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Abstract: In this paper, angular displacement and angular velocity sensors based on 

coplanar waveguide (CPW) transmission lines and S-shaped split ring resonators (S-SRRs) 

are presented. The sensor consists of two parts, namely a CPW and an S-SRR, both lying on 

parallel planes. By this means, line-to-resonator magnetic coupling arises, the coupling level 

being dependent on the line-to-resonator relative angular orientation. The line-to-resonator 

coupling level is the key parameter responsible for modulating the amplitude of the 

frequency response seen between the CPW ports in the vicinity of the S-SRR fundamental 

resonance frequency. Specifically, an amplitude notch that can be visualized in the 

transmission coefficient is changed by the coupling strength, and it is characterized as the 

sensing variable. Thus, the relative angular orientation between the two parts is measured, 

when the S-SRR is attached to a rotating object. It follows that the rotation angle and speed 

can be inferred either by measuring the frequency response of the S-SRR-loaded line, or 

the response amplitude at a fixed frequency in the vicinity of resonance. It is in addition 

shown that the angular velocity can be accurately determined from the time-domain 

response of a carrier time-harmonic signal tuned at the S-SRR resonance frequency. The 

main advantage of the proposed device is its small size directly related to the small electrical 
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size of the S-SRR, which allows for the design of compact angular displacement and velocity 

sensors at low frequencies. Despite the small size of the fabricated proof-of-concept 

prototype (electrically small structures do not usually reject signals efficiently), it exhibits 

good linearity (on a logarithmic scale), sensitivity and dynamic range. 

Keywords: split ring resonators; coplanar waveguide; rotation sensors; angular velocity 

sensors; metamaterial transmission lines 

 

1. Introduction 

Transmission lines loaded with electrically small resonators, such as split ring resonators (SRRs) or 

complementary split ring resonators (CSRRs), have been applied to the implementation of 

metamaterial-based or metamaterial-inspired circuits where dispersion and impedance engineering 

play a key role in their designs [1]. Such lines are designated as metamaterial transmission lines.  

In other applications, the resonance phenomenon is the key aspect. Transmission lines loaded with 

electrically small resonators formerly used for the implementation of metamaterials, with functionality 

based on particle resonance (rather than on impedance/dispersion engineering), are usually referred to 

as transmission lines with metamaterial loading [2]. These structures have been applied to the design 

of planar bandstop and notch filters [3,4], multiband printed dipole and monopole antennas [5–7], 

common-mode suppressed differential lines [8], radiofrequency barcodes [9], and microwave  

sensors [10–18], among others.  

The focus in this work is placed on microwave sensors, where the sensing principle is typically 

based on the variation of the resonance frequency of the metamaterial resonator loading the line with 

the variable to be sensed [10–17]. The performance (e.g., sensitivity, linearity and dynamic range) of 

these sensors is in general good, but it may be degraded by environmental factors (such as temperature 

and humidity). In other words, these sensors may suffer from non-negligible cross-sensitivities [19], 

and calibration is likely to become required, unless the measurements are performed on a differential 

scheme [20]. Recently, a novel approach for the implementation of microwave sensors, based on  

the disruption of symmetry in transmission lines loaded with electrically small resonators,  

was proposed [21]. In this strategy, which is considered here and which may be referred to as 

coupling-modulated resonance, the sensors are designed to be symmetric in the non-actuated 

(unperturbed) state. When this symmetric configuration is disrupted, such symmetry disruption can be 

detected from the response of the line to a feeding signal. Commonly, the sensors are designed so that 

the host transmission line is transparent in the non-actuated (symmetric) state, whereas a notch in the 

transmission coefficient arises when symmetry is broken [21–29]. This functionality is achieved by 

using the appropriate combination of resonator and line, preventing line-to-resonator coupling if the 

structure is symmetric. Alternatively, the sensors can be designed with frequency-splitting resonance 

in order to exhibit a single transmission zero in the unperturbed (symmetric) state, and two 

transmission zeros when symmetry is perturbed [30,31]. In this later case, the level of asymmetry 

determines the frequency distance between such transmission zeros. Since symmetry is not affected by 

environmental factors, sensors based on symmetry properties are more robust against changes in 
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ambient conditions, and may be of special interest in applications where the sensors are subjected to 

harsh environmental conditions (e.g., space applications). 

Another important feature in microwave sensors is their size, as usual in microwave circuits and 

components. To implement low-cost readout circuits, microwave sensors are sometimes forced to 

operate at low frequencies. Therefore, transmission line based sensors might not satisfy the size 

requirements of many applications, unless the sensing elements are electrically very small. In this 

regard, the S-shaped split ring resonator (S-SRR) [32–34], the considered sensing element in this work, 

is a very convenient resonant element, since it is by far electrically smaller than other resonant 

elements previously utilized to build up angular displacement and velocity sensors, such as the split 

ring resonator (SRR) [35] or the electric-LC (ELC) resonator [36]. All of these resonators, whose 

typical topology is depicted in Figure 1, consist of an arrangement of two loops. Another common 

characteristic is that they have been proposed in the context of metamaterials, where electrically small 

elements are mandatory to satisfy homogenization conditions. In contrast, it is important to stress that 

the resonators considered in Figure 1 differ in regards of their symmetry properties, as the SRR and the 

ELC are symmetric and bisymmetric, respectively, whereas the S-SRR does not exhibit a symmetry plane. 

