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Abstract

The detection and tracking of underwater targets with active sonar is a challenging problem

because of high acoustic clutter, fluctuating target returns and a relatively low measurement

update rate. In this thesis, a Bayesian framework for the detection and tracking of underwater

targets using active sonar is formulated. In general, Bayesian tracking algorithms are built on

two statistical models: the target dynamics model and the measurement model. The target

dynamics model describes the evolution of the target state with time and is almost always as-

sumed to be a Markov process. The typical measurement model approximates the sensor image

with a collection of discrete points at each frame and allows point measurement tracking to be

performed. This thesis investigates alternative target and measurement models and considers

their application to active sonar tracking.

The Markov process commonly used for target modelling assumes that the state evolves without

knowledge of its future destination. Random realisations of a Markov process can also display

a large amount of variability and do not, in general, resemble realistic target trajectories. An

alternative is the reciprocal process, which assumes conditioning on a known destination state.

The first key contribution is the derivation and implementation of a Maximum Likelihood

Sequence Estimator (MLSE) for a Hidden Reciprocal Process (HRP). The performance of the

proposed algorithm is demonstrated in simulated scenarios and shown to give improved state

estimation performance over Markov processes for scenarios featuring reciprocal targets.

In point measurement tracking, reducing the sensor data to point detections results in the loss

of valuable information. This method is generally sufficient for tracking high Signal-to-Noise

Ratio (SNR) targets but can fail in the case of low SNR targets. The alternative to point

measurement tracking is to provide the sensor intensity map, an image, as an input into the

tracker. This paradigm is referred to as Track-Before-Detect (TkBD). This thesis will focus on

a particular TkBD algorithm based on Expectation-Maximisation (EM) data association called

the Histogram-Probabilistic Multi-Hypothesis Tracker (H-PMHT) as it handles multiple targets

with low complexity. In the second key contribution, we demonstrate a Viterbi implementation

of the H-PMHT algorithm, and show that it outperforms the Kalman Filter in the linear non-
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Gaussian case.

A problem with H-PMHT is that it fails to model fluctuating target amplitude, which can

degrade performance in realistic sensing conditions. The third key contribution addresses this

by replacing the multinomial measurement model with a Poisson mixture process. The new

Poisson mixture is shown to be consistent with the original H-PMHT modelling assumptions

but it now allows for a randomly evolving mean target amplitude state with instantaneous

fluctuations. This new TkBD algorithm is referred to as the Poisson H-PMHT. The Bayesian

prior on the target state is also modified to ensure more robust performance.

The fourth contribution is a novel TkBD algorithm based on the application of EM data asso-

ciation to a new measurement model that directly describes continuous valued intensity maps

and avoids using an intermediate quantisation stage like the H-PMHT. This model is referred

to as the Interpolated Poisson measurement model and is integrated into the Probabilistic

Multi-Hypothesis Tracker (PMHT) framework to derive a TkBD algorithm for continuous data

called the Interpolated Poisson-PMHT (IP-PMHT). The performance of the Poisson H-PMHT

and IP-PMHT algorithms are verified through simulations and are shown to outperform the

standard H-PMHT in terms of SNR estimation, particularly for scenarios featuring targets with

highly fluctuating amplitude.

The final key contribution is the application of several TkBD algorithms based on EM data

association to the active sonar problem through a comparative study using trial data from

an active towed array sonar. The TkBD algorithms are modified to incorporate changes in

target appearance with received array bearing, and are shown to give improved SNR and state

estimation performance compared with a conventional point measurement tracking algorithm.

The thesis concludes by discussing the limitations of the proposed algorithms and possible

avenues for future work.
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Chapter 1

Introduction

The detection and tracking of underwater targets is a fundamental activity in identifying pos-

sible threats to naval operations and other maritime interests. It is typically conducted using

passive or active sonar (sound navigation and ranging). Active sonar sensors transmit acoustic

signals and detect energy that is reflected back from objects in the environment while passive

sensors emit no signals and perform detection by ‘listening’ to sounds waves emitted from the

surrounding environment. In the past few decades, improvements in acoustic noise quietening

techniques have reduced passive acoustic signature levels making it more difficult to detect un-

derwater targets using passive sonar systems. This has lead to an increased use of active sonar

systems for the detection and tracking of underwater targets. Despite this, active sonar track-

ing remains a challenging problem, particularly in littoral environments where performance can

be degraded by high levels of acoustic clutter, fluctuating target returns and a relatively low

measurement update rate.

In this thesis, a Bayesian framework for the detection and tracking of underwater targets using

active sonar is formulated. In general, Bayesian tracking algorithms are built on two statistical

models: the target dynamics model and the measurement model. The target dynamics model

describes the evolution of the target state with time and is almost always assumed to be a

Markov process. The typical measurement model approximates the sensor image with a collec-

tion of discrete points at each frame and point measurement tracking associates these points

together over frames. This thesis investigates alternative target and measurement models based

on Hidden Reciprocal Processes (HRPs) and Track-Before-Detect (TkBD), respectively, and

considers their application to active sonar tracking.

The chapter is arranged as follows: Section 1.1 provides the motivation of this work as it relates

to active sonar tracking; Section 1.2 discusses the unique issues associated with active sonar
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tracking; Section 1.3 outlines the scope of the thesis and summarises the key contributions.

1.1 Motivation

In the past few decades, the emergence of advanced submarine capability from a number of

Asia-Pacific nations has had serious implications for Australian naval operations and its other

maritime interests. Due to advancements in technology, modern submarines are equipped with

new propulsion systems that enable increasingly stealthy and sustained underwater operations.

Combined with other factors such as a highly variable and complex underwater environment,

the task of detecting and tracking of submarines using active sonar is a non-trivial problem. The

Australian Government Department of Defence states in its 2013 Defence White paper [28] that

it envisions “an Australian Defence Force more capable in: undersea warfare; anti-submarine

warfare”. In support of this strategic initiative, this thesis explores effective and robust solutions

for the detection and tracking of underwater targets.

1.2 Active Sonar Tracking Problem

Active sonar systems operate by emitting a pulse of sound energy into the water and detecting

energy that is reflected back from objects in the environment [103]. Given a signal return, the

location of targets of interest can be easily determined: the distance to objects can be calculated

using the difference in time between the initial transmitted pulse and the arrival of any reflected

energy back into the system; bearing can be calculated using beamforming by measuring the

phase difference of the return signal as it strikes the receiver array elements. However, the use

of active sonar to detect and track targets is challenging due to the complex highly variable

nature of the acoustic environment. The level of ocean ambient background noise can vary, and

at times mask the echoes from targets of interest. Therefore, the Signal-to-Noise Ratio (SNR)

of the expected target return must exceed the ambient noise in order for it to be detected.

Sound energy can also be scattered (reflected or diffused) by other sources in the environment

such as marine life or by the inhomogeneous nature of the sea surface and sea floor [138]. A

special case of scattering is reverberation, which is caused by sound energy being backscat-

tered towards the sensor. In shallow littoral waters, reverberation can often be amplified due

to increased signal interactions with the sea surface and sea floor. In this case, the reverber-

ation level can swamp the target return, making target detection difficult. This situation is

generally referred to as a reverberation-limited environment [138]. Unsurprisingly, high levels

of background ambient noise and/or reverberation are generally undesirable and are the two
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most dominant factors in active sonar performance.

The acoustic environment can be often characterised by a highly cluttered and fluctuating

channel, analogous to the fading channel phenomena encountered in communications [12]. In

general, the degradation of active sonar system performance can attributed to the following:

• high levels of acoustic clutter that result in false alarms,

• poor acoustic propagation resulting in low SNR or fading targets,

• complex time-varying acoustic conditions causing multi-path effects, and finally

• a relatively low data update rate.

Under these conditions, the detection and tracking of a single target is a non-trivial problem.

These challenges become even more difficult to mitigate in the multi-target case. Current ap-

proaches in the active sonar tracking open literature are unable to identify one single technique

that is able to adequately address the problems associated with active sonar.

The main objective in active sonar target tracking is to identify the number of targets and

estimate their trajectories over time using a sequence of noisy measurements from an active

sonar sensor. Generally, when analysing a dynamic system, two models are required: a target

model that describes the target state evolution with time; and a measurement model that relates

the noisy measurements to the state. These two models are usually given in probabilistic state

space form and information relating to the system is recursively updated with the arrival of new

measurements. This process lends itself naturally to Bayesian tracking, in which probabilities

are updated whenever new information is received [8].

Under a Bayesian framework, the dynamics of an underwater target is generally assumed to be

a Markov process with nearly-constant-velocity motion. However, a Markov process assumes

that the state evolves without knowledge of its future destination. Random realisations of a

Markov process can also display a large amount of variability and do not, in general, resemble

realistic target trajectories.

The typical measurement model approximates the sensor image with a collection of discrete

points at each frame to enable point measurement tracking. In conventional active signal pro-

cessing systems, the intensity map data is approximated with a collection of point measurements

via a detection threshold process. The resulting point detections are passed as inputs into the

tracker, whose role is to link the measurements with time and provide filtered estimates. This

approach is often sufficient for detecting and tracking high SNR targets but can often fail in
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the case of low SNR targets, as the process of reducing the intensity map data to point mea-

surements results in the loss of valuable information. A low detection threshold is also often

necessary in order to increase the probability of detecting a low SNR target, however this can

result in a high false alarm rate. False alarms are undesirable as they can potentially corrupt

true tracks or give rise to a false track over time.

1.3 Thesis Scope and Overview

The objective of this research is to develop a robust solution to the problem of underwater

tracking using active sonar systems. This thesis will do so by investigating alternative target

and measurement models under the Bayesian framework based on Hidden Reciprocal Processes

(HRPs) and Track-Before-Detect (TkBD), respectively, and consider their application to active

sonar tracking.

In Chapter 2, a summary of the current approaches to the active sonar tracking problem is pre-

sented. This survey encompasses techniques based on conventional point measurement tracking

as well as the recent application of TkBD and multistatics to the active sonar problem. TkBD

is an alternative to point measurement tracking in which the full raw sensor data is supplied to

the tracker. It is important to note that the term TkBD has been used in the wider literature to

refer to applications in which a sequential likelihood ratio test (SPRT) [139] has been applied

to a sequence of point measurements [15]. In this thesis, we will only focus on TkBD methods

in which the tracker is supplied with the full intensity map image data. Chapter 2 concludes

with a general review of conventional point measurement tracking based on Markov processes,

TkBD methods, and HRPs.

Chapter 3 introduces an alternative target model to the Markov process that conditions on a

known destination state. This new model is based on HRPs, which impose a joint distribution

on the initial and final states. A Maximum Likelihood Sequence Estimate (MLSE) for HRPs

based on the Markov bridge approach is derived.

The first key contribution is the first formal derivation of the MLSE for

a HRP in which the random variables are finite-state. The details of this

contribution have been published in the following journal article:

• L. B. White and H. X. Vu. Maximum likelihood sequence estimation for hidden

reciprocal processes. IEEE Transactions on Automatic Control, 58(10):2670–

2674, October 2013.

The assumption of a destination point can be potentially useful in the identification of two
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crossing tracks or the classification of targets and clutter. The problem of joint tracking and

classification has been considered in the literature for a single sensor [23,59] and multiple sensors

in the radar context [128] but is outside the scope of this thesis.

The remainder of the thesis will focus on an alternative measurement model to point mea-

surement tracking. This paradigm is referred to as Track-Before-Detect (TkBD) and is based

on providing the sensor with an intensity map as an input into the tracker. TkBD algorithms

eliminate the thresholding process and as a result, all information relating to the target and en-

vironment are preserved in the measurement. TkBD can be thought of as an automated tracking

algorithm that takes in a sequence of intensity images rather than thresholded detection in-

puts. This thesis will focus on a particular TkBD algorithm based on Expectation-Maximisation

(EM) data association called the Histogram-Probabilistic Multi-Hypothesis Tracker (H-PMHT)

as it handles multiple targets with low complexity.

In Chapter 4, the derivation and implementation of the H-PMHT is reviewed in detail and

an alternative implementation via the Viterbi algorithm is proposed. We also discuss its key

limitations that arise from its quantisation step and its assumptions of independence through

the multinomial measurement model.

The second key contribution is the first implementation of the H-PMHT

using a dynamic programming fixed-grid approximation through appli-

cation of the Viterbi algorithm. The details of this contribution have been

published in the following conference and journal articles:

• H. X. Vu and S. J. Davey. Track-before-detect using Histogram PMHT and

dynamic programming. In Proceedings of the 2012 International Conference

on Digital Image Computing Techniques and Applications (DICTA), pages 1–8,

December 2012.

• S. J. Davey, M. Wieneke, and H. Vu. Histogram-PMHT unfettered. IEEE

Journal of Selected Topics in Signal Processing, 7(3):435–447, June 2013.

A problem with the H-PMHT is that it fails to model fluctuating target amplitude, which can

degrade performance in realistic sensing conditions. In Chapter 5, this limitation is addressed by

replacing the H-PMHT multinomial measurement model with a Poisson mixture process. The

new Poisson mixture is shown to be consistent with the original H-PMHT modelling assump-

tions but it now allows for a randomly evolving mean target amplitude state with instantaneous

fluctuations. This new TkBD algorithm is referred to as the Poisson H-PMHT. The Bayesian

prior on the target state is also modified to ensure more robust performance.
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The third key contribution is the first derivation of the H-PMHT as-

suming a Poisson distribution on the random number of target mea-

surements. This derivation allows for a randomly evolving mean target

amplitude and includes the proposal of an alternative state prior density

that results in more consistent target tracking. The main contributions of this

chapter are summarised in the following conference article and journal submission:

• H. X. Vu, S. J. Davey, S. Arulampalam, F. K. Fletcher, and C.C. Lim. Histogram-

PMHT with an evolving Poisson prior. In 2015 IEEE International Conference

on Acoustics, Speech, and Signal Processing (ICASSP), April 2015.

• H. X. Vu, S. J. Davey, S. Arulampalam, F. K. Fletcher, and C.C. Lim. A

new state prior for the Histogram-PMHT. IEEE Signal Processing Letters, in

preparation.

Chapter 6 proposes a novel TkBD algorithm based on the application of EM data association

to a new measurement model that describes continuous valued intensity maps directly. This

model is based on an interpolated version of the Poisson distribution, which is shown to be ap-

proximately a probability density function (pdf) on the non-negative real line for measurement

rate λ > 4. The interpolated Poisson “distribution” can also be shown to obey an approximate

superposition principle for λ > 4. In this chapter, we will treat the interpolated version of the

Poisson distribution as a probability measure even though it is not strictly a pdf, and make use

of its associated properties to derive a TkBD that is similar in principle to the H-PMHT but

avoids the intermediate quantisation stage inherent in the H-PMHT. The resulting algorithm

is referred to as the Interpolated Poisson-PMHT (IP-PMHT). Note that the derivation of the

IP-PMHT depends on the validity of the superposition and pdf approximations.

The fourth key contribution is the first derivation of a TkBD algorithm

assuming an Interpolated Poisson distribution on the energy generated

by an individual target. Under this formulation, direct estimation of the

measurement likelihood is possible, eliminating the need for an interme-

diate quantisation step. The main contributions of this chapter are the topics of

the following conference article:

• H. X. Vu, S. J. Davey, S. Arulampalam, F. K. Fletcher, and C.-C. Lim. H-

PMHT with a Poisson measurement model. In Proceedings of the 2013 Inter-

national Conference on Radar (Radar), pages 446–451, September 2013.
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Chapter 7 considers the application of several TkBD algorithms based on EM data associa-

tion to the active sonar problem through a comparative study using trial data from an active

towed array sonar. The TkBD algorithms are modified to incorporate changes in target appear-

ance with received array bearing, and are shown to give improved SNR and state estimation

performance compared with a conventional point measurement tracker.

The fifth key contribution is a comparison of several TkBD algorithms

with a conventional point measurement tracker using trial data from an

active towed array sonar system. The TkBD algorithms considered are

the standard H-PMHT, the Poisson H-PMHT and the IP-PMHT. The

TkBD algorithms also feature a modification to the point spread function

to include bearing dependence. The main contributions of this chapter are

summarised in the following conference article:

• H. X. Vu, S. J. Davey, F. K. Fletcher, S. Arulampalam, R. Ellem, and C.-C.

Lim. Track-before-detect for an active towed array sonar. In Proceedings of

Acoustics 2013, November 2013.

An alternative sensing paradigm has also been proposed to address the problems associated

with active sonar tracking. This approach is based on changing the mode of operations from

monostatic (single co-located transmitter and receiver) or bistatic (single separated transmitter

and receiver) to a multistatic architecture consisting of multiple spatially diverse transmitters

and receivers. In a multistatic configuration, detection information can be potentially fused from

a number of source-receiver combinations to provide increased coverage and probability of de-

tection over traditional configurations. The use of distributed sensors in multistatic framework

has been shown to provide significant performance gains in other domains [18, 145]. However

the problems inherent in active sonar such as high false alarm rate and multi-path reflections

can often be amplified in multistatic systems due to the increased number of source-receiver

geometries. Multistatic systems are inherently more complex as issues such as sensor registra-

tion and localisation, and a scheme for the optimal fusion of detections and tracks must also

considered. Owing to time constraints, the scope of this thesis will be limited to only techniques

that improve the tracking aspects of active sonar systems.

In Chapter 8, the thesis is concluded by discussing the limitations of the proposed algorithms

and possible avenues for future work.
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Chapter 2

Background

This chapter introduces the general tracking problem and discusses the three major causes

for uncertainty in object tracking. This chapter then focuses on the Bayesian state estimation

problem for active sonar tracking and provides an overview of the various approaches to the

problem. A general review of conventional point measurement tracking, Track-Before-Detect

(TkBD) methods, and Hidden Reciprocal Processes (HRPs) is also presented.

A survey of the literature reveals that although there have been various approaches to solving

the active sonar tracking problem, this area is mostly limited to applications of a single al-

gorithm to simulated sonar data featuring Markov targets. A comprehensive study comparing

the performance of different tracking algorithms to trial sonar data is notably absent. Although

there have been some applications of TkBD to active sonar, the research has been mostly limited

to conventional point measurement tracking.

The thesis will focus on the following areas of research for the active sonar tracking problem:

• the application of alternative target models such as HRPs,

• the application of alternative measurement models based on the TkBD paradigm,

• a comparative study to determine the merits of applying conventional point measurement

tracking and TkBD to trial sonar data.

The chapter is arranged as follows: Section 2.1 formulates the generic tracking problem; Section

2.2 establishes the active sonar tracking problem for both conventional point measurement

tracking and TkBD; a review of the various approaches to active sonar tracking is also presented;

Section 2.3 provides a general review of linear and non-linear point measurement tracking

for Markov processes; Section 2.4 introduces an alternative target model based on HRPs and
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discusses its application to target tracking; Section 2.5 presents an overview of the various

TkBD algorithms available in the literature.

2.1 The General Tracking Problem

In general, the goal of object tracking is to determine the location, trajectory or characteristics

of some target of interest using a series of noisy measurements from a sensor. The problem can be

challenging owing to the large number of uncertainties that can arise from modelling the target,

sensor and environment. These uncertainties can be separated into three main categories. The

first category considers the problem of model order, that is, how many targets are assumed to

be in the surveillance region. The solution to this problem considers models for track existence

and approaches for initialisation. Once the model order is determined, the second problem to

consider is data association, that is, which measurements should be associated to which target.

The last problem deals with target state estimation and is generally referred to as filtering. In

the following subsections, each problem is discussed in more detail.

2.1.1 Model Order

In many practical applications, targets can appear and disappear from the surveillance region

at various times and the problem of estimating the number of targets at a specific time is a

non-trivial task. In some applications, the model order or number of targets is simply assumed

to be known. Alternatively, tracks can be initiated on all detections that appear in every frame.

However in some applications, a large number of spurious detections can arise due to random

background noise and assuming that each detection is a potential track can be inefficient.

A number of track initialisation schemes have been proposed to link together persistent de-

tections across frames. The most common track initialisation procedure is known as the M/N

rule [21], which initialises tracks on any M out of N series of point detections over time that

are consistent with the motions of some target of interest.

A more principled approach to track initialisation is to consider the track probability of exis-

tence. This method assumes that each detection is a potential track and calculates existence

measures to determine whether tracks should be kept or discarded. If a track’s probability of

existence exceeds a predetermined threshold, then the track is considered a confirmed track.

Likewise, a track can be terminated if its existence probability falls below another predetermined

threshold.
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2.1.2 Data Association

Another complication in tracking is measurement origin uncertainty. In general, measurements

from a sensor are assumed to also contain detections that are not from the target of interest.

These measurements are regarded as false detections and when passed to the tracker, can result

in false tracks. As stated earlier, spurious false detections can arise from random background

noise and generally do not result in false tracks, however persistent detections due to environ-

mental boundaries or from targets of non-interest can generate false tracks and also potentially

corrupt tracks from targets of interest. One of the main difficulties in tracking is determining

which measurements arise due to each target and which measurements are the result of false

alarms or due to objects that are not of interest. This problem is referred to as data association.

There are a number of data association schemes available in the literature. One of the simplest

schemes is based on the Nearest Neighbour (NN) approach, which associates each target with

its closest measurement [14]. A variant of NN is the Global Nearest Neighbour (GNN) method

that ensures that a measurement is associated with at most one target. An obvious drawback

to these methods is that the NN measurement is not always the true target measurement.

The aforementioned data association schemes are based on ‘hard’ associations, in which a

measurement can only be associated with at most one target. Probabilistic Data Association

(PDA) is an alternative paradigm that performs ‘soft’ associations by expressing the target state

probability density function (pdf) as a weighted sum of target state pdfs over data association

hypotheses and provides expressions to determine the probabilities of these hypotheses [27].

The resulting pdf is a Gaussian mixture, which is then approximated by a single Gaussian. The

use of a single Gaussian component to approximate the Gaussian mixture arising from the sum

of pdfs over data association hypotheses can be problematic, especially when the mixture has

more than one dominant component. The PDA algorithm also assumes that there is only one

target.

A variant of PDA is the Integrated PDA (IPDA) algorithm which combines existence with

data association by extending the target state-space with a binary existence variable that is

assumed to evolve according to a Markov Chain [27, 94]. The IPDA provides equations for

recursively updating the target states and the probability of target existence based on the PDA

approach for data association. The probability of existence can then be used to automate track

management.

Note that the algorithms discussed up until now assume the existence of only a single target.

However, the problem of data association becomes more difficult when there are multiple tar-

gets of interest for which data association must be performed. It is possible to extend single
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target algorithms to multi-target tracking by running a bank of single target filters in scenarios

featuring well-separated targets. Joint Probabilistic Data Association (JPDA) is an alternative

scheme developed for multi-target tracking. It is based on PDA and calculates the probabil-

ity of measurement to target associations jointly across all targets. Each target is represented

by a marginalised pdf (by marginalising over all other targets), which are then approximated

by a single Gaussian for each target. For a large number of targets or measurements, JPDA

quickly becomes infeasible due to the combinatorial complexity of iterating over all possible

measurement to target associations. Like the PDA, JPDA can also be extended to include

target existence; the resulting algorithm is called the Joint Integrated Probabilistic Data Asso-

ciation (JIPDA) [93]. However, the performance of PDA-based algorithms can suffer in scenarios

with closely spaced targets, as measurements from different targets are clustered together and

can corrupt target tracks. Another alternative data association scheme for multi-target tracking

is the Probabilistic Multi-Hypothesis Tracker (PMHT), which performs data association based

on Expectation-Maximisation (EM) [121].

Multi-Hypothesis Tracking (MHT) is widely considered the best algorithm for multi-target

tracking. It is based on postponing hard data associations until sufficient evidence becomes

available [32]. At each time, the MHT stores all possible track hypotheses regarding past and

current associations, which results in a combinatoric explosion of hypotheses. Pruning schemes

based on deleting the most unlikely potential tracks are used to reduce the number of hypothe-

ses.

2.1.3 Filtering

The final issue in tracking is the problem of estimating the states of the targets that correspond

to existing tracks. This problem is also known as filtering. In this subsection, the generic filtering

problem is introduced and a summary of the literature on filtering methods is provided.

Assume a scenario in which we wish to estimate the kinematic state of a target over time using

a sequence of noisy measurements. In order to do this, it is necessary to define an appropriate

filtering framework. The problem can be formulated generically as follows.

Define the state vector xmt , which evolves with time t ∈ N, where N is the set of all natural

numbers, m = 1, . . . ,M denotes the target index in the case of a multi-target scenario, and M is

the total number of targets. Assume that the target state cannot be directly observed, and there

is some sensor that collects observations zt of the target at time scan t. Let Zt = {z1, . . . ,zt}
denote the collection of measurements observed up until time t.

Generally, when analysing a dynamic system, two models are required: the target dynamics and
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measurement models. The target dynamics model describes the evolution of the target state with

time and is almost always assumed to be a Markov process. For the most part of this thesis, it is

assumed that the target dynamics can be modelled using a 1st order Markov model p(xmt |xmt−1)

such that the target state xmt at time t only depends on its previous state xmt−1. The measurement

model p(zt|xmt ) maps the state into the measurement space. The typical measurement model

approximates the sensor image with a collection of discrete points, generally by normalising the

signal, applying a detection threshold, and performing clustering and centroiding at each frame.

These point detections are passed as inputs to a tracker, whose role is to link the detections

with time and provide filtered state estimates. This type of tracking is generally referred to as

point measurement tracking.

The problem with point measurement tracking is that the act of reducing the sensor image

to a collection of points through a detection threshold throws away valuable information and

removes the opportunity to accumulate evidence over multiple pings [14]. Also, in conventional

point measurement tracking, the clustering stage is required to meet the constraint that a target

can only generate one measurement at each frame, however by doing so, it throws away any

information regarding the shape of the target. Furthermore, some clustering algorithms such

as K-means clustering are N-P hard problems and suboptimal approximations are generally

required [70]. Finally, most centroiding algorithms calculate an average between clustered points,

which can give rise to large errors, particularly in scenarios featuring closely spaced targets.

On the other hand, TkBD methods are able to both accumulate information over time and

maintain information about the shape of the target.

The recursive Bayesian approach to dynamic state estimation requires the construction of a

posterior pdf p(xmt |Zt) of the state based on all available information, including information

gained from Zt, the noisy measurements received up to time t. The pdf is assumed to contain all

available information of the state and is considered to be a complete solution to the estimation

problem. The recursive Bayesian filter used to update the pdf given new information consists

of two stages:

Prediction stage: The state is propagated forward in time using the target dynamics model

p(xmt |xmt−1). The pdf broadens due to the uncertainty in the system model. Assume that the

initial density of the state p(xm0 |z0) = p(xm0 ) is known and suppose the posterior pdf at the

previous time step t− 1 is given as p(xmt−1|Zt−1). The previous estimate state can be predicted

to the current time t using the Chapman-Kolmogorov equation to obtain the prediction density

(prior pdf of the state), which can be expressed as,

p(xmt |Zt−1) =

∫
p(xmt |xmt−1)p(xmt−1|Zt−1)dxmt−1. (2.1)
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Update stage: The information contained in the new measurement is used to modify (tighten)

the pdf. In the update stage of the filter, it is assumed that the measurement zt becomes avail-

able and can be used to modify the prior pdf p(xmt |Zt−1). Then the state update is performed

using Bayes Theorem:

p(xmt |Zt) = p(xmt |zt,Zt−1) (2.2)

=
p(zt|xmt ,Zt−1)p(xmt |Zt−1)

p(zt|Zt−1)
(2.3)

=
p(zt|xmt )p(xmt |Zt−1)

p(zt|Zt−1)
, (2.4)

where p(zt|xmt ) is the likelihood function defined by the measurement model and known statis-

tics of the measurement noise sequence ψ, and

p(zt|Zt−1) =

∫
p(zt|xmt )p(xmt |Zt−1)dxmt . (2.5)

For the remainder of this section, the discussion on tracking solutions will assume that the

target is modelled by a Markov process. For further details on conventional point measurement

tracking based on Markov processes, see section 2.3.

In the case of a single Markov target scenario in which both the target dynamics and mea-

surement models are assumed to be linear functions with Gaussian noise, the optimal finite

dimensional solution to the discrete-time recursive Bayesian state estimation problem is the

Kalman Filter (KF). At every time, the KF assumes that the posterior pdf is Gaussian and

therefore can be completely characterised by its mean and covariance. See subsection 2.3.1 for

more details on the KF. If however, either the target dynamics or the measurement model is

non-linear or non-Gaussian, the KF is no longer optimal and non-linear filtering methods based

on approximations or suboptimal solutions must be considered. A review of these algorithms is

provided in 2.3. These techniques can be separated into four main categories:

1. Analytic approximations, e.g. Extended Kalman Filter (EKF) described in subsection

2.3.2.

2. Grid-Based approximations, e.g. Forward-Backward and Viterbi algorithms described

in subsections 2.5.1 and 2.5.2, respectively.

3. Sampling Approaches [112], e.g. Unscented Kalman Filter (UKF) and Particle Filter

(PF) described in subsections 2.3.3 and 2.3.4, respectively.

4. Random Finite Sets, e.g. Probabilistic Hypothesis Density filter (PHD) and Cardi-

nalised Probabilistic Hypothesis Density (CPHD) filter described in subsection 2.3.5.
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The Markov process commonly used for target modelling assumes that the state evolves without

knowledge of its future destination. Random realisations of a Markov process can also display

a large amount of variability and do not, in general, resemble realistic target trajectories. An

alternative to the Markov assumption is the reciprocal process (RP), which assumes condition-

ing on a known destination state. In subsection 2.4, we introduce the hidden reciprocal model

and discuss its application to target tracking.

The algorithms discussed above assume that the measurement model approximates the sensor

intensity map, an image, with a collection of point detections. However, reducing the sensor

data to point detections results in the loss of valuable information. This method is generally

sufficient for tracking high Signal-to-Noise Ratio (SNR) targets, but can fail in the case of low

SNR targets. One alternative to point measurement tracking is Track-Before-Detect (TkBD),

which provides the sensor image as an input into the tracker. This allows concurrent detection

and tracking to be performed. Current TkBD algorithms are based on modifying conventional

point measurement trackers to accommodate the sensor image as an input. See section 2.5 for

a general review of TkBD algorithms.

In this section, we have formulated the tracking problem in the generic sense. In the next section,

we describe the target and measurement models for the problem of underwater tracking using

active sonar.

2.2 Active Sonar Tracking Problem

In active sonar tracking, the main objective is to identify the number of targets and estimate

their trajectories over time using a sequence of noisy sonar measurements. This is a non-trivial

task as the vast majority of these measurements are attributed to clutter objects and measure-

ments from targets of interest have low probability of detection.

In section 2.2.1, we establish the active sonar problem for conventional point measurement

tracking and review the literature based on this approach. The requirement for more robust

trackers against low SNR targets has led to the development of an alternative measurement

model called TkBD. In Section 2.2.2, we motivate the application of TkBD to the active sonar

problem and provide an overview of the research in this space. Another method used to track

low SNR targets is multistatics, which is based on the fusion of measurements from several

sensors. Multistatics exploits detections from a network of sensors to improve target probability

of detection. In section 2.2.3, we review multistatics in the context of the active sonar problem.
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2.2.1 Conventional Point Measurement Problem

In conventional active signal processing systems, the intensity map data is approximated with

a collection of point measurements via a detection threshold process. The resulting point de-

tections are passed as inputs to the tracker, whose role is to link the measurements over time

and provide smoothed estimates.

Assume a scenario in which we wish to estimate the kinematic state of M underwater targets

over time using a sequence of noisy measurements from a sonar sensor. Again, define the state

vector xmt , which evolves with time t and m = 0, . . . ,M denotes the component index. A

component can be attributed to either a clutter or target object, therefore define component

m = 0 to be the clutter component.

For conventional active sonar target tracking, it is sufficient to describe the target state using

position and velocity in two-dimensions. Define xmt and ẋmt to be the target position and velocity

in the x-direction, respectively. Similarly, define ymt and ẏmt to be the respective target position

and velocity in the y-direction. The target state for point measurement tracking is defined as:

xmt =
[
xmt ẋmt ymt ẏmt

]T
, (2.6)

where [·]T denotes the transpose operation. It is assumed that the state vector contains all

relevant information about the system.

