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Modeling Using Discrete Event Simulation:
A Report of the ISPOR-SMDM Modeling
Good Research Practices Task Force–4

Jonathan Karnon, PhD, James Stahl, MD, CM, MPH, Alan Brennan, PhD, J. Jaime
Caro, MDCM, Javier Mar, MD, Jörgen Möller, MSC

Discrete event simulation (DES) is a form of computer-
based modeling that provides an intuitive and flexible
approach to representing complex systems. It has been
used in a wide range of health care applications. Most
early applications involved analyses of systems with con-
strained resources, where the general aim was to improve
the organization of delivered services. More recently, DES
has increasingly been applied to evaluate specific technol-
ogies in the context of health technology assessment. The
aim of this article is to provide consensus-based guide-
lines on the application of DES in a health care setting,
covering the range of issues to which DES can be applied.

The article works through the different stages of the model-
ing process: structural development, parameter estimation,
model implementation, model analysis, and representation
and reporting. For each stage, a brief description is pro-
vided, followed by consideration of issues that are of partic-
ular relevance to the application of DES in a health care
setting. Each section contains a number of best practice rec-
ommendations that were iterated among the authors, as
well as the wider modeling task force. Key words: model-
ing; methods; discrete event simulation; individual simula-
tion; good practices. (Med Decis Making 2012;32:
701–711).

A new Good Research Practices in Modeling Task
Force was constituted by the ISPOR Board of

Directors in 2010, and the Society for Medical Deci-
sion Making was invited to join the effort. This
paper, along with six others,1-6 is part of a series
commissioned by the Task Force.

INTRODUCTION

A new Good Research Practices in Modeling Task
Force was constituted by the International Society for

Pharmacoeconomics and Outcomes Research (ISPOR)
Board of Directors in 2010, and the Society for Medical
Decision Making (SMDM) was invited to join the effort.
The task force co-chairs and members—expert develop-
ers and experienced model users from academia, indus-
try, and government, with representation from many
countries—were appointed with consent from the
ISPOR and SMDM boards. Several teleconferences
and hosted information sessions during Scientific
Meetings of the Societies culminated in an in-person
meeting of the task force as a whole, held in Boston in
March 2011. Draft recommendations were discussed
and subsequently edited and circulated to the task force
members in the form of a survey where each one was
asked to agree or disagree with each recommendation
and, if the latter, to provide the reasons. Each group
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received the results of the survey and endeavored to
address all rejections. The final drafts of the reports
were posted on the ISPOR and SMDM Web sites for gen-
eral comment. A second group of experts was commis-
sioned to formally review the papers. The comments
received were addressed and the final version of each
paper was prepared. A summary of these papers was
presented at a plenary session of the Annual Scientific
Meeting of the ISPOR in Baltimore, in May 2011, and
again at the Annual Meeting of the SMDM in Chicago,
in October 2011. The final versions of the papers were
then submitted simultaneously to Value in Health and
Medical Decision Making. This article summarizes the
value of discrete event simulation (DES) to inform health
care decisions and presents guidance on best practices
in the application of DES. Other articles in this series1–

6 describe best practices for conceptualizing models,
building and applying other types of models, addressing
uncertainty, and ensuring transparency and validity.
Examples are cited throughout, without implying
endorsement or preeminence of the articles referenced.

DES is a flexible modeling method characterized
by the ability to represent complex behavior within
and interactions between individuals, populations,
and their environments.7 In health care, this means
that events occurring to an individual and how that
individual interacts with others, the health care system,
and the general environment can be modeled simulta-
neously. The term discrete refers to the fact that DES
moves forward in time at discrete intervals (i.e., the
model jumps from the time of one event to the time of
the next) and that the events are discrete (mutually
exclusive). These factors give DES the flexibility and
efficiency to be used over a very wide range of problems.