It will be shown that by using S-SRR-loaded CPW transmission lines, with the S-SRR etched on a 

movable substrate, it is possible to implement low-frequency angular sensors obtaining simultaneously 

compact size and competitive performance. This builds upon a preliminary design presented in [37]. 

Further decrease in the electrical size is possible by means of a broadside-coupled S-SRR  

(BC-S-SRR), namely a pair of tightly coupled S-SRR arranged face-to-face and rotated 180° to one 

another [38]. However, this topology is disregarded here because sensor performance is expected to be 

degraded to a considerable extent (an extremely low attenuation is expected due to the excessive 

increase in the resonator capacitance produced by the broadside electric coupling).  

 
(a) (b) (c) 

Figure 1. Typical topology of an SRR (a), an ELC resonator (b), and an S-SRR (c). The 

fundamental resonance is characterized by the orientation of external polarization fields, 

induced boundary conditions (electric/magnetic walls) at the symmetry planes, and a 

sketch of the currents.  

2. The Proposed Topology and Principle of Operation  

It is well known that the fundamental resonance of SRRs can be magnetically as well as electrically 

excited. On the one hand, the magnetic field is needed to be polarized axially to the rings. On the other 

hand, the electric field requires to be oriented across the symmetry plane of the resonator. Considering 
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the ELC resonator, at the fundamental resonance, the currents in the two loops of the particle flow in 

opposite directions (one is clockwise while the other counterclockwise). Therefore, the ELC cannot be 

excited by a uniform time-varying magnetic field orthogonal to the plane of the particle. By contrast, it 

can be driven by a uniform electric field polarized in the plane of the particle, in the direction orthogonal 

to the gap (this particle was indeed proposed in [36] for the implementation of resonant-type negative 

permittivity metamaterials). However, the ELC resonator can also be excited at the fundamental 

resonance by counter magnetic fields applied to the pair of loops, as Figure 1b illustrates. Similarly, 

the S-SRR can be excited by counter magnetic fields, since the current flows in opposite directions 

(clockwise and counterclockwise) at each loop at the fundamental resonance. Since the current flows 

along the whole resonator length, it follows that the S-SRR is electrically much smaller than the ELC, 

and even smaller than the SRR, as will be demonstrated shortly.  

 
(a) (b) 

 
(c) 

Figure 2. CPW loaded with an S-SRR for (a) 90° and (b) 0° angular orientations,  

and (c) lossless transmission and reflection coefficients. The angular orientation between 

the CPW and the S-SRR is determined by the angle 0° ≤ θ ≤ 90°, where the S-SRR center 

is taken as the rotation axis crossing the CPW axis. CPW dimensions are: W = 2 mm and  

G = 0.78 mm (50-Ω line). S-SRR dimensions, as denoted in Figure 1, are: c = s = 0.2 mm 

and l1 = l2 = 10 mm. The substrate is Rogers RO3010 with thickness h = 1.27 mm and 

dielectric constant εr = 11.2.  

Let us now consider a CPW transmission line loaded with an S-SRR for the two orthogonal and 

canonical S-SRR orientations, as represented in Figure 2a,b. For the 90° orientation (Figure 2a), the 

magnetic field lines generated by the line have opposite directions in the individual loops. 

Accordingly, the particle is excited, perturbing the transmission coefficient magnitude in the form of a 
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transmission notch (or zero), as shown in Figure 2c. Conversely, for the 0° orientation (Figure 2b), 

even though the cancellation of magnetic field components inside the S-SRR loops is not total, there is 

in general a negligible net magnetic flux through the loops of the particle, and excitation at the 

fundamental resonance is prevented provided the particle is small in terms of wavelength. Therefore, 

the resonator is not coupled to the line for θ = 0°, whereas maximum coupling arises when θ = 90°. 

Between these two extreme situations, the frequency response undergoes a perturbation that depends 

on the coupling level, which in turn is determined by the angular orientation of the resonator. 

Regardless of the S-SRR orientation, the coupling mechanism between the particle and the CPW is 

magnetic (obviously with the exception of 0° where there is no effective coupling). 

 
(a) (b) (c) (d) 

(e) 

Figure 3. Miniaturization comparison between S-SRRs, ELCs, and SRRs. A CPW is 

loaded with (a) an S-SRR; (b) an ELC; (c) a pair of SRRs keeping the same total area; and 

(d) a pair of SRRs keeping the same resonator area; (e) Magnitude of the lossless 

transmission coefficient. In (a) and (b) the electric field distributions at the fundamental 

resonance are plotted. 

In order to gain insight into the degree of miniaturization, Figure 3 shows the topology and 

transmission coefficient of CPWs loaded with the aforementioned resonators. Clearly, for a given 

resonator area, the lowest resonance frequency is provided by the S-SRR, yet at the expense of the 
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weakest resonance. The benefits of the smaller electrical size are especially noticeable when a pair of 

SRRs is replaced with a single S-SRR occupying the same total area [39]. It is also remarkable that the 

resonance frequency of the S-SRR is even smaller than that of a pair of SRRs keeping the same 

individual resonator area, i.e., with a doubled total size. In the light of these results, the S-SRR is found 

to be a very attractive resonator in miniaturized CPW-based designs [39]. 

In the presence of losses (as in all practical situations), the attenuation level in the vicinity of the 

fundamental S-SRR resonance is determined by the coupling strength, that in turn depends on the 

relative orientation between the line and the S-SRR. Therefore, the proposed structure can be used for 

sensing the rotation angle between the CPW transmission line and the S-SRR. Furthermore, by using 

time response from the angular displacement sensor, the angular velocity can be readily inferred, as 

will be shown later.  