Target Model: The target model describes the target state evolution with time and can be

expressed in terms of a discrete-time stochastic model,

xmt = ft−1(xmt−1) + vt−1, (2.7)

where ft−1 denotes the state transition function from xmt−1 to xmt and vt−1 is an independent

identically distributed (iid) system noise sequence representing uncertainties in the target mo-

tion. For the active sonar tracking problem, the target model needs to capture the dynamics of

an underwater target. It is assumed that a nearly-constant-velocity model is sufficient. In this

case, the function ft−1 is set to be a known matrix Ft−1 describing a linear state transition from

xmt−1 to xmt .

Measurement Model: The measurement model relates the noisy measurements to the state

xmt . In conventional point measurement sonar tracking, measurements are commonly received

in range and bearing. Let Zt = {zjt } for j ∈ {1, . . . ,mt} denote the set of point measurements

received at time t where mt denotes the number of measurements received at time t. Note that

since the detection probability of each target is, in general, less than unity, there is no guarantee
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that every target will produce a point measurement at each time. Furthermore, some of these

detections may originate from clutter.

Suppose target m is associated with measurement jm at time t. Then,

zjmt = ζt(x
m
t ) +ψt, (2.8)

where ζt(x
m
t ) denotes the measurement function that maps the state into the measurement

space and ψt is an iid measurement noise sequence. Clutter detections are assumed to be

uniformly distributed across the surveillance region and the total number of clutter detections

at each time is assumed to follow a Poisson distribution. Note that (2.8) is a very simple model

and does not accommodate scenarios in which targets can generate more than one detection

per frame. Nevertheless, most conventional point measurement trackers in active sonar assume

point detections adhere to this model.

In conventional active sonar tracking, the sensor measures the position of the target. Depending

on the waveform, it may also measure Doppler (which is related to the velocity) component of

the target. Throughout this thesis, it is assumed that the measurement process only observes

the position component of the target, and thus the likelihood p(zjmt |xmt ) is independent of the

target velocity component.

As the measurements in active sonar are generally polar (range and bearing), and the target

state is more naturally modelled in a Cartesian frame, the literature on point measurement

tracking for active sonar is generally limited to non-linear filtering techniques. Comparisons

of various point measurement trackers for the multi-target active sonar problem can be found

in [95,142]. Both articles apply non-linear filtering techniques based on GNN and PDA schemes

to a simulated active sonar environment. These association methods are discussed in subsection

2.1.2. A non-linear filtering technique based on an interacting multiple model for a simulated

sonar environment has also been proposed [5]. The application of Random Finite Set (RFS)

theory to active sonar tracking is considered in [26]. The authors compared a Probability Hy-

pothesis Density (PHD) filter with standard multi-target trackers on both simulated and trials

data from an Autonomous Underwater Vehicle (AUV). For more details on RFS theory, refer

to subsection 2.3.5. The extension of passive tracking techniques to the active sonar tracking

has also been proposed and applied to simulated data [107].

2.2.2 Track-Before-Detect Problem

Conventional tracking techniques reduce sensor data intensity maps to point measurements

using a detection thresholding process. The detection of a high SNR target return in a single

frame is generally possible. However the task of detection becomes more difficult for low SNR
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targets. TkBD algorithms are a natural solution for tracking low SNR targets as the declaration

of a target detection can be delayed until after a series of frames have been processed. It does so

by supplying raw sensor data to the tracker, rather than point measurements from thresholded

detections. This allows potential targets to be detected and tracked simultaneously. In contrast

to conventional point measurement tracking, TkBD does not throw away any data, but is

inherently more computationally intensive. It is important to note that the term TkBD has

been used in the wider literature to refer to applications in which a sequential likelihood ratio

test (SPRT) [139] has been applied to a sequence of point measurements. An example of this

is the sequential Maximum Likelihood-Probabilistic Data Association (ML-PDA) filter, which

assumes a target has deterministic motion [15]. In this thesis, we will only focus on TkBD

methods in which the tracker is supplied with the full intensity map image data.

Again, we can define the state vector for the mth target as xmt , which evolves with time t where

m = 1, . . . ,M . In the TkBD case, it is common to supplement the state vector with the target

amplitude,

xmt =
[
xmt ẋmt ymt ẏmt Amt

]T
, (2.9)

where Amt denotes the amplitude of the mth target return at time t. As in conventional point

measurement tracking, both a target and a measurement model are required when analysing a

dynamic system.

Target Model: The target model is assumed to be the same as in the conventional point

measurement tracking case.

Measurement Model: For the TkBD problem, let Zt now represent the intensity map, an

image, that is received from the sonar sensor. The measurement model relates images Zt in

range and bearing to the target state xmt . Let zit denote the energy in the ith pixel of the

measurement image at time t, and let Zt = {zit} for i = 1, . . . , I represent a stacked vector of

all the pixels in the image where I is the total number of pixels in the measurement image. For

ease of presentation, we have used a stacked vector to represent the image to allow single index

referencing. A two dimensional representation could just as easily have been used. We assume

a point-scatterer target, such that the target contribution to the measurement image can be

described purely in terms of the point spread function (psf), h(xmt ),

Zt =
M∑
m=1

Amt h(xmt ) +wt, (2.10)

where wt is an iid measurement noise sequence for the image. Note that the psf is a property

of the sensor and can vary with different sensors. The sum in (2.10) represents an incoherent
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combination of target power. For some systems, it may be appropriate to consider coherent

superposition, in which case both Amt and wt are complex.

The recursive Bayesian approach can again be employed to construct the state pdf. However,

as the output of the TkBD measurement model generally consists of a two-dimensional image,

p(Zt|xmt ) is now defined as the likelihood of seeing the sequence of images given the state of

the target. Assuming independent pixel noise, the likelihood for the image Zt can be factorised

as follows,

p(Zt|xmt ) =

I∏
i=1

p(zit|xmt ). (2.11)

As the psf in (2.10) is highly non-linear, the TkBD measurement model defined in (2.10) is

also a highly non-linear function of the target state and only approximations or suboptimal

solutions can be considered. We point out however, that techniques based on discrete Hidden

Markov Models (HMMs) are not restricted by assumptions of linearity and Gaussian noise,

making them naturally suited to TkBD applications. A review of early TkBD algorithms for

image sequencing, radar and sonar can be found in [125]. These techniques have the potential

to provide significant gains for both detecting and tracking low SNR targets in high clutter

scenarios [39].

As a prelude to TkBD in active sonar, techniques based on the inclusion of target and clutter

amplitude information within conventional point measurement trackers to improve tracking

performance for active sonar have also been considered for simulated data [4, 25, 82] and for

active sonar trials data [71,104,114].

The first applications of TkBD to active sonar were based on dynamic programming techniques,

which employ fixed grids to model the propagation of target states with time [16, 46, 125]. In

similar work, a TkBD technique using a HMM for detection in the active sonar problem was

proposed in [102]. This work used a new track initiation scheme named a sequential Markov

detector that combines a HMM with a sequential detector and delays the decision of a target

presence or absence until after a number of time frames have been processed. Results showed

improved detection performance on simulated data over conventional trackers.

Most of the TkBD applications have been demonstrated on simulated data and the application

to real-world data has been limited; a Generalised Likelihood Ratio Test (GLRT) was developed

for a bistatic sonar scenario using sea trials data [97]; the direction of arrival for a series of sonar

returns was estimated using a PF adapted to TkBD for the reconstruction of an underwater

bathymetric scene [113]. The application of other alternative TkBD algorithms to active sonar

data has also been limited. Moreover, previous applications of TkBD have failed to address the

issues that are unique to active sonar.
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This thesis will focus on the application of a particular TkBD algorithm called the Histogram-

Probabilistic Multi-Hypothesis Tracker (H-PMHT) to the active sonar tracking problem. For a

detailed review of the derivation and implementation of the H-PMHT algorithm, the reader is

referred to Chapter 4.

A comparison of TkBD methods to conventional point measurement trackers is notably absent

in the literature. In Chapter 7, the performance of the H-PMHT is compared with a conven-

tional point measurement tracker based on IPDA [27, 94]. The H-PMHT is also modified to

incorporate changes in target appearance with received array bearing. The benefits of TkBD

over conventional tracking is analysed in two representative acoustic environments using trials

data from an active towed array sonar system.

2.2.3 Multistatics

Multistatic active sonar systems have been proposed as an alternate means for tracking low SNR

underwater targets. Traditionally, active sonar systems have been operated in a monostatic (sin-

gle co-located transmitter and receiver) or bistatic (single separated transmitter and receiver)

mode. Multistatic systems extend these systems to multiple spatially diverse transmitters and

receivers. In a multistatic configuration, the measurement model assumes detections can be

fused from a number of source-receiver combinations, which can provide increased coverage and

increased probability of detection over monostatic and bistatic systems. The research in this

area has been primarily focused on adapting point measurement trackers and data association

algorithms to sonar sensor networks [31,56,61–64,68].

However the problems inherent in active sonar such as high false alarm rate and multi-path

reflections can often be amplified in multistatic systems. Furthermore, multistatic systems have

additional complexities such as sensor registration, localisation problems, and require fusion of

measurements from multiple sensors [29,30,33].

Another related area of research is the concept of Multiple-Input Multiple-Output (MIMO) [54].

Originally conceived in communications, and recently adapted to the radar and sonar problem

[11, 75], MIMO systems are a specific statistical example of multistatics. Unlike conventional

beamforming techniques that transmit correlated signals to form directional beams, MIMO

systems capitalise on spatial diversity between sensors to improve system performance.

This thesis focuses on TkBD techniques for monostatic systems but we point out that TkBD

can be extended to accommodate multistatic networks. The problem of multistatic TkBD has

been considered in the imaging context [123], multistatic radar [57, 74] and for MIMO radar

[66, 67, 99, 156]. The first application of TkBD to multistatic active sonar considered the issue
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of fusing measurements from a network of passive sonars illuminated by a single active source

[90]. This was been followed by the application of dynamic programming techniques [46] and

Likelihood Ratio Detection and Tracking (LRDT) [115] to at-sea multistatic sonar data.

2.3 Conventional Point Measurement Filtering based on Markov

Processes

In this section, a general overview of linear and non-linear conventional point measurement

tracking based on Markov processes is presented. In particular, we focus on the filtering algo-

rithms used for this problem. Subsections 2.3.1-2.3.4 describe single target filters while subsec-

tion 2.3.5 discusses multi-target filters.

2.3.1 Kalman Filter

Under linear-Gaussian assumptions, the KF is the optimal solution to the recursive Bayesian

state estimation problem. It assumes the posterior density is Gaussian at each time step and

therefore can be completely described by its mean and covariance. Recall that for conventional

point measurement tracking, the target and measurement models are defined in (2.7) and (2.8),

respectively, and are given by,

xt = ft−1(xt−1) + vt−1,

zt = ζt(xt) +ψt.

where xmt and zt denote the state and its associated measurement, respectively. Let N (x;µ,P)

be a Gaussian density about x with mean µ and covariance P. Recall that Zt = {z1, . . . ,zt}
denotes the set of measurements received up to time t. If the posterior density p(xt−1|Zt−1) is

assumed to be Gaussian, then the density at the next time step p(xt|Zt) is also Gaussian if the

following assumptions are valid:

• The noise sequences vt−1 ∼ N (0,Qt−1) and ψt ∼ N (0,Rt) are uncorrelated with each

other and with time. Note that Qt−1 and Rt denote the process and measurement covari-

ance matrices, respectively;

• The process function ft−1(xt−1) is known and linear;

• The measurement function ζt(xt) is known and linear.

Note that the target index m has been suppressed for notational simplicity. Under these as-

sumptions, the state evolution and measurement models can be described as vector difference
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equations,

xt = Ft−1xt−1 + vt−1 (2.12)

zt = Htxt +ψt, (2.13)

where Ft−1 and Ht are the known linear process and measurement matrices.

Given the posterior pdf at the previous time step t− 1,

p(xt−1|Zt−1) = N (xt−1; x̂t−1|t−1,Pt−1|t−1), (2.14)

we can predict forwards in time and the prior pdf for the next time step t has the following

form,

p(xt|Zt−1) = N (xt; x̂t|t−1,Pt|t−1). (2.15)

The predicted mean x̂t|t−1 and covariance Pt|t−1 are defined by the standard KF equation [6].

When a new measurement zt arrives, the posterior pdf for the next time step t has the following

distribution,

p(xk|Zt) = N (xt; x̂t|t,Pt|t). (2.16)

The updated mean x̂t|t and covariance Pt|t can also be calculated by the standard KF equations

[6]. Given the estimate of the posterior pdf of the state p(xt|Zt) at the current time, the KF

recursively calculates the mean and covariance of the state.

2.3.2 Extended Kalman Filter

The KF is the optimal recursive Bayesian filter for the linear-Gaussian case. However in reality,

problems are often highly non-linear and non-Gaussian. In these cases, optimal filters cannot

be applied and we must look towards approximations or suboptimal filters for solutions. The

Extended Kalman Filter (EKF), the higher order EKF and the iterated EKF are examples

of analytic approximations applicable to problems with either non-linear state dynamics or

non-linear measurement models [108].

Consider the non-linear filtering problem in which both the process function ft−1 and measure-

ment function ζt(xt) are assumed to be non-linear functions with additive white Gaussian noise

sequences vt−1 ∼ N (0,Qt−1), and ψt ∼ N (0,Rt), respectively.

The EKF approximates the non-linear functions ft−1 and ζt by the first order terms in their

Taylor series expansions. That is, ft−1 and ζt are approximated by local linearisations through

their corresponding Jacobians F̂t−1 and Ĥt, evaluated at x̂t−1|t−1 and x̂t|t−1, respectively. The
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EKF and its cousins are analytic approximations as F̂t−1 and Ĥt have closed form solutions. As

a result, the EKF requires the process and measurement models ft−1 and ζt to be continuous,

differentiable functions of their arguments.

2.3.3 Unscented Kalman Filter

The Unscented Transform (UT) is a method for capturing the mean and covariance of a random

variable that undergoes a non-linear transformation. The idea has been applied to the KF

framework, resulting in the Unscented Kalman Filter (UKF) [78,141]. Unlike the EKF, the UKF

does not attempt to approximate the non-linear functions ft−1 and ζt with analytic terms, but

rather it approximates the posterior distribution of the state p(xt|Zt) by a Gaussian random

variable. We can regard the UKF as a statistical linearisation of the state as opposed to the

EKF, which is based on an analytic linearisation.

The UKF represents the Gaussian density by a minimal set of deterministically chosen sample

points and uses these sample points to completely capture the mean and covariance of the

Gaussian density. When propagated through a non-linear system, the sample points capture

the true mean and covariance of the posterior density of the state. If the true psf is highly non

Gaussian, then there will be discrepancies between the higher order moments of the true pdf

and its Gaussian approximations. If the problem is highly non-linear, it is possible to sample

non-local effects even if the true mean and covariance are captured. The scaled version of the

UT has been proposed that addresses this problem [141]. The main limitation with the UT is

that it cannot adequately describe multi-modal pdfs.

2.3.4 Particle Filter

So far, we have considered non-linear filtering algorithms that make analytical or statistical

Gaussian approximations about the posterior pdf. In this section, we introduce Particle Filters

(PFs) as an alternative approach that does not require these approximations. Like the UKF,

the PF also uses the sampling approach to solve the dynamical state estimation problem. The

PF is founded upon Sequential Monte Carlo (SMC) estimation and is based on the idea that a

probability density can be represented by a set of random samples or ‘particles’ with associated

weights.

Let {xit, wit}Ni=1 be a set of samples and associated weights that represents the pdf p(xt|Zt).
Then the posterior at time t can be approximated by,

p(xt|Zt) =
N∑
i=1

wikδ(xt − xit), (2.17)
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where δ(·) denotes the delta function. As the number of samples become very large, the particle

representation of the pdf becomes close to the true pdf, and the PF approaches the optimal

Bayesian estimator.

To estimate p(xt|Zt), suppose at the previous time step t − 1, we have a set of samples and

associated weights {xit−1, w
i
t−1}Ni=1 that represent the posterior pdf p(xt−1|Zt−1). The PF prop-

agates the particles xit−1 forward in time using a proposal density q(xit|xit−1, zt), which we refer

to as the importance density. When a new measurement zt arrives at time k, a new set of

particles and weights are calculated to approximate p(xt|Zt). The weights for the current time

are updated according to

wit ∝ wit−1

p(zt|xit)p(xit|xit−1)

q(xit|xit−1, zt)
. (2.18)

A problem with the PF is that the weights degenerate over time. That is, after a few recursions

all but one particle has a negligible normalised weight [44]. A large amount of computational

effort is wasted updating particles that have a negligible impact on the approximation of the

posterior. Resampling has been proposed to combat the degeneracy problem and can be imple-

mented whenever severe degeneracy is encountered. Effectively, resampling discards particles

of negligible weight and multiplies those particles that contribute most to the approximation

of the posterior density. However, resampling can also introduce other problems. Resampling

can result in a loss of diversity among particles as at each resampling stage, the same particles

are selected due to their high importance weights. Often this phenomenon occurs in problems

with small process noise and can cause all particles to collapse into a single point, a situation

referred to as sample impoverishment. Solutions to sample impoverishment have been proposed

that incorporate a regularisation step in the PF [96].

2.3.5 Random Finite Sets

For most applications, the computation of the posterior distribution of the multi-target state

is intractable due the exponential increase in complexity of enumerating over all possible mea-

surement to target associations. Recently, the application of Random Finite Set (RFS) theory,

also known as finite point processes, to the multi-target Bayesian tracking problem has been

proposed to address this issue.

A RFS is defined as a random variable that takes values in an unordered finite set. Like any

random variable, a RFS can be completely described by its probability distribution. As a re-

sult, equivalent notions of integration and density can be defined. As a RFS does not follow the

normal notions of integration and density inherent in metric probability, the algorithm borrows
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ideas of integration and density from FInite Set Statistics (FISST). This has led to the devel-

opment of the Probability Hypothesis Density (PHD) filter [88], which forms a first moment

approximation to the multi-target Bayes filter. The PHD filter proceeds by only propagating

the first moment of the filter (posterior intensity function), rather than the normal posterior

density itself; the moment is then approximated to close the Bayes recursion Note, however

that the PHD filter suffers from the loss of higher order cardinality information. To overcome

this, the Cardinalised PHD (CPHD) filter has been proposed as a generalisation to the PHD

filter, by jointly propagating the posterior intensity function and posterior cardinality distribu-

tion [89]. In addition to these algorithms, the Multi-Target Multi-Bernoulli (MeMBer) filter

has also been introduced as an approximation to the multi-target posterior density [88]. It does

so by propagating the parameters of a multi-Bernoulli RFS, which are used to approximate the

multi-target posterior density. Gaussian mixtures and PF implementations of these filters have

been proposed [129,131].

The problem with this approach is that it fails to link state estimates with time. In the multi-

target case, this becomes an identification problem and suboptimal procedures can be used to

associate new state estimates with existing tracks. Like the JPDA filter, this method also suffers

in high clutter and scenarios featuring closely spaced targets.

2.4 Hidden Reciprocal Processes

Current techniques for target tracking predominantly assume a target dynamics model based

on a HMM. These models generally assume a causal process such that the target state at any

given time is only dependent on its previous states. In some scenarios, it may be more appro-

priate to assume a non-causal model such as a reciprocal process (RP) to represent the target

dynamics. RPs are able to incorporate models that utilise target destination information by

assuming a joint probability distribution on the initial and final states. This allows destination

aware tracking to be performed [50]. The ability to specify statistically dependent target source

and destination points may help to mitigate common problems encountered in multiple target

tracking such as resolving targets in a crossing target scenario. This can potentially aid in dis-

tinguishing benign targets from targets of interest for classification purposes. RPs can also be

used to detect anomalous behaviour in target trajectories by modelling the intent of a target

through its destination point [49].

Jamison [77] first showed that an RP could be generated by pinning a Markov process at its

endpoints and assigning a probability density to the endpoints. He also showed that two RPs

can be generated by pinning the same Markov process at different endpoints. The RPs are con-
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sidered equivalent as they are assumed to have the same dynamics. The application of RPs to

the surveillance and tracking of merchant ships was first presented in [20] in which the authors

show how predictive information can be incorporated into estimation for the continuous-time

Gaussian case. In other work, [83] proposed a discrete-time, Gaussian RP for modelling and esti-

mation. The authors derived an optimal fixed-interval smoother based on a Forward-Backward

procedure, similar to the fixed-interval smoothers derived for Gauss-Markov processes.

The generalisation of current HMM-based TkBD methods to include acausal assumptions via

HRPs is relatively straight forward for fixed-grid approximation techniques. Recently, the prob-

lem of optimal fixed-interval smoothing for finite-state, discrete-time HRPs was addressed via

the Markov bridge approach in [19,146,147]. The resulting algorithm is similar to the Forward-

Backward smoothers constructed for a HMM. In Chapter 3, we provide an extension to this

work by utilising the Markov bridge approach to calculate the Maximum Likelihood Sequence

Estimate (MLSE) for a HRP.

2.5 Track-Before-Detect

In general, TkBD methods can be divided into two approaches. The first approach considers

TkBD in terms of tracking and estimation by treating the data as a measurement input into the

system. The second approach considers TkBD from a detection perspective and is based on the

fundamental idea that an improved SNR would result when an stationary signal is incoherently

accumulated over a number of frames. In this section, an overview of TkBD techniques is

presented with a focus from the tracking perspective. For a detailed review of TkBD techniques,

the reader is referred to [39]. In subsequent chapters, we propose to modify and adapt some of

these techniques to the active sonar problem.

Maybeck and Mercier [91] were the first to apply a non-linear filter to the TkBD problem by

employing an EKF to the problem of detection and tracking using a forward looking infrared

sensor. The EKF assumes that any non-linearity in the measurement image can be adequately

described by a first order linearisation of the measurement process. In applications where the

non-linearity is severe such as the TkBD problem, analytic approaches such as the EKF can

perform poorly, except in the case of a high SNR target.

Techniques for TkBD then moved from the analytic to the sampling domain in which numerical

fixed grid-based approaches were employed to approximate the state space. Barniv was the first

to discretise the state space and describe the problem as a discrete HMM [9]. A HMM is a

statistical model based on a Markov process in which the states of the process are ‘hidden’

and cannot be directly observed. He employed dynamic programming techniques in the form of
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the Viterbi algorithm to search for the most likely target state sequence across the grid [7–9].

Tonissen furthered this work by analysing the detection statistics of the Viterbi algorithm

[124]. An alternative HMM grid-based approach was implemented by Bruno via the Forward-

Backward algorithm in which the posterior density was evaluated over the entire grid space and

propagated with time [87].

Fixed grid approximation techniques are naturally multi-target algorithms, however the dis-

cretisation of the state space results in a higher computational complexity as a direct result of

evaluating the state pdf over the entire grid. Much of this computation is wasted by evaluating

the probability in the pdf tails where there is little to negligible probability. The desire for a

more dynamic and adaptive grid led to the application of Particle Filter (PFs) to the TkBD

problem in the radar context [17, 110, 111]. In contrast to fixed grid-based approaches that

employ static samples, the PF utilises Monte Carlo random sampling.

In recent years, random finite sets have been also applied to the TkBD problem. The first

application of RFS to tracking on image data was proposed in [130] based on a multi-Bernoulli

filter. This was followed by applications to visual tracking at a cell by cell level [73] and to

tracking ground moving targets with road constraints [151]. Extensions of the RFS to MIMO

distributed networks [66] have also been considered. A comparison of RFS TkBD algorithms

with other TkBD algorithms can be found in [152].

Another unique approach to TkBD is the Histogram-Probabilistic Multi-Hypothesis Tracker

(H-PMHT) [117, 120]. The H-PMHT algorithm is based on the application of Expectation-

Maximisation (EM) data association to intensity map data and naturally returns an estimate

of the target amplitude. This technique collates the measurement images as a histogram and

assumes some underlying mixture density. Like the grid-based approaches, the H-PMHT is

a natural multi-target algorithm and is efficient as it does not require the computation of

likelihood ratios. The application of TkBD to extended object tracking has been proposed

in [48,150]. Research into the best theoretical mean square error bounds for TkBD can also be

found in [92].

2.5.1 Forward-Backward Algorithm

The Forward-Backward algorithm is an optimal Bayesian smoother for discrete states that

calculates the probability of a state at each time step given a sequence of observations using

marginal posterior probabilities p(xt|Zt) [105]. However this calculation does not produce the

single best state sequence; instead the output is a sequence of states that are individually most

likely, given all observations. This criterion maximises the number of correct individual states.
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The Forward-Backward algorithm can be effectively regarded as a gradient descent algorithm

searching for a minimum error.

The posterior marginal probabilities are calculated using two passes. The forward procedure

advances in time and calculates the set of filtering probabilities that defines an initial estimate

of the state. The backwards procedure computes a set of probabilities in reverse time and refines

the estimates. The final state sequence is computed by combining the forwards and backwards

variables to obtain the distribution of states at any specific point in time given the entire

observation sequence. For a detailed review of the Forward-Backward algorithm, the reader is

referred to Section 3.3.

The Forward-Backward algorithm accumulates probabilities over all paths to give an estimate

of the state at each time. It is naturally suited to estimating multiple targets as it sums over all

paths to any given state. At the final time step, the estimate will minimise all errors, however

the path to the final state may violate the constraints imposed by the target dynamics model.

In the next section, we review the Viterbi algorithm, which considers the joint distribution of

the state sequence, rather than the marginals, and guarantees that the final solution will be a

valid target path.

2.5.2 Viterbi Algorithm

Originally founded in speech recognition and communications, the Viterbi algorithm is a grid

based approximation technique commonly used in tracking to compute Maximum Likelihood

(ML) target trajectory estimates. It does so by making use of dynamic programming to derive

efficient solution methods. In the context of tracking, the idea behind dynamic programming

can be expressed as follows. If the optimal path between two points A and C is known to pass

through point B, then the best path is the optimal path between A and B, followed by the

optimal path from B to C. Based on this principle, a large problem can be effectively reduced

to several smaller subproblems, and a more efficient implementation for an exhaustive search

can be realised.

Unlike the Forward-Backward algorithm, which calculates a minimum variance estimator or a

Maximum a Posteriori (MAP) estimator, the Viterbi algorithm produces a MAP probability

sequence estimate. [105]. It does so calculating the best score over all paths that end in each

state. By induction, the highest probability path to each state at the next time step can be

calculated. To generate the final state sequence, a back-pointer array stores the state that

maximised the cost function for every state each time step.

It is an example of a batch estimator as it recalculates the entire state sequence with every
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new observation. One advantage of the Viterbi algorithm is that it guarantees that the final

solution will be a valid target path as it considers the joint distribution of the state sequence.

However, the Viterbi algorithm only returns the best path, hence all other paths that are close

to optimal are disregarded.

The extension to multi-target tracking using dynamic programming can be challenging due to

the additional computational complexity from the increased number of states. A multi-target

dynamic programming for unknown number of targets is outlined in [74,155].

Both the Viterbi and forward and backward algorithms are examples of optimal grid-based ap-

proximation techniques, which discretise the state space and calculate the Maximum Likelihood

Estimator (MLE) of the parameters of a HMM, given a sequence of observations. The key differ-

ence between the two algorithm lies within their definition of an ‘optimal’ state sequence. The

Forward-Backward algorithm is a Bayesian estimator that finds the sequence of states that are

individually most likely using marginal posterior probabilities. On the other hand, the Viterbi

algorithm is a dynamic programming method that finds the single most likely state sequence.

For a detailed review of the Viterbi algorithm, the reader is referred to Section 3.4.1.

2.5.3 Likelihood Ratio Detection and Tracking

Another example of a Bayesian TkBD method based on a discretised grid is the Likelihood Ratio

Detection and Tracking (LRDT) algorithm [116]. The LRDT algorithm proceeds by extending

the state space to accommodate a null state to model the case when no target is present in

the observation space. It forms a Bayesian recursion using likelihood ratios rather than target

states, and cumulates measurement likelihood ratios over all possible target trajectories. The

main benefit of this approach over other TkBD methods is that it allows information from

multiple disparate sensors to be fused as it does not require explicit associations between sensors

and tracks.

The LRDT assumes at most one target but it can be extended to the multi-target space by

employing a bank of single independent trackers for scenarios with well separated targets. It

has been successfully applied to at-sea sonar data, however its performance is dependent on

accurate array localisation and estimates of background noise [116]. A variation of LRDT has

been shown to give good performance in multi-sensor passive acoustic data [81].

2.5.4 Particle Filter

In this section, we introduce an alternate TkBD approach based on PFs. In the HMM ap-

proaches described in previous subsections, much of the computation is wasted by evaluating
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the probability in the state pdf tails where there is little to negligible probability. The PF is

similar to the Forward-Backward procedure as it also evaluates marginal posterior probabilities,

however these calculations are performed in the filtering rather than smoothing context. Like

the Forward-Backward algorithm, the PF is also a Bayesian estimator that finds the sequence

of states that are individually most likely using marginal posterior probabilities.

PFs were first applied to the TkBD problem in [17, 111]. The TkBD PF algorithm proceeds

by constructing two sets of particles; a set of birth particles and a set of continuing particles.

The mixing proportions between the two sets are determined by the prior null state probabil-

ity, probability of birth and probability of death. At the update stage, the null probability is

calculated based on particle weights and the birth and continuing particles are combined to

construct the pdf. Resampling is also carried out using uniform weights. A target is declared

when the null probability falls below a predetermined threshold. Finally, state estimates are

found by taking the conditional mean of state vectors over all particles.

A comparison of the performance of HMM methods with the TkBD PF for a single target

scenario with varying speeds and SNR is presented in [39]. It was found that for most scenar-

ios, all the algorithms gave similar performance, however the TkBD PF algorithm performed

significantly faster as it uses substantially fewer sampling points than is required in a discrete

grid.

2.5.5 Random Finite Sets

The extension of RFS theory to the TkBD problem is based on computing the posterior dis-

tribution of the RFS over the image observation. The result is an approximate solution to the

Bayes multi-target filter [88, 89]. This approach is unique as it not only provides an estimate

the current target states, but it also outputs an estimate of the number of targets. It does so

by jointly estimating these variables from the measurement image.

The first application of RFS to tracking on image data was based on a MeMBer filter using a

particle filter implementation [130]. The MeMBer filter is simply an approximation to the multi-

target Bayes filter and can be modified to track on raw image data. It requires the assumption

of a separable likelihood in which the distributions for the target and noise are assumed to be

independent [157]. Unfortunately, this approach only outputs estimates of the state values at

each time. An additional layer of track management is required to link the state values with

time to give trajectory estimates. A solution to this issue for TkBD has been proposed through

the idea of labelled RFS [100].
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2.5.6 Histogram-Probabilistic Multi-Hypothesis Tracker

The Histogram-Probabilistic Multi-Hypothesis Tracker (H-PMHT) was originally developed

by Streit [117] in which he extended the Probabilistic Multi-Hypothesis Tracker (PMHT)

algorithm to track on intensity modulated measurement data. The literature on the H-PMHT

algorithm is limited and mostly restricted to linear Gaussian applications. However, in recent

years the H-PMHT has been demonstrated with non-linear and non-Gaussian problems [35,36].

The H-PMHT is an attractive algorithm as it has been shown to give performance that is close

to the optimal Bayesian filter at a fraction of computational cost [39]. The H-PMHT’s unique

definition of the measurement model provides data association weights that allows it to retain

linear complexity with the number of targets.

The H-PMHT algorithm is based on the generation of a synthetic histogram by quantising the

energy in the sensor data followed by the application of EM mixture modelling to describe the

underlying data sources [86,140]. In the final step of the derivation, the limit of the quantisation

is taken and the original sensor data is recovered. The quantisation step only appears in the

derivation of the algorithm and not in its implementation. The interpretation of the quantized

sensor image as a histogram and the subsequent use of PMHT data association led to the

algorithm name. For a detailed review of the H-PMHT algorithm, the reader is referred to

Chapter 4.

The H-PMHT can be applied to a wide range of problems as long as an appropriate state

estimator exists to perform the maximisation step of the EM algorithm. The H-PMHT state

estimation component of the EM procedure has been implemented using an EKF [35] and

PF [36]. An implementation based on the Viterbi algorithm is derived for the H-PMHT in

Chapter 4.

A problem with H-PMHT is that it fails to model fluctuating target amplitude. This limitation

is addressed in Chapter 5, in which we consider an alternative measurement model based on

a Poisson assumption on the quantised measurement counts. The new Poisson model is shown

to be consistent with the original H-PMHT modelling assumptions but it now allows for an

improved measure for track quality.

