp It is also worth noting that the rotation of fhresm faced is equal to the rotation of
the adjacent crack face. Hence as the analysisgales the height of the crack, the slip of
the reinforcementA and consequently the force in the reinforcemehgukl tension
reinforcement be present, it can be determined fitmerpartial interaction analyses depicted
in Fig. 4.
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The analysis in Fig. 9 will now be applied to edceally loaded prisms without any

reinforcement as these are available in publishieature. The tensile capacity of the
concrete will be ignored as this has a very miritece Hence only the compressive material
properties are required which are the ascendingeptiesa-b-cin Fig. 6(a) and the shear-

friction properties in Fig. 6(b).
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Figure 9: Analysis of eccentrically loaded prism

The analysis procedure can be split into two stagestly for low levels of applied loads
where the total rotation can be accommodated foutih material deformation, the strain in
the concrete remains within the ascending brambhc in Fig. 6(a). Assuming Hognestad’s
parabolic stress distribution [41]

o=f|%- (—)] (1)

Epk Epk
in which the peak strain can been determined u$42j,
ek = (—0.067f, + 29.9f, + 1053).107° (2)

the compressive load,R for a given depth of the neutral axis,dwidth of beanb, and peak
compressive straip,, which occurs at the top surface in Fig. 9(d) amdavhich g, is less
thanepy, can be determined as follows

Pase = bfedna (22) (1 - 2) ©

3£pk

In the second case, a softening wedge forms whemigximum material deformation has
occurred, that is when the maximum effective stiaithe concrete has exceeded the peak

48



material strairep.. The force developed in the ascending regiqg: iR Fig. 9(a), is now be
given by

Pasc = 2/3 feQasch (4)

where the depth of the ascending regign chn be calculated from the displacement profile
in Fig. 9(c) where gis the region where the displacement is less thaner.

From the displacement profile in Fig. 9(c), the gif the wedge can be determined; this is an
iterative process and is carried out for each stitehe wedge. The analysis begins by
guessing a concrete strain in the wedgén Fig. 9(c) of )4, and based on the length of
deformation, kes, calculating the material deformatiogp)gLser. The wedge must then slip a
distance $as shown to make up the total required deforméaion

The analytical procedure has already been descpb®dously using Fig. 7. The slip, &
resolved to give the slip of Halong the shear plane in Fig. 7(d). Hence from ghear-
friction properties in Fig. 6(b), the combinatiohay andt, must lie along the vertical line at
the slip B. It is a question of finding the combination @f andt, along this vertical line
such that the resulting force C in Fig. 7(d) isibontal, that is the algebraic sum of the
vertical components of T and N in Fig. 7(d) is zéfbe shear force T in Fig. 7(d) is given by

T = Tpdew (5)

sina

and the normal force N by

__ opdew
N = sina (6)
where the angle of the wedgevhich depends on the Mohr-Coulomb frictional pndpean
be assumed to be 3and where the shear-friction properties are giweiid7] and the units
are in N and mm

= [(—30.142 +51.623 %) H] (5—3)0'91 + 0.497f, )

Knowing the force C in Fig. 7(d) and, thereforee #tress developed in the wedge the
straine, in Fig. 9(d) can be determined using Eq. 1. If $krin is not equal to that which
was initially guessedef)y, the procedure has to be iterated until it doesTées procedure
can be repeated for each wedge element to derevevélalge element forces @ G, in Fig.
9(a).

Having found the forces developed in both the wealye the ascending region in Fig. 9(a)
and for the case where reinforcing bars are nagmte the location of the resultant force can
be determined, and the depth of the neutral axiedjusted until the resultant force lies in
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line with the applied load P. If the length of thvedge Ly in Fig. 9(d) exceedsgk;, then this
forces the angle of the wedge to changestas shown to allow sliding; this does not occur in
beams but is peculiar to eccentrically loaded psism

Comparison with test results

In order to quantify the full range stress-stra@n@viour of concrete, Debernardi and Taliano
[24] conducted a series of compression tests udgacement controlled conditions on
prisms with the dimensions of 500x200x100 with thieldle 336mm of the section having a
reduced cross section of 150x100mm. During thests,t¢he deformations were recorded
using a series of extensometers placed along hettehsion and compression faces, and the
resulting deformations were used to construct masaation plots as in Fig. 10 for
specimens with eccentricities of 24, 36 and 48mm.

The moment-rotation analysis depicted in Fig. 9stm@wn as the ‘theoretical’ results in Figs.

10 where the moment at the start of cracking arttleastart of softening or wedge formation

are also shown. Importantly it can be seen thatthe®retical’ results have the same shape
as the experimental results as well as good caizakain magnitude over the entire range of
behaviour, including post cracking and softeningtted section especially considering the
variation in experimental results. It is suggestieat the good correlation in shape would
imply that this mechanics model simulates the testlts, in contrast to the magnitudes
which are dependent on the accuracy of the measwagdrial properties which can be

refined with time.
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Figure 10: Comparison of Debernardi and Talianbresults

EXAMPLES OF MECHANICS SOLUTIONS

As the moment-rotation analysis is mechanics baises,possible to develop closed form
solutions to describe member behaviours which arelp dependent on material properties.
As an example, a closed form solution has beenldeeé to determine the crack height for a
singly reinforced section such as that shown in Eigunder serviceability loads.
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From the tension region in Fig. 11, the crack rotef is given by

A

der—cC

0 = (8)

whereA is the reinforcement slip relative to the crackefad; is the depth of the crack and
dc-c is the distance of the reinforcement from theckrapex. From the compression region

_ Stop
0= d—der 9)

wheredip is the maximum deformation in the compression zaneéd is the depth of the
beam. From Egs. 8 and 9

A(d—dcr)
Otop =g ¢ (10)
The maximum strain in the concrete is
g= Jp (11)
Ldef

where,Lger IS half the crack spacing, which for a lineareasting bond stress distribution
[11]is

1
Lger = /1—1 (12)
where

M = JkoB, (13)
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in which k.is the bond stiffness arfid is given by
L T
b= 55+ 25 o

in which L, is the perimeter of the reinforcing bar, the area of the reinforcing bar, E
Young’s Modulus of the reinforcing bar. Foung’s Modulus of the concrete and & the
area of concrete surrounding the reinforcing baictvinteracts with the bar. From Egs. 11
and 12, the force developed in the concrete isngbwe

0.5A(d—dcy)?AEcb
Peone = (der—0) (15)

where E is the modulus of the concrete as we are dealitiy serviceability conditions and
b is the width of the beam.

Now consider the tensile reinforcement in Fig. Ji¢hich is surrounded by concrete of area
A., as defined above, over a lengthygLbetween adjacent cracks. The force developed for
given slipA using partial interaction theory [12] is given by

nAArErll

Preinf—tens = “tanh(1) (16)

where n is the number of reinforcing bars anésBEhe modulus of the steel reinforcement as
we are dealing with serviceability. It may be wviomoting that the partial-interaction
mechanics principles that are used to derive Edodéhe force in a reinforcing bar between
adjacent cracks, are the same as that used teedbavorce in the reinforcing bar when only
one crack exists by Mohamed Ali et al [43]. Henloe €quivalent expression to Eq. 16 from
[43] could be substituted when dealing with a sngjlack.

As P.onc = NReint-tensat equilibrium, the crack height is given by

dbE, tanh(1)+nArEr$\/2 dbE.nAyErtanh(1)+n2A2E2 —2bE nA,Eyc tanh(1)

dCT -

bE; tanh(1) (17)
It can be seen that the crack height is fixed fgiven beam geometry and interestingly is
independent of the applied moment and the bondackenistics. As a comparison, for a
singly reinforced beam of depth 450 mm and width &im with 4 No. 28 mm bars, Eq. 16
based on partial-interaction gives a crack hei@f&4® mm which is in close agreement with
the 276 mm obtained using full-interaction momemtvature transformed sections.

SUMMARY
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A mechanics based moment rotation hinge model bas developed for beams at all stages
of loading from serviceability to ultimate and cgicollapse. The mechanics hinge model is
based on the principle of plane sections remaipiage and a linear real strain profile prior
to the formation of disturbances such as flexuratks in the tension zone and wedges in the
compression zone. However after the formation dftuwlbances, the well established
principle of plane sections remaining plane onlplegs at discrete locations and a linear
effective, as opposed to real, strain profile i$ycapplicable. The mechanics hinge model
uses the well established principle of shear-fiitctto model concrete compressive failure
and, hence, directly models the formation of wedgébhout the need for empirical hinge
lengths or softening stress-strain concrete prasert-urthermore, the mechanics hinge
model uses partial-interaction theory to model dbgelopment of flexural cracks and their
widening and the consequential deflection of beantlsout the need for empirical models
such as effective flexural rigidities or empiridghge lengths. The mechanics based hinge
model is shown to model the behaviour of eccertyidaaded prisms well and being a
mechanics based model closed form solutions cabtaened as described.

Unlike empirically based models which should oné dsed within the bounds of the tests
from which they were developed, this mechanics dasedel can in theory be used for any
type of reinforced concrete beam just as long agrihterial properties are available. Hence
it should help in the rapid development of new picid such as the application of new types
of reinforcement and new types of concrete as a®lbetter refinement of existing design
rules.
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A Mechanics Based Hinge Analysis for Reinforced Camete Columns
Visintin, P., Oehlers, D.Xaskett, M. and Wu, C..

ABSTRACT

The lateral deformation behaviour of a reinforcedarete column is particularly important
as it not only magnifies the moment but also affettte ability of the column and,
subsequently, frame to sway and absorb energy lastafjes of loading. The lateral
deformation is affected by disturbed regions, sashensile cracks or compression wedges,
which are often simulated with the help of hingdsoge properties are derived empirically.
Being empirical, these hinges can only be usedinvitiile bounds of the tests from which
they were derived, and in this respect are of 8ohitise. In this paper, a mechanics based
hinge is developed which can be used at all stafjlemding, that is, at serviceability through
to ultimate and also during failure. The mechatiased model is based on the principle of
plane sections remaining plane, shear-friction mhewhich quantifies the behaviour of
reinforced concrete across sliding planes, andgbamteraction theory that allows for slip
between the reinforcement and the encasing cond@eteg mechanics based, it can be used
for any type of reinforced concrete column, thabisany type of reinforcement and for any
type of concrete just as long as the material pt@gseare known. The mechanics model is
shown to be in good agreement with published &silts and can simulate not only multiple
cracks if necessary but also the formation of wedge

Keywords: reinforced concrete; reinforced concrete colummsnforced concrete hinges;
hinge lengths; shear friction; partial interactidogtility; moment rotation.

INTRODUCTION

The resistance of a reinforced concrete frame agdéteral loads such as earthquake and
hurricane loads, depends not only on the appliegtdhloads, but also on the position at
which hinges form, whether in beams or columns, @sd on the ability of these hinges to
rotate and absorb energy, not just at the ultingateacity but also during failure. It is
common practice to use a strain based full-intesaahoment-curvature analysis to quantify
the curvature at the ultimate limit. And as thisiswo-dimensional analysis, to then use an
empirically derived hinge length over which thevature can be integrated to ensure the
rotation at the ultimate limit is equal to thatetetined experimentally at the ultimate limit.
This approach has the following limitations. Beiegpirically based, this strain based
approach can only be used within the bounds oftéses from which the empirical hinge
lengths were derived and research has shown (Rdaakgs and Fardis 2001) that use outside
these empirical bounds can lead to large scatteesilts. These empirical hinge lengths
generally only apply at the limit of the maximum ment capacity and so cannot be used at
serviceability which means that very careful coresadion has to be made as to where these
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hinges occur and, furthermore, these empirical énitengths do not simulate the failure
process.

A displacement based partial-interaction momerdtroh approach for simulating reinforced
concrete hinges is described in this paper. ltased on the fundamental principle of plane
sections remaining plane but not on the corolldrg bnear strain profile where disturbances
such as cracks or wedges have formed. This mechamdel simulates what is actually seen
in practice. The model simulates the formationraicks and the widening of cracks through
partial interaction theoryBachmann1970; Yuan et al. 2004; Oehlers et al. 2005; Moédm

Ali et al. 2008a,b; Haskett et al. 2009; Muhamadakt2011) and the development of
compression wedges, which leads to concrete saffethrough the use of shear-friction
theory (Birkeland and Birkeland 1966; Hofbeck et169; Walraven and Reinhardt 1981,
Walraven et al. 1987; Mansur et al. 2008; Hasketlle2010; Haskett et al. 2011a,b). The
model quantifies reinforcement debonding, yield &@ature and the gradual formation of
compression wedges and their sliding and eventihlré. The model can also cope with
shear failure (Lucas et al. 2011) if required, this has not been included in this paper.
Furthermore extension to allow for cyclic loadirgy possible through the use of a cyclic
partial interaction model such as Visintin et aD11).

The basic fundamental mechanics principles of tleehanics hinge model for reinforced

concrete columns are first described. A numeric@autation of this hinge model is then

described although any convenient approach carsee. krurthermore, in order to simulate
this hinge model, idealised assumptions are theengsuch as material properties which can
be refined with time. The model is then validateithwa comparison with tests on

eccentrically axially loaded prisms.

FUNDAMENTAL PRINCIPLES OF COLUMN HINGE MECHANISM

An example of a hinge that occurs between colundsewhich may occur in the case of an
eccentrically loaded column, is shown in Fig. 1{&)e boundaries of the hinge A-A and B-B
need to be placed at sections where the Euler-Bérpoinciple of plane sections remaining
plane applies. It is convenient, but not essemntighe analysis, to choose total hinge lengths
or deformation lengths 21 which encompass the disturbances within the colaouh as
that due to major tensile cracking and that dugnécformation of wedges should they occur.
And, furthermore, to choose total hinge or defoioratengths in which the moment can be
assumed to be constant which is generally the asgbe disturbed region is usually at least
an order of magnitude smaller than the length ef ¢blumn. Hence unlike the moment-
curvature strain based approach where the hinggHes fixed for a given column cross-
section, in this approach any convenient hinge tlenggan be chosen as long as it
encompasses the softening wedge. For examplejrtge houndary could have been taken at
C-C in which the total hinge length is 2¢).. In this case, the change in rotation between the
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boundaries A-A and C-C is simply that due to thietion between these boundaries which
can be obtained by integrating the curvature shdigtdirbances not occur within this region.

As the hinge in Fig. 1(a) is symmetrical about thid-hinge section at D-D, the deformation
A’-A’ at rotation 6, is the mirror image of that at B’-B’ so that plasections remain plane at
the mid-height D-D. Hence the deformation at tharmtary A-A shown as A’-A’ has to be
accommodated over the lengthdk and that due to B’-B’ over the adjacent lengtleqtial
magnitude. Hence the lengthylhas to accommodate the adjacent boundary defamnsasio

it may be more convenient to considep &s one hinge length such that in Fig. 1(a) theze a
in effect two identical hinges which form about axis of symmetry at D-D and with each
hinge having a length of gl):. The cracks in the upper hinge in Fig. 1(a) robaté. by slip
between the reinforcement and the crack facé ahd the wedges at an anglslip up to a
maximum value of S as shown. The deformation A’h&s to accommodate not only the
material strains within the hinge boundaries babahe non-material deformations due to the
wedge slip S and reinforcement slip This non-material deformation only occurs in
disturbed regions.
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Fig. 1 Column hinges
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A hinge at the base of a column, which may occurefcample in a cantilever column is
shown in Fig. 1(b). In this case, there is only birege of length Ly as no axis of symmetry
exists around the hinge and hence the principlgdarfe sections remaining plane applies not
only at E-E but also at the base at F-F. Hencditlear variation in deformation I-I which
has to be accommodated over the lengfhproduces a linear variation in strain as shown.
For example, the deformation at the compressioe éanduces an overall strain/th,g and
that at the tension face/ld,g.

If disturbances do not occur within the hinge sastover the depthugdin Fig. 1(b), then the
overall strains in this region in the strain prefére real strains and are what would be
recorded by a strain gauge at J which is shownoag g on the strain profile in Fig. 1(b).
Flexural cracks may form in the tension region epith d.ns making it a disturbed region.
These cracks widen through slip between the reiefoent and the concrete which at the
crack face is shown asand which causes the discrete rotation at eaak étaHence in the
cracked region of depthegs the deformation is due to both strain in the cetecand crack
widening that is the strain in this region is afeefive strain such that strain gauge K would
not measure the corresponding strain in the spredfile. Concrete softening takes place as
wedges of depth,dform in the compression region. The wedges haver@ical component
of slip S along the sliding plane such that theodeftion I-I is a result of both this slip and
the concrete strains so that the strains oyere effective and are strains that would not be
recorded by a strain gauge at L.

In summary, when disturbances do not occur withahinge, the strain profile in Fig. 1(b)
is a real strain profile. Hence the corollary te tuler-Bernoulli principle of a linear real
strain profile, which gives real curvaturggand real flexural rigidities El, applies and which
depends on material properties. In these circurastan strain based approach is applicable.
In comparison, when disturbances do occur, theeelisear effective strain profile, which
gives an effective curvature and an effective ftekuigidity which depends not only on
material properties but also on the crack widenmgchanism and the wedge sliding
mechanism. In these circumstances a deformatioedbasproach is required, as presented in
this paper.

MODELLING OF MECHANICS HINGE

A numerical procedure for quantifying the behaviadirhinges is proposed. The model is
described for the full range of stress resultahtst tan be applied, which ranges from
concentrically loaded hinges with zero moment (@gcolumn in pure compression), to
hinges subjected to predominantly moment (e.g. an)eAs we are dealing with a small
region of the column that is the hinge, it will Besumed, for convenience of explanation,
that the hinge is in a constant moment region aljho variable moments can be
accommodated.
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Deformation of hinges under pure compression
Consider the concentrically loaded hinge in Fig)26 which G-G and F-F are the Euler-
Bernoulli boundaries where plane sections remaangl As the hinge boundary G-G is
moved downwards under increasing applied stresscdhtraction as a proportion ofglis a
real strain so that the stress-strain relationsbipws the ascending path O-A-B in Fig. 3
which may be considered a material property. Thakstressfin Fig. 3 is the maximum
stress that the concrete material can resist amdélak strairgy at the onset ofcfis the
maximum strain the concrete material can resishcdehe maximum deformation the hinge
material can resist iglng Which is shown as line H-H in Fig. 2.

P

__Ci_l —

€Y (b) (©)
Fig. 2 Concentrically loaded hinge

If a further displacement D is now applied from Hrl-I in Fig. 2(b), then this increase in
displacement D cannot be accommodated by concretteria strains but has to be
accommodated by slip of the wedge which has acartiomponent Sas shown and this slip
of the wedge results in concrete softening. Thegeethn form as in Fig. 2(a) or as in Fig.
2(b) depending on the restraints at the boundaunek their distance apart. However, the
mechanics are virtually the same except that in #g) localised crushing of the apex is
required to accommodate interface slip. The anflihn® wedgen depends on the frictional
properties of the concrete (Mohamed Ali et al. 2040d for normal concrete is about®30
The total displacementsfrom G-G to I-I in Fig. 2(b) is accommodated byasts in the
concretese and by the vertical component of the slips8ch that the effective strain is given

by

geff: < =&t . (1)
g hg

That is the falling branch of the concrete strdsais relationship, B-D in Fig. 3, is not a
material property, but rather the strains are éffecstrains because they are the result of
both material and non-material deformation. Thérfglbranch must therefore be considered
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a mechanism where the material deformation is otlatt by the stress-strain relationship A-
B in Fig. 3, and the non material deformatiqnisScontrolled by the shear friction properties
in Fig. 4.
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Fig. 3 Concrete material properties
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Fig. 4 Concrete shear-friction properties
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For example, if the applied stress at displacenigrat I-1 is ce in Fig. 3, then the material
strain throughout the hinge ¢s Therefore from Eq. 1, the slip®quired is the deformation
Te less that which is accommodated by the concretemabeclng It can be seen in Fig. 3
that at a stress level, the real strain ise and the effective component of strain ifL&; It
can also be seen in Eq. 1 and in Fig. 3 that ifitimge length is doubled to gf-then the
effective component of strain is halved. Hence affe concrete stress-strain relationships
are size dependent and, consequently, have todzewish care. The alternative is to use a
shear-friction approach which automatically acceudot size dependency as follows.

Because of the uniform displacement that is appieethe hinge in Fig. 2(b), the vertical
component of the slipe3s uniform along the width of the hinge and haomponent along
the sliding plane of EHas shown in Fig. 2(c). Let us now consider an elenof width d in
Fig. 2(b) that is shown enlarged in Fig. 2(d), tisadubjected to an applied stresgmaterial
strainee) and consequently applied forceiR which there is a vertical component of slip S
that can be derived from the applied displacemerdasTin Eq. 1. From equilibrium of the
forces in Fig. 2(d), can be derived the normal dokg and shear forcecFadjacent to the
sliding plane from which can be derived the normiaéss to the sliding plang, and the
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shear stress across the sliding planeHence the shear-friction properties in Fig. 4 ban
derived from this type of test (Haskett et al. 20@skett 2011a,b).

Conversely the shear-friction properties in Figcah be used to analyse the hinge in Fig.
2(b). The applied displacemeng i accommodated by material straih,y and the vertical
component of the wedge slip ®hich has a sliding component;Ht may be worth noting
that this is only a good approximation as it doesinclude the second order effect of the
crack widening due to aggregate interlock (Hasketl 2010). A solution can be found by
iterating. Let us guess that to induce the applisglacement Jthe applied stress isdguess

at which the material strain ise¢fguess The vertical component of the wedge slipc&n be
derived from Eq. 1 and consequently the sliding ponent of the slip Efrom Fig. 2(c). It is
simply a question of moving along the vertical lateH. in Fig. 4 until the combination af,
andc, when input into Fig. 2(d) gives a vertical componef F.. If the resultingoe is not
equal to §e)guessthen the procedure has to be iterated until isckme

Rotation of hinges whilst in compression

The column hinge in Fig. 5(b) is subjected to a rantrand axial load of magnitudes such
that the extending displacements induced by the embnare less than the contracting
displacements induced by the axial load, and tbegethe remains purely in compression.
This case allows for the illustration of the fotna of wedges. The axial load P is first
applied at the hinge boundary G-G and the momegtadually increased until the strain on
the surface of the concrete on the right hand gidereaches the concrete material peak
straingy in Fig. 3. This is shown as deformation I-I' ingFb(a) where the contraction G-I’
is equal togplng. Up to this point, the wedge has not formed asd&®rmation can be
accommodated by the strain in the material. Hens&raan based moment-curvature i/
analysis when integrated over the hinge lengihwill give exactly the same results as the
displacement based moment-rotation @Méanalysis. This is shown as O-A in Fig. 6 to
emphasise the fact that there are no differencéwelee the two approaches prior to
disturbances being formed and also the fact tleaMii applies at serviceability.

Let us now increase the rotation in Fig. 5(a) t8.JAny component of the deformation that
exceedseplng Shown as the shaded region adjacent to I'-J’ cabeoaccommodated by
material deformation. This shaded deformation caly be accommodated by wedge slip so
that a wedge of depth,dhas to form. If in this example we assume thatpbak material
strength § can be maintained over the depth duch that we are moving along B-C in Fig. 3
so that the material strain in this region remaahsy then the slip of the wedge at the
surface of the column is I'-J".

Let us now increase the rotation in Fig. 5(a)idhat is line K-K’ such that the stress on the
right hand surface of the column is now reduciranglC-D in Fig. 3, that is it is less than f
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so that the material strain is less thgi The deformation M-I'-K’ in Fig. 5(a) cannot be
accommodated by material deformation as the defitoman this region exceedsilng SO
that the depth of wedge required is now.dConsider the element of the wedge of width d
where the strain ig, which is less tharepc so that the material can accommodate a
deformation ofe;Lng which means that the wedge has to take up theim@mgadeformation
that is to accommodate a slip & shown. Hence the slip that the wedge has tmanodate

is now M-P-K’ being zero at M with a maximum valaethe column surface of &8s shown.
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Fig. 5 Rotation of hinge whilst in pure compression
A numerical solution can be obtained by iteratidts an illustration, let us impose a
displacement G-K on the left hand surface of thiema in Fig. 5(a). Using K as a pivotal
point, rotate K-K’, that is varyk, until equilibrium is achieved. For example foreth
displacement K-K’, the effective strain variatian given in Fig. 5(c). For the longitudinal
reinforcement on either side of the column andtli@r concrete where the strain is less than
epk, these are real strains so from their materiap@riies the stresses in Fig. 5(d) can be
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obtained so that the forces in Fig. 5(e) for, P.sc and R can be derived as explained
previously. This leaves the force in the wedge aegio be determined, as explained
previously using Fig. 2, an iterative procedurejolihhas also been used in Visintin et al.
(2011), can be used. Take the wedge element ohwddin Fig. 5(b). Start by guessing the
stress §2)guessfrom which the material straigp can be determined using any material stress-
strain relationship, that is O-B in Fig.3. Sincesitknown the stress; lies between 0 and f
and the material strain between 0 apga simple bisection method can be used to iterate as
follows. For the guessed stress the material defbom e;Lng in Fig. 5(a) is known and
consequently for the given deformation shown in Bi@) so too is the vertical component of
the wedge slip S From Fig. 2(c) can be derived the sliding compurié and for this value

of Hy in Fig. 4, it is a question of finding the comitina of 1., andon, that gives a vertical
component of Pin Fig. 2(d) that is R If the associated stress is not equal tod)guessthen
iterate until it is. This gives the stressin Fig. 5(d) and B in Fig. 5(e). As a termination
criterion, it is sufficient that the calculated ests is within 5% of the guessed stress, and
convergence can often be achieved in less thategdtions. When implementing it is known
that the strain in the wedge is initially closegteand hence an initial guess of closestp
leads to a rapid solution, this solution can thenused as the initial starting guess for
subsequent analyses where the rotation has inckease

The procedure needs to be repeated for the otleenesits of the wedge as unlike the
concentrically loaded prism in Fig. 2, in the casdrig. 5 the slips vary over the section
depth. For the case of a column subjected to adfieplied load P and then increasing
moments, it is simply a case of rotatifig until the resultant force from Fig. 5(e) is P and
then taking moments. Alternatively if an axial Io0RAds applied gradually at an eccentri@fy
thenOk can be rotated until the resultant force from Bi@) is in line with the eccentricity

The procedure described above can be repeateffexedt pivotal points such as | and J in
Fig. 5(a) to derive the M/response such as in Fig. 6. This moment-rotatiooquure gives
the full range of MJ: from serviceability to the peak capacity thalQOsA; at the ultimate
limit state whilst the maximum moment capacity,Mis being maintained along A-B; and
also during failure B-C. However, it may be wortabing in mind that this is in contrast to
the Mk empirical hinge length approach which is normailhyy applied at the ultimate limit
of the maximum moment My to quantify the rotation capacity at B.
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Rotation of hinges that accommodate flexural cracks

Figure 7 illustrates a column hinge in which fleeducracking has occurred. The deformation
H-H has to accommodate flexural cracking and isoeisited tension stiffening that is the
interaction between the tension reinforcement aedconcrete. It is now common practice to
simulate tension stiffening, that is the post cnagkbehavior of the concrete, by considering
individual reinforcing bars of area, &mbedded in individual concrete prisms of argarid

in which the bond-slip propertia$d allow for slip between the reinforcement and ceter
(Gupta and Maestrini 1990; Wu et al 1991; Choi @heéung 1996; Marti et al 1998; Yuan et
al 2004; Oehlers et al 2005; Warner et al 2007; &hodd Ali M.S. et al 2008a,b; Haskett et
al 2008; Mohamed Ali M.S. et al 2011; Muhamad,211).
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Fig. 7 Rotation of hinge accommodating cracks
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A numerical model that explains the mechanics kbhime partial-interaction tension
stiffening model (Haskett et al 2008; Oehlers e2@ll1) is illustrated in Fig. 8 where three
elemets for the analusis and the associated eqgaéice shown. The prism is sliced into
elements of very short lengths Which are shown separated and where A-A is angkcra
face. The bar is pulled out from the crack facestadceA; so that, from the known material
bond-slip properties/s, the bond force in the first elemeni Ban be determined. It is a
question of finding the forcefthat induces this imposed crack face glip This can be
done by first guessingAn which case the stress in the bar and the acaoyipg straire,;

is known. At the crack face, the stress in the petiecis zero so that the strain in the concrete
gc1 can be taken as zero as the element thickngissdeliberately very small. The slip-strain
(ds/dx) is the algebraic difference in strain bedwéhe reinforcement and the concrete which
for Element 1 i%1-¢c1 as shown. The change in slip over ElemetAl, is the integration of
the slip-strain over {as shown. Hence both the slip and slip-strainlemient 1 are known.
The analysis can be repeated for Element 2 wheréotice in the reinforcing barHs now
P1-B1, the force in the concrete prismyRvhich is now B and the slip between the
reinforcing bar and the concrete is now A;-6A; from which the bond force Bcan be
derived. From these quantities can be derived lipesgain in Element 2 (ds/dx)and the
increase in slipA; that affects the next element along.
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Fig. 8 Tension stiffening
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The above analysis gives the variation in sliptstrds/dx, and slipA, along the prism. Itis a
question of finding the force,such that the slip-strain and slip tend to zer¢hatsame
position shown asgn Fig. 8 as this is a position of full-interactiand it is also the position
of the next crack that is the crack spacingi®Fig. 7(c). This analysis can also be used to
determine the force in the reinforcing bas iR Fig. 8 that causes the concrete prism to crack
at the tensile strength of the concretesd that it gives not only the crack spacingi® Fig.

7(c) but also the force in the reinforcing bar ig.F7(d) that causes the crack at Fig. 7(b).
Once the next crack or cracks at spaciggrSthe hinge occurs, the procedure illustrated in
Fig. 8 can also be used to determine therlationship at the cracks by simply changing the
boundary condition ta = 0 at $/2.

Prior to disturbances being present, that is ptaorithe formation of flexural cracks or
wedges, a strain basedpMdnalysis and the displacement based dialysis as illustrated in
Fig. 5 will give the formation of the initial crackt F-F in Fig. 7(d). After this initial crack
has formed, the strain basedy\halysis will not give the formation of subsequercks as
the hinge is now disturbed. In this case, the glmteraction analysis in Fig. 8 can be used
to: quantify the P relation at F-F in Fig. 7(d) shown enlarged in.F); when and where
the next crack or cracks at the spacing d&cur or should they occur; and also th& P/
relationships at both F-F and at the positigns8own enlarged in Fig. 7(h) after the cracks
have formed. Full details are given elsewhere (s al 2008; Oehlers et al. 2011).

The analysis of multiple cracks is similar to tdascribed for Fig. 5. Point H in Fig. 7(a) can
be used as a pivot and the Euler-Bernoulli boundthiy rotateddy to find a solution. It is
often convenient to assume that the tensile strathe concrete over the cracked region of
width d.; is zero. In this case, the imposed rotatigris also the total rotation of the cracks
which for the two cracks shown i®.4Hence from the linear variation in crack widthnde
determined the slip of the reinforcementand from the analysis in Fig. 8, the force in the
reinforcement at the crack face Bs required in Fig. 7(g). As explained for thelgsia in
Fig. 5, it is simply a question of rotatig to be in equilibrium with the applied forces and
varying the displacementMto get the full moment rotation in Fig. 6. In tluase, the M/
and Mb approaches give identical results in Fig. 6 uh#l initial crack or wedge occurs that
is whichever occurs first. It may be worth notinmt the crack faces in Fig. 7 have been
drawn as straight lines for convenience. They cdsde been drawn as curved but what is
important is that there is a linear variation iraak widths from zero at the apex to a
maximum at the column surface.

VALIDATION OF HINGE MECHANISM

In order to validate the hinge mechanism, reinfdreecentrically loaded prisms, where
second order effects are minimal, have been siedidn the simulations, the following
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material stress-strain relationship used for theemging branch O-A-B in Fig. 3 is that of
Hognestad (1955)
2
o=f, E_[LJ )
Exc |\ Epk

where the peak strain has been calculated usihgreihe empirically derived relationship
developed by Wee et al. (1996)

Ep = 0.00078f °° 3)
or by Tasdemir et al (1998)

£, =(-0067f, +299f, +1053.10° 4)

and the following shear-friction properties thatreveised, Fig. 4, are those of Haskett et al.
(2011b)

091
r= H— 30.142+ 51.623Jf—NjH }[%J +0.497f, 3)

c

where the units are in N and mm. Finally, the beli properties suggested by CEB (1992)
have been used, as well as the stress-strainomdaip developed by Dhakal and Maekawa
(2002) to allow for buckling of the compressiomifercement.

The eccentrically loaded prisms tested by Kim arahg (1995) with a length of 240mm
have been simulated. While longer specimens weaie takted, these were not considered as
the second order effects were found to be sigmificBhe specimens all have 80mm x 80mm
cross sections and are reinforced with 4 #2 bagiv® a reinforcing ratio of 1.98%, or 8 #2
bars to give a reinforcing ratio of 3.95%. For eaginforcing ratio, three concrete strengths
were tested, namely 25.5MPa, 63.5MPa and 82.6MP.

The theoretical results are shown as broken lineBig. 9 which also shows the onset of
cracking, buckling and softening. In the case a&f #ipecimen wittp = 1.98% and f=
25.5MPa, this test was reported to have failed ptarely which is in line with the
theoretical prediction. In order to show the séwityt of the analysis to the material
properties, the peak strain models of both Wed. 0.896) and Tasdamir et al.(1998) have
been used and as can be seen can influence theitntggnof the theoretical results
significantly, particularly at higher concrete sigéhs. It can be seen that the theoretical
results have the same shape as the experimentdisregich suggest that the mechanics
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model is capable of simulating the tests. Whileasonable correlation with the magnitudes
of the results is seen over the entire range ohWeh, that is before cracking, after cracking
and during softening, it can be expected that tgmitudes can be improved as the shear-
friction material properties are refined with time.
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Fig. 9 Simulation of reinforced eccentrically loddarisms

It is important to note, as seen in Fig. 10, tinat MAb relationship can be converted into a
moment-equivalent flexural rigidity (&) relationship. This is done by fist deriving the
curvature, which is simply the rotation divided #hye length over which is acts, thatyis
O\L4er. The equivalent El is not the same as the effectt derived from transformed
sections as the M/approach accounts for partial interaction betwenreinforcement and
the concrete as well as the formation and failudreaftening wedges. Having derived the
(M/Eleqy relationship calculating member deflection simpbecomes a matter of
determining the curvature distribution for a givemment distribution and integrating twice
as in a traditional analysis.
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Fig. 10 Moment-Edy, relationships for eccentrically loaded prisms

CONCLUSIONS

A mechanics based model for hinges in reinforcattiie columns has been described and
shown to simulate test results closely. The moslélised on the Euler-Bernoulli principle of
plane sections remaining plane. It is also basetheruler-Bernoulli strain based corollary
of a linear strain profile prior to the formatiohftexural cracks or wedges but not after these
disturbances have occurred. After disturbancesméehanics model shows that an effective
linear strain profile does occur but which does just depend on strains but also on the
partial-interaction mechanisms that allow wedge®tm and reinforcement to slip allowing
cracks to widen. The mechanics model also usesvéiieestablished principles of partial-
interaction theory and shear-friction theory to mlodisturbances. Unlike current hinge
models, this mechanics model can be applied atadjes of loading from initial loading at
serviceability to the maximum capacity at ultimated beyond to failure whilst softening.
Being a mechanics based model it can be appli@thyaype of reinforced concrete column,
with any type of reinforcement and any type of cete. And being a mechanics based
model it does not require empirical testing to depecomponents of the model but just to
determine the material properties.
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Using shear-friction to simulate concrete softeningn reinforced concrete
flexural members

Haskett, M., Oehlers, D.J., Visintin, P. addhamed Ali M.S.