As reported in [26,27], the principle for rotation sensing in ELC-loaded CPWs is based on 

symmetry properties. By aligning the symmetry plane of the line (a magnetic wall) with the electric 

wall of the bisymmetric resonator, line-to-resonator coupling is prevented. By contrast, when the 

magnetic wall of the resonator is aligned with the CPW symmetry plane, the two elements are tightly 

coupled. Hence, whereas the ELC-loaded line is transparent for the 0° orientation, it exhibits significant 

attenuation for the 90° orientation. For intermediate orientations, the coupling is angle-dependent.  

The essential benefit of the ELC as a sensing element is the fact that it exhibits two symmetry planes 

of distinct nature, an electric wall and a magnetic wall. On the other hand, high miniaturization levels 

cannot be achieved by the ELC resonator. In this paper, it is demonstrated that, by sacrificing 

symmetry, the S-SRR is a suitable choice towards miniaturization-oriented sensors with competitive 

performance. Thus, even though the S-SRR does not exhibit any symmetry plane, S-SRR-and  

ELC-loaded CPWs behave similarly, and the sensing principle of both structures is identical. 

Nevertheless, the penalty of using a non-symmetric resonator is that a notch for 0° might appear if a 

sufficient small amount of magnetic field flux illuminates the resonator as a result of a non-absolute 

field cancellation. Accordingly, the designer must be cautiously aware of this issue. 

3. Equivalent Circuit Model and Parameter Extraction 

An equivalent circuit model of CPWs loaded with arbitrarily angular-oriented ELC resonators was 

proposed in [27]. It was shown that, as a first-order tendency, the net mutual inductance between the 

line and resonator was the only angle-dependent circuit element. In short, for θ = 90° the mutual 

magnetic coupling is maximum, whereas for θ = 0° there is no net mutual coupling. 

A similar circuit applies to S-SRR-loaded CPWs, as depicted in Figure 4a. For a fixed 90° 

orientation, this circuit is equivalent to that reported in [39]. The inductance of each loop is represented 

by Ls, while the resonator capacitance is modeled by Cs. The CPW is divided into two identical halves, 

with L and C being the CPW inductance and capacitance, respectively. Finally, each CPW half is 

magnetically coupled to each loop through the complementary angle-dependent mutual inductances Mθ 

and Mθ (see Figure 6b). By defining a net mutual inductance, M, the circuit in Figure 4b is obtained. 

This later circuit can be simplified to an equivalent one represented in Figure 4c, which in turn can be 

transformed to that depicted in Figure 4d using the following equivalences [40]: 
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where the angular resonance frequency is: 
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s s s sC L C 'L '
 (4)

It is essential to point out that, when θ = 0°, the proposed circuit aimed at sensing purposes should 

ideally provide M = 0. Since this cannot be absolutely satisfied using non-symmetric structures  

(e.g., S-SRRs as loading elements), in practice the resulting M should be close to zero as much as 

possible. Otherwise a notch, although shallow, is likely to appear. 

(a) (b) 

 

(c) (d) 

Figure 4. Proposed lossless angle-dependent equivalent circuit model of an S-SRR-loaded 

CPW. Model with the CPW symmetrically split (a) where different magnetic coupling 

mechanisms are identified and (b) where an effective magnetic coupling is considered;  

(c) Simplified model and (d) equivalent transformed model. Further details on the derivation 

of the original circuit models corresponding to an ELC-loaded CPW can be found in [27].  

In real bandstop structures losses always prevent the attenuation peak from going to infinity.  

Since the electrical variable to be sensed in the proposed approach is the amplitude of the transmission 
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notch, losses are a factor determining the sensor performance. To analyze losses, let us assume that 

resonator-related losses are the main source of power loss. Following the terminology in [27] as 

earlier, losses are accounted for by a resistor of 2Rs corresponding to each half of the resonator. Hence, 

the circuits in Figure 5 are obtained, which allow for the modeling including losses. It is noted that 

under lossless conditions, Rs is null while R' is infinite, leading to the representation of Figures 4c,d.  

 

(a) (b) 

Figure 5. Lossy angular-dependent equivalent circuit model of an S-SRR-loaded CPW.  

(a) Simplified model and (b) equivalent transformed model.  

 
(a) (b) 

Figure 6. Illustration of resonator topology transformation from (a) an ELC resonator [27] 

to (b) an S-SRR. The geometrical division associated to the mutual inductances 

corresponding to the two CPW halves and the two S-SRR loops is sketched in (b). The 

substrate is Rogers RO3010 with thickness h = 1.27 mm, relative permittivity εr = 11.2, 

and loss tangent tanδ = 0.0023. Dimensions are: for the line, W and G are tapered so that 

the characteristic impedance is 50 Ω (the radial distance from the center of the CPW to the 

lateral ground planes is fixed to 7.6 mm); for the resonators: external loop mean radius  

r0 = 8.05 mm, circular patch outer radius r1 = 5.6 mm, c1 = s = 0.2 mm, and c2 = 0.5 mm.  