The process of taking the quantisation limit to zero also has other consequences when a Bayesian

model is adopted: the infinite amount of synthetically generated data will overwhelm any prior.

In Chapter 6, we propose a novel TkBD algorithm based on the application of EM data asso-

ciation to a new measurement model that directly describes continuous valued intensity maps

and avoids using an intermediate quantisation stage like the H-PMHT.

31



32



Chapter 3

Maximum Likelihood Sequence

Estimation for Hidden Reciprocal

Processes

This chapter addresses the problem of maximum likelihood sequence estimation when a Hid-

den Reciprocal Process (HRP) is the underlying target model. Reciprocal Processes (RPs) are

discrete-time stochastic processes that can be regarded as one-dimensional versions of a Markov

random field (MRF), although they are not in general Markov processes. Unlike Markov pro-

cesses that assume the target state at any given time is dependent only on its previous states,

RPs are based on acausal processes. The key contribution of this chapter1 is the first formal

derivation of the maximum likelihood sequence estimator (MLSE) for a HRP in which the

random variables are finite-state; this special case of a HRP is referred to as a Hidden Re-

ciprocal Chain (HRC). The main contents of this chapter have also been published in journal

article [149].

The chapter is arranged as follows: Section 3.1 discusses the background and motivation for an

acausal target dynamics model in the context of the Track-Detect (TkBD) problem; Section 3.2

provides a general introduction to HRPs and discusses how they can be uniquely represented

using Markov bridges; Section 3.3 reviews the procedure for computing an optimal smoother

for a reciprocal target model based on the Markov bridge approach [147]; Section 3.4 proposes

an extension of this method to evaluate the MLSE for a HRC; Section 3.5 verifies the state esti-

mation performance of the new reciprocal-based MLSE through simulated scenarios featuring a

1Langford B. White, Professor of Telecommunications Engineering at the University of Adelaide is acknowl-

edge here for his supervision of the work undertaken in this chapter.
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reciprocal target trajectory. As the Hidden Markov Model (HMM) is an important model used

in target tracking, the new estimator is compared to the equivalent MLSE for a HMM: the well

known Viterbi Algorithm [7]. In addition, the performance of the new estimator is compared to

the reciprocal-based optimal smoother. The key contributions of the chapter are summarised

in Section 3.6.

3.1 Introduction

RPs can be regarded as one-dimensional versions of a Markov random field. Markov random

fields are spatial processes and are defined as a set of random variables whose values only

depend on the values of its nearest neighbours. RPs are also generalisation of Markov processes.

Specifically, Markov models assume a causal process such that the target state at any given

time is dependent only on its previous states. On the other hand, RPs are acausal processes

where the target state at any given time is based on both past and future states.

Current techniques for target tracking predominantly assume a target dynamics model based

on a Markov process. This approach is suitable for surveillance problems for which the

• observation period may be limited by the sensor’s performance or by restrictions on the

target resources,

• target intent and final destination are unknown.

However, in reality, some targets can travel over an extended period of time with a final des-

tination that can potentially be clearly defined. In such a case, it is possible for the target’s

destination to be known prior to the final time point and the target state at any given time

is dependent on both its past and future states. Thus it may be more appropriate to consider

acausal target models such as RPs, which are capable of predicting termination points as well

as tracking targets to their final destination.

An obvious example of an acausal target appears in the ship surveillance problem, in which

information regarding a ship’s movements is divided into two categories: sightings by other

maritime platforms or satellites provide information about the ship’s past movements, whereas

information regarding refuelling stops provide information about the ship’s future trajectory.

Unlike Markov processes, which condition only on the past, RPs incorporate both categories of

information by assuming a joint probability distribution on the initial and final states. The in-

clusion of target destination information in the target motion model by RPs allows destination-

aware tracking to be performed [49, 50]. The ability to specify statistically dependent target
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source and destination points can assist in mitigating common problems encountered in multi-

target tracking. For example, RPs can potentially exploit destination information to distinguish

targets of interest from benign targets for target classification purposes or resolve targets in a

crossing target scenario.

The key contribution of this chapter is the first formal derivation of the MLSE for a HRC. The

developments in this chapter show that, for certain scenarios, the replacement of the Markov

model assumption with a target dynamics model such as the RP can result in improved state

estimation performance.

A summary of the existing literature on RPs is provided in subsection 2.4. The generalisation

of current HMM-based TkBD methods to include acausal assumptions via HRPs is relatively

straight forward for fixed-grid approximation techniques. Recently, the problem of optimal

fixed-interval smoothing for finite-state, discrete-time HRPs was addressed via the Markov

bridge approach in [19, 146, 147]. A Markov bridge is defined as a Markov process conditioned

on the initial and final states being known [55]. Note that the more widely known Brownian

bridge is also a Markov process and can be considered the reference process for a Markov

bridge [24, 109]. The authors combined Markovian target dynamics with a specified target

source-destination distribution to yield a HRP model [77]. For the case when there are a finite

number of states, denoted Nv, it was shown that a HRC can be represented by Nv Markov

bridges, one corresponding to each of the Nv possible final states. This unique representation

is used to derive the optimal fixed-interval smoother for a HRC and is similar to the Forward-

Backward smoothers constructed for a HMM [147]. This chapter provides an extension to this

work by utilising the Markov bridge approach to perform MLSE for a HRC.

3.2 Hidden Reciprocal Processes

Let Xt, t = 0, . . . , T for some integer T > 2 denote a sequence of random variables. Assume

that each Xt takes values in the finite set S = {1, . . . , Nv} for some finite integer Nv ≥ 2. For a

first order Markov process, the conditional probability distribution of Xt given all other values

of Xs, where s 6= t, satisfies

p (Xt|Xs,∀ s 6= t) = p (Xt|Xt−1) . (3.1)

That is, the Markov process assumes that the target state at any given time is only dependent

on its previous state. The Markov model is specified by the transition function (3.1) and an

initial probability,

Πi = p (X0 = i) . (3.2)
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The process Xt is said to be reciprocal if for each t = 1, . . . , T − 1 it satisfies

p (Xt|Xs,∀ s 6= t) = p (Xt|Xt−1, Xt+1) , (3.3)

i.e. RPs are one dimensional nearest neighbour processes where the conditional distribution of

Xt depends only on its neighbours. In random field theory [65], this property is referred to

as the “Markov” property. A RP can then be thought of as MRF with respect to the time

parameter. In general, RPs are not necessarily Markov processes however, any Markov process

is reciprocal [77]. The reciprocal model is specified by the transitions (3.3) and by the endpoints

probability distribution,

Πi,k = p (X0 = i,XT = k) . (3.4)

The term Reciprocal Chain (RC) will be used to specify that the random variables Xt are finite-

state. The term ‘hidden’ will apply if the variables Xt cannot be observed directly. Instead a

sequence of random observations Yt, t = 0, . . . , T statistically dependent on Xt are available.

By fixing the endpoint of a RP, we generate what is commonly referred to as a Markov bridge

[77]. Thus for the finite Nv state case, a RP can be thought to be equivalent to Nv Markov

bridges, one corresponding to each of the possible final states taken by XT = k, where k =

1, . . . , Nv. For a given RC, let the three point transition function for t = 1, . . . , T − 1 be given

by,

Qijl(t) = p(Xt = j|Xt−1 = i,Xt+1 = l). (3.5)

In [147], the authors show how to construct the Markov bridge transitions corresponding to a

specified three point transition function. First, define Bk
i,j(t) to be the Markov bridge transitions

that specify the probability of transiting from state i at time t to state j at time t + 1, given

a final destination of state k. A backward recursion [77] can be derived that fully specifies the

set of Nv Markov bridge transitions for T − 2, . . . , 0 from the RC transition function Qijl such

that,

Bk
i,j(t) = p (Xt+1 = j|Xt = i,XT = k)

=
Qijl(t+ 1)

Bk
j,l(t+ 1)

(
Nv∑
m=1

Qiml(t)

Bk
m,l(t+ 1)

)−1

. (3.6)

Initialisation is with Bk
i,j(T − 1) = 1 for j = k and zero otherwise. This ensures that for the

Markov bridge that terminates in state k at time T , the target at the penultimate time step

is also in state k. Let πki denote the initial probability distribution for the Markov bridge that
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ends in state k. It is given by the conditional distribution,

πki = p (X0 = i|XT = k)

=
Πi,k

Nv∑
j=1

Πj,k

. (3.7)

It can be seen that any RC can be uniquely specified by a finite set of Markov bridges with

transitions (3.6) and initial distributions (3.7).

3.3 Optimal Smoothing

This section discusses the procedure for computing an optimal smoother for a HRC using the

Markov bridge approach [147], where the underlying RP is derived from a stationary Markov

process. We wish to emphasise that the procedure for deriving the smoother is applicable to

any RP without loss of generalisation. The more general case, where the underlying dynamics

of the RP is not specified directly by a Markov transition is addressed in [147].

Before the optimal smoother for a HRC is presented, we first review the optimal smoother for

a Hidden Markov Chain (HMC), that is, the well-known Forward-Backward algorithm [105].

3.3.1 Optimal smoothing for Hidden Markov Models: Forward-Backward

Algorithm

The Forward-Backward algorithm is a discrete state technique and forms the optimal Bayesian

smoother by calculating the probability of a state at time t given a sequence of observations

using marginal posterior probabilities.

For a discrete state tracking problem, it is assumed that the target state space is broken up into

Nv ≥ 2 distinct cells where each cell corresponds to a state in a HMC. Let Xt be a deterministic

mapping from index space into physical space. At any given time, our target of interest can

occupy any one of the distinct states.

At regular discrete time points t, the system undergoes change in which the target can transition

with some probability to another state or remain in its previous state. In the general case, the

probabilistic motion of the system is described in terms of the current state at time t as well as

all of its predecessor states. However for a first order discrete Markov process, it is sufficient to

describe the system in terms of the current and previous state. That is, the probabilistic model

is assumed to be independent of time with state transition probabilities,

Aij(t) = P (Xt = j|Xt−1 = i). (3.8)
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The Forward-Backward algorithm calculates the marginal probability of a state at time t given a

sequence of observations p(Xt = i|Y0, . . . , Yt), it does not produce the single best state sequence.

Instead the output is a sequence of states that are individually most likely, given all observations.

The posterior marginal probabilities are calculated using two passes. The forward procedure

advances in time and calculates the set of filtering probabilities that defines an initial estimate

of the state. The backwards procedure computes a set of probabilities in reverse time and refines

the estimates. First define αt(Xt = j) as the forward variable, which is the probability of seeing

observation sequence Y0, . . . , Yt and being in state i at time t. For t = 0, . . . , T , the forward

probabilities can be calculated recursively as follows,

αt(Xt = i) = p(Xt = i, Y0, . . . , Yt)

=

Nv∑
j=1

p(Xt = i,Xt−1 = j, Y0, . . . , Yt)

=

Nv∑
j=1

p(Xt = i|Xt−1 = j)P (Xt−1 = j, Y0, . . . , Yt−1)p(Yt|Xt = i)

=

Nv∑
j=1

Aji αt−1(Xt−1 = j)p(Yt|Xt = i), (3.9)

where p(Yt|Xt = i) is the likelihood of observing measurement Yt conditioned on being in state i

at time t. Also, define the backward variable βt(Xt = i) as the probability of seeing observation

sequence Yt+1, . . . , YT conditioned on being in state i at time t. For t = T − 1, . . . , 0, it can be

calculated recursively as follows,

βt(Xt = i) = P (Yt+1, . . . , YT |Xt = i)

=

Nv∑
j=1

p(Yt+1, . . . , YT , Xt+1 = j|Xt = i)

=

Nv∑
j=1

p(Xt+1 = j|Xt = i)p(Yt+2, . . . , YT |Xt+1 = j)p(Yt+1|Xt+1 = j)

=

Nv∑
j=1

Aijβt+1(Xt+1 = j)p(Yt+1|Xt+1 = j), (3.10)

where p(Yt+1|Xt+1 = j) is the likelihood of observing measurement Yt+1 conditioned on be-

ing in state j at time t + 1. The final state sequence is computed by combining the forward

and backward variables to obtain the posterior probability of Xt given the entire observation

sequence. After the normalisation, the posterior probabilities are given by,

p(Xt = i|, Y0, . . . , YT ) =
αt(Xt = i)βt(Xt = i)

Nv∑
j=1

αt(Xt = j)βt(Xt = j)

. (3.11)
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To find the best state for t = 1, . . . , T , the Maximum a Posteriori (MAP) estimator (i.e. finds

the mode of the posterior distribution) can be calculated by choosing the state with the highest

probability mass,

X̂t = argmax
i

p(Xt = i|Y0, . . . , YT ). (3.12)

Alternatively, the best state can also be calculated using the conditional mean estimate as

follows,

X̂t = E[Xt|Y0, . . . , YT ]

=

Nv∑
i=1

i p(Xt = i|Y0, . . . , YT ). (3.13)

As we are approximating the continuous position and velocity state space by a discretised

grid, the conditional mean is an appropriate state estimator. The forward procedure can be

initialised using Πi via (3.2) and the likelihood that the state is in i at the first time point. For

the backward procedure, the probabilities are arbitrarily assigned to unity for all states, i.e. a

uniform prior. A summary of the Forward-Backward algorithm is provided in Algorithm 1 on

page 40.

3.3.2 Optimal Smoothing for Hidden Reciprocal Chains

In [147], White presents a generalisation of finite state optimal smoothing to HRCs, which is

based on a modification of the Forward-Backward algorithm to allow for a reciprocal dynamics

model. Consider the class of HRCs generated by a specified set of Markov transition matrices

and a specified joint distribution on the endpoints. We now describe how we can obtain a Markov

bridge from a general Markov chain {Xt}. Suppose we have the Markov transition probability

matrix A(t), t = 0, . . . , T − 1, and an initial probability distribution Πi (3.2). To generate a

Markov bridge, we must ensure that the probability of the endpoint XT = k is unity for some

state k. The resulting process is referred to as the (i, j, k) bridge derived from Xt. Using Bayes’

rule, the Markov bridge transitions Bk
i,j(t) can be expressed in terms of the Markov transitions

Ai,j(t),

Bk
i,j(t) = p (Xt+1 = j|Xt = i,XT = k)

=
p (Xt+1 = j,XT = k|Xt = i)

p (XT = k|Xt = i)

=
p (Xt+1 = j|Xt = i) p (XT = k|Xt+1 = j)

p (XT = k|Xt = i)

=
Ai,j(t) Φj,k(t+ 1, T )

Φi,k(t, T )
, (3.14)
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Algorithm 1 Forward-Backward Algorithm

1. Initialise forward and backward probabilities for all state X grid points i = 1, . . . , Nv,

α0(X0 = i) = Πip(Y0|X0 = i)

βT (X0 = i) = 1,

where Y0 denotes the initial measurement.

2. Recurse forward in time for t = 1, . . . , T ,

• For each state i = 1, . . . , Nv, calculate forward probabilities,

αt(Xt = i) =

Nv∑
j=1

Aji αt−1(Xt−1 = j)p(Yt|Xt = i),

where Yt denotes the measurement received at time t.

3. Recurse backward in time for T − 1, . . . , 0,

• For each state i = 1, . . . , Nv, calculate backward probabilities,

βt(Xt = i) =

Nv∑
j=1

Aijβt+1(Xt+1 = j)p(Yt+1|Xt+1 = i)

4. Recurse forward in time for t = 1, . . . , T , compute the conditional mean state estimate

given the observations Y0, . . . , YT ,

X̂t =

Nv∑
i=1

i p(Xt = i|Y0, . . . , YT ),

where

p(Xt = i|Y0, . . . , YT ) =
αt(Xt = i)βt(Xt = i)

Nv∑
j=1

αt(Xt = j)βt(Xt = j)
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where Φ(s, t) is defined for s ≤ t by,

Φ(s, t) =

{
I s = t

A(t− 1)A(t− 2) · · · A(s) s < t .
(3.15)

In order to construct a RC Xt, the endpoints (X0 = i,XT = k) can be drawn from the

endpoint distribution (3.4), and a Markov bridge starting at X0 = i can be constructed using

the transition probabilities defined in (3.14). The equivalent three-point transition function for

this process is specified by the Markov transitions A(t) as

Qjik(t) = p (Xt = i|Xt−1 = j,Xt+1 = k)

=
Aj,i(t− 1) Ai,k(t)

Φj,k(t− 1, t+ 1)
. (3.16)

Jamison [77] proves that all RPs are attributed a three-point transition function of this form.

Consider a HRC that consists of the RC Xt and a set of observation variables Yt, t = 0, . . . , T ,

which are related through the following conditional independence property,

p (Y0, . . . , YT |X0, . . . , XT ) =
T∏
t=0

p (Yt|Xt) . (3.17)

The same assumption is made in a HMC. Assume that the conditional likelihoods p (Yt|Xt = i)

are well-defined and can be evaluated.

To compute the optimal smoother for a HRC, define the forward procedure αki (t) to be the joint

probability of observing the sequence Y0, . . . , Yt and being in state i at time t. However under

the reciprocal model, we fix the endpoint so that the forward probabilities are also conditioned

on being in state k at final time T . For the kth Markov bridge, it can be calculated recursively

as follows,

αki (t) = p(Xt = i, Y0, . . . , Yt|XT = k)

=

Nv∑
j=1

p(Xt = i,Xt−1 = j, Y0, . . . , Yt|XT = k)

=

Nv∑
j=1

p(Xt = i|Xt−1 = j,XT = k) p(Xt−1 = j, Y0, . . . , Yt−1|XT = k) p(Yt|Xt = i)

=

Nv∑
j=1

Bk
ji(t− 1) αkj (t− 1) p(Yt|Xt = i), (3.18)

for t = 1, . . . , T−1. Above, we have applied the property that a RC terminating at the endpoint

XT = k is equivalent to a Markov bridge with three point transition probabilities Bk
ji and initial

distribution πki given by (3.7).
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For the HRC backward procedure, define βki (t) to be the joint probability of observing the

sequence Yt+1, . . . , YT , conditioned on being in state i at time t and having a final destination

XT = k. For the kth Markov bridge, the backward procedure can be calculated recursively as

follows,

βki (t) = p(Yt+1, . . . , YT |Xt = i,XT = k)

=

Nv∑
j=1

p(Yt+1, . . . , YT , Xt+1 = j|Xt = i,XT = k)

=

Nv∑
j=1

p(Xt+1 = j|Xt = i,XT = k) p(Yt+2, . . . , YT |Xt+1 = j,XT = k) p(Yt+1|Xt+1 = j)

=

Nv∑
j=1

Bk
ij(t) β

k
j (t+ 1) p(Yt+1|Xt+1 = j), (3.19)

for t = T − 2, . . . , 0. As per the Forward-Backward algorithm, the final state sequence is com-

puted by combining the forwards and backwards variables to compute the posterior probabilities

for the Markov bridge ending in XT = k,

p(Xt = i|Y0, . . . , YT , XT = k) ∝ αki (t)β
k
i (t)

= δki (t). (3.20)

It can be seen that the optimal smoother for a HRC is equivalent to forming Nv Markov

bridge smoothers, each corresponding to termination point in state k. Bayes’ rules allows us to

combine the Nv bridges by marginalising over the final state distribution P (XT = k) and thus

the posterior probabilities are given by,

p(Xt = i|Y0, . . . , YT ) ∝
Nv∑
k=1

αki (t)β
k
i (t) p(XT = k)

= δi(t), (3.21)

where p(XT = k) is the marginal obtained from the joint endpoints distribution given in (3.4).

A conditional mean of the state estimates can be obtained in the standard way (3.13) by

normalising the probabilities such that,

p(Xt = i|Y0, . . . , YT ) =
δi(t)

Nv∑
j=1

δj(t)

. (3.22)
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The forward and backward probabilities can be initialised as following,

αki (0) = p(X0 = i|XT = k)

= πki P (Y0|X0 = i), (3.23)

βki (T − 1) = p(YT |XT−1 = i,XT = k)

= p(YT |XT = k), (3.24)

where πki is the Markov bridge endpoints distribution defined in (3.7) and let βki (T ) = 1 for

states i and Markov bridges k. Note that βki (T − 1) is identical for i = 1, . . . , Nv. As the

HRC optimal smoother iterates over all Markov bridges terminating in state k, computational

complexity is O(N3
vT ) compared with O(N2

vT ) for the HMC optimal smoother. The procedure

for computing the optimal smoother for a HRC is summarised in Algorithm 2 on page 44.

3.4 Maximum Likelihood Sequence Estimation

In this section, the procedure for computing the MLSE for a HRC target model is outlined

assuming that the underlying RC is again derived from a stationary Markov process. The

method for computing the MLSE for a HRC target model is the key contribution for this

chapter. Before we outline the procedure, we first review the MLSE for a HMC, namely the

well known Viterbi algorithm.

3.4.1 MLSE for Hidden Markov Models: Viterbi Algorithm

Like the Forward-Backward algorithm, the Viterbi algorithm is also a discrete state technique

and is commonly used in tracking to compute maximum likelihood (ML) target trajectory esti-

mates. It does so by making use of dynamic programming to derive efficient solution methods.

In the context of tracking, the idea behind dynamic programming can be expressed as follows. If

the optimal path between two points A and C is known to pass through point B, then the best

path is the optimal path between A and B, followed by the optimal path from B to C. Based

on this principle, a large problem can be effectively reduced to several smaller subproblems,

and a more efficient implementation for an exhaustive search can be realised.

Unlike the Forward-Backward algorithm, which calculates a minimum variance estimator or a

MAP estimator, the Viterbi algorithm produces a MAP probability sequence estimate. It does so

by finding the single best state sequence X0, . . . XT , given a set of noisy observations Y0, . . . , YT .

The other key difference between the Viterbi algorithm and other filtering methods such as the
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Algorithm 2 Optimal Smoother for HRC

1. Initialise forward and backward probabilities for all state X grid points i = 1, . . . , Nv,

αki (0) = πki p(Y0|X0 = i)

βki (T ) = 1

βki (T − 1) = p(YT |XT = k),

where Y0 and YT denote the initial and final measurement, respectively.

2. Recurse forward in time for t = 1, . . . , T − 1,

• For each state j = 1, . . . , Nv and Markov bridge ending in state XT = k, calculate

forward probabilities,

αki (t) =

Nv∑
j=1

Bk
ji(t− 1) αkj (t− 1) p(Yt|Xt = i),

where Yt denotes the measurement received at time t.

3. Recurse backward in time for T − 2, . . . , 0,

• For each state j = 1, . . . , Nv and Markov bridge ending in state XT = k, calculate

backward probabilities,

βki (t) =

Nv∑
j=1

Bk
ij(t) β

k
j (t+ 1) p(Yt+1|Xt+1 = j)

4. Recurse forward in time for t = 1, . . . , T , compute the conditional mean state estimate

given the observations Y0, . . . , YT ,

X̂t =

Nv∑
i=1

i p(Xt = i|Y0, . . . , YT ),

where

p(Xt = i|Y0, . . . , YT ) =
δi(t)

Nv∑
j=1

δj(t)

δi(t) =

Nv∑
k=1

αki (t)β
k
i (t)p(XT = k)
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Forward-Backward algorithm lies within their definition of an ‘optimal’ state sequence. Filters

are causal estimators that find the states that are individually most likely using marginal

posterior probabilities. On the other hand, the Viterbi algorithm is a dynamic programming

method that finds the single most likely state sequence.

In order to find the most likely state sequence, first define the quantity Ct(Xt) to be the best

score over all paths that end in state i from time 0, . . . , t as

Ct(Xt = i) = max
X0,...,Xt−1

P (X0, . . . , Xt = i, Y0, . . . , Yt). (3.25)

By induction, the highest probability path can be calculated at the next time step for state

Xt+1 = j as follows,

Ct+1(Xt+1 = j) = max
i

{
Ct(Xt = i) Aij(t)

}
P (Yt+1|Xt+1 = j). (3.26)

To generate the final state sequence, a back-pointer, denoted by θt(Xt), is required that stores

the state i that maximised equation (3.26) for each time step. The cost functions C0(Xt = i)

can be initialised using the initial distributions (3.2) and the likelihood at the first time point

p(Y0|X0 = i) for states i = 1, . . . , Nv.

The Viterbi algorithm calculates the probability of a partial state sequence at any given time,

while keeping a back-pointer θt indicating how the current state could be reached. It is similar

in implementation to the forward procedure of the Forward-Backward algorithm except that it

replaces the summation over previous states with a maximisation. The Viterbi algorithm also

has the additional backtracking step to find the overall best sequence of states. One advantage

of the Viterbi algorithm is that it guarantees that the final solution will be a valid target path

as it considers the joint distribution of the state sequence. However, the Viterbi algorithm

only returns the best path, hence all other paths that are close to optimal are disregarded.

Thus the Viterbi algorithm is naturally a single target tracker. For multi-target tracking, the

Viterbi algorithm can be modified to return either the M best paths or all paths that fall above

some threshold set by the user. However, note that these M best paths may not necessarily

correspond to good tracks for the M targets; several paths may differ by only one or two points

and may be redundant estimates for a single target. A summary of the Viterbi algorithm for

single target tracking is provided in Algorithm 3 on page 46.

Unfortunately, the probability of observing any particular state sequence can be very small due

to the size of the discretised Viterbi grid. As a result, the recursive computation of these very

small conditional probabilities can potentially lead to numerical stability problems. To avoid

these issues, an implementation of the Viterbi algorithm using logarithms of the conditional

probabilities is used here [105]. In the next section, we describe how to calculate the MLSE for
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a HRC. This procedure is based on a modification of the Viterbi algorithm to accommodate a

reciprocal target model.

Algorithm 3 Viterbi Algorithm

1. Initialise the scoring quantities and the back-pointer array for all state X grid points

i = 1, . . . , Nv,

C0(X0 = i) = Πip(Y0|X0 = i)

θ0(X0 = i) = 0,

where Y0 denotes the initial measurement.

2. Recurse forward for time points t = 1, . . . , T ,

• For each state j, calculate Ct(Xt = j), the cost to transition to state from state

i at time t − 1 to state j at time t. Store the state i that maximised the cost

function in back-point array θt(Xt) = j,

Ct(Xt = j) = max
i

{
Ct−1(Xt−1 = i) Aij(t)

}
P (Yt|Xt = j)

θt(Xt = j) = argmax
i

{
Ct−1(Xt−1 = i) Aij(t)

}
,

where Yt denotes the measurement received at time t.

3. On completion, the state estimate at time T is found by maximising CT , and the path

to the final state is traced back to the initial time via back-pointers stored in θt.

X̂T = argmax
i

CT (XT = i)

X̂t = θt+1(X̂t+1) for t = T − 1, . . . , 1.

3.4.2 MLSE for Hidden Reciprocal Chains

In Section 3.3.2, optimal smoothers were utilised to estimate the hidden states of a RC using

the Markov bridge approach [147], where the underlying RC was derived from a stationary

Markov process. In this section, we show that it is relatively straight forward to extend this

approach to calculate the MLSE for a HRC, which is the MAP estimate derived from the joint

probability mass function of the entire sequence. That is,
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max
X0,...,XT−1

p (Y0, . . . , YT , X0, . . . , XT = k) , (3.27)

which is exactly the expression evaluated by the Viterbi algorithm, only pinned at the final

time point.

Again, let us assume that the hidden states of the RC are derived from a stationary Markov

process with transition matrix A(t). We also again make use of the knowledge that a HRC can

be uniquely represented by Nv Markov bridges coupled with an initial joint probability on the

endpoints.

Define the quantity δki (t) to be the best score over all paths that end in state i at time t, given

that our final destination at time T is state k,

δki (t) = max
X0,...,Xt−1

p (Y0, . . . Yt, X0, . . . , Xt−1, Xt = i|XT = k) . (3.28)

The highest probability path at the next time step in the HRC chain Xt+1 = j can be calculated

by utilising the Markov bridge property and the conditional likelihoods, as in HMC dynamic

programming,

δkj (t+ 1) = max
i

{
Bk
i,j(t) δ

k
i (t)

}
p (Yt+1|Xt+1 = j) , (3.29)

where Bk
i,j(t) is the Markov bridge transitions (3.14) that have been derived from a Markov

process with transition matrix A(t). Define a back-pointer ψkj (t+1), which stores the maximising

previous state Xt, for each time step,

ψkj (t+ 1) = arg max
i

{
Bk
i,j(t) δ

k
i (t)

}
. (3.30)

It can be seen that the MLSE calculates the probability of a partial state sequence at any given

time, while keeping a back-pointer indicating how the current state could be reached.

Initialisation of the algorithm is performed at time t = 0 using the conditional likelihood and

endpoint distribution (3.4),

δki (0) = p (X0 = i|XT = k) p (Y0|X0 = i) . (3.31)

The MLSE will then implicitly search through all potential state sequences before providing

the best final sequence estimate. At final time T , we have the following quantity,

δki (T ) = max
X0,...,XT−1

p (Y0, . . . , YT , X0, . . . , XT−1, XT = i|XT = k) . (3.32)

Note that the above quantity is zero except when i = k. When this occurs, we have

δkk(T ) = max
X0,...,XT−1

p (Y0, . . . , YT , X0, . . . , XT−1|XT = k) . (3.33)
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Therefore the MAP estimates can be calculated using

max
X0,...,XT

p (Y0, . . . , YT , X0, . . . , XT−1, XT = k) = δkk(T ) p (XT = k) , (3.34)

where p (XT = k) is determined from the marginal of the joint endpoints distribution (3.4).

Thus, the most likely value for XT can be found by first maximising across all Nv Markov

bridges,

X̂T = arg max
k

{
δkk(T ) p (XT = k)

}
. (3.35)

Finally, the estimates for the entire track for the HRC MLSE are generated in the normal

dynamic programming way. That is, the path to the final state is traced back to the initial time

via back-pointers stored in ψki (t+ 1),

X̂t = ψX̂T

X̂t+1
(t+ 1). (3.36)

Again, the Viterbi algorithm can be modified to perform multi-target tracking by returning

either the M best paths or all paths that fall above some existence threshold set by the user.

Like the HRC optimal smoother, computational complexity is also O(N3
vT ), compared with

O(N2
vT ) for the Viterbi algorithm. The procedure for calculating the MLSE for a HRC is

summarised in Algorithm 4.

3.5 Simulations

This section verifies the performance of the proposed HRC MLSE through two sets of simu-

lations. We show that the HRC MLSE gives improved state estimation performance over the

Viterbi algorithm for scenarios featuring a reciprocal target. This constitutes one of the key

contributions of this chapter. In the first set of simulations, the HRC MLSE is used to track a

reciprocal target for which the underlying RC is derived from a stationary Markov process. Two

scenarios are considered in which the distribution on the reciprocal target endpoints is varied.

We perform Monte Carlo simulations and calculate MLSE state estimation errors under both

HMC and HRC estimators. In the second set of simulations, three scenarios are considered in

which the target trajectories are progressively made to behave in a more reciprocal manner.

The relative gains in performance between the HMC and HRC MLSEs are calculated for each

of the three scenarios.

The performance of the Markov and reciprocal MLSE estimators is also compared to their

optimal smoother counterparts. In the case of the HMC, the optimal smoother is the Forward-

Backward algorithm. Hence in each set of simulations, the following four estimators were im-

plemented:
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Algorithm 4 MLSE for HRC Algorithm

1. Initialise the scoring quantities and back-pointer array for all state grid points i =

1, . . . , Nv, and for all endpoint destinations k = 1, . . . , Nv,

δki (0) = p (X0 = i|XT = k) p (Y0|X0 = i) ,

ψki (0) = 0,

where Y0 denotes the initial measurement.

2. Recurse forward for time points t = 1, . . . , T ,

• For each Markov bridge k = 1, . . . , Nv,

– For each state j, calculate δkj (t), the cost to transition to state from state

i at time t− 1 to state j at time t, given that the final destination is state

k. Store the state i that maximised the cost function in back-point array

ψkj (t),

δkj (t) = max
i

{
Bk
i,j(t− 1) δki (t− 1)

}
p(Yt|Xt = j),

ψkj (t) = arg max
i

{
Bk
i,j(t− 1) δki (t− 1)

}
,

where Yt denotes the measurement received at time t.

3. The state estimate at time T is found by maximising across all Nv Markov bridge to

find the best Markov bridge k. The path to the final state is traced back to the initial

time via back-pointers stored in ψX̂T

X̂t
(t) for Markov bridge ending in state k,

X̂T = = arg max
k

{
δkk(T ) p (XT = k)

}
,

X̂t = ψX̂T

X̂t
(t) for t = T − 1, . . . , 1.
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• HMC MLSE: Maximum likelihood sequence estimate assuming a Markov target model

(Viterbi Algorithm).