ABSTRACT

The stress-strain relationships of concrete in gesgon are of fundamental importance in
modelling the behaviour of reinforced concrete merapand can be used confidently whilst
modelling the behaviour of members up to peak Iébdmvever, the post peak behaviour that
requires the softening properties is difficult toagtify as these stress-strain softening
properties are both size and shape dependent.idrp#iper, axial and lateral stress-strain
expressions are used to derive the shear-frictimpgsties of unconfined concrete, an
approach which has the benefit of allowing for smen size and shape directly. These
mathematical shear friction expressions are thexd ue back calculate axial stress-strain
relationships for various sized concrete cylinddmgihlighting the ‘size effect’ which is
difficult to explain empirically. Finally, a practdl example of the use of shear friction
expressions is presented, where the softening bmirathat occurs in flexural members is
simulated using these shear-friction expressionis @icellent accuracy.

Keywords: compressive strength; concrete; sizeefétress-strain relationship; material
properties; softening, shear friction theory

INTRODUCTION

The ascending branch of the concrete compressiesssstrain relationship is relatively
easily determined and has been quantified emplyidalg. Hognestad 1951, Desayi and
Krisnan 1964, Carreira and Chu 1985). However, abdity to accurately model the
softening behaviour of concrete has been an ongasegarch problem for many years. An
example of an axial compressive stress-strainioglship obtained from a concrete cylinder
is shown in Figure 1, where the ascending brandd-D4is considered to be a material
property, and where the strain at the start ofesifig €., or g,) can be obtained from
empirical expressions (Hognestad 1951, Attard agttlBge 1964). After the peak stress has
been achieved fatec, in Figure 1, the cylinder starts to unload but d@lxél contraction of
the cylinder continues to increase. This behaviswhown as the softening branch Z-A-C-G
in Figure 1, where the softening branch Z-A-C-G dan considered to be more of a
mechanism rather than a material property (Daetedil. 2008, Debernardi and Taliano 2001,
Mohemed Ali. et at 2010) and is a function of thevelopment of damage within the
concrete post peak stress.
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The softening branch Z-A-C-G in Figure 1 occurs doighe formation of sliding planes,
which create increasing displacement after peassirin concrete cylinders, these sliding
planes form softening wedges after the peak strasseen achieved and which are inclined
at an angleo which depends on the frictional and cohesive prigee of the concrete
(Mohamed Ali et al 2010) and the restraints atdfénder ends. This wedge idealisation is
shown in Figure 2, where this wedge formation isoasupported experimentally from
concentrically loaded prism tests (Nurwidayati E£@11) conducted at the University of
Adelaide as in Figure 3 and by other researcheesréii 2004). As softening progresses
along Z-A-C-G in Figure 1, these sliding planesptiise and separate, shown/asnd k;
respectively in Figure 2(b), and the ability tonséer forces across these planes reduces
(Haskett et al. 2010, Haskett et al. 2011). Thikiotion in shear transfer capacity across the
sliding planes is responsible for the reductiorakial stress along Z-A-C-G in Figure 1.
Furthermore, this increasing displacement and crsgaration of the sliding planes is
responsible for the increasing “strain” along tloéening branch Z-A-C-G in Figure 1 and
that associated with dilation. The axial strainFigure 1 is simply the axial contraction of
each half of the cylinder, shown &sa in Figure 2(b), relative to the gauge length of th
halfspecimen, hisn/2, where the contraction of the specintgna, is the algebraic sum of
the contraction due to the real strain in the @@in Lyisnereal2 in Figure 2(b), and the
deformation due to sliding\j and crack separation(}y shown as gz in Figure 2(b). It can,
therefore, be seen that the strains in the ascgrmanch in Figure 1 are real strains and
those in the softening branch are effective stramshe latter are due to both real strains in
the concrete and axial contraction due to the féionaof sliding planes.

(0]

axial

ascending branch softening branch

axial

Figure 1: Idealised concrete compressive axiasststrain relationship

81



Ol sliding Oy

Ll e b, [TT]T]
x ‘ R
O,

Lo i N/Q cylinder

mid-height

<—__ wedge

|
(2] mB ]
! localised |
‘ crushing \
A 4 ‘ 6axiaj - i hcr
y ‘ - =,
- [rrrty
¢ 2l » dprism csoft
a) - wedge formation b) - displacement

and separation

Figure 2: Equilibrium of a wedge and cylinder defiations

Figure 3: Experimental wedge formation in concpgisms

82



In this paper, published empirical axial and ldtestmess-strain relationships are used to
extract the shear-friction properties of initiallpcracked unconfined concrete. Mathematical
expressions are developed which quantify the shigtion properties, that is the
relationships between the shear stregdn Fig. 2(a), and crack separation;, In terms of
the normal stressy restraining the sliding plane, the displacementhef sliding planeA,

and the compressive strength of concretg, These shear-friction properties are then
developed in terms of the axial stress: for the analysis of compression zones. An example
of the application of these shear friction propertis then presented, where is it shown that
the effect of cylinder size on the stress-stralati@nship can be explained through the use of
shear friction theory. Finally, the softening beioav of eccentrically loaded unconfined
concrete prisms, which behave in the same way asctmpression zone of flexural
members, is modelled using the shear friction prigseof concrete developed in this paper.

EXTRACTING THE SHEAR FRICTION PROPERTIES OF CONCRET E
Shear Friction Mechanics

The shear friction properties can be extracted femmpirically derived axial and lateral
stress-strain relationships (e.g. Popovics 1973, ¥992). For a given axial stresss{x), for
example point A in Figure 1, the shear stress gdaross the sliding plane as in Figure 2(a)
can be determined from geometry (Haskett et al1p01

Ty = O Sinacosa Equation 1

soft

where a for cylinder tests can be considered constant @mgroximately equal to 37°
(Haskett et al. 2011) in this paper, but is knowié a function of the cohesion and frictional
capacity of the concrete (Mohamed Ali et al. 208i)nilarly, the normal stress across the
sliding plane is (Haskett et al. 2011)

o, =0, Sin"a Equation 2
Thus, for a given axial stresson, both the shear stregs and normal stressy acting along
or across the sliding plane are known. Now let assier the axial and lateral strains
corresponding to this axial stress.

Consider points A and B in Figure 2(a) which arpeent to each other and on either side of
a potential sliding plane. When the wedges movm &gure 2(b), the adjacent surfaces of
the sliding plane move apart by; through aggregate interaction and slide relativedch
other by A as shown. This movement causes an axial contraetig as shown and
consequently an additional effective axial straing a lateral expansidgng as shown which
provides an additional effective lateral strain.s&eing the displacement and crack
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separation in the axial direction according to dnglea that the softening wedge forms, the
total axial strain induced in the cylinder is th@ah contraction of the cylinde¥,xa in Figure
2(b) divided by half the prism lengthylsi/2, and is given by (Haskett et al. 2011)

_2Acosa | 2h, sina
axial L + real
prism prism

E Equation 3

in which the first two components of the strain a&féective strains due to sliding and
widening across the sliding plane resolved in thialalirection (a.g in Figure 2b), and the
third component is the real strain the concretetdube stresssoi. Consider for example the
stress leveb; in Figure 1. Whilst on the ascending branch, ttiairs is the strain in the
concrete material shown ag,.1. However when on the falling branch where thel tetiain

IS &wotal-1, the strain in the concrete material is silh.; but there is an additional effective
straingesr.; due toA and hy.

A similar approach can also be used to resolvaltfigacement and crack separation in the
lateral direction to find the total lateral strain

_ 2Asina 2h,, :
Eat = + +V E el Equation 4
d d_mCOSA

prism

prism

whereveeeq denotes the lateral strain due to the real st@ipandyv, is the Poisson ratio
prior to concrete softening and can be taken asah@ the remaining components are the
effective strains due t4 and R, in the lateral direction, shown asglin Figure 2b.

The relationship between the total axial and tdéééral strains in Equations 3 and 4
corresponding to the axial stressy has been determined experimentally through much
research. This empirical research can be used mjurction with Equations 1 to 4 to
determine the shear-friction properties of concrdtee following empirical models were
used in the derivation of the shear friction projest

Empirical Softening Relationships

The softening straibse for a given axial softening stressy is given by Popovics (1973) as

f r
co r — 1 + gsoft
gco

where the parameter r reflects the brittlenes®otiete from Carreira and Chu (1985) and is

o [ softg jr
soft = © Equation 5
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r :L Equation 6

— fCO
E. Ao

where E is the elastic modulus of concrete and can bentakg ACI 1993)
E. =3320/ f_, +6900 Equation 7

The relationship between axial and lateral straifitam Teng et al. (2007)

0.7
& - —
soft _ oB%{h 0.7'3[&H - ex;{— 7(ﬁﬂ} Equation 8
ECO £CO ECO

and the strain at which softening commenceg) (can be taken from any empirical
expression, for example from the standard streasagtelationship of Hognestad (1951),

2f ,
Eeo :?“’ Equation 9

C

Thus, for a given softening stress, the shear anchal stress across the sliding plane can be
determined from geometry using Equations 1 anch2.axial and lateral strains for the given
axial stress can be determined from empirical steti®in relationships (Equations 5 and 8),
and the displacement and separation of the sliglage can therefore be determined from
Equations 3 and 4. Hence, the shear friction ptoggerof unconfined concrete can be
obtained directly from empirical stress-strain egsions. These will be referred to as the
experimental resultdhroughout this paper

This separation of strains into relative constitaesa similar to the compressive damage zone
(CD2) model proposed by Markeset (1993) and sunsedrin Markeset and Hillerborg
(1995), where the strain in a (relatively slendamcrete cylinder is the algebraic sum of the
strain in the undamaged portion of the cylindes,), and the strain in the damaged portion
of the cylinder due to the formation of longitudiceacking (which is what we refer to ag h
and A). In the following section, the shear friction egpsions are developed for various
empirical expressions fag,.

SHEAR STRESS SHEAR-FRICTION PROPERTIES

For concrete strengths in the range 30-70 MPa, inmgrgombinations of compressive
strength of concrete and softening axial stressewensidered to obtain thlexperimental

results from which the shear friction properties were ded. Softening stresses below
50%f;, were removed because the empirical expressiorstasgetermine the shear friction
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properties of concrete become less accurate at thagh levels of softening, possibly
reflecting the inaccuracies of these empirical n@devery low softening stresses.

Substituting Hognestad’s Equation 9 into Equati@n@ solving for the brittleness parameter
(), the brittleness parameter is a constant andhlegp 2 for all concrete strengths. The
brittleness parameter (r) is the primary mechaniesponsible for influencing the shape of
the softening stress-strain relationship and tloeeetthe softening stress-strain relationship is
identical for all strengths of concrete when usiiggnestad’s expression fag, This
behaviour does not reflect the typical softeningpmnse of varying strengths of concrete,
where higher strength concrete experiences a napie reduction in strength after peak
stress than lower strength concrete. This inacguabigh strength concrete is also noted by
other researchers (Wee et al. 1996). Thereforarder to accurately simulate the rapid
reduction in strength for higher strength concrébe brittleness parameter r must be a
function of the compressive strength of the comcrdédence, three different empirical
expressions for strain at peak stress (Hognestad, Wee et al. 1996, Tasdemir et al. 1998)
are considered in this paper and discussed substhgue

Based on Hognestad’s empirical peak strain expressi

Experimental results were derived using Hognestexfsession Equation 9 for strain at peak
stress. From a statistical analysis of thegperimental resulisthe following theoretical
shear stress expression as a function of the displant, normal stress across the sliding
plane and the compressive strength of concretadeaged

Tn(theg = {(—21.78+ 419179 % )A}(%)O'%E’ + 048f, Equation 10

where the units are in Newtons (N) and millimet(esm). The shear stresses from the
experimental resultsiyexp) are compared to the theoretical shear stresgggq) from
Equation 10 in Figure 4 for varying displacementbgere it can be seen that Equation 10
accurately predicts the experimental shear streddes average value afpredf/TnExp) IN
Figure 4 is 1.00 with a coefficient of variationlegs than 0.4%.
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Figure 4: Comparison of shear stresses based ondstagl’s expression feg,

A more convenient expression for analysis for asigewedge angle: can be developed in
the form of the axial stress in terms of the norstedssoy, displacemeni and compressive
strength of concreted Referring back to Figure 2(a), for a given axdaftening stresssos
and wedge angle, the shear stress, is proportional to the axial softening stresg:
according to Equation 1. Substituting Equationi@f® Equation 1 foty provides

(—21.78+41.91JN ' j
co fco 0.385
A=) + f

Jsoft - T'\/ = co
Sina cosa sina cosa 30

Equation 11

Furthermore, the axial stress can also be exprassiegpendently of the normal stress by
replacingoy in Equation 11 with Equation 2 and rearrangingof@f, yields

i [—2178n(fe0yom 4 gagt
30

a. =

soft

sina cosa{ fo— 41.91tanaA(;°8) 0'385} Equation 12

Equation 12 shows that the axial stress can beesegpd independently of the normal stress
and can be expressed solely in terms of the arfgleeovedgen, the displacemem of the
sliding plane and the compressive strength of arcg, which it will be shown later is
convenient for analysis. Continuing this approacid drom a statistical analysis of the
experimental resultghe following expression with the same varialdas be obtained
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o, = (0.105f - 4692)A? + (0.026f - 434A+ f,  Equation 13

where the units are in N and mm, ands the displacement along the sliding plane and
which is specific to a wedge with an angle of theirsg planea of 37° as this was the angle
used in deriving theexperimental resultsThe predicted axial stress from Equation 13 is
compared to the experimental axial stress for warylisplacements in Figure 5, where the
average value is 1.00 with a coefficient of vaaatof 1.2%.

O soft(Pred)/Tsoft(Exp)
1.2

L emmssammenemuinabbbottt?

0.8

0.6

0.4

0.2

0 T T T T 1
0.0 0.2 A(mm) 04 0.6 0.8 1.0

Figure 5: Comparison of axial stresses based omtitoul3 and Hognestad’s expression for

€co

From Figure 5, it can be seen that Equation 13 pxexlicts the axial stress at large values of
softening, that is where there are 9 “groups” ofadat increasing displacements where
Osoft(PredfOsoft(Exp) deviates away from the expected value of 1. Tl@esdeviations represent
varying compressive strengths of concrete (30,485,45, 50, 55, 60, 65, and 70MPa) and
where the concrete has softened such that the stxeds is less than 55%fIf we only
consider softening up to 55%fthen this deviation is not evident and the averague of
Osoft (PredfOsoft (Exp) IS 1.00 with a corresponding coefficient of vaoatof less than 0.6%.

The axial stresses from tleeperimental resultssorexp) are compared to the theoretical axial
stressessonpreqiffom Equation 12 in Figure 6, where it can be stwt Equation 12 very
accurately predicts the experimental axial stresBles average value ofof (predfOsoft (Exp) IN
Figure 4 is 1.00 with a coefficient of variationleks than 0.5%. As indicated by comparing
Figures 5 and 6, the accuracy of Equation 12 ghsii better than Equation 13, where the
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deviation of the results away from the expectedieaf 1 at increasing displacements is not
as noticeable. However, Equation 13 is less complex

O soft(Pred)/Osoft(Exp)
1.2

10 |—emsssmmenvmussnmeuietatututtede®
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0.0 02 A(mm) 04 0.6 0.8 1.0

Figure 6: Comparison of axial stresses based omtitqul2 and Hognestad’s expression for

€co

In applying Equations 10, 11, 12 and and 13, itushdbe understood that at zero
displacement\ the concrete has just commenced softening (thiieieffective strain is the
real strain and equal tQ,) and, therefore, the corresponding axial stresst itn@ equal tog§.
This is clear in Equation 13, where at zero disghaent the axial stress is,,fbut this
behaviour is less evident in Equation 10. At zaspldcement, Equation 10 predicts a shear
stress of 0.48f. Assuming that the sliding plane forms at an aagté 37° in a cylinder test,
substituting Equation 10 witA=0 into Equation 1 and rearranging for the corresimg
axial stress gives

_ O.48fco/ _ O.48fco/ _ .
Tsott = sinacosa ~ sin37°cos37° ~ feo Equation 14

Hence at zero displacement, a shear stress of.0.48fing along the sliding plane is
geometrically equivalent to an axial stressc.gfwhich is as expected.

Based on Wee’s empirical peak strain expression

Following the same approach as described abovednsgidering the strain at peak stress
proposed by Wee et al. (1996)

£, =0.0007gf_) % Equation 15
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where the units are in N and mm, the theoreticahsBtress is given by

Tn(hey = {(— 3139+ SSBQU%CJA}(%) Y7+ 048f Equation 16

where again the units are in N and mm. The expetiaheshear stresses when compared to
the theoretical shear stresses from Equation XBarform shown in Figure 4 give accurate
predictions with an average value of 1.00 with afftdent of variation of less than 0.6%.

In a counterpart to Equation 13, a statistical ysialof theexperimental resultshat were
based on Wee’s peak strain expression gave

O = (—434f  +4016)A° +(-010f , — 434)A+ Equation 17

where the units are in N and mm as before. Equdtibis applicable to a sliding planeof
37° and when compared with the experimental refidtsa mean of 1.00 with a coefficient
of variation of 0.8%.

Based on Tasdemir’'s empirical peak strain expressio

Repeating the same approach but considering Tasagnail’'s (1998) expression for peak
strain

£, = (-0.067(f,,)2 +29.9f, +1053x10°® Equation 18

where the units are in N and mm , the theoreticaas stress is given by

Tn(theg = {(— 3014+51627 % jA}(%) %0+ 048f, Equation 19

where the units are in N and mm. Equation 19 algesgvery accurate predictions with a
mean of 1.00 and a coefficient of varation of 0.84rthermore from a statistical analysis of
theexperimental resultgields

O, = (—021f  —8949)A* +(-020f _ + 119A + f_, Equation 20

with units in N and mm. When compared to the expenital results, Equation 20 has a mean
of 1.00 and a coefficient of variation of 1%.
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It has been shown that shear-friction expressiars lwe derived using various empirical
relationships with very good accuracy. These shgzion expressions are compared in the
following section.

Comparison of shear stress expressions

Let us now compare the three shear stress expnss@imuations 10 based on Hognestad,
Equation 16 on Wee and Equation 19 on Tasdemirydoious concrete strengths starting
with a low concrete strength of 30 MPa in Figurel'ie softening properties in Equation 5
depends on the brittleness parameter r in Equa&iamich itself depends on the straign
which is given by Equation 9 (Hognestad), Equatidn(Wee) and Equation 18 (Tasdemir).
These strainsc, and consequently r are reasonably close as shovagure 7 so that the
variations in the shear stressin Figure 7 are also reasonably close particuldrbge based
on Wee and Tasdemir, so that the variations in dkml stress from Equations 11(
Hognestad), 17 (Wee) and 20 (Tasdemir) will bearably close at low concrete strengths.

T;g"e‘” — - — Hognestad
— . T Wee
14 —

Tasdemir

\ -
-
.
12 -~

. \ .
10 =
~. £,,=0.0024
)

8

4 \
8c0:0.001825\ £,=0.00189
2 r=2.90 W\ 273
0 ; : 2 .
0.0 0.2 0.4 A(mm) 0.6

Figure 7: Influence of strain at peak stresg) On shear capacity foggE30MPa

Considering now 70MPa concrete in Figure 8. Asdfnain at peak stress.{ varies much
more between the three expressions, there is aspmnding wide variation in the brittleness
parameter r. These properties mean that since Wxestkeness parameter is largest, Wee
will provide a more rapid drop in stress for in@ieg displacements (and strain) as shown in
Figure 8.
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Figure 8: Influence of strain at peak stresg ©n shear friction forgg=70MPa

Figures 7 and 8 display the same trends: Hogngst@addes a more uniform reduction in
shear (and therefore axial) stress for increasisglacements (or strains), while Wee et al.
provides the most rapid reduction in shear (andilaily axial) stress for increasing
displacements (or strains). It is known that inggahweak concrete softens at a slower rate
than strong concrete; this is clearly reflectedha results based on Wee and Tasdemir’s
peak strains but not on Hognestad's where r ispaddent of the concrete strength and,
therefore, the same rate of softening occurs facacrete. Hence it would be expected that
using Wee’s and Tasdemir’s values §grwould give better results in the simulations ghhi
concrete strengths as will be confirmed later. €lsshaviours highlight the sensitivity of the
shear friction analysis to the concrete materiapprties used which can be refined over time
if required.

Various expressions have been presented which ifutre shear and axial stress transferred
across a concrete interface for a given normakstreompressive strength of concrete and
sliding plane displacement. These expressions baga shown to very accurately model the
experimental shear and axial stresses, and caadskwith confidence to predict the shear or
axial stress for a given displacement, concretength and normal confining stress. It was
also shown that to accurately simulate the behavafuhigher strength concrete, it is
preferable to use peak strain expressions thahdependent of E In the following section,
an identical approach is used to derive expresdionthe crack separation in terms of the
same parameters.
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CRACK SEPARATION EQUATIONS

Having obtained the shear stress expressions,iasapproach can also be used to quantify
the crack separation in terms of similar paramet&ssbefore, excluding thexperimental
resultswhereosoi/f:c<0.5 and considering Hognestad’s expression fairstt peak stress,
the crack separation is given by

-2.377
h, = (0.043{2—'\‘) }A Equation 21

co

The accuracy of Equation 21 in predicting the craegaration is shown in Figure 9 for a
range of crack separations. The average valug@fefihcrexp) is 1.005 with a coefficient of
variation of less than 8% where the majority of ¢éneor is at very small crack separations.

hcr(Pred)/hcr(Exp)
1.2

1-M“M4—‘—

0.8 4

06 @

0.4

0.2

0 T T T T T 1
0.0 0.2 04 0.6 0.8 1.0 1.2

hCI’
Figure 9: Accuracy of Equation 21 for various désgments

Repeating the same approach but considering Tasagnail’'s (1998) expression for peak
strain the theoretical crack separation is given by

r -2.035 f -1.042
h, =| 0.028 - A -2 Equation 22
f 30

where the units are in N and mm. Equation 22 aigesgaccurate predictions with a mean of
0.96 and a coefficient of variation of 20%. Notattiquation 22 is in a different format to
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Equation 21 which was less dependent of the comppestrength of concrete. The term
(fe/30Y1%* in Equation 22 reflects the presence of a relatign between compressive
strength of concrete and the brittleness paran{etevhen using Tasdemir’'s expression for
strain at peak stress.

Repeating the same approach but considering Waksetl1996) expression for peak strain
the theoretical crack separation is given by

N AN R
h, =|0.021 * A[ COJ Equation 23
i, 30

where the units are in N and mm. Equation 23 aigesgelatively accurate predictions with
a mean of 0.99 and a coefficient of variation o¥24

Having now obtained mathematical expressions fa #hear-friction properties, the
softening behaviour of concrete in compressionkmsimulated. As an example, the shear-
friction expressions can be used to model the sioitestress-strain relationships for concrete
cylinders of varying dimensions, and also to sirteitae softening behaviour of concrete in
an eccentrically loaded prism test.

USING THE SHEAR FRICTION PROPERTIES TO DETERMINE AX IAL STRESS-
STRAIN RELATIONSHIPS

The process to obtain the shear friction parameibroncrete from empirical stress-strain

relationships has been presented. Converselypdssible to use the shear-friction properties
of concrete to back-calculate the stress-straaticgiships of concrete. As an example of the
application of these shear-friction parameters,itfileence of cylinder size on the softening

behaviour of concrete, Z-A-C-G in Figure 1, canda@antified. This cannot be done using

empirical stress-strain relationships because tapgarical relationships are only applicable

to specific cylinder dimensions from which they webtained.

The process to obtain the axial stress-strainiogiship using the previously derived shear
friction expressions is straightforward. For a gisoftening stress, for example A in Figure
1, the shear stress and normal stress can be die¢elrfrom Equations 1 and 2. Knowing the
normal and shear stresses acting across or alomgsliting plane, the corresponding
displacement of the sliding plane can be determinedolving a shear stress expression for
A. For example, rearranging the shear-friction EgualO, the displacement of the sliding
plane for a given shear stress, normal stress @amgressive strength of concrete is given by
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A= Ty — 048f, Equation 24

f 0.385
(—21.78+41.910% ){ }
© /| 30

The separation of the sliding plang, lior this shear stress and displacement can be
determined directly from Equation 21 for exampléeneA in Equation 21 is from Equation
24. Thus, for a given axial stress (and compresstvength of concrete) the displacement and
separation of the sliding planes is known. Complagilnf the cylinder shown in Figure 2 is
then used to determine the axial and lateral €rainthe cylinder corresponding to this
displacement and separation. The total axial steathe sum of the effective axial strain due
to A and Rk, and the real strain in the concrefg, according to Equation 3. The real strain in
the cylindere.eq for a given axial stress can be determined knowhegconcrete properties in
the ascending branch. For example, Hognestad (186ilglled the ascending portion of the
stress-strain relationship as a parabola.

2
O axial = fcolz(%J_(%j ] EQUation 25

Therefore, the real strain for a given axial stress, can be determined by solving
Hognested’s stress-strain expressiorefgyas

(2t -at -4t 0

co™’ soft
=€

g co
2f,,

Equation 26

real

Thus, the axial strain for this given softeningest can be determined from Equation 3 since
grear A @nd Ry are all known. If required, the correspondingtaltstrain can also be obtained
from Equation 4, where the lateral strain is al$orection of the real strain and displacement
and separation of the sliding planes. The softesingss is then gradually reduced along Z-
A-C-G in Figure 1 to develop the complete axiakss$strain relationship for unconfined
concrete for a given compressive strength.

The axial stress-strain relationship obtained fremear-friction theory can be compared to
any empirical axial stress-strain expressions praly developed for 200mm high and
100mm diameter concrete cylinders. The theoresbalar friction stress-strain relationship
are compared to an empirical stress-strain relahignfrom Popovics (1973) in Figure 10 for
concrete strengths of 30 and 50MPa. As expectedshiear-friction and empirical stress-
strain relationships are almost identical. Givea #tcuracy of Equation 10 in predicting
shear stress, the converse is also true: for angix@l stress (and therefore shear stress) the
displacement of the sliding plane can be very ately estimated. Knowing the
displacement of the sliding plane, the crack sdmmaracan also be accurately estimated.
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Hence, the “shear-friction” axial stress-strainatelnships shown in Figure 10 are almost
identical to the empirical stress-strain relatiapsh

55 o-soft
20 7 Empirical ~-,
Y
45 + == « Shear friction ~
-~
~
40 T~
=
35
30 =
T~

-

25 S
-
20 T T 1
0 0.003 0.006 0.009

8axial

Figure 10: Comparison of empirical and sheardbitstress-strain relationships

The shear-friction expressions in this paper werneetbped from empirical axial and lateral
stress-strain expressions considering 200x100mncrete cylinders and hence these
empirical expressions are only applicable to 200xi& cylinders. However, the shear-
friction expressions are independent of size, sitlcey are a measurement of the
instantaneous shear stress able to be transfasresisaa sliding plane, and the corresponding
separation of that sliding plane. Hence, the wealbwn “size effect” (e.g. Yi et al. 2006,
Bazant and Xiang 1997, del Viso et al. 2007, VaretMand Man 2009) can also be
investigated through the use of these shear friaipressions.

The influence of cylinder dimensions on the axiakss-strain relationship can be best
explained by considering Equation 3, where the #tal strain due to the contraction of the
cylinder gaxiar IS the sum of the real strain in the concrete withe cylinderg.ey and the
effective strain induced by displacementand crack separation:hThe dimension of the
wedge in Figure 2 is independent of prism dimensidrat is, the axial displacementgin
Figure 2 corresponding to an axial stregs is size independent. Hence, the additional strain
induced by this axial sliding plane deformationgan a prism of length Z}ism is one half
that which would occur in a prism of lengthitm The stress-strain relationships are also
dependent on specimen shape, and this occurs \Wkqgurism restraints are close enough to
influence the angle that the wedge formsFor example, for very short prisms, the wedge
must be completely contained within the prism langind therefore the angle at which the
wedge develops increases to ensure the wedgelyscfuitained in a shorter prism length.
This change in wedge angle influences the axiallatetal dilations ag and hg in Figure
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2b. This influence of the restraint conditions e failure behaviour of concrete cylinders
has also been reported elsewhere (Roddenberry 20h1). These behaviours are the well
known and commonly referred to as “size effect”ichhcan now be quantified through the
use of the shear friction expressions.

An example of the theoretical axial stress-straiationship from shear friction expression
for various sized concrete cylinders is shown guke 11. It is clear that the axial strain for a
given softening stress reduces as the cylinder miioas increase. At the commencement of
softening (30MPa in this example) the majority loé taxial shorteningd{ia in Figure 2) is
from “real” strain in the concrete cylinder. Thadsig plane has only just formed and
therefore the axial deformation.gin Figure 2(b) tends to zero. As softening progess(i.e.
reducing stresses in Figure 11) the contributiorthef individual components to the total
strain changes: the axial displacement due cragéragon and displacementy@in Figure
2b) increases, causing an increase in total akiains while the real strain in the cylinder
reduces in response to the reducing stress. Thestram in the cylinder is not affected by
cylinder size, which is as expected because tHestean in the cylinder is obtained from the
material behaviour O-D-Z in Figure 1.

Osoft

35
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N -o.... .
20
15
0wl 0000000 Shear Friction - 200x100
= « = Shear Friction- 400x200
5
0 T T 1
0.000 0.002 0.004 € axial 0.006

Figure 11: Influence of size on softening

Essentially, irrespective of the cylinder dimensigRsm in Figure 2, for a given softening
stress, the crack separation énd displacemem are identical. However, when computing
the corresponding axial strain in the prism, theedal deformationsgg in Figure 2(b) cause

a larger effective strain in a smaller dimensiospdcimen which can also be deduced from
Equation 3. This is the reason for the size effaxt can be explained clearly through the use
of shear friction parameters.
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USING SHEAR FRICTION THEORY TO SIMULATE ECCENTRICAL LY
LOADED CONCRETE PRISMS

Shear friction expressions can also be used inaatipal sense, for example to simulate
concrete softening in a flexural member where thsra gradient in the strain as often
simulated in eccentrically loaded concrete prisststeConsider the concrete prism in Figure
12(a) which is subjected to an applied load (P)eetentricity (g) which causes a
deformation as shown by the bold black lines whsgchlso shown in the deformation profile
Figure 12(b). The deformation varies linearly ottee prism depth gsm from &, at the top
to dpotom at the base. The effective strain over the priseptid corresponding to this
deformation can be determined as in Figure 12(grevthe strain is simply the deformation
divided by the length over which it acts, whichtinis case is Wisr/2. The corresponding
rotation6 for this deformation can be determined from geoynats shown in Figure 12(a).
Because of the eccentricity of load, material softg (which we refer to as the formation of
a softening wedge) first forms on the loaded sifiehe prism, and where the depth of
softening is a variable and shown gsqgkin Figure 12(a) and forms at an angle

Wil 2

prism/

comp tens

a) Prism b) Deformation c) Strain d) Stress e) Force
analysis profile profile profile profile

Figure 12: Eccentrically loaded concrete prism wsialtechnique

According to the deformation profile shown in Figut2(b), the depth of the softening
wedge can be determined as it is known that safteoommences when the effective strain
exceeds the strain at peak stress, shows@a Figure 12(c); this occurs at a deformation
Apk Of gpWprism/2. The corresponding stress at this position,isi$ shown in Figure 12(d).
Hence, any deformation within the prism that isafee tham\p, in Figure 12(b), that is over
the depth gism sSignifies a region where concrete softening isuogng and, therefore,
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requires the use of shear-friction properties tardifly the shear (or axial) stress for a given
deformation.

Let us first consider the behaviour belayy in Figure 12(b). The linear deformation
produces the effective linear strain distributidmown in Figure 12(c), where depending on
the eccentricity (g) of the applied load (P), the entire prism mayirbeompression, or, as
shown in Figure 12, a portion of the prism may ioéension. If the strain at the badgyiom

is less than the cracking strain of concrete, thesrack has not developed, and the stress
distribution in this tensile region can be deteredgirknowing the tensile material properties.
The corresponding tensile forceikon and the location of this force can therefore be
determined. If we increase the deformation prdfileh that the effective strain at the bottom
of the prism exceeds the tensile strain capacityooicrete, a crack has formed, and tensile
stresses cannot be developed over the region whergrain exceeds this value. Hence, this
analysis can also incorporate cracking if it occurs

Let us now consider the compression behaviour allogeneutral axis. Consider leve)
where the deformation exceedgy and, therefore, a wedge has formed and the total
deformation isA, as shown in the deformation profile. A portion tbfs deformation (or
contraction) is a result of the slip of the wedgf@gown a%,,.,, and the remaining contraction
is accommodated by concrete material strairipgas: as shown in Figure 12(c). The real
strain profile over the softening depth is showrigure 12(c) as the bold black line, where
for increasing deformations the real strain is oedg in response to reducing stresses as
shown in Figure 12(d). That is, the deformation dwenaterial straining is given 4-mat
Wpiise/2 and the remaining deformation is due to slidountractionA,., at the wedge
interface as shown in Figure 12(a). It is simplguastion of finding the stress,in Figure
12(d) such that the material contractiéinaWprisn/2 plus the wedge contractiaf.y, is
equal to the total required deformatian in Figure 12(b), where the stress in the wedge is
obtained from shear friction theory. For exampla;, &n assumed wedge slipn() the
corresponding axial stress in the wedge can berdeted from Equations 12 or 13. It also
should be noted that the deformatigp,, in Figure 12 must be resolved at an angl®
obtain the displacement of the sliding plane fag usthe shear friction equations since the
displacement in these equations is measured alenglitling plane. For this axial stress, the
material contraction can be determirsgghawprisn/2 and the total deformation must be equal
to the total deformation,. If this is not the case an iterative approach lsamsed to solve
for An.w until the sum of the wedge displacement and nadteantraction is equal W,. This
type of analysis procedure requires the softenaggon to be sliced into small segments of
depth dx, where this procedure is repeated oveettiee depth of the wedge to obtain the
total force in the softening wedg@dige
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The forces in the non-softening regiongscan be determined from any standard analysis
procedure. The position of the resultant forcenim prism can now be determined, where the
resultant force is required to be in line with Hpplied external load P. If this is not the case,
then the assumed displacement profile A-B is irexrand the rotation needs to be changed
until the resultant internal force is in line withe applied external force. When this occurs a
single point on the moment-rotation relationshig baen determined and this procedure is
subsequently repeated for increasing displacententdtain the complete moment-rotation
relationship.

The theoretical results for this analysis procedorevarying eccentricities (12mm, 24mm,
36,mm and 48mm) and using various shear frictiomaggns (Wee et al. 1996, Hognestad
1951 and Tasdemir et al. 1998) are shown in Fid@rdt is clear that the softening portion
of the prism test is accurately modelled using sligation parameters, and the rate of
softening varies according to the shear frictiopression considered

12mm eccentricity 24mm eccentricity

moment (KNm)
S
moment (KNm)

0 0.005 0.01 0.015 0.02 0 0.005 0.01 0.015 0.02

rotation (rad) rotation (rad)

36mm eccentricity 48mm eccentricity
14 . . : :

A

moment (kNm)
moment (kNm)

0 L L L L L 0 L L L
0 0.005 0.01 0.015 0.02 0.025 0.03 0 0.01 0.02 0.03 0.04
rotation (rad) rotation (rad)
’ experimental Wee ===== Tasdemir ===== Hognestad ’

Figure 13: Simulating eccentrically loaded prisimssng shear-friction theory

From Figure 13, the different shear friction exgress obtained by using different empirical
expressions for strain at peak stress provide riifferates of softening. The use of Wee’s
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expression for strain at peak stress results iroeemapid reduction in shear (and therefore
axial) stress for increasing rotations, while Hogjad's expression for strain at peak stress
provides the least rapid reduction. These behasiatg consistent with the responses shown
in Figures 7 and 8. Generally it appears that seaf Tasdemir et al's expression for strain
at peak stress most accurately simulates the ewpetal softening response. However, it
should be noted, that all three expressions aayratodel the softening trend shown in
Figure 13, and that any of the shear friction esps@®ns presented in this paper can be
refined through more accurate empirical expressidhge key finding is that shear friction
theory can be used to simulate concrete softehiaigdccurs in practice.

