The Effect of Sequential Oxidation and Composition on the Structural and Electronic Properties of Gas-Phase Transition-Lanthanide Bimetallic Clusters

Alexander Gentleman

B.Sc. (Hons), MRACI CChem

A thesis submitted in total fulfilment of the requirements for the degree of Doctor of Philosophy

May, 2014

School of Chemistry and Physics

Department of Chemistry

The University of Adelaide

Statement of Originality

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

> Alexander S. Gentleman May, 2014.

Abstract

This thesis presents experimental and theoretical work performed on various rhodium-holmium (Rh-Ho) and gold-praseodymium (Au-Pr) bimetallic clusters and their oxide counterparts. More specifically, structural and/or electronic properties for these clusters are ascertained from investigating how their adiabatic ionisation energies (IEs) are affected by: (a) the sequential addition of oxygen atoms onto the base bimetallic cluster within each series, or (b) the composition of the bimetallic clusters i.e. the transition:lanthanide metal atom ratio within each cluster.

The clusters were experimentally generated via dual laser ablation and detected using time-of-flight mass spectrometry (TOF-MS) coupled with threshold laser ionisation. Upon successful formation and detection, the experimental adiabatic IEs of these clusters were determined using Photoionisation Efficiency (PIE) spectroscopy. In regards to aspect (a) of this thesis listed above, it was observed that the sequential addition of individual oxygen atoms onto bare Rh-Ho and Au-Pr clusters either caused: (i) a significant change in or (ii) had little-to-no effect on the experimental adiabatic IE. For clusters that displayed the former behaviour, the addition of the first oxygen atom was observed to significantly decrease the adiabatic IE relative to that of the bare bimetallic cluster within that series. The addition of a second oxygen atom onto the monoxide counterpart was observed to significantly increase the adiabatic IE back to a value similar to that of the bare bimetallic cluster. In regards to aspect (b) of this thesis listed above, it was observed that: (i) the substitution of a transition metal atom for a lanthanide metal atom generally lowers the experimental adiabatic IE of each cluster, and (ii) the sequential addition of transition metal atoms onto a cluster generally increases the experimental adiabatic IE of each cluster.

In order to gain more insight into the nature of the observed experimental adiabatic IE trends mentioned above, Density Functional Theory (DFT) Investigations were performed on the neutral and cationic species for the RhHo₂O_n (n = 0-2), Rh₂Ho₂O_m (m = 0-2) and the Au_{3-k}Pr_k (k = 0-3) clusters. From these, the lowest energy Page | ii neutral and cationic geometries (in addition to other properties such as atomic charges and normal modes of vibration) were determined and subsequently, the theoretical adiabatic IEs of each cluster were calculated. When compared within each series, the experimental and theoretical adiabatic IE trends as a function of: (i) sequential addition of oxygen atoms in the RhHo₂O_n (n = 0.2) and Rh₂Ho₂O_m (m = 0.2) cluster series, and (ii) substitution of a gold atom for a praseodymium atom in the Au_{3-k}Pr_k (k = 0.3) cluster series, both displayed similar behaviour. From this, specific ionisation transitions between neutral and cationic structures were able to be assigned and thus, structural and electronic information about each cluster was able to be inferred.

In addition to the DFT investigations, Franck-Condon Factor (FCF) calculations were performed in order to simulate the Zero Electron Kinetic Energy (ZEKE) and PIE spectra for each cluster in the RhHo₂O_n (n = 0-2), Rh₂Ho₂O_m (m = 0-2) and Au_{3-k}Pr_k (k = 0-3) series. The purposes of these additional calculations were to: (i) identify the most likely transition from two or more competing candidates that occurs upon ionisation for each cluster, and (ii) apply slight corrections to the experimental adiabatic IEs obtained from the PIE spectra in order to account for thermal tailing resulting from vibrational hot band transitions at 300 K.

Acknowledgments

First and foremost, I would like to thank my supervisor and mentor Assoc. Prof. Greg Metha for his enthusiasm, encouragement, guidance and unyielding patience over the years. His intimate knowledge of molecular spectroscopy, passion for all things science-related, and eagerness to discuss new ideas and work through issues (even at the most inconvenient of times!) have always been invaluable and greatly appreciated.

I would also like to thank my co-supervisor Prof. Mark Buntine for encouraging and guiding me through my scientific life ever since I told him in my first year of undergraduate studies that I wanted to be a physical chemist/chemical physicist. Our many passionate discussions (both science and non-science related) and longer-thanscheduled Skype chats have always been entertaining and truly inspiring.