• HMC Optimal: Optimal smoother assuming a Markov target model Forward-Backward

Algorithm).

• HRC MLSE: Maximum likelihood sequence estimate assuming a reciprocal target model

(new method derived in this chapter).

• HRC Optimal: Optimal smoother assuming a reciprocal target model (see [147] for

details).

In the first set of simulations, the problem of detecting a reciprocal target moving in a one-

dimensional space for which the underlying RC is derived from a stationary Markov process is

considered. Two scenarios featuring different assumptions on the reciprocal endpoint distribu-

tions are considered. We reiterate that the procedure for deriving the reciprocal estimators via

Markov Bridges is applicable for any RP without loss of generalisation.

The reciprocal target chain was derived from the (stationary) Markov transition matrix:

Ai,j =


1
3 , for j = i, i− 1, and i+ 1,

0, otherwise,

that is, a target is only allowed to transition to adjacent states or remain in its current state

with equal probability. In the case when the target resides in the endpoints i.e. i = 1 or Nv,

the target will remain in its current state or transition to its single neighbouring state, both

with probability 1
2 . An example of the transition probabilities from state 5 (blue line) and from

the endpoint state 1 (red line) for all time scans are shown in Figure 3.1. The observations

Yt ∼ N (Xt, σ
2) were chosen to be independent Gaussian random variables with mean given by

the state value (i.e., 1, 2, . . . , Nv) and constant noise variance σ2. All simulations results were

averaged over 10,000 Monte Carlo runs and time scans T , for a total number of states Nv = 10.

Recall that the Markov bridge transition matrix formulation requires that if a target terminates

in state k, the target state at the penultimate time step has to also be in state k. At the first

time scan, an initial target state i with uniform probability is selected. As the target is only

able to transition at most to adjacent states at each time step, this implies that the target needs

a minimum number of time steps to ensure that all combinations of the initial and termination

points (i, k) are possible under the simulation. That is, a target that starts in state i = 1 at

t = 1 requires T = Nv + 1 time steps to be able to terminate in state k = Nv, in order to satisfy

the condition that the target at time T − 1 must also be in state k. As we have set Nv = 10 for

the first set of simulations, the sequence length will be T = 11.

50



1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

P
ro

ba
bi

lit
y

State

 

 

State 5
State 1

Figure 3.1: Example of Markov transition probabilities from state 5 (blue) and from state 1.

Assumes number of states Nv = 10.

In the first scenario, a reciprocal target with an unconstrained source and destination was

generated by assuming a uniform joint distribution on the endpoints. Hence for any given start

point, the target destination point can end up in any state in the discrete grid.

Figure 3.2 shows the calculated Mean Square Estimation Error (MMSE) averaged over time

for the uniform endpoints scenario plotted against (a) measurement noise variance σ2 and (b)

sequence length T . Observe that as the minimum variance estimators, the optimal smoothers

give superior performance over their corresponding MLSEs. As expected, the error for all four

estimators increase with measurement noise variance, however the MLSE error seems to be more

sensitive to the measurement noise variance than the optimal smoother, as can be observed

particularly for noise variance σ2 = 4. In Figure 3.2.(b), observe that the performance of

the estimators remains relatively constant with sample length T , particularly for sequence

lengths longer than T = 15. This implies that as T increases, the error performance becomes

independent of the batch length T .

It is expected that as the target truth follows a reciprocal dynamics model, the reciprocal

estimators should outperform the traditional Markov estimators. However, it is evident that

there is minimal improvement in performance by the reciprocal estimators. This may be due

to the assumption of a uniform distribution on the endpoints, which could result in a large

proportion of reciprocal realisations that appear very similar to a Markov chain. Hence in this
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(a) Mean square estimation error vs. measurement noise variance σ2 for
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(b) Mean square estimation error vs. sequence length T for measurement

noise variance σ2 = 1.

Figure 3.2: Comparison of mean square state estimation error for HRC and HMC MLSEs and

optimal smoothers for the uniform endpoints scenario. Assumes number of states Nv = 10.
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case, state estimation performance via a reciprocal estimator would provide limited benefit.

In order to verify this, a second scenario was considered in which the RC boundary distribution

was specified to emphasise the source-destination pairs (i,Nv−i+1) for i = 1, . . . , Nv. The initial

distribution π0 was chosen to be uniform and the conditional distribution p (XT = i|X0 = j) was

set to zero unless j = Nv− i+1, in which case it was unity. The boundary distribution specified

by Bayes’ rule has been chosen to emphasise realisations of the RC in which the set of possible

endpoints are markedly different from the endpoints that could possibly be generated by a

Markov transition. This deliberate design choice was done in order to maximise the difference

between the reciprocal and Markov estimators. Effectively, we can think of this second target

model as being more “informative” than in the first scenario, as the reciprocal estimator has

been provided with additional information regarding target destination.

Figure 3.3 shows a comparison of state estimation performance for different values of measure-

ment noise variance σ2 and sequence length T for the informative endpoints scenario. Again, the

optimal estimators give superior performance over the MLSEs and the slope of the MLSE error

with noise variance is much greater than the slope for the optimal smoother. However, observe

that the reciprocal estimators now outperform their Markov counterparts for all noise variances

and sequence lengths. As per the first scenario, the largest gains in performance are seen at

shorter sequence lengths. Observe that in Figure 3.3 (b), as the sequence length T increases,

the performance of the Markov optimal estimator begins to converge to the reciprocal optimal

estimator. This convergence behaviour is not as obvious in the reciprocal MLSE. Figure 3.4

shows the results of extending the sequence length in Figure 3.3 (b) from 25 scans to a total

of 100 scans. It is clear that the performance of the reciprocal MLSE converges to the Markov

MLSE if the batch length is sufficiently long.

The correlation between state estimation performance and sequence length can be attributed

to the fact that the underlying reciprocal target dynamics in the simulations was derived from

a stationary Markov process. It is reasonable to expect that as both processes near their desti-

nation points, the RC will become more distinct from its underlying Markov process. That is,

the RP will look very similar to its derived Markov process except as it nears the final time T

due to the additional information contained in the joint probability endpoints distribution. The

proportion of time that the two targets exhibit similar behavior increases as T becomes larger,

thus the reciprocal estimators will always converge to its Markov counterpart given the batch

length is sufficiently long. On the other hand, when the batch length is kept relatively short

(i.e. T < 20), the reciprocal estimators will consistently outperform their Markov counterparts,

as the RP behaves less like a Markov process at short sequence lengths.

The results from these simulations seem to suggest that for scenarios featuring a more infor-
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(b) Mean square estimation error vs. sequence length T for measurement

noise variance σ2 = 1.

Figure 3.3: Comparison of mean square state estimation error for HRC and HMC MLSEs and

optimal smoothers for the informative endpoints scenario. Assumes number of states Nv = 10.
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Figure 3.4: Mean square state estimation error vs. sequence length extended to T = 100 for

the informative endpoints scenario. Assumes number of states Nv = 10, measurement noise

variance σ2 = 1.

mative target model (as seen in the second scenario), gains in estimation performance can be

achieved by assuming a reciprocal target model rather than the traditional Markov dynamics.

It is also evident that the MLSE does not perform as well as the optimal smoothers and is

more sensitive to changes in noise variance in both the reciprocal and Markov cases. Under

high measurement noise, the MLSE and optimal smoother have the potential to be seduced

away from truth. As the MLSE is required to return a valid sequence under the target dynam-

ics model, it will struggle to recover from large deviations from the truth as the target model

only allows at most, a transition to adjacent states at each time step. On the other hand, the

optimal smoother has no requirement for a valid path and has superior performance when noise

variance is increased.

Also, by definition, the optimal smoother provides the minimum variance estimate whereas

MLSE generates a MAP estimate, thus limiting its performance to the resolution of its state

grid. For these simulations, the truth is discrete, therefore errors of magnitude less than the grid

resolution will have minimal impact on the MLSE performance. However as the noise variance

increases, the MLSE error can become larger than the grid resolution and can be magnified

due to rounding. The magnitude of these quantisation errors will be highly dependent on the

resolution of the state space. Despite this, the MLSE remains an attractive algorithm as the

optimal smoother cannot be used for some applications, as it returns target estimates that
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can be invalid under the discrete state space or state sequences that violate the target motion

model.

Although the second scenario used trajectories where the reciprocal model was more informa-

tive, the error statistics were averaged over different trajectories where the most informative

cases were mixed with the least. Three different cases are now considered to highlight when the

use of a reciprocal model provides a low, medium and high amount of information gain. For the

three cases, the target trajectories are selected to progressively appear less like a Markov pro-

cess. For these simulations, the total number of finite states is extended to Nv = 20, to remove

edging effects for target transitions near the end points. The exact paths for the three cases are

shown in Figure 3.5. The target trajectory in each case was selected to behave according to the

following dynamics models:

• Markov: In the first case, consider a target that follows a stationary Markov dynamics

model (pink line) such that the trajectory starts and terminates in state 5.

• Intermediate: The second trajectory (cyan line) was chosen to mimic a target behaving

in a more reciprocal manner, thus the target starts in state 5 and terminates in state 10.

• Reciprocal: In the final case, consider a target that follows a reciprocal dynamics model

with a trajectory that again starts in state 5 but ends in state 15 (black line).

To correlate the ‘reciprocalness’ of each trajectory with state estimation performance, simula-

tions using 10,000 Monte Carlo runs with randomised measurements were considered for each

case. State estimation is performed using MLSE and optimal smoothing under both Markov

and reciprocal target models where the Markov transitions are given by (3.37) and the RC tran-

sitions are again assumed to be derived from the Markov model. Define the relative goodness

of fit under each model by the following ratio

F =
MSEM −MSER

MSEM

× 100, (3.37)

where MSEM and MSER are the mean square estimation errors for the HMC and HRC es-

timators respectively. This ratio describes the relative improvement in the HRP mean square

error, where the larger the ratio, the better the fit under the HRP target model.

Figures 3.6 shows the goodness of fit when a HRC model rather than a HMC is assumed

for each of the three scenarios using MLSE. Figure 3.7 shows the same relationship using

optimal smoothers. Both figures show the results for varying measurement noise variance σ2 =

0.05, 0.5, 1, 1.5 and 2. For low measurement noise, observe that the goodness of fit under the

HRC model improves significantly for both the MLSE and optimal smoothers, with a gain of
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Figure 3.5: Target trajectories representative of Markovian and reciprocal behaviour to varying

degrees.

approximately 50% as we transition from the Markov trajectory to the reciprocal trajectory.

However, the improvement in the MLSE gradually reduces as the measurement noise variance

increases. On the other hand, the improvement in the goodness of fit for the optimal smoother

from the Markov to the reciprocal scenario seems to be less sensitive to changes in the noise

variance. This supports the results from the first set of simulations where it was observed

that the correlation between MLSE error and noise variance was stronger than for the optimal

smoother.

Figures 3.8 and 3.9 also show the correlation between each scenario trajectory and F but for

varying sequence length T = 12, 15, 20 and 25 for the MLSE and optimal smoother, respectively.

It can be seen that as a target behaves in a more reciprocal manner, the goodness of fit under

the HRP model also increases under both estimators for all sequence lengths. Again, the optimal

smoothers perform better than their MLSE counterparts with approximately double the amount

of improvement in the goodness of fit across all scenarios for sequence lengths T ≥ 15. As

mentioned before, this can be attributed to the MLSE requirement for a valid target path

and due to rounding errors as the MLSE calculates a MAP estimate rather than a minimum

variance estimator. Observe also that the correlation between the goodness of fit under the

HRP model and reciprocalness of a target is stronger for shorter sequences. This agrees with

our observations earlier in which the RC appeared to become more distinct from its underlying
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Figure 3.6: Goodness of fit F for each scenario using MLSE for varying noise variance σ2.

Assumes number of states Nv = 20 and sequence length T = 12.
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varying noise variance σ2. Assumes number of states N = 20 and sequence length T = 12.
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Markov process as it reached its termination point, resulting in the RC behaving overall less

like a Markov process at short sequence lengths.

In general, the benefits of having target destination information is highly dependent on the

batch length T and size of the state space Nv. For example, if the batch length is small in

comparison to the size of the state space, then possessing target destination information will

be very useful as it will narrow down the valid target trajectories to those paths that allow the

target endpoint to be reached in the given time length. Conversely, if the target destination is

known and the batch length is large in comparison to the size of the state space, there would

exist an infinite number of paths to reach the target endpoint. In such a case, having target

destination information would provide little advantage.

3.6 Summary

In this chapter, we reviewed the well known Viterbi algorithm, which calculates the MLSE

for a HMC. The extension of the Viterbi algorithm to accommodate reciprocal processes is

relatively simple through the Markov bridge property; the probability transition models are

specified in a similar way to the Markov models and the final destination points are modelled

as prior knowledge. As the key contribution for this chapter, we presented the first derivation

of the MLSE for a HRC, as first reported in [149]. Simulations of the devised estimator were

performed for scenarios featuring a uniform assumption on the endpoints distribution, as well

as a scenario featuring a more informative assumption on the end points. It was observed that

for a reciprocal target whose endpoint realisations are markedly different from the predicted

endpoints generated from a Markov transition, the HRC estimators showed improved state

estimation performance relative to the traditional Markov estimators. It was also shown that

as a target progressively behaves in a more reciprocal manner, the goodness of fit under a HRC

model also improves. The performance of the reciprocal MLSE was also compared to that of

a reciprocal-based optimal smoother. Simulation results showed that the reciprocal MLSE was

not as effective in tracking the target as the reciprocal optimal smoother and was more sensitive

to changes in noise variance. However this result could be attributed to quantisation errors in

the discretisation of the state space and the constraint on the MLSE to generate a valid state

sequence under the target dynamics model, which can result in poor performance in the case

of high measurement noise.

Our simulations were performed with a relatively small number of state points, however the

computational complexity can become prohibitive if a large number of discrete states was

required to adequately model the target and observation processes.
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Chapter 4

Histogram-Probabilistic

Multi-Hypothesis Tracker

(H-PMHT)

Under conventional target tracking, the data received from a sensor is generally reduced from an

intensity map representation to a point measurement form via a detection thresholding process.

The role of the tracker is to associate point measurements from a common target across time

and return estimates of the target’s trajectory. Track-Before-Detect (TkBD) is an alternative

tracking technique which supplies intensity map data directly to the tracker, rather than point

measurements from thresholded detections. As a result, all information relating to the target

and environment are preserved in the measurement. TkBD can be thought of as a concurrent

detection and tracking scheme and has been shown to provide significant gains against targets

with a low Signal-to-Noise-Ratio (SNR) [39]. A summary of the existing TkBD approaches in

the literature and related references are provided in Chapter 2.

In this chapter we focus on a particular TkBD method called the Histogram-Probabilistic

Multi-Hypothesis Tracker (H-PMHT) [85, 86, 117]. The H-PMHT algorithm can be applied

to a wide range of problems as long as an appropriate state estimator exists to perform the

maximisation step of the Expectation-Maximisation (EM) algorithm. The key contribution of

this chapter is the first implementation of the H-PMHT using a dynamic programming fixed-grid

approximation through application of the Viterbi algorithm. The details of this contribution

have been published in conference article [133] and journal article [42].

The chapter is arranged as follows: Section 4.1 provides some background about the H-PMHT

algorithm; Section 4.2 reviews the derivation of the original H-PMHT, which assumes a multi-
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nomial distribution on the quantised measurements; Section 4.3 reviews the Kalman Filter (KF)

and Particle Filter (PF) implementations of the H-PMHT, and proposes an alternative imple-

mentation via the Viterbi algorithm. This Viterbi-based implementation is compared with the

KF and PF implementations using simulated single target scenarios in Section 4.4. Section 4.5

discusses some of the limitations of the H-PMHT algorithm, and Section 2.6 summarises and

concludes the chapter.

4.1 Introduction

The H-PMHT algorithm is an efficient multi-target approach to the TkBD problem. Originally

introduced in [85, 86, 117], the H-PMHT algorithm is an extension of the Probabilistic Multi-

Hypothesis Tracker (PMHT) [121] to track on intensity modulated data. Unlike other TkBD

approaches, the H-PMHT algorithm employs a parametric fitting approach and has been shown

to give performance that is close to the optimal Bayesian filter at a fraction of the computational

cost [39]. The H-PMHT inherently assumes a multi-target scenario but retains linear complexity

with the number of targets.

The H-PMHT algorithm is based on the generation of a synthetic histogram by quantising the

energy in the sensor data followed by the application of EM [43] mixture modelling to describe

the underlying data sources. The quantisation step converts the continuous-valued measurement

data in each pixel into an integer-value, which is interpreted as a count of the number of shots

that fell in each pixel. The counts are assumed to be a realisation of a point process and can

be modelled using a multinomial distribution. The H-PMHT compiles the counts to create a

synthetic histogram which can be interpreted as the received power across the measurement

image. It will be shown later in Chapter 5 that the multinomial assumption is consistent with

a Poisson Point Process [118] and an alternative derivation of the H-PMHT is possible under

this new measurement model.

The H-PMHT can be applied to a wide range of problems as long as an appropriate state

estimator exists to perform the maximisation step of the algorithm. For the case when both

the target dynamics and measurement model are assumed to be linear with Gaussian noise, a

KF (or smoother in the case of batch processing ) can be incorporated into the H-PMHT to

perform the state estimation component of the algorithm [119]. This result allows for simple

implementation and has thus led to the Kalman-based H-PMHT in the literature [39,98]. More

recently, H-PMHT has been applied to non-linear non-Gaussian problems using non-linear state

estimation techniques [35,36].

In this chapter, we outline the procedure for computing the first Viterbi-based H-PMHT imple-
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mentation. The Viterbi algorithm is a MAP sequence estimation method for a discrete-state

hidden Markov model. In the tracking context, it has been used to solve the non-linear TkBD

problem by discretising the state-space. Here it is used to optimise the EM auxiliary function

on a per-target basis. For multi-target tracking, fixed-grid approximation techniques can grow

exponentially in computational complexity due to the large number of discrete states required.

However, when combined with the H-PMHT, the complexity is linear in the number of targets

as the H-PMHT provides data association weights that can be used in a bank of indepen-

dent single-target Viterbi estimators. In the next section, we present a detailed review of the

derivation of the H-PMHT algorithm.

4.2 Derivation

This section describes the derivation of the H-PMHT for batch form processing, however the

algorithm can be easily modified to perform time-recursive filtering. In subsequent sections, we

describe how the H-PMHT algorithm can be implemented for both the smoothing and filtering

case.

The derivation of the H-PMHT uses quantisation of the energy in the sensor image. Quantisation

is only a stage in the derivation of the algorithm and is not required for implementation. The

interpretation of the quantised sensor image as a histogram and the subsequent use of PMHT

data association [121] led to the algorithm name.

Assume a scenario in which a sensor observing M targets collects images

Zt = {z1
t , . . . ,z

I
t }, (4.1)

at discrete times t = 1 . . . T where zit denotes the energy in the ith pixel of the sensor image at

time t and I denotes the total number of observed pixels. Note that the single index does not

constrain the dimensionality of the sensor but rather simplifies notation. For the special case

of two-dimensional images, an efficient matrix formulation is possible [35].

The H-PMHT algorithm is also able to accommodate the effect of missing data and assumes

that there are other sensor pixels Zct for which no data was collected. Define

Zct = {zI+1
t , . . . ,zSt }, (4.2)

where S denotes the total number of all possible pixels such that 1 ≤ I ≤ S. The remaining

measurements in pixels i = I + 1, . . . , S are assumed to be unobservable by the sensor. One use

for this concept is in tracking targets near the edge of the sensor frame [120]. The set Zct can

be empty, so this feature can be easily removed if not required.
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Let xmt denote the state of component m at time t for m = 0 . . .M . A component can be

attributed to either a clutter or target object, therefore define componentm = 0 to be the clutter

component, which is assumed to be an empty set for all time scans, i.e. x0
t = ∅. Effectively,

the clutter distribution is assumed to be known. Assume that the remaining components m =

1, . . . ,M are target objects that evolve according to a known process which may be non-linear

and stochastic, and let X = x0:M
1:T denote the collection of all component states at all time scans.

For the observed pixels, define the total energy received from the image to be

‖Zt‖ =
I∑
i=1

zit, (4.3)

namely the L1-norm of the sensor image. The energy zit in each of the measurement pixels is

assumed to be continuous-valued and thus the evaluation of the measurement likelihood is non-

trivial. The H-PMHT algorithm provides a convenient way to calculate the likelihood of observ-

ing the current measurement Zt by employing a quantisation over the sensor data. In Chapter

7, we propose an alternative derivation which modifies the H-PMHT to deal directly with the

continuous-valued measurement image via an interpolated Poisson measurement model.

In the first step of the H-PMHT algorithm, the energy in each measurement pixel i is quan-

tised. Let c2 > 0 denote some arbitrary quantisation level and define the quantised vector

corresponding to Zt as follows,

Nt = {n1
t , . . . ,n

I
t }, (4.4)

where nit is the quantised energy in the observed pixel i, defined by

nit =

⌊
zit
c2

⌋
. (4.5)

Note that bxc is the floor function which specifies the greatest integer less than or equal to x.

In a similar way to (4.3), we can define the total quantised energy in the image,

||Nt|| =
I∑
i=1

nit, (4.6)

which can also be interpreted as the sample size of the histogram. We emphasise again that

the use of the quantised measurement Nt rather than the original measurement Zt is only an

intermediate step in the derivation; in the final step, the original sensor data Zt is recovered by

taking the limit of the quantisation as c2 → 0.

The H-PMHT measurement model assumes that the integer-valued image Nt generated after

quantisation is a realisation of some mixture process, where the clutter and targets are consid-

ered as individual components of the mixture model [118]. That is, the quantised measurement
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nit provides a count of the number of shots in each pixel, where each shot is assumed to be

an independent identically distributed (iid) random variable following a distribution defined by

the density function, ft(τ |x1:M
t ;π0:M

t ) over continuous space. The parameters π0:M
t denote the

mixing proportions and will be discussed in more detail shortly. The underlying density can be

written as the superposition of target components and background clutter as follows,

ft(τ |x1:M
t ;π0:M

t ) = π0
tG0(τ) +

M∑
m=1

πmt h (τ |xmt ) , (4.7)

where G0(τ) is the clutter contribution and h (τ |xmt ) is the point spread function (psf) that

describes the influence of target m on the measurement image such that
∫
h (τ |xmt ) dτ = 1. The

mixing proportions π0
t and πmt form a probability vector, i.e. πmt ≥ 0 and

M∑
m=0

πmt = 1, where

m = 0 denotes the clutter component. The mixing proportion πmt can be interpreted as the

relative power of component m at time t.

The counts Nt are assumed to be multinomially distributed and are generated by making ||Nt||
independent draws (with replacement) from the measurement image. The result of each draw

leads to a “success” in one of I categories, or equivalently a shot falling into one of I pixels

with probability,

f it
(
x1:M
t ;π0:M

t

)
= π0

t h
i(∅) +

M∑
m=1

πmt h
i(xmt ), (4.8)

where f it (·) is the probability that τ given in (4.7) is inside pixel i, hi(xmt ) denotes the probability

that a shot (quantised measurement) due to target m falls in pixel i and is defined as the integral

of h (τ |xmt ) over Bi, the spatial extent of pixel i,

hi (xmt ) =

∫
Bi

h (τ |xmt ) dτ. (4.9)

Similarly, hi(∅) denotes the probability of a clutter shot falling in pixel i: the integral of G0(τ)

over pixel i,

hi (∅) =

∫
Bi

G0(τ)dτ. (4.10)

In the absence of other information, a uniform model for the background clutter can be assumed,

i.e. G0(τ) is a constant. In many applications, the measurement function is a feature of the

sensor, not the target and thus it is common to assume that the psf h(·) is known.

The sensor image does not identify which component of the mixture gave rise to each shot or

the precise location of the shot within the pixel. Both of these are treated as missing data and

EM is used to marginalise them out of the problem and optimise the target state parameters

(i.e. the density map). As mentioned earlier, the H-PMHT algorithm also allows for unobserved

pixels Zct . Thus also define Nc
t as the quantised missing data corresponding to Zct such that
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Nc
t = {nI+1

t , . . . ,nSt }, (4.11)

where nit denotes the missing counts in unobserved pixels i = I + 1, . . . , S. The data from these

unobserved pixels is also treated as missing data.

If a Bayesian method is adopted to model the mixture parameters of the target states, an

expression for the prior density for the target states is required. In the next section, we will

discuss the requirements for the prior density under a Bayesian model.

4.2.1 Prior Density

Recall that the output of the quantisation is an integer-valued image where the vector Nt is

assumed to follow a multinomial distribution. This is equivalent to saying that the counts Nt

are generated by making ‖Nt‖ independent draws (with replacement) on I categories with

probabilities f it
(
x1:M
t ;π0:M

t

)
for i = 1 . . . I. The assumption of independence between the shot

measurements is questionable as the counts are derived from quantised intensities. The quan-

tisation level c2 influences the counts, and under the independence assumption, dictates the

amount of information created in the synthetic measurement data generation, yet the true in-

formation content is not related to c2 at all. Ultimately, when the limit of the quantisation is

taken to zero, the synthetically generated data counts in the histogram become infinite. The

histogram model assumes there is more data available than the measured Zt can in reality pos-

sess. Under a Bayesian model, this overabundance of data can overwhelm any prior information

and the prior will have no influence on the state estimates.

This problem can be resolved by choosing a prior that is sufficiently non-diffuse to compen-

sate for the overabundance of information in the likelihood function, for example a Markov

Model. Assuming independence with time and targets, a standard Bayesian prior for the target

components would be a first-order Markov Model such that,

p(X) =
M∏
m=1

p(xm0:T )

=

M∏
m=1

[
p(xm0 )

T∏
t=1

p(xmt |xmt−1)

]
. (4.12)

In his derivation, Streit [117] proposes an alternative Bayesian prior (based on the above Markov

prior),

p(X) =
M∏
m=1

[
p(xm0 )

T∏
t=1

{
p(xmt |xmt−1)

}||Ntotal
t ||

]
, (4.13)
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where ||Ntotal
t || = ||Nc

t ||+ ||Nt|| such that ||Nc
t || is the sum of shots over all unobserved pixels.

The addition of the ||Ntotal
t || term allows an instance of the prior density to be applied to

each individual shot at every time scan. This ensures that the prior is not overwhelmed by the

abundance of data as a result of the quantisation step.

4.2.2 Expectation-Maximisation

Before we outline the EM steps for the derivation of the H-PMHT algorithm, first define Kir
t to

be the component index associated with rth shot in pixel i at time t. Also, define the vector L to

be the precise location of each shot inside the pixel. Recall that the H-PMHT derivation makes

use of quantised measurements, therefore let N = N1:T and Nc = Nc
1:T to be the quantised

observed and missing data, respectively, over all time scans.

Define the observer O consisting of component states X = x0:M
1:T and set of assignments K =

{Kir
t } of components to measurement shots N, for i = 1, . . . , I, r = 1, . . . ,nit and t = 1, . . . , T .

Note that O also depends on Π, the prior distribution on the assignments K, where Π = π0:M
1:T

is defined to be the collection of all M + 1 component mixing proportions across all time scans.

The observer O : {X,K,Π,N} is unknown and the calculation of the Maximum Likelihood

Estimate (MLE) for the states X and prior Π is infeasible due to the exponential complexity

of enumerating over all data associations K of shots to targets.

The solution is to employ the EM method to calculate the maximum likelihood estimate for X

and Π. The EM method provides a general iterative procedure for calculating the MLE given

missing data. In the H-PMHT case, the missing data consists of assignments K, the unobserved

measurements Nc, and the precise location L of each shot in the pixels.

At a given time step t, assuming there is an existing estimate of the component states and

mixing proportions, the H-PMHT algorithm employs an iterative procedure to determine the

probability of the missing data (E-step) and then refines the component and mixing proportions

estimates (M-step).

4.2.3 E-Step

At every iteration of the EM algorithm, the E-step of the algorithm evaluates the conditional

expectation of the logarithm of the complete data likelihood. The expectation is taken with

respect to the missing data {Nc,L,K} and conditioned on the observed measurements N and

the previous EM estimates of X and Π, denoted by X′ and Π′. This is given by the auxiliary
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function Q(H) at the current iteration:

Q(H)(X,Π|X′,Π′)

=ENcLK

[
log
{
p(X,N,Nc,L,K)

}∣∣∣X′,Π′,N]
=
∑

NC ,K

∫
L

log
{
p(X,N,Nc,L,K)

}
p(Nc,L,K|X′,N)dL, (4.14)

where ENc,L,K denotes the expectation with respect to the missing data. In the evaluation of the

conditional expectation, we have made use of the property EB[p(ABC)|C] =
∑

B p(ABC)p(B|C)

for discrete variables. Note that for the conditional expectation with respect to the sample loca-

tions L, the expectation is evaluated using an integral as the exact location in which a shot falls

inside a pixel is a continuous variable. Also because Π is a parameter for the prior distribution

K, it has been dropped from the last line in (4.14): the dependency on Π′ is implied through

the inclusion of K.

The first term in (4.14) is exactly the complete data log likelihood. The second term in (4.14)

is the conditional density of the missing data and can be expressed as

p(Nc,L,K|X′,N) =
p(X′,N,Nc,L,K)

p(X′,N)
. (4.15)

The numerator and the denominator in (4.15) are exactly the complete and incomplete data

likelihoods, respectively. We now derive expressions for both likelihoods.

4.2.3.1 Incomplete Data Likelihood

We now derive an expression for the incomplete data likelihood, which can be interpreted as the

joint probability of all component states X and the quantised counts N. First consider evaluating

p(N|X), the probability of drawing nit shots from each pixel i given that the source for each shot

is unknown. Recall that the counts nit have assumed to be multinomially distributed. Assuming

independence between pixels, the probability is then given by

p(Nt|X′t) = γt

I∏
i=1

[
f i

′
t

F
′
t

]ni
t

, (4.16)

where f i
′
t = f it

([
x1:M
t

]′
;
[
π0:M
t

]′)
and F

′
t =

∑S
j=1 f

j′

t are calculated using the estimates of the

state and mixing proportions from the previous EM iteration. In (4.16), we have assumed that

the probability of an individual shot falling into a pixel is equal to f i
′
t /F

′
t , and is identical for

all nit shots in pixel i. The parameter γt denotes the number of ways that ||Nt|| shots can be
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arranged to achieve Nt across the pixels,

γt =
||Nt|| !
I∏
i=1

nit!

. (4.17)

Assuming that the temporal elements of N are independent, the incomplete data likelihood can

be expressed as,

p(X′,N) = p(N|X′)p(X′)

= p(X′)

T∏
t=1

p(Nt|X′t)

∝ p(X′)
T∏
t=1

I∏
i=1

[
f i

′
t

F
′
t

]ni
t

. (4.18)

The last simplification in (4.18) is possible because the γt term is not a function of X or Π, so in

the context of the optimisation problem in (4.14), it is a scaling constant that can be ignored.

Observe that the F
′
t terms consists of a summation of the per-pixel probability over both the

observed and unobserved measurement space. If the unobserved measurement space is used to

model edging effects in the sensor, then F
′
t is composed of a summation over a finite number

of observed pixels and conceivably an infinite number of unobserved pixels, that is,

F
′
t =

I∑
j=1

f j
′

t +

∞∑
j=I+1

f j
′

t . (4.19)

However, as F
′
t provides an approximation to the integral of the mixture density defined in

(4.7), we can make the following approximation,

F
′
t = 1− εō, (4.20)

where εō denotes the contribution from the unobserved pixels. Clearly, if the set of unobserved

pixels is empty, then F
′
t evaluates to unity. However, if the psf h(·) is characterised by a pdf

with infinite support, with intensity concentrated towards a region of interest and decaying

tails, e.g. a Gaussian, then it is sufficient to assume that the contribution of εō to F
′
t will be

small, and F
′
t can be assumed to be approximately unity. This is important and will be used

later to simplify the auxiliary function (4.14).

4.2.3.2 Complete Data Likelihood

Next we derive an expression for the complete data likelihood by considering the joint proba-

bility of all the variables in the model. Expand the likelihood such that

p(X,N,L,K) = p(L|X,N,K)p(K,N|X)p(X). (4.21)
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Note that the unobserved data Nc has been dropped for notational simplicity as it does not

contribute to the conditional probability of {L,K}. Also, observe that the last term on the

right hand side (rhs) of equation (4.21) is exactly the prior density discussed earlier in (5.10).