CONCLUSION

The shear-friction properties of initially uncrackanconfined concrete have been extracted
from standard concrete cylinder tests and develapedform that can be used to simulate
and quantify the behaviour of unconfined concretden compression. The advantage of this
shear-friction approach over existing approachdhbas it simulates what is actually seen in
practice, that is: the formation of sliding planesinitially uncracked concrete; and the
relationship across these sliding planes between stiear stressy, normal stressoy,
widening h; and slipA. A further advantage is that this shear-frictipprach is neither size
nor shape dependent. It has been shown how shetoffrtheory can be used to simulate the
formation of wedges that occur during the softenafgconcrete under compression in
cylinder tests and explains why the axial stressstrelationship of concrete whilst
softening that is extracted from cylinder testbagh size and shape dependent. It has also
been shown how the shear-friction approach carsbd to simulate the formation of wedges
and the rotation that occurs in flexural membevsngi very good correlation with test results
and without the need for empirically derived hingegths.
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The Reinforcement Contribution to the Cyclic Behavour of Reinforced

Concrete Beam Hinges
Visintin, P., Oehlers, D.J., Wu, C., and Griffiti,C.

ABSTRACT

The cyclic behaviour of plastic hinges is an esaknbmponent in tracking the behaviour of
reinforced concrete (RC) frames to failure, not yorfbr monotonically increasing
force/pressure loads such as under extreme wirtk lbat also for dynamic displacement-
driven loads such as under earthquake ground nsotiobm order to describe member
deformations at ultimate loading, traditional momemrvature techniques have required the
use of an empirical hinge length to predict rotasioand despite much research a definitive
generic expression for this empirical hinge lenggthyet to be defined. To overcome this
problem, a discrete rotation approach, which diyegtantifies the rotation between crack
faces using mechanics, has been developed for baathbeen shown to be accurate under
monotonic loading. In this paper, the discrete trota approach for monotonic loads is
extended to cope with cyclic loads for dynamic gsas$, and this has led to the development
of a new partial interaction numerical simulatiapable of allowing for reversals of slip of
the reinforcing bars. This numerical tool shouldveey useful for the nonlinear analysis of
reinforced concrete beams and reinforced concreliemms with small axial loads under
severe dynamic loads.

Keywords: Reinforced concrete; hinges; ductility; discretdation; cyclic loads; and
hysteretic behaviour.

INTRODUCTION

The importance of ductility, that is the ability cdinforced concrete members to maintain
strength under deflections/rotations beyond thé&stdypoint and, thereby, absorb energy
inputs such as those from seismic and blast Idas Jong been recognised as a key design
aspect. Since the early 1960s, a significant amotiexperimental and analytical research
has been devoted to describing the hysteretic hetnaoef reinforced concrete beams and
beam column joints under cyclic loading well inteetinelastic range. A key feature of the
hysteretic response is the loss of stiffness astatiwith repeated reverse cyclic loading. It
is well established [1] that the major causes if libss of stiffness are: the Baushinger effect
which describes the softening behaviour of stedbvieng a reversal of load; concrete
cracking and splitting along the reinforcing barg;lic deterioration of the bond between the
reinforcing bars and the surrounding concrete;srer sliding and crushing of the concrete.
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Early experimental and analytical work in descrgpbthe hysteretic behaviour of reinforced
concrete sections lead to the proposal of sevemhemt-curvature models [2-5]. These
strain-based approaches use standard beam analgisisques with cyclic material models
to describe the cyclic moment curvature response, are therefore capable of including the
Baushinger effect. However, the moment curvaturpr@gch is limited when used to
describe member rotation. This is because it isadimensional analysis of a cross-section
and, therefore, the hinge length over which thevature is integrated to derive the rotation
has to be determined empirically, as, in theoryaih be shown that the hinge is of zero
length [6, 7]. Numerous empirical formulations figtermining the hinge length have been
suggested in the literature and while they showdgmaxuracy when compared to the data set
from which they were derived, when applied to ebgladdata set correlations are poor [8].

Following these early strain-based analyses, armbesjuent to the identification of the
importance of the influence of bond behaviour ia teduction of member stiffness during
cyclic loading, an extensive experimental and aray effort to describe the mechanics of
the bond slip problem was undertaken [9-12]. Theettgpment of reliable cyclic bond slip
relationships led to several finite element basgstdresis models being developed [13-15].
While these finite element models allow for theluehce of the Baushinger effect, include
bond slip effects, and are capable of consideteginfluence of shear [16] they are limited
in the same way as the early curvature-based awlyisat is, they need a specified hinge
length. This is because the inclusion of concretgenml softening in a finite element
formulation restricts the softening zone, whichnieffect the hinge length, to the length of
that element [6].

Recently, a partial-interaction discrete rotatigmp@ach has been developed that quantifies
the discrete rotation between crack faces by atigwior the relative slip between the
reinforcement and the concrete at the crack fat@&;2[/] and both numerical partial-
interaction models [22, 26] and mechanics partisdraction models [21, 29, 25] have been
developed. Using these models, the discrete rotapproach has been shown to accurately
predict the rotational response of members underotomic loading. The aim of this paper is
to show how the discrete rotation approach for lseeam be extended to the cyclic load case.

MOMENT DISCRETE ROTATION APPROACH

Typically, reinforced concrete members can be d®rsid to consist of two distinct regions:
(1) the hinge, or disturbed region, characterisgdwide flexural cracks and concrete
crushing; and (2) the non-hinge, or undisturbedoregwhere small cracks occur but the
concrete does not crush. It is in the hinge regiere much of the rotation is concentrated
and where the discrete rotation between crackgjdiesl. The discrete rotation approach
treats the undisturbed region and the disturbedeniegions separately [22, 25, 26, 28, 29].
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In the undisturbed region beyond the hinge regidings sufficiently accurate to use t
EulerBernoulli moment curvature approach that assumdis iriteraction between th
reinforcing bars and the surrounding concrete tantjty the deformtions, using effectiv
flexural rigidities if necessary to allow for minoracking. In contrast, in the disturbed hir
region at the location of a wide flexural crack ahis associated with hinges at the ultirr
limit state, discrete rotation occuretween the crack faces. This rotation is causethé
widening of the tensile crack, which is itself cadsby the relative slip between 1
reinforcing bar and the surrounding concrete, knasrpartial interaction behaviour. This
a rigid body displaement and as such the curvature approach doegplyt @s it assume
full interaction. In contrast to this the discretgation approach explicitly allows parti
interaction and rigid body displacements, and fioeee more accurately simulates f
physcal processes of concrete crack

The unified moment discrete rotation approach idealthe plastic hinge as in Figure 1 |
28, 29], where each half of the hinge rotates agid body about the apex of the flexu
crack. The hinge is considereo have three distinct regions. The compressive zdrtae
hinge is split into two regions. In the ascendiegion of depth ,scthe concrete is on tt
rising branch of its stresstrain relationship and standard analysis techsigugsed ol
material proprties can be applied to determine the force deeelcP,s). In the softening
wedge of depth @, the concrete is strain softening and shear drctiheory is used 1
describe the relative movement between the soffemiedge and the ascending reg as
well as the stresses acting across the slidingepdaud hence the force resisted by the we
(Psoy). Finally, in the partial interaction tensile zookdepth | ac the load resisted by t
reinforcing barsPreint.tens fOr a given slip Areint-tens 1S determined using partial interacti
theory [21, 24, 25, 28] between the reinforcing &aadl surrounding concrel

e rigid body
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/ \'\\ T~ i__, - — - )
/ concrete~_ P o \
j softening Ity / o d.,
,f region \‘& | g \\
ascending ~ " p % Tf “““““ ¥ -
/| region \): | dece \\
Jj regen % e
/ , A \
/ partial / 0 \
/ interaction IR - \
‘—“H_ . ‘ An' - ’—’A
~-—tepsile zone p “'—E@r renriens =7
- re ni-tens / | \ 4

— , N —

-~ '—

Figurel: Idealisation of plastic hinge
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For analysis, the hinge can be further idealisecbttsider &single crack face as in Figure
where the momenwtation relationship is derived for increasing thespof the softenin
wedge, dort. For a specific value ofs.s, Which acts as the pivotal point for the analytis,
rigid body displacement profile Figure2(b) can be rotated through radians unti
longitudinal equilibrium of the forces is achievedereby, allowing for the determination
the moment and rotation. The equations for calmgdathese forces are presented bel
however a more detadl derivation of the fundamental principles canfduend elsewher
[24, 28, 30]

RBD £ a P
" OO0 . Td.\\J T \émrlc:1n1p [ @n )

g‘!,

reinf-t2ns,

T RN \

Figure 2: Hinge idealisation for moment rotatioralysis
Concrete compression zor

The depth of the softening wedgis«in Figure 2can be determined from the locusAascas
in the following equatiowhere all unknowns are defined in Figur

d'0—Areinf_ :
dsoft = ;f—””cetm Equation 1

tan(a)

The force resisted by the softening wedgso, may then be determined using Equatic
[31],

c+agrcosa(sina+meosa)

Psore = Wpdsose [ Equation 2

sina(cosa—msina)

where,w, is the width of the cro-section,m andc are the friction and cohesion compone
of the MohrCoulomb failure plane for the concrete which candeeived from materia
testing [32],01at is the lateral confinement provided to the wedgestigups andu is the
angle at which the wedge forms which is a functadrnthe friction property as given
Equation 3.
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a = arctan(—m +Vm2 + 1) Equation 3

In the absence of specific material propertiesicgipvalues can be employed in the analysis,
with a friction componenin of 0.8, a cohesion componenbf 0.17., and an angle of the
failure planen of 26° [31].

Using the rigid body moment-rotation approach, wWexige does not fail when its strength
Psortis achieved, but rather has a limit to the fljg.given byEquation 4 wheré\gqe is the
slip at failure [29].

Aglige = 2.51225 1+ 0.61 Equation 4
For reinforcement located in the softening regithre force developed can be calculated
using a strain-based approach, extending a lineanrofile through the known strains at
the softening wedge interface and the crack tip &gure 2(c).

In the remainder of the concrete in compressioat ik over g in Figure 2, the concrete
has not softened, and compressive stresses raoge zZiero at the crack tip to the peak
compressive strength, &t the strain shown ag in Figure 2(c). While any ascending stress
strain relationship may be used, the force develastng Hognestad’s parabolic distribution
has been typically applied and is given by Equafi¢83].

Pase = = fWpdasc Equation 5

For reinforcement located in the ascending regtbesstrain and consequently force can be
calculated using the linear strain profile in Fig@(c).

Partial interaction (P-A) tension region

For reinforcement located in the cracked tensiareza partial interaction intermediate crack
(IC) approach must be used to determine the relstip between the slip of the baAfgint.tens,

and the force Bnrtensin Figure 2.Again, any appropriate partial interaction modeh ¢ee
applied, and for the monotonic load case closed fetructural mechanics solutions are
available for a variety of bond stress-slip chaegstics [21, 25, 24, 31 34]. However, for the
modelling presented, a numerical procedure [24 haS]been applied as it is necessary to use
a nonlinear cyclic bond stress-slip characteriaiooutlined below to allow for reversals of
load. For the tensile reinforcement, two limitsrédation are imposed; these are fracture and
debonding of the bar, both of which can be deteechibased on the partial interaction
model.

The basic numerical shooting procedure [24, 35]lustrated in Figure 3, where a bar of
length L+ measured from the crack face is embedded in ctenofecross-sectional area; A
and is being pulled to a displacement at the crfacke of A, such that a force @) is
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generated in the reinforcing bar, an¢(1) is generated in the concrete. To describe
numerical procedure which is required to find thecé to develop the given slip, the bal
Figure 3 is sliced into elements of lendx, which are much smaller than the overall

length, and where each element shown has beerasegén show the forces acti

I‘\A dx . . dx | . , dx N 7
crack face clement | 7 . clement 2 7 ) ‘clcmentﬂ—! untl dédde | ]
i B(l )= f(s(l):‘ Y= 6{D=AB( 1 B(2)= ﬁb(m) BV(S) =1f(3(3)) tT) ;er(.;.;r
<—1 - AE) — —___0- e Ly
Aty =3ty ) e ddidx =g (2;-3\_{2') 513y A3/dx = £(3)-£(3) )\ =0 0'"'
v i1 by =y at
. * P2 T T e P — o

Figure 3: Partial interaction algorithm at an eletaéelemer

The analysis begins by fixing the sif1) at the loaded end. It is then a question ofifig
the load in the reinforcement that induces thip.slihis is done by first guessing t
reinforcement straim,(1) and, hence, the force(1) to cause this slip, and iterating to fi
the correct 1) to induceA(1).

This fixed slip of the baA(1) is equal to the local slig(1) at the first element and genere
a bond stressg(1), which is a material property, and can be deteed using a bond stre-
slip relationship. As the numerical procedbeing outlined is generic any bond stress
distribution can be used, and in the case of tladyais to follow, the cyclic bond stress <
model of Eligehausen et al. [11] has been empl@a&dt can simply describe the loss
strength and stiffnessf the bond encountered during cyclic loading, a6 be discussel
further in the next section.

Knowing the bond stresg(1), the bond forceB, acting over the element may now
calculated. It is simply the bond stress integrabedr the surface areof the bar as in
Equation 6, where Joris the circumference of the bar and dx is the lergthe segment i.

B(n) = t(n)dxLye, Equation 6

Having determined the bond force acting at a gieksment, it is possible to determine
load in thereinforcing bar at the end of the element (n), tredtefore, at the beginning of t
next element (n+1) by equilibrium, as in Equatit

Pr(n + 1) = Pr(n) - B(n) Equation 7

It should also be noted at this point that as altes cyclic loading the dection of the bon
force may change during unloading and reloadingabse of the influence of friction, ai
therefore, as will be shown in the results, theedomn the bar can build up along the
length instead of reducing.
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The corresponding strain in the reinforcement ¢&m toe found using a suitable cyclic stress
strain relationship, and in this case the relatimeresented by Filippou et al. [13] has been
selected based on its simplicity, and will thereftwe outlined further in the next section.
Similar to the cyclic bond behaviour, it will beasiin that the cyclic stress-strain relationship
of the reinforcing bar significantly increases themplexity of the partial interaction
behaviour, as following strain hardening it is pbkesfor the bar to experience an extending
strain while being in compression.

Having determined the strain in the bar, and ireotd calculate the change in slip occurring
along the element, it is now necessary to deterrthieestrain in the concrete. The force
developed in the concrete surrounding the bar eadebtermined in a similar manner to that
of the reinforcing bar; that is, knowing the borwicke B and that no force is carried by the
concrete at the crack face the force in the coacecein be found by equilibrium, as in
Equation 8.

P(n+1)= P.(n)+B Equation 8

The concrete strain can then be found simply byiragsy a linear tensile stress strain
relationship as in Equation 9, where it can be msglithat the concrete remains elastic
because it is subjected to only tensile stresse®rder to simplify the analysis, it is also
possible to ignore the strain developed in the cetecas the cross-sectional area of concrete
is large enough that the strain developed tendsetmsignificant compared to those in the
reinforcement.

Pc(n)

Equation 9
E:Ac

& (n) =

The difference between the reinforcing bar and oetecstrains is the slip strain which can
now be found.

ds(n)

= =g —e(n) Equation 10

It is this difference in strain which causes the toaslip, with the change in slip across the
element simply being the integration of the slipaist across the element length, as in
Equation 11.

Adn) = f%dx Equation 11
Therefore, the slip at the beginning of the negtrednt is:
6(n) =6(n) —Ad(n) Equation 12

The numerical procedure is then repeated over ubsegjuent elements until the following
boundary conditions are achieved= do/dx = 0, where the embedment length is sufficient
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for full interaction to be achieved, and for shioars,c = 0 oré = 0 at he bar end dependir
on whether the bar end is free or fixed. In théof@ing section the material models usec
implementing the cyclic partial interaction mod#lat is the cyclic bond stre-slip, and steel
stressstrain relationships will be outlid in more detail, and then a full description o

mechanics of the cyclic partial interaction moddll wee explained with the aid of ¢
example.

CYCLIC MATERIAL PROP ERTIES

As the partial interaction model is generic, anydeloto describe the bond ess slip and
material stress strain behaviours can be usedhé&unbre, as it is the aim of this papel
describe the mechanics of the hinge region undeliccyoading, only a qualitativ
description of the material properties will be (gt here whe references to the origin
research are provided.

Bond stressslip relationship

There has been much research on the bond intedlaear stresst) interface slip §)
relationship under both monotonic and cyclic loadi®, 10, 11, 13, 36, 37]. The cic bond
stressslip relationship seen in Figure 4, developed hbgdflausen et al. [11], has been u
in the cyclic partial interaction model describatel as it has been shown to adequately,
simply, allow for the degradation of bond strese thuoad reversals.

A A B unloading
Toe 17 7 ~__B* branch
monetgnis,/”/ il _C D
envelope 1 / ...... r\“\
Py [riztien i "~ K
~ ! A
J N
N
friction E reduced .
branch monotonic
envelope

envelope

Figure 4: cyclic bond stress slip relation:
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Loading —positive monotonic envelo

The key feature of the model is the monotonic espe] C-A-B-C-D shown in Figure -
which is followed during initial loading. Upon loadj, as thebar begins to slip in region-
A and as shown in Figure 5(a), inclined cracks kn@s bond cracks which initiate at the
of the bar ribs form. Moreover, this cracking ic@mpanied by crushing of the concr
keys which form between the bar ribs aown in Figure 5(a).

Figure 5: damage of concrete as bar pulled (a)dtion of bond cracks, (B) formation
shear cracking

As the bar further slips in region-B-C on Figure 4, the bond cracks in Figure 5(a) cu
to open and shear cracks form in the concrete kefront of the bar ribs as in Figure 5(]
This behaviour results in the levelling off (regi&-B in Figure 4 and eventually a reductic
(region BC) in the bond stress as the concrete keys areeshe#.

For slips exceeding the clear spacing of the lia, that is region -D in Figure 4, complet
crushing and shearing off of the concrete keysdeasirred At this point, the only resistant
to the pulling out of the bar is friction, and asck the bond resistance is equal to
frictional resistancesicion in Figure 4

Unloading

Upon unloading, such as at B’ on Figure 4, the boragerties follow a vry stiff unloading
branch B’E to account for the recoverable elastic defornmafidhis elastic unloading bran:
is followed until the frictional branch is reachadE. At this point, the bar can be conside
to be slipping in a previously damaged aias shown in Figure 6, where the only resiste
to the slipping of the bar is offered by frictiorhieh acts in the opposite direction to -
change in slip, hence, the negative value of the frictional tesise shown in Figure 4. TF
frictional resisance strongly influences the partial interactiohadour and as will be shov
later can act to increase the force in the I as in Figure 6 where the shear stress is acti
the same direction as the applied Ic
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Figure 6: Bar slipping in preously damaged area

Loading —negative monotonic or reduced envel

Once the slip of the bar has been reduced to d ielere it has returned to its origir
position, point F on Figure 4, the bar ribs areim@a contact with the surrounding concr:
asin Figure 7. The loading path taken as the slifuither reduced, such that is it n
slipping in the opposite direction, now dependstio& maximum slip previously reache
point B’ on Figure 4. If the maximum slip is le$gn that to cause shear «king, that is B’
is located within region @ on Figure 4, any further reduction in slip wilsult in loading
along the negative monotonic envelof-G’, where the old bond cracks close and new t
cracks open as shown in figure 7. However, if #narsal occurs following the formation «
shear cracks, that is, B’ is located within regi@-B-C-D in Figure 4, loading will occu
along the reduced monotonic envelo}-G as the existing bond cracks cl

S = closgd
= ~ bond
“ \\ svanl
<D
= 1 - ram
prCVIUUbiy - &
damaged ~_ T 7 |
area !< >!

Figure 7: Slipping of bar in opposite diren

The reduced envelope G-in Figure 4 is obtained by reducing the magnitafi¢he bonc

stresses of the monotonic envelope using a damagemgeter to account for previo
damage. The damage parameter is related to thedoergy dissipated during pious

loading; full details of which can be found in [1
Reloading

During reloading, along -H on Figure 4, the same process is encounteredudsg
unloading, where to account for the recovery ostidadeformation a stiff curve is followe

until thebar’s only resistance is due to friction alon-I.
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This friction branch is reduced in magnitude conepato that followed during unloading
account for further damage to the concrete. Thenmade of the reduction to the frictic
branch is also calcated by using a damage factor, where the magnifidee reduction i:
related to the total energy dissipated while thadoresistance is due to friction; again |
details of which can be found in [1

Once the bar is again in contact with the con: at point | in Figure 4, a stiff reloading pe
is initially followed to allow for any elastic defmation before switching to the reduc
monotonic envelope K; where the magnitude of the reduction is agaisedaon the tote
energy dissipated by previsloading.

Steel stress-strain relationship

In addition to a cyclic bond stre-slip relationship, the partial interaction modejuges &
cyclic stressstrain relationship for the steel reinforcement.i@humerous models ha'
been published [38-41],raodel which can accurately describe the featureéseohystereti
stress strain behaviour, as seen in Figure 8 [¢0¢quired, and as such the mode
Filippou et al. [13] has been used in the modell

The key features identified and shown in fre 8 are: the Baushinger effect which is
early departure from the linear elastic respongemirs softening which refers to tl
degradation in the modulus following load reversalsd isotropic strain hardening whi
causes an increase in strengthond the initial yield stress. It has been idendftbat the
Baushinger effect is responsible for a significanition of the loss of stiffness observed
member level under cyclic loading [1]. This is domfed in the following cyclic partie
interacion model where it is shown that a model capalbldescribing these behaviours
especially important as the behaviour of the ss¢éingly influences the partial interacti
behaviour.

/ i /f A .
/ | /:I Baushinger elTect
Isotropic ! [ . . _
. . -Cyclic strain softenin
strain —s| | r_y:‘e%‘f\ el 1 &
hardening

Figure 8: Features of hysteretic steel s-strain behaviour
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CYCLIC PARTIAL INTERACTION MODEL

The monotonic partial-interaction #-model has already been described with the help of
Figure 3. A description of the mechanics of adaptims monotonic model for cyclic loads
follows. It will be shown that the influence of @m-hardening and that of the friction
component of the bond stress-slip relationshipcaitecal in describing the overall load slip
relationship at the crack face.

An example of a theoretical cyclic partial interant load-slip PA curve is presented in
Figure 9; the bar is initially loaded to a pealpsf 3mm at poinp, unloaded to zero slip,
and finally reloaded to a slip of 4mm. In additi@amonotonic envelope up to 4mm slip is
shown so that the degradation of strength anchses# that occurs during cyclic loading can
be observed. Furthermore, poi@t® in Figure 9 refer to points in the load cycle ihigh
distinct changes in the partial interaction behawioccur; these will be used as the points of
discussion in the following description of the beioar.

L5 T T T T T T
: : : : monoténic envelope

vading curve
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st P .. xeloading ourve. .. S S L
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S mﬂnadmgphaselv B e

1k i : i é : ; :
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Figure 9: Cyclic load-slip response of an infingtédng bar
Initial loading phase

The discussion begins with the establishment of ntwest basic behaviour which occurs
throughout the initial loading phase and which Hssin the formation of the initial loading
curve and monotonic envelope in Figure 9. The meickaof the initial loading behaviour
can best be described by considering adjacent atsrmembered n and n+1 in Figure 10(a).
These elements are similar to those in Figure Birbthis case, to help in the description the
strain in the concrete. has been ignored as it tends to zero in compatstime strain in the
reinforcement. Hence, the slip strain is simplydtrain in the reinforcing bay.
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Figure 10: Behaviour of Element

During tre initial stages of loading as shown in Figure L0{ae bar slips a distan@€n)
relative to the concrete as it is being pulled with a force k(n). This slip causes a bol
force B(n) to be developed which resists the pgllut of the bar, and trugh equilibrium
results in a reduction in the force carried bylle from k(n) to R(n+1). This corresponds
a reduction in stress and strain from element elément n+1 as shown in Figure 10|
Furthermore, as the strain in the bar is extendhe bar, the slip is reduced froén) to
d(n+1) as shown in the bond str-slip relationship in Figure 10(c).

During initial loading, the behaviour of the bardathe bond is confined to the first quadr
of their respective relationships shown in Figudggb) and (c). Hence, the behavi
described using the elements in Figure 10(a) isesgmtative of the baviour anywher
along the bar from the crack face in Figure 3 ®hint of full interaction. Figure 11 sho
the distributions of the slip, slip strain, streisghe bar and the bond stress from the ¢
face to the point of full interaction for po a on Figure 9. All four distributions reduce as
distance from the crack face increases which ig&f initial loading; where this occu
will be referred to as Zone A. It is worth notirttat the force in the bar at the crack face
the slip ofthe bar at the crack face¢(1) andA(1) in Figure 3 is given in Figure 11 at t
distance of zero.

To find a solution to the shooting method illustcin Figure 3 requires a specific bound
condition to be achieved. For example, for a-interaction boundary condition which wz
used in Figure 11, both the slip and -strain must converge to zero at the same pointin
in this case is at about 750 mm from the crack tehown. Figure 11 encapsulates all
elemental properties required fore shooting method illustrated in Figure 3
consequently the conditions required for convergeofcthe analysis depicted in Figure &
find a solution in Figure 11 for Zone A. As will l#hown later, these elemental conditi
change depending on thaagrant of the bor-slip properties in Figure 4 and the quadrar
the reinforcement material properties in Figuréh8t the analysis is dealing with. All otF
possible conditions (Figures 13, 15, 16, 18, 20 ahy will be covered in the followin
section.
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Figure 11: Distribution of slip, slip strain, baress and bond stress during loading
(pointa)

Having identified the conditions for convergencettee initial loading case on the elemental
level, the behaviour during unloading and reloadifthe bar can now be explained through
the changes in the stress-strain and bond strigseefdtionships and their resulting changes
at the elemental level. It should be noted thatubhout the various stages of unloading the
behaviour seen along the bar length, as in Figatecdn be categorised into zones where
distinct changes in behaviour occur; each of tleesees is accompanied by a description of
the behaviour on an elemental level. Where the\nehraalong the portion of the bar length,
that is zone, is the same as has been describeidysky, it will not be repeated, but instead,
the description of the each phase will focus o behaviour and the reader is referred to
previous descriptions where the behaviour is comtoanore than one phase.

Unloading - phase |

Pointb in Figure 9 is in the first phase of unloading aedurs immediately after the loading
is reduced. The behaviour in phase | is charaetiy a reduction in slip at the crack face
A(1) being accompanied by a reduction in the appbed at the crack face(R). That is, the
slip is reduced without the need to push the bavhith is a case considered later.

The initial response of the bar to the reductiorslip must be considered in two distinct
stages, because, as shown in Figure 12, the behlasimitially divergent in zone B, where
the bond stress is acting to increase the barsshefere the distributions converge in Zone A
to allow full-interaction to be achieved. Zone Bingroduced in this unloading phase; Zone
A has already been outlined above and will, thesefoot be repeated.
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Consider an element in Zone B in Figure 12 as showhigure 13(a). The bar is bei
pulled but with a reduced force compared to thattdth the peak slip (poirp on Figure 10)
is achieved. Furthermore, the slip is reducedlaval where the bond stress is located or

negative friction branch as in figure 13(
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Figure 12: Distribution of slip, slip strain, baress and bond stress during unloading phi
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Figure 13: Behaviour of elemen

This negative bond stress in Figure 13(c) meansttigabond force is acting to increase
force in the bar as shown in Figure 13(a) whereftitee on the right hand side of e
element is greater than that at the left hand Sities increase in foe results in an increa:
in the bar stress but a decrease in strain from n+l in Figure 13(b). This reduction
strain can be explained using Figure 13(b) whecaritbe seen that each element has its
unloading curve. The shape of these s-strain relationships is dependent upon
maximum stress achieved during loading, and thezetlespite the increasing stress
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strain reduces. Additionally, as the strain in iz is an extending strain, the slip strain acts
to reduce the slip of the bar.

The behaviour outlined above continues from thelcface in Figure 12 until the bond stress
is no longer negative. This switch to a positivadbstress can occur in two ways. Firstly, as
the slip of the bar approaches the maximum slipiptsly achieved, shown in Figure 12 as
the peak slip distribution which refers to pomton Figure 9, the bond stress switches to
being on the unloading branch shown in Figure 4£08dly, as the shape of the stress strain
relationship, which controls the rate of reductafrthe slip, has changed, it is possible that
the slip of the bar at some point exceeds the piakAt this point, the bar is slipping further
than it has before and as such the monotonic Igdatamd stress slip relationship is used.

At this point, the bar is being pulled with a téadbrce, the strain is an extending strain and
the bond stress is positive. These are identicatlitions to the initial loading case, that is
Zone A, and consequently convergence onto the pbifull interaction is achievable.

Unloading — phase I

As unloading continues, the load required at tlaglcface to reduce the slip of the bar at the
crack face further reduces until it is such that blar must be pushed. This occurs at point
on Figure 9, where the distributions along thedrarshown in Figure 14. It can be seen that
the bar stress at the crack face and consequefily B negative i.e. compressive even
though A(1) that is the slip at the crack face is still iige. The additional complexity
introduced at the elemental level, now that the isam compression, requires that the
behaviour be considered in 4 separate zones ah@ngar length, as shown in Figure 14.

Elements in Zone C in Figure 14 have the propeitieBigure 15(a) where the bar has a
compressive force applied to it such that the afithe bar is reduced &{n) where the bond
stress is again on the negative friction brancimasigure 15(c). This negative bond stress
yields a bond force which acts to resist the pugimrof the bar thereby reducing the force in
the bar as shown in Figure 15(a). As shown in Fds(b), this reduction in bar force results
in a reduction in compressive stress and a redugdtiostrain. It can be seen that this
behaviour occurs inside the region where the ba p@viously strain hardened and,
therefore, the bar may experience a compressiessstwith an extending strain. During this
stage, as the strain is an extending strain, fpersithe bar also continues to reduce and it
initially appears that the distributions shown iong C of Figure 14 are converging. This
behaviour is, however, not convergent due to tretsiegion over which the bar typically
strain hardens.
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Figure 14: Distribution of slip, slip strain, baress and bor stress during unloadir
phase Il (point)
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Figure 15: Behaviour of elemen

At the end of the region where the bar has undergtrain hardening, the bar may no lon
experience a compressive stress and an extendiaig.sTherefore, the behavic at an
elemental level must now change to that seen inréigd6 as we are located in Zone D

Figure 14.
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Figure 16: Behaviour of elemen
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In Zone D, the slip of the bar is still such thag tbond stress remains on the friction brz
and the bar g still being pushed. Therefore, the stress in llhe is still reducing it
compression as shown in Figure 16(b). However amgbrtantly, in this region, as the
has not previously strain hardened, the strain rhasa contracting strain. This conting
strain results in an increase in the slip of thedsin Figure 16(a) and shown in Zone C
Figure 17 where the distribution of slip strain Heesen shown on a reduced scale to b
show the change in behaviour. Hence, the slip éip-strain canbe seen to be divergir
from the point of full interactior

Zone C Zone D Zone E Zone A

slip strain

i i i i i i
0 100 200 300 400 500 600 700

Figure 17: slip strain distribution of poic

While the slip of the bar is such that the bondssris located on the negative friction brar
the force in the bar continues to increasel the bar once again experiences a tensile s
and, since this behaviour is occurring outside piheviously strain hardened region,
extending strain. At this point, the behaviour agathanges to that seen in Zone E on Fi
14, where the slip ahe bar can now be seen to be reducing. The balragazurring in this
region is outlined using Figure 18, where it cansben that the bar is again experiencit
tensile stress and extending strain. As the sliptilk significantly less than that aieved
during previous loading, the bond stress is locaiadthe negative friction branch as
Figure 18(c) and results in a bond force which &octsincrease the force in the b
Importantly, in this region, as the strain is agam extending strain e slip of the bar i
reduced across the elements, as seen in Figur

ClementG.___ dx | tensileo dx UT o TT /TN
n extending & N1 \
A P n+1
Pr(n) > P =P B « | st | ePn-2) N
—_ — n
W= = Bm) —=&n+1) = 8(n)-u(n)dx 41— Binrl)  ——d(nt+2)

(a) (b)
Figure 18: Behaviour of element E

This behaviour continues until the slip of the laaran element is sufficient that either
bond stress is located on the positive portiothe unloading branch or the slip of the ba
a given element is greater than that experiencemhglprevious loading. At this point, tl
behaviour is as in Zone A and convergence is aeldi
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Unloading — phase Il

As unloading continues, such as at Pairdn Figure 9, the compressive force required to
reduce the slip further increases. This change®vkeall convergence behaviour as the bar
begins to slip in the opposite direction locallgos/n as a negative slip on the Figure 19.

As can be seen in Figure 19, the majority of thealveour seen in phase lll is identical to that
observed in phase Il and it will, therefore, notdaglined in great detail here. Instead, the
additional behaviour which occurs in Zones F andifEbe focused upon. The behaviour is

initially identical to that seen in phase Il where Zone C the bar is pushed with a

compressive force which generates an extendingnsard the slip is such that the bond

stress is on the negative friction branch. Togethese conditions act to reduce the slip and
slip strain and the behaviour appears to be coewerdgdiowever, in phase Il the magnitude

of the initial slip is low and, therefore, the baay begin to slip in the opposite direction as
shown in Zone F of Figure 19, where a typical eletred this region can be seen in Figure
20(a).
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Figure 19: Distribution of slip, slip strain, baress and bond stress during unloading
(point d)
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Figure 20: Behaviour of element F

As the bar is now slipping in the opposite direatias shown in Figure 4, the bond stres
now located on either the negative monotonic empeelor the reduced negative monotc
envelope depending on the previous maximum sligt i point p on Figure 9. With tt
force in the bar being in compressiohe bond force, by equilibrium, acts to increase
force in the bar. Since Element F is located whpreviously strain hardened portion of -
bar, the strain is an extending strain and, theeefthe slip of the bar is further reduc
across the element.

This behaviour continues into region G on Figurentfre the element under considerat
Figure 21(a), is located outside the region whial previously undergone strain harden
As the force in the bar is compressive, the negabiond force ac to reduce the bar forc
and, therefore, both the stress and strain acles®lement as shown in Figure 21(a)
Figure 21(b). Moreover, as the strain is now a i@mting strain, the slip of the bar begins
increase as in Figure 19.

Clement G dx compressive o dx i 4
n con n+l :—‘ SN
P(n) —»  a(m) a— P(n+t1)=P(M+B — =s(ntl) — P (nt2) L /1l 5,
e i ol I\
- ] i) i —
8(n) — = B(n) == 3a&(n+1) = f(M+e(n)dx —{= Bm+1)  ——8(+2) nj J|—‘
{a) (b) n’?t ()
Y.