With the purpose of validating the circuit models, the ELC-loaded CPW shown in Figure 6a is 

considered as a baseline [27]; this structure was seen to exhibit good linearity of the notch magnitude 

with the rotation at a roughly constant resonance frequency (attenuation is characterized in dB as 

usual). Good linearity was explained to be due to the circularly-tapered CPW in combination with the 

circularly-shaped ELC. A constant resonance frequency, on the other hand, was attributed to invariant 
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resonator inductance and capacitance with rotation. As a next step, the ELC topology is modified so 

that an S-SRR is obtained, as depicted in Figure 6b. Thereby, similar capacitance and loop inductances 

for both resonators are expected (Cs ≈ Ce and Ls ≈ Le, where the subscripts s and e stand for the S-SRR 

and ELC resonator, respectively), allowing for an approximate quantitative comparison.  

Prior to verifying the circuit model, let us first derive approximate analytical relationships between 

ELC- and S-SRR-loaded CPWs by assuming that Cs ≈ Ce and Ls ≈ Le. Despite the fact that the loop 

inductances are assumed to be similar, while the two ELC loops are connected in parallel [27], those of 

the S-SRR are connected in series (Figure 4). Hence, the corresponding total inductances are Le/2 and 

2Ls, and thus, by converting the ELC into an S-SRR the total inductance is expected to increase by 

roughly four times. In consequence, S-SRR-loaded lines are expected to be electrically smaller by a 

factor of two approximately. Indeed, according to the circuit model reported in [27] the resonance 

frequency of an ELC-loaded line is ω0e = (CeLe/2)−1/2. On the other hand, with reference to the circuit 

model of an S-SRR-loaded line, the resonance frequency is ω0s = (2CsLs)−1/2, satisfying ω0s ≈ ω0e/2. 

However, the frequency downshift provided by the S-SRR is achieved at the expense of suffering from 

a lower ratio Ls'/Cs' of the equivalent parallel resonator (4Ls'/Cs' ≈ Le'/Ce' since Ls' ≈ Le' and Cs' ≈ 4Ce'), 

which is intimately related to the resonance bandwidth (bandwidth broadens with an increase in 

Ls'/Cs'). Specifically, the unloaded quality factor at resonance [41] is: 

1

2 2
 s s

u
s ss

C ' L
Q R'

L ' CR
 (5)

the fractional bandwidth at +3 dB being approximately FBWu = 1/Qu (the higher the Qu, the more 

accurate the approximation) [41]. Regarding the corresponding absolute bandwidth, BWu = f0/Qu,  

this gives: 

1

2π π
  s

u
s s

R
BW

R'C ' L
 (6)

On the other hand, the frequency dependence of the resistance [41] is taken into account by 

expressing the resistances in terms of the resonance frequency as Rs = ksω0s
1/2 and Re = keω0e

1/2, where 

k is a constant dependent on geometrical and material parameters. Since ks ≈ ke, one finds that  

Rs ≈ Re/21/2 and Rs' ≈ Re'/23/2, meaning that the notch depth in S-SRR-based CPWs cannot be superior 

to that in ELC-loaded lines, as will be shown throughout this work. It is also found that BWus ≈ BWue/21/2, 

FBWus ≈ 21/2 FBWue and Qus ≈ Que/21/2.  

To perform the circuit modeling validation, the focus is only on the 90° orientation, owing to the 

fact that this is the most representative case to gain insight into the level of line-to-resonator coupling. 

For such an orientation, the extracted circuit parameters of the circuit in Figure 4d for the S-SRR-loaded 

line of Figure 6b are listed in Table 1 (the parameters for the ELC-loaded line are reproduced  

from [27]). The extraction has been carried out by means of the methodology reported in [40] based on 

the S parameters obtained by lossless electromagnetic simulation. Afterwards, the parameters of the 

model in Figure 4c are obtained by the transformation Equations (1)–(3) using an estimated value of 

the loop inductance of the resonators (see Table 1). To perform such an estimation, the procedure 

reported in [27] is used; the inductance seen looking into the loop terminals is inferred by 

electromagnetic simulation in the absence of the capacitive patches and the CPW. The estimated 
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inductances in terms of the individual loops are Le = 25.6 nH and Ls = 22.2 nH. As expected, although 

these inductances are relatively similar, the resonance frequency is reduced by roughly half, namely 

from f0e = 803 MHz to f0s = 388 MHz. As mentioned before, in order to characterize the notch 

magnitude, losses need to be taken into account. To this end, the resistances in Figure 5 are extracted 

by curve fitting the circuit simulation to the lossy electromagnetic simulation (Table 1). Table 1 also 

indicates the unloaded Q, namely Qu, and the resulting Q-factor of the transmission notch, i.e.,  

Q = 1/FBW = f0/BW (where FBW and BW are the fractional and absolute bandwidths at +3 dB with respect 

to the maximum attenuation). The resulting relationships between the considered S-SRR- and ELC-based 

structures can be seen in Table 2, which are in reasonable accordance with the analytical derivation.  

Table 1. Extracted circuit elements of the models in Figure 5 for the ELC- and S-SRR-loaded 

CPWs of Figure 6 with 90° orientation. 

 
C 

(pF) 

L 

(nH) 

Cs 

(pF) 

Ls 

(nH) 

M 

(nH) 

Rs 

(Ω) 

k 

Ω·(rad/s)−1/2 

L' 

(nH) 

Cs' 

(pF) 

Ls' 

(nH) 

R' 

(Ω) 

f0 

(MHz) 
Qu Q 

S-SRR 5.01 7.11 3.79 22.20 2.84 0.37 7.5 × 10−6 6.38 231.33 0.73 129.8 388 73 59 

ELC 5.59 6.40 3.07 25.60 2.72 0.49 6.9 × 10−6 5.82 67.67 0.58 385.1 803 132 129 

Table 2. Most relevant relationships between S-SRR- and ELC-loaded CPWs. 