Thanks must also go to Dr. Jason Gascooke, Dr. Vik Dryza and Dr. Matt Addicoat for their invaluable help with all things experimental and/or computational. If it were not for them, I would most definitely have been lost on many occasions!

A big "Ευχαριστώ" goes to Peter Apoefis for his priceless expertise in building the parts to the cluster source and maintaining the equipment required for this project. Without him, PhD life would have been infinitely more difficult!

To all of the other Honours students, PhD students and Postdocs that I have had the immense pleasure of sharing the lab with over the years – Cheers! Special thanks go to (Soon-to-be) Dr. Sam Wallace, Dr. Chris Colyer and Dr. Mark Stevenson for showing me that lab life should consist of more than just science in order to keep your sanity.

Lastly, I would like to thank my friends and family for their continual love and support over the many years. I am most privileged to have such fantastic people in my life. I would especially like to thank my Mum for always encouraging me to follow my passions in life and supporting me throughout my entire PhD tenure, and my partner Krystal, whose love, support and belief in me during these past few years has pushed me through my darkest days and kept the light burning at the end of the PhD tunnel.

Page | iv

Publications

The following publication contains some of the work presented in this thesis:

Photoionisation Efficiency Spectroscopy and Density Functional Theory Investigations of $RhHo_2O_n$ (n = 0-2) Clusters.

A. S. Gentleman; M.A. Addicoat; V. Dryza; J. R. Gascooke; M. A. Buntine; G.F. Metha, Journal of Chemical Physics, 130, 164311 (2009).

The following publications are currently in preparation and will each contain some of

the work presented in this thesis:

Structural and Electronic properties of Gas-Phase Neutral and Cationic $Rh_2Ho_2O_m$ (m = 0-2) Clusters Determined using Photoionisation Efficiency Spectroscopy, Density Functional Theory and Franck-Condon Factor Calculations.

A. S. Gentleman; M. A. Buntine; G.F. Metha (in preparation).

Photoionisation Efficiency Spectroscopy, Density Functional Theory Investigations and Franck-Condon Factor Calculations of Gas-Phase $Au_{3\cdot k}Pr_k$ (k = 0-2) Clusters: How composition affects their structural and electronic properties. A. S. Gentleman; M. A. Buntine; G.F. Metha (in preparation)

Elucidation of the Structural and Electronic Properties of the Gas-Phase $AuPr_2O_x$ (x = 0-2), $Au_2Pr_2O_m$ (m = 0-1) and $Au_3Pr_2O_n$ (n = 0-2) Bimetallic Clusters using Photoionisation Efficiency Spectroscopy, Density Functional Theory and Franck-Condon Factor Calculations.

A. S. Gentleman; M. A. Buntine; G.F. Metha (in preparation)

Abbreviations

AE	Appearance Energy
AO	Atomic Orbital
CGF	Contracted Gaussian Function
DFT	Density Functional Theory
ECP	Effective Core Potential
eV	Electron Volt
\mathbf{FC}	Franck-Condon
FCF	Franck-Condon Factor
GTO	Gaussian-Type Orbital
HOMO	Highest Occupied Molecular Orbital
IE	Ionisation Energy
MO	Molecular Orbital
MP	Model Potential
PES	Potential Energy Surface
PIE	Photoionisation Efficiency
PFI-ZEKE	Pulsed Field Ionisation Zero-Electron Kinetic Energy
PGF	Primitive Gaussian Function
PP	Pseudopotential
SPI	Single Photon Ionisation
ТМО	Transition Metal Oxide(s)
TOF	Time-of-Flight
TOF-MS	Time-of-Flight Mass Spectrometry
UPS	Ultra-violet Photoelectron Spectroscopy
ZEKE	Zero-Electron Kinetic Energy
ZPE	Zero-Point Energy