Figure 21: Behaviour of element G

At this point, the slip of the bar is now positiaad the stress compressive on the lir
elastic portion of the stress strain curve. Thisaweour is identical to that seen in Zone C
Phase Il and, therefore, the remainder o behaviour seen in Phase lIll is identical to the
Zones D, E and F seen in Phase Il and will notdseidbed again he

Unloading — phase IV

The final stage of unloading is characterised bwlsslips and large compressive forces
typical distritution of the slip, slip strain, bar stress and betrdss along the bar is showr
Figure 22 which corresponds to pce on Figure 9.
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The elemental behaviour for stage IV will not belined here as it is identical to that seen at
the beginning of phase Ill (Zones C,F and G). Haaven this case, as can be seen in Figure
22, full interaction is achieved where the barhsrsening and being pushed in the opposite
direction to its initial loading over almost thetiea length from the crack face to the point of

full interaction.

Reloading phase

During reloading, identified as the reloading cuoveFigure 9, the mechanics behind each of
the unloading phases also apply. Therefore a ddtdiéscription of the behaviour will not be
presented. Instead, it should be noted that theadéhg branch has been developed by
seeking out the same distributions of slip and stipin as shown in each of the unloading
phases but in reverse (from phase IV to phase I).

Comparison of strain hardening and linear elastic raterial

As much of the mechanics of the load-slip behavim@sented above arises due to strain
hardening, a comparison of the behaviour of a finelastic and a strain hardening

reinforcement material is presented in Figure 2&hBnaterials had initially the same elastic

Young’s modulus and, hence, initially followed tb@&me path up until the yield point of the

strain hardening material, after which they weradied up to a slip of 3mm, unloaded to a
zero slip and then reloaded to a slip of 4mm.
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Figure 23: Comparison of load slip relationshipddmear elastic and strain hardening
material

The linear elastic curve has been generated byyiagpthe same loading and unloading
phases as presented for the strain hardening m@laberti the behaviour is limited to elements
where strain hardening played no influence namédynénts A, D and E. A comparison of
the behaviour of the linear elastic and the sttendening curves shows that if the linear
elastic material were to be unloaded from the sdvael level as the strain hardening
material, for example after being loaded to 1.2&8ljn Figure 23a, a significant reduction in
energy dissipated would occur. However, if allowedlip to the same amount, that is, up to
3mm before being unloaded as in Figure 23b, thealirelastic material is capable of
absorbing a considerable proportion of the enebgpded by a strain hardening material.

CYCLIC MOMENT-DISCRETE ROTATION APPROACH

The moment discrete rotation approach as illusdrateFigures 1 and 2 has been described
previously. Its application depends on thd PPelationship of the reinforcement crossing the
tensile crack which can be derived from numerigadlygses as illustrated in Figure 3 or
mechanics solutions [26, 28, 34]. The same arglyan be used for cyclic loads whilst the
crack first widens then closes with theARelations from the cyclic partial interaction mode
such as that derived in Figure 9.

At some stage of cyclic loading, a full depth craekelops to allow the tension region to go
into compression and vice versa as depicted inr€igd. In order to maintain equilibrium,
the uncracked concrete section in Figure 1 mustemiono tension. This results in a
mechanism where the section is cracked throughulitslepth and only the layers of tension
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and compression reinforcing are interacting asigufeé 24. The -A relationship still applie
to the originally ‘tension’ reinforcement which sow in compresion as a crack sti
intercepts this reinforcement an-A still applies until the crack closes thatAigs zero. The
P-A relationship now also applies to the originallpnepression’ reinforcement as a cr:
now intercepts this reinforcement allowing reinforcement to slip relative to the cre
face.

— o

Y ' ¥ j_ |\
—— " einf-tens | e —

reinf-tens
Figure 24: Idealisation of unloading following fulepth crackin

For a given slip of the ‘tensile’ reinforcementetload carried by the bar is known from
partial interaction Rt analysis and sce Reint-comp = Peint-tens I Figure 24 in order t
maintain equilibrium, the slip of the ‘compressiarinforcement can be determined ba
on its loadslip relationship. Knowing both the slip of the ntle’ and ‘compressive
reinforcement the rotath can be found using Equation 13, where all unkioware a:
defined on Figure 24.

6 = tan™? (Am"f ‘tensj’"e“"f "“"""”) Equation 13
The analysis continues by incrementally reduciregdtip of the ‘tensile’ reinforcement un
the slip educes to zero which implies that the initial tensrack is closed. With the initi
crack in the ‘tension’ reinforcement region clostéet analysis follows the approach outlir
in Figure 1 with the compression and tension regjimversed as the flural crack is nov
located on the opposite side of the member. Wheritémsion’ reinforcement crack closi
the reinforcement is no longer considered to dlalative to the concrete that is it no lon
is assumed to have patrtial interaction behavi Instead the reinforcement is assumel
have full interaction behaviour and to have a nesictrain of that in the reinforcement wk
the crack closed.

Figure 25 shows a comparison with an experimepgallt of Ma et al. (1976) for a cantile\
beam Iaded under a single large cycle where the behawabtire hinge is dominated by t
behaviour of the reinforcement, thereby allowing fbe validation of the cyclic parti
interaction model. It can be seen that the redott theoretical procedure dined are
generally in good agreement with the experimengésult, and certainly follow the sar
trend. This would suggest that in cases where tleiccbehaviour of the concrete is r
critical, a major component of the cyclic behaviadireinforced cncrete hinges in bear
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can be attributed to the cyclic behaviour of thenfozcement and its bond. As a further
comparison the test result was also simulated usiegvell known unloading and reloading
rules outlined by Clough (1966) where the init@dling curve has been taken as a bi-linear
approximation of the initial loading curve genethtesing the moment-rotation approach. It
can be seen that while the simplified approachagdst follows the same trend as the
experimental result it fails to capture the sigrafit reduction in moment capacity brought
about by the degradation of the bond and the Bagshieffect.
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Figure 25: Comparison of theoretical and experimlent

CONCLUSION

A generic moment rotation model has been develdpedyclic loads on RC beams. The
model allows for the discrete rotation at an indixal crack and can, therefore, allow directly
for the cyclic bond properties and for the cyckinforcement material properties. The model
is generic as it can cope with any type of bond aiforcement properties. The model has
been shown to be in good agreement with cyclic testilts where the hinge behaviour is
dominated by the reinforcement behaviour. The dgrekent of a cyclic partial interaction
mechanics based model should be useful in the stadeling of reinforced concrete seismic
behaviour. The model has shown that strain hardgplizys an important role in defining the
partial interaction behaviour. Furthermore, théinaar elastic reinforcement material with a
high strength and strain capacity, through frictian the bond interface, is capable of
dissipating a similar amount of energy as a sthairening reinforcement material.
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Chapter 3 — Member Analysis

Introduction

In this chapter it is shown how the equivalent dieat rigidity which was derived using the
segmental Pl MY approach in Chapter 2 can be used to predict mendfeection. This is
first shown for both laterally loaded and ecceilicloaded columns loaded to failure in the
paper “A moment-rotation approach for analysinglibbaviour of RC columns”

The second publication “Simulating the partial-mation time dependent behaviour of
reinforced concrete beams” focuses on the servildyadeflection of beams, specifically the
deflections which occur due to concrete creep dmihlsage with time. Significantly, in this
paper a new numerical partial-interaction technjgwiich allows for the prediction of
tension stiffening behaviour including time effedresented, as well as a new mechanics
based approach to predicting the time dependelediieih of RC beams.

In the third publication “Partial-interaction shadrm serviceability deflection of FRP RC
beams” closed form solutions are developed forsggmental Pl MY. These equations can
be used to predict the cracked flexural rigiditydadeflection of RC beams under
serviceability loading, and it is shown that bemgchanics based they are equally applicable
to members reinforced with ductile steel or briRP bars.

Finally, in “The fundamental mechanisms that govéne flexural ductility of all RC
members” the work on the single crack and segmeévit@lapproaches is brought together
and it is shown how when used in conjunction theywijge a mechanics based solution of the
analysis of RC members under all load cases.
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A moment-rotation approach for analysing the behawur of RC columns
Visintin, P., Oehlers, D.J., Haskett, M., Wu, Cda®hen, J.F.

ABSTRACT

The behaviour of reinforced concrete columns is @em as any errors in simulating the

column deformations are compounded by the magnifdnents. Hence it is particularly

important to simulate the stiffness and ductilifyttee column accurately which is the subject
of this paper. A moment-rotation approach whichuates the formation of cracks, crack
widening and crack rotation through slip betweea thinforcement and the concrete using
partial-interaction mechanics is described. The ehatso simulates the formation of wedges
associated with concrete softening using sheatidricmechanics. The moment-rotation
model shows good correlation with tests resultdlagtages of loading.

Keywords: reinforced concrete columns; serviceahililtimate; collapse.

INTRODUCTION

The Euler-Bernoulli principal of plane sections ening plane and in particular its corollary
of a linear strain profile and the associated mdreenvature (My) analysis and
consequential flexural rigidity (El) are commonlysed to simulate the behaviour of
reinforced concrete columns [1-3]. A difficulty using this approach is to decide on an
appropriate effective flexural rigidity (&) to allow for the tension stiffening effects that
occur in the vicinity of a flexural crack, and whi@are generally determined empirically
[4,5]. A further difficulty is deciding on a hingkength over which the curvature at the
ultimate limit can be integrated to quantify thdatn, this too is generally determined
empirically [3, 6-9]

In this paper, a moment-rotation ®/approach is developed that is based on the Euler-
Bernoulli principal of plane sections remaining n@a[10]. This M# approach uses the
established mechanics of partial-interaction thgtfy24], which considers the slip between
the reinforcement and the concrete, to allow fer discrete rotation at cracks first proposed
by Bachman [25]. It also uses the established mechaf shear-friction theory [26-30] to
allow for the softening of concrete that is asstelavith the formation of wedges. Hence the
mechanics of the M/approach [31¢an quantify the rotation at all stages of loadimaf is at
serviceability, ultimate and failure without theedefor empirical components of the model
such as effective flexural rigidities @) and hinge lengths. Consequently, the moment-
rotations from the MY approach can be converted to moment-curvatureshamdequivalent
flexural rigidities (Ekqy) at all stages of loading so that theONapproach can be considered
as extending and refining the pdpproach.
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Prior to cracking or softening, the Mapproach and the Mapproach give exactly the same
results and consequently exactly the same flexugatlities (El). After cracking, the
equivalent flexural rigidities (E4,) derived directly from the M/approach replace the need
for empirically derived effective flexural rigidés (Eky) as required in the M/approach.
Furthermore at the commencement of softening, thé &pproach directly provides the
rotation without the need for empirical hinge ldmgytassociated with the /approach.
Hence the MJ approach can be used to replace the empirical coemis of the M/
approach and lead to its wider application.

The moment-rotation of a segment of a reinforcattoete column is first developed and the
reader is referred to several papers on the dewedop of the M@ approach for further
discussion of the subject [22, 31, 32]. Columns thien divided into segments and the
behaviour of a column is then derived from thathe individual segments. The moment-
rotation analysis is then compared with test resuhiere it is shown that all stages of loading
can be simulated, and the variation of the flexuigidity along the length of the column
determined.

MOMENT-ROTATION OF A SEGMENT

Consider the column in Figure 1, which has an aplpdixial load P and moment M such that
both concrete cracking and concrete softening isuwmg. To determine member
deformation, the column is divided into small segiseof length ks over which the moment
is assumed to be constant. The moment-rotationioe&hip for each segment can then be
determined for each stage of loading as follows.
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Figure 1: Column idealisation

Prior to softening and cracking

Let us firstly consider a loading of the columnhkigure 1 where the combination of the
applied axial load £;and moment Mygon the segment is not yet significant enough tsea
either concrete cracking or concrete softeningegnsent taken from the column is shown in
Figure 2(a) where the application of an axial lGai moment causes a shortening and
relative rotation between the segment elhétem A-A to B-B.
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Figure 2: Uncracked segment behaviour

The deformation profile B-B in Figure 2(a) can lmeerted to a strain as in Figure 2(b) by
dividing the deformation from A-A to B-B by the lgih Lyt These are real strains, that is,
these are the strains the material is accommodatidgas such would be measured by strain
gauges. Having obtained the distribution of stiaifrigure 2(b), and because the strains are
real strains, the distribution of stress can beemeihed using material stress-strain
relationships, yielding the stress profile in Fig@(c) and, hence, the internal forces shown
in Figure 2(d). Knowing the internal forces the nmaxxm displacement in the concréignc
can be varied, thereby adjusting the neutral aghd until internal equilibrium is achieved
for the given rotationf. This analysis yields a single point on the monrretdtion
relationship such as point A in Figure 3(a) and lbarrepeated for increasing rotations until:
either the section cracks when the maximum terstil@in exceeds the concrete cracking
strain & and the crack tip reaches a layer of reinforcement until the maximum
compressive strain exceeds the peak strain of tmeretecp that is the strain prior to
softening
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Figure 3: Moment-rotation of segment

It is also important to note that, as shown in Feg8(b), the moment-rotation relationship
can be converted into a moment-curvature relatipngly dividing the rotation by the
deformation length . At the uncracked stage, the relationship obtaimethfa moment-
rotation analysis and that obtained form a trad@alanoment-curvature analysis are identical
and, hence, so too are the uncracked flexuralitiggd(El)ner Shown in Figure 3(c). This is
important as in the uncracked case the moment-tunevaanalysis technique is a
mechanically correct approach, that is, no emglyicerived factors are required in order to
determine member deflection. This also means th#tis stage the deformation lengthedl
can be any length.

It can be seen that as at this stage thé aMalysis yields exactly the same results as the
traditional M/ analysis the lengthgks used in the analysis depicted in Figure 3 isénwaht

as any length gives the sameyMt is also worth noting that prior to crackingdawhilst the
material stays elastic the flexural rigidity is thad the uncracked section JgJ; as obtained
from elementary transformed section and shown guié 3(c). Furthermore, this analysis
still applies after the start of cracking but umniie crack tip reaches a layer of reinforcement
shown as point B in Figure 3. After the crack tiashreached a layer of reinforcement,
partial-interaction theory has to be used to deitegrthe force in the tension reinforcement as
explained in the following section.

Accommodation of cracking

Let us now consider what happens when cracking recthat is when the tensile strain
exceedse; and the crack intercepts the reinforcement as gureéi 4(a). The force in the
reinforcing bar now depends on the slip of thefoering bar at the crack fadgeins which
depends on the bond-slip/) property between the reinforcing bar and the opetec
encasing it. The relationship between the reinfoeat force at the crack facesiR-.ensand
the slipAreint can be determined through the partial-interacéioalysis of a reinforcing bar of
area A encased in a prism of area @d depth gism in Figure 4(a) as illustrated in Figure 5
[10].
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Figure 5: Partial-interaction numerical procedure

The prism of length |4 in Figure 5 is sub-divided into elements of lengthwhich are much
smaller than kg, and a displacement of the bi&r representing a slip of the bar at the crack
face is set. It is now a matter of determiningfitree R; that induces the imposed slip at the
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crack face. From the known bond slipd) properties [32] and for the given displacemént
the bond force in the first elementiB determined. Making an initial guess fot, Bhe stress,
and therefore the accompanying strain in theshas known. At the crack face the strain in
the concrete is zero, and since the element |lemaghbeen chosen to be very small the strain
in the concrete for the first element can be tateibe zero. The slip-strain (ds/dx) is the
algebraic difference in strain between the reirdatent and the concretg-g;;, and the
change in slip over element dA, is the integration of the slip-strain oves Hence, both
the slip and slip-strain in element 1 are knowne &halysis is then repeated for element 2 in
which the force in the reinforcing bar,By equilibrium is R-B; andthe force in the prism
Pc2is Bi. The slip of the reinforcementt; is thenA;-6A;, from which the bond force Bcan

be derived. The analysis can then be repeatedsoNEequent elements to give the variation
in slip A and slip strain ds/dx, and the initial guess fara@justed until a known boundary
condition is achieved.

The analysis depicted in Figure 5 can be used termine the crack spacing of primary
cracks as this occurs where the full-interactionrmtary condition is achieved that is where
both the slip-strain (ds/dx) and the shptend to zero at the same position. This positign L
in Figure 5 is, therefore, the crack spacingofthe primary cracks in Figure 1. Hence it can
be seen thatdesis half S as shown in Figure 4 that is the length of tharsag in this part
of the analysis has to be half the crack spacihgs hlso worth noting that as the crack
spacing & may be one or two orders of magnitude smaller tharlength of the column, the
moment may therefore be considered to be constaerttbis length, thus by symmetry the
reinforcement slip mid-way between cracks is zetence the slip\ at the base of the prism
in Figure 4 at ket= S/2 from the crack face is zero as shown. This neundary condition
can be used in the analysis in Figure 5 to detexrthie PA relationship that is required for
the analysis in Figure 4. This analysis can alsodex to determine the reinforcement force
to cause cracking atyk that is to cause secondary cracks and also theuld secondary
cracks occur.

The analysis procedure for the cracked segmenigar& 4(a) can now proceed using the
same approach as for the uncracked segment. Theiration of the applied axial load and
moment cause a change in deformation from A-A t8 Bsdth a rotation off, and this
deformation is used to determine the strain prajilen in Figure 4(b), by dividing by the
deformation length et Inthe compressive and uncracked tension regionssttam is a real
strain and, hence, material stress strain reldtipsscan be used to determine the stress and
forces developed as in Figure 4(c) and Figure 4dj.the cracked tension region, the slip of
the reinforcement from the crack fatgins can be determined from simple geometry, and for
the given slip, the load developed can be foundgiie tension stiffening partial-interaction
model in Figure 5. Having determined the intermatés, the maximum deformation in the
concretedqonc Can again be adjusted until equilibrium is achievEhe rotation in Figure 4
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can be gradually increased to derive the momeatioot relationship from B to C in Figure
3(a) at which point softening commences which &ltdeith in the following section.

Using the partial-interaction theory, the Mapproach in Figure 4 represents a structural
mechanics based solution to concrete crackingt sisnulates the crack spacing and crack
widening as the reinforcement slips relative to ¢bacrete. Furthermore if the strain profile
in Figure 4(b) is examined, it can be seen thatMif@ approach simulates what is seen in
practice, that is, the real strain profile is linealy in the uncracked tension and compression
region. In the cracked tension region, the realistis zero at the crack face, and increases
until the midpoint between the cracks following tpartial-interaction theory. This is in
contrast to a full-interaction M/approach which smears the cracking deformatigraduce

a single linear effective strain profile shown las tlashed line in Figure 4(b).

Once again, the moment-rotation relationship fronoBC in Figure 3(a) can be converted
into an equivalent moment-curvature relationshimasigure 3(b) by dividing by der. In this
case, the relationship derived from abMinalysis and that derived from a traditionalyM/
approach will not be the same for the reasons itestabove. The M/analysis can also be
used to define an equivalent flexural rigidity &) in Figure 3(c) for use in analysis, this
equivalent flexural rigidity (&) is different from the effective flexural rigidiEle) found
using typical approaches such as Branson’s equatsoint uses structural mechanics to
account for concrete cracking rather than beingiecafly based. It may also be worth
noting that even though the 8Analysis is based on a segment of lengif2 $ Figure 4
and on a segment subjected to a constant momecénitoe conveniently converted to a
moment-curvature with continuously varying flexurgidity from B to C in Figure 3 which
may be much more convenient for analysis in a calwith a continuously varying moment.

Accommodation of softening

An idealised stress strain relationship for coreistshown in Figure 6(a). The deformation
in the ascending branch O-C, that is, up to tharsty, at the peak stress ¢an be assumed
to be accommodated directly by the material defoionaln the descending branch C-D, the
concrete material is still governed by O-C so thiay additional deformation can only be
accommodated by sliding of the wedges associatéld saftening [10]. Hence, the strain
along C-D such asA)et is an effective strain which allows for the redoitin strain due to
sliding of the wedges. To impose a rotation beygumint C in Figure 3 requires a
deformation in the segment in Figure 4(a) in th@catete in the compression zone that
exceedsilger that is a deformation that exceeds that which lmamaccommodated by the
peak material strain capacityc. This can only be accommodated by the formatiora of
wedge as shown in Figure 7(a) which is associatéiu sncrete softening. This wedge has
a depth of gdyg and length L4y and forms at an angle of which is dependent upon the
cohesive and frictional properties of the conc{ag.
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The concrete contained within the softening zondigure 7(a) is traditionally simulated
within a M/ analysis indirectly through the use of both an ieiegdly derived softening
branch of the compressive stress-strain relatignahd an empirically derived hinge length.
However using the moment-rotation relationshig;ah be directly simulated using the well
established shear friction theory [26-30].
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To understand the shear-friction mechanism, letassider an element from Figure 7(a)
within the depth of the wedge.g which itself has a depth otigdAs has been shown in the
previous two load cases in Figures 2 and 4, poasdftening the deformation taking place
over this elementeein Figure 7(a), can be divided by the deformatemgith Lyer to give the
corresponding real stram in Figure 6(a). Since this deformation can be auoodated for
entirely by the material, a stress-strain relatimssuch as in Figure 6(a) can be used to
determine the stress; developed. This behaviour continues until the ps#iain gp
corresponding to the peak stresgfFigure 6(a) is attained. At this point no fuathncrease

in material deformation is possible and a softenieglge must form to accommodate the
additional deformation required. The gradual fororatand failure of this softening wedge,
which is seen in practice, allows for non-matediedormation to take place.

This non-material deformation, shown for the elemerguestion in Figure 7(e), takes place
in the form of sliding along the shear friction péaa distance of H such that an additional
vertical deformation S occurs. This non-materidbd®ation allows the strain in the material
to drop belowey such that the stress developed decreasesitoFigure 6(a). Hence the total
deformationdee consists of a material deformatieplqer plus that due to wedge sliding S
giving a total effective strain in the concretecgf= €,+S/Lges. The magnitude of the stress
developed for a given slip can be determined usied defined the shear-friction theory
illustrated in Figure 6(b) [10,26-30]. Figure 6(Quantifies the shear-friction properties
required for the analysis depicted in Figure 7¢&)ich provides a relationship between the
displacement H along the sliding plane and the rslsti@sst, and normal stressy
transferable across the cracked plane. It may béhwwting that the sliding plane in Figure
7(e) also opens up through aggregate interlockHmueffect of this movement on the overall
longitudinal effective strain is at least one ordémagnitude less than that due to the slip S
and consequently can be ignored [29,30].

An example of the analysis using this shear frictioeory is as follows. Let us guess that a
stress of €eie)guessOCCUrs in the element of widthygdof Figure 7(a), now shown in Figure
7(e), which is required to induce the displacemé&nt From the material stress strain
relationship in Figure 6(a), the strain to causs $fress is known to beef)guess HENCE, the
material deformation is known to b&)guest-der, and, consequently, the deformation required
by sliding S =deie-(gele)guesé-det. KNowing the angle of formation of the wedge[33] in
Figures 7(a) and 7(e) and S, the sliding displacenie can be determined from simple
geometry. It is then simply a matter of finding @nbination oft, andoy which gives the
vertical component & in Figure 7(e) and iterating until the stregs is equal to eid)guess
This solution has also been defined in a closewh oy Haskett et al. [30].

Having established how shear friction theory camded to describe the softening behaviour
of a single element of the softening wedge, we again consider the whole segment. The
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applied combination of axial load and moment againse a change in displacement from A-
A to B-B in Figure 7(a) causing both concrete cmagkand softening. In the non-softening
compression region and the uncracked tension rethenstrain developed can again simply
be determined by dividing the deformation byslto give a real strain as in Figure 7(b)
which are used in a material stress strain relalignto give the stress profile in Figure 7(c).
Similarly the force developed in the tensile remfament can be determined as previously
shown through the application of partial interactitheory by determining the slip of the
reinforcemeniAintbased on the deformation profile B-B. Finally ir thoftening region, the
wedge is split into a number of slices and for eslade the slip of the wedge H determined
so that the shear friction theory described camapglied. Again for the analysis of the
segment, it is then simply a matter of adjusting mhaximum displacement in the concrete
dconcuntil equilibrium of the forces shown in Figure Y (gl achieved.

Depending on the magnitude of the axial load, saftg can occur prior to or post concrete
cracking, and this in turn affects the deformatiength Lger. For the case when softening
occurs after cracking, the wedge must be entirelytained within the deformation length.
Hence if lwgg it is greater than Jes in Figure 7(b), the deformation lengthelmust be
incrementally increased [10], that is.dg must be less than n timegel When softening
occurs prior to cracking,det must be chosen so that it is greater than thg In this case, it
may be easier to choose a multiple of the crackisgaso that the length does not need to
change once cracking does occur after softening.

Similar to the cracked case in Figure 4, it carséen that the moment rotation approach in
Figure 7 simulates what is actually seen in practibat is, the formation and failure of the
softening wedge. Considering the strain profileFigure 7(b), the strain in the concrete
within the softening region is given by the reabst which can be seen to be reducing, until
it eventually drops to zero as the slip increasieis, is what is measured in practice. In a
traditional moment-curvature analysis, the straonsidered is the effective strain given by
the dashed line which is a combination of the niatemd non-material deformations and,
hence, an empirically derived hinge length is rezpiito determine member deflection.
Similar to the previous load cases, the momentiorstaresult can be converted to an
equivalent moment-curvature relationship, and is ttase provides an equivalent flexural
rigidity as in Figure 3(c) from C to D. Howeveras are now dealing with softening, that is
C to D in Figure 6(a) and C to D in Figures 3(ajl ), the region over which this occurs
that is Lger in the column must be specifically defined. Thstwithin this softening region C-
D in Figure 3(c) applies, whilst outside this regiovhere the moments may be the same, A-
C applies. The lengthgk; once softening has occurred is in effect a himggth, but it only
occurs in regions where softening is taking placel in this case is derived from the shear-
friction theory as opposed to the empirical hingregiths required in the Wapproach.
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With the three stages of the analysis presenteid, riow possible to produce moment M
flexural rigidity (Ekqu) relationships for a segment, as shown in Figueg, 3¢hich accounts
for concrete cracking and softening using stru¢ton@chanics and which applies to all of the
segments in the column in Figure 1. This MqENariation can be used in a traditional
manner to determine member deflection without thednof an empirically derived flexural
rigidity Eles or hinge length and shows the potential of the errnotation approach to be
used to improve traditional analysis techniquesciwhare based on the Euler-Bernoulli
assumption of plane sections remaining plane.

MOMENT ROTATION ANALYSIS OF A COLUMN

Having now described the moment-rotation procedarea segment, it will now be shown
how the approach can be applied to describe the deflection behaviour of laterally and
eccentrically loaded columns, including those wailgnificant second order effects. The
column shown in Figure 8(a) of height L, which Heesen divided into segments of length
Lqer, represents either a laterally loaded cantilevaduran with a fixed base or half of an
eccentrically loaded column with hinged ends, whkesmaximum deflection corresponds to
the deflection at mid-height.

P 8. P 59 ) 5 El_
gk ! q
- l
iy |
i -
U 7 Y \ ]
HE o | /
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(a) (b) () (d) (e) ®
Figure 8: Numerical procedure for analysing mendsdlection

The first step of the analysis is to generate @ tdiationship which can be used to determine
the change in rotation of each segment as descptmdously. For the case of the laterally
loaded column, the analysis proceeds by settingithdeflection of the columy; as in
Figure 8(a) and guessing the lateral load V. Thgmii@d moment M in Figure 8(b) in the
first element (1) at the base of Figure 8(a) is P&z Hence from the moment-rotation
relationship and for this moment can be determitiexl change in rotation6; for this
element in Figure 8(c). With the boundary conditiiat at the base of the column the
rotation is zero, the change in rotatiéh in Figure 8(c) for the first element is also tbéat
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rotation6; in Figure 8(d). The integration of this rotatiomeo the element lengthgls gives
the lateral displacemet. Hence in element (2), the component of the mordestto the
axial load is now Rja-61) so that the magnified moment,Mn Figure 8(b) can be
determined, consequently from the moment-rotatiwalyessisd6, in Figure 8(c) and so on up
the column until the tip deflection is found, aridtiis not equal to that which was initially
set the lateral load V must be changed until it is.

The analysis for an eccentrically loaded columrhveitvarying axial load follows a similar
procedure. A mid-height deflectiadi; is set and an axial load P to give this defleci®n
guessed. For this axial load P, a segmental monogation relationship is developed and as
above the deflection is determined, this time wfitb boundary condition that at mid-height
the rotation is zero and knowing that at the enthefcolumn the deflection should be zero;
if not the analysis is repeated for a new gued. of

It is also important to note that it is possibled&iermine the deflection of the member using
a moment-curvature analysis, where, instead ofraéténg the change in rotation of each
element the curvature is found. It is then simpiyatter of integrating the curvature to get
the deflection as in a traditional analysis. Wheimmg this approach it is, however, required
that the element at which softening takes placeflegjual length to that which was used to
derive the moment rotation relationship. An altéremoment-curvature approach is to use
a standard analysis package where the flexuralitygcan be varied along the length of the
column as in Figure 8(f) and the same boundary itiongd used to iterate towards a solution.
It may also be worth noting that this approach banincorporated into finite difference
analysis where each segment is allocated a flexigidity as in Figure 3(c).

APPLICATION TO TEST SPECIMENS

The moment-rotation approach has been used detetmenload deflection response of both
laterally loaded columns, as tested by Atalay aedzien [34], and eccentrically loaded
slender columns, as tested by Kim and Yang [5].

Throughout the previous explanation only a qualigatdescription of the moment-rotation
approach has been described. In order to develMf® aelationship, an example of which is
shown in Figure 9(a) along with a corresponding reot¥Ekqy, relationship (M/Edgy) in
Figure 9(b), several material models are requitets important to note that these are not
critical to the application of the moment-rotatiapproach, any material model can be used
and as these are refined better results can betexpe
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Figure 9: Typical moment-rotation response

Material properties
Prior to cracking, a linear elastic tensile strggsstrain €) relationship has been assumed for
concrete in tension, and in compression that ofrtéstpd [35] as in Eq. 1 has been used

o= |- ()] W

where the straigp, corresponding to the onset of concrete softentrfg ia Figure 6(a) and
the formation of a softening wedge has been detexthiusing the empirical model of
Tasdamir [36] as in Eq. 2, whergi$ the peak concrete strength in MPa. This hakceg
that suggested by Hognestad [35] as it was deonved a wider range of concrete strengths.

gpk = (—0.067f, + 29.9f, + 1053)107° (2)
Once the concrete has cracked, the partial infera@nalysis requires the definition of a

bond stress slipefo) relationship. The model used in the present amlyg that suggested by
the CEB for deformed bars [32] and given by Eq. 3-6

5\04
T = Tmax (6_1) 6 <6, 3
T = Tmax 51<5S52 (4)
5-65,
T = Tmax — (Tmax - Tf) (63—62) 62 <6< 53 (5)
T=1:8 > 03 (6)
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Where 61=1, 6,=3, 83 is the clear spacing between ribs, which can benaks 10.5 i
unknown, 7,4, = 2.5V f. MPa andr; =0.4tmaxMPa

For concretesoftening, the closed form solution given by Eqg.which was derived b
Haskett et al. [30], gives the relationship betwdba total material and non mater
deformation,dee in Figure 7(a) and stress developeee in Figure 7(c). For the prese
analsis the angle at which the wedge formsHas been taken as 2

2
fe—o

A= Spk——fc ‘Spk Ldef+

(o—fc)fc cosasina

(7)

[(f—c)0'601l(—30.142fc+51.6230 sin ) cos a]
30

Finally when the depth of the softening wedgqg In Figure 7(a) exceeds the cover to
compression reinforcement, it is assumed that #rs bre unrestrained and can there
buckle once they have yielded. To allow for bucglthe empirically derived stressstraine
relationship of Dhakal and Mkawa [37] is used. This model requires that anrmésliate
point (*,6*) be determined using Eq. 8 and Ec

g os5-23 LS5y ®)
£y 100D €y

o _(141_ [5r) 4
Ul*_<1.1 0.016 100D> ;0" > 0.2f, (9)

wheregy is the yield strain of the bar is the yield stress, L is the spacing betweenugis)

D is the diameter of the longitudinal reinforcemanti“; is the stress corresponding to
straing* if buckling is ignoreu.

For strainse less thare*, the stress including the effects of buckling, can be deteraxi
using Eq.10, whers is the stress developed in the bar for the stréitbuckling is ignored.

Uiz1—(1—0—)<£_£Yy>;forey<es<€* (10)

1 o7 ) \&*—¢

Once the intermediaj@oint is reached the stress in the bar is detewirseng Eqg. 11, whet
E, is the elastic modulus of the bar and the additionastrain tha? = 92/ is applied.

c=0"—0.02E,(e —€%);fore > &* (12)
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Examining the M@ and M/ELq, relationships in Figure 9, the points at which aete
cracking, yield of the tensile reinforcement, cormeement of concrete softening and wedge
failure can be clearly seen. It may be of inteteshote that the point at which concrete
softening commences does not necessarily corresfmiite peak moment, but rather the
moment continues to increase following the commeree of concrete softening. This
occurs because initially the slip of the wedge nsals, and hence, it is possible that the
average stress in the softening wedge may remasedb § The ability of the section to
maintain this increase in moment following the coemwement of concrete softening is
highly dependent upon the behaviour of the compasseinforcement. Without
compression reinforcement, a falling moment rotatielationship is seen immediately after
the commencement of concrete softening as showMhen heavily reinforced in the
compression region, or when the reinforcement hdarge strain hardening modulus, a
greater proportion of the total compressive foicdéaken by the reinforcement and, hence,
both the depth and slip of the wedge are reducading to a more significant rising branch
post concrete softening

A further significant feature of the analysis shoimnFigure 9 is the failure of the wedge.
Wedge failure occurs as beyond a certain slip, vltan be determined using Eq 3, the
elements of the wedge can no longer sustain arty lbaherefore follows that as rotations
increase, portions of the wedge, as in Figure 7gaddually reach this limit and stop
contributing to the resistance of the applied axticAgain depending on the amount and
properties of the compression reinforcement, tlilaraof a small portion of the wedge can
lead to a rapid increase in wedge depth and therefesudden drop in moment capacity as
seen in Figure 9(a).

Laterally loaded columns

Figure 10 shows the application of the above tepmio the three columns tested by Atalay
and Penzien [34], where each column had a heighfl6@fmm and cross section of

305mmx305mm and was reinforced longitudinally witiNo. 22mm bars and transversely
with stirrups at 127mm centres and the axial l@adyed from 262 to 801kN.
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Figure 11: Moment-Ely relationships for columns tested by Atalay andzren[34]

It can be seen from the comparison of the expetiahemd theoretical results in Figure 10
that the moment rotation approach is capable ofirately predicting the response of the
columns both in terms of shape and magnitude onighrey branch and under low axial loads
up until the ultimate limit. The simulation undegher axial loads, however, predicts a far

more rapid loss of strength than seen in praclibés may be attributed to the fact that the
influence of stirrups has not been included inghesent analysis, that is the confining effect

of stirrups has not been included in Eg. 3 whichs wigrived from laterally unconfined
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concrete [16]. If stirrups were included it coulel &pected that a more gradual failure of the
wedge would occur as stirrups would act to reduedge slip through their confining action.

Also shown in Figure 11 is the M/ relationship for a segment of each column. It lsan
seen that with increasing axial loads the secti@cks later and initially shows a more
gradual reduction in flexural rigidity; this is aexample of how the M/ approach
automatically allows for the effects of tensiorffetiing at all stages of loading and for any
axial load. Once the reinforcement begins to yibkte is a rapid deterioration in the flexural
rigidity. In the case of the tree columns testesl;duse the compression reinforcement has
yielded and the bars have a low strain hardeninglulue meaning that as the section
continues to rotate a larger proportion of the campive force must be carried by the
concrete, which in turn leads to the peak straindesached at lower rotations. The earlier
commencement of concrete softening also meansthigatvedge begins to fail at lower
rotations and so the rapid reduction in flexurgidity, indicating wedge failure, occurs
earlier.