We need only consider expressions for the remaining terms on the rhs of (4.21).

The first term p(L|X,N,K) is the probability of drawing the locations L given the position of

all component states X, the quantised counts N, and the assignment of components to shots

K is known. This probability is implicitly conditioned on the pixel location being known. The

probability of drawing the rth shot when we know which component m the shot originated from

is given by,

p(Lirt |X,N,K) = p(Lirt |x
Kir

t
t ,Lirt ∈ Bi)

=
p(Lirt ,L

ir
t ∈ Bi|x

Kir
t

t )

p(Lirt ∈ Bi|x
Kir

t
t )

=
h(Lirt |x

Kir
t

t )

hi
(
x
Kir

t
t

) , (4.22)

where Lirt is the precise location of the rth shot which fell in pixel i at time t, Kir
t specifies the

known component index and x
Kir

t
t specifics the spatial mean associated with the rth shot in

pixel i at time t. Also, recall that h(·) is the component psf, and hi(·) is the per-pixel probability

and can be calculated for a target or clutter component using (4.9) and (4.10), respectively.

Assuming independence of shots, we can express the first term on the rhs of (4.21) as a product

across time t, pixels i, and shots r such that

p(L|X,N,K) =
T∏
t=1

I∏
i=1

ni
t∏

r=1

h(Lirt |x
Kir

t
t )

hi
(
x
Kir

t
t

) . (4.23)

The second term p(K,N|X) in (4.21) is the probability of the shot counts and assignments

ignorant of the precise locations L of where the shots fell in the pixel, but given full knowl-

edge of the position of all the component states. Note that this expression contains redundant

terms as N is completely determined by associations K. Given the component state estimates

are known, consider evaluating P (K|N,X), that is, we want to extract the shots within each

pixel that originated from component m. This probability also follows a multinomial distri-

bution, however the categories consist of both pixel i and component indices m. Rather than

assuming a multinomial distribution with categories {i,m}, we can consider the multinomial

probability of drawing a shot successfully from category m within each pixel separately. Let

f it = f i(x1:M
t ;π0:M

t ), then each draw from this multinomial distribution has probability

p(Kir
t = m|Xt,Nt) =

πmt h
i(xmt )

f it
, (4.24)
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which represents the proportion of energy in the pixel that came from component m scaled

by the overall mixture density for pixel i. By substituting in (4.16) and (4.24), and assuming

independence across time and pixels, we can write

p(K,N|X) = p(K|X,N)p(N|X)

=

T∏
t=1

[
I∏
i=1

ni
t∏

r=1

p(Kir
t |Xt,Nt)

]
p(Nt|Xt)

=
T∏
t=1

γt

I∏
i=1

ni
t∏

r=1

[
π
Kir

t
t hi(x

Kir
t

t )

f it
× f it
Ft

]

=

T∏
t=1

γt

I∏
i=1

ni
t∏

r=1

π
Kir

t
t

hi(x
Kir

t
t )

Ft
. (4.25)

where Ft =
∑S

j=1 f
j
t , is the summation of the pixel probabilities over both the observed and

unobserved measurement space. An expression for the complete data likelihood can be found

by substituting (4.23) and (4.25) into (4.21) to give,

p(X,N,L,K) = p(X)

T∏
t=1

γt

I∏
i=1

ni
t∏

r=1

π
Kir

t
t

h(Lirt |x
Kir

t
t )

Ft
. (4.26)

4.2.3.3 Auxiliary Function

An expression for the auxiliary function Q(H) can now be found by substituting the complete

data likelihood (4.26) and the prior (5.10) into (4.14) to give,

Q(H)(X,Π|X′,Π′) =
∑

NC ,K

∫  M∑
m=0

(
log
{
p(xm0 )

}
+

T∑
t=1

||Ntotal
t || log

{
p(xmt |xmt−1)

})

+

T∑
t=1

log{γt}+

T∑
t=1

I∑
i=1

ni
t∑

r=1

log
{
π
Kir

t
t

}
−

T∑
t=1

I∑
i=1

ni
t∑

r=1

log {Ft}+

T∑
t=1

I∑
i=1

ni
t∑

r=1

log
{
h(Lirt |x

Kir
t

t )
}

× p(Nc,L,K|X′,N) dL.

(4.27)

The last term on the rhs of (4.27) is the conditional density of the missing data (4.15) and can

be simplified as follows,

p(Nc,L,K|X′,N) =
p(Nc|X′,N,L,K)p(X′,N,L,K)

p(X′,N)

= p(Nc|X′,N)p(L|X′,N,K)p(K|X′,N). (4.28)
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It can be further simplified by substituting (4.23) and (4.24) to give,

p(Nc,L,K|X′,N) =

T∏
t=1

p(Nc
t |X′,Nt)

I∏
i=1

ni
t∏

r=1

π
Kir′

t
t

h
(
Lirt |x

Kir′
t

t

)
f i

′
t

. (4.29)

Substituting (5.26) into (4.27) and re-inserting Nc terms, we can now apply the expectation

across the missing data to the relevant terms to simplify the auxiliary function to,

Q(H)(X,Π|X′,Π′) =

M∑
m=0

{
log {p(xm0 )}+

T∑
t=1

log{p(xmt |xmt−1)}
∑
Nc

t

||Ntotal
t ||p(Nc

t |X′t,Nt)

}

+
∑
Nc,K

 T∑
t=1

I∑
i=1

ni
t∑

r=1

log
{
π
Kir

t
t

} p(K|X′,N)

+
∑
Nc,K

∫  T∑
t=1

I∑
i=1

ni
t∑

r=1

log
{
h(Lirt |x

Kir
t

t )
} p(L,K|X′,N)dL. (4.30)

Note that the γt term has been removed from the auxiliary function as it is not dependent

on X or Π. Recall that Ft approximates the integral of the mixture density (4.7) and can be

evaluated using (4.20). If we assume that the psf h(·) is a pdf with intensity concentrated in

a region interest with decaying tails, e.g. Gaussian, then the contribution from the unobserved

pixels can be assumed to be small and Ft is close to unity. In such a case, the Ft term in (4.27)

can be ignored as it is a scaling constant when the auxiliary function is optimised.

We now simplify each line in (4.30) separately. In the first line, the component states are

independent from the missing data and we only need to consider the expectation over the

unobserved counts Nc to derive an expected value. We retain terms dependent on Nc and

all other terms are marginalised out. To evaluate this line, first define the quantity n̄it, for all

observed and unobserved pixels i = 1, . . . , S such that

n̄it = ENc [nit|X′,N]

=
∑
Nc

nit

T∏
t̃=1

p(Nc
t̃
|X′

t̃
,Nt̃). (4.31)

Above, the sum of products
∑

Nc

∏T
t=1 p(N

c
t |X′t,Nt) can be written as a product of sums such

that,

∑
Nc

∏
t

p(Nc
t |X′t,Nt) =

∑
Nc

1

p
(
Nc

1|X′1,N1

) . . .

∑
Nc

T

p
(
Nc
T |X′T ,NT

) , (4.32)

where each of the product terms on the rhs (4.32) is a probability density function (pdf) which

sums to unity. Given this, the expectation in (4.31) can be simplified in two ways. If pixel i is
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part of the set of observed pixels O, then n̄it = nit, as the observed shots nit do not contribute

to the summation over Nc. If however, pixel i is part of the set of unobserved pixels Ō,

n̄it =
∑
Nc

t

nit p(N
c
t |X′t,Nt)

 ∑
Nc\Nc

t

T∏
t̃=1
t̃6=t

p(Nc
t̃
|X′

t̃
,Nt̃)

 , (4.33)

where the term in the brackets of (4.33) is equal to unity by (4.32). Thus for all unobserved

pixels i,

n̄it =
∑
Nc

t

nit p(N
c
t |X′t,Nt). (4.34)

Streit assumes that the probability of seeing the unobserved counts Nc
t conditioned on the

observed counts Nt can be modelled using a negative multinomial distribution. The negative

multinomial distribution generalises the negative binomial distribution to more than two out-

comes and is commonly used to model problems which feature missing data.

Suppose we have an experiment with S+ 1 ≥ 2 outcomes where X0, . . . , XS provides a count of

each outcome, and p0, . . . , pS denotes the probability of each outcome, respectively. Clearly, the

outcomes X0, . . . , XS can be modelled using a multinomial distribution. However, if we were

to stop the experiment when the count in X0 reached some predetermined number k0, then

the distribution of the remaining counts X1, . . . , XS follows a negative multinomial distribution

with mean given by,

E[Xi] =
k0

p0
p, i = 1, . . . , S. (4.35)

where p =
∑S

i=1 pi is the probability of observing outcomes X1, . . . , XS .

The negative multinomial distribution can be used to model the number of successes before a

certain number of failures are observed. In the context of the TkBD problem, let the event of a

shot falling into an unobserved pixel constitute a ‘success’ and a shot falling into an observed

pixel as a ‘failure’. Define N0
t to encompass all events in which a shot is drawn from an observed

pixel i.e. N0
t = {N1

t , . . . ,N
I
t }. Then, the negative multinomial distribution can be used to model

the expected number of unobserved shots (or successes) NI+1
t , . . . ,NS

t before ||Nt|| observed

shots (failures) are drawn.

Define the probability of success i.e. a shot being drawn from an unobserved pixel j = I+1, . . . , S

as,

p(Nj
t ) =

f j

Ft
. (4.36)
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Let the number of predefined failures be given by ||Nt|| and the probability of failure i.e. a shot

being drawn from an observed pixel i = 1, . . . I be given by,

p(N0
t ) =

I∑
i=1

p(Nit)

=
I∑
i=1

f it
Ft
. (4.37)

Then by (4.35), we can calculate the expected count in the unobserved pixels j = I + 1, . . . , S

as following:

E[Nj
t ] = ||Nt||

f j

Ft
I∑
i=1

f it
Ft

= ||Nt||
f j

FOt
. (4.38)

Thus, we can simplify (4.31) as follows,

n̄it =


nit, i ∈ O,

||Nt||
f i

′
t

FO
′

t

, i ∈ Ō,
(4.39)

where and FO
′

t =
∑I

i=1 f
i
t is the summation of pixel probabilities over the observed measurement

space.

We can now write the following expression:∑
Nc

||Ntotal
t || p(Nc|X′,N) = ||Nt||+

∑
Nc

||Nc
t || p(Nc|X′,N)

= ||Nt||+
S∑

i=I+1

n̄it

= ||Nt||+
S∑

i=I+1

||Nt||
f i

′
t

FO
′

t

=

||Nt||FO
′

t +
S∑

i=I+1

||Nt||f i
′
t

FO
′

t

=
||Nt||
FO

′
t

{
I∑
i=1

f i
′
t +

S∑
i=I+1

f i
′
t

}
(4.40)

=
||Nt||
FO

′
t

.
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Note that
∑I

i=1 f
i′
t +

∑S
i=I+1 f

i′
t = 1 as the summation encompasses the entire observation

space. Thus, the first line in (4.30) can be expressed as

M∑
m=0

{
log {p(xm0 )}+

T∑
t=1

log{p(xmt |xmt−1)}
∑
Nc

t

||Ntotal
t ||p(Nc

t |X′t,Nt)

}

=
M∑
m=0

{
log {p(xm0 )}+

T∑
t=1

||Nt||
FO

′
t

log{p(xmt |xmt−1)}

}
(4.41)

Consider simplifying the second line on the rhs (4.30). The inner summand of
[∑∑∑

log πK
ir
t

]
depends only on one assignment, namely Kir

t . In a similar way to (4.32), we assume indepen-

dence of the Kir
t term and write,

∑
K

 T∑
t=1

I∑
i=1

ni
t∑

r=1

log
{
π
Kir

t
t

} p(K|X′,N)

=


T∑
t=1

I∑
i=1

ni
t∑

r=1

M∑
Kir

t =0

log
{
π
Kir

t
t

}
p(Kir

t |X′t,Nt)

 ∑
K\Kir

t

p(K \Kir
t |X′t,N). (4.42)

The right-most term in (4.42) is the marginal probability of all the assignments except Kir
t

and is summed over all possible values. It equates to unity. Furthermore, by substituting in the

prior for associations K derived in (4.24), (4.42) simplifies to,

T∑
t=1

I∑
i=1

ni
t∑

r=1

M∑
Kir

t =0

log
{
π
Kir

t
t

}
p(Kir

t |X′t,Nt)

=

T∑
t=1

I∑
i=1

ni
t∑

r=1

M∑
Kir

t =0

π
Kir′

t
t hi(x

Kir′
t

t )

f i
′
t

log
{
π
Kir

t
t

}

=
T∑
t=1

I∑
i=1

M∑
Kir

t =0

ni
t∑

r=1

π
Kir′

t
t hi(x

Kir′
t

t )

f i
′
t

log
{
π
Kir

t
t

}
(4.43)

=
T∑
t=1

I∑
i=1

M∑
m=0

πm
′

t n̄it h
i(xm

′
t )

f i
′
t

log{πmt }. (4.44)

Note that the summand in (4.43) is independent of shots r and will be identical for each shot r

due to the IID assumption. As a result, we can replace the summation over shots r by a single

multiplication of the n̄it term. Also note, that in (4.44), the summation over associations Kir
t

converts to a summation over all targets m to simplify notation.

We now consider the last term on the rhs of (4.30). As before, the internal summand depends

on only one shot so the expectation simplifies to the marginal expectation over that specific
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shot. Substituting (4.23) and (4.24) into the last term on the rhs of (4.30) results in

∑
K

∫  T∑
t=1

I∑
i=1

ni
t∑

r=1

log
{
h(Lirt |x

Kir
t

t )
} p(L,K|X′,N)dL

=
T∑
t=1

I∑
i=1

ni
t∑

r=1

M∑
Kir

t =0

∫
log
{
h(Lirt |x

Kir
t

t )
}
p(Lirt |X′,N,K)p(Kir

t |X′,N)dLirt

=

T∑
t=1

I∑
i=1

M∑
m=0

πm
′

t n̄it
f i

′
t

∫
Bi

h(τ |xm′t ) log {h(τ |xmt )} dτ. (4.45)

Again we have substituted the summation over shots r by a multiplication of a n̄it term and

converted the summation over associations Kir
t to a summation over all targets m. Note that

although (4.45) contains two h(·) terms, only the log{h(·)} term depends on the state we are

maximising over: the other term is a function of the previous estimate. Finally, by substituting

(4.41), (4.44) and (4.45) into (4.30), the auxiliary function simplifies to,

Q(H)(X,Π|X′,Π′) =

M∑
m=0

{
log{p(xm0 )}+

T∑
t=1

||Nt||
FO

′
t

log{p(xmt |xmt−1)}

+

T∑
t=1

I∑
i=1

πm
′

t n̄ith
i(xm

′
t )

f i
′
t

log{πmt }

+
T∑
t=1

I∑
i=1

πm
′

t n̄it
f i

′
t

∫
Bi

h(τ |xm′t ) log {h(τ |xmt )} dτ

}
. (4.46)

Recall that the use of the quantised measurement Nt rather than the original measurement Zt

is only an intermediate step in the derivation of the algorithm. Having defined an EM algorithm

at a prescribed quantisation, the limit of the auxiliary function Q(H) is taken in the final step

of the derivation. This leads to the H-PMHT which no longer uses quantisation.

4.2.4 Taking the Limit of the Quantisation

Recall that in the first step of the H-PMHT derivation, the measurement data is quantised

according to some arbitrary quantisation level c2. In the final step of the derivation, the limit of

the auxiliary function is taken, such that, Q(H) is replaced with limc2→0 c
2Q(H). Note that only

the parameters n̄it and ||Nt|| will be affected by the limit of the quantisation. As n̄it depends on

nit by (4.39), we can use (4.5) to write the following,

lim
c2→0

c2nit = lim
c2→0

c2

⌊
zit
c2

⌋
= lim

c2→0

{
c2z

i
t

c2
− ε

}
= zit, (4.47)
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where ε < c2. Using (4.47), we can also write

lim
c2→0

c2||Nt|| = lim
c2→0

{
c2
∑
i

⌊
zit
c2

⌋}

=
I∑
i=1

lim
c2→0

{
c2z

i
t

c2
− εi

}

=
I∑
i=1

zit

= ||Zt||. (4.48)

It is assumed that floor function is sufficiently stable such that the summation over pixels i can

be taken outside the limit. When the limit of Q(H) is taken, we can substitute (4.47) and (4.48)

into (4.46) to give the following expression for the auxiliary function,

Q(H)(X,Π|X′,Π′) =
M∑
m=0

{
log{p(xm0 )}

[
T∑
t=1

||Zt||
FO

′
t

log{p(xmt |xmt−1)}

]

+
T∑
t=1

I∑
i=1

πm
′

t z̄it
f i

′
t

hi(xm
′

t ) log{πmt }

+

T∑
t=1

I∑
i=1

πm
′

t z̄it
f i

′
t

∫
Bi

h(τ |xm′t ) log {h(τ |xmt )} dτ

}
. (4.49)

where

z̄it =


zit i ∈ O,

||Zt||
f i

FOt
i ∈ Ō.

(4.50)

We can further decompose (4.49) into two separate expressions for individually estimating the

target states xmt and mixing proportions πmt such that,

Q(H)(X,Π|X′,Π′) =
M∑
m=0

QmX +
T∑
t=1

Qtπ, (4.51)

where

QmX = log {p(xm0 )}+
T∑
t=1

||Zt||
FO

′
t

log
{
p(xmt |xmt−1)

}
+

T∑
t=1

I∑
i=1

πm
′

t z̄it
f i

′
t

∫
Bi

h(τ |xm′t ) log {h(τ |xmt )} dτ, (4.52)

Qtπ =

M∑
m=0

I∑
i=1

πm
′

t z̄it
f i

′
t

hi(xm
′

t ) log{πmt }. (4.53)

77



4.2.5 M-Step

In the maximisation step of the EM procedure, each component of the auxiliary function can

be maximised separately,

X̂m = arg maxQmX , (4.54)

Π̂ = arg max

T∑
t=1

Qtπ. (4.55)

First, consider maximising the state auxiliary function (4.54). Upon initial examination, the

state auxiliary function appears to be quite daunting to solve. However by regrouping terms,

we can write the auxiliary function as follows:,

QmX = log {p(xm0 )}

+
T∑
t=1

[
log
{
ψmt (xmt |xmt−1)

}
+ log

{
ζmt (zit,x

m
t )
}]
, (4.56)

where ψmt (·) can be interpreted as a time-varying process model and ζmt (·), as a time varying

measurement function. The auxiliary function for the H-PMHT can be reposed into an equiva-

lent measurement tracking problem, consisting of a target dynamics model and a measurement

likelihood model. Thus, if an appropriate measurement estimator exists for the problem un-

der consideration, it can be used to perform the state estimation component of the H-PMHT

algorithm.

Although we have derived the H-PMHT in batch form, it is also possible to adapt the H-PMHT

to allow for time-recursive filtering of the component state estimates. A discussion of both batch

processing and time-recursive filters for the H-PMHT is presented in Section 4.3.

We now consider maximising the mixing proportion auxiliary function (4.55). An analytic ex-

pression for the mixing proportion estimate can be found by employing the Lagrangian multi-

plier method to maximise (4.55) subject to the normalisation constraint
M∑
m=0

πmt = 1. Define λ̃t

to be the Lagrangian multiplier and let the Lagrange function be given by,

Lt,π = Qtπ + λ̃t

(
1−

M∑
m=0

πmt

)
=

M∑
m=0

I∑
i=1

πm
′

t z̄it
f i

′
t

hi(xm
′

t ) log {πmt }+ λ̃t

(
1−

M∑
m=0

πmt

)
. (4.57)
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Differentiating with respect to πmt and solving for stationary points results in the update,

πmt =
πm
′

t

λ̃t

I∑
i=1

πm
′

t z̄it
f i

′
t

hi(xm
′

t ). (4.58)

By summing (4.58) over all components m and making use of the normalisation constraint, the

Lagrangian multiplier can be expressed as,

λ̃t =
M∑
m=1

πm
′

t

I∑
i=1

πm
′

t z̄it
f i

′
t

hi(xm
′

t ) (4.59)

Substituting (4.59) into (4.58) results in a final updated expression for the mixing terms,

πmt =
pmt
M∑
m=0

pmt

, (4.60)

where

pmt = πm
′

t

I∑
i=1

z̄ith
i(xm

′
t )

f i
′
t

(4.61)

4.3 Implementations

EM convergence is determined in terms of the auxiliary function QmX , however the computation

of this term can be expensive, and it is only used to determine convergence. To streamline

computations, we constructed a convergence test based around the estimates of the target

state. A track was considered converged when the difference between track estimates from one

EM iteration to the next dropped below some threshold.

In the batch version of the H-PMHT, the entire target trajectory is updated within each EM

iteration, which allows for a smoothed estimate of the target trajectory as the maximisation is

performed over both target states and time. However this does not allow for real time processing

which can be useful in some applications. As mentioned earlier, the H-PMHT can be easily

adapted to allow for time-recursive filtering. The advantage of a time-recursive filter is the

ability to process measurements sequentially as they become available at each time scan. The

disadvantage is that the state estimates are unsmoothed so the trajectory formed by linking

the filtering estimates across time may violate the constraints imposed by the target dynamics

model and the estimation error will be higher.

The original presentation of the H-PMHT algorithm [117] showed that for a linear Gaussian psf

h(τ |xmt ), the EM auxiliary function is equivalent to the log-likelihood of a point-measurement
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filtering problem. This result allows for simple implementation and has thus led to the Kalman-

based H-PMHT filter [35].

The H-PMHT is not restricted to linear Gaussian applications. In the case when the psf is

non-Gaussian and non-linear, there is no analytic way of reducing the auxiliary function (4.52)

to an equivalent point measurement problem with the same likelihood. Nevertheless, the EM

procedure can still be employed to return estimates of the mixing proportions and target states

using non-linear state estimation methods such as the Extended Kalman Filter (EKF), Un-

scented Kalman Filter (UKF) or PF [36]. In the following subsections, we give a brief review

of how the KF and PF may be applied to solve for the target states estimates (4.54) for the

H-PMHT algorithm. A batch solution to the H-PMHT via the Viterbi algorithm is also possible

but has not been demonstrated in the literature. A description for implementing a Viterbi-based

H-PMHT is presented in subsection 4.3.3 and is the key contribution of this chapter [133].

4.3.1 Kalman Filter Implementation

For a linear Gaussian psf,

h(τ |xmt ) = N (τ ;Hxmt ,R), (4.62)

the EM target auxiliary function is equivalent to the log-likelihood of a point-measurement

filtering problem with associated synthetic measurements. If the target dynamics are also linear

and Gaussian then the estimator used to obtain the target states is a KF [117]. Under these

assumptions, analytic expressions for the per-cell contribution for each component (4.8) and

for the synthetic measurements can be derived. The procedure for calculating these integrals is

based on a software implementation presented in [35].

To derive the equivalent synthetic point measurement for the KF implementation, consider

one time slice of the measurement component of the auxiliary function (4.52). By factorising

the measurement component and completing the square, we can show that the measurement

component is a sum of quadratics in the target state which when collected into a single quadratic,

is equivalent to the log of a normal distribution:
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∑
i

πm
′

t z̄it
f i

′
t

∫
Bi

h
(
τ |xm′t

)
log {h (τ |xmt )} dτ

= const− πm
′

t

2

∑
i

z̄it
f i

′
t

∫
Bi

h
(
τ |xm′t

)
(τ − Hxmt )TR−1 (τ − Hxmt ) dτ,

= const− πm
′

t

2

∑
i

z̄it
f i

′
t

∫
Bi

h
(
τ |xm′t

)
(Hxmt )TR−1Hxmt dτ

+πm
′

t

∑
i

z̄it
f i

′
t

∫
Bi

h
(
τ |xm′t

)
(Hxmt )TR−1τdτ,

= const− πm
′

t

2
(Hxmt )TR−1Hxmt

∑
i

z̄it
f i

′
t

hi (xmt ) + πm
′

t (Hxmt )TR−1
∑
i

z̄it
f i

′
t

∫
Bi

τh
(
τ |xm′t

)
dτ,

= const− 1

2

(
z̃

(m,H)
t,m − Hxmt

)T
R̃

(H)−1
t,m

(
z̃

(m,H)
t,m − Hxmt

)
. (4.63)

Note that in (4.63), all terms that are not dependent on xmt are absorbed into the constant

term, whose value can change from line to line. The resulting synthetic mean and covariance is

given by,

z̃
(m,H)
t,m =

πm
′

t

pmt

∑
i

z̄it
f i

′
t

∫
Bi

τh
(
τ |xm′t

)
dτ, (4.64)

R̃
(m,H)
t =

1

pmt
R. (4.65)

Substituting (4.64) and (4.65) into (4.52), we obtain

ζmt (zit,x
m
t ) = N

(
z̃

(m,H)
t ;Hx, R̃

(H)
t,m

)
. (4.66)

The TkBD problem can be reposed into an equivalent point-measurement problem consisting of

the same target state model and of a measurement model, which is scaled by the TkBD psf. It is

important to emphasize that this is not an approximation. By completing the square, analytic

expressions are obtained for a point measurement that has the same likelihood as the sensor

image (to within a constant) and is assumed equivalent for the purposes of state estimation.

Next we develop analytic expressions to evaluate the target and clutter per-cell contributions

defined in (4.9) and (4.10) respectively. First, we make the assumption that the state space grid

is uniform resulting in the spatial extent for every Bi being the same. The contribution of each

target within each pixel is simply the area under the pdf in pixel i. For a Gaussian function,

this can be evaluated using erf functions, however this is generally expensive to compute. For

scenarios in which the target contribution to the image is assumed to be changing slowly from

pixel to pixel, we can make the approximation that the function h (τ |xmt ) is constant over the

area Bi. This can be done by assuming that the function across Bi is equal to the psf evaluated
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at the centre of the pixel,

hi (xmt ) =

∫
Bi

h (τ |xmt ) dτ

≈ ∆τ

|2πR|
exp

{
−1

2
(Hxmt − τ̄i)

TR−1(Hxmt − τ̄i)
}

(4.67)

where τ̄i denotes centre of pixel i and ∆τ the cell area. In order to evaluate the clutter per-cell

contribution, assume that the clutter model is uniform across the measurement image:

hi (∅) =
1

I
(4.68)

To evaluate the integral in the synthetic measurement (4.64), consider the derivative of the psf

h (τ |xmt ). As the psf is Gaussian,

d h (τ |xmt )

dτ
= h (τ |xmt ) (Hxmt − τ)TR−1. (4.69)

We can then write

τh (τ |xmt ) = Hxmt h (τ |xmt )− R
d h (τ |xmt )

dτ
. (4.70)

Substituting (4.70) back into the synthetic measurement gives

z̃
(m,H)
t =

πm
′

t

pmt

∑
i

z̄it

∫
Bi

τh
(
τ |xm′t

)
=

πm
′

t

pmt

∑
i

z̄it
Hxmt
hi(xmt )

∫
Bi

h(τ |xmt )dτ − R

hi(xmt )

(
d

dτ

∫
Bi

h (τ |xmt ) dτ

)

=
πm
′

t

pmt

∑
i

z̄it

[
Hxmt −

R

hi(xmt )
h (τ |xmt )

]

=
πm
′

t

pmt

∑
i

z̄it

[
Hxmt −

R

hi(xmt )

{
h

(
τ̄i +

∆τ

2

∣∣∣xmt )− h(τ̄i − ∆τ

2

∣∣∣xmt )}
]
. (4.71)

In the single target case, let π∅0 and πx0 denote the initial mixing proportion terms for the clutter

and target components, respectively, such that,

π0 = [ π∅0 πx0 ], (4.72)

If there are no targets detected at the beginning of the scenario, let π∅0 = 1 and πx0 = ∅. When

a target is detected, let πx0 = 0.01 and πt is renormalised accordingly.

In the multi-target case, priority is given to detections and tracks that have higher SNR. In the

initialisation step, the mixing terms for each new target are given a initial mixing proportion

value of πmtim = 0.01, appended to the vector πt, and πt is re-normalised. This initialisation
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procedure guarantees that each time scan, tracks that are confirmed first are given higher

probabilities of existence, and are given preference over tracks which are confirmed later.

The KF implementation of the H-PMHT algorithm is summarised in Algorithm 5 on page

86. In [36], Davey extended this procedure to account for a Gaussian psf where the peak is a

non-linear function of the target state,

h(τ |x) = N (τ ; g(xmt ),R). (4.73)

Davey demonstrated how this may also be rearranged as an equivalent point-measurement

likelihood by substituting in the non-linear Gaussian psf, expanding and then completing the

square to result in the equivalent point measurement function of the form,

ζmt (zit,x
m
t ) = N

(
z̃

(m,H)
t ; g(xmt ), R̃

(m,H)
t

)
. (4.74)

As the estimation problem is now non-linear, an EKF, UKF or PF could be used to obtain the

state estimates. The extension of the H-PMHT to accommodate an EKF or UKF is relatively

simple, however these implementations may diverge under highly non-linear conditions and fail

to represent multi-modality. The PF performance is generally more robust in highly non-linear

scenarios and its implementation for the H-PMHT is discussed in the next section.

4.3.2 Particle Filter Implementation

The PF uses the sampling approach to solve the dynamical state estimation problem. The PF

is founded upon Sequential Monte Carlo estimation (SMC) and is based on the idea that a

probability density can be represented by a set of random samples or ‘particles’ with associated

weights. In the limit, as the number of samples become very large, the particle representation

of the pdf becomes the equivalent functional form of the pdf, and the particle filter approaches

the optimal Bayesian estimator.

To avoid degeneracy, in which all but one particle has a negligible normalised weight after a

few recursions [26], we employ resampling to discard particles of negligible weight and duplicate

those particles which contribute most to the approximation of the posterior density.

In the general non-linear non-Gaussian case, the process model ψt(·) given by (4.56) is a non-

linear function with non-Gaussian noise and the measurement function ζt(·) is the sum of

logarithms of arbitrary functions with no closed form. Nevertheless, Davey demonstrated that

a solution is still possible using a PF implementation for the H-PMHT state estimation [36].

The initialisation step for the target states is similar to that required for a PF TkBD method

(e.g. see [108]) and only requires that the initial sample spread has enough diversity to support
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Algorithm 5 H-PMHT KF

1. Initialise the EM algorithm: For each target m = 1 . . . ,M , initialise the algorithm from

a known p(xm0 ).

2. Initialise the mixing proportion estimate using an initial estimate for πm.

3. For time scans t = 1, . . . , T ,

(a) Prediction Step: For each target component m, compute the predicted state esti-

mate xmtt−1 by applying the dynamics model to the previous EM state estimates

xm
′

t .

(b) For each target component m, construct hi(xmt|t−1), the probability that a shot due

to the target falls in pixel i. Note that this step may require numerical integration.

(c) Evaluate f i
(
x1:M
t|t−1;π0:M

t|t−1

)
, the overall probability that a shot (due to target or

clutter) falls in pixel i.

(d) Refine the mixing proportion estimates π0:M
t using the above values of hi(xmt|t−1)

and f i
(
x1:M
t|t−1;π0:M

t|t−1

)
.

(e) Update Step

i. Compute the updated state estimates xmt|t using synthetic measurements

z̃
(m,H)
t in (4.64).

ii. Compute the synthetic covariance R̃
(m,H)
t via (4.65).

(f) Repeat Step 3.b) . . . 3.e) until convergence using the updated EM state estimates.
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the range of possible target states. The prediction step is also similar to the PF TkBD and

involves predicting the posterior particle set forward in time using the target dynamics model.

The initialisation procedure for the mixing terms is the same as for the KF implementation of

the H-PMHT.

For the state estimation step, we are required to calculate the likelihood of the sensor data given

the value of the state for every particle. For notational convenience, we suppress the target index

m in the following equations. Let xjt denote the jth sampled state for a given target m. Then,

the likelihood for target m in pixel i is defined by (4.52) as

log{wijt } =
∑
i

π′t
z̄it
f i

′
t

∫
Bi

h
(
τ |x′t

)
log

{
h
(
τ |xjt

)}
dτ,

=
∑
i

π′t
z̄it
f i

′
t

Wi

(
x′t,x

j
t

)
. (4.75)

where wijt denotes the weight for jth particle in pixel i and

Wi

(
x′t,x

j
t

)
=

∫
Bi

h
(
τ |x′t

)
log

{
h
(
τ |xjt

)}
dτ. (4.76)

Also, observe that the state estimate x′t and the π′t term are the result of the previous EM

iteration and is common for all particles generated for target m. The sampled state for the jth

particle enters through the logarithm term.