 Le/Ls Ms/Me Re/Rs ks/ke Re'/Rs' f0e/f0s 

Analytically assuming Cs = Ce and Ls = Le 1 1 1.41 1 2.83 2 
Extracted circuit parameters in Table 1 1.15 1.04 1.32 1.09 2.97 2.07 

The comparison of the electromagnetic and circuit simulations corresponding to the S-SRR-loaded 

line is plotted in Figure 7, where good agreement is apparent (for this angular orientation, lossless 

conditions, and a uniform CPW, it has been previously shown in [39] that the circuit model is able to 

fit accurately the structure response). As compared to ELC-loaded CPWs [27], since the electrical size 

at resonance is decreased by the S-SRR, the bandwidth of validity of the circuit model in S-SRR-loaded 

lines is broadened. This enhancement is a further indicator on the achievable small electrical size and 

an additional advantage of the S-SRR.  

In summary, when transforming an ELC to an S-SRR, despite the fact that the individual circuit 

parameters in Figure 5a are similar for both cases, the equivalent parameters in Figure 5b are 

moderately different as a result of the dual connection (series or parallel) of the two loops forming the 

resonators. Therefore, apart from symmetry-related differences between the ELC resonator and the  

S-SRR, another fundamental distinct feature derived from the analysis of their equivalent circuit 

models is the total inductance and associated resistance provided by them, which have a direct impact 

on the attenuation characteristics in the vicinity of resonance. It is worth mentioning that this strategy 

based on changing the resonator topology is inversely analogous to that carried out in [8] where a 

CSRR is converted into a double slit CSRR (DS-CSRR). These resonators are symmetric and 

bisymmetric, respectively, the latter providing essentially four times smaller inductance. Thereby, the 

rejection bandwidth widens as desired, although the resonance frequency obviously increases.  
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(a) (b) 

Figure 7. Frequency response of the S-SRR-loaded line of Figure 6b for 90° orientation 

obtained by (a) lossless and (b) lossy electromagnetic and circuit simulations. The circuit 

elements are indicated in Table 1. Despite its frequency dependence, a constant value 

resistance computed at the resonance frequency is assumed (Rs = ksω0s
1/2).  

4. Performance Tradeoffs 

The circuit models in Figure 5 can be viewed as the general model of a transmission line coupled 

magnetically to an electromagnetic resonator. The present section is intended to demonstrate that the 

frequency and magnitude of the transmission notch (two fundamental sensor parameters) for fixed physical 

dimensions, are closely related. The analysis that is presented complements other studies related to the 

optimization and limitations of the bandstop functionality exhibited by the considered structures [42,43].  

As drawn earlier, since losses increase with frequency, the S-SRR benefits from a smaller series 

resistance (Rs ≈ Re/21/2) which directly influence the equivalent parallel resistance R'. However, as a 

result of the frequency downshift, R' is reduced rather than increased (Rs' ≈ Re'/23/2), and the notch 

depth in the topologies of Figure 6 drops from −16.6 dB [27] to −7.7 dB. Analytically, the notch 

magnitude in the circuit of Figure 5b can be expressed as: 

 
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where Zs is the impedance of the series branch, Yp is the admittance of the shunt branch, and Z0 is the 

port impedance. According to Equation (7), the equivalent line elements in the presence of the S-SRR 

(L' and C) influence the notch depth. Nevertheless, for electrically small structures, the main signal 

rejection mechanism is due to R' rather than to the line elements. In the absence of these line elements 

(Zs = R' and Yp = 0), the notch magnitude reduces to: 

21 10
0

1
dΒ 20log

1 2
  

 
S

R' Ζ
 (8)

imposing a boundary dictating the minimum attenuation. Specifically, at very low frequencies, where 

the line elements do not play a significant role, Equation (7) converges to Equation (8). Numerical 
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solutions of the nonlinear Functions (7) and (8) where R' is swept are plotted in Figure 8a. For the  

S-SRR-loaded line, due to the smaller electrical size, Equation (7) is closer to Equation (8) than for the 

ELC-loaded line. As can also be noticed, in the lower region of R', the notch magnitude is very 

sensitive to R', suggesting that a relatively small minimum R' must be fulfilled to obtain a reasonable 

attenuation (which numerically could be fixed by specifications). However, Figure 8a provides no 

insight into the dependence of |S21| with f0 through R', i.e., 

 2 2
0 3 2

0

ω
ω  

s

M M
R'

R k
 (9)

To this end, Figure 8b shows |S21| and R' versus f0, assuming that M and k are constant (this 

condition makes sense, for instance, when comparing S-SRR- and ELC-loaded CPWs with the same 

dimensions). The key aspect is that, the lower the resonance frequency, the weaker the attenuation,  

so that decreasing f0 (or equivalently the electrical size) invariably degrades |S21|. In other words, there 

is a tradeoff between lowering the resonance frequency and enhancing the attenuation, and it is 

explained through R'. 

(a) (b) 

Figure 8. (a) Notch magnitude when sweeping R'; (b) Notch magnitude and R' when 

sweeping f0. The circuit parameters are those indicated in Table 1, and Z0 = 50 Ω. The 

specific operating points in Table 1 are also mapped. 