Eccentrically loaded columns

This analysis technique has also been appliedeattumns tested by Kim and Yang [5],
which had heights of either 1440mm or 2400mm amdsections of 80mm x 80mm. The
columns were reinforced with either four 6.4mm kargive a reinforcing ratio of 1.98%, or
eight 6.4mm bars to give a reinforcing ratio of3®and had stirrups at 60mm spacing. The
columns had concrete strengths of either 25.5MFRE&8&@MPa.

From the load deflection results presented in Fgl2, it can be seen that the present
approach accurately predicts both the general betiaand the magnitude of these test
results. It is, however, expected that both thaltesor the laterally loaded columns, as well
as the results for the eccentrically loaded coluars be improved with time as the shear
friction properties are developed such that stsrepn be considered. It can also be seen
from the first test results in Figure 12 that thement rotation approach used is capable of
predicting behaviour up until a complete loss oémsgth is observed that is it can follow the
collapse.
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Figure 13: Application of moment-rotation analysiscolumns tested by Kim and Yang [5]

In the analysis of eccentrically loaded columnsyak necessary to generate a family of M/
responses with varying axial loads. Some of theltgsn terms of M/Edy, are shown in
Figure 14. Once again it can be seen that thisoagpr automatically allows for tension-
stiffening and concrete softening on the flexuigldity without the need for empirically
derived components for the model such as hingethsngnd effective flexural rigidities. In
the case of these eccentrically loaded columnstabtes sliding of wedge does not occur.
Wedge failure is prevented as the sections haviglehreinforcement ratio than those of
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Atalay and Penzien. Consequently, as in Figureetdn under higher axial loads the flexural
rigidity gradually approaches zero. It may be nothdt for both laterally loaded and

eccentrically loaded columns failure of the wedgeild be delayed by the addition of
stirrups.
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Figure 14: Moment-Ely relationships for varying axial loads

CONCLUSIONS

In this paper, a MY approach has been developed for the analysisifioreed concrete
columns and has been validated by comparison vath laterally and eccentrically loaded
column tests. This M/approach uses the established mechanics of piatigahction theory
and shear-friction theory to allow for cracking asoftening of concrete and for tension-
stiffening. Hence the M/approach can quantify the rotation at all stagdsaxling, that is,

at serviceability, ultimate and failure without tiheed for empirical components such as
effective flexural rigidities and hinge lengths.rthermore, the moment-rotations from the
M/6 approach can be converted to moment-curvaturegaqmidalent flexural rigidities at all
stages of loading so that the Mdpproach can be considered as extending theapfiroach

by automatically allowing for tension-stiffening darconcrete softening on the flexural
rigidity of a member.
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Partial-interaction time dependent behaviour of renforced concrete beams
Visintin P., Oehlers D.J. and Haskett M.

ABSTRACT

When a concrete member is subjected to a loacd#gonse is both instantaneous and time
dependent. The influence of time dependent defoomas particularly import because it
may lead to serviceability failures in structuraémrbers where deflections or crack widths
are excessive. Current analysis techniques fofamiad concrete members are built around a
moment-curvature (M) approach that is based on the assumption ofirftdlaction (FI),
that is, the reinforcement does not slip relatieethhe concrete which encases it and,
consequently, the widening of cracks and their ctflen deflection cannot be simulated
directly. Hence in order to determine member défd@¢ empirically derived expressions for
the flexural rigidity of a member (El) are required to allow for the tension stiffening
associated with cracking. In contrast to this FlyMfproach, a moment-rotation @/
approach has been developed which allows for @tgvéen the reinforcement and concrete,
that is partial-interaction (PI) and which, conseuly, obviates the need for the empirically
derived flexural rigidities (Ehy. The Pl Mp approach simulates directly, through partial-
interaction structural mechanics, the formation amdening of cracks as the reinforcement
pulls from the concrete at crack faces and, coreygtyy automatically allows for tension
stiffening. Hence the Pl M/approach is a useful improvement of the currentVify
approach as it quantifies the flexural rigidities@ciated with tension stiffening which can
then be used in standard analysis techniques alsb shown in this paper that the moment
rotation approach can be used to derive flexugitities that account for the long term
effects of creep and shrinkage as well as predjdire effects of creep and shrinkage on
cracks widths and spacings.

Keywords: reinforced concrete beams; creep; shigekadeflection; serviceability; partial
interaction theory

SYMBOLS

A — Area of tensile reinforcement

B — Bond force

E.— Elastic modulus of concrete

E,— Elastic modulus of reinforcing

El — Flexural rigidity

Elemp— Empirically derived effective El

Elequ— Equivalent El

Eluner— Uncracked El

Lpq- Length of concrete prism to FI boundary condition
Lgef - Deformation length
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L, — Perimeter of all reinforcing bars

Lt - Total length of reinforcing bar to FI boundagndition
Ls- Segment length for numerical Pl analysis

M - Moment

Mseg—Moment applied to a segment

Pconc— Force developed in the concrete in compression
Pconc-tenss FOrce developed in the concrete in tension
P.— Force in the reinforcing bar in the Pl model

Preint- FOrce developed in reinforcing bar at crack face
Preint-tens- FOrce developed in the tension reinforcement
Preint-compForce developed in the compression reinforcement

ds/dx — Slip strain

(ds/dx)FI — Full interaction slip strain
f.— Peak concrete stress

t—Time

to— Time at which load is first applied

A — Slip of reinforcing bar in a segment from thenauical Pl model
Areint—Slip of the reinforcement form the crack face

d - Slip of the reinforcement in the numerical Pldeb

31, 82, 63 — slip of the reinforcement which define th&) characteristic
d.— Extension of the concrete from the base line

dA — Change in slip of the reinforcement over a segme
dr - Contraction of the reinforcement from the base |
dop— Deformation of concrete at the top fiber

y - Curvature

¥sh — Curvature due to shrinkage alone

(er)r— Full interaction strain in the reinforcing bar
(ec)m— Full interaction strain in the concrete

esh— Shrinkage strain

gpk—Strain corresponding to the peak strgss f

¢ — Creep coefficient

0 - Rotation

Bsh—Rotation due to shrinkage alone
T — Bond stress

Tmax—Maximum bond stress

1t — Frictional bond stress
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INTRODUCTION

When concrete is subjected to a sustained loadk tependent strains due to creep and
shrinkage develop. These creep and shrinkage sti@wwve considerable impact on the
performance of structural members, causing incoeasack widths and deflections which
may result in serviceability failure. The unfavoblea nature of time effects on reinforced
concrete means it has been an area of researecksinfer more than 80 years, with much
effort devoted to the development of models to jptethe changes in concrete material
behaviour with time (Bazant and Panula 1979a-c;ildest al. 1983; Eurocode 2; ACI 1982,
CEB-FIP 1994; RELIM 1995a,b Gardner and Lockmanl2@andards Australia 2009) and
to methods of incorporating these changes intoicedt analyses (Faber 1927; Whitney
1932; Bresler and Selna 1964; Ghali 1967; Bazam2,1®Branson 1977; Neville 1983;
Gilbert 1988; Westerberg 2008; Gilbert 2011). Theded approaches utilise methods of
varying complexity to determine the change in cet&material properties with time and,
hence, cross sectional behaviour. However in maechaarms, all of these approaches are
based on a moment-curvature fManalysis technique: in which there is a lineanist
profile; and in which there is full interaction {Fithat is, the reinforcement does not slip
relative to the concrete so that there is a udmstrain profile. These assumptions mean
that the techniques are unable to describe craakirsgp or widening directly and, therefore,
must resort to empirically derived approaches tsaorhus these approaches ultimately rely
on the definition of an effective flexural rigidi(flemp, which must be defined empirically,
to determine member deflection.

In contrast to the FI M/approach, a partial interaction (Pl) moment-rotaijM/0) approach

for simulating reinforced concrete behaviour unidstantaneous loading has been developed
by the authors (Oehlers et al. 2011; and Visintinale 2012a,b); this approach directly
simulates what is seen in practice, that is, them&tion and widening of cracks using partial-
interaction theory (Bachmann 1970; Yuan et al. 2@dhlers et al. 2005; Mohamed Ali et
al. 2008a,b; Haskett et al 2008; Muhamad et al120h the following paper, the Pl B/
approach is extended to account for the influerfcereep and shrinkage. It is first shown
how the PI M@ approach can be applied to a segment of a merolaerive the equivalent
flexural rigidity of a cross section (&l) to allow for tension-stiffening, creep and shegk;
these equivalent flexural rigidities @) are a replacement of the empirically derived
effective flexural rigidities (Bl used in the FI M/ approach. The equivalent flexural
rigidity of a cross section is then used to descthe load deflection behaviour of an entire
member through the application of standard anatgsisniques. Finally, the approach is used
to predict the behaviour of beams tested by Gilaed Nejadi (2008) under a sustained load
and FRP reinforced beams tested by Barris et @09Runder instantaneous loads, where the
Pl M/6 approach is used to predict the additional ddflest which take place due to
shrinkage.
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MOMENT-ROTATION ANALYSIS OF A SEGMENT

The PI M analysis is illustrated in Figure 1(b) for a seginaf a beam of outline A-A-A-A,

of length 2lges and of the cross section in Figure 1(a). The segnwe symmetrical and
symmetrically loaded about E-E so that all defororet can be measured relative to E-E
which in effect remains stationary. Prior to anyodmations taking place, either as a result
of shrinkage or the application of an external |dagkth the concrete and the reinforcement
are of length 2} If a shrinkage straing is allowed to take place and the concrete weee fre
of any restraint from the reinforcement, a defoioraf the concrete of magnitudegl ger
from A-A to B-B would take place over each halftbé segment A-E. However, due to the
presence of internal reinforcement, which in thése is non-symmetrically placed, the
concrete is restrained and, hence, the actual mefoyn of the concrete is from A-A to C-C
causing a rotatiofls,. If a constant moment My is now applied over the segment, a further
rotation takes place such that the total rotati®® iand the deformation is to D-D. By
symmetry, the deformations at each end of the segisteown shaded are equal, so that
relative to E-E at the mid-length of the segmemtytproduce the same strains or effective
strains. Hence it is only necessary to considert@tieof the segment which is of lengthel

in the following analyses. Let us first considee thehaviour of the segment prior to
cracking, beginning with the case where the appirexinent Mgy is zero and, hence, all
deformations are the result of shrinkage alone.

ABC D x— El D CBA

o O Eshl-def’_’ | ’_’Sshl-def
9 : 9

M -~ ™~ M
seg eSh | eSh v> seg

prism__ |/ | | _ _ ] |

1 1
O O /7 !
X-X D ,IACB LK El L. BC,IA D
(a) cross section | (b) segl;ment |

Figure 1: Segmental M/
SEGMENTAL ANALYSIS PRIOR TO CRACKING

The left hand side of the segment in Figure 1(Ishiswn in Figure 2(a). The segment has an
original length lgef;, hence prior to any deformation, both the reindonent and the concrete
are of this length. Since any deformation of thafoecement from this initial length causes a
stress to be induced, A-A becomes the baselinddtmrmations which induce a stress in the
reinforcement. Similarly if the concrete were fiteeshrink without restraint, then it would
reduce in lengtlzslgeffrom A-A to B-B. This shortening would not inducestiess. Hence
any deformation of the concrete away from B-B irgki@ stress in the concrete and,
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therefore, B-B becomes the baseline for concreterihations which induce a stress in the
concrete.

reinf-comp

conc

conc-tens

reinf-tens

Ldef
(a)

Figure 2: Analysis of an uncracked segment

Prior to the application of any external loadsis therefore a question of finding a
deformation C-C in Figure 2(a), which has a rotatif 65, such that for longitudinal
equilibrium the moment Myis zero. To do this, an iterative process is remlirThe
procedure begins by fixinfs, and guessing the locatidg,, thereby, fixing the position of
the deformation profile C-C in Figure 2(a). Sinbe section is uncracked, the deformations
can be divided by the deformation lengthlto give the strain profiles in Figure 2(b). It
needs to be stressed, however, that two strainlggaéxist, one for the reinforcement and
one for the concrete. Since it has been establishadany deformation away from A-A
results in a strain to cause a stress in the neiafoent, the deformation from A-A to C-C
divided by Lger gives the strain profile for the reinforcementatths, F-F in Figure 2(b).
Similarly, since any deformation away from B-B risun a strain to cause a stress in the
concrete, the deformation from B-B to C-C divideg Ly gives the strain profile G-G in
Figure 2(b). It can also be seen in Figure 2(b) thase profiles are parallel and locatggl
apart. As the section is uncracked, these stramseal material strains, that is, they would
be measured by strain gauges placed on the mekib@wning the distribution of strain in the
segment, and because all the strains are reahstithie distribution of stress in Figure 2(c)
can be determined using any conventional matetiess-strain relationship and, hence, the
internal forces in Figure 2(d) can be determinédhé algebraic sum of these forces is not
equal to zero, then the maximum deformation atttipefaced,,, can be adjusted, thereby
shifting the depth of the neutral axis, until eduibm of the internal forces is achieved that
is they sum to zero. If at this point of longitudirequilibrium the moment is not zero th&p
must be adjusted and the analysis repeated undibes so. Hence both longitudinal and
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rotational equilibrium have to be achieved to fthé deformation C-C, and in this case both
stress resultants are zero.

The analysis above provides the initial rotatiorihaf segment due to shrinkage alone, that is
Bsh at point O in Figure 3(a), and is applicable wlilea shrinkage strain is insufficient to
cause concrete cracking. The shrinkage rotaflignin figure 3(a) can be converted into a
shrinkage curvaturgs,in figure 3(b) by dividing by the deformation lehgkgesin Figure
2(a). As the section is uncracked, this initialvaiure is the same as that which could be
derived using a standard full interaction analysience the deformation lengthdused in
the analysis in Figure 2 is irrelevant as any dagtdion length will provide the same initial
curvature.

M M M
C
v C
/ \
/ — \
A/ \
/ \ - /Eluncr
B uncracked B A
0 ——— cracked 0
kel S O/L,. El.
% (@ mie Xo oy mry (O QEM

Figure 3: Variation of rotation, curvature and El

Let us now consider what happens when a momegjidMapplied to the segment in Figure
2(a) and sustained for some period of tim&he combination of shrinkage and the applied
moment causes a total rotatiOnin Figure 2(a), such that the total deformationtioé
segment face is now from A-A to D-D. The same asialyas outlined for the case of
shrinkage alone can now be applied. However in thise6 is varied until the resulting
moment is now Mg Hence the longitudinal equilibrium requiremenneens at zero whilst
rotational equilibrium requires a moment ofdyl an alternative approach would be to 6ix
and varydop until there was longitudinal equilibrium after whithe moment could be taken
for that fixed or impose@. Therefore by repeating the analysis for increg@sotations, the
moment-rotation relationship O-A in Figure 3(ae&ablished. It should also be noted, that
in order to allow for creep, when determining theess in the concrete, a reduced elastic
modulus must be used where the magnitude of thiicteon is determined by any
convenient method.
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Again, as shown in Figure 3(b), the Mrelationship O-A in Figure 3(a) can be converted
into an equivalent M/ relationship by dividing the rotations by the defation length ker

At the uncracked stage, the result obtained froemMi analysis and a traditional FI W/
analysis are identical as both are FI analyses.defi@mation length §¢; used in the analysis
from O to A is, therefore, irrelevant as any lengill give the same M/. Furthermore, as
both approaches are identical so too are the ukedaitexural rigidities (Ekc) as shown in
Figure 3(c), these could therefore also be obtafr@d the traditional FI M{ analysis. It is
important to emphasise that both approaches argi¢dé for uncracked segments, because,
at the uncracked stage, a traditional FlyMhalysis does not rely on empirically derived
factors such as those required to determine deffectin particular El,p, Hence, a M
analysis carried out on a segment subjected tanatant moment, can be used to determine
the variation in the local flexural rigidity of tre¥oss section with moment, which can in turn
can be used to determine the deflection of the neerfds any moment distribution. Bearing
in mind of course that that the member is alreathjested to a shrinkage curvatytgalong

its length that induces deflection.

The analysis in Figure 2 is applicable followin@aking, but only to the point at which the
crack tip just crosses the tensile reinforcemeriterAthis point, partial-interaction theory
must be used to determine the force developed antéhsion reinforcement. The use of
partial-interaction theory allows for slip of theimforcement relative to the surrounding
concrete which in practice is what allows crackspen.

ACCOMMODATION OF CRACKING WITHIN SEGMENTAL ANALYSIS

Again consider the left hand side of the beam segnameFigure 1(b), now shown in Figure
4(a), which is cracked to a level above the rewifay bar. Partial interaction theory must
now be used to describe the behaviour of the ®msihforcement. This is because the load
developed in the reinforcement is now dependeriherslip of the bar at the crack fa@sins

in Figure 4(a), which in turn depends on the boliyl (3/6) properties between the bar and
the concrete surrounding it.
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Figure 4: Cracked segment analysis

Tension stiffening model
Full-interaction boundary condition

The partial interaction load-slip behaviour allogifor the influence of both creep and
shrinkage can be determined through the adaptatiora well established numerical
technique (Haskett et al. 2008; and Oehlers ét(dl1). To make this adaptation and in order
to establish boundary conditions which differetitite partial interaction and full interaction
regions, we must first consider the case of fuikliaction. Consider a reinforcement bar of
axial rigidity EA, embedded in a prism of axial rigidity.A as in Figure 5(a). We will
assume that the stiffness of the bond is infindettsat the build up of stress is over zero
length; the gradual build up of stress to reachlkiriteraction position is dealt with in the
next section.

‘- sszl:—pr
Ar E E B g | 6 'A
’ T |
|
| |
A.E, - B | !A
X-X | X+ Cc |
| I—pr |
(@ (b)

Figure 5: Full interaction boundary condition
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Prior to shrinkage, the concrete and reinforcemeritigure 5 are of lengthyk If no bond
were present and if a shrinkage straire@fwere to develop, the end of the reinforcement at
A-A would remain stationary while the concrete wibshorten byl to B-B relative to a
fixed boundary E-E. Through bond however, the @mtion of the concrete is resisted by the
reinforcing bar which goes into compression, andcket only shortens to C-C. Moreover,
as we are dealing with full interaction, that isiafinitely stiff bond exists, the concrete must
go into tension, extending from B-B to C-C. Henke teinforcing bar has contracted &y
from its base line position A-A and the concretes lextended by, from its base line
position B-B. Hence by compatibility at E-E, thede in the reinforcement, Rnd the force

in the concrete fare

Sy
b= ;ErAr (1)

Sc
P = L_ECAC (2)
pr
where all unknowns are as defined in Figure 5. Fegpuilibrium R = P, hence equating
Egs. 1 and 2 gives the contraction of the reinforeetd, and the extension of the concréte

as

_ OcEcAc

O E Ay €))
__ SrErAy

bc = p (4)
From Figure 5(b), it can also be seen that

gsthr = 9. +9, 5)
Substituting foB, from Eq. 3 yields the strain in the concrete #tifderaction €q)g

6(.‘ S

Lor = (&)m = ﬁ (6)

ErAr

Similarly, substituting fo;into Eq. 5 yields the full interaction strain inetheinforcement

(en)Fi

o) £
F == (&)p = _;fAr (7)
pr A

cac

The full interaction slip strain (ds/dx)is the difference between the strain in the
reinforcement and the adjacent concrete and iggfibre, equal to

(Z_;)FI = (&r)r1 — (€)Fr (8)
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As we are dealing with a full-interaction analydtsat is an infinitely stiff bond, the slip of
the reinforcement relative to the concrete is &tsown to be zero, that i5=0.

Let us now consider the prism in Figure 6(a) inashhihe bond stiffness is no longer infinite.
Hence a finite length of prismpk is required for the stresses to stabilise from rehtbe
reinforcement load Hs applied to E-E beyond which the stresses aformi@tions remain
unchanged. This is the full-interaction region weh#re slipA=0 and the slip strain is given
by Eq. 8. The analysis of the partial-interactiegion which is given in the following section
requires this full-interaction boundary condition.

full interaction‘ partial interaction |
| |
E B{ C K:
_ |
ds/dx=(ds/dx), 1 ;_'r> p
and A=0 I Ak
E B! C|_Al
| |
I "l
Lbd :Scr—p
(a) primary crack spacing
Al C B E Bl C[ Al
I | LT ‘ ‘
| I J \
P« | | FH—>P
AR | Ak
A_c| B E \ Bl ¢ Al
1 | (ds/dx)#20
Lbd :Scr-plz and A=0
(b) primary cracking
I cl g I \
A‘ ‘C BI L, BI C A‘
| I I |
P« | | F—P
MA* | '\ | *AM
A_cl B Bl d_Al
bF——4 (ds/dx)#0
Lbd :Scr—u/4 and A=0

(c) secondary cracking

Figure 6: Tension stiffening behaviour

Partial-interaction tension-stiffening model

Let us now consider the behaviour in the partiégraction region in Figure 6(a) which is
shown divided into elements of lengthih Figure 7 which are small enough so that the sli
can be considered to be constant over each elertest.now a question of finding the
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relationship between the slip of the reinforcemainthe crack faceh;, and the load P for
use in the segmental analysis in Figure 4.

| Element 1 | Element 2 } } Element n |
| (ds/dx),=g,,+€.-€ I \
_ 1 Tl sl cl ‘ ‘ .
| SIS el & teB, | Be| € [»B4Bj | Sel & [»tB |
1 1 n
| B,=fn(A,) 1 B.=fn(, |1 B.=n(.) L,
| |
\ Pr1<— su +Pr1'B1: } Pr2<— svl +Pr2_BZ‘ ‘ Pm<— 8'1 \ @
| A — — I — |
¢ |1
| accumulated —~A.k—| I Dt Il D <L, LA
Sip o A 1 AT | | A
| crack face [1(ds/dx) =&+ €-€,, | |@sldX) =g qre e, ‘
| — ||8A=(ds/dx)Ls | |8a=(dsld,Ls | X-X

L., A=0 and ds/dx=(s,)-(c.)at S,,
or
A=0 at S,/2
or
A=0 at S_/4

Figure 7: Partial-interaction numerical procedure

As with the MP analyses in Figures 2 and 4, for each elemertteoptism in Figure 7 a base
line needs to be established for deformations whaikse a stress in the reinforcement and a
stress in the concrete. This can be done by comsidthe localised deformations that occur
within a single element, that is, the deformatidog to the stresses and strains within that
element, as shown in Figure 8. As in Figures 24ntie deformations are measured relative
to E-E. Prior to any applied loads or shrinkageghlibe reinforcing bar and the concrete are
of length Ls so that their left faces relative to E-E are aAAHence, any deformation
relative to A-A would cause stresses to develop.usenow apply a shrinkage strainegf If
there is no restraint between the concrete andeinéorcement, that is the bond forcg iB
zero, then the concrete face at A-A would meygs to B-B. Therefore A-A is the base line
to measure deformations to cause stress in thioreement and B-B is the base line to cause
stress in the concrete. The average of the confoates on the left and right of the element
causes a straigy.. This strain, if tensile, causes the concrete tacextendeLs as shown.
Similarly the average of the reinforcement forcadime left and right cause a strajpand if
this strain is tensile it would cause the reinfoneat face to extendyLs. The distance
between the reinforcement face and the concretedaown asAy is the slip induced within
an element. This is equal tasftex-ecx)Ls Where the termefitex-ecx) is the slip-strain
(ds/dx).
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Figure 8: Element localised deformations

The analysis of the prism in Figure 7 now beginsseiting a displacement of the kigrat
the crack face and guessing the force in the resefoent R to cause this crack face slif;

is not the increase in slip within an element sh@sBA in Figure 8 but is the accumulation
of slip of all the elements to the right in FiguteAs the displacement of the bar at the first
element is known to b&;, the bond force in the first element&n be determined from the
known bond slip 4/8) properties, which as an example have been defioedsteel
reinforcement in CEB (1994); that i B LsLyet1 Where Ly is the perimeter length of the
reinforcement as in Figure 7 anglis the shear stress for a slip/&f which can be obtained
from the bond-slip properties. The force in thenfeicement in Element 1, therefore, varies
from R; to B4-B; such that the mean stress and, hence, straican be determined.
Moreover, the force in the concrete at the crade fes zero and at the right hand side of
Element 1 it is B. Hence the mean stress and consequently s@an be determined as in
Figure 8. The slip strain in Element 1 (dsidi§ the difference between the strain in the
reinforcement and the total strain in the concritat is,s1+es-ecl as shown in Figuredhd
the change in slip over the first elemént is the slip strain integrated oveg &lso shown in
Figure 8 The slip and the slip strain are therefore bothvkmdor the first element. The
procedure can be repeated for Element 2, in whicks iknown that the force in the
reinforcing bar B is B1-B; and the force in the prismHs B,. It is also known that the slip
of the reinforcement\, is A;- 3A; from which the bond force Bcan be determined. The
analysis can then be repeated over subsequentréketoayive the variation in slip and slip
strain ds/dx, and the initial guess fop Rdjusted until a known boundary condition is
reached as outlined below.

The partial interaction analysis outlined in Figutrecan be used to determine the primary
crack spacing &p. The stresses in the concrete build up from zerthetrack face C-C in
Figure 6(a) to a maximum value where full-interatboundary condition is achieved at E-
E. Hence a crack can occur anywhere beyond HiE.same analysis can also be used to
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determine the force in the reinforcement to cauaeking which in this case is the force to
cause primary cracking when the strain in the cetecat E-E exceeds the tensile rupture
strain. It is important to stress that the paritiéraction approach in Figure 7 produces the
minimum crack spacing because a crack can form hesavin the full interaction region
shown in Figure 6(a). In beams subjected to a emhghoment this leads to the random
nature of cracking. However in beams subjectedvarging moment, cracks tend to occur in
the full-interaction region where the moment is maxm and, hence, will tend to occur at
Lrg- The implications of the random nature of crackhye been further investigated in
Visintin et al. (2012b).

Once a crack has formed afqE Sp in Figure 6(a)a prism of length equal to the crack
spacing, as shown in Figure 6(b), now applies. dialysis of this prism in Figure 6(b) is
identical to that in Figure 6(a) except that theraary conditions changesAo= 0 at $.-p/2.
Hence, the tension stiffening behaviour of themria Figure 6(b) can be determined using
the partial-interaction analysis in Figure 7 asiknown that if the reinforcement is pulled
from each crack face with an equal force P, andymymetry, the slip of the reinforcement at
Scrp/2 must be zero. Hence, the analysis now providesrelationship between the total
length of the reinforcing bar Tand the load developeg& required for the MY analysis in
Figure 4(a), as the total length of the bar camdé&ermined from the knows distribution
obtained from the PI analysis. Similarly, when gtein in the concrete to cause a stegss
exceeds the tensile cracking strain at the midtpafithe prism, that is at.S/2 a secondary
crack will form. The analysis can be applied toedetine the tension stiffening behaviour as
it is known that a point of full interaction whefie= 0 must exist atsy/4 as shown in Figure
6(c).

M/ 6 analysis of a cracked section

Having defined the tension stiffening behaviourabasing P theory, the M/analysis can
be applied to the cracked section in Figure 4 bgan mind that ke in Figure 4(a) is equal
to Sr-p/2 in regions where only primary cracks occur amédual to §.p/4 in regions where
secondary cracks occur. For a given rotafipthe analysis in the uncracked portion of the
beam is identical to that presented for the un@ddleam in Figure 2. In the cracked tension
region however, the load developed in the reinfagdar R.isin Figure 4(d) is based on the
total length of the reinforcement. Tand must be determined using the partial intevacti
theory described above and where in Figure 4(a) can be determined from simple
geometry. Hence, the analysis in Figure 4(a) carafplied for increasing rotatioiisto
determine the moment rotation relationship fordrecked section from B-C in Figure 3(a).

The same analysis can also be applied to the casevghrinkage alone causes the member
to crack. When this occurs, it is simply a mattéiterating the analysis to determine the
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rotation 6g, in Figure 4(a) where at the point of longitudiredquilibrium the moment
developed is zero as was described for the uncdacke

Again the M# relationship obtained from this analysis can beveoted to an equivalent i/
relationship, as in Figure 3(b), by dividing by ttheformation length 4¢;, and the results in
Figure 3(b) used to derive the variation of theiegjent flexural rigidity Edq, with moment.
Importantly, the variation of these flexural rigids (EkLqy derived from this PI MY analysis
are not the same as those obtained through a sthRtM/y analysis. This is because when
cracked, the MY approach uses partial-interaction theory that ripoates the effects of
shrinkage to allow for crack formation and wideniagd, hence, represents a mechanics
based solution to describing the behaviour of cedatoncrete that includes time effects.

PARAMETRIC STUDY OF TIME DEPENDENT BEHAVIOUR
Material properties

In order to apply the M/ analysis several material models must be defitteeke material
models are not a critical component of thedMpproach and any desired material models
may be substituted to achieve greater accuracyfdlluaving have been used in the ensuing
parametric study to illustrated the time dependemaviour of cracked reinforced concrete.

The elastic modulus of concrete at any point inetif(t,to) has been defined using an
effective modulus method where at some tintlee elastic modulus of the concrete is given

by

_ Ec(to)
EC(t' tO) - 1+¢(t,t0) (9)

in whichty is the time at first loading arflis the creep coefficient at timdor concrete first

loaded at time,.

The change in elastic modulus due to creep has &@aied to both concrete in compression
and in tension as suggested by Gilbert and Rart¥il(2 For concrete in tension, a linear
elastic stress-strain relationship has been assumed in compression the following
parabolic distribution of Hognestad (1955) employed

2
2& &
=|—-|— 10
o Epk <€pk> l ( )
where ¢ is the strain in the concrete which causes a ssteggl ey is the strain which

corresponds to the peaks stresaridhas been takeas that defined by Tasdamir (1998) for
instantaneous loading

epr = (—0.067f, +29.9f, + 1053)107 (11)

175



In Eq. 11 {is in MPa and the straigyx must be increased according to the decreasestiela
modulus as defined by Eg. 9.

Once cracking has occurred, the partial interacéinalysis requires a bond stress stifa)(
property. These have been taken as that defing@H#B/ (1994) for deformed steel bars, that
is,

T= T (511)0'4 5<6, (12)
T="Tmax 01 <0 <0, (13)
T = Tmax — (Tmax — 7f) ((i__‘?z) 5, <8 <65 (14)
T=1,0 > 03 (15)

where,56;=1 mm, 5,=3 mm, d3is the clear spacing between ribs which can bentalee10.5
mm if unknown, the maximum bond stressx = Vf. MPa and the frictional component of
the bond stresg = 0.4maxMPa.

Tension stiffening analysis

Let us firstly investigate the influence of shrigkaand creep individually on the tension
stiffening analysis by considering the example dbanm steel reinforcing bar embedded in
concrete prism of area 6666 rhmhich has a concrete strength of 30 MPa. The tianian
the primary crack spacing {$) with shrinkage strain can be seen in Figure @ the
corresponding load in the reinforcing bar to caerseking in Figure 9(b).
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Figure 9: Influence of shrinkage strain oS

It can be observed in Figure 9 that for increasingnkage strains both the crack spacing and
the load to cause primary cracking reduces as woeldxpected. It can be seen in Figure 8
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that the change in slip within an elemény increases witles, which means that the rate of
change of slip in Figure 6(a) is greater and, tloeeg the partial-interaction length which is
also the crack spacing;§is shorter. The reason for the reduced load toecauwscking is
that cracking occurs in the full-interaction regias illustrated in Figure 5; this analysis has
already shown thab. increases witheg,, that is there is a residual tensile strain and
consequently tensile stress prior to the reinfomanibeing loaded so that the force to cause
the reinforcement to increase the stress to theléeinacture stress is reduced.

The half total length +in Figure 6(b) is required in the segmental analys Figure 4 and
consequently the effect of shrinkage on the taabth is important. Shrinkage affects the
crack spacing, so to illustrate the effect of skauge by itself on the total length let us use the
half crack spacing of 153 mm which would occurhieite were no shrinkage. Using the
tension stiffening analysis for a section with painyicracks as in Figure 6(b) the relationship
between the reinforcement force and total lengthfdr varying shrinkage strains can be
obtained as in Figure 10.
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Figure 10: Influence of concrete shrinkage on wmmstiffening

It can be seen in Figure 10 that prior to shrinkdbat is, for a shrinkage straig,= O the
total length of the bar when no load is appliedegponds to half the crack spacing, which in
this case is 153mm. For all shrinkage strains, lhe initially shortens as the concrete
surrounding it contracts due to shrinkage, and égfac any shrinkage strain above zero, the
reinforcing bar is initially subjected to a contiiag strain and a compressive stress. When
the bar begins to be pulled at the crack face gurfe 6(b), the average strain ovarih the
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bar remains contracting and the force is compressihis occurs as initially the load
required to induce a small slipin the opposite direction to the contraction dushrinkage

is small, and so the applied load P acts only thuee the compressive load induced by
shrinkage. If the slig is increased, the applied tensile load P mustialsease such that it
may be tensile. This however does not necessardgnmthat the bar is immediately
extending, because, although the bar may be extgradithe loaded end, the strain induced
by the load P reduces over the bars length whigectimtraction due to shrinkage remains
constant, therefore the average strain may be axtirig despite a tensile load developing at
the loaded end. As the slip is further increased the load P must eventuallyeiase to a
level such that the net strain in the reinforcingrothe bar length is extending and at this
point Lt must be extending, that is ks greater than 153 mm in Figure 10. It can ba& $eat
tension-stiffening can be simulated at all stagesoading and even when there is only
shrinkage.

The load at which secondary cracking occurs caddbermined from the analysis in Figure
6(b). The effect of shrinkage on this load is venyall as can be seen in Figure 10. This is
because for the large loads at which secondarkiorgoccurs the HPeins relationship is
essentially independent of the shrinkage strairabse the strain in the reinforcement is
typically two orders of magnitude larger than tbel strain in the concrete.

The effect of concrete creep is illustrated in Feglil wherep is the creep coefficient in Eq.
9. It can be seen that similar to shrinkage, cdecceeep leads to a reduction in both the
crack spacing and the load to cause cracking.
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Figure 11: Influence of concrete creep on craclkcisga

Although concrete creep influences the crack smadinthe crack spacing is fixed and the
creep coefficient varied, as was done previoustywarying shrinkage strains, as shown in
Figure 12 the change to the/Beinsrelationship is negligible. This is because thaisg in
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the reinforcement are generally an order of mageitarger than the strains in the concrete,
even in the serviceability range, hence any chaagke strain in the concrete due to creep
has little influence on the slip strain and herlge s
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Figure 12: Influence of concrete creep and seconctaicking

Concrete creep does, however, have a significafleimce on the secondary cracking
behaviour, causing a large reduction in the loadaiose secondary cracking as well as the
slip at which secondary cracking occurs as showrigare 12. This is because the reduction
in elastic modulus means the concrete strain tsecawstress builds more rapidly and, hence,
the concrete strain exceeds the tensile ruptuagnsat a lesser load in the reinforcement P
and slipA in Figure 6(b). Hence creep can increase deflestioot just through material
flexibility but also through additional cracking.