Unfortunately, even though we have gone to a particle representation, the evaluation of the

integral remains intractable. However, if we treat the particle state xjt as a known constant,

this allows us to numerically evaluate the integrand of (4.75) [36]. Let the area of cell i (i.e. Bi)

be broken up into D contiguous subcells. The integrand can be approximated by a piecewise

constant function and the integral can be approximated with a Reimann sum. Let the area of

subcell d be denoted by ∆d and the centre of subcell d as τd, then we can make the following

approximation,

Wi

(
x′t,x

j
t

)
≈

D∑
d=1

h
(
τd|x′t

)
log

{
h
(
τd|xjt

)}
∆d. (4.77)

The limit as D →∞ of (4.77) is the Reimann definition of the integral in (4.75). The expression

in (4.77) is of a form readily implemented in software. Note that the first term in (4.77) is not

dependent on the particle state, thus to ensure an efficient implementation, these terms can be

calculated outside the particle loop. Finally, the target state estimates can be calculated using,

x̂ =

Np∑
j=1

I∑
i=1

wijxjt . (4.78)
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Note that the EM process requires a maximum a posteriori (MAP) estimate on each iteration

however it is difficult to extract this from a set of particles. That being the case, we have

assumed that the conditional mean estimate produced by the particle filter implementation is

a sufficient approximation of the MAP estimate required by the EM. The recursive form of the

PF implementation for the H-PMHT algorithm is summarised in Algorithm 6.

Algorithm 6 H-PMHT PF

1. Initialise the EM algorithm: For each target m = 1 . . . ,M draw Np independent sample

positions from some prior distribution p(xm0 ) and set the initial weights to be uniform.

2. Initialise the mixing proportion estimate using an initial estimate for πm.

3. For time scans t = 1, . . . , T , perform steps 3.(a) - 3.(d) from Algorithm 5.

(e) Update Step:

i. Re-weight particles by evaluating (4.75).

ii. Define a new state estimate based on the weighted particle set

(f) Repeat Step 3.b) . . . 3.e) until convergence using the updated EM state estimates.

(g) Resample particles for each target.

4.3.3 Viterbi Algorithm Implementation

Up until this point, we have presented a summary of the derivation of the H-PMHT and de-

scribed how it can be implemented using a KF for linear Gaussian problems. We also showed

that in the general non-linear non-Gaussian case, the PF can be used as a numerical approxima-

tion to solve for the state estimates. However, there is nothing preventing us from using other

numerical approximations based on fixed grid techniques such as the Viterbi algorithm. We now

describe how the general Viterbi algorithm can be applied to solve the optimisation given in

(4.54). The ideas introduced in this section comprise the key contribution for this chapter [133].

For a review of the Viterbi algorithm, refer to subsection 3.4.1.

The PF implemented in previous work is a recursive filter and produces a conditional mean

state estimate after each EM iteration through use of a dynamic grid. On the other hand, the

Viterbi algorithm is a batch estimator and produces a maximum likelihood sequence estimate.

It does so by performing a discretisation over the entire state space resulting in a fixed grid with
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time. For the Viterbi implementation, we now define xjt to be a distinct state in the Viterbi

grid.

The advantage of using a fixed-grid over the particle filtering approach is that the method is

more robust to clutter outliers that arise in real-world data [35] since it does not suffer from

sample degeneracy. Also unlike the PF implementation, which outputs a conditional mean esti-

mate, the Viterbi implementation naturally generates a MAP estimate, as required by the EM

procedure. Finally if batch processing is desired, the Viterbi algorithm can return a smoothed

sequence, whereas the particle approach presented in [36] is only suited to filtering.

The initialisation step is similar to that required for the standard TkBD version [133], and re-

quires the evaluation of an initial likelihood. Alternatively, initialisation can also be performed

via a peak detection process where a threshold is applied to the measurement image at every

time scan and a track is initiated for every point which falls above that threshold. This thresh-

old can be set by the user and is dependent on the scenario under consideration. Note that

after initialisation via the peak detection process, track updates are performed using the raw

measurement image. The H-PMHT batch algorithm requires an initial estimate of the entire

state sequence rather than just a state estimate at time t = 0. Hence, an initialisation procedure

is required for all peak detections for all time points 1, . . . , T . This can be done by running a

standard Viterbi algorithm across the image to produce an initial sequence estimate for each

peak detection, which can be used as input into the batch form H-PMHT. The initialisation

procedure for the mixing terms is the same as for the KF implementation of the H-PMHT.

The H-PMHT employs the Viterbi algorithm to perform the state estimation component of the

EM procedure. Define ζt(x
j
t ) to be the likelihood for state xjt given the sensor data such that

the log-likelihood via (4.52) is given by

log{ζt(xjt )} =
∑
i

π′t
z̄it
f i

′
t

∫
Bi

h
(
τ |x′t

)
log

{
h
(
τ |xjt

)}
dτ

=
∑
i

π′t
z̄it
f i

′
t

Wi

(
x′t,x

j
t

)
, (4.79)

where Wi is given by (4.76) and the quantity xjt in the logarithm term now denotes a distinct

state in the Viterbi grid. Again, the state estimate x′t and mixing proportion term π′t take their

values from the previous EM iteration and remain the same when iterating though all states

in the Viterbi grid. By assuming that the grid point xjt is a known constant, the integrand in

(4.79) can be evaluated numerically in the same way as (4.77).

This Viterbi algorithm finds the best path through the trellis generated by the fixed grid. It

does so by using the likelihood to evaluate the cost of transitioning from one state to the next

at each time point. Recall that the cost function Ct(x
j
t ) is defined to be the best score over all
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paths that end in state xjt from time 1, . . . , t and the back-pointer array, θt(x
j
t ) stores the state

that maximised the cost function for each time step. Given these functions, the batch form of

the Viterbi H-PMHT algorithm is summarised in Algorithm 7.

For multi-target tracking, fixed-grid approximation techniques can grow exponentially in com-

putational complexity due to the large number of discrete states required. However the H-PMHT

provides data association weights that allows each target to be estimated independently using

a bank of single-target Viterbi estimators.

However, the performance of the single-target Viterbi algorithm is still highly dependent on

the discretisation of the state space. For a discretisation that results in a fine resolution grid,

performance can be costly as we are required to calculate the likelihood for every state in

the grid. This is inefficient as the likelihood is negligible except for grid points that are near

the previous EM’s estimate for x′t. To reduce computational cost at each time scan, we can

evaluate the likelihood for a subset of grid points near the previous EM’s estimate x′t. In effect,

this restricts the target updates to only close neighbouring states in the grid. The subset of

grid points will obviously change as the target is updated at each time scan. This results in

an adaptive grid from one EM iteration to the next, in which the total subset of grid points

considered to update the entire target trajectory will change accordingly as each individual

target state is updated at each time scan. In particular, the use of an adaptive grids may prove

necessary in multi-target scenarios to reduce the overall computational expense.

In the next section, a comparison of the Viterbi-based H-PMHT performance with KF and PF

H-PMHT implementations is shown for several simulated scenarios.

4.4 Simulations

The batch Viterbi H-PMHT will be now compared with the PF H-PMHT and KF H-PMHT

through some idealised single target simulation scenarios. Two cases are considered: a linear

target motion with a Gaussian psf and a linear target motion with a non-linear non-Gaussian psf.

For brevity, the three algorithms will be referred to as H-PMHT-V, H-PMHT-P and H-PMHT-K

from herein.

It is clear that the first case satisfies the assumptions leading to the H-PMHT-K so we would

expect it to perform well. The second simulation scenario will demonstrate a simple example

where the H-PMHT-V will be shown to give some benefit over the H-PMHT-K. Some insight

into the performance of differing non-linear estimators as applied to the H-PMHT algorithm

is also shown. The performance for all three algorithms will be evaluated using the root mean

square (RMS) position accuracy.
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Algorithm 7 H-PMHT Viterbi

1. Initialise the EM algorithm: For each target m = 1 . . . ,M , initialise the EM algorithm

by generating an initial state sequence estimate p(xm1:T ) using the likelihood or peak

detection process.

2. Initialise the mixing proportion estimate using an initial estimate for πm.

3. For time scans t = 1, . . . , T , perform Steps 3(a) - (d) from Algorithm 5.

(e) Update Step:

i. Calculate the likelihood for each state xjt in the Viterbi grid using (4.79).

ii. Calculate scoring quantities Ct(x
j
t ) and back pointer array θt(x

j
t ) for each

state grid point xjt .

4. Find the most likely state estimate at final time T .

5. Using the back pointer array θt(x
j
t ), reconstruct the most likely state sequence.

6. Repeat Steps 3 - 5 until sequence converges using the updated EM sequence estimates.

For each algorithm, we assume a four element state consisting of position and velocity in the

plane,

xt =
[
xt ẋt yt ẏt

]T
. (4.80)

In the case of the Viterbi-based implementation, we assume a uniform grid and specify the

mapping of index space into physical space using the vector xjt = [jx jẋ jy jẏ]
′ such that

xjt =
[
4xjx

4x

4t
jẋ 4yjy

4y

4t
jẏ

]′
, (4.81)

where 4t refers to duration between time scans, and 4x and 4y denote the size of the cells in

the X and Y dimensions respectively.

For each of the scenarios, the sensor collected a 100×100 pixel image of a single target moving in

the plane for T = 40 time frames. The frames were collected at a uniform rate of one per second.

We assume a point-scatterer target such that the target contribution to the measurement image

can be described purely in terms of the sensor psf, h(xt),

Zt = At h(xt) +wt, (4.82)

where wt is additive i.i.d. sensor noise process representing uncertainties in the measurement

process and At denotes the amplitude at time t. The sensor noise was complex-Gaussian with
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unit variance. However, the H-PMHT algorithm assumes non-negative real values for each pixel,

so the envelope (absolute value) of the image was supplied to the tracking algorithm. Thus the

noise-only pixels were Rayleigh distributed with unit variance and the pixels containing a target

contribution followed a Rician distribution with unit variance and a mean dependent on the

target location and SNR. Note that the psf is a property of the sensor and is the same for

all targets, but can vary with different sensors. In subsequent sections, the performance of the

H-PMHT is demonstrated in scenarios featuring a Gaussian and non-Gaussian psf. Note that

as the measurement function is only dependent on position, the likelihoods for each state grid

point are the same for each velocity component.

The computational cost and performance of the H-PMHT-V will be highly dependent on the

resolution of the Viterbi grid. In the simulations, a uniform unit integer grid in position and

velocity, in both dimensions was assumed. Thus in the following scenarios, the Viterbi grid size

consisted of approximately 40 position elements and two velocity elements in both the X and

Y direction i.e. Nx = Ny = 40 and Nẋ = Nẏ = 2, where ẋt = ẏt = {0, 1}, resulting in a total

grid size of 6400 points. For the simulations considered in this chapter, it was found that ten

iterations was adequate to ensure EM convergence.

The H-PMHT-P algorithm employs random sampling and as such, the total number of particles

is generally dependent on how non-linear a problem is. For the following scenarios, it was found

to be sufficient to test the PF method with 1000 particles.

4.4.1 Linear Gaussian Scenario

The first scenario consists of a target under constant velocity motion with the assumption of

an isotropic Gaussian psf. Figure 4.1 shows the target trajectory for the scenario. The target

starts near the corner of the image at approximately (20,20) and moves with a constant speed

of one pixel per frame with a heading of 45 degrees.

The psf h(xt) forms an ellipse based on a two dimensional Gaussian function centred at (x∗t , y
∗
t )

such that,

h(xt) =
1

2πσxσy
exp

{
−

[(xt − x∗t
2σ2

x

)2
+
(yt − y∗t

2σ2
y

)2
]}

, (4.83)

where σx = 4 and σy = 6 denote the standard deviation in the X and Y direction, respectively.

As we are using a four element state space consisting of position and velocity in the plane and

a nearly-constant velocity target model, let p (xt|xt−1) ∼ N (xt;Fxt−1,Q). The parameters of

the model are given by,
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Figure 4.1: Linear Gaussian scenario
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where 4t = 1 second.

For efficient implementation, an adaptive grid for the Viterbi algorithm was employed so that

at each time scan, the likelihood was evaluated for only a 10× 10 subset of grid points around

the previous EM target estimates. This restricts the possible target updates within each EM

iteration to only close neighbouring states. The H-PMHT-K and H-PMHT-P use the true

target dynamics model directly; the H-PMHT-V must use a discretised version of it. This is

achieved by direct sampling, that is, the transitions from state Sp to state Sq are given by

apq = N (Sq − FSp; 0,Q). To improve computation costs, the support of the transition kernel

was limited to only adjacent states. Thus the transition matrix F was renormalised so that

apq = 0 for non-adjacent states.

Figure 4.2 shows the RMS position estimation accuracy for the three implementations of

H-PMHT averaged over 100 Monte Carlo trials. All three algorithms perform well but as ex-
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Figure 4.2: Localisation accuracy, linear Gaussian scenario

pected, the H-PMHT-K gives the best performance as it is the optimal Bayesian estimator for

the linear Gaussian case. The H-PMHT-V does not perform as well as the H-PMHT-P or the

H-PMHT-K and its RMS curve shows distinct fluctuations in error with time. In the Viterbi

implementation, the errors between the true state and the Viterbi estimate are limited to the

resolution of the Viterbi grid. As the Viterbi algorithm produces a smoothed trajectory, these

differences are expected to fluctuate over time as the Viterbi state estimates do not always

select the state grid point which is closest to the true state. These fluctuations in errors are a

characteristic of the Viterbi algorithm and will vary in size depending on the resolution of the

Viterbi state space. The observed fluctuations in error have a magnitude of approximately half

a pixel, which are acceptable in light of the approximation of the state space to a unit integer

grid. Large state estimation errors can also arise as the Viterbi algorithm is required to conform

to a target dynamics model. In some cases, a physical transition to the the grid point closest

to the true state maybe be infeasible under the target dynamics model if the target estimate

has deviated significantly from the true state. This scenario verifies that the H-PMHT-V gives

an appropriate answer for the simplest case.
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4.4.2 Linear Non-Gaussian Scenario

In the second scenario, the target motion model remained the same as the first, but a non-

Gaussian psf was selected. For this scenario, a psf somewhat resembling the letter ‘C’ was

chosen. Specifically, the psf in polar coordinates (rp, θ) is given by

h(rp, θ) =

A if 5 ≤ rp ≤ 6 and |θ| > π
4 ,

0 otherwise,
(4.84)

where A is a normalising constant. This response is shown in Figure 4.3(a). A approximation

of the psf can be used to compute likelihoods across the pixel image, where the contribution of

the target to each pixel is the integral of h(rp, θ) over that pixel. An example of this is shown

in Figure 4.3(b).

This artificial psf was chosen because it is asymmetrical and the mean of the distribution is at

a location of very low density. For the H-PMHT-K implementation, the psf was approximated

by a Gaussian with covariance diag(18.4, 9.2), which is the covariance of h(rp, θ). Note that

because the psf is asymmetrical, the mean of the psf is not coincident with the target state.

The H-PMHT-K can easily compensate for this since the offset is fixed and known: it can be

treated as a bias.

The H-PMHT-P and H-PMHT-V have a more difficult problem to overcome. The psf has a

discontinuity and is also identically zero over most of the measurement space. This will result

in a log-likelihood value of log{0} for each particle or grid-point that was not part of the

original pixel support at the previous EM iteration. The log-likelihood associated with such a

psf is unbounded and the EM will struggle to optimise over this function. Some regularisation

steps proposed by [36] can be used to overcome this problem. First, we can convolve the psf

with a Gaussian with relatively small variance to effectively “blur” the psf and remove the

discontinuity. A uniform pedestal can also be added to the psf to prevent numerical problems

associated with evaluating log{0}.

Figure 4.4 on page 97 shows the overall RMS errors for the three algorithms averaged over 100

Monte Carlo trials for the linear non-Gaussian scenario. Again observe that the H-PMHT-P

gives very good state estimation performance. The H-PMHT-V RMS does not perform as well as

the H-PMHT-P, and again its performance tends to fluctuate with time. As mentioned earlier,

this saw-tooth characteristic can be attributed to the discretisation of the state space. Note

that if the target truth lies outside the trellis path generated by the state discretisation step,

then clearly the H-PMHT-V smoother will be unable to estimate target states as well as the PF

as it approximates the target state to the nearest state grid point. This results in a lower bound

on estimation performance. In this case, an improvement in the H-PMHT-V performance can
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Figure 4.3: Non-Gaussian point spread function

possibly be achieved with the use of a finer resolution state grid, at the additional expense of

computational complexity.

It is clear that the H-PMHT-K is biased even with compensation for the asymmetry in the psf.

Figure 4.5 and Figure 4.6 on pages 97 and 98, respectively, show the errors (in terms of pixels)

in the X and Y component respectively. It can be seen that the bias is attributed to the Y

component. This bias is not present in the H-PMHT-P or the H-PMHT-V and leads to higher

estimation error for H-PMHT-K.

4.5 Limitations

The H-PMHT’s unique definition of the measurement model provides data association weights

that accounts for the interaction between closely-spaced targets, which results in a TkBD multi-

target algorithm that retains linear complexity with the number of targets. Other multi-target

algorithms retain linear complexity by assuming that the targets are either well separated or

deal with the interaction between closely-spaced targets in a heuristic manner. The H-PMHT’s

ability to compute fast estimates in the multi-target context is one of its most attractive prop-

erties however the H-PMHT algorithm does have its limitations. These limitations are discussed

in the following subsections.

4.5.1 Unsmoothed Mixing Proportion Estimate

At each time step, the EM procedure for the multinomial mixing proportions is initialised using

the estimate calculated at the previous time point. However the EM update of the mixing
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Figure 4.4: Localisation accuracy, linear non-Gaussian scenario
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Figure 4.5: Localisation error in X component, linear non-Gaussian scenario
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Figure 4.6: Localisation error in Y component, linear non-Gaussian scenario

proportion values given by (4.60), is clearly only dependent on the mixing proportion value at

the previous EM iteration. This results in an unsmoothed estimate of the component mixing

proportions as they are uncorrelated with time. For a scenario featuring a target signal with

high fluctuations, estimates for the underlying average target SNR using the H-PMHT would

be difficult to obtain as the target mixing proportions are highly sensitive to the fluctuations

in the observed target signal.

The component mixing proportions are also dependent on each other through a normalising

constant, hence estimates for the mixing proportions must be determined jointly. The conse-

quence of this is exponential complexity if one attempts to apply a state model directly to the

mixing proportions [37]. Finally, note that the mixing proportions give an estimate of the target

SNR relative to the measurement image size. Although this is not an issue in most scenarios,

nevertheless, this requires the π values to be recalculated when the measurement size or reso-

lution changes. This limitation is addressed in Chapter 5, in which an alternative measurement

model based on a Poisson assumption on the quantised measurement counts is proposed. Under

this new model, the H-PMHT can be rederived to incorporate a time-correlated estimate for

the component mixing proportions, resulting in an improved measure for track quality.
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4.5.2 Quantisation issues

The H-PMHT algorithm is a TkBD method which returns tracks by accessing the intensity

map data directly. Generally, there exists no standard multi-target TkBD measurement model

that can be used to describe the intensity map image. As a result, it is impossible to perform

filtering in the usual sense without applying an approximation to reduce the intensity map data

to a set of discrete point measurements.

The H-PMHT algorithm makes an approximation to the intensity map by performing a quan-

tisation over the measurement image, and assuming a multinomial distribution on the resulting

counts from the integer-valued image. This gives rise to the assumption of independence between

shot measurements, which is questionable as the counts are derived from quantised intensities.

The quantisation level c2 influences the counts, and under the independence assumption, dic-

tates the amount of information created in the synthetic measurement data generation, yet the

true information content is not related to c2 at all. The arbitrary choice of the quantisation level

combined with the assumption of independence between shots results in an infinite amount of

synthetically generated data when the limit of the quantisation is taken to zero. This is clearly

undesirable as there is only a finite amount of information in the measurement data.

The process of taking the quantisation limit to zero also has other consequences when a Bayesian

model is adopted: the infinite amount of synthetically generated data will overwhelm any prior.

In the standard H-PMHT, this problem is solved by employing a modified Bayesian prior (5.10)

to ensure that the prior has sufficient influence on the target estimates. However, this modifi-

cation introduces some irregularities. At the end of the H-PMHT derivation, this modification

results in the prior being scaled by a ||Zt|| term in (4.52), which can have some dubious effects

during filtering. For example, if the sensor surveillance region were to increase from one time

scan to the next, this would result in an increase in ||Zt||, the total energy received from the

image. Under these circumstances, the data dependent prior also becomes larger, which affects

the overall state estimation process. Thus, considering extra and possibly irrelevant pixels in the

image can result in a change in the target estimation performance, even though the observed

target itself has not changed.

The introduction of a data dependent prior can also have some adverse affects on the process

noise covariance. Under the assumption of Gaussian process noise, the data dependent prior in

(4.52) evaluates to,

‖Zt‖ log{p(xt|xt|t−1)} = C − 1

2
(xt − Fxt|t−1))

T||Zt||Q−1(xt − Fxt|t−1)) (4.85)

where C is a constant, and F and Q are the state transition and process noise covariance

matrices, respectively. Assuming Gaussian noise results in a ||Zt|| scaling term on the covariance
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Q:

Q̃ =
Q

||Zt||
(4.86)

where Q̃ is defined to be the synthetic process noise covariance matrix. It is clear that an

increase in the total energy in the image would result in a decrease in the synthetic process

covariance Q̃. This is potentially problematic as an increase in ||Zt|| can be attributed to an

increase in target SNR. In this particular case, (4.86) dictates that the process covariance matrix

will become smaller. A smaller Q̃ implies that a filter will encounter difficulties when tracking

a maneuvering target, which is counter-intuitive as a target with higher SNR should be easier

to track.

In Chapter 5, we propose an alternative state prior density, which under Gaussian assumptions,

which results in a more regularised form for the synthetic process noise matrix. In Chapter 6,

we extend the work in Chapter 5 by extending the H-PMHT derived under a Poisson measure-

ment model to an interpolated Poisson measurement model, which removes the requirement for

quantisation and thus the need for a data dependent prior.

4.6 Summary

The H-PMHT algorithm is an efficient multi-target parametric mixture-fitting approach to

the TkBD problem. In the past, the H-PMHT has been demonstrated to give performance

comparable to numerical approximations to the Bayesian filter at a fraction of the processing

cost. In this chapter, we provided a detailed review of the H-PMHT derivation and outlined

the steps for an implementation via the KF for linear Gaussian scenarios. A review of the PF

implementation of the H-PMHT for non-linear non-Gaussian applications was also presented.

The key contribution of this chapter was the first description for evaluating a Viterbi-based

H-PMHT algorithm. Its performance was verified against the KF and PF implementations

of the H-PMHT for both a linear Gaussian and a linear non-Gaussian scenario featuring a

single target. The Viterbi-based implementation was shown to provide significant performance

advantages over the commonly used KF implementation on scenarios featuring a non-Gaussian

target. However the algorithm did not perform as well when compared to a PF H-PMHT

implementation.

For scenarios in which the target dynamics is constrained to a set of fixed locations, a Viterbi-

based implementation may be advantageous. The main drawback to a Viterbi-based imple-

mentation lies in the dependence of the algorithm’s complexity on the discretisation of the

state space. Theoretically, the complexity of the Viterbi algorithm increases linearly with the
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number of observations and quadratically with the number of state space points. As a result,

any extension to a multi-target scenario requires the use of adaptive grids, which only consider

states in the fixed grid with non-negligible likelihoods. This ensures that the H-PMHT’s linear

complexity with the number of targets is retained.

The limitations of the H-PMHT algorithm were also discussed. These include possible adverse

consequences on tracking performance when the quantisation limit is taken to zero, resulting

from the H-PMHT’s arbitrary choice in quantisation level and questionable independence as-

sumptions. We also discussed the benefits of extending the H-PMHT algorithm to include a

smoothed estimate for the component mixing proportions. A discussion of how these limitations

can be addressed will be the focus of the following two chapters.
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Chapter 5

H-PMHT with a Poisson

Measurement Model

In this chapter, we address the main limitations of the H-PMHT algorithm discussed at the end

of Chapter 4, namely, the lack of an unsmoothed mixing proportion estimate and the poten-

tial for inconsistent tracking performance after quantisation due to questionable independence

assumptions.

The standard H-PMHT algorithm assumes a multinomial distribution on the quantised mea-

surement counts, which results in an uncorrelated estimate of the component mixing proportions

with time. We propose to address this limitation by assuming an alternative measurement model

based on a Poisson distribution. The H-PMHT algorithm can then be re-derived to incorporate

a time-correlated estimate of the component mixing terms, allowing for an improved measure

for track quality. We also propose an alternative H-PMHT state prior density that depends only

on the properties of that target: in the Gaussian case this allows for SNR independent filtering

performance. The key contributions of this chapter are:

• the first derivation of the H-PMHT assuming a target generates a Poisson distributed

random number of measurements, and

• the proposal of an alternate prior density for the H-PMHT that results in more consistent

tracking performance.

The main contributions of this chapter are summarised in conference article [136] and journal

submission [135].
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5.1 Introduction

Recall that the quantisation step in the standard H-PMHT converts the continuous-valued

measurement data in every pixel to an integer-value and interprets this integer as a count of

a realisation of a point process. The counts in each pixel are modelled using a multinomial

distribution and are compiled to create a synthetic histogram. The H-PMHT employs EM

methods to estimate the target states as well as each target’s contribution to the overall mixture

model. The target mixing proportion terms can be interpreted as the received power from each

target, and can be used as a natural test statistic for track quality to help distinguish true

targets from clutter.

Under the multinomial model, the mixing proportion estimates are modelled as unknown pa-

rameters that can be time-varying or constant with time. The standard H-PMHT also assumes

that the number of targets is known and remains invariant with time. In most practical ap-

plications, these assumptions are too restrictive as targets commonly appear and disappear

from the surveillance region. The target SNR can also fluctuate with time making it difficult to

estimate a target’s underlying signal strength from a single scan. The inclusion of a smoothed

mixing term estimate and a detection process for the birth and death of targets in the H-PMHT

algorithm is desirable.

In conventional target tracking, a time-correlated estimate for the target SNR was introduced

into the Probabilistic Multi-Hypothesis Tracker (PMHT) by imposing a dynamics model on

the component mixing proportions [38]. Although an improvement in tracking accuracy was

observed, the coupling of the mixing terms resulted in an exponential complexity with the

number of targets. Recently, Davey [37] proposed an alternative derivation of the PMHT based

on a Poisson distribution on the number of point measurements. Under a Poisson assignment

model, Davey derived a time-correlated estimate based on [60], to more accurately estimate track

existence. An important feature of this new algorithm is that it also retains linear complexity

with the number of targets.

In this chapter, we extend Davey’s work to TkBD applications by incorporating a Poisson

measurement model into the H-PMHT algorithm. As the multinomial assumption in the stan-

dard H-PMHT is consistent with a Poisson Point Process [118], it is possible to re-derive the

H-PMHT with a Poisson assumption on the number of quantised measurements generated by

an individual target. This allows us to capitalize on the Poisson model’s ability to impose a

dynamics model on the component mixing rates, while still maintaining the original H-PMHT’s

linear complexity with the number of targets.

Another key limitation of the H-PMHT algorithm is the potential for inconsistent target track-
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ing as the synthetic process noise covariance (4.86) derived for Gaussian targets is data depen-

dent. This limitation is due to the assumption of independence between measurement shots

and the modification to the state prior density to include a ||Ntotal
t || term to ensure the prior

is not overwhelmed by the measurement data. In this chapter, we propose to resolve this issue

by modifying the H-PMHT state prior density to include a power to the ||Nm
t || term. The

important difference is that the state prior density for each component m, for m = 0, . . . ,M ,

now only incorporates the power from that target, not the total image power. When the limit

of the quantisation is taken, the synthetic target process noise covariance derived under Gaus-

sian assumptions is shown to have the same scaling factor as the synthetic measurement noise

covariance. This new form for the process noise covariance ensures filtering performance is SNR

independent and consistent performance is maintained when the sensor surveillance region is

increased.

The key contributions of this chapter are the first derivation and implementation of the H-PMHT

assuming a Poisson measurement model and the proposal of an alternate state prior density to

ensure more consistent tracking performance.

It is possible to remove the measurement quantisation step completely and model the measure-

ment image directly by assuming an interpolated Poisson distribution on the measured target

energy. This idea is explored later in Chapter 6.

5.2 Relationship between Multinomial and Poisson Distribu-

tions

The standard H-PMHT algorithm quantises the received energy in the measurement and models

the resulting counts (of measurement shots) as a multinomial distribution. The counts, defined

in (4.4), are given by,

Nt = {nit}Ii=1, (5.1)

where nit denotes the total number of shots in pixel i and I is the total number of observed

image pixels. In the previous chapter, we also defined the quantity ||Nt|| =
∑I

i=1 nit to be the

total number of shots observed at time t. However, ||Nt|| can also be interpreted as the total

number of independent trials in the multinomial context, where the result of each trial leads to

a shot falling into the ith pixel, for i = 1, . . . , I with probability f i
(
x1:M
t ;π0:M

t

)
. See subsection

4.2 for further details.

In the TkBD context, the total number of shots ||Nt|| is observable, and therefore known. This
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leads to the multinomial assumption that is the basis for the standard H-PMHT algorithm.

However, if we choose to assume that sample size ||Nt|| is unknown and random, the counts nit

can be modelled using a Poisson distribution. This is important in the TkBD context as the

Poisson distribution has the important properties of superposition and thinning [52].

Define Poiss(· ; λ) to be the Poisson distribution with rate parameter λ, then superposition

means that for Z = Z1 + Z2 with Zj ∼ Poiss(Zj ;λj), the combined energy is also Poisson

distributed with Z ∼ Poiss(Z;λ1 + λ2). Thinning is essentially the reverse of superposition:

splitting one Poisson variable into two components leads to two Poisson variables. Surprisingly,

these two variables are independent [80]. Superposition and thinning, also otherwise known as

the colouring theorem, can generally be applied to an arbitrary number of variables [80].

Under the thinning property of the Poisson model, the H-PMHT counts nit are assumed to be

mutually independent Poisson random variables with rate parameters λtf
i. Alternatively, if we

define ||Nm
t || to be the total number of measurement shots received from each component m =

0, . . . ,M at time t, then by the thinning property, the counts ||Nm
t || can also be assumed to to

be mutually independent Poisson random variables across the pixel space with rate parameters

λmt .

It is also possible to show how a multinomial distribution can be derived from a Poisson distri-

bution with counts ||Nm
t || and rate parameters λmt [53]. Consider the conditional distribution

of random variables Nt given the sample size ||Nt||. This distribution is multinomial with

categories m and parameters Πt = {π0
t , . . . , π

M
t } such that,

πmt =
λmt
M∑
s=0

λst

. (5.2)

That is, the multinomial probabilities πmt are simply the vector of Poisson rate parameters

λmt normalised to sum to unity. We can see that the Poisson and multinomial distributions

are closely connected such that if we impose a fixed number of successes in several Poisson

populations, the result is a multinomial distribution. This is important as it implies that the

unconditional distribution of the counts Nt in the H-PMHT measurement image can be factored

into two distributions:

• Multinomial Distribution for the counts Nt = {nit}Ii=1 across pixel categories i given

that the sample size ||Nt|| is known,

Nt ∼ Multin
(
||Nt||,Πt

)
, (5.3)
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where Multin(·) is the multinomial distribution and Πt = {π0
t , . . . , π

M
t } is the multinomial

mixing proportions.

• Poisson Distribution for the overall total number of counts,

||Nt|| ∼ Poiss
(
||Nt|| ; λt = λ0

t + . . .+ λMt

)
, (5.4)

where the total number of measurement shots received from each component m is Poisson

distributed by the thinning property, i.e. ||Nm
t || ∼ Poiss(λmt ).

We can show that the H-PMHT derived under a Poisson measurement model is consistent with

the multinomial measurement model in the standard H-PMHT.

5.3 Derivation

In this section, we outline in detail the alternative derivation of the H-PMHT algorithm under

a Poisson measurement model. The Poisson assumption, combined with the introduction of

an alternative state prior density in Subsection 5.3.1, comprises the key contributions for this

chapter [135,136].