DES was developed in the 1960s in industrial engi-
neering and operations research to help analyze and
improve industrial and business processes. Applica-
tions in health care have increased over the past 40
years8 and include biologic models,9,10 process redesign
and optimization,11–13 geographic allocation of resour-
ces,14,15 trial design,16,17 and policy evaluation.18–20

All DES represent an environment or a system,
which may be a specific location (e.g., a hospital)
or, more generally, a particular disease in a defined
population (e.g., persons with cardiovascular disease
in Australia). A strategy is an alternative policy or
configuration of the system, where the purpose of
the model is to compare strategies to identify the
one that best meets the decision maker’s criteria.

The core concepts of DES are entities, attributes,
events, resources, queues, and time.

Entities are objects that have attributes, experience
events, consume resources, and enter queues, over

time. In health care models, they are typically patients,
but they can be other people (e.g., caregivers) or items
such as organs or even signals (e.g., an e-mail) that can
interact with other entities or the system itself. Entities
can be created at the start or whenever it is appropriate
to the problem (e.g., when a new patient arrives at
a clinic or develops a disease). The time of relevance
to an entity may be a subset of the simulation time
(i.e., individual entities can enter and leave a model
between model start and end times).

Attributes are features specific to each entity that
allow it to carry information (e.g., age, sex, race,
health status, past events, quality of life, accumulated
costs). These values may be used to determine how an
entity responds to a given set of circumstances (e.g.,
timing and type of past events may influence the like-
lihood and timing of subsequent events). Attribute
values may be modified at any time during the simu-
lation, aggregated with those of other entities, or ana-
lyzed further outside the simulation (e.g., to estimate
mean cost and effect).

Events are broadly defined as things that can hap-
pen to an entity or the environment. An event can be
the occurrence of clinical conditions such as onset of
a condition (e.g., stroke), an adverse drug reaction, or
progression of a disease to a new stage; resource use
(e.g., admission to hospital); clinical decision (e.g.,
change in dose); or even experiences outside of health
care (e.g., failure to show up at work). Events can
occur, and recur, in any logical sequence.

A resource is an object that provides a service to an
entity. This may require time. DES represents resource
availability at relevant points in time (e.g., a clinic with
3 doctors is more likely to see a patient sooner than a 1-
doctor clinic). In representing resources, DES can cap-
ture spatial factors, such as the number of available con-
sulting rooms or distance between a ward and an
operating theater (informing times to and from the
theater).

If a resource is ‘‘occupied’’ when an entity needs it,
then that entity must wait, forming a queue. Queues
can have a maximum capacity, and alternative
approaches to calling entities from queues can be
defined: first-in-first-out (e.g., a typical waiting room
queue); last-in-first-out, where entities get picked from
the back of the queue; or based on some priority (like
emergency room triage).

A fundamental component of DES is time itself. An
explicit simulation clock (initiated at the start of the
model run) keeps track of time. Referencing this clock
makes it possible to track of interim periods (e.g., hos-
pital length of stay, time spent with symptoms, sur-
vival). The discrete handling of time means that the
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model can efficiently advance to the next event time,
without wasting effort in unnecessary interim com-
putations (e.g., a patient might have nothing happen-
ing for 2 years and then a myocardial infarction
occurs, with ambulance, treatment, stroke, and other
events occurring within minutes).

Other important concepts include interaction,
which occurs whenever an entity competes with
another over a resource, and emergent behavior,
which is behavior that is characteristic of the system
as a whole, such as spontaneous overcrowding in
emergency rooms because elective surgeries are
scheduled only once a week.

DES can be used to address a wide range of ques-
tions.21,22 It allows for very flexible time management,
and events can occur anytime, without restricting
occurrences to fixed time intervals.23 DES is a particu-
larly good choice when patients are subject to multiple
or competing risks because its treatment of time allows
for the optimal use of data describing the time to each
event. Although this can be approximated in state
transition models by using very short cycle lengths,
this can lead to increased running times because the
model has to check whether each event has occurred
during every model cycle. DES is also a good choice
when many patient characteristics must be taken
into account, particularly if they change over time;
when what happens next depends on what happened
before; when the effects of decisions made along the
way (rather than only at the start) are of interest; and
whenever health care or disease processes involve
a series of associated events (e.g., myocardial infarct
to resuscitation to percutaneous coronary intervention
[PCI] stenting to stroke).