Table of Contents

Chapter 1. Introduction

1.1. Gas-Phase Transition Metal Oxide Clusters - Relevance to Catalysis	1
1.2. Emergence of Gas-Phase Bimetallic Transition Metal Oxide Clusters	3
1.3. Transition-Lanthanide Bimetallic Clusters and Their Oxide Counterparts –	
A Brief History of Previous Work Performed	5
1.4. The Scope of This Thesis	7
1.5. References	9
Chapter 2. Experimental Theory, Techniques and Apparatus	
2.1. Laser Ablation and Metal Cluster Sources	19
2.1.1. Metal Cluster Sources	19
2.1.2. Generation of Gas-Phase Transition-Lanthanide Bimetallic Clusters and	
Their Oxide Counterparts	20
2.2. The Wiley-McLaren Time-of-Flight Mass Spectrometer	25
2.3. Experimental Setup and General Procedure	30
2.4. Spectroscopic Theory, Techniques and Procedures	34
2.4.1. The Born-Oppenheimer Approximation	34
2.4.2. The Franck-Condon Principle	35
2.4.3. Photoionisation Theory	37
2.4.4. Photoionisation Efficiency Spectroscopy	40
2.4.5. Details behind the Photoionisation Efficiency Experiments	43
2.5. References	48

Chapter 3. Theoretical Background and Methodology

3.1. The Schrödinger Equation	50
3.2. Density Functional Theory	54
3.2.1. Brief Background	54
	Page vii

3.2.2. Types of Density Functionals	55
3.2.3. The B3P86 Density Functional	57
3.3. Basis Sets	58
3.3.1. Mathematical Formalism and Molecular Orbitals	58
3.3.2. Effective Core Potentials	60
3.3.3. The SDD Basis Set	61
3.4. Computational Procedure and Details	64
3.5. Simulated Zero-Electron Kinetic Energy and Photoionisation Efficiency Spectra	
Details	67
3.5.1. Zero-Electron Kinetic Energy Spectroscopy	67
3.5.2. Procedural Details	72
3.6. References	77
Chapter 4. Benchmarking Chapter	
4.1. Justification of the SDD Basis Set	80
4.2. ZEKE and PIE Benchmark to the Nb_3O Cluster	84
4.2.1. B3P86/SDD Calculations on the Nb ₃ O Cluster	84
4.2.2. The ZEKE Spectrum of the Nb_3O Cluster	86
4.2.3. The PIE Spectrum of the Nb_3O Cluster	87
4.2.4. Accounting for the Thermal Tailing Effect in PIE Spectra	89
4.3. Conclusion	91
4.4. References	92

Chapter 5. PIE Spectroscopy of Gas-Phase $RhHo_2O_n$ (n = 0-2) and

$m Rh_2Ho_2O_m~(m=0-2)~ m Clusters$

5.1. Mass Spectra and Photoionisation Measurements	95
5.2. Mass and PIE Spectra of the RhHo ₂ O _n $(n = 0-2)$ Clusters	97
5.3. Mass and PIE Spectra of the $Rh_2Ho_2O_m$ ($m = 0-2$) Clusters	100
	Page viii

5.4. Comparison between the $RhHo_2O_n$ and $Rh_2Ho_2O_m$ Clusters	103
5.5. Conclusion	104
5.6. References	105

Chapter 6. DFT Investigations, FCF Calculations and Spectral

Simulations of the Gas-Phase $RhHo_2O_n$ (n =	= 0-2) Clusters
---	-----------------

6.1. DFT Results for the $RhHo_2$ Cluster	107
6.1.1. Lowest Energy Neutral and Cationic Structures	107
6.1.2. Geometric Changes and Hirshfeld Charges	107
6.2. DFT Results for the RhHo ₂ O Cluster	110
6.2.1. Lowest Energy Neutral and Cationic Structures	110
6.2.2. Geometric Changes and Hirshfeld Charges	110
6.3. DFT Results for the $RhHo_2O_2$ Cluster	112
6.3.1. Lowest Energy Neutral and Cationic Structures	112
6.3.2. Geometric Changes and Hirshfeld Charges	115
6.4. Simulated ZEKE and PIE Spectra for the RhHo ₂ O _n $(n = 0-2)$ Clusters	117
6.4.1. Simulated ZEKE Spectra for the RhHo ₂ Cluster	117
6.4.2. Comparison of Experimental and Simulated PIE Spectra for RhHo ₂	120
6.4.3. Simulated ZEKE Spectrum for the RhHo ₂ O Cluster	123
6.4.4. Comparison of Experimental and Simulated PIE Spectra for RhHo ₂ O	125
6.4.5. Simulated ZEKE Spectrum for the RhHo ₂ O ₂ Cluster	127
6.4.6. Comparison of Experimental and Simulated PIE Spectra for RhHo ₂ O ₂	128
6.5. Field-Correction to the Experimental IEs of the $RhHo_2O_n$ Clusters	131
6.6. Calculated IEs of the $RhHo_2O_n$ Clusters and Comparison to Experimental IEs	131
6.7. Conclusion	137
6.8. References	138