Sectional properties

Now let us look at the effect of shrinkage and prewlividually on the M3 behaviour of a
segment. Figure 13 shows the change in thé M/y and M/EI relationships for increasing
shrinkage strains where the analysis has beenedaotit on a beam of concrete strength
30MPa with a width of 250 mm, depth 350 mm andfoetoed with 3No. 16 mm steel bars.
Firstly consider Figure 13(a) which shows thebMélationships. It can be seen that for
increasing shrinkage strains the shrinkage rotalignthat is the rotation at zero moment,
increases. Prior to cracking, all 8felationships have the same slope. Following érack
can be seen that there is a rapid loss of momeithwhpresents instability of the crack. This
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occurs because, as shown in Figure 10, immedi&abwing cracking the reinforcing bar is

in compression and the bar is contracting in lenBtlring this period, the total compressive
force in the reinforcement must be balanced byilerigrces in the concrete and so large
changes in the neutral axis depth and, hencepttagidon of the tensile lever arm may occur
resulting overall in a reduction in moment. Upomttier increases in rotation, the crack
stabilises as the load in the reinforcing bar bezdnensile and it can be seen that for all
shrinkage strains the Ml/relationships are generally parallel to each otheris also
important to note the case of higher shrinkagerstyasuch ass, = 80Que in Figure 13(a),
that the shrinkage strain is significant enough #iginkage alone causes the cross section to
crack and, hence, the entire@Mélationship is for a cracked section.
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Figure 13: Variation in MY, M/y and M/EI with shrinkage strain

As explained previously, the moment-rotation inUfeg13(a) can be converted to a moment-
curvature in Figure 13(b) by dividing by the segméalf length which in turn can be
converted to equivalent flexural rigidities in Frgul3(c). These are flexural rigidities which
give the correct deformational allowing for tensostiffening and time effects for use in
member analyses. Hence the segmental analysis gheesresidual curvaturegs, and
equivalent flexural rigidity Bl at a section for a member analysis. The effectseep are
shown in Figure 14 and as can be seen the resattde converted to gl for member
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analysis. In practice, creep and shrinkage willapplied simultaneously to derivyg, and
Elequfor member analysis
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Figure 14: Variation in M), M/y and M/EI with concrete creep
Beam analysis

Having determined the variation indglwith moment as well as the equivalent curvature of
the section due to shrinkage alopg it is now a straightforward procedure to detemnin
member deflection. Consider the simply supportednbex in Figure 9(a). Prior to the
application of any load and due to concrete shgekalone, a uniform curvatuyg, as in
Figure 15(d) is developed. Upon the applicatiora gfustained point load P in Figure 15(a)
the moment distribution in Figure 15(b) is develdpand, hence, from the MI/g|
relationship the distribution of El in Figure 15(i9 also known. Dividing the flexural
rigidities in Figure 15(c) by the moments in Figurg(b) gives the variation in curvature,
which must be added §@n to give the total curvature profile in Figure 1p(@he variation in
curvature can then be integrated to give the memégection at some point in time and the
analysis repeated with a new M{Rlrelationship for each desired point in time. The
alternative is to use a finite element package ¢hatcope with variations in EI.
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Figure 15: Numerical analysis of beam deflection

The section properties derived above will now bedut show the influence of shrinkage
and creep on member deflection up to concrete rsafje A beam with a span of 4 m and a
single point load that is applied rapidly at midasphas been considered. Significantly,
Figure 16 shows considerable increases in membiggctien due to concrete shrinkage,
particularly in the case of the section subjected shrinkage strain of 8Q€, which is fully

cracked occurs prior to the addition of any load.
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It can also be seen in Figure (b) that the addiliateflection due to creep increases with
applied load. This is in contrast to the case oh&lage in Figure 16(a) where the increase in
deflection was relatively constant over the entoading range. The deflection due to a
combination of creep and shrinkage is also showkignre 16(c)

COMPARISON WITH TEST RESULTS

For validation of the MY approach on beams, the method has been appleedddes of six
beams tested by Gilbert and Nejadi (2008). Thesensewvere simply supported over a span
of 3500mm and loaded at the third points for aqukdf 394 days. Beams Bla and B1lb were
reinforced with 2No. 16 mm bars with 48 mm covezaims B2a and B2b were reinforced
with 2No. 16 mm bars with 33mm cover and beams 88AB3B were reinforced with 3No.
16mm bars with 33mm cover. All were all loaded ataae of 14 days when the concrete
strength was 18.3MPa which increased to 28MPa lyy28a Specimens Bla and B2a were
loaded with 2 point loads of 18.6kN, B2a and B2bhwoint loads of 11.8kN, beam B3a
with point loads of 27.0kN and beam B3b with pdoads of 15.2kN. Creep coefficients and
shrinkage strains were also determined periodidajiyesting and can be found in Gilbert
and Nejadi (2008).

The Pl Mb approach was used to determine the variations/jnadd M/ELq.for each cross
section in Figure 17 which were used to predictdbiections of the beams in Figure 18. In
general it can be seen in Figure 18 that the Pl &fproach is able to reasonably predict the
deflection of the beams over time. Of interest;ah be seen in Figure 18 that the major
disparity between the predicted and recorded resdine following secondary cracking. It
has been shown in Visintin et al. (2012b) that, ttuehe random nature of cracking, the
crack spacing my be greater than the minimum ptediasing the partial interaction
approach, particularly for members with a constantment region such as those simulated.
In this case, secondary cracking occurs at a reblowement but the stiffness of the cross
section increases, this may mean that in sustdwemting analyses as presented here, the
deflection may be reduced due to the random natiuceack formation.
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Figure 18: Predicted deflection of beams testeitlyert and Nejadi (2008)

Finally and in order to show the influence of catershrinkage for a beam subjected to
instantaneous loading, the &approach has been compared to a pair of testedamut by
Barris et al. (2009) on FRP reinforced beams uddpoint bending where the loads were
applied at 300mm from the centre point. These belaagsa span of 1800mm, a depth of
190mm, and were reinforced with 2No. 16mm ribbedR8mbars with an elastic modulus of
64,153MPa. Beam C-216-D1 had a concrete streng6@MPa, a width of 140mm and
cover to the reinforcing of 20mm while beam C-2184tad a concrete strength of 61.7MPa
a width of 160mm and cover to the reinforcing ofd0. For each case, the shrinkage strain
has been determined according to AS 3600-2009 ¢&tds Australia 2009) where it has
been assumed that the member was loaded to faslurday 28. Figure 19 shows that
allowing for shrinkage, member deflection is sigrahtly increased, particularly following
cracking, and more closely matches the experiméetahviour.
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Figure 19: Variation in deflection of instantanelygueaded beams with shrinkage
CONCLUSIONS

A numerical partial-interaction (Pl) moment-rotati@M/0) approach has been developed to
quantify the short and long term flexural rigidgi€¢Ekq) of a reinforced concrete beam
through mechanics. This Pl M/approach is versatile as it can cope with cracéed
uncracked sections and with the time effects ah&hage and creep. Prior to cracking this Pl
M/6 approach gives exactly the same flexural rigidias a conventional full-interaction (FI)
moment-curvature (M) approach. However its strength is in the fact th&@an quantify,
through the derivation of equivalent flexural rigiels Ekq, the effects of cracking and, in
particular, the effects of creep and shrinkage @tked sections. This is in contrast to the
conventional FI My approach which relies on empirically derived fleduigidities Ekbmp to
allow for cracking and the effects of creep andridage on cracking. In effect the P1 &/
approach replaces the FlI MElemp With mechanics derived El. Hence this PI MY
approach can be considered to enhance the exBliMfy by providing better estimates of
the cracked flexural rigidities with creep and skage. This enhancement can be seen by the
fact that once the equivalent flexural rigiditiesve been determined, the analysis procedure
of the member is exactly the same as in a convegitiel M/ approach.
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Partial-interaction short term serviceability deflection of FRP RC beams
Visintin, P., Oehlers, D.J. Muhamad, R. and Wu, C.

ABSTRACT

A widely accepted approach for quantifying the smyability short term deflection of RC
beams is to use some combination of the flexumadlities of the uncracked (El.;) and
cracked (El¢) sections that are obtained from a full-interacti@mnalysis of transformed
sections; a full-interaction analysis implies thiatre is no slip between the reinforcement
and concrete. The combination ofil: and Ej. that is the effective flexural rigidity
(Eletf) to be used for calculating the deflection, hakeodetermined purely from testing. In
this paper partial-interaction theory, which allofes slip between the reinforcement and
concrete and consequently the bond-slip charatiteyiss used to determine the partial-
interaction flexural rigidity of a cracked sectifl,i.c;). It is shown that: by replacing the
cracked section kL, with Ely.cr obviates the need to determineg&directly from testing;
the replacement of E4; by Elyicrallows closed form solutions to be derived fog#end also
allows for the distinction between the formatiornpoimary and secondary cracks. The partial
interaction approach also provides a way of deteimgj through mechanics, the minimum
crack spacing and hence can be used to study tlt®mmacomponent of cracking and its
influence on member deflection. The partial-intdcac flexural rigidity should be a
convenient tool for not only refining existing daftion procedures but also for quantifying
the deflection of RC beams with new types of reicdment and new types of bond, in
particular those associated with FRP reinforced bess

LIST OF SYMBOLS

a — Distance from support to the location of a ptmad
Ac— Area of concrete which interacts with reinforcedtnia a Pl analysis
A;— Total area of reinforcement in the tension region
B — Bond force

b — Width of the section

¢ — Cover to the centre of reinforcement

d — Depth of the section

der-p — Primary crack height

dcrs—Secondary crack height

ds/dx — Slip strain

E. — Elastic modulus of concrete

El — Flexural rigidity

El,,— Cracked EI

Eles — Effective El for a member

Els.uner— Uncracked EI from a Fl analysis
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Eli.cr — Cracked EIl derived from a Fl analysis

Elpi.cr— Cracked El from a Pl analysis

Elpi.;— Cracked EI from a Pl analysis for primary cragkin
Elpi.s— Cracked El from a Pl analysis for secondary drark
E; — Elastic modulus of reinforcement

fc—Peak concrete stress

FI — Full interaction

li.cr - Cracked moment of inertia from a Fl analysis
li.uncr— Uncracked moment of inertia from a FI analysis
Ke— Bond stiffness

Lrq— Length of concrete prism to Fl boundary condition
Lqef— Deformation length

L,— Total perimeter of all reinforcing bars

Ls- Segment length for numerical Pl analysis

M — Applied moment

M — Moment to cause, taken as the minimum of tlahfa FI or Pl analysis

Mcr.p— Primary cracking moment from PI analysis
Mcr.s—Secondary cracking moment from Pl analysis

Mysi.cr —FI cracking moment

Mseg— Moment applied to a segment of a member

P — Applied load

Peonc— Force developed in the concrete in compression
Peconc-tens— FOrce developed in the concrete in tension

Pl — Partial interaction

P.— Force in the reinforcing bar in the numericahRidel

Preint - FOrce developed in reinforcing bar at crack face
Preint-cr-p— FOrce in reinforcement to cause primary cracking
Preint-cr-s— FoOrce in reinforcement to cause secondary angcki
Xuncr— Uncracked length of member

Xcr-p— Length of member with primary cracks

Xcr-s— Length of member with primary and secondary csack
y — Member deflection

Yuncr- Deflection of uncracked member

Ypi-p - Deflection of member with primary cracks

Ypi-s- Deflection of member with primary and secondarycksa
Serp — Primary crack spacing

B — Geometric constant
¥pi-o— Curvature from PI analysis following primary dkany
¥pi-s — Curvature from Pl analysis following secondargo&ing
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A — Slip of reinforcing bar in a segment from thenauical Pl model
Areint—Slip of the reinforcement form the crack face

dA — Change in slip of the reinforcement over a segme
dconc—Deformation of concrete

d — Local interface slip

81— interface slip atmax

ec— Concrete strain

epk— Strain at §

&r— Reinforcement strain

A — Bond stiffness constant

T — Bond stress

Tmax— Maximum bond stress

0 — Rotation

Opi.p — Rotation from Pl analysis following primary ckaug
0pi.s — Rotation from PI analysis following secondargaking

INTRODUCTION

The design of members for serviceability deflectidras become increasingly important in
recent years as the use of new higher strengthrialatbas led to a decrease in both member
depth and reinforcement ratio. Traditional analysthniques for determining the short term
deflection of steel reinforced members can be spid two categories: those in which an
effective flexural rigidity (Edx) is used in conjunction with an elastic deflectequation [1-
10]; and those in which the curvature is integratedetermine the distribution of deflection
along a member’s length [11-14]. Most design coc@sently use the following effective
moment of inertia originally proposed by [1]

Mcr)2 Mcr)®
Ieff = Iuncr—fi —) + Ifi—cr 1-1—) |; Ieff < Iuncr—fi (1)
M M

which was calibrated empirically and represents transition from the transformed
uncracked moment of inertia;i{hcr) to the transformed cracked moment of inertja,{lfor
the applied moment Kbllowing cracking which takes place at;M

Branson’s equation typically provides a reasonaskémate of deflection when used within
the bounds of the experimental results from whictvas calibrated. However outside this
range its application can lead to significant dépeamcies between the predicted deflection
and that seen in practice. Branson’s equation teéadsnder predict deflections for low
reinforcement ratios because tension stiffenimgverestimated and, therefore, so too ig.El
The problem of over prediction of tension stiffemibecomes particularly apparent when
Branson’s equation is applied to FRP reinforced tmens which, due to the high strength of
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the bars, are generally lightly reinforced, andause of the low elasticity of the bars have
low member stiffness [2].

Much research, most recently by the FRP commuhdg, been devoted to developing a new
approach to determining service deflections by esitadapting or replacing Branson’s

equation [2-10] or by proposing methods to simpitegrate member curvature [11-14].

These approaches have had varied success andlgypieanot applicable to a wide range of

member type and reinforcement ratio, and the vagomty cannot be applied to both steel

and FRP reinforced members.

In this paper, a partial-interaction (Pl) momentatmn (M) approach is outlined which is
based on the Euler-Bernoulli principal of planetsers remaining plane, but not directly on
the corollary of a linear strain profile [15]. Thig/0 approach uses the well defined
mechanics of partial-interaction theory [16-28] ®mulate the slip between the
reinforcement and the surrounding concrete and égeticough mechanics, allows for the
formation and widening of primary and secondarycksa This approach can, therefore,
qguantify serviceability behaviour without the neled empirically derived effective flexural
rigidities Ekg. Moreoverthis approach is applicable to any type of membéh any type of
reinforcement and with any type of bond-slip cheedstic and, consequently, is ideally
suited for FRP reinforcement where these charatiesican vary widely.

In the following, the PI MJ approach is firstly developed numerically for greent of a
beam and it is shown how this ®felationship can be used to give a mechanics based
flexural rigidities which account for the partialtéraction behaviour of the reinforcement
(Elpi-cr). It will then be shown that the numerical apptoaan be simplified into closed form
solutions to give the cracked flexural rigidity afsegment for both primary (f&}) and
secondary (Els) cracking. The flexural rigidities of the uncradkéEk.uner) and cracked
(Elpic) sSegments are then used to derive the deflecfiam @ntire member. The deflections
predicted using the closed form solutions are ffnabmpared to experimental results for
both FRP and steel reinforced sections. It shiw@doted that the influence of creep and
shrinkage is not considered here, but can be iedunl the numerical approach as in Visintin
et al [29].

SEGMENTAL M/ 6 NUMERICAL ANALYSIS

The P1 Mb analysis [15] is illustrated in Fig. 1(b), for @dm with the cross-section in Fig.
1(a). For analysis, a segment of the beam of leBbik, is subjected to a constant moment
MsegWhich causes the ends of the segment to rotaéeftym A-A to B-B. By symmetry, C-
C at mid-way can be considered to be stationargh shat imposed deformations shown
shaded are measured relative to C-C. As the betmatodhe left of C-C is identical to that to
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the right it is only necessary to consider one bélthe segment of lengthyd: Let us first
consider the behaviour prior to concrete cracking.

A B C

L - - prism% ______________
lv & ~ I
A "
pLORS) /
B A Ldef C
(a) cross section (b) segment

|
|
|
'vlseg<v : v> M seg
|
|
I
|
|

Figure 1: Mf analysis

Prior to cracking

The left half of the segment in Fig. 1(b) is shoimnFig. 2(a). The segment end A-A is
rotated by6 to B-B. The deformation B-B, such @s,, can be converted into a strain
profile, shown in Fig. 2(b), by dividing by the defnation length L. Since the section is
uncracked these strain are real strains, thathey twould be measured by strain gauges
placed on the member. Knowing the distributiontadia in the segment, and because all the
strains are real strains, the distribution of stres Fig. 2(c) can be determined using any
conventional material stress-strain relationshiypngj the internal forces in Fig. 2(d).

6conc € o P
A= 5 C
real —7”
strain
Peoe ]
Mseg( e
4 Pconc—tens
/ —
B / A C [ Prelnf

| L | (0) () (@)

(a)
Figure 2: Uncracked segment forVHnalysis

Having determined the internal forces in Fig. 2(the maximum displacement of the
concret&dqonc Can be varied for a fixed value @f effectively adjusting the neutral axis depth
until internal equilibrium is achieved. This anatyggives a single point on the 6/

relationship, between O and A in Fig. 3(a) andegeated for increasing rotations until a
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crack develops when the maximum tensile strailmédoncrete reaches the tensile cracking
strain,and the crack tip reaches the tensile reinforcement

c F c "
/I// /I// O A
// D / D _'\LEIfi-ucnr
/ _
— LEL.
A// A// BH\ pi-p
(R uncracked / \
B — — primary cracking B --C g
—-- secondary cracking PP D ‘\(“ES
O e O Elfi-uncr X(e/Ldef) M
(@) M/0 (b) M/x (c) EI/M

Figure 3: Equivalent M/and ElI

The moment-rotation relationship in Fig. 3(a) candonverted into the moment-curvature
(M/y) relationship in Fig. 3(b) by dividing by the defmation length Ler. At the uncracked
stage, the result obtained form thisoMinalysis and a traditional llanalysis are identical.
The deformation length 4k used in the analysis is, therefore, irrelevanamag length will
give the same M/ Furthermore, as both approaches are identickbs@re the uncracked
flexural rigidities (E}.uncr), @s shown in Fig. 3(c) which could also be oldirirom the
traditional transformed section approach. It is am@nt to emphasise that both approaches
are identical for uncracked segments, becauseheatuhcracked stage a traditional M/
analysis does not rely on empirically derived fastior the model, such as those required to
determine deflections in cracked members. HeneeM# analysis conducted on a segment
subjected to a constant moment can be used tondatethe flexural rigidity of the cross
section, which can in turn be used to determineaddfiection of the member for any moment
distribution.

Accommodating cracking

Now consider the case shown in Fig. 4(a) wherentbenent M¢g has increased to a level
which causes the crack tip to intercept the reifay bar. Partial interaction theory must be
used to describe the behaviour of the reinforciags because the load developed is now
dependent on the slip of the bar at the crack fagg, which in turn depends on the bond-
slip (t/5) properties between the bar and the concrete wsuaing it.
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Figure 4: Cracked segment for Vnalysis

The partial-interaction load-slip behaviour candstermined through the application of a
well established partial interaction analysis tegha [23,30] by considering the behaviour of
reinforcement of total area,Ambedded with a total perimeteg in a prism of total area A
as in Fig. 1(a) along the length of the membendsig. 1(b). The analysis is depicted in Fig.
5 where the prism in Fig. 1(b) is broken into elatseof length Lin Fig. 5which are
deliberately very small so that the slip alongchn be assumed to be uniform. It is now a
question of finding the relationship at the craekd, that is, at the left face of Element 1,
between the reinforcement forcg Bnd the slip at the crack fage.

ds/dx=A=0
| Lbd | at Scr—p
| 'l OI’
A=0atS, /2
(ds/dx) =€ €., (ds/dx) =€, €., (ds/dx) =¢-¢,, or
Mlz(dS/dX) lLS 6A2:(dS/dX) st 6Ah:(d3/dX) an A=0 at SCH/4
A, 1—{B=B) DA, BT DD, A, BTB)
P, < €. P:B, P,e € PP,B, P, < &n
0« & PB B+ & [»B+B 5Bl & [»3B
crack -~
face I‘T’l |‘T’| kT’l
(A) Element 1 Element?2 Element n

Figure 5: Partial interaction numerical approach

As an example under displacement control, the cfaok slipA; in Fig. 5 could be fixed and
the force in the reinforcemenf;Ruessed. As the displacement of the/kodras been set, the
bond force in the first element;Ban be determined from the known bond shgd)(

properties, that is Bis equal to kLst wheret depends om\; which have been defined for
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both steel and FRP bars [31-33]. Hence, the fancthe reinforcement in Element 1 varies
from B1to R1-B;, such that the mean stress, and consequentiy straian be determined.
Furthermore, the force in the concrete in Elemewaries from zero on the left side tq &n
the right, so the mean strain in the concrgiecan also be determined. The slip-strain in
Element 1 (ds/dx)is the algebraic difference in strain between tiahe reinforcement and
the concrete1-¢c1, and the change in slip over ElemenbtA;, is the integration of the slip-
strain over L, that is, €1-gc1)Ls. Hence, both the slip and slip-strain in Elemeatrd known.
The analysis can then be repeated for Elementwhioh, on the left hand side, the force in
the reinforcing bar Ris B1-B; andthe force in the concrete s B;. Furthermore, the slip of
the reinforcemeni\, is A;-6A1, from which the bond force Bcan be derived. The analysis
can then be repeated over subsequent elementgetdhgi variation is sligh and slip strain
ds/dx, and the initial guess fop Rdjusted until a known boundary condition is acbtas
explained below.

The partial interaction analysis depicted in Fig:ah be used to determine the primary crack
spacing §-, because primary cracks form where the full inteoacboundary conditions are
met, that is, the slip-strain (ds/dx) and the gligend to zero at the same position. This
corresponds to the lengthdin Fig. 5. It is also important to note that thfgproach produces
the minimum crack spacing as it is assumed tharging moment distribution exists over
the prism length. However it is possible to apply desired crack spacing when carrying out
the MM analysis.

The same analysis procedure is also employed wade@ relationship between the slip of
the reinforcemeni i in Fig. 4(a) and the load developediin the reinforcement in Fig.
4(d). In this case, der in Fig. 1(b) is §-/2 so that in Fig. 5 the boundary condition a§ L
from the crack face is now = 0 at $/2 as shown. This analysis in turn can be used to
predict the load at which secondary cracks format tf, when the strain in the concrete gt S
/4 equals the cracking strain. Similarly when tleetipl interaction analysis is carried out
with the boundary condition that the slip of the ha= 0 at $./4, then the tension stiffening
(P/A) behaviour of the secondary cracks is given. tudth also be noted that although
debonding has not been considered here, as we ealeng with a serviceability limit,
debonding of FRP bars can occur due to the highd lsififness compared to ribbed steel
bars. Debonding is more likely to occur followingcendary cracking as for a given slip of
the bar the total bond force must be higher in otdeeach the boundary condition of= 0
over the length &4 instead of over &2 which is the case for primary cracking.

Having derived the partial interaction behaviourtlod reinforcing bars, the analysis of the
cracked segment in Fig. 4(a) can proceed in theesamanner as that for the uncracked
segment. The applied momentdylcauses a change in deformation from A-A to B-Bhvet
rotation®. This deformation profile can be converted toraistprofile, shown in Fig. 4(b),

by dividing by the deformation lengthyd, which in the case of the cracked segment must be
equal to half the primary crack spacing, that ig,/3. In the compressive and uncracked
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tension regions, the strains are real strains thredefore, the stresses in Fig. 4(c) and internal
forces in Fig. 4(d) can be determined through t{hy@ieation of any appropriate stress-strain
relationship. In the cracked tension region, thip sif the reinforcementA,ins can be
determined from simple geometry, and for the gigép, the load developed determined
through the application of the partial-interactitthreory described above and illustrated in
Fig. 5. Knowing all the internal forces, the maximaleformation in the concrete can again
be adjusted until internal equilibrium is achieved.

The above analysis gives a single point on th@ Mlationship in Fig. 3(a) and must be
repeated for increasing rotations to generate tineecB-C. If secondary cracking takes place
the same analysis procedure is followed, but tHerdetion length Les is equal to §./4
and the partial-interaction load slip behaviouthsd bar must be obtained using the boundary
conditions for secondary cracking. This analysiseegithe M@ relationship in Fig. 3(a) from
point D-E. The cracked segment analysis can beieppintil the maximum strain in the
concrete reaches the strajp at the peak stress fAs the purpose of this paper is to derive
closed form solutions to describe serviceabilithdaour, concrete softening will not be
considered. However a numerical model which acetmt concrete softening using shear
friction theory can be found in Visintin et al. (ZZR).

Again it is possible to convert the 8felationship into an equivalent jrfelationship, as in
Fig. 3(b), by dividing the rotations by the defotioa length Llger. Importantly, this My
relationship derived from a M/analysis is not the same as those obtained fretaradard
M/y analysis. This is because when cracked, thé &pproach produces an equivalent
curvature which simulates the cracking processesn da practice, that is, using the
mechanics of partial- interaction theory, the sipthe reinforcing relative to the concrete
which is responsible for both concrete cracking aratk widening is simulated. Thus the
M/6 approach can be used to derive equivalent flexugadities for primary Eji, and
secondary Els cracking, as in Fig. 3(c), which are differentrfrahe cracked flexural
rigidity Els.c; found using typical approaches such as transforseetions which assumes
full interaction.

Having described the Pl Ml/approach for a segment using a numerical approaehwill
now consider how, by assuming that at servicegbifitaterial properties remain linear-
elastic, a closed form approach can be constructed.

SEGMENTAL M/ 6 CLOSED FORM SOLUTIONS

As it has been established that the behaviour getliiby the MJ and traditional My
analyses are identical prior to cracking, the ucieed flexural rigidity determined using
transformed sections (&) can be used in a mechanics based determinatidafigctions
prior to cracking. However, after cracking, as sthated in the segment in Fig. 6, partial-
interaction behaviour as illustrated by Fig. 5, dee¢o be used in order to simulate the
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mechanics of crack formation and widening becabser¢inforcement slips relative to the
concrete. As we are still dealing with the behawiatuserviceability, a linear bond-slip-§)
characteristic is also assumed, that is, the baifftiess lk = 1/6 is constant. Closed form
solutions for the partial-interaction behaviourHig. 5 have been developed for the case of a
linear bond-slip €-3) characteristic [28] and are given in AppendixThese are used in the
following segmental analyses to develop a closewh feolution for the flexural rigidity of the
cracked segment in Fig. 6.

\ - =3, \ € o F
\ \ \
‘ ‘ < PCOH(
\ \ \
| d |
S o J_ = _yv___y
\ \
Ay A /\ 0 d‘" P 7\
L@/ L@/ 2c f =) =+ f . . > Premf
pL p2 J | \ /Ar‘e,nf\ c / | L
T ~— | ; ‘ ; :
b : L, L. : L., L, : (b) stress (c) strain (d) force
Scr—p ‘ Scr—p

(a) deformation

Figure 6: Idealisation for closed form solutions

For the tension region in Fig. 6, the crack rotai@given by

0 — Areinf (2)

der—-p—¢C

whereAreint is the reinforcement slip relative to the crackefad,., is the depth of the crack
when it is a primary crack and.g-c is the distance of the reinforcement from thackr
apex. Similarly for the compression region

0 = Sconc (3)

d_dcr—p

wheredconc is the maximum deformation in the compressionaegindd is the depth of the
beam.

From Egs. 2 and 3

Areinfld—dcr—pri
Oconc = o pri) 4)

Aer—pri—¢
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The maximum strain in the concrete is therefore

1)
Econc = ﬁ:fc (5)

where,Lger IS half the crack spacing, which for a lineareamting bond stress distribution, as
shown in Appendix A, is

1
Ldef = 1_1 (6)

in which,

A = ke, (7)

where kis the bond stiffnesgé of the linear bond-slip angh is given by

Br= 2(z+7) 8)

where: A is the area of concrete surrounding the reinfgrdars which interact with it, as
illustrated in Fig. 6, this area can be taken a&sptoduct of the width of the section b and
twice to cover to the centre of the bar g;i®\the sum of all the cross sectional areas of the
reinforcing bars within & Ly is the sum of all the perimeters of the reinfogchars within

Ac; E is the modulus of the reinforcing bars; andite modulus of the concrete.

The force developed within the concrete compressegion, Ronc in Fig. 6, can be
determined as follows from Egs. 5 and 6

P — 0~5Areinf(d_dcr—p)ZAEcb (9)
conc (dcr—p —c)

For the tensile reinforcement, the force develofmeda given slipAwint Using PI theory is
given by Eq. 10 (Appendix A).

AreinfArErdy

Preinf = tanh(1) (10)
AS P.onc = Pein, from Eq. 9 and Eq. 10 the crack height is given b
dbE.tanh(1)+A,Ep+ J 2dbE A,Ey tanh(1)+A2E? —2bE A, Eyrc tanh(1)
dcr—p - bE. tanh(1) (11)
Knowing the crack height, the moment in the sectsosimply
d—dep_
M = —Peonc ( 3 p) + Preinf(d —c) (12)
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Substituting Eqgs. 9 and 10 into Eq. 12, the rotafar a given moment is

9 6M tanh(1) (13)

PI=P ™ [Ecb tanh (1) (~d3+3d2dcr—p—3ddZ,_p+d3r_p) +6ArEr(dder—p—der—pc—dc+c2)| 24

and knowing that the curvature is equabtioger gives the curvature

6M tanh(1) (14)

Xpi-p = Ecb tanh(1)(—d3+3d2dcy—p—3dd2y_p+d3,_p)+6ArEr(dder—p—der—pc—dc+c?)

and hence the equivalent cracked flexural rigidéag be given by

EL. = Ecb tanh(1)(-d®+3d%dcr_p—3ddZr_p+d3r_p)+6ArEr(dder_p—der_pc—dc+c?) (15)
pt—-p 6tanh(1)

The cracked flexural rigidity given by Eq. 15 ispéipable for primary cracking, which
occurs following first cracking. The moment at whiprimary cracks first occur () is
taken as the lesser of that obtained through alatdnfull-interaction transformed section
analysis and that obtained from a partial intecacinalysis (Appendix A) as follows

_ ArErA18:1fiAc

Preinf—cr—p - Tmazxlp (16)
The primary cracking moment can therefore be glweiq. 17
Mcr—p = Preinf—cr—pr(gd + %dcr—c) (17)

which simplifies to Eg. 18 when the load in thenfercement to cause primary cracking is
given by Eq. 16.

_ (EcAc+ArER) ft(2d+d—3c)

Mcr—p - 3E, (18)
Similarly, the secondary cracking load is given(Appendix A)
r rlga c
Preinf—cr—s = ArBri0uedc (19)

0.352TmaxLyp
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and, hence, as above the secondary cracking masnginen by

Mcr—s = Preinf—cr—sec(éd + %dcr‘c) (20)
which simplifies to
125(E Ac+ArEy) fr(2d+dcr—3C)
Me—s = 13252 (21)

Once the secondary cracking moment is reached;réted spacing is half the primary crack
spacing (Appendix A). As described for the numdrpracedure, and shown in Appendix A
for the closed form solutions, the change of bompdandition changes the load developed
in the bar for a given slip to that in Eq. 22.

— AreianrEr/h
Preinf o tanh(0.5) (22)

This change means the crack height, rotation, ¢urgaand flexural rigidity also change as
shown; the derivation being identical to that fanpary cracking.

2dbE; tanh(0.5)+ A Er+ J 4dbE AyE, tanh(0.5)+A2EZ —4bE A, Erc tanh(0.5)

d = 23
cr.s 2bE, tanh(0.5) (23)
9 _ 3M tanh(0.5) (24)
P=S ™ [E.b tanh(0.5)(-d3+3d2dr_s—3dd2,_s+d3,_g) +3ArEr(dder—s—der—sc—dc+c?)| A4
_ 6M tanh(0.5) (25)
Api-s = Ecb tanh(0.5)(~d3+3d2dcr—s—3dd2,_g+d3,_s)+3ArEr(dder—s—der—sc—dc+c2)
EL;_, = Ecbtanh(0.5)(—d3+3d%dcyr—s—3dd% _s+d3y_s)+3ArEr(ddcr—s—dcr—sc—dc+c?) (26)
p 6 tanh(0.5)

Importantly, it can be seen that the flexural nidvhen considering partial interaction for
primary (Epip) and secondary cracking ¢&J), as in Egs. 15 and 26, is independent of the
bond-slip stiffness = 1/6). This is significant. Although we are allowingrfthe slip of the
reinforcement relative to the concrete throughuse of partial interaction theory, by making
the assumption of a linear ascending bond charstiterwe do not need to define the bond
properties to determine the flexural rigidity armhsequently the load deflection behaviour.
The independence of the flexural rigidity to thenbeslip stiffness can be explained through
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the example presented in Fig. 7 where the closeah 8l equations have been used to
describe the MY, M/y and M/EI behaviour of a segment of a beam. Thenbkas a cross
section of width of 200 mm, depth of 300 mm ande#astic modulus for the concrete of
25MPa. The section has been reinforced with 3 1@rara of elastic modulus of 200GPa and
bond stiffness &of either 13.7 N/mm, which is a linear simplifigati of the nonlinear bond
characteristic suggested by [31] for ribbed stesklembedded in 30MPa concrete, or, 92.7
N/mm which is the linear simplification of the nordar bond characteristic for sand coated
FRP bars [32].
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Figure 7: Influence of bond characteristic

If we consider a member reinforced with the barkef bond stiffness of 13.7 N/mm, that is

the ribbed bar, cracks form at a spacing of 404 anihfor the bar with a high bond stiffness
of 92.7 N/mm, that is the sand coated bar, cracks fat a spacing of 155 mm. A segment
reinforced with each type of bar, which is of agédnof half the crack spacing, is taken and a
moment applied as explained previously for the sagal analysis. For the segment with a
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low bond stiffness, for any given moment followiagcking, the slip of the reinforcement is
greater than that of the segment with high borfthess and therefore the rotation, as shown
in Fig. 7(a), is larger. Converting this rotatiom @ curvature by dividing by the segment
length vyields identical curvatures shown in Figh)7(It can be seen that the curvature is
independent of the bond characteristic, that igh Bd/0 relationships yield identical M/
relationships. This can also be shown by consideEq. 6 and Eq. 13 which define the
segment length and rotation of the segment for \®rgimoment respectively. Both
relationships are inversely proportionalitowhich is a function of the bond stiffness and so
defining the curvature as the rotation per unigtenof segment, that is, dividing Eq. 13 by
Eq. 6 yields a curvature which is independentdofind hence the bond properties. Finally,
since the curvature is independent of the bondeadd the flexural rigidity of the segment,
seen in Fig. 7(c). Similar behaviour was also notefR7], where the deflection of a beam
was determined by summing the discrete rotatiormitabach crack. It was observed that
with increasing bond stiffness more cracks formed d¢ each crack the discrete rotation
reduced because the cracks were narrower and, jhémeeoverall behaviour became
independent of the bond stiffness.

Hence, it can be seen in Fig. 7 that varying thedkslip stiffness may vary the moment-
rotation of a segment but does not vary the momentature and consequently the flexural
rigidity. This is because increasing the bond iséiffs simply causes more cracks to occur but
these cracks are narrower. Also of importance esitidlependence of the moment to cause
primary and secondary cracking on the bond stifnés seen in Egs.18 and 21 this is the
case because the crack spacing is proportionddetdond stiffness, hence, for a stiff bond
the crack spacing is small but the bond buildsdigpiand therefore, the load transferred
from the bar to the concrete rapidly reaches teqtired to cause cracking. This can be
shown mathematically by substituting Eqs. 7 anat8 Eq. 16.