There are two categories of DES applications
in health care: nonconstrained-resource24–26 and
constrained-resource models.27,28 Nonconstrained-
resource models—although unusual in other fields
that use DES—are required in our field to accord
with the common structural assumption made in
most health economic models today: that all required
resources are available as needed, with no capacity
limitations. In contrast, constrained-resource models
incorporate these capacity limitations explicitly.
They represent indirect interactions between indi-
viduals, generally involving multiple entities (e.g.,
patients) competing for access to resources (e.g., for
clinic appointments or donor organs) and waiting in
queues. Patients’ demand for particular resources
and their priority status in a queue may be influenced
by their attributes. For such scenarios—the very prob-
lems for which it was developed—DES is clearly an
appropriate choice.

DES can also be used to model more complex, direct
interactions between individuals (e.g., transmission of
disease). This ‘‘agent-based modeling’’29,30—an exten-
sion of DES—provides more detailed representation of
interactions between agents. An agent is an entity with
embedded logic that determines how it responds to
circumstances (e.g., will intimate interaction be
accepted).

The remainder of this article covers design and
structuring, estimation and specification of inputs,
implementation, running and analyzing, and repre-
sentation and reporting of DES models.

STRUCTURE AND DESIGN

DES design starts by defining the system to be rep-
resented and relevant events that can occur. Events
need not be restricted to those that change the entity’s
health status; they can represent events that alter the
likelihood of other outcomes (e.g., reperfusion follow-
ing myocardial infarction). In many cases, disease
course can be represented as an event (e.g., occurrence
of relapse or a bone fracture). Disease course can also
involve a continuous variable (e.g., HbA1c level in dia-
betes). Such measures can be represented using attrib-
utes, which can be updated during the simulation.31

Time from an event (e.g., time since diagnosis) can
be specified as an attribute to facilitate the estimation
of costs and quality-of-life effects and may also influ-
ence the likelihood of subsequent events. The choice
of other attributes to be represented is informed by
the events included in the model (e.g., patient charac-
teristics that influence the likelihood, severity, prior-
ity ordering, and outcomes of the specified events).

Common outcomes for constrained-resource mod-
els include flow times, wait times, throughput, and
resource utilization (costs). Changes in these varia-
bles may also affect health outcomes (morbidity
and/or mortality) via changes in access to care and
time to treatment. Given that the objective of health
care systems is to improve outcomes, such effects
are of interest to decision makers.

Best practices

IV-1 DES models should be used when the problem
under study involves constrained or limited resources.
DES is also an attractive option in nonconstrained
models when there are interactions between individu-
als, populations, and/or their environment; when
time-to-event is best described stochastically rather
than with fixed time intervals and time dependencies
are important; when individual pathways through the
model are influenced by multiple characteristics of the
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entity; and when recording individual entity experi-
ence is desirable.

IV-2 Constrained-resource models should consider
the effect of alternative strategies on health-related
outcomes and not focus solely on measures of
resource utilization and system capacity. The omis-
sion of health-related outcomes from a model should
be justified.

IV-3 The need to model constrained resources should
be carefully considered.

The effects of constrained resources should be
modeled if

� levels of access are altered (e.g., increased referral
rates result in longer waiting times for a particular pro-
cedure), and

� time to access has significant effects on costs or out-
comes (e.g., surgery).

Events for which the representation of con-
strained resources is relevant should be identified
(i.e., those to which entities may not have immediate
access and for which they queue). Most commonly,
constrained-resource events are represented in models
that evaluate alternative service pathways, although
constrained-resource events have been used to evalu-
ate alternative health technologies as well.27,28

Best practices

IV-4 If downstream decisions can have significant
effects on the differences in costs or outcomes, the
model should be structured to facilitate analyses of
alternative downstream decisions.

The conceptualization of the system to be modeled
should identify decision points (e.g., at which treat-
ment decisions are made). At each decision point,
the analyst should consider whether the probabilities
of alternative decisions should be represented (i.e.,
the likelihoods of alternative downstream decisions
are parameters to be estimated) or whether the analy-
sis seeks to evaluate combinations of decisions. The
latter is clearly relevant to evaluating the organiza-
tion of existing services. It is also potentially relevant
to the evaluation of new technologies (e.g., the cost-
effectiveness of screening may be greatly affected by
the diagnostic and treatment decisions).