Again assume a scenario in which a sensor observing M targets collects images at discrete time

intervals t = 1, . . . , T , where the energy in the observed pixels Zt and the energy in unobserved

pixels Zct , are given by equations (4.1) and (4.2), respectively. We also again assume that the

total observed energy received across the image ||Zt|| given by (4.3) is the L1-norm of the sensor

image.

Again, let xmt denote the state of component m at time t for m = 0 . . .M . A component can be

attributed to either a clutter or target object, therefore component m = 0 denotes the clutter

contribution, which is assumed to be an empty set for all time scans, i.e. x0
t = ∅. Assume that

the remaining components m = 1, . . . ,M are target objects that evolve according to a known

process that may be non-linear and stochastic, and let X = x0:M
1:T denote the collection of all

component states at all time scans.

The original H-PMHT derivation quantises the sensor image and assumes the resulting integer-

valued image is multinomial distributed. For the derivation under a Poisson measurement model,

we again make these assumptions such that the quantised energy in the observed pixels Nt and

quantised energy in the unobserved pixels Nc
t , are given by (4.4) and (4.11), respectively.

The standard H-PMHT also makes the implicit assumption that the number of shots ||Nt||
or multinomial trials, given by (4.6), is known. As shown in the previous subsection, this is
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consistent with assuming that the number of discrete measurements from each component m

is Poisson distributed. We can then re-derive the H-PMHT algorithm using an alternative

measurement model by assuming that ||Nm
t ||, the total number shots from component m, is

Poisson distributed with rate intensity parameter λmt . Note that when the measurement data

is quantised, the Poisson rates will be quantised according to some arbitrary quantisation level.

Define λ̃mt to be the quantised Poisson intensity rate parameter for component m such that,

λ̃mt =
λmt
c2
, (5.5)

where recall that c2 > 0 is some arbitrary quantisation level. Also define Λ = λ̃0:M
1:T to be the

collection of all M + 1 component mixing rates across all time scans.

Given the quantised measurement data, we now assume that ||Nm
t || follows a Poisson distribu-

tion with measurement rate λ̃mt such that,

Poiss(||Nm
t ||; λ̃mt ) = exp(−λ̃mt )

[
λ̃mt

]||Nm
t ||

( ||Nm
t || )!

. (5.6)

By employing the thinning properties of Poisson distributions, the counts from target m in each

pixel can be assumed to be mutually independent Poisson random variables with individual rate

parameters λ̃imt , where the total intensity across the image at time t is given by λ̃mt =
∑I

i=1 λ̃
im
t .

Thus, denoting the counts in pixel i due to component m as nimt , thinning also results in

p(nimt |xmt , λ̃mt ) = exp
{
−λ̃mt hi (xmt )

} [λ̃mt hi (xmt )
]nim

t

(nimt )!
, (5.7)

where λ̃mt h
i (xmt ) can be interpreted as the rate of measurements from component m in pixel i

at time t.

The quantised sensor image again provides a count of the number of shots in each pixel, where

each shot is assumed to be an independent identically distributed (IID) random variable. The

shots have a distribution defined by the intensity function, ft(τ |x1:M
t ; λ̃0:M

t ). In a similar way

to the original H-PMHT mixture density (4.8), an expression for the underlying intensity in

terms of a mixture model can be formed:

ft(τ |x1:M
t ; λ̃0:M

t ) = λ̃0
tG0(τ) +

M∑
m=1

λ̃mt h (τ |xmt ) , (5.8)

where G0(τ) denotes the clutter contribution and h (τ |xmt ) is the psf for the target components.

The intensity of shots falling into pixel i, for i = 1, . . . , S is now given by,

fit
(
x1:M
t ; λ̃0:M

t

)
= λ̃0

th
i(∅) +

M∑
m=1

λ̃mt h
i(xmt ), (5.9)
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where hi(xmt ) and hi(∅) are the target and clutter per-pixel shot probabilities defined in (4.9)

and (4.10), respectively.

We can see that the multinomial mixing proportion πmt in the original H-PMHT mixture den-

sity has been replaced with the quantised Poisson mixing rate λ̃mt . Recall that the multinomial

mixing proportions πmt in the standard H-PMHT were interpreted as the proportion of power

from component m for the given measurement image size. In contrast, the new Poisson mix-

ing rates λmt can be interpreted as the absolute average power received from component m,

regardless of the image size. The multinomial mixing proportions πmt were also required to form

a probability vector. This is not necessary for λ̃mt due to the independence assumptions that

are the result of the Poisson thinning property. This is critical as it implies that the algorithm

complexity will remain linear with the number of targets. We show later in subsection 5.3.5,

that the new Poisson mixing rates λ̃mt can also be estimated dynamically.

Under the Poisson measurement model, the procedure for evaluating the probability of missing

data under the EM is the same as in the original H-PMHT, except that the density (4.7) and per

pixel probability (4.8) in the standard H-PMHT are now replaced with the intensity function

(5.8) and per-pixel shot intensity (5.9). Also, as the component mixing terms are now assumed

to follow a Poisson distribution, the mixing terms Λ are now unknown random variables that

need to bee estimated. Thus under a Poisson measurement model, the variables to be estimated

are the component states X = x0:M
1:T and their associated Poisson mixing rates Λ = λ̃0:M

1:T , for

all components m and time scans t. The unobserved measurement shots Nc, assignments K of

shots to components, and the precise location L of each shot in each pixel are still considered

to be missing data.

5.3.1 Prior Density

As the H-PMHT derived under a Poisson measurement model still performs a quantisation

over the measurement image, a modified Bayesian state prior is again required to ensure that

the overabundance of synthetic data generated after quantisation does not overwhelm the state

prior. In the previous chapter, the state prior was modified to include a ||Ntotal
t || power term,

effectively allowing an instance of the prior density to be applied to each individual shot at every

time scan. As the ||Ntotal
t || term is obtained from the data, this resulted in a data dependent

prior.

Under Gaussian assumptions, this modification also results in a synthetic process noise co-

variance (4.86) that is scaled by a data dependent term. As discussed in subsection 4.5.2 this

can lead to some irregularities, namely, when the image size is increased, the process noise
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decreases. This is counter-intuitive as increasing the image size should have no effect on target

tracking performance if the resolution of the image remains unchanged. To address this, we

propose an alternative Bayesian prior, in which we only modify the prior to factor in shots

from that individual target. Under Gaussian assumptions, this new state prior density results

in a scaling factor in the synthetic process noise covariance matrix that is consistent with the

scaling factor derived for the synthetic measurement noise covariance matrix. This allows for

SNR independent filtering performance and is one of the key contributions of this chapter.

For the new state prior, we again use a first-order Markov Model as it is sufficiently non-

diffuse to compensate for the overabundance of information in the likelihood function. Assuming

independence with time and targets, we propose the following alternative Markov prior:

p(X) =

M∏
m=0

[
p(xm0 )

T∏
t=1

{
p(xmt |xmt−1)

}||Nm
t ||
]
, (5.10)

where ||Nm
t || is a Poisson distributed random integer with an unknown rate (that can be

estimated). The new prior is now only dependent on the shots for the current target. This

modification results in an instance of the prior density for every shot that originated from

target m.

We also impose a dynamics model on the component mixing terms Λ, however as the Poisson

mixing rates are also quantised, no modification to the prior is required. Like the state prior,

we can again assume a first-order Markov Model for the mixing term prior:

p(Λ) =

M∏
m=0

[
p(λ̃m0 )

T∏
t=1

p(λ̃mt |λ̃mt−1)

]
. (5.11)

5.3.2 Expectation-Maximisation

The observer for the H-PMHT algorithm with a Poisson measurement model is given by O :

{X,K,Λ,N}, consisting of component states X = x0:M
1:T , Poisson mixing rates Λ = λ̃0:M

1:T , and

set of assignments K = {Ki,r
t } of components to measurement shots N, for i = 1, . . . , I, r =

1, . . . ,nit and t = 1, . . . , T .

The observer O : {X,K,Λ,N} is unknown and the calculation of the ML estimate for the

states X and prior Λ remains infeasible due to the exponential complexity of enumerating over

all assignments K of shots to components. Hence, we still require the EM algorithm to calculate

the ML solution for X and Λ, under the missing data {Nc,L,K}.
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5.3.3 E-Step

At every iteration of the EM algorithm, the goal is to find estimates for the component states

X and Poisson mixing rates Λ conditioned on the current observed measurements N and

the previous iteration’s estimates X′ and Λ′. The E-step of the EM algorithm evaluates the

conditional expectation of the logarithm of the complete data likelihood with respect to the

missing data L,K and Nc. This is given by the auxiliary function Q(P ) at the current iteration:

Q(P )(X,Λ|X′,Λ′) = ENcL K

[
log p(X,Λ,N,Nc,L,K)|X′,Λ′,N

]
=

∑
NCK

∫
L

log p(X,Λ,N,Nc,L,K)p(Nc,L,K|X̂′,Λ′,N)dL. (5.12)

where ENc,L,K denotes the expectation with respect to the missing data. If we compare (5.12)

to the original H-PMHT auxiliary function (4.14), we observe that the differences are minor; the

functions are identical except that the multinomial mixing proportions Π have been replaced

with the Poisson mixing rates Λ, and the expectation is also conditioned on the rates Λ′.

The first term in (5.12) is the complete data likelihood and the second term is the conditional

density of the missing data given by,

p(Nc,L,K|X′,Λ′,N) =
p(X′,Λ′,N,Nc,L,K)

p(X′,Λ′,N)
. (5.13)

The numerator and the denominator in (5.13) are exactly the complete and incomplete data

likelihoods, respectively. We now derive expressions for both likelihoods.

5.3.3.1 Incomplete Data Likelihood

Consider evaluating p(N|X′,Λ′), the probability of drawing nit shots from each pixel i given

that the source for each shot is unknown:

p(N|X′,Λ′) =

T∏
t=1

I∏
i=1

p(nit|X′t). (5.14)

As discussed in Section 5.2, the counts nit can be assumed to follow a Poisson distribution with

mean fit. We can now write,

p(Nt|X′t,Λ′t) =

I∏
i=1

exp
{
− fi

′
t

}[fi′t ]ni
t

nit!

= exp
{
−

I∑
i=1

fi
′
t

} I∏
i=1

1

nit!

[
fi

′
t

]ni
t

=
γ∗t

exp{F′
t}

I∏
i=1

[
fi

′
t

]ni
t
, (5.15)
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where γ∗t =
1∏I

i=1 nit!
, fi

′
t = fit

([
x0:M
t

]′
;
[
λ̃0:M
t

]′)
and F

′
t =

∑I
i=1 fi

′
t . Note that F

′
t is defined

only across the observed measurement space and is calculated using the estimates of the state[
x0:M
t

]′
and of the Poisson mixing rates

[
λ̃0:M
t

]′
from the previous EM iteration. The F

′
t term

can also be approximated by,

F
′
t =

I∑
i=1

fi
′
t

= λ̃0
t

I∑
i=1

hi(∅) +

M∑
m=1

λ̃mt

I∑
i=1

hi(xmt ),

≈ λ̃0
t +

M∑
m=1

λ̃mt ,

= λ̃t. (5.16)

In (5.16), we have assumed that the unobserved measurement space is small or empty. As a

result, we can approximate the sum over the entire observation space with only the sum over

the observed pixels such that,
S∑
i=1

h(·) ≈
I∑
i=1

h(·) = 1 as the sum is equivalent to the integral

over the whole psf. We can see that F
′
t can be interpreted to be the total power in the image.

Substituting in (5.15), the incomplete data likelihood is then given as,

p(X′,Λ′,N) = p(N|X′,Λ′)p(X′)p(Λ′)

= p(X′)p(Λ′)

T∏
t=1

p(Nt|X′t,Λ′t)

∝ p(X′)p(Λ′)
T∏
t=1

1

exp{λ̃t}

I∏
i=1

[
fi

′
t

]ni
t
, (5.17)

where X′ and Λ′ are assumed to be independent of each other. The γ∗t term is not dependent on

X or Λ, and in the context of the optimisation problem it can be treated as a scaling constant

and ignored. We can see that (5.17) is similar in form to the complete data likelihood (4.18)

derived under the multinomial measurement model, however the densities have been replaced

with intensity functions and the denominator in (5.17) now features an exponent term.

5.3.3.2 Complete Data Likelihood

Under a Poisson measurement model, it is possible to derive the complete data likelihood

in a different way from the steps outlined in subsection 4.2.3.2 for the standard H-PMHT.

The assignment indices K can be conceptually divided into two pieces of information: the

number of shots due to each component and the particular permutation of individual shot
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sources. In the Poisson context, it is useful to explicitly recognise this by adding a redundant

variable Nk = {nimt } that specifies the number of shots in each pixel from each component,

for m = 1, . . . ,M , i = 1, . . . , I and t = 1, . . . T . It is important to note that the variable Nk is

implied by K, and that N is completely determined by Nk. By the thinning property, Nk also

follows a Poisson distribution. Removing the unobserved data term Nc as it does not contribute

to the conditional probability of {L,K}, we have the following expression,

p(X,Λ,N,Nk,L,K) = p(X,Λ,Nk,L,K)

= p(L|X,Nk,K)p(K,Nk|X,Λ)p(X)p(Λ), (5.18)

as the precise locations L of each shot in a pixel is independent of the Poisson mixing rates Λ.

We can see that (5.18) is similar in form to the complete data likelihood (4.21) formed under

multinomial assumptions. The first term in (5.18) is the probability of drawing the locations

L conditioned on the target states, measurement shots and assignments. This probability is

again given by (4.23) and remains unchanged under the Poisson measurement model as it is a

function of the psf h(·) only, which is independent of mixing terms. The second term in (5.18),

p(K,Nk|X,Λ), extracts all the shots that originate from a particular component and can be

simplified as follows,

p(K,Nk|X,Λ) = p(K|Nk,X,Λ)p(Nk|X,Λ). (5.19)

The first term on the rhs of (5.19) is the probability of the particular permutation of assign-

ments conditioned on knowing the total number of shots that originated from each source. We

can evaluate this probability by first considering the number of ways that nimt shots from com-

ponents m = 0, . . . ,M can be selected from nit total shots in pixel i. Clearly, this is given by

the multinomial coefficient, (
nit

ni0t , . . . ,n
iM
t

)
=

nit!
M∏
m=0

nimt !

. (5.20)

Define Ki
t to be the set of components associated with the nit shots in pixel i. The probability

of observing a certain set of components m can be expressed as,

p(K|Nk,X,Λ) =
T∏
t=1

I∏
i=1

p(Ki
t |ni0t , . . . ,niMt ,X,Λ)

=
T∏
t=1

I∏
i=1

1( ni
t

ni0
t ,...,n

iM
t

)

=
T∏
t=1

I∏
i=1

M∏
m=0

nimt !

nit!
. (5.21)

111



Note that in (5.21), the dependence of K on component states X is redundant. Also note that

the number of shots from each component depends on the mixing rates, therefore when we

condition on Nk, it is redundant to also condition on Λ.

The second term in (5.19), p(Nk|X,Λ), is the probability of drawing nimt shots from components

m in pixel i. In this chapter, we assume that nimt follows a Poisson distribution with rate

parameter λ̃mt h
i (xmt ) such that,

p(Nk|X,Λ) =
T∏
t=1

I∏
i=1

M∏
m=0

p(nimt |Xt,Λ
′
t)

=

T∏
t=1

I∏
i=1

M∏
m=0

exp
{
− λ̃mt hi (xmt )

}[λ̃mt hi (xmt )
]nim

t

nimt !

=
T∏
t=1

exp
{
−

I∑
i=1

M∑
m=0

λ̃mt h
i (xmt )

} M∏
m=0

I∏
i=1

[
λ̃mt h

i (xmt )
]nim

t

nimt !

=

T∏
t=1

exp
{
− Ft

} M∏
m=0

I∏
i=1

[
λ̃mt h

i (xmt )
]nim

t

nimt !
, (5.22)

where Ft =
∑I

i=1 fit is the integral of the intensity function ft over the observed measurement

space. Substituting (5.21) and (5.22) into (5.19) results in

p(K,Nk|X,Λ) =
T∏
t=1

exp
{
− Ft

} I∏
i=1

[
M∏
m=0

({
λ̃mt h

i (xmt )
}nim

t

nimt !

)
×

M∏
m=0

nimt !

nit!

]

=
T∏
t=1

exp
{
− Ft

}[ I∏
i=1

M∏
m=0

{
λ̃mt h

i (xmt )
}nim

t

][
I∏
i=1

1
M∏
m=0

nimt !

×

M∏
m=0

nimt !

nit!

]

=

T∏
t=1

1

exp
{

Ft
} I∏
i=1

ϑit

M∏
m=0

[
λ̃mt h

i (xmt )
]nim

t

=

T∏
t=1

1

exp
{

Ft
} I∏
i=1

ϑit

ni
t∏

r=1

λ̃
Kir

t
t hi

(
x
Kir

t
t

)
, (5.23)

where ϑit =
1

nit!
. In the last line of (5.23), the product over the components m has been changed

to an equivalent product over the shots r, which results in a unique term for each shot in the

pixel. This eliminates the power term as the inner product is no longer grouped according to

its source. Finally, by substituting (5.23) and the probability of drawing the locations L (4.23)
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into (5.18), an expression for the complete data likelihood can be found,

p(X,Λ,N,L,K) = p(X,Λ,Nk,L,K)

= p(X) p(Λ)
T∏
t=1

1

exp
{

Ft
} I∏
i=1

ϑit

ni
t∏

r=1

λ̃
Kir

t
t hi

(
x
Kir

t
t

)
×
h
(
Lirt |x

Kir
t

t

)
hi
(
x
Kir

t
t

)
= p(X) p(Λ)

T∏
t=1

1

exp
{

Ft
} I∏
i=1

ϑit

ni
t∏

r=1

λ̃
Kir

t
t h

(
Lirt |x

Kir
t

t

)
. (5.24)

Comparing the above complete data likelihood with its counterpart (4.26) in the original

H-PMHT derivation, we clearly see some similarities between the two. Both likelihoods fea-

ture a mixing term scaled by the psf centred at Lirt , and a term that approximates the integral

to their respective mixture models.

Although it is possible to express the complete data likelihood in terms of Nk under both

Poisson and multinomial measurement models, explicit expressions for p(Nk|X, ·) can only be

formulated in the Poisson case. This is because the multinomial model implicitly assumes that

the quantised counts are conditioned on ||Nt||. The standard H-PMHT assumes ||Nt|| is a

known constant and no guidance is given on how to evaluate p(Nk|X, ·).

5.3.3.3 Auxiliary Function

An expression for the auxiliary function Q(P ) can be found by substituting the prior (5.10) and

complete data likelihood (5.24) into (5.12) to give,

Q(P )(X,Λ|X′,Λ′) =
∑

NC ,K

∫
L

 M∑
m=0

(
log
{
p(xm0 )

}
+

T∑
t=1

||Nm
t || log

{
p(xmt |xmt−1)

}

+ log
{
p(λ̃m0 )

}
+

T∑
t=1

log
{
p(λ̃mt |λ̃mt−1)

})
+

T∑
t=1

I∑
i=1

log{ϑit} −
T∑
t=1

Ft

+

T∑
t=1

I∑
i=1

ni
t∑

r=1

log
{
λ̃
Kir

t
t

}
+

T∑
t=1

I∑
i=1

ni
t∑

r=1

log
{
h(Lirt |x

Kir
t

t )
}× p(Nc,L,K|X′,Λ′,N) dL.

(5.25)

The last term on the rhs of (5.25) is the conditional density of the missing data and can be

simplified as follows,

p(Nc,L,K|X′,Λ′,N) = p(Nc|X′,Λ′,N)p(L|X′,N,K)p(K|X′,Λ′,N). (5.26)

Again, we assume that the contribution from the unobserved pixels is small such that the sum

of the psf over the observed pixels
I∑
i=1

hi (xmt ) ≈ 1 as the sum is equivalent to the integral over
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the whole psf. By (5.16), we can make the following simplification:

Ft = λ̃t. (5.27)

Substituting (5.26) and (5.27) into (5.25) and re-inserting the Nc terms, we can now apply the

expectation across the missing data to the relevant terms to result in

Q(P )(X,Λ|X′,Λ′) =
M∑
m=0

[
log
{
p(xm0 )

}
+

T∑
t=1

∑
Nc,K

||Nm
t || log

{
p(xmt |xmt−1)

}
p(Nc,K|X′,Λ′,N)

]

+
M∑
m=0

[
log
{
p(λ̃m0 )

}
+

T∑
t=1

log
{
p(λ̃mt |λ̃mt−1)

}]
−

T∑
t=1

λ̃t

+
∑
Nc,K

 T∑
t=1

I∑
i=1

ni
t∑

r=1

log
{
λ̃
Kir

t
t

} p(K,Nc|X′,Λ′,N)

+
∑
Nc,K

∫
L

 T∑
t=1

I∑
i=1

ni
t∑

r=1

log
{
h(Lirt |x

Kir
t

t )
} p(Nc,L,K|X′,Λ′,N)dL.

(5.28)

We can ignore all terms that are not dependent on X or Λ, therefore ϑit can be removed as it

is simply a scaling constant. Observe that the second line in (5.28) remains unchanged when

the expectation is taken over the missing data as it only depends on the Poisson mixing rates

λ̃t, which are independent of the missing data.

The new auxiliary function (5.28) looks very similar to the original H-PMHT auxiliary function

(4.30) derived under the multinomial model. However there are a few obvious differences; the

multinomial mixing proportions π have been replaced with the Poisson mixing rates λ̃, and a

dynamics model has now been applied to λ̃. In the first line of (5.28), the component states and

Poisson mixing rates are independent of the locations L. However, due to the new component

state prior, the expectation is now taken over both the unobserved counts Nc and associations

K.

We now evaluate each line in (5.28) separately. In the first line of (5.28), the term∑
Nc,K ||Nm

t ||p(Nc,K|X′t,Λ′t,Nt) can be interpreted as the expected number of shots due to

component m. As the shots are independent across pixels, we can separate the term into the

expected number of shots from the observed pixels and the expected number of shots from the

unobserved pixels. Define ncit as the measurement count from unobserved pixels i = I+1, . . . , S.
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We can then write the following expression,

∑
Nc

t ,Kt

||Nm
t ||p(Nc

t ,Kt|X′t,Λ′t,Nt) =

I∑
i=1

∑
|Ki

t |

nimt |Ki
t | p(|Ki

t |
∣∣∣X′t,Λ′t,Nt)

+
S∑

i=I+1

∞∑
nci
t =1

∑
|Ki

t |

nimt |Ki
t | p(|Ki

t |
∣∣∣X′t,Λ′t,Nt)p(n

ci
t |X′t,Λ′t,Nt). (5.29)

where |Ki
t | is defined as the cardinality of the set of components associated with the nit shots

in pixel i. Note that the expectation over the unobserved shots Nc
t is only applicable to the

unobserved measurement space. The first term on the rhs of (5.29) is the mean number of shots

due to component m in the observed pixel i given nit, and the previous EM estimates X′ and

Λ′. As the total number of shots has been defined and following the discussion in Section 5.2,

this mean count follows a multinomial distribution where the probability of a shot falling into

an observed pixel is given by,

µ̃imt =
λ̃m
′

t hi
(
xm

′
t

)
fi′t

. (5.30)

This contribution from the observed pixels is then given by,∑
Ki

t

nimt Ki
t p(K

i
t |X′t,Λ′t,Nt) = µ̃imt nit. (5.31)

The µimt term can be thought of as an association weight and represents the relative proportion

of power from component m in pixel i. The second term on the rhs of (5.29) represents the

contribution from the unobserved pixels. Substituting (5.31) into the second line of (5.29) results

in

∞∑
nci
t =1

∑
Ki

t

nimt Ki
t p(K

i
t |X′t,Λ′t,Nt)p(n

ci
t |X′t,Λ′t,Nt)

= µ̃imt

∞∑
nci
t =1

ncit p(n
ci
t |X′t,Λ′t,Nt)

= µ̃imt fi
′
t . (5.32)

Above, the summand on the second line of (5.32) is simply the mean of ncit , which we have

assumed to be Poisson distributed with mean fi
′
t . Unlike the standard H-PMHT, we have

assumed that the counts in the observed and unobserved measurement space follow the same

distribution. The first line of the auxiliary function can be expressed as,

∑
Nc,K

||Nm
t ||p(Nc,Kt|X′t,Λ′t,Nt) =

S∑
i=1

µ̃imt ñit, (5.33)
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where

ñit =

nit, i ∈ O,

fi
′
t , i ∈ Ō.

(5.34)

The evaluation of the final lines in the auxiliary function (5.28) follows the same procedure as

in the standard H-PMHT. Note that the auxiliary function (5.28) is conditioned on the term

Λ′, however as mentioned in subsection 5.3.3.2, conditioning on the measurements N makes

conditioning on Λ′ redundant. Therefore, expressions for the third and fourth lines of the

auxiliary function can be found by taking the equivalent terms under the standard H-PMHT,

given by (4.44) and (4.45), respectively, and replacing the original mixing proportions πmt with

the new Poisson mixing rates λ̃mt , and the densities f it with the intensities fi
′
t . This results in

the following expression for the auxiliary function,

Q(P )(X,Λ|X′,Λ′) =
M∑
m=0

[
log
{
p(xm0 )

}
+

T∑
t=1

S∑
i=1

µ̃imt ñit log
{
p(xmt |xmt−1)

}
+ log

{
p(λ̃m0 )

}
+

T∑
t=1

log
{
p(λ̃mt |λ̃mt−1)

}
−

T∑
t=1

λt

+
T∑
t=1

I∑
i=1

µ̃imt nit log
{
λ̃mt

}
+

T∑
t=1

I∑
i=1

λ̃m
′

t nit
fi′t

∫
Bi

h(τ |xm′t ) log
{
h(τ |xmt )

}
dτ

]
. (5.35)

We point out that the original auxiliary function in the standard H-PMHT contains a term for

the expected quantised measurement n̄it. This term, defined by (4.34) is required in the standard

H-PMHT as the expectation over the unobserved counts Nc differs under the observed and

unobserved measurement space. This term is not necessary here as under a Poisson measurement

model, n̄it = nit for the entire measurement space.

5.3.4 Taking the Limit of the Quantisation

In the final step of the derivation, the limit of the auxiliary function is taken, such that Q(P ) is

replaced with limc2→0 c
2 Q(P ). Note that the variables λ̃mt and nit will be affected by the limit

of the quantisation. By (4.47), it is known that the limc2→0 c
2 nit = zit. Using the definition for

λ̃mt given in (5.5), we can also write the following,

lim
c2→0

c2λ̃mt = lim
c2→0

c2

⌊
λmt
c2

⌋
= lim

c2→0

{
c2λ

m
t

c2
− ε

}
= λmt , (5.36)
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where ε < c2. As the variable ñit defined in (5.34) also depends on nit, taking the limit of the

quantisation results in

lim
c2→0

ñit = z̃it, (5.37)

where

z̃it =

zit i ∈ O,

fi
′
t , i ∈ Ō,

(5.38)

where the per-pixel intensity fi
′
t is now no longer a function of the quantised Poisson mixing

rates λ̃mt :

fi
′
t = λ0′

t h
i(∅) +

M∑
m=1

λm
′

t hi(xm
′

t ). (5.39)

It is assumed that floor function is sufficiently stable such that the summation over pixels i can

be taken outside the limit. When the limit of Q(P ) is taken, we can substitute (4.47), (5.36) and

(5.37) into (5.35) to give the following expression for the auxiliary function under the Poisson

measurement model:

Q(P )(X,Λ|X′,Λ′) =
M∑
m=0

[
log
{
p(xm0 )

}
+

T∑
t=1

S∑
i=1

µimt z̃it log
{
p(xmt |xmt−1)

}
+ log

{
p(λm0 )

}
+

T∑
t=1

log
{
p(λmt |λmt−1)

}
−

T∑
t=1

λt

+
T∑
t=1

I∑
i=1

µimt z
i
t log

{
λmt

}
+

T∑
t=1

I∑
i=1

λm
′

t z
i
t

fi′t

∫
Bi

h(τ |xm′t ) log
{
h(τ |xmt )

}
dτ

]
. (5.40)

We can decompose (5.40) into two separate expressions for estimating the Poisson mixing rates

λmt and the component states xmt such that,

Q(H)(X,Λ|X′,Λ′) =

M∑
m=0

QmX +

M∑
m=0

Qmλ , (5.41)

where

QmX = log
{
p(xm0 )

}
+

T∑
t=1

S∑
i=1

µimt z̃it log
{
p(xmt |xmt−1)

}
+

T∑
t=1

I∑
i=1

λm
′

t z
i
t

fi′t

∫
Bi

h(τ |xm′t ) log
{
h(τ |xmt )

}
dτ, (5.42)

Qmλ = log
{
p(λm0 )

}
+

T∑
t=1

[
log{p(λmt |λmt−1)}+ log

{
λmt

} I∑
i=1

µimt z
i
t − λt

]
. (5.43)
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Unlike the standard H-PMHT that assumes the component mixing proportions πmt are uncor-

related with time, under the new derivation we have imposed a dynamics model on the Poisson

mixing rates λmt to generate a smoothed time estimate.

We now discuss how the introduction of the new modified prior density affects the dynamics

noise covariance. For a linear Gaussian dynamics model, the data dependent prior in (5.42)

evaluates to,

S∑
i=1

µimt z̃it log
{
p(xt|xt|t−1)

}
= C − 1

2
(xt − Fxt|t−1)T

(
Q̄imt

)−1
(xt − Fxt|t−1), (5.44)

where C is some constant and Q̄imt is the modified synthetic dynamics covariance matrix:

Q̄imt =
Q

S∑
i=1

µimt z̃it

. (5.45)

Under the new state prior density and a Gaussian target model, the noise covariance matrix

is scaled according to the received measurements from each pixel and the µimt term, which

represents the relative proportion of power from component m in each pixel. The new noise

covariance is now both pixel and target dependent. Under a KF implementation, the synthetic

measurement noise covariance matrix can be derived in a similar way to (4.65) to give,

R̃
(m,P )
t =

(
λm
′

t

∑I
i=1 z

i
th
i(xm

′
t )

fi′t

)−1

R

=
R

I∑
i=1

µimt z
i
t

. (5.46)

As z̃it = zit for observed pixels, we can see that the scaling factor for the synthetic process

noise covariance matrix Q̄imt is consistent with the scaling factor derived for the synthetic

measurement noise covariance matrix R(m,P ). As a result, the KF performance is no longer a

function of SNR. By introducing a new modified state prior density, we are able to correct

one of the key limitations of the H-PMHT that resulted in inconsistent tracking performance

whenever the image size was changed.

5.3.5 M-Step

In the previous subsection, we showed that by adopting a Poisson measurement model, we can

estimate the received power for each component m using the Poisson mixing rates λmt . The

Poisson model also naturally imposes a dynamics model on the component mixing rates λmt ,

which allows a smoothed estimate with time.
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In this subsection, we describe how to calculate the new smoothed Poisson mixing rates λmt based

on a procedure by Granström [60]. The extension of the H-PMHT to allow for a dynamic mixing

term through the assumption of a Poisson measurement model is one of the key contributions

of this chapter [135,136].

Under the Poisson measurement model, the procedure for maximising the component states X

remains the same as in the standard H-PMHT. That is, for a Gaussian psf h(·), the log h(·)
is clearly a quadratic, and the integral evaluation becomes trivial. For non-Gaussian psfs, the

estimation of the component states X can be performed through an appropriate non-linear

filter [39]. See Subsection 4.3 for further details.

To estimate the Poisson measurement rate λmt , consider a model for the prior p(λm0 ) and its

evolution with time, p(λmt |λmt−1). The well known conjugate prior for the Poisson distribution

is the gamma distribution. That is, if the prior distribution for λ is a gamma distribution with

parameters α, β, then the posterior distribution is also a gamma distribution. Hence, let the

prior for the Poisson measurement rate be a gamma distribution with parameters α and β,

p(λ0) ∼ Gamma(λ0, α, β) where α, β > 0, but not necessarily integers. Then, the prior at time

t for the Poisson rate λt is given as,

p(λt;αt−1, βt−1) = Gamma
(
λt, ;αt|t−1, βt|t−1

)
(5.47)

∝ λ
αt|t−1−1
t exp

{
−βt|t−1λt

}
,

Note that we are considering only the mth component, and thus the component superscript

has been suppressed for convenience. At time t, assume that the total number of received

measurements ||Nt|| is Poisson distributed with measurement rate λt. Let the likelihood of

observing ||Nt|| measurements be given by,

p(||Nt||;λt) = Poiss(||Nt||;λt) (5.48)

∝ λ
||Nt||
t exp {−λt}.