In addition, let us now analyze the bandwidth at +3 dB of the unloaded resonator given by  

Equation (6), which in terms of frequency can be rewritten as: 
2

5 20
0

2 ω 2
ω

π π
 s s s

u

R C kC
BW  (10)

Expressions (7)–(10) clearly explain that losses round the attenuation peak off, a well-known 

consequence of losses. More importantly, if the frequency dependence in Rs is ignored in Equations (9) 

and (10), although Cs is not decoupled to f0 in Equation (10), both R' and BWu are quadratically 

proportional to f0. Therefore, BWu and |S21| are intimately related to one another with respect to f0, and 

in the limit where f0 → 0, both BWu and |S21| → 0. To clarify this, Figure 9 shows the dependence of 

BWu and FBWu with f0. Note from Equation (6) that when Ls is constant, the dependence of BWu with 

frequency is only through Rs. Notice also that BWu narrows regardless of whether f0 is decreased by 
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increasing the inductance or capacitance. The reason is that the slope of BWu with frequency is always 

positive. By contrast, FBWu depends on the ratio Cs/Ls (property that can be deduced from Qu), and its 

slope with frequency is not univocally determined by whether f0 increases or decreases.  

(a) (b) 

Figure 9. (a) Absolute fractional bandwidth at +3 dB of an unloaded resonator given by 

Equation (10) versus the resonance frequency; and (b) its fractional bandwidth. The circuit 

parameters are those of the S-SRR-based structure in Table 1. In order to sweep the 

resonance frequency, either the capacitance or the inductance is considered to be constant. 

The specific operating point in Table 1 is also mapped.  

Lastly, it should be highlighted that neither Qu nor BWu depends on M, whereas |S21| is strongly 

influenced by M. To illustrate this, Figure 10 plots the transmission coefficient inferred from the circuit 

model for different values of the mutual inductance. As can be observed, regardless of the value of M, 

the bandwidth of the resonance, BW (different from but related to BWu), is nearly constant when 

changing M. On the contrary, |S21| changes drastically. 

 

Figure 10. Transmission coefficient (magnitude) of the circuit model in Figure 5a for the 

circuit parameters of the S-SRR-loaded CPW in Table 1, where M is varied such that the 

notch depth is changed by steps of ±3 dB.  
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5. Sensor Design 

This section is devoted to the optimization of S-SRR-loaded CPWs aimed for operation as rotation 

sensors based on measuring the notch depth and with an angular dynamic range 0° ≤ θ ≤ 90°. Sensor 

performance is determined by the operating frequency f0, frequency stability df0/dθ, dynamic range 

(|S21|θ=90° − |S21|θ=0°), sensitivity d|S21|/dθ, and linearity (deviation from a constant sensitivity). Since 

replacing an ELC with an S-SRR results in a lower resonance frequency obtained at the expense of a 

weaker attenuation notch, the particular objective is to obtain a good balance between f0 and |S21|. This 

means to reduce f0 as much as possible whilst |S21| being degraded as less as possible (although f0 and 

|S21| could be dictated by practically determined specifications, instead of imposing fictitious ones, the 

purpose is here to prove the concept).  

Though the topology in Figure 6b resonates at a very low frequency, it suffers from a poor 

attenuation peak, making this topology marginally useful for operation as a sensor. To improve the 

dynamic range of attenuation, the equivalent resistance R' needs to be increased (Figure 8). With a 

view to achieving this at low frequencies (achieving a good balance between f0 and |S21|), the approach 

chosen is to decrease the term k in Equation (9). For this purpose, the topology depicted in Figure 11 is 

proposed, where the fundamental strategy is to reduce the resonator resistance, Rs, by widening the 

strips of the loops (losses are primarily due to the inductive narrow strips of the loops). Since this 

simultaneously reduces the inductance, the resonance frequency shifts upwards, and this could be 

compensated by increasing the capacitance. However, the patches are kept almost unaltered in order 

not to degrade the mutual magnetic coupling M, another key parameter in R' (it is evident that a trivial 

solution to modify M is to change the spacing between the line and the resonator). The extracted circuit 

elements for the proposed design, listed in Table 3, corroborate the tailoring of these parameters.  

It should be noted that although f0 is slightly increased, the enhancement in R' is actually mainly due to 

the drastic decrease in k. In short, the extremely small R' due to a decrease in ω0 (produced by an 

increase of the total inductance) is compensated by decreasing Rs (which in fact decreases the total 

inductance at the same time), boosting R'. 

 
(a) (b) 

Figure 11. (a) Topology of the proposed rotation sensor based on an S-SRR;  

(b) Equivalent macroscopic topology for a sensor based on an ELC for comparison purposes. 

The CPW dimensions and substrate are the same as those in Figure 6. Resonator dimensions 

are: external loop mean radius r0 = 8.175 mm, circular patch outer radius r1 = 5 mm,  

s = 0.5 mm, and c = 0.75 mm. 
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Table 3. Extracted circuit elements of the models in Figure 5 for the S-SRR-loaded CPWs 

of Figures 6 and 11 with 90° orientation. 