PARAMETER ESTIMATION

DES can incorporate various parameter types, repre-
senting disease course, clinical and administrative deci-
sion algorithms, resource costs and constraints, health

condition costs, and quality-of-life weights. Disease
course parameters are commonly represented as time-
to-event (i.e., the parameter describes the likelihood of
subsequent event(s) occurring at various, often continu-
ous, time points). Some disease parameters may be
unobservable (e.g., preclinical disease stages in screen-
ing models requiring calibration for estimation32).

Algorithms describe decisions regarding treat-
ment, prioritizing of patients, and implementation
of clinical orders. Costs and quality-of-life weights
are attached to events and time spent with different
health conditions to estimate long-term costs and
health outcomes (e.g., quality-adjusted life years
[QALYs]).

Tradeoff between Structure and Parameter
Estimation

As DES facilitates complex structures, it often
requires extensive data. There are several options
when lacking data for some parameters. The most radi-
cal is to desist from building the model, which may be
appropriate when missing information is extensive.
Alternatively, the original model structure may be
maintained and missing parameter values derived via
calibration. Calibration is useful even when empirical
estimates are available for all inputs, especially for com-
plex models with many uncertain parameters. There is
not a unique set of inputs, however, that reproduces
a set of calibration targets, and the uncertainty around
calibrated parameter values should be represented in
sensitivity analysis.33 Another option is to eliminate
the sections of the model that require the parameters
with missing information. This restructuring requires
assessment of whether the revised model can provide
sufficient insight into the problem. Ideally, the impor-
tance of the parameters to be excluded would be
assessed by running the original model over a credible
range of values for those parameters.

The Use of Expert Elicited Data as Applied to DES

In the absence of data, inputs may be elicited from
experts working in the system modeled. Expert elicita-
tion is subject to a range of biases, both intentional and
unintentional. The strength (or value) of elicited inputs
will vary according to the complexity (or granularity) of
the parameters and the experience of the experts. To
increase confidence in values elicited from experts, it
is important to validate their responses by asking addi-
tional questions from which elicited values can be com-
pared with empirical data. For a DES, clinicians might
be asked to estimate the missing frequency of referrals
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to another professional but also the empirically esti-
mated frequency of surgical referrals. Their accuracy
in estimating the latter provides some sense of their
accuracy with respect to the unknown parameter. Eli-
cited parameter values can also be cross-checked by
comparing expert values from independent sources. It
is also important to represent the certainty with which
different parameters can be estimated by experts, for
which established methods can be applied that also
provide transparency.34

Best practices

IV-5 If parameter values are elicited from experts,
uncertainty around the elicited values should be rep-
resented, and the elicited values should be validated.

IV-6 If confidence in the elicited values is low, result-
ing analysis should be viewed only as a starting point
for what-if analyses and for estimating the value of
collecting additional data.

IV-7 If the decision is made to modify the original
structure due to data constraints, the new structure
must be carefully analyzed to understand the effects
of modifications so as to inform decision makers of
the additional uncertainty introduced. Explicit con-
siderations of the size and likely direction of the
effects of the modification should be presented.

Clinical Guidelines Are Not Always Implemented

DES often represents clinical and administrative deci-
sion-making algorithms (e.g., processes for assigning
patients to clinics). Although clinical guidelines may
specify resources that ought to be available and the deci-
sions that clinicians ought to make, there is considerable
evidence of variation in the uptake of guidelines.35

Indeed, one of the purposes of the model may be to dem-
onstrate the potential costs and benefits of adhering to
published guidelines. The algorithms could be derived
from analyses of patient records, although it is often
more feasible to ask clinicians and administrators what
decisions they make, given specified circumstances.

Best practices

IV-8 When modeling clinical practice, it should not be
assumed that relevant guidelines are actually applied.

IV-9 Ideally, clinical and administrative decision
algorithms should be based on analyses of observed
decisions. If that is infeasible, algorithms should be
developed with relevant personnel and validated
using routinely collected data (e.g., extracting data
from patient records).