COMPARISON OF SECTIONAL PROPERTIES

The three major sectional properties that affeetdaflection of a beam for short term loads
are the uncracked flexural rigidity {Ehcr, the cracked flexural rigidity Eland the moment
to cause cracking M The derivation of the uncracked flexural rigidEy;.uncr IS based on
the Euler-Bernoulli principle of plane sections ening plane and its corollary of a linear
strain profile, so that the M/and M} approaches give exactly the same values whiclbean
obtained from transformed sections. The difficultyquantifying deflection arises in the
cracked properties, that is, EBnd M, and these are studied below for different elastic
moduli, namely 200GPa and 40GPa, and varying reiefaent ratios.
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Sectional flexural rigidity (El ¢)

It can be seen in Fig. 9 that for both the 200GR& 40GPa reinforcement the flexural
rigidity obtained from full interaction (ElL;) lies below that obtained from a partial
interaction analysis for both primary cracking k) and secondary cracking ¢=J).
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Figure 9: Variation in E} for with reinforcement ratio and.E

Importantly, Fig. 9 shows the partial interactiqmpeoach does not predict a single flexural
rigidity of the cracked section, but rather, thetih interaction flexural rigidity has a step
change reduction as secondary cracking occurssiii@m E},.,to Elis. To fully understand
the implications of secondary cacking, the recagphimndomness of cracking needs to be
considered using the tension-stiffening analysisig 5.

The distance jg from the crack face in Fig. 5, is the distance ngHell-interaction (ds/dx =

A = 0) first occurs, that is beyonddthere is full-interaction. The region where theséull-
interaction is important as this is where the maxmtensile stresses in the concrete occurs
and, consequently, where there is the most liketihof cracking. If we are dealing with a
constant moment region, then all we know is that phimary crack spacinge$ > Lia.
However if we are dealing with a moment gradienént $.,— Lbq as cracking would tend
to occur where the moment is highest, that is towdine region where the initial crack face
is. Hence, there is a degree of randomness in ifyiagtthe primary crack spacing.Sin
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Fig. 5. This degree of randomness flows onto thalyais of secondary cracks where the
boundary condition is now = 0 at $-y/2. Hence there is a degree of randomness, beyond
that due to variation in material properties, iniEbBndEly.s in Fig. 9. The numerical
segmental analysis provides the tools to studyeffect of this randomness but is not the
major focus of this paper.

As a simple example of the influence of crack spgciconsider the N/ M/y and M/EI
relationships shown in Fig. 10, which have beerdpeced using the numerical approach for
the 200x300mm cross section with anpoE25MPa and reinforced with 3 16mm bars with an
E; of 200 GPa andgkof 13.7 N/mm. It can be seen in Fig. 10(c) thatréasing the crack
spacing from §., to 1.2S.,leads to an increase in the stiffness of the crhdetion, but
reduces the moment to cause secondary cracking.ifidrease in stiffness can be explained
by considering the prism in Fig. A.2(b) in Appendix It can be seen that by increasing the
crack spacing, the bond force builds over a grdadetength. Hence for a given slip, the load
required to reach the boundary conditian= 0 at $./2 is reduced, thus a softerAP/
relationship is obtained. This also means thatMih relationship, as in Fig. 10(a), softens
for increasing crack spacing. As shown in Fig. )0(ltis does not, however, lead to a softer
M/y relationship; this is because the rotation takasepover a larger deformation lengtil

in Fig. 4. As shown in Fig. 10(c), the stiffer jMrelationship in turn leads to an increase in
E|pi.5 and E!)i-s-

It is also important to note in Fig. 10(c) that tm@ment to cause secondary cracking has
reduced. This reduction can again be explained dwsidering the numerical partial
interaction analysis in Fig. 5. It is known thateedary cracking occurs once the strain in
the concrete exceeds the tensile rupture straiheaboundary condition = 0 at $r.,/4. As

the crack spacing is increased, for a given dhip,total bond force over the prism length S
/4 is higher, hence so too is the strain in thecoete strain. This means that the load in the
reinforcement to cause secondary cracking is ratlacel hence so too is the moment, as in
Fig. 10(a). Importantly, this shows that,&landMc.piare only independent of the bon@d
properties when considering the minimum crack sgacif the randomness of cracking is
allowed for by increasing the crack spacing, thecked flexural rigidity is increased and the
moment to cause secondary cracking is reduced, tvghmagnitude of these changes is
depending on the bond properties. It can be seantlie effect of the random nature of
cracking is complex but this partial interactiorgsental analysis does provide a tool for
studying it.
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Figure 10: The influence of crack spacing on El

Moment to cause cracking (M)

The cracking moment is important as it affects éteent of cracking along the span of a
member. The full-interaction moment to cause craghil. s in Fig. 11 is based on the cross-
sectional area of concrete, that is it ignores rifiaforcement as recommended in codes.
There is reasonable correlation with the partiédiaction values of M, but it should be
noted that for analysis the cracking moment is na&s the lesser of the M and M.
However, as with the flexural rigidities discussdabve, the major discrepancy is with the
secondary cracks Msand particularly for low reinforcement modulus sashfor the 40 GPa
reinforcement where secondary cracking, and theeagurential major reduction in stiffness,
can occur at relatively low moments. As outlinedal and shown in Fig. 10(c), the random
nature of cracking can further decreasg.d#fom that shown in Fig. 11, leading to an earlier
reduction in EJi.cr and hence increase in member deflection.
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MODELLING THE DEFLECTION OF BEAMS (El ¢¢)

Having determined the section properties, M¢.s and E)ie above, it is now a
straightforward procedure to quantify the deflegtias illustrated in Fig. 12 for a simply
supported beam with the point load P in Fig. 12(aich induces the moment distribution M
in Fig. 12(b). The primary and secondary crackingments M.,and M,.sdefine the extent
of cracking in Fig. 12(b) where @ is the uncracked region, % is the region where
primary cracks occur andcxis the region where both primary and secondaryksraccur.
Within these regions, the flexural rigidities ar® shown in Fig. 12(c) where ke is the
full-interaction uncracked flexural rigidity fronransformed sections, g} is the partial-
interaction flexural rigidity in the region wherenlg primary cracks occur and g&dis the
partial interaction flexural rigidity where bothcgndary and primary cracks exist. Dividing
the flexural rigidities in Fig. 12(c) by the momedistribution M in Fig. 12(b) gives the
variation in curvature in Fig. 12(d) which can Img¢egrated to determine the deflection. It
should be noted that the random nature of cradkagynot been included in this analysis but
as mentioned previously it could be included iruanerical simulation.
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Figure 12: Deflection of a simply supported member

Using the moment area method, it is also possiblaldrive closed form solutions for
determining the maximum deflectigrat all load levels, that is uncrackegy cracked with
only primary cracks y, and cracked with primary and secondary cracks. YAs an
example, this has been carried out for the simpppsrted load case in Fig. 12, yielding Egs.
27-29 where, M is the lesser of the full interaction cracking mom#;_., and the partial
interaction primary cracking moment:M.

PL3

Yuner = Tamr (27)

48E1fi—uncr

64‘Mc3r(51pi—p_EIfi—uncr)+P3LsEIfi—uncr
48Elfi_yncrP2Elpi_p

Vpi-p = (28)

64MgrEIpi—s(EIpi—p_EIfi—uncr)+64Elfi—unchgr—s(Elpi—s_EIcr—p)+P3L3E1pi—pEIfi—uncr
48E1pi—sEIpL'—pEIfL'—unchZ

Vpi-s =

(29)

Finally by equating Eq. 28 and Eg. 29 with the awked elastic load case of Eq. 27, it is
possible to solve for a single effective flexuraidity Ele, over the entire span of the

member which accounts for the cracked and uncrackgins. This yields Eq. 30 for

primary cracking, and Eq. 31 for primary and se@gdaracking.
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P3L3E1pi—pEIfi—uncr
64Mgr(E1pi—p_Elfi—uncr)+P3L3E1fi—uncr

Eleff—p = (30)

Elpi—sEIpi—pEIfi—unchZL3
64’Mc3rEIpi—s(Elpi—p_Elfi—uncr)+64‘Elfi—unchgr—s(Elpi—s_Elpi—p)+P3L3E1pi—pE1fi—uncr

(31)

EIeff—S =

Also presented in Egs. 32-34 are the deflectiores ©imply supported member subjected to 4
point loading and in Eq. 35 and Eq. 36 the effecflexural rigidities, whera is the distance
from the support to the location of the point load.

__ Pa(4a?-31?)

= 32
yunc‘r 24’Elfl_—u’n_c’r' ( )
Vo _ 8Mgr(Elfi—uncr_EIpi—p)+P3a(4EIfi—uncra2_3E1fi—uncrL2) (33)
pi—p 24El fi_yncrElpi—pP?
Vpi-s =

. 8McrEIpi—s(Elfi—uncr_EIpi—p)+8E1fi—unchcr—s(Mgr—sEIpi—p_Elpi—s)+P351fi—uncrEIpi—pa(4a2 _LZ)
24E1pi—SEIpL'—pElfi—uncrpz

(34)
El _ P3aElfi_yncrElpi-p(4a®-3L%) (35)
eff-p 8Mc3r(Elfi—uncr_Elpi—p)+P3a(4EIfi—uncra2_3EIfi—unCTL2)
Eleprs =
P3aEI fi_yncrElpi—pElpi_s(4a*—3L?) (36)

SMCTEIpi—s(Elfi—uncr_Elpi—p)+8E1fi—unchcr—s(Mgr—sEIpi—p_EIpi—s)+P3Elfi—uncrEIpi—pa(4a2 -1?)

DEFLECTION OF BEAMS

Comparison with design rules for member deflection

A simply supported beam of span 4 m with a cergmht load was used in the following
analyses; the cross-section of the beam was the aanthat used for the analyses in Fig. 7
that is, with a width of 200 mm, depth of 300 mnddh = 25 MPa. To investigate the
influence of reinforcement modulus, the reinforcaimeas been considered to have either E
= 40 GPa with k= 92.7 N/mm, or E= 200 GPa with k= 13.7 N/mm, and to investigate
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reinforcement ratio the section has been reinfoveitl either 2 or 3No. 16 mm bars giving a
reinforcement ratio of 0.74% or 1.1% respectively.

Firstly let us consider the cross section with 1./E#forcing and a reinforcement modulus
of 200GPa. Fig. 13(a) shows the variation in effecflexural rigidity (Ekg) derived using
Egs. 30 and 31, as well asefterived from the ACI approach [34] given by thddwing
equations

M\ 3 m\3
Ieff = (7) Ifi—uncr + [1 - (M ) ]Ifi—cr; Ieff < Ifi—uncr (37)

a=05(Z+1) (38)
in which Eq.38 is a reduction factor allowing fgupdication to FRP bars. Furthermore, Fig.
13(a) shows a comparison with Bischoff's [2] apmtmavhich is given by

Ier
Ieff B 1_(1_Ifi—cr/1g)(Mcr/M)2 (39)

It can be seen from Fig. 13(a) that for the 200 GR& there is a negligible difference in
Eler when using either of the full interaction (FI) apaches, that is, the ACI or Bischoff’s
approach. This is in contrast to the partial inddoen (Pl) approach, which, immediately
following primary cracking predicts approximatelyetsame stiffness as the FI approaches
but rapidly asymptotes to a stiffer klprior to secondary cracking. Following secondary
cracking, it can be seen that.fg£$oftens and approaches that of the fully cracketmse
predicted by the FI approaches. This behavioumivd expected as both the Pl and FlI
approaches predict the same cracking moment, adean in Fig. 9, the Pl approach
predicts a higher cracked flexural rigidity for boprimary and secondary cracking. Fig.
13(b) also shows that the PI approach predicts stindentical deflection y for a given
moment M as the FI approaches immediately followpnignary cracking; this is despite the
fact that, as show in Fig. 9, &} is significantly higher. This is because the exteht
cracking from the FI analysis is larger than thanf the PI analyses which offsets the
difference in stiffnesses.
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Figure 13: M/Ed# and M/y for varying E

Now consider Fig. 13(c) which shows the effectivexdiral rigidity for the same cross
section but this time reinforced with 40 GPa béisstly considering the FI approaches, it
can be seen that the ACI and Bischoff's approaghnedict significantly different effective
flexural rigidities following primary cracking, wbh in turn, as shown in Fig. 13(d), leads to
a substantial difference in the deflection. It edso be seen in Fig. 13(c) thatfpredicted
by Bischoff closely matches the Pl approach. Howestece the cracked flexural rigidities
are higher using the PI approach, as shown inFigk« becomes comparably stiffer as the
applied moment increases. Again this suggestsuiag an elastic deflection equation for a
beam with a single point load at mid span leadstover prediction of the proportion of the
beam which is cracked.

Now let us consider the influence of reinforcemenio by reducing the ratio to 0.74%. Only
the 40 GPa cross section will be considered herecan be seen in Fig. 9 that for both the
200 GPa and 40 GPa bars the variation in behawidthr reinforcing ratio is similar. Fig.
14(a) shows that as was the case for 1.1% reinfugné in Fig. 13(c) Bishoff's approach
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closely matches the Pl approach immediately folimamprimary cracking. This would again
suggest that Bischoff's approach is better ableptedict the deflection immediately
following primary cracking. Considering Fig. 14(ib)can be seen that at approximately the
moment at which secondary cracking is predictedh& Pl approach, the FI approaches
begin to rapidly converge on each other until hm#dict the same deflection when the beam
is considered to be fully cracked. A comparisothefresponses in Figs. 13(c) and (d) and in
Figs.14 (a) and (b) show very little difference behaviour occurs with the change in
reinforcement ratio. This is because both the flakrgidity if the section, and the moments
to cause cracking, as shown in Figs. 9 and 11,gshaary little with reinforcing ratio.
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Figure 14: M/Ed# and M/y for reduced reinforcement ratio

Finally, by considering the same 4m long membenfoeced with 3 40GPa bars, this time
loaded in 4-point bending, where the point loadsapplied at 1.33 m centres, it is possible
to investigate the influence of the loading confggion. By comparing Fig. 13(c) and Fig.
15(a), it can be seen that the FI approaches pretdintical Elx in both loading scenarios.
This is because they do not allow for the influen€¢he shape of the moment distribution
when proportioning the uncracked and cracked setgradrthe member. This is not the case
in the Pl approach; hence, member stiffness isfsigntly lower following primary cracking
because a greater portion of the beam is considered cracked. In Fig. 15(b) it can be seen
that this translates to a significant step changelaflection following both primary and
secondary cracking; this behaviour cannot be ptediasing the FI approaches. It should
also be remembered that the Pl equations develapedbased on the minimum crack
spacing, and, as shown in Fig. 10(c), if the crapécing is increased a minor increase in
cross sectional stiffness is observed but a siganiti reduction in the cracking moment takes
place. This combination may lead to a significagréase in member deflection.

216



x 10° (a) 1.1% 40GPa (b) 1.1% 40GPa
‘ ‘ 60

12
T Primary
101 cracking . 50
~
< Z
Z 6 } < 30 Secondary,
= ! g cracking
Ll [ [} /
a4l | = 20
210 N Secondary cracking - 109 - -
———-= = . Primary
' cracking
0 : : 0 ‘ ‘ ‘
0 20 40 60 0 20 40 60 80
Moment (kNm) Deflection (mm)
| ACI Bischoff ——+ - - PI|

Figure 15: M/Ed# and M/y when subjected to 4-point bending

Since the prediction of Kl using the FlI approaches is independent of the mbme
distribution, it can also be concluded that empiticadjusting the coefficient of the M
ratio in Egs. 37 and 39 may not lead to a genenjgrovement in the prediction of member
deflection. This is because the moment distribythich controls the proportion of the
beam which is uncracked or cracked is ignored,thadise of an elastic deflection equation
assumes a continuous distribution of curvature tdwinot allow for the step changes
associated with cracking which are shown in Fidd}1.2

Comparison with experimental results

The PI approach has been compared to a pair af ¢astied out by [35] on FRP reinforced

beams under 4 point bending where the loads arkedpgt 300mm from the centre point.

These beams had a span of 1800mm, a depth of 19@munyere reinforced with 2 16mm

ribbed GFRP bars with an elastic modulus of 64,1BaMBeam C-216-D1 had a concrete
strength of 56.3MPa, a width of 140mm and covehéoreinforcing of 20mm while beam C-

216-D2 had a concrete strength of 61.7MPa a wifitheG@mm and cover to the reinforcing

of 40mm.

Fig. 16 compares E| predicted by the ACI, Bischoff's and the Pl apmtoes, as well as
their predicted deflections with the experimentsguits. It should be noted that to allow for
some randomness of cracking, the Pl approach heas fresented for crack spacings&hd
1.2S:. In Fig.s 16(a) and 16(c), it can be seen that”thapproach for both.Sand 1.2Scr
predict a far softer member response than the piloaghes immediately following primary
cracking because a larger proportion of the beaooisidered to be cracked. This in turn
leads to the step change in deflection seen in Bigi) and 16(d). Similar behaviour is also
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seen following secondary cracking. As the appleats increase, however, the Pl approach
predicts a progressively stiffer response. It céso e noted from Figs. 16(b) that the

increase in crack spacing from; $0 1.23; significantly reduces the secondary cracking
moment and hence between primary and secondarkicgathe response for the Pl approach

with 1.2Scr is softer despite the stiffness of ¢gleetion being higher. The Pl approach tends
to underestimate the deflection at high loads. H@wrethis can be attributed to the effects of
shrinkage which can be shown to considerably redbeestiffness of the cracked section

[29].

x 10° (@) C-216-D1 (b) C-216-D1
3 ; ; 60
/. -7 ’
2.5/ rPrima_ry ] 50 Secondary .’
cracking cracking <
— 2 40
N ~—~
£ g
& 15} S 30
- ‘ I
_® | 3
w 1b 20
" Secopdary cracking
0.5¢ T — s - 10 ¢~
Primary
0 ‘ ‘ 0 cracking ‘
0 20 40 60 0 5 10 15
Load (kN) Deflection (mm)
x 10° (c) C-216-D2 (c) C-216-D2
3.5 ‘ ‘ 80 : —
3l _ | Secondary ¢ //
Prlma_ry cracking .’
25| cracking | 60 J
S = /
s 2 | 2
< | < 40
- | [ I
5 1.5 ‘ 3
w 1
o _ 20
\ Secondary cracking g
0.5} = -1 fimary
0 ‘ ‘ ‘ 0 cracking ‘ ‘
0 20 40 60 80 0 5 10 15 20 25
Load (kN) Deflection (mm)
Experimental ACI Bischoff - - - - - PI(S,) PI(L2S,)

Figure 16: Comparison with tests by Barris et 3%][

CONCLUSIONS
A serviceability partial-interaction approach ttadliows for slip between the reinforcement
and concrete has been developed to quantify tixerrfé rigidity of a cracked section with
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primary and secondary cracks and the moment toecaubsequent cracking. It has been
shown how this partial-interaction procedure canuled to predict the minimum crack
spacing and consequently used to give closed fotatisn for the serviceability deflection,
as well as how it can be used to study the randomponent of cracking. It has also been
shown how this partial-interaction approach carubed to derive closed form solutions for
the effective flexural rigidity for use in designdahow this depends on the distribution of the
applied load. Surprising outcomes from this paifitigraction approach are that the flexural
rigidity and the load to cause subsequent crackirgy not dependent on the bond-slip
stiffness at serviceability which should considéyatimply the development of deflection
rules for FRP reinforced members. This should beiquéarly useful for prediction the
deflection of FRP reinforced members where a watgye of FRP material properties exist.
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APPENDIX A: PARTIAL-INTERACTION TENSION-STIFFENING  ANALYSIS

Governing equation

The fundamental equations for tension stiffening loa derived by considering the equations
of equilibrium of a bonded joint such as that showmnFig. 17(a) [28]. The equations
governing this problem involve four fields: the alxstresses in the reinforcement) (and
concrete ¢c); the axial strains in the reinforcemesd) @nd concretes(); the interface shear
across the bonded lengtt) @nd the interface slip) which is the difference between the
axial displacement of the bar,(@nd the concrete {u

Examining Fig. A.1(b) and Fig. A.1(c) [28], the @darium equations for a prism under pure

tension can be written as:
dor _ Thp

dx = A_r (Al)
and

doc _TL_p

dax | Ac (A.2)
and from Fig. A.1 (a) by equilibrium, the load acfiat any section is:

P. =0 A. + 0, A, (A.3)

where, A and A are the cross sectional areas of the reinforcargand prism respectively
and L, is the circumference of the reinforcement.

dx

}'—»\
O A — P,
OA+ reinforcing bar — P,
L
) A concrete prism > Pe  |A, "

(a) equilibtium of prism
|

O, « TLp/Ac — o_+do,

P s |

0, + > 0.+do,

(b) equilib:rium of concrete interface

N N |

O, + > o+dao,

T LC/A? !

(c) equilibrium at reinforcement interface

Figure A.1: Free body diagrams of partial interactprism
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The axial force Anduces a relative slip between the bar and theosnding concrete, that

is,
6 =u, —u,
Differentiating the slip gives the following slip strain

dé _ duy duc

dx dx dx

(A.4)

(A.5)

As% is simply the reinforcing strain ar%f is the concrete strain, and since the elastic

moduli of the bar (B and concrete (f are known, the stress in the bar and in the atacr

are as follows

_ _ duy
Oy = Ergr - Er dx
duc

Oc = Ecgc - Ec dx

Substituting Egs. A.6 an A.7 into Eq. A.5 gives:
48 _or_ %

dx  E. Eg
and differentiating yields

a’s 1 (dar) 1 (dac)
dx2 ~ E,\dx E:; \ dx

Substituting Egs. A.1 and A.2 into Eq. A.9 gives overning equation

where

po= (g A)
27 A \E ' E/Ac

(A.6)

(A7)

(A.8)

(A.9)

(A.10)

(A.11)

The governing equation (Eg. A.10) can then be sblusing a known bond slipt-§)
relationship and knowing the boundary conditiothi® specific tension stiffening problem.
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Crack spacing

Fig. A.2 [28] shows the boundary conditions for fieemation of primary cracks. In the

uncracked member, an initial crack is assumedro fat some location at x = 0; at the initial
crack, the strain in the concrete equals zero #daefore, the slip strain is simply the strain
in the bar where the force ig, Fhat is,

s P, _ 3
i Eand& = Aratx=0 (A.12)

The minimum crack spacing, & then defined as the point of full interactimme distance
from the crack face where both the slip strain #aedslip tend towards zero, that is,

ds
= 0Oandé = 0atx=9§ (A.13)

This point § represents the minimum crack spacing as it ispthiet at which the concrete
stress is at its maximum, hence the crack can famgwhere in the full interaction region
shown in Fig. A.2(a). The crack spacing is, howetaken to be equal to,Shat is, the
minimum value is taken, as beams are normally stdxieto a moment gradient.

initial [ X S, full interaction
crack %
face ™ . P.=1Ldx P — P,
Pr‘— \{_> Prl — Pr
— — — — 1
A= &0)}— P, [P
(@) infinitely long prism | dd/dx = 0
. | and
primary S =S/2 '5=0
crack { !
face ™ Pi T'—pdi — P,
Pr‘— "_> Prl g Pr
A=80)+— P 0=0
I
(b) prism length=5,
- \
secondary\.ﬁffw2 |
crack —_ ] P
face S
P+ P,= TLde‘}(Pu — P,
A, = 0(0) }— P, 0=0

(c) priém IeHgth =8S.

Figure A.2: Tension stiffening for concrete prism
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Once a primary crack has formed atfm the initial crack in Fig. A.2, the problemwo
becomes that shown in Fig. A.2(b) which is thaaadymmetrically loaded prism of length
Sp. Since the prism is symmetrically loaded, the b@umdondition at the midpoint of the
prism, that is at the secondary crack spacingeSomes

ds
7 0Oandé = 0atx=%/2=§ (A.14)

Finally if the bond is sufficiently strong such trsecondary cracks can form at the midpoint
of the prism of length Sthat is at Sin Fig. A.2(c), the boundary condition becomes

ds
7 0Oandé = 0atx=%/4=9 (A.15)

Having now derived the boundary conditions for thienation of primary cracks, as well as
tension stiffening for both primary and secondamgcks, it is possible to solve Eq. A.10 to
determine the crack spacing and load-slip behaviourthe specific case of a linear
ascending bond-slip.

Solutions for linear ascending bond slip charactestic
The bond slip for a linear ascending character[4f¢20,24] can be written as

T= k.6 (A.16)
where kis the stiffness of the bond slip'd) characteristic.

Substituting Eqg. A.16 into Eq. A.10 yields

dazs
—— —Baked =0 (A.17)
which can be solved to give the following variation

6(x) = acosh(4,x) + b sinh(1,x) (A.18)

where

L = kB, (A.19)

Differentiating Eq. A.18 yields
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£ = Lasinh(4,x) +1;b cosh(2,%) (A.20)
and substituting Eq. A.18 into Eqg. A.16 gives
(x) = k.[a cosh(A;x) + b sinh(4;x)] (A.21)

The constants andb in Egs. A.19 and A.21 can now be solved throughdhbstitution of
the boundary conditions as follows.

Crack spacing
Substituting the boundary conditions at the initielck face, which are shown in Fig. A.2(a)
and are given by Eq. A.12, into Eq. A.20 gives

b= —r (A.22)

ArEr)q

which along with the full interaction boundary car@hs given in Eq. A.13 can be
substituted in Eq. A.18 and Eq. A.20 yielding

a cosh(llSp) + % sinh(llSp) =0 (A.23)
rbril
ALasinh(4;S,) + == cosh(4;S,) = 0 (A.24)

Since the hyperbolic equations have no analytichlt®n, it has been assumed the solution
is achieved at 97% of the numerical solution amsldives a primary crack spacing of

S, == (A.25)

Load to cause primary cracking
Substituting Eqg. A.25 back into Eq. A.22 yields

Py
AyE;A4(tanh 2)

a= (A.26)

The relationship between the force in the baatRhe initial crack located at x = 0 and the
force in the bar f? and R at the initiation of the primary crack at x 7 i8 Fig. A.2(a) can be
written as

x=Sp

B — [ _ T tlydx = Py, (A.27)
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where,
P.=P.,+P. (A.28)

in which the integral in Eq. A.27 is the bond foarad can be given by Eq. A.29 by solving
Eq. A.27 and Eq. A.28 and in which the tensile kiag stress of the concrete g f

x=Sp Ss
S D tlpdx = frAc (A.29)
Since the full interaction condition is achievedSgtit is also known that the strain in the
reinforcement and the strain in the concrete agesttime, and therefore,

Oc

Py = A_CArEr (A.30)

Knowing the crack will form once the stress in tuacrete equals the tensile cracking stress
and substituting Eq. A.29 and Eq. A.30 into Eq. Aallows for the determination of the load
to cause a principle crack R

fe
Pror = E_CtArEr + fetAc (A.31)

For a linear ascending bond, the relationship betwtee bond force and the concrete force is
given by Eq. A.28, and so substituting Eq. A.2DbiBt. A.29 gives the load to cause primary
cracking based on partial interaction.

_ ArEr A58 ferAc

Pror = (A32)

TmaxLp

For the prism of length Sshown in Fig. A.2(b), a secondary crack will foah§ = S/2 =
1/\; when the stress in the concrete reaches the d@ensdicking stress and the same
procedure is followed to determine the load to easscondary cracking. Substituting Eq.
A.22 and Eq. A.14 into Eq. A.18 gives the constraiwhich in this case refers to a prism of
length $.

Py
ArErdy

a=-— tanh(1) (A. 33)

Substituting Eq. A.32 and Eqg. A.22 into Eq. A.2-dagain into Eq. A.29 for the changed
boundary conditions gives the load to cause a skngrcrack as
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P ArErA% 61fctAc
r_cr
0-352Tmapr

(A.34)

Load slip behaviour

For a prism of length Swhich corresponds to primary crackititg slipA,for a given load
can be determined by substituting the constraarasidb given by Eq. A.33 and Eqg. A.22
into Eq. A.18 where x = 0 to give

__ Pptanh(1)
A, = IR (A.35)

Now considering the prism of length i Fig. A2(c), by symmetry a tertiary crack wiltaur
at § = S/4 = 1/2, Substituting Eq.A.22 and the boundary conditiorrstéotiary cracking as
in Eq. A.15 into Eg. A.18 gives the unknowarin Eq. A.36.

a=——r tanh(0.5) (A.36)

ArErdq

The slip for a given load for a prism of lengthc&n then be given by Eq. A.37 which is
obtained by substituting Eq. A.22 and Eq. A.36 iBtp A.18 at x = 0.

__ Prtanh(0.5)
Ay = (A.37)
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The fundamental mechanisms that govern the flexutaductility of RC

members
D. J. Oehlers, P. Visintin, M. Haskett and W. Mb&stian

ABSTRACT

Flexural ductility in reinforced concrete memberaymbe defined as concentrations of
rotation at discrete positions. As such, it affealtsaspects of reinforced concrete behaviour
at all limit states including: serviceability defteons, sectional and member strengths,
moment redistribution and collapse. The ductiligsign rules developed for steel reinforced
concrete members that use a full-interaction (it is no slip between the reinforcement
and the adjacent concrete, moment curvaturg)(Bgproach are empirically based as at least
one major component of each model, not includirggrtfaterial properties, such as the hinge
length or effective flexural rigidity (Bhy has to be determined through tests. Being
empirically based, these ductility models for ste€l members can only be used within the
bounds of the tests from which they were developed, as such, are of little use beyond
these bounds, such as for FRP RC members. As anpéxait will be shown that steel RC
members rely on the ductility of the steel matettabchieve member ductility. In contrast
even though FRP as a material is brittle, FRP R@nbegs can be designed to be ductile
through weak bond. To understand this problem rdeoto find a solution, the fundamental
principles that govern the flexural ductility ofiméorced concrete members with any type of
reinforcement are first described. To overcome émepiricism of the current FI M/
approach, a mechanics based partial-interactio)) {fat is there can be slip between the
reinforcement and the concrete, moment-rotatiorbMiodel has been developed using the
well established theories of partial-interactiord aahear-friction. It will be shown that this
purely mechanics based Pl hodel can quantify the deflection of members &fiadit
states that is at serviceability, ultimate and atlapse, as well as quantify moment
redistribution and energy absorption. Furthermdreijll be shown that the results from the
PI M/6 approach can be used to derive equivalent flexugadities (Ekqy) to replace the
empirical flexural rigidities Elnp required for the FI M/ approach; such that the PI @/
approach can be considered as an extension oremaéint of the FI M/ approach by
eliminating empirical components such as the hileggths or effective flexural rigidities.
Being mechanics based, this model can cope withygeyof reinforcement such as any type
of FRP, any bond-slip characteristic and even Wiiie reinforced concrete.

Keywords: reinforced concrete; ductility; tensiotifening; concrete softening; and patrtial-
interaction.
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INTRODUCTION

What is ductility? There is the classic conceptahligonsists of linear elastic behaviour, O-A
in Fig. 1, followed by unlimited perfect plasticiy-B. This can be applied to: the material
within a member where the stress is maintained 8vBr that is the material ductility; to a
section of a member where the curvature is maiathiaver A-B, that is the sectional
ductility; and to a member where the rotation isintaned, that is the member ductility.
Unfortunately, reinforced concrete members do mbilet any of these classic properties as
illustrated in Fig. 1. Cracking, creep and shrinkagnerally occurs at an early stage so that
rarely is there linear elasticity. Furthermore,réhiss no reason why there should be a plastic
plateau, and even if one could be approximated,at best of limited length due to concrete
softening or reinforcement failure; and of suchnaited length that it can affect the overall
behaviour of the member.

linear

elastic plastic plateau
&

A B
- \\ [
o 7 N
|,

(M) limited, ifany  \
Mi K . . concrete
[ /| cracking \ softening
/| \
| AN
AN
| ~
(A;LEC (E)
I S
o 5 £ (x) [6]

Fig.1 Ductility concepts

Member ductility is associated with concentratiofsotation often referred to as hinges or
plastic hinges [1,2] which allow moment redistribnt and energy absorption within
members and frames. However, it may be worth ndtiag concentrations of rotation occur
at all limit states after cracking has occurred jugt at the ultimate limit, causing a step
change in member slope i.e. rotation between diawds [3] across the crack. So when does
ductility occur, or, what is ductility? A furthergblem is that material ductility does not
necessarily provide sectional ductility, which dows necessarily provide member ductility.
For example, there is no guarantee that using alelueaterial will ensure member ductility
and there is absolutely no reason to assume thattle material will automatically lead to a
brittle structure. So what causes ductility?

To illustrate what actually occurs in practice, leg look at the behaviour of two span
continuous beams reinforced internally with ste@tforcing bars but strengthened externally
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over the hogging region with externally bonded (EiBje reinforced polymer (FRP) plates
as in Fig. 2 [4,5]. FRP is a brittle material &8 plates are known to have a weak bond [6].
As such, guidelines tend to suggest that these plRted members should be treated as
brittle so that no moment redistribution shouldaiewed. To evaluate the brittleness of the
plated member, moment redistribution is a good gawj ductility as it requires
concentrations of rotation to occur. The variatafnthe percentage moment redistribution
with the applied load, M, as a proportion of the theoretical ultimate lo8dgatidu, IS
shown in Fig. 3 for 7 beam tests; it is clear tlhafje amounts of moment redistribution are
occurring at ultimate. FRP is a brittle material,ismember ductility is directly related to
material ductility, then there should, in theorg, fio redistribution in Fig. 3. Therefore, what
mechanism is providing this ductility? It can alsseen that moment redistribution does not
only occur at the ultimate limit, but rather staftsm the onset of cracking so that ductility

occurs at all load levels. Once again, what medmans causing this ductility prior to the
formation of “hinges” at ultimate.

ZPIate

A VAN AN

Fig. 2 Two span continuous beam strengthened vRiR plates

50% 1

moment
redistribution

Mstatic/(Mstatic )u :l
Fig. 3 Moment redistribution in beam with EB FRRtpk

The results from two span continuous beams simathose in Fig. 2, but this time

strengthened with near surface mounted brittle PpRFes which have stronger and more
ductile bond properties than FRP EB plates [6] slvewn in Fig. 4 [5,7]. The results are
similar to those in Fig. 3, which were strengthematth EB FRP plates, but are also in some

ways better, showing in Fig. 4 large amounts of raptmedistribution being maintained over
wide ranges of load.
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Fig. 4 Moment redistribution in beam with NSM FRIRtps

What is providing the increasing ductility in Figsand 4? Fig. 5 shows the hogging region
of the beam in Fig. 2 which has been strengthenigd avlongitudinal pair of NSM FRP
plates the positions of which have been markedhertdp surface [5]. Flexural/shear cracks
which are as wide as the beam can be seen to dreapting the FRP reinforcement. It can
also be seen on the top surface between theserdlestacks a herringbone formation of
much smaller cracks on either side of the NSM mzégment. This herringbone formation of
cracks is associated with debonding [6] and it vd shown that it is this debonding
mechanism that allows these FRP reinforced beamesdistribute moment that is to act in a
ductile fashion.

NSM S

gmlntuﬁ% =
=

Centre support

Fig. 5 Debonding of NSM plates

It is not just flexural cracking as in Fig. 5 thaiduces concentrations of rotation and
consequently ductility but another major contributo ductility is the formation of
compression wedges as in Fig. 6 [8] which allows ttoncrete compression zone to
accommodate within a member, for example, the lantgtions between crack faces. It will
be shown that it is this shear-friction mechanissoaiated with wedge formation [9] which
also controls or limits the ductility, that is thbility to rotate.

235



SIEnEpiEne

Fig. 6 Formation of wedges leading to concreteesifig

It is suggested that member ductility is a mecharasd it can only be quantified through the
study of the member ductility mechanism which is fubject of this paper. Hence material
ductility by itself and sectional ductility by itdecan never be used to quantify member
ductility by themselves and as such these appreagfiealways have to resort to empirical

components for the model. However once the memhetildy mechanism has been

guantified, it will be shown that it can be conegrtto convenient equivalent sectional
properties or equivalent material properties fa insductility analysis or design.