 
C 

(pF) 
L 

(nH) 
Cs 

(pF) 
Ls 

(nH) 
M 

(nH) 
Rs 

(Ω) 
k 

Ω·(rad/s)−1/2 
L' 

(nH) 
Cs' 

(pF) 
Ls' 

(nH) 
R' 
(Ω) 

f0 
(MHz) 

Qu Q 

Figure 6 5.01 7.11 3.79 22.20 2.84 0.37 7.5 × 10−6 6.38 231.33 0.73 129.8 388 73 59 

Figure 11 6.03 7.33 3.43 17.48 2.77 0.19 3.5 × 10−6 6.45 136.85 0.88 340.4 460 135 129 

The characterization of the designed structure as a rotation sensor inferred from electromagnetic 

simulations is given in Figure 12. The transmission coefficients are shown in Figure 12a and the 

corresponding notch magnitude and frequency versus the rotation angle are plotted in Figure 12b. In 

contrast to the topology in Figure 6, it can be drawn that the proposed geometry exhibits a reasonably 

good balance between the resonance frequency and the notch depth, since by sacrificing a relatively 

small notch magnitude (−20 to −14.1 dB for 90°, i.e., 29.5%) the operating frequency is significantly 

decreased (927 to 460 MHz in average, i.e., 50.4%). Indeed, the notch magnitude between the S-SRR- and 

the ELC-based structures is not as different as predicted by the circuit model. The reason is attributed 

to the fact that the accuracy of the circuit model is degraded when the electrical size increases, and the 

ELC-loaded CPW may be not sufficiently electrically small to allow for an accurate comparison (the 

relationship Rs' ≈ Re'/23/2 is no longer accurate, Rs' being closer to Re', thus benefiting the S-SRR). 

Furthermore, a better stability in the resonance frequency with rotation is achieved when the S-SRR is 

employed. By defining the frequency-detuning bandwidth as ∆f0 = f02 − f01 (where f02 and f01 are the 

maximum and minimum resonance frequencies, respectively), f0 ranges within a band of ∆f0e = 7.3 MHz 

for the ELC-loaded CPW (0.8% with respect to the average resonance frequency), while it varies only 

by ∆f0s = 1.9 MHz (0.4%) for the S-SRR-loaded counterpart. These results validate the approach and 

the usefulness of S-SRR for the implementation of rotation sensors.  

(a) (b) 

Figure 12. Simulated characteristics of the structures in Figure 11. (a) Transmission 

coefficient magnitude for the S-SRR-loaded CPW; and (b) transfer functions as sensors for 

different discrete angles.  
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6. Prototype Characterization  

Thus far, the S-SRR has been etched on the back side of the CPW substrate with the purpose of 

proving the sensing principle. However, in a real application, the S-SRR must be etched on a substrate 

different from that of the CPW, allowing for relative motion between both layers. Hence, to complete 

the performance characterization of S-SRR-loaded lines as rotation sensors, an experimental set-up 

including an in-between air gap region is considered, which is specifically illustrated in Figure 13a [27]. 

As can be seen, the S-SRR is etched on a low permittivity substrate to enhance the notch amplitude. It 

should be highlighted that commercial Rogers substrates are considered with no loss of generality, 

since the key aspect is merely to employ low-loss substrates to minimize dielectric losses.  

The corresponding sensor transfer functions in this stacked substrate-air-substrate using the designs 

in Figure 11 are plotted in Figure 13b. The combination of the air gap and the low permittivity 

substrate results in a drastic decrease in the resonator capacitance. As a consequence the resonance 

frequency suffers from an upwards shift and the notch amplitude strengthens. It is therefore obvious 

that the S-SRR must be designed in accordance with the substrates considered in order to tune it at the 

desired frequency. Regarding the notch depth enhancement, a relevant consequence is that a resonance 

is observed even for 0° orientation. Nevertheless, since the notch depth is extremely weak (very close 

to 0 dB), the overall dynamic range and sensitivity in amplitude are effectively improved. Furthermore, 

this undesired resonance points out that the S-SRR is indeed tightly coupled to the CPW, as required to 

enhance the attenuation. It is worth mentioning that in this prototype the balance under optimization is 

improved; |S21| decreases from −26.9 to −22.7 dB (15.6%) and f0 decreases from 1.98 to 0.993 GHz 

(49.9%). With respect to the frequency deviation, the frequency shift for the S-SRR-based structure 

amounts to only ∆f0s = 10.4 MHz (1%), which is remarkably better than for the ELC-loaded CPW with 

∆f0e = 79 MHz (4%). Despite the fact that ∆f0 is degraded in this prototype as compared to the single 

substrate structure, it is still within acceptable limits.  

(a) (b) 

Figure 13. (a) Sensor layer cross-section; and (b) simulated transfer function for the 

topologies in Figure 11. The parameters of Rogers RO4003C are: thickness h = 0.8128 mm, 

relative permittivity εr = 3.55, and loss tangent tanδ = 0.0021.  
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In order to measure the S-SRR-based sensor, input/output transmission line sections are inserted at 

the designed distance (see Figure 14). Since the CPW is no longer electrically small, and considering 

that regardless of the S-SRR angular orientation the structure is asymmetric, vias and backside strips 

are utilized to connect the two lateral CPW ground planes and thus suppress the slot mode,. In the 

experimental set-up, the S-SRR substrate is fastened to a Teflon cylinder, which is rotated by the 

action of a step motor (Figure 14). The simulated (including the Teflon cylinder) and measured 

transfer functions are shown in Figure 15. It is noted that the notch for 0°, masked by the CPW line 

insertion loss, was actually not detected in measurements. The measured sensor parameters are: the 

frequency deviation is ∆f0 = 12 MHz (1.3%), the output dynamic range is 22.8 dB, the average 

sensitivity is 0.25 dB/°, and the average linearity is 2.1 dB (9.3%). Therefore, the performance is 

comparable to those reported in [26–28] with the advantage of operating at a considerably lower 

resonance frequency.  