Assigning Times-to-Next-Event

When analyzing patient-level data to estimate the
time-to-next-event for 2 or more possible next events,
competing risk models are not required unless the
competing risks (i.e., events that preclude or alter
the likelihood of another event occurring) are not rep-
resented in the DES, since a new time-to-event can be
sampled for the events that are not the first to occur.
Two approaches to analyzing time-to-event data
include estimating the following36:

a) separate times to each potential next event, with
the entity moving to the event with the earliest
sampled time, or

b) a single time to the next event, with a separate
sampling process to determine the type of event
that occurs (e.g., using multinomial regression
analyses to define the relevant probabilities).
The type probabilities may vary as a function of
the sampled time to the next event.

Approach a) is more straightforward to parameterize:
Survival data for each event can be used directly, or para-
metric curves can be estimated for each event, so it is eas-
ier to achieve a good fit to observed data. Approach b)
uses a 2-stage process to estimate time-to-event parame-
ters for each event, and so it is more difficult to ensure
a good fit between observed and estimated event rates.
The latter approach, however, provides a more accurate
description of the uncertainty around the mean time-to-
event parameter values because the times to the different
events are jointly estimated.

Best practices

IV-10 Where feasible, when estimating times to com-
peting events, methods of analysis that estimate the
timing of competing events jointly are preferred to
approaches that estimate separate time to event
curves for each event.

Representing Continuous Disease Parameters

In some cases, the likelihood of discrete events is
a function of the value of a continuous measure (e.g.,
diabetic complications are a function of HbA1c, or clin-
ical presentation is a function of tumor size), as
described in the model structure and design section.
Time checks can be used to sample the likelihood of
discrete events, conditional on the status of the contin-
uous measure of disease progression (e.g., monthly
time checks to update HbA1c levels and define related
probabilities of complications).
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Alternatively, it may be possible to define joint
probability distributions that represent the combined
likelihoods of disease progression and related events.
In the diabetes example, we might sample the HbA1c

level at which the first complication occurs and then
sample the time at which a patient reaches that level.
This latter approach maintains a key asset of DES—
namely, that time moves forward when the next event
occurs, not in fixed time cycles.

Best practices

IV-11 Where possible, progression of continuous dis-
ease parameters and the likelihood of related events
should be defined jointly to maintain the discrete
event nature of DES (e.g., sample the continuous mea-
sure at which an event occurs and then sample the
time at which that level is reached).

MODEL IMPLEMENTATION

Implementation involves transferring a defined
structure into a computer program, which can be popu-
lated and analyzed. DES generally represent complex
systems, and their implementation requires some
form of programming. It is important to ensure that
the implementation promotes transparency and effi-
cient analyses. Implementations typically consist of
the following: Read Data, Create Entities (e.g., patients),
Main Section, Remove Entities, and Present Results.
The Main Section contains the logic for the events,
resource utilization and queuing, risk updating, and
anything else that happens during the simulation.

Consider Using Submodels

The use of submodels facilitates transparency by
grouping related model logic (code), which can be
reviewed sequentially. Examples include depart-
ments within a hospital (where the full system is
the whole hospital) or the course of specific events
such as myocardial infarction and stroke (where the
full system is the course of cardiovascular disease).

The same model may be used to evaluate similar
systems in different jurisdictions (e.g., different hos-
pitals or countries), and data available to populate
the different versions may vary (e.g., microcosting
data may be available in one country, but only higher
level data in another). Separate submodels can be
defined that facilitate the use of alternative forms of
inputs.

Submodels also mean less code, making the model
easier to debug (each submodel can be tested

separately, and identical code does not need to be ver-
ified in multiple instances). They also ensure that
changes to the model will be consistently imple-
mented for all strategies and facilitate updating as
new information becomes available.

Best practices

IV-12 To simplify debugging and updating, submo-
dels should be used to structure the model. When
comparing strategies within the same system, submo-
dels common to all strategies should be defined once
and called from each strategy.