Chapter 7. DFT Investigations, FCF Calculations and Spectral Simulations of the Gas-Phase $Rh_2Ho_2O_m$ (m = 0-2) Clusters

7.1. DFT Results for the Rh_2Ho_2 Cluster	140
7.1.1. Lowest Energy Neutral and Cationic Structures	140
7.1.2. Geometric Changes and Hirshfeld Charges	141
7.2. DFT Results for the Rh_2Ho_2O Cluster	145
7.2.1. Lowest Energy Neutral and Cationic Structures	145
7.2.2. Geometric Changes and Hirshfeld Charges	145
7.3. DFT Results for the $Rh_2Ho_2O_2$ Cluster	149
7.3.1. Lowest Energy Neutral and Cationic Structures	149
7.3.2. Geometric Changes and Hirshfeld Charges	150
7.4. Simulated ZEKE and PIE Spectra for the $Rh_2Ho_2O_m$ ($m = 0-2$) Clusters	155
7.4.1. Simulated ZEKE Spectra for Rh_2Ho_2	155
7.4.2. Comparison of Experimental and Simulated PIE Spectra for $RhHo_2$	157
7.4.3. Simulated ZEKE Spectrum for Rh_2Ho_2O	162
7.4.4. Comparison of Experimental and Simulated PIE Spectra for Rh_2Ho_2O	163
7.4.5. Simulated ZEKE Spectra for $Rh_2Ho_2O_2$	166
7.4.6. Comparison of Experimental and Simulated PIE Spectra for $Rh_2Ho_2O_2$	168
7.5. Field-Correction to the Experimental IEs of the $Rh_2Ho_2O_m$ Clusters	172
7.6. Calculated IEs of the $Rh_2Ho_2O_m$ Clusters and Comparison to Experimental IEs	172
7.7. Conclusion	177
7.8. References	178

Chapter 8. PIE Spectroscopy of Gas-Phase Gold-Praseodymium Clusters and Their Oxide Counterparts

8.1. Mass Spectra and Photoionisation Measurements	180
8.2. Mass and PIE Spectra of the AuPr ₂ O _x ($x = 0-2$) Clusters	183
8.3. Mass and PIE Spectra of the $Au_2Pr_2O_m$ ($m = 0-1$) Clusters	185
	Page $\mid x$

8.4. Mass and PIE Spectra of the Au ₃ Pr ₂ O _n $(n = 0-2)$ Clusters	187
8.5. Mass and PIE Spectra of the Au ₂ Pr and Au ₃ Pr ₂ O ₃ H ₂ Clusters	190
8.6. Experimental Adiabatic IEs for the Au _{3-k} Pr _k ($k = 0-3$) Clusters:	
Substitution Effects	192
8.7. Experimental Adiabatic IEs for the Au_yPr_2 ($y = 0-3$) Clusters:	
Effect of Gold Atoms	194
8.8. Comparison between the AuPr ₂ O _x ($x = 0-2$), Au ₂ Pr ₂ O _m ($m = 0-1$) and	
Au ₃ Pr ₂ O _{n} ($n = 0-2$) Clusters: Effect of Oxygen Atoms	195
8.9. Conclusion	196
8.10. References	198

Chapter 9. DFT Investigations, FCF Calculations and Spectral

Simulations of the Gas-Phase $Au_{3-k}Pr_k$ (k = 0-3) Clusters

9.1. DFT Results for the Au_3 Cluster	200
9.1.1. Lowest Energy Neutral and Cationic Structures	200
9.1.2. Geometric Changes and Hirshfeld Charges	202
9.1.3. Comparison to Previous Work	203
9.2. DFT Results for the Au_2Pr Cluster	206
9.2.1. Lowest Energy Neutral and Cationic Structures	206
9.2.2. Geometric Changes and Hirshfeld Charges	206
9.2.3. Comparison to Previous Work	208
9.3. DFT Results for the $AuPr_2$ Cluster	209
9.3.1. Lowest Energy Neutral and Cationic Structures	209
9.3.2. Geometric Changes and Hirshfeld Charges	211
9.3.3. Comparison to Previous Work	213
9.4. DFT Results for the Pr_3 Cluster	214
9.4.1. Lowest Energy Neutral and Cationic Structures	214
9.4.2. Geometric Changes and Hirshfeld Charges	217
	Page xi

218
219
219
219
222
225
228
228
234
235
237
239
242
243
247