The fundamental mechanisms that control the behawb reinforced concrete members
subjected to flexure and/or axial loads is firssa&ed. This section helps illustrate the
importance of the partial-interaction (PI) bondestharacteristics between the reinforcement
and the concrete, that is the slip between thdamiement and its adjacent concrete, which
is often neglected. Although the same mechanismsbeaextended to quantify the shear
behaviour [10], it is felt that this is outside theope of this paper. Methods for quantifying
the ductility mechanism due to flexural cracking bgnsidering the Pl behaviour of a
localised segment of the member are then explaifileid. section helps distinguish between
the different debonding mechanisms that occur: thawhich debonding is localised and
does not reduce or limit the force in the reinfonemt and which will be referred to as a
‘strong’ bond mechanism although ‘strong’ refershe debonding mechanism and not the
bond strength; and those in which debonding redacdimits the force in the reinforcement
and which will be referred to as a ‘weak’ bond naatkm in which ‘weak’ refers to the
debonding mechanism and not the bond material gitieihe ductility due to the concrete
softening associated with the formation of wedgeshien explained using shear-friction
theory in the segmental approach. This helps st how concrete softening is a
mechanism that can be simulated using shear-fnicttieory. Finally the effect of the
localised rotations which have been quantified dlgiothe segmental approach are applied to
the analysis of members. This helps illustrate wh&nown in practice that ductility occurs
as soon as flexural cracking or concrete softemiogurs, and it also illustrates how these
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ductility mechanisms can be applied to all RC memlbat is in theory to any type of
concrete, to any type of reinforcement, with anydglip characteristics, and at any load
stage from serviceability through to collapse.

FUNDAMENTAL MECHANISMS WITHIN RC MEMBERS

There would appear to be three fundamental meamanilsat contribute to the ductility of a
member: (1) the interaction between flexural cratk®ugh the reinforcement connecting
the cracked regions; (2) concrete softening throtigh formation of wedges; and (3)
confinement of the wedges through, for examplerugis or FRP wrap.

(1) Flexural cracking in a beam

Let us consider the development of flexural cracksan RC beam, although, the same
principles apply to columns as well. To simulate behaviour, we need a numerical model
that simulates the bond-slip between the reinfoer@mand its adjacent concrete, that is
partial-interaction, as this allows: cracks to wigthe gradual formation and development of
cracks at discrete positions; and importantly thieraction between cracks [11-13]. This
simulation requires a bond-slip property such asidiealised bond-slip property is shown in
Fig. 7 where kis the elastic bond stiffness,maxis the maximum bond shear stress and s
the bond slip beyond which the shear stress is aedit is, importantly, the slip at which
debonding can be considered to commence.

1, (MPa)
4

TbAmax [

(6)

K

s, (0.02) 5,(0.2)
S (mm)
Fig. 7 Idealised bond-slip properties

A typical result of a numerical partial-interactisimulation of a loaded beam is illustrated in
Fig. 8 [12]. The beam is initially uncracked onsfiloading. The centrahitial crack first
forms where the moment is greatest and the loadh&h this occurs can be determined from
elementary FI MY analyses such as used in transformed sectionsinitie crack causes
slip, that is partial-interaction, between the feinement and the concrete which controls the
formation of the adjacent cracks referred to aspttmary cracks The region within which
slip occurs has been labelled the partial-inteoactegion such that the slip s and slip-strain
ds/dx are not zero. Beyond this region is the ifutraction region where both the slip and
slip-strain are zero as shown. Between cracksslipereverses in direction as in A-B-C. If
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the cracked region was in a constant moment regjiem, the slip distribution A-B would be
equal and opposite to B-C as the force in the oeteiment at each crack is the same; this
also occurs in tension-stiffening tests as in Bi§l4,15]. From the primary crack to the full-
interaction region in Fig. 8, slip is only in ongetttion D-E which is similar to that obtained
in pull-tests [16,17].

I L/2 \P L/2 I
i primary initial prlmary|
| crack crack  crack |
I I/ZX\ I/I\/( I/:\)( !
/T /T [T )
/A ) | | A
| | A | |
| C | D |
El | B NI
| D c |
full interaction | , A | | full interaction
region | partial interaction region | region
s=0 ds/dx=0 , s>0 ds/dx>0 ls=0 ds/dx=0 |

Fig. 8 Idealised behaviour of an RC beam

13 L, > [« L b > [« L, _>‘I b
<« > 0 2c
SA A-A
A | _ SJ]
sli
P B | 1s. N
k—>
L/2 « 5
debonding

Fig. 9 Tension stiffening tests

Let us look at what happens after the formatiothefinitial crack in Fig. 8 [5,12]. The bond
slip properties in Fig. 7 were used in which thexmmum shear stress maxiS 6 MPa and the
slip at debondingsss 0.2 mm. The following results in Figs. 10 to [12] are only for the
region of the beam to the right of the initial dcan Fig. 8 as what happens to the left is a
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mirror image. Furthermore, they are shown for iasneg half crack widthscsthat is at
0.05mm which is prior to debonding, 0.2mm whichaisthe onset of debonding and at
0.5mm in which debonding has occurred over O-Cign E1. As the crack widens, the slip
distribution gradually increases as in Fig. 10 aagishe gradual build up of bond stress in
Fig. 11 until the bond stress is fully develope®a#-B at a half crack width of 0.2 mm; the
force in the reinforcement to cause this full buifd of the bond-stress is often referred to as
the intermediate-crack (IC) debonding resistangefd the strain in the reinforcement at the
crack face at which this occursdg in Fig. 12 [16,18,19]. Any further increase in thalf
crack width such as at 0.5 mm in Fig. 11 causedtma stress distribution to move along
the reinforcement from the fully developed O-A-B@aD-E that is debonding occurs over
O-C in Fig. 11 which is also shown in Fig. 12 agqlwhere the strain in the reinforcement
gic remains constant. However, the shape of the btmedssdistribution C-D-E remains
unchanged whilst debonding, that is it is the sasi&hen the bond is first fully developed as
in O-A-B.

slip
0.5

0.2

0.05

distance from crack

Fig. 10 Slip in beam with a single crack
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Fig. 11 Bond stress in beam with a single crack

plate
strain

0 >
distance from crack

Fig. 12 Reinforcement strain in beam with singlac&r

Importantly, the half crack width, such as s 0.5 mm in Fig. 12, consists of two
components. The half crack width at which the Iateling resistance is first fully
developed that is;,swhich in this case is 0.20 mm, and which occura strain ofe,c which
isapproximately 0.0027 in Fig. 12. Plus the extensibthe plate over the debonded region
Laba, that is,eic Lapg, Which in this case is approximately 0.3 mm. It b@nseen that the crack
widening due to debonding alongplof 0.3 mm is the same order of magnitude as thfe ha
crack width of 0.20 mm required to induce the I@®aleding resistance. This crack widening
directly contributes to the rotation between crémées and consequently the ductility. It is
this combination of slips which can provide dutyilin members which contain both brittle
materials (e.g. FRP) and brittle bond charactedst(e.g externally bonded plates),
suggesting that ductility can be greatly enhangeddbonding.
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When multiple cracks form, the slip distributionarsegment between cracks starts off as in
the reverse slip distribution A-B-C in Fig. 8. H& segment is in a constant moment region,
then the slip distribution remains symmetrical m$ig. 9 and debonding can occur within a
segment when the slip exceeds the slip capacitiiefeinforcement;sn Fig. 9. However,
each segment of length, between cracks acts individually, preventing delog between
segments even if the bond is weak. When multipheks form in a constant moment region,
the force in the reinforcement at each crack locatinust be identical so that the slip
distribution, and consequently the bond stressest tve equal and opposite about B g2L
This behaviour can also be assumed to apply in reesnlith low moment gradients and to
members with very strong bond where debonding batveegments does not occur prior to
the reinforcement yielding or the concrete crushingthese circumstances, debonding can
only occur within a segment as illustrated in Fgand the force in the reinforcement is not
limited by the bond characteristics. As the foaethe reinforcement is not limited by the
bond, this behaviour will referred to as #teong bond mechanisand as has been explained
it can occur not only with strong bond but alsohmiteak bond should the variation in the
stress resultants be favourable.

If the bond is weak and there is also a steep mbgradient, then the slip can vary as in Fig.
13 [12], where crack 1 is the initial crack andats2 and 3 are primary cracks; these cracks
divide the beam into segments as shown. The dipilolition A has a slip at the initial crack
face of 0.19 mm, as can be seen at the intercépttiae ordinate, and reverses in direction in
Segments 1 and 2. Part of slip distribution B ersegbut it still reverses in direction. At
slip distribution C, the slip in Segment 1 is nowone direction and the step change shown is
the total crack width of crack 2 which is about@ram. At slip distribution D, the slip on
either side of crack 2 is the same so that cradka® now closed. It can be seen that
debonding allows cracks to close.

The slip distributions in Fig. 13, induce the reirdement strains in Fig. 14. As the
reinforcement load is increased, the slips A, B @nth Fig. 13 induce the corresponding
strain distributions in Fig. 14. The strains camrexd the IC debonding stratiz as can be
seen in distributions B and C but once the craoked as in D in Fig. 13, then the strains are
limited by ¢c as in D in Fig. 14. Distributions A, B and C reggat thestrong bond
mechanismwhilst distribution D represents theeak bond mechanisnThe more cracks
there are, the closer the mechanism resemblesthatension stiffening test in Fig. 9, where
in theory, there is an unlimited strain capacitythe reinforcement due to the symmetry of
the slip. However, as the cracks close, the meshamoves from that of multiple cracking
in Figs. 9 and 14 to that of a single crack in Hig.where the IC debonding resistance and
behaviour controls. Hence, the IC debonding behavior an individual crack is equal to, or
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a lower bound to that which occurs in beams, afbprdvide a useful conservative design
(Liu et al 2007a).

crack 1 crack 2 crack 3
| |
1.10(s) segment 1 | segment 2 | segment 3
D
0.86 : |

crack Width=0.67mm|

o
»
0.41
0.19
0 distance
7 from crack
0.19 l0.19
Fig. 13 Slip in a beam with multiple cracks
crack 1 crack 2 crack 3
0.005 1 segment 1 | segment 2 | segment 3
7 | |
s.=086 © \| |
B |
g §IC | Scrzl'l(s) :
£ | N
e B |
2 S.=0.41 | |
P |
S.=0.19 | :
A |
0 | | distance
from crack

Fig. 14 Reinforcement strain in a beam with muétipfacks

(2) Concrete softening mechanism

The mechanisms responsible for providing ductility the tension region have been
explained previously. In order for a beam to betiteicthe compression region must also
display ductility. Concrete resists excessive campive strains beyond its material
deformation capacity by forming wedges as in Figlnédeep beams, these wedges tend to
slide off soon after forming and this can severelyuce the member ductility at the ultimate
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limit. In contrast, shallow beams can remain staieugh large rotations even after a wedge
has formed and allow the member to behave in alduesshion. It is known that internal
steel stirrups such as that illustrated in Figeven when not required for shear, can further
increase the flexural ductility by inhibiting theedges from sliding off. The same effect can
occur when the RC member is wrapped in either steERP and this is often referred to as
confinement. This concrete ductility and the effettconfinement on this ductility can be
explained through a shear-friction mechanism [2D-22

Let us consider the behaviour of a cylinder orrprisf height L, that is being subjected to an
axial stressoaq and maybe a lateral stresg; as in Fig. 15 [20]. It is common practice
experimentally to measure the total axial contoactilong A-A in Fig. 15(b) in order to plot
the behaviour as a stress-strain relationship asign 16, in which there is an ascending
branch, which may be considered as a material pngpand a descending or softening
branch, which is often considered to be size depeindnd represents the formation of
wedges.
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sliding interlock
Fig. 15 Shear-friction mechanism
0.4 ascending softening
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f _____ ) “1

residual strength

8fc E
Fig. 16 Idealised concrete stress-strain relatignsh
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The angle of a possible wedge,in Fig. 15(a) depends on the Mohr Coulomb frictsibn
properties as does the residual strength in Fig9lan the shear-friction mechanism, line
A-A in Fig. 15(b) can keep contracting until theagestressfat the straires in Fig. 16 is
achieved. The material itself cannot accommodat&rain greater thanmi, that is, the
material cannot accommodate a contraction greladerel.L,. Hence if a greater contraction
is required, then this is accommodated by slidihthe wedges\sy, as in Fig. 15(c) with a
corresponding opening of the sliding planes duadgregate interlockchas in Fig. 15(d).
The same can be said for the lateral dilation alohgin Fig. 15(b) which is governed by the
material Poisson effeat and slidingAsyn and crack widening h The axial and lateral
stresse®ax andoyy in Fig. 15(a) induce, through equilibrium, stress@rmal to the sliding
planecy and shear stresses along the sliding ptanghich act in conjunction withsy, and
her. These four parametersy( ™, Asm and k) are the shear friction properties as illustrated
in Fig. 17 which when derived from prism tests agrig. 15 are for the case of initially
uncracked concrete. They do not represent failuteake combinations of the shear-friction
parameters that exist together much the same wéyeastress-strain relationship in Fig. 16
are combinations that exist. It can be seen th&trsag in Fig. 16 is no longer considered to
be purely a material property but rather a shaatidn mechanism, where excessive
deformations are accommodated through the formatiavedges.
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Fig. 17 ldealised shear friction properties

(3) Confinement of wedges

Let us now consider the situation when a reinfaydrar crosses a sliding plane such as
would occur if a the stirrup crosses the slidingngl formed by the wedge as illustrated in
Fig. 6. The behaviour, illustrated in Fig. 18, mvgrned by both shear-friction theory and by
partial-interaction theory [10,23]. For examplet les impose a crack widthehon the
mechanism in Fig. 18. The reinforcing bar sliggzhat each crack face. Knowing the bond-
slip properties 1/8) and the material properties of the bar, the fdrcehe bar P can be
derived for that crack face slig#2 [17,24]. This induces an equal and opposite cesgive
force P across the sliding plane and consequemdynbrmal confining stressy is known.
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Hence 6n)1 and (k)1 are known in Fig. 17 so there is only one valé¢/qf). and one value
of (tn)1 that corresponds as illustrated in Fig. 17. Heaceombination of shear-friction
theory and partial-interaction theory can be usesimulate the effect of confinement due to
stirrups or FRP wrap on the concrete in compressibrere the presence of stirrups or FRP
wrap increases the normal force across the sligiage, delaying concrete failure in the
form of unstable sliding [23].
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Fig. 18 Interaction between shear-friction andipkrhteraction

SEGMENTAL ANALYSIS

The fundamental mechanisms within RC members destrabove, can be incorporated in a
segmental analysis procedure [22, 25] to quanki&/ ariation in flexural rigidity (EI) of a
section for use in design. In order to do thisuettonsider the behaviour of a short segment
of a member of length 2L as illustrated in Fig. 19, which is subjected mnoapplied constant
moment M and axial load P. As this segment is sytrioadly loaded, the deformations at
both the ends from A-A to C-C, which cause a rotal, are equal and opposite. Hence
through symmetry, the mid-section of the segmenB Ban be considered to remain
stationary and the deformation to the right is teh to that on the left.
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Fig. 19 Segment of a member

Segmental analysis of an uncracked element

First consider a segment which is uncracked asign Z0 which corresponds to the right
hand side of the segment in Fig. 19. Let us imposetationd as shown in Fig. 20(a) in
order to determine the moment M corresponding i® thtation for a known axial load P.
The deformation from A-A to C-C induces the stramfile in Fig. 20(b) which can be used
with the material properties to derive the streissridution in Fig. 20(c), and consequently
the force distribution in Fig. 20(d). It is a quest of moving the deformation C-C in Fig.
20(a) up and down until the forces in Fig. 20(d ar longitudinal equilibrium with P, after
which the moment can be derived from Fig. 20(d)tfer imposed rotatiofi. This rotation
can be divided by def to get the curvaturg and the moment divided by this curvature to get
the flexural rigidity EI corresponding to the amali moment M and axial force P. The
rotation can be increased to derive the@ MB of the uncracked section in Fig. 21(a), the
M/ relationship A-B in Fig. 21(b) prior to crackingé subsequently El of the uncracked
section as in Fig. 21(c). Importantly this segmkentament-rotation (MJ) analysis prior to
cracking or softening gives exactly the same resa#f the full-interaction (FI) moment-
curvature (My) analysis [26] that is commonly used by struct@mdineers, simply because
the MM analysis is being used in its FI form.
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Fig. 20 Segmental analysis without cracking oresafig
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It is very easy to include the effect of concrdtarkage in this segmental analysis [27]. For
example, a concrete shrinkage strairg@fwould cause the unrestrained concrete to contract
by esplger to D-D in Fig. 20(a). Hence the concrete defororatalong C-C should now be
measured relative to D-D and not A-A, whilst that the reinforcement should still be
measured relative to A-A; in other respects, thayais is the same and will yield a flexural
rigidity that automatically allows for concrete stkage [27].

Single crack segmental analysis — weak bond mechami

Let us now keep rotating the segment in Fig. 20¢) the concrete tensile strain in Fig.
20(b) causes cracking. We will assume that a sioglek develops at the centre as shown in
Fig. 22(a). The analysis above the crack tip in BERyis exactly as that in Fig. 20, in that the
forces above the crack tip depend on the materapgsties, that is, their stress-strain
relationships. Below the crack tip, the force ire theinforcing bar 5 depends on the
interaction between the reinforcing bar, the crad#tth and the surrounding concrete. This
behaviour is referred to as tension-stiffening adepends on the bond-slipt/q)
characteristics of the reinforcement.
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Fig. 22 Segmental analysis with a single crack
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Tension-stiffening is often studied [15, 18, 28-38} considering the partial-interaction
behaviour of a reinforcing bar embedded in a cdeguesm as indicated in Fig. 22(a).

The prism in Fig. 22(a) is shown in Fig. 23 whereiscthe cover provided to the
reinforcement, b the section width and the bong-slt/s. The force in the reinforcemeni,F
causes the reinforcement to slip relative to tlaekiface by g. This interface slip diminishes
along the length of the reinforcement, until at sgooint shown at the distance, lfrom the
face, the slip tends to zero after which theraiisihteraction. Over this regiond, the axial
stress in the concrete builds up to its maximunueads in C in Fig. 23(d). As-and
consequently ¢ is increased, the bond stresses increase and riegh maximum
distribution shown as C in Fig. 23(c). The loadhe reinforcement corresponding to this slip
and stress distribution is the IC debonding rest#ahc and this force occurs at a specific
crack face slip g, (5 in Fig. 7) and reinforcement straéfz Any imposed crack face slip
greater than,s shown asAgin Fig. 23(b), can only be accommodated by debandiong
the length kg, such that the increase in slip beyong that isAg, is equal tceicLqgpg and is
accommodated over the partial-interaction regign It.can be seen that debonding is a form
of plasticity as the force (@ is maintained with increasing reinforcement slifpwsing
increasing beam rotation.

|
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Fig. 23 Tension-stiffening behaviour with singlack.
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The relationship between the reinforcement forgeaRd the slip at the crack facg is Fig.
23 can be derived from numerical procedures whiam cope with any bond-slip
characteristic [24,33] and any material propertgluding reinforcement yield and strain-
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hardening. Closed form solutions for specific slsapé bond-slip characteristics [37] and
allowing for yield [33, 29] have also been develbp&hese partial-interaction approaches
can then be used to derivg i Fig. 22 where the segmental length¢lin Fig 22 must be
greater than the lengthsLin Fig. 23 from the tension stiffening analysi@ dccommodate
debonding in the segmental analysis procedureletingth Lier in Fig. 22 must exceedpl
Using this analysis procedure, the variation ixdl&l rigidity for increasing moments post
cracking can be determined, shown as B-C in Fig. 24nce, the segmental approach
automatically allows for the variation in flexuragidity due to tension-stiffening. It may
also be worth noting that the inclusion of shrinkag the tension-stiffening behaviour in Fig.
23 is very easy as the shrinkage strain is simplgdditional slip-strain [27]. Concrete creep
is also very easily accommodated in Fig. 22 by ghmanthe concrete modulus and, hence,
the time dependent variations in concrete can\easilincorporated both prior to and after
cracking.

Steel reinforcing ribbed bars generally have gooddbsuch that the reinforcement yields
prior to debonding. The tension-stiffening modedsatibed above show that the slip at yield
is relatively small, but, that yielding can incredhis slip by an order of magnitude [33]. The
same tension stiffening models show that FRP EBepleeach their IC debonding resistance
at small slips, but, this can be increased by ateroof magnitude through localised
debonding around the crack face that is over aisszhregion kg in Fig. 23. Hence, steel
reinforced beams rely on steel material ductildy member ductility, and this is in contrast
to FRP RC members which rely on weak bond.

Double crack segmental analysis — strong bond meahiam

The deformation imposed on the segment in Fig. &0 ke increased until cracks occur at
both ends of the segment as shown in Fig. 24 winererack spacing which is the segment
length in Fig. 19 is now 24+ From the single crack tension stiffening behawviouFig 23,
the transfer of bond stresses from the bar to dijgecant concrete reduces the force in the bar
as we travel away from the crack face, and cormedipgly increases the tensile stresses in
the concrete as shown at C in Fig. 23(d) until ceteccracking occurs. Hence this analysis
gives the load in the reinforcement to cause pyntaacking and, hence, the moment in the
beam at which primary cracks occur. Primary craddgelop at k in Fig. 23(d) and when
the stress in the concrete exceeds the tensileitamd the concrete. The load at the initial
crack face corresponding to the formation of théck is Fy-pi. The corresponding minimum
crack spacing is d-pi Which occurs at the position of full-interactionathis L [22,25].
Hence, the segment lengthgtin Fig. 19 is the crack spacing,LThe left hand side of the
segment in Fig. 19 is shown in Fig. 24 wheggis Lg/2.
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Fig. 24 Segmental analysis with a pair of cracks

After these primary cracks have developed on eaEhdaf the initial crack, the force in the
reinforcement is now derived from the PI tensiaffesting analysis in Fig. 25(a), where the
boundary condition is that the slip at mid-lengileero as in Fig. 25(b). The bond stress is
also symmetrical as in Fig. 25(c). The region awvbich it acts can diminish from that in A
where the bond stress acts over the whole lengtkioforcement because the slip does not
exceed s to that in B where it acts over the region C-Q¢kere the slip is less than or equal
to §. It can be seen that as the force in the reinfoesd is increased, the bond force reduces
but it does not limit the force in the reinforcemidahis is the strong bond mechanism.
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Fig. 25 Tension-stiffening behaviour with a paircocks.

The tension-stiffening analysis described aboveviges the relationship between crack
width and reinforcement forces when primary cratikeve formed, and is used in the
segmental analysis in Fig. 24 to derive the seatipnoperties in regions of multiple cracks,
that is, region B-C in Fig. 21. Numerical procedui@e also available for the tension-
stiffening and moment-rotation analyses [8,16,2224#£7,33] as well as closed form
solutions [38]. It can be seen that the fundamedifé¢rence between the behaviour of a
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single crack in Fig. 22 and that of multiple cradksFig. 24 are the tension stiffening
behaviours shown in Figs. 23 and 25.

Segmental analysis with concrete softening

Concrete softening can be incorporated into themsegal analysis through the use of a
softening stress-strain relationship if a reliabtd#tening branch and its associated hinge
length can be found. An alternative is to use simetron theory, which unlike softening
stress-strain relationships and hinge lengths nsatiel actual behaviour.

Compression wedges can also be incorporated istgggmental model as in Fig. 26(a). Let
us impose a deformation B-B such that the defownativided by lges induces the effective
strains D-E in Fig. 26(b). Let the maximum compresstrain that the concrete can resist as
a material bey. as in Fig. 16. Hence, the portion of the membéovoehe strain okx in Fig.
26(b) can accommodate this deformation purely thinomaterial contraction; so the force in
this concrete Fin Fig. 26(d) can be determined from the ascendingss-strain relationship
in Fig. 16. However, the portion abowg. in Fig. 26(b) cannot accommodate this
deformation purely through material contraction, aavedge of depth,dmust form to
accommodate this non-material deformation throinghnhechanism of wedge sliding. At the
base of the wedge, the entire deformation imposethe segment can be accommodated by
material straining and, hence, the wedge deformatiaos zero. In contrast, the top of the
wedge slides a maximum value &f, as shown in Fig. 26(a). For the shear-frictionlysig,

it is convenient to slice the wedge imiesmall elements of depth dnd to assume that the
slip within an element is constant as shown in E&je).
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Fig. 26 Segmental analysis with concrete softening
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The behaviour of the shear-friction wedge in Fi§(el is identical to that in the top right
hand corner of the prism in Fig. 15. The elementepth d in Fig. 26(a) is required to
contract bys. as shown and which is also shown in Fig. 26(e}.Useguess that the axial
stress in this element ts. so that from the material properties the straig.isHence the
contraction to be accommodated by slidingi$de - ecLger. Depending on the angle of the
wedgea [9] this has a sliding component. Furthermore for an axial stress and the
known anglea, on.e andn.eare known through equilibrium as in Fig. 16(a). determine
whether this guess ef is correct, we have to use the shear friction erigs in Fig. 17.

To illustrate how a solution is found, let us fiedsume that the component ¢f im Fig.
26(e) in the horizontal direction is negligibledamparison with the component of the ship
that is H in the horizontal direction; this is falto be the case in practice where the crack
width component in the horizontal direction iseddt an order of magnitude smaller than the
sliding component H. Using Fig. 17. For the reqaifig from above, that isAsm)1 in Fig. 17
equalsAe, and the required. from above, that isof): in Fig. 17 equals,, can be derived a
value of ¢y)1 in Fig. 17. If )1 is not equal to the requiragd.. from above, then the initial
guess ofce has to be changed, that is iterated, until itifi@m more accurate analysis that
incorporates crack widening;hs required, then this analysis also giveg){for Ac to (Asm)1

in Fig. 17 so that the contribution of;lon the contraction can be incorporated. However, a
further iteration is required to converge.

This segmental analysis can also incorporate cenmfent. For example if steel stirrups
crossed the wedge sliding plane as in Fig. 26(d)thay could be assumed to have yielded,
then the confining stressiy; is known and this could be included in the equilim
component of the analysis as in Fig. 16(a). Thisgsivalent to a hydrostatically or actively
confined concrete. If the hydrostatic pressureas kmown directly, then a more thorough
analysis is to assume the vertical componentoinhFig. 26(e) is the crack width and use
partial-interaction analysis as depicted in Fig.td&etermine the force in the reinforcement
and consequentlyy. This can now be done only because the sheamfrigiroperties as in
Fig. 17 fully define the equilibrium and compatityilcomponents.

The inclusion of concrete softening into the segiaeanalysis will give C-D in Fig. 21(a).
As explained before, this can be converted to edent curvatures and flexural rigidities for
the falling branch properties C-D in Figs. 21(bY4n) for use in design. Care must be taken
in using falling branch properties. As with alllfaf branch properties, these falling branch
properties must be used in a defined length of neemihich in this case isgks in Fig. 26
which must encompass the softening wedge [25hrntle seen that the analysis can be done
for any length kesbut the material properties extracted are pectdidinat length only, that is
they will only give the correct rotations or hinggations for segments of that length only.

252



ANALYSIS OF MEMBERS

It has been shown how the effects of tension-siiffg, debonding, concrete softening and
concrete confinement can be simulated in a PO B#gmental analysis to give sectional
properties such as curvatures or flexural rigiditiEhe next step is to use these properties in
the ductility design of members or frames whichludes both energy absorption and
moment redistribution.

Simply supported beam — energy absorption

To illustrate the application of this analysis prdare in evaluating ductility in the form of
energy absorption in an RC member, let us consideexample of a simply supported beam
with a uniformly distributed load, a 5m span andrass section of 300mm x 200mm
reinforced with 2No. 16 mm bars in the tension oagiA Pl MP segmental analysis with
double cracks, that is a strong bond mechanisnbbas assumed, has been used to derive
the M/EI relationship in Fig. 27 for this section.
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Fig. 27: Variation in (Ebqufrom a Pl Mf analysis

Line A-B in Fig. 27 is the flexural rigidity of thencracked section. Mg at Bis the moment
to cause the initial crack from a FI pnalysis or the FI M/analysis in Fig. 20. M at D is
the moment to cause a primary crack from the Rl ahalysis in Fig. 22 using the tension-
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stiffening component in Fig. 23. Subsequent primargcking after the initial crack has
formed depends on the lesser ofMind M..r. The variation C-D-E-F is from a PI M/
analysis in which ke in Fig. 24 is half the primary crack spacing dhe tension stiffening
component is from Fig. 25. The same analysis gikesnoment at which secondary cracks
form that is Mecat Point E. The variation G-H-1-J is from the saamalysis as that for C-D-
E-F except that des in Fig. 24 is now a quarter the primary crack &pgc The steel
reinforcement yields at | and the concrete startsoften at J. In this analysis, confinement of
the wedge is ignored which leads to a rapid redadti moment along J-K.

For a specific applied load and consequently distion of moment, can be derived, using
the sectional properties in Fig. 27, the variaiioftl along the member for specific applied
loads as illustrated in Fig. 28(a). Prior to cracki Line A, the flexural rigidity of the
uncracked section gk applies throughout. Line B is where primary crabkse formed at
the centre or mid-span but remains uncracked drereside. Line C is where there are
primary and secondary cracks at the centre, wittngry cracking on either side and the
uncracked region is very small. In Line D, softenat the centre further reduces El. It can be
seen in Fig. 28 how the centre of the beam softdra, is sectional softening when EI
reduces, from the very early stages of loading tvhissists in the ability to absorb energy.
The variation in El in Fig. 28(a) can be used towtethe deflections in Fig. 28(b).
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Fig. 28: Energy absorption in a simply supportedrbe

Continuous beam — energy absorption and moment resfiribution
The simply supported beam in the previous exampkerfow been built in at its ends. The
variation in El is shown in Fig. 29(a) for increagiloads from A to C. The results from Fig.
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29(a) have been used to plot the deflection in Zggb). It can be seen in both figures in Fig.
29 that softening occurs at an early stage andamicplar in Fig. 29(a) where sectional
softening is concentrated in relatively small areakich is conducive to moment

redistribution as this requires concentrationsatation. Furthermore, this concentration of
softening occurs at low loads which explains whynmat redistribution occurs at very early
stages of loading as in Figs. 3 and 4.
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Fig. 29: Energy absorption in a built in beam

The ability of a statically indeterminate memberréalistribute moment has been defined
mathematically through structural mechanics [40-42je percentage moment redistribution
at all stages of loading is a function of the caricaion of rotation [(/cond and moment (M)
that is at all stages of loading as well as otheperties of the member such as span, load
distribution and serviceability flexural rigidities

As can be seen in Fig. 30, the PlIoMkgmental analysis gives the moment M and rotdtion
in a segment at all stages of loading. The rotattben there are secondary cracks appear to
be less than when there are primary cracks alasegtbecause the rotation when there are
secondary cracks is calculated for a segment ghhglif the length as that for the primary
cracks. The information in Fig. 30 can be useduangify the concentration of rotatidgonc
required for a moment redistribution analysis [4)-4Hence these analyses can be used to
guantify moment redistribution without the need &wnpirical approach such as the neutral
axis depth factor currently used in practice.
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General application to members and frames

It has been shown how ductility can be quantifiadoigh Pl M# segmental analyses.
Furthermore that there are two segmental analyssshiave to be considered. The single
crack segmental analysis which allows for debondatgng a member which has been
referred to as theveak bond mechanisapproach as the moment and rotation are limited by
debonding. Furthermore, there is the double cragknental analysis in which the behaviour
is not limited by debonding and as such has befenregl to as thetrong bond mechanism.

The question is how do we use these two approdnhbe analysis of a member or a frame.
It is suggested that th&eak bond mechanismpproach be used to determine whether
debonding along a member will occur. If tingeak bond analysishows that debonding does
not occur, that is debonding along the member dussprecede concrete crushing or
reinforcement fracture, thehe strong bond mechanisapproach can be used throughout as
in the examples above. If tieeak bond mechanisanalysis shows that debonding along the
member will precede concrete crushing or reinforeeimfracture then the sectional
properties from this analysis should be used inrdggons of the beam where the moments
are at a maximum to limit the force in the reinfarent but at the same time allowing for
rotation. In the remainder of the beam the sectigraperties from thestrong bond
mechanisnanalysis should be used.
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CONCLUSIONS

It has been shown how partial-interaction, thaslip between the reinforcement and the
concrete, affects the ductility of reinforced catermembers to such an extent that it may be
considered vital in simulating and quantifying dlitgt It has also been shown how ductility
occurs at virtually all load stages and as suclec#sf energy absorption and moment
redistribution at all load stages. A partial-intefan moment-rotation approach has been
described that can quantify ductility in terms &dxtral rigidity at all load stages so the
results can be used in standard full-interactiormaat-curvature approaches. The partial-
interaction moment-rotation approach is generidhat it can be applied to any type of
reinforcement with any bond-slip characteristic dndany type of concrete. Hence it is
suitable for quantifying the ductility of new type$ reinforced concrete members such as
those with FRP reinforcement and those with polyfiltee concrete.
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Chapter 4 — Concluding Remarks

In this body of work a new segmental Mdnalysis technique has been developed for both
instantaneous and long term loading. Unlike thditi@ally applied My approaches which
are typically based on the assumptions of plangssecremain plane at all locations and the
corollary of a linear strain profile, the Mfoes not assume a linear strain profile. Using the
well-established mechanics of partial interactiomd ashear friction theories, the 64/
approach simulates what is seen in practice, #iahe formation and gradual widening of
cracks as the reinforcement slips relative to tvecoete which encases it and the formation
and failure of concrete softening wedges. Hencagupartial-interaction and shear friction
theories, the MY approach obviates the need for both empiricallyved effective flexural
rigidities and hinge lengths and has lead to thesld@ment of a new equivalent flexural
rigidity which accounts for both concrete crackargl concrete softening and can be applied
to both instantaneous and long term loading.

Being mechanics based, the@\pproach can, in theory, be applied to any typeember,
that is any cross section, with any concrete piiggerand any reinforcement type with any
bond characteristic. The M/approach has been applied to a wide range of membe
behaviour including: the instantaneous deflectibbeams reinforced with both ductile steel
and brittle fiber reinforced polymer bars; the eycbehaviour of beams with steel
reinforcing; the instantaneous deflection of latgraand eccentrically loaded columns,
including those in which second order effects amesterable; and the long term deflection
of simply supported beams.

Through these broad applications, it has been shibnahthe M@ approach represents a
widely applicable mechanics based solution to ceodd concrete analysis, capable of
accurately predicting both instantaneous and logigntdeflections from serviceability
through to peak loading and collapse, where thg enipirically derived requirements are
material properties. Hence, the moment rotatiorr@gagh can be considered an extension of
traditional analysis techniques in that it remotles need to empirically define effective
flexural rigidities and hinge lengths to determmember behaviour.

Having developed a broad base for the applicatioihe M® approach much research is to
follow. Importantly the next step in this reseaishthe inclusion of confinement using the
approach outlined in Chapter 1; this is a partidulanportant consideration for the analysis
of columns where the close stirrup spacings maynngeafinement is high. It is also possible
that this research into confinement could provideeav mechanics based approach to
predicting the behaviour of sections confined WRRP wraps. Following on from the
research on the instantaneous beams and columrvibeha further extension of the
approach to allow for frame analysis is to follomcluding the adaptation of the &4/
approach to a finite element analysis framework.
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