Defining Multiple Model Structures

Uncertainty around the model structure warrants
implementation and analysis of alternative structures
(i.e., structural sensitivity analysis). Rather than imple-
menting separate models for each structure, alternative
structures can be implemented within a single DES,
reducing programming errors, as common code can be
referenced by all structures. Use of a single model
also reduces nuisance variance across model structures
(e.g., through use of common random numbers for
shared submodels).

Best practices

IV-13 For structural sensitivity analyses, alternative
structures should be implemented within a single
DES.

Avoiding Blocking Events

A common implementation error is to inadver-
tently block the possibility of events occurring (e.g.,
patients at risk of stroke may have this ‘‘suspended’’
while in hospital following an admission for another
event).

Best practices

IV-14 Analysts should ensure that ongoing risks
remain active over the relevant time horizon.

Only Collect Outputs That Are Required

The manner in which a model is implemented
determines the range and level of outputs that can
be used in the validation and final analyses. If in
modeling a clinic’s operation, the interest is in the
distribution of waiting times across individuals, it
is necessary to implement the model so that each
entity holds in its attributes a record of its waiting
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times. Individual-level recording is not required if
the interest is only in the mean, and complexity can
be reduced by using global variables to collect values.

Best practices

IV-15 Implementation should account only for the
outputs required for validation and final analyses. If
individual-level data are required, outputs should
be stored as attributes; otherwise, aggregated values
should be collected.

General Programming or Dedicated DES Software

Most DES models are implemented using either
a general programming language (e.g., C11, R, or For-
tran) or software developed specifically for DES. A
general programming language provides increased
flexibility, faster execution, and less dependence on
proprietary software, but it requires writing code for
basic functions (e.g., to administer the event list,
run queues, manage resources, sample from probabil-
ity distributions), has more complex and extensive
debugging, and lacks transparency. For many general
programming languages, there are code libraries to
assist with many basic functions, which can signifi-
cantly improve coding efficiency and debugging.

Dedicated DES software is designed to overcome
the limitations of general programming languages.
They typically offer an attractive, easy-to-use inter-
face that provides most of the required functions
(i.e., entry points, queues, events, etc.) as modules
readily incorporated in the model, with the code
required to implement them integrated within.
Time, event lists, and other basic tasks are taken
care of automatically. Common graphical user inter-
face conventions are used to ease use and transpar-
ency. Many of the software incorporate animation,
which renders the model more visual and under-
standable. These features also facilitate debugging
and greatly increase programming efficiency—the
tradeoff is somewhat reduced flexibility and calcula-
tion speed.

Spreadsheets are sometimes preferred because
they are perceived to be widely understood and it is
felt that this increases transparency. As a spread-
sheet’s core idea is to calculate everything simulta-
neously, implementing the sequential nature DES
and recording the movement of time is awkward.
Moreover, spreadsheets rapidly grow in complexity
and diminish in transparency. They offer few ready-
built tools for creating, running, or displaying
a DES, and programming in an accompanying

language (such as VBA) defeats the purpose of using
the widely understood spreadsheet format.

Best practices

IV-16 The choice between using general program-
ming or dedicated DES software should be informed
by the relative importance of flexibility and execu-
tion speed (the former) v. modeling efficiency, auto-
mated structure, and transparency (the latter).

ANALYSIS

A single model run estimates the outputs associated
with a single set of input parameters. Outputs may
include mean values or distributions of values. The
distribution of values within a model run may be of
interest when evaluating systems, such as a clinic, to
estimate the proportion who waits more than a certain
time before being seen. Mean values are commonly of
interest for health technology assessments (HTAs),
where interest is in mean costs and outcomes.

The stability of the means or output distributions
can be improved by either running more entities or
increasing the time horizon. In systems where the
number of entities is sampled (e.g., patients present-
ing at a clinic) and the time horizon is fixed (e.g.,
daily operation of clinic), multiple replications using
the same inputs can be run. Undertaking more repli-
cations will reduce variability. One model run can
consist of multiple replications.

Best practices

IV-17 Analysts should test the stability of outputs
generated by similarly specified model runs using
alternative random number seeds to perform several
independent runs and identify the number of enti-
ties, replication duration, or number of replications
(using the same inputs) required to ensure that the
distribution of outputs is stable (e.g., less than a 5%
or 1% difference between output values across model
runs).