It follows that the posterior distribution for λt is proportional to the product of the prior (5.47)

and likelihood (5.48) such that,

p(λt|Nt) ∝ Gamma
(
λt, ;αt|t−1, βt|t−1

)
× Poiss(||Nt||;λt)

= λ
αt|t−1+||Nt||−1
t exp

{
− (βt|t−1 + 1)λt

}
= Gamma(λt;αt|t−1 + ||Nt||, βt|t−1 + 1). (5.49)

Thus the posterior distribution for λt is given by a gamma distribution with parameters αt =

αt|t−1 + ||Nt|| and βt = βt|t−1 +1. It is important to realise that under this formulation, λt is not

gamma distributed with parameters α and β, but the values of λt that maximise the auxiliary
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function (5.43) are the expected values of a gamma distribution, with the following mean and

variance,

E[λt] =
αt
βt
, (5.50)

Var[λt] =
αt
β2
t

. (5.51)

For the H-PMHT algorithm, the EM performs a maximisation and thus it is more appropriate

to consider the mode of the gamma distribution:

argmax p(λt) =
αt − 1

βt
. (5.52)

It is important to note that we have not explicitly defined a model for the dynamics of

the Poisson mixing rates p(λt|λt−1). Instead, we have assumed that the predicted density

p(λt|N1, . . . , Nt−1) can be estimated through the posterior density at the previous time scan,

p(λt|N1, . . . , Nt−1) =

∫
p(λt|λt−1)p(λt−1|N1, . . . , Nt−1)dλt−1

≈ p(λt−1|N1, . . . , Nt−1), (5.53)

where p(λt−1|N1, . . . , Nt−1) is assumed to be Gamma distributed (5.47). This prior assumption

for the Poisson mixing rates is sufficient for Bayesian estimation, however it is unclear how

to resolve this in the batch case. The difficulty lies in the fact that there exists no conjugate

distribution p(λt|λt−1) that ensures that the predicted density p(λt|N1, . . . , Nt−1) is also a

Gamma distribution. In the case of batch smoothing, it may be necessary to approximate

p(λt|λt−1) numerically through dynamic sampling methods using particles.

Granström [60] provides a framework for the prediction and update for the parameters of the

measurement rate λt. In a multi-target context, let αmt|t−1 and βmt|t−1 denote the predicted gamma

parameters for component m where,

αmt|t−1 = exp

{
−δt
η

}
αmt−1|t−1,

βmt|t−1 = exp

{
−δt
η

}
βmt−1|t−1, (5.54)

and δt is the duration between time scans t − 1 and t, and η is a time constant, which for

convenience has been chosen to be the same for all components. Let αmt|t and βmt|t denote the

updated estimates for the gamma parameters for component m such that,

αmt|t = αmt|t−1 + ||Nm
t ||,

βmt|t = βmt|t−1 + 1. (5.55)
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To calculate the updated estimate αmt|t, we require an estimate for ||Nm
t ||. Even though ||Nm

t ||
is assumed to be an integer, it can be approximated via the following expression,

||Nm
t || ≈

I∑
i=1

µimt z
i
t, (5.56)

where µimt is given by (5.30). It is clear that we are approximating the integer ||Nm
t || by a

continuous value and thus, αt|t is also not an integer. However, this is acceptable as there is no

requirement for αt|t to be an integer.

Note that the updated estimate βt converges to an equilibrium given sufficient batch length.

However, the prediction βt|t−1 can be initialised such that the update βt remains in a steady

state for all time scans. By (5.55), the steady state for the β∗t|t−1 term can be calculated for a

given η and δt as following,

β∗t =
1

1− exp
(
−δt
η

) . (5.57)

In the prediction stage, the constant η acts as a forgetting factor as it determines how much

weight is applied to the past estimates of α and β. For large values of η, the predictions place

more weighting on past estimates and the updated estimates will be highly correlated with time.

In the case when the limit of η → 0, the predicted gamma parameters αmt|t−1 and βmt|t−1 → 0,

and the updated estimates will be effectively uncorrelated with time. In this case, the Poisson

mixing rates are estimated by,

λmt =
αmt|t

βmt|t

= ||Nm
t ||

≈
I∑
i=1

µimt z
i
t

= λm
′

t

I∑
i=1

zith
i(xm

′
t )

fi′t
. (5.58)

Observe that if we replace the intensity function fi
′
t with the probability f i‘t , (5.58) is equiva-

lent to the un-normalised multinomial mixing proportions pmt given by (4.61) in the standard

H-PMHT. We can see that the H-PMHT algorithm formed under a Poisson measurement model

generalises the standard H-PMHT under multinomial assumptions through the parameter η.

As we have imposed a dynamics model on the Poisson mixing rates, it is expected that the

smoothed estimates of λmt will provide a more robust measure of track quality than its multino-

mial counterpart πmt . Note that the multinomial mixing proportions πmt are dependent through

a normalisation process, while the Poisson mixing rates λmt are calculated independently due to
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the Poisson thinning property. This is important for implementation, as it allows the H-PMHT

algorithm under the Poisson measurement model to retain linear complexity with the number

of targets.

5.4 Implementation

As discussed in subsection 5.3.5, the state estimation component for the H-PMHT under a

Poisson measurement model can be implemented using an appropriate point measurement esti-

mator. See subsection 4.3 for further details on target state estimation for both linear Gaussian

and non-Gaussian psfs. For convenience, we now refer to the H-PMHT derived under a Poisson

measurement model as the Poisson H-PMHT.

Initialisation can be performed via a peak detection process where a threshold is applied to the

measurement image at every time scan and a track is initiated for every point that falls above

that threshold. To initialise the Poisson mixing rates λm0 , we extract an estimated amplitude

value for each peak detection from the measurement data. Assuming a steady state value

for β, we can calculate values for αm0 and βm0 from λ0
t . A summary for the implementation

of the Poisson H-PMHT is provided in Algorithm 8. Comparing Algorithm 8 with the KF

implementation of the standard H-PMHT in Algorithm 5, we can see that the steps in each

algorithm are very similar, except that the Poisson H-PMHT now dynamically estimates both

the target states and mixing component terms.

5.5 Simulations

This section demonstrates and verifies the performance of the proposed Poisson H-PMHT for a

simulated linear Gaussian scenario, featuring a single target under four different target ampli-

tude model assumptions. In each scenario, the state estimation errors and average target SNR

estimates for the proposed Poisson H-PMHT is compared with the standard H-PMHT.

Define At to be the target amplitude at time t. The single target linear Gaussian scenario

previously considered in Subsection 4.4.1 is again used here assuming four different target

amplitude models:

• Constant Amplitude Model: Assumes a non-fluctuating target amplitude model such

that At is given by the average target amplitude A,

At = A. (5.59)
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Algorithm 8 Poisson H-PMHT

1. Initialise the EM algorithm: For each target m = 1 . . . ,M , initialise the algorithm from

a known p(xm0 ).

2. Initialise the Poisson mixing rates λm0 using an initial estimate for αm0 and βm0 for each

component m.

3. For time scans t = 1, . . . , T ,

(a) Prediction Step: For each target component m, compute the

• predicted state estimates xmt|t−1 by applying the dynamics model to the

previous posterior state estimates,

• Poisson mixing rates λmt|t−1 by evaluating (5.52) and (5.54).

(b) Using the predicted state estimate, construct hi(xmt|t−1), the probability that a

shot due to the target falls in pixel i using (4.9).

(c) Update Step: For each target component m, compute

• the updated state estimates xmt|t using an appropriate point measurement

estimator,

• Poisson mixing rates λmt|t by evaluating (5.52) and (5.55).

4. Repeat Step 3 b) . . . 3 c) until convergence using the updated EM state estimates.
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• Slowly Varying Amplitude Model: Assumes a target amplitude that fluctuates slowly

between a minimum amplitude Amin and maximum amplitude Amax.

• Swerling I Model: Assumes the target amplitude follows an exponential distribution

with mean A. An exponential random variable can be generated from a uniform random

variable ut by the following transformation [58]:

At = −A log{ut}. (5.60)

• Step Function with Gaussian Noise: Assumes a target amplitude model based on

a one-step function with additional Gaussian noise. Note that this noise is added to the

amplitude component of the TkBD measurement model given in (2.11), and is different

from the measurement noise wt added to each image pixel.

Recall that the multinomial mixing proportions πmt can be interpreted as the average power

from component m in the given image, while the Poisson mixing rates λmt are interpreted

as the absolute average power ( average power in the image regardless of image size) from

component m. However both terms can also be interpreted as the SNR from component m as

the measurement model assumes Gaussian noise such that σ2
n = 1. In this case, power and SNR

are equivalent. Under the Poisson measurement model, the absolute average SNR for component

m can be calculated in dB follows,

SNR
(m,P )
t = 20 log10{λmt }. (5.61)

To compare SNR estimates from both algorithms, an absolute average target SNR value for

the multinomial mixing proportions πmt is also required. If we multiply (5.58) by the quantity∑
s λ

s
t∑

s λ
s
t

, and following on from (5.2), we can see that the Poisson mixing rates λmt is equivalent to

pmt (4.61), the un-normalised value of πmt . Given this, an absolute average SNR for component

m for the standard H-PMHT in dB can be calculated:

SNR
(m,H)
t = 20 log10{pmt }. (5.62)

As we are only considering a linear Gaussian scenario, it is sufficient to verify the Poisson

H-PMHT using a KF for the the target state estimation step. An KF implementation can be

easily integrated into the algorithm in the same way as in the standard H-PMHT. See subsection

4.3.1 for more details. In the following simulations, 100 Monte Carlo runs were performed with

randomised measurements with a forgetting factor η = 10 assumed for the Poisson H-PMHT.

For both algorithms, it was found that ten iterations was sufficient to ensure EM convergence.
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For the constant amplitude and Swerling I models, the average target amplitude was set to

A = 7. For the slowly varying target amplitude model, the minimum and maximum amplitudes

was set to Amin = 5 and Amax = 10, respectively. For the case when the target amplitude is

characterised by a one-step function with Gaussian noise, the noise variance was set σ2 = 5,

with an initial constant target amplitude of 7 that changed to 12 midway through the scenario.

Figure 5.1 shows the root mean square (RMS) state estimation error for the Poisson H-PMHT

and standard H-PMHT under each target amplitude model. In all four target amplitude sce-

narios, the state estimation performance of the Poisson H-PMHT (red line) is comparable to

the standard H-PMHT (blue line). This is not unexpected as the state estimation component

for each algorithm follows the same EM procedure, with different estimation procedures for the

component mixing terms. Note that in Figure 5.1 (c), both algorithms seem to diverge slightly

at approximately time scan 80 for the Swerling I model case.

As stated earlier, the key difference between the two algorithms lies with their calculations

for the component mixing terms. Figure 5.2 shows the estimated SNR performance with time

for each target amplitude model averaged over the 100 Monte Carlo runs. The true average

target SNR is shown as a solid cyan line. As the results are averaged over 100 Monte Carlo

runs, it is difficult to see the advantage of the Poisson mixing rates over the multinomial

mixing proportions estimates; only in the Swerling I model case, do we observe that the Poisson

H-PMHT outperforms the standard H-PMHT.

The differences in SNR performance between the two algorithms is more evident if we only

consider a single Monte Carlo run. Figures 5.3 - 5.6 shows the estimated target SNR for each

algorithm and target amplitude model for a single run. The true average target SNR is again

shown as a solid cyan line and the instantaneous measured target SNR= log20At, is in dashed

green. For each target amplitude model, the Poisson H-PMHT was implemented using a for-

getting factor of η = 1, 3 and 10 to investigate the effect of varying the contribution of past

estimates on updated estimates. Note that the performance of the standard H-PMHT is inde-

pendent of the forgetting factor η.

Figure 5.3 (a) compares the estimated target SNR outputs from each algorithm for the constant

amplitude scenario for a forgetting factor η = 1. We observe that the performance of the Poisson

H-PMHT is very similar to the standard H-PMHT. This is expected as small values of η

correspond to a high forgetting factor in the Poisson H-PMHT, resulting in SNR estimates that

are largely time independent. As the standard H-PMHT estimates are also time independent,

we expect the performance of two algorithms will be similar. This verifies that the Poisson

H-PMHT generalises the standard H-PMHT through the forgetting factor η.

In Figure 5.3 (b), the forgetting factor for the Poisson H-PMHT is set to η = 3. We can clearly
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(a) Constant Amplitude Model
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(b) Slowly Varying Amplitude Model
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(c) Swerling I Model
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(d) Step Function with Gaussian noise Model

Figure 5.1: RMS error averaged over 100 Monte Carlo runs comparing the standard H-PMHT

with the Poisson H-PMHT under various target amplitude models for η = 10.
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(a) Constant Amplitude Target Model
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(b) Slowly Varying Amplitude Model
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(c) Swerling I Model
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(d) Step Function with Gaussian noise Scenario

Figure 5.2: SNR averaged over 100 Monte Carlo runs comparing the standard H-PMHT with

the Poisson H-PMHT under various target amplitude models for η = 10.
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see that after initialisation, the Poisson H-PMHT reacts more slowly to the measurement data.

The delay in the response time is even longer when we increase η = 10 in Figure 5.3 (c),

as the Poisson H-PMHT mixing rates place increasingly more weight on past estimates. The

same is observed for the slowly varying target amplitude scenario in Figure 5.4. As η increases,

the Poisson H-PMHT takes progressively longer to respond to changes in amplitude. This is

particularly obvious in Figure 5.4 (c) where the delay in response time results in a poor estimate

for the target SNR in comparison to the standard H-PMHT. Clearly, in the case of the slowly

varying amplitude model, the Poisson H-PMHT performs better under the assumption of time

independent mixing terms.

There are cases when the Poisson H-PMHT can benefit with assumption of time-correlated

mixing terms. Consider Figure 5.5, which shows the estimated SNR for the Swerling I model

amplitude scenario. As observed for the previous amplitude models, both algorithms again

give similar performance when η = 1. However, as η increases, the SNR estimates from the

Poisson H-PMHT becomes smoother, giving a better estimate of the true average target SNR.

Similar results can also be observed for the step function amplitude case in Figure 5.6. In this

scenario, the measurement noise level was selected so that the change in amplitude was not

easily discernible. For η = 3, the Poisson H-PMHT gives a smoother estimate in comparison to

the standard H-PMHT but nevertheless, both algorithms are unable to detect the step change

in amplitude due to the high noise level in the measurement data. However, as the forgetting

factor is increased to η = 10, the Poisson H-PMHT is able to distinguish a clear shift in the

amplitude average after 50 scans, despite the high noise level.

We can see that when the target amplitude model features instantaneous fluctuations (e.g.

Swerling I and step function amplitude scenarios), the Poisson H-PMHT clearly provides a

more stable, less erratic prediction of the average target SNR for large η values. Due to the

dynamics model imposed on the Poisson mixing rates λmt , the SNR estimates are slower to

respond to random fluctuations in the observed target SNR. This can be beneficial for track

confirmation as it allows for a more stable test statistic for track quality. In contrast, the

standard H-PMHT average SNR estimates are susceptible to variations in the measurement

noise as it assumes there is no correlation with time.

By allowing for a forgetting factor term, the Poisson H-PMHT is also able to reduce the track

SNR variance estimates. This is evident in Figure 5.7, which shows the estimated track SNR

variance versus forgetting factor η, averaged over 100 Monte Carlo runs and over all time

scans. As mentioned earlier, the performance of the standard H-PMHT is independent of η and

thus its variance remains constant with η. In contrast, the Poisson H-PMHT consistently gives

smaller variance estimates than the standard H-PMHT. When the amplitude model is constant
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(a) η = 1
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(b) η = 3
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(c) η = 10

Figure 5.3: Constant Amplitude scenario: Comparison of the average target SNR for a

single run for the standard H-PMHT and Poisson H-PMHT for varying forgetting factor η.
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(a) η = 1
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(b) η = 3
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(c) η = 10

Figure 5.4: Slowly Varying Amplitude Scenario: Comparison of the average target SNR

for a single run for the standard H-PMHT and Poisson H-PMHT for varying forgetting factor

η. 130
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(a) η = 1
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(b) η = 3

0 10 20 30 40 50 60 70 80 90 100
−40

−30

−20

−10

0

10

20

30

Time (secs)

A
ve

ra
ge

 T
ar

ge
t S

N
R

 (
dB

)

 

 

Truth
Measured
H−PMHT
Poisson H−PMHT

(c) η = 10

Figure 5.5: Swerling I Scenario: Comparison of the average target SNR for a single run for

the standard H-PMHT and Poisson H-PMHT for varying forgetting factor η.
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(a) η = 1
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(b) η = 3
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(c) η = 10

Figure 5.6: Step Function with Gaussian noise Scenario: Comparison of the average target

SNR for a single run for the standard H-PMHT and Poisson H-PMHT for varying forgetting

factor η. 132



or smoothly varying as in Figure 5.7 (a) and (b), respectively, the Poisson H-PMHT’s variance

is also seemingly constant with η. However in Figure 5.7 (c) and (d), the Swerling I and step

function target models feature highly fluctuating amplitudes and we see that the estimated

variance of the Poisson H-PMHT decreases as η increases. The Poisson H-PMHT is able to

reduce the target SNR variance by performing smoothing over a larger time window. Figure

5.7 also shows that as η → 0, the performance of the Poisson H-PMHT starts to converge the

performance of the standard H-PMHT, particularly in the Swerling I and step function cases.

This further supports our claim that for small η values, the Poisson H-PMHT performance is

equivalent to the standard H-PMHT.

In Figure 5.8, we further investigate the performance of the Poisson H-PMHT for the Swerling

I amplitude model for different target SNR values. We observe that the variance estimates for

the standard H-PMHT increases linearly with SNR. This is undesirable as it implies that even

if a target has high SNR, the standard H-PMHT will struggle to give an accurate estimate of

the target SNR as the estimated variance will also be high. On the other hand, we observe that

the Poisson H-PMHT is able to reduce SNR variance through the smoothing factor η. Hence,

in the case of highly fluctuating target models, we can see that the Poisson H-PMHT averages

over a larger time frame to give significantly smaller variance estimates when compared with

the standard H-PMHT.

5.6 Summary

The original H-PMHT assumes a multinomial distribution on the quantised image, which results

in the derivation of component mixing proportion estimates that are uncorrelated with time.

The H-PMHT also suffers from inconsistent tracking performance when the sensor surveillance

region changes due to questionable independence assumptions.

In this chapter, we show that the multinomial assumption in the standard H-PMHT is con-

sistent with a Poisson measurement model. The key contribution of this chapter is the first

derivation and implementation of the H-PMHT assuming a Poisson measurement model. The

new algorithm incorporates a time-correlated estimate of the component mixing terms by im-

posing a dynamics model on the Poisson measurement rate parameter. We also show that the

Poisson H-PMHT is a generalisation of the H-PMHT under multinomial assumptions through

a forgetting factor term. Another key contribution of this chapter is the proposal of an alter-

nate state prior density to address some of the inconsistencies that arise due to quantisation

issues in the original H-PMHT. Under linear Gaussian assumptions, the new state prior density

results in a filtering performance that is independent of SNR. This ensures consistent tracking
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(a) Constant Amplitude Model
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(b) Slowly Varying Amplitude Model
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(c) Swerling I Model
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(d) Step Function with Gaussian noise Model

Figure 5.7: Track SNR variance versus forgetting factor η for the standard H-PMHT and Poisson

H-PMHT under various target amplitude models.
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(a) η = 1
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(b) η = 3
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(c) η = 10

Figure 5.8: Comparison of the average track SNR variance for the standard H-PMHT versus

the Poisson H-PMHT for varying forgetting factor η for the Swerling I Scenario.
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performance when the sensor surveillance region changes.

Through simulated scenarios, the Poisson H-PMHT is shown to be less sensitive to the observed

fluctuations in a target’s SNR. In scenarios featuring fluctuating target models, the Poisson

H-PMHT is capable of providing a more consistent measure for track quality with smaller

variance estimates through a smoothing factor term. This is an improvement on the standard

H-PMHT, which struggles to estimate the underlying average target SNR for scenarios featuring

fluctuating target models. The Poisson mixing rates also have the added advantage of being

independent through the thinning properties of the Poisson process. This is in contrast to the

multinomial mixing proportions in the standard H-PMHT, which are dependent through a

normalising term. Although the Poisson H-PMHT is able to model the target SNR to a higher

fidelity through the introduction of a dynamics model on the component mixing rates, the

algorithm retains its linear complexity with the number of targets.
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Chapter 6

An Interpolated Poisson

Measurement Model for

Track-Before-Detect

The original H-PMHT algorithm is based on an artificial quantisation procedure that is used

to approximate the continuous intensity map measurement data with a set of discrete point

measurements. In this chapter, we propose to eliminate this intermediate quantisation step

by introducing an entirely new measurement model that is based on the novel application of

the Probabilistic Multi-Hypothesis Tracker (PMHT) to continuous valued intensity maps. This

is done by assuming the measurement image can be modelled by an interpolated version of

the Poisson distribution. Like the Poisson measurement model discussed in Chapter 5, this

new model also allows for a randomly evolving mean target amplitude estimate. Although the

interpolated version of the Poisson distribution can only be shown to be a probability measure

under certain conditions, we nevertheless make use of convenient properties to derive a TkBD

algorithm for continuous valued intensity maps that is similar in principle to the standard

H-PMHT. We refer to this algorithm as the Interpolated Poisson-PMHT (IP-PMHT).

The key contribution of this chapter is the first derivation of an alternative TkBD algorithm

assuming an interpolated Poisson distribution on the energy generated by an individual target.

Under this formulation, direct estimation of the measurement likelihood is possible, eliminating

the need for an intermediate quantisation step. The main contributions of this chapter are

summarised in conference article [134].

The chapter is arranged as follows; Section 6.1 discusses the motivation for modelling the mea-

surement image directly rather than applying an approximation through quantisation; Section

137



6.2 introduces the interpolated version of the Poisson distribution and discusses the conditions

under which it can be assumed to be a probability measure; Section 6.3 derives a new TkBD

algorithm called the Interpolated Poisson-PMHT (IP-PMHT ), that is based on the application

of the interpolated Poisson measurement model and EM data association to continuous inten-

sity maps; Section 6.5 verifies and compares the performance of the new algorithm with the

standard H-PMHT and the Poisson H-PMHT introduced in Chapter 5; Section 6.6 summaries

the key contributions for this chapter.

6.1 Introduction

The H-PMHT algorithm is a TkBD method that forms tracks by accessing the intensity map

data directly. Generally, there exists no standard multi-target TkBD measurement model that

can be used to describe the intensity map image, and it is difficult to perform filtering in the

usual sense without applying an approximation to reduce the intensity map data to a set of

discrete point measurements. The H-PMHT algorithm makes such an approximation by per-

forming a quantisation [86] over the measurement image. This process converts the continuous

valued data in the image into a collection of point measurements where the vector of counts Nt

is assumed to follow a multinomial distribution. This results in the non-trivial assumption of

independence between the shot measurements. Under the independence assumption, the quan-

tisation level c2 dictates the amount of information created in the synthetic data, yet in reality

the true information content is independent of c2. The H-PMHT’s arbitrary choice of quanti-

sation level combined with its assumption of independence between shots results in an infinite

amount of synthetically generated data when the limit of the quantisation is taken to zero.

These assumptions have further ramifications when a Bayesian model is assumed as the infinite

amount of synthetic data will also overwhelm any finite prior. In the standard H-PMHT, this

problem is solved by modifying the Bayesian prior to ensure that it has sufficient influence

on the target estimates. However this results in a data dependent prior term after the limit

of quantisation is taken to zero. This in turn has an adverse effect on tracking performance

whenever the sensor surveillance region changes. See subsection 4.5.2 for more details.

In Chapter 5, we proposed a solution to the data dependent prior issues by assuming a unique

prior density for each component but the issues associated with the arbitrary choice of quan-

tisation level and assumptions of independence remain unresolved. In this chapter, we propose

an entirely different approach to address these limitations; rather than trying to retrospectively

resolve the issues that stem from quantisation, we instead consider a novel measurement model

that describes the continuous-valued measurement image directly using an interpolated version

138



of the Poisson distribution. We prove that interpolated version of the Poisson distribution ap-

proximates a probability measure and obeys an approximate superposition property for rate

parameter λ > 4. Based on these assumptions, we derive an alternative TkBD algorithm that

avoids the quantisation step and the subsequent use of a modified Bayesian prior inherent in

the H-PMHT. The resulting TkBD algorithm is referred to as the Interpolated Poisson-PMHT

(IP-PMHT ).

The key contribution of this chapter is the first derivation of an alternative TkBD algorithm

assuming an interpolated Poisson distribution on the energy generated by an individual target.

This algorithm is similar in principle to the standard H-PMHT as it employs PMHT data

associations but the application is to continuous valued data, rather than point measurements.

Like the Poisson H-PMHT derived in Chapter 5, it naturally incorporates a stochastic model

for the component mixing term.

6.2 Interpolated Poisson Distribution

Recall that a discrete random variable Z that follows a Poisson distribution with rate parameter

λ > 0 has the following probability mass function:

p(Z = z;λ) = exp(−λ)
λz

z!
, (6.1)

for z = 0, 1, 2 . . .. If however, Z is defined as a continuous random variable that can take on

values z ∈ R+
0 , where R+

0 is the set of all non-negative real numbers, a continuous version to

(6.1) can be defined with the following form,

f(z;λ) =
1

K

λz

Γ(z + 1)
, (6.2)

where K is some constant and Γ(·) is the well known Gamma function that interpolates z! over

continuous z. The function (6.2) can be thought of as an interpolated version of the Poisson

distribution.

We now pose the following question: Is the interpolated version of the Poisson distribution a

probability measure? If f(z;λ) is in fact a probability density function (pdf), the parameter K

corresponds to a normalising constant such that,

K =

∫ ∞
0

λz

Γ(z + 1)
dz. (6.3)

Unfortunately an expression for K using (6.3) cannot be easily found as the integral in (6.3)

cannot be computed analytically. Therefore, it is difficult to properly normalise the interpolated

139



0 1 2 3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

∫
f
(z
,λ
)
d
z

λ

Figure 6.1: Integral of the Interpolated Poisson function for varying rate parameter λ.

Poisson distribution and mathematical manipulations are also restricted if K must be numer-

ically evaluated. We can however consider approximations to solve the integral by employing

Riemann integration, and assuming a step size 4n = 1, the integral can be approximated by a

power series:

K =

∫ ∞
0

λz

Γ(z + 1)
dz

≈
∞∑
n=0

λn

n!

= exp(λ), (6.4)

where Γ(n+1) = n! if n is a positive integer. Substituting (6.4) into (6.2) results in the following

function,

f(z;λ) = exp(−λ)
λz

Γ(z + 1)
. (6.5)

Observe that the function f(z;λ) corresponds to an interpolated form of the Poisson distribu-

tion, however if the Riemann approximation holds, f(z;λ) can also be considered a pdf itself

in continuous random variable z ∈ R+
0 with mean λ. Define IPoiss(z;λ) to be the interpolated

Poisson distribution with rate parameter λ, then we can write the following,

IPoiss(z;λ) , f(z;λ). (6.6)

To gain an idea of how well the approximation (6.4) performs, consider Figure 6.1, which shows

the integral of the f(z;λ) over the variable z for varying values of λ. For small values of λ, i.e.

λ < 4, the assumption thatf(z;λ) is a pdf is not valid. This is a result of overestimating K

using the Riemann approximation, and thus λ, the assumed mean of the interpolated Poisson

distribution is no longer correct.
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In the wider literature, the notion of a “continuous Poisson distribution” is discussed in [79,127],

although Ilienko [76] cautions that it should not be regarded as a continuous version of Poisson’s

discrete law. The successful application of this “distribution” is also discussed in [2, 72,143].

In this chapter, we will treat the interpolated version of the Poisson distribution as a probability

measure even though it is not strictly a pdf, and make use of its associated properties to derive

a TkBD that is similar in principle to the H-PMHT. Like the Poisson distribution, we can show

that the interpolated Poisson distribution obeys an approximate superposition principle for

λ > 4. Superposition means that for z = z1 + z2 with zj ∼ IPoiss(zj ;λj), the combined energy

also follows an interpolated Poisson distribution with z ∼ IPoiss(z;λ1 + λ2). See Appendix

A.1 for further details on the proof of approximate superposition for the interpolated Poisson

distribution.

Note that derivation of the IP-PMHT depends on the validity of the superposition and pdf

approximations. In later sections, we discuss the ramifications of making this assumption in the

context of the TkBD problem.

6.3 Derivation

Assume a scenario in which a sensor observing M targets collects images Zt, defined by (4.1)

as:

Zt = {z1
t , . . . ,z

I
t },

at discrete times t = 1 . . . T where zit denotes the energy in the ith pixel of the sensor image at

time t and I is the total number of observed pixels. The energy zit in each of the measurement

pixels is assumed to be continuous and as a result, it is difficult to formulate an appropriate

measurement model.

Let xmt denote the state of component m at time t for m = 0 . . .M . A component can be

attributed to either a clutter or target object, therefore component m = 0 denotes the clutter

contribution, which is assumed to be an empty set for all time scans. Assume that the remaining

components m = 1, . . . ,M are target objects that evolve according to a known process that

may be non-linear and stochastic. Also define h (τ |xmt ) to be the the point spread function (psf)

for the target components and hi(xmt ) to be the target per-pixel shot probabilities defined in

(4.9).

The H-PMHT provides a convenient way to calculate the likelihood of observing the current

measurement Zt by employing a quantisation over the sensor data and assuming a multinomial

distribution on the resulting integer-valued image. As shown in Chapter 5, this is consistent
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with assuming that the number of discrete measurements from each component is Poisson dis-

tributed. Reducing the quantisation step size allows for finer precision but the resulting mea-

surement count implies more information than is really present. We now propose an alternative

measurement model that allows for a continuous measurement count.

Assume that the total energy in pixel i due to component m at time t, denoted by Zimt follows

an interpolated Poisson distribution,

p(Zimt ;xmt , λ
m
t ) = exp

{
−λmt hi (xmt )

} [λmt hi (xmt )
]Zim

t

Γ(Zimt + 1)
, (6.7)

where as in Chapter 5, λmt denotes the energy rate for component m, that is, the overall average

amount of energy received by the sensor from component m per scan. The term λmt h
i (xmt )

denotes the rate of measurements from component m in pixel i at time t.

Following the discussion in subsection 6.2, we assume that the function (6.7) is a pdf even though

this is strictly not correct. We have shown that like the Poisson distribution, it has the important

property of superposition (see Appendix A.1). Denoting the energy due to component m at time

t as Zmt =
∑M

m=0 Z
im
t , applying the superposition property over the image pixels results in

p(Zmt ;λmt ) = exp(−λmt )

[
λmt

]Zm
t

Γ(Zmt + 1)
, (6.8)

where p(Zmt ;λmt ) is also an interpolated Poisson distribution with rate parameter λmt . Also

define the ith component of Zt in (4.1) as,

zit =
M∑
m=0

Zimt , (6.9)

as the total energy over all components m in pixel i at time t.

The parameters to be estimated under this new formulation are X = x1:M
1:T , the collection of all

component states m at all time scans t, and their associated measurement rates Λ = λ0:M
1:T . As in

the standard H-PMHT, we again employ EM data association to estimate the target states and

Poisson mixing rates with Zimt considered as the missing data. Unlike in the Poisson H-PMHT

algorithm where it is assumed that the shots in the quantised image are realisations of some

mixture process, it is now assumed that the continuous valued measurement image itself can be

modelled by some mixture process. The underlying mixture model intensity f and the per-pixel

intensity fi remain unchanged from the Poisson H-PMHT algorithm and are given by (5.8) and

(5.9), respectively.
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6.3.1 Expectation-Maximisation

The EM procedure for the IP-PMHT is similar to the standard H-PMHT and Poisson H-PMHT

algorithms. As in the Poisson H-PMHT, the collection of Poisson rate parameters Λ = λ0:M
1:T

is part of the observer O. As the measurements are now interpreted as energy and are no

longer discrete variables, the assignment variable K no longer applies, instead we have