(a) 

 

(b) (c) 

Figure 14. The fabricated prototype (a) and experimental set-up (b), including details (c), for 

the characterization of the rotation sensor with an STM 23Q-3AN step motor. The parameters 

of the Teflon cylinder adhered to the step motor are: h = 3.5 cm, εr = 2.08 and tanδ = 0.0004. 

 

Figure 15. Simulated and measured transfer function of the sensor prototype.  
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Alternative symmetry-inspired rotation sensors based on notch depth modulation using other 

resonant particles have been proposed in the last few years [21,23,25], however with considerably 

limited angular dynamic ranges. This means that rotation speed measurements might be not 

straightforward. On the other hand, microwave rotation sensors based on frequency [17] and phase 

shift [18], with higher dynamic range (180° and 360°, respectively) and good linearity have also been 

recently reported. However, these sensors cannot be extended to the implementation of angular 

velocity sensors with a readout circuit as simple as with amplitude levels (see next section).  

7. Angular Velocity Sensor  

The rotation sensor can be used as an angular velocity sensor using an appropriate readout circuit. 

One possible means to measure the angular velocity is by cascading a circulator (configured as an 

isolator to avoid unwanted reflections) and an envelope detector to the rotation sensor. By injecting a 

carrier signal tuned at the fundamental resonance frequency of the S-SRR, the amplitude of the signal 

is modulated by the rotating S-SRR. The envelope of the output signal can be then obtained by means 

of the envelope detector, and hence the angular velocity can be inferred from the time distance 

between adjacent peaks. Note that the period of the envelope signal corresponds to half a rotation 

period. Thus, from this simple measurement in time domain, using an oscilloscope connected to the 

output port of the envelope detector to monitor the output voltage waveform, it is possible to 

accurately determine the rotation speed. The scheme and photograph of the experimental set-up are 

depicted in Figure 16 [27]. We have considered an angular velocity of 600 rpm (fr = 10 Hz). The 

injected carrier signal is tuned at fc = f0(θ = 90°) = 936.5 MHz. The output voltage waveform is plotted 

in Figure 17. It should be noted that, ideally, the envelope signal waveform should be the same as the 

time-dependent transmission coefficient of the S-SRR-loaded CPW. However, the envelope signal in 

practice depends on the readout system. Next, the envelope signal is converted into a digital 

rectangular signal to ease the signal processing of the readout system, and this conversion can be 

obtained by an electronic comparator. The measured angular velocity is 597.6 rpm (9.96 Hz),  

the error being 0.4%, in very good agreement with the nominal values. It is worth mentioning that  

in [27,28] the rotation speeds were set to 60 rpm and 3000 rpm, where the errors were 0.2% and 0.5%, 

respectively. Therefore, with the considered experimental set-up, the error systematically increases 

with the speed. Provided that the velocity is restrictedly constant, to enhance precision, the velocity 

measurement can be done between very distant nonconsecutive peaks (or by averaging the time 

between adjacent peaks). 

Finally, it is important to highlight that, as long as the harmonic signal frequency is much higher 

than the linear frequency of rotation (this condition is always satisfied for practical frequencies), the 

measurable range of velocities is theoretically unlimited. Furthermore, a general discussion on the 

performance of the proposed sensing approach based on symmetry properties can be found in [27]. 
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(a) 

 
(b) 

Figure 16. Scheme (a) and experimental set-up (b) for the measurement of the angular 

velocity. The carrier signal has been generated by means of the Agilent N5182A signal 

generator, whereas the output waveform has been recorded by the Agilent 3054A 

oscilloscope. The isolator has been implemented with the ATM ATc1-2 circulator, with 

one of the ports terminated with a matched 50-Ω load. The envelope detector is 

synthesized by the Avago Technologies HSMS-2860 Schottky diode and the single-ended 

active probe Agilent N2795A (with an input impedance of 1 MΩ in parallel with 1 pF). 

 

Figure 17. Output waveform for an angular velocity of 600 rpm. 

8. Conclusions 

In conclusion, we have demonstrated that S-SRR-loaded CPW transmission lines are useful for the 

implementation of compact angular displacement and angular velocity sensors. Typically, the 
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frequency of operation of microwave sensors is dictated by system requirements, EMI effects, EMC 

and/or crosstalk, or low-cost readout circuits. As frequently occurs in microwave circuits, the device 

size is mainly determined by the size of the passive structures, i.e., the resonant element in the 

considered sensor. Thus, for miniaturization purposes, it is necessary to consider electrically small 

resonators, such as the S-SRR, which by virtue of its large inductance is electrically much smaller than 

other resonant particles which have been proposed for angular displacement and velocity sensors. The 

sensing principle is based on the controllability of line-to-resonator coupling through S-SRR rotation. 

Thereby a coupling-modulated resonance is obtained by rotation, which determines the magnitude of 

the attenuation peak. Hence, the relative angle between the S-SRR and the CPW is deduced by 

inspection of the peak magnitude. A prototype sensor has been validated by using a rotating cylinder 

(where the S-SRR was attached) controlled by a step motor. The characterization results indicate that 

the rotation sensor exhibits good linearity, sensitivity and dynamic range. The tests relative to the 

measurement of angular velocities indicate that the proposed approach is very accurate. A comparable 

performance as previously obtained by some of the authors using an ELC resonator is achieved, but the 

operation frequency is reduced to a half due to the electrically small size of the S-SRR. 
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