Optimizing Analyses

Multiple model runs, using alternative inputs, are
undertaken to represent uncertainty around outputs.
In addition, many runs will be undertaken during cal-
ibration or validation. These aspects of analyzing
DES can lead to lengthy running times. A general
option is to seek extended computing resources that
facilitate parallel runs across multiple processors.
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Lacking sufficient computing resources, it is impor-
tant to ensure the analytic efficiency of DES by using

� variance reduction techniques,
� planned or algorithmic search strategies to identify

input values and a restricted set of strategies,
� the optimal balance between accuracy and number of

runs,
� meta-models to analyze the behavior of complex

models.

Model runs can be shortened by minimizing
unwanted differences between alternative strategies
being evaluated.7 A good starting point is to use iden-
tical populations for each alternative. Despite starting
with identical populations, nuisance variance is intro-
duced by entities experiencing different pathways due
to the divergence of selected random numbers. The
application of separate streams of common random
numbers to different events (e.g., one stream for sam-
pling an event occurrence, another for length of stay)
helps reduce the possibility that different random
numbers are selected for the same event by the same
patient under different strategies. Using common ran-
dom numbers is also useful in debugging: The analyst
can check that the time to an event not influenced by
the strategy is identical for the same simulated patient
across strategies. Other more sophisticated techni-
ques, such as signaling between populations to
resynchronize their experience, can be implemented,
thus further reducing required computing time.

Best practices

IV-18 Use of variance reduction techniques is recom-
mended. Balance should be sought between using
simple techniques, such as extending model runs or
matching baseline characteristics, and more sophisti-
cated methods available in dedicated DES software or
requiring coding in more generic software. The bal-
ance trades off coding time v. improvements in run-
times and results’ accuracy.

Factorial design is recommended when there are
multiple dimensions to each factor and one can rea-
sonably conceive of ‘‘high’’ and ‘‘low’’ (or ‘‘on’’ and
‘‘off’’) values for each factor defining a strategy. If
a DES is evaluating a continuum of options (e.g., the
level of cholesterol above which an intervention
might be used) or there are multiple dimensions to
alternative options (e.g., several staffing options for
many staff categories), then it can become infeasible
to test every possible option.37 The aim is to under-
stand how the output is related to the multiple fac-
tors. Instead of using one-way sensitivity analysis

on the k factors, the factorial approach runs the model
with each factor at either its ‘‘high’’ or ‘‘low’’ level
(i.e., a total of 2k model runs). This provides estimates
of each factor’s main effect and of interactions
between factors. When k is large, this can become pro-
hibitive (e.g., 215 = 32,768 runs), suggesting use of
‘‘fractional factorial design,’’ where only a subset of
the 2k design points are used.38

Optimum-seeking approaches are useful when the
decision maker is interested in identifying the optimal
strategy across many options. This uses iterative algo-
rithms to assess outputs for the current configuration
of options relative to a previously analyzed set, which
in turn informs the next set of options to evaluate.32

This iterative process is continued until a specified
‘‘stopping rule’’ is achieved (e.g., a specific number
of iterations or some ‘‘tolerance level’’ for improve-
ment in output response). Many methods can be
used to decide on the next configuration to evaluate,
including moving a certain number of steps in the
direction where performance appears to be improving
and using random jumps to avoid local optima. Such
approaches are standard in the field of optimization
and often save substantial analyst and computer time.

Handling uncertainty around inputs is an addi-
tional process, which can be done by a series of
runs using alternative inputs (either deterministi-
cally or probabilistically). Running times for probabi-
listic sensitivity analysis (PSA) can be large due to the
combined requirement to reduce the variance around
each run’s outputs and to undertake multiple runs.
Rather than abandon PSA altogether, formulas based
on analysis of variance (ANOVA) can be used to esti-
mate the combined run size and number of model
runs required to optimize the precision of the out-
puts, given an available (or desired) analytic time.39

Meta-modeling involves running a DES with differ-
ent inputs and then using regression methods to obtain
an equation estimating the outputs as a function of the
inputs.40 The selection of configurations to run can be
informed by factorial design, and the meta-model can,
in turn, be used to inform and speed up factorial
design and optimum-seeking approaches. Gaussian
process emulators have been used in health economic
simulations and have the advantage that output uncer-
tainty can be represented for configurations not within
the evaluated set, which enables quicker computation
of PSA and expected value of information estimates.

Best practices

IV-19 If the number of strategies to compare is large or
there are many structural assumptions to test, then
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factorial design and optimum-seeking approaches
should be used.

IV-20 When runtimes for probabilistic sensitivity anal-
ysis are constrained, the optimal combination of run
size (per input parameter set) and numbers of alterna-
tive inputs tested should be estimated empirically to
optimize the precision of the outputs of interest.

IV-21 When computing time precludes adequate rep-
resentation of all potential strategies and parameter
uncertainty, meta-modeling should be used.

Warm-up or Preload

In some decision problems, the analysis does not
start with an empty system (e.g., when simulating
a hospital clinic that has been running for a number
of years, the relevant starting point will be the current
operation of the clinic, incorporating the patients cur-
rently booked or waiting). One option is to preload
entities with existing attributes and history of events
and start collecting results for analysis immediately.
Preloading is appropriate if it is based on an empirical
data set describing the current status of entities across
the system. The alternative is to run the model for
some time prior to starting the analysis—a ‘‘warm-
up’’ period. From empty at the beginning of the
warm-up period, the system is built up to the current
state on the basis of inputs that will continue to be
applied within the main analysis.

An important advantage of using a warm-up period
is that it helps validate the model by testing whether it
is able to create realistic starting conditions. The pro-
cess of matching current conditions can be difficult,
however, if inputs have changed over time (e.g., as
a result of shifting referral patterns or the introduction
of new technologies). In such cases, the application of
constant values will misrepresent the values to be
applied within the main analysis.

Outputs generated during the warm-up phase may
vary from those in the main analysis, and these pro-
vide another opportunity for model validation.

Best practices

IV-22 If the system to be modeled is not empty at the
start of the time horizon to be evaluated, a warm-up
period should be used to build the system up to the
starting point, provided:

� it can be reasonably assumed that the key parameters
have remained constant over time, or

� the history of the key parameters can be incorporated
into the warm-up period.

Otherwise, creating starting entities with ready-
made histories (‘‘preloading’’) is acceptable.

REPRESENTING AND REPORTING DES

Animation

Dedicated DES software often facilitates animated
representation of models, where the key events are
displayed with the passage of entities between
them. Humans are better at recognizing pattern and
problematic movement visually than via analysis of
equations or data. Animation plays to this strength,
enabling the identification of illogical movements
in the model. It also provides for face validation,
where content experts can review the structure of
the model and the movement of entities.

Best practices

IV-23 Animated representation that displays the
experience of events by individuals is recommended
as a means of engaging with users and helping to
debug through identification of illogical movements.

Diagrams

Reports of DES should include diagrams that help the
reader understand their structure and function. Flow
diagrams or state charts provide general frameworks
for representing key elements, including possible path-
ways between events (logic and causal relationships)
and presence of queues and decision points. More
detailed representations of the structure should enable
the reader to replicate the model (if they so wish). Mod-
ule or event documentation figures can be used to
describe the actions undertaken before, during, and after
each event. Lists of variables and attributes used and
when they are updated provide the user with a detailed
understanding of the underlying process.

Best practices

IV-24 Both general and detailed representations of
a DES structure and logic should be reported to cover
the needs of different users. Detailed event documen-
tation figures are also of benefit to the modeler when
returning to the model after a period of absence.

CONCLUSION

DES provides a flexible framework that can be used
to model a wide variety of health care problems. Since
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it facilitates the representation of complex systems,
a range of issues along the model development, param-
eter estimation, implementation, analysis, and report-
ing spectrum should be addressed to maximize the
value of the final model and its associated outputs.
This article has reviewed the main components of the
modeling process and provided best practice recom-
mendations that should, if followed, increase the valid-
ity, transparency, and value of DES applied in a health
care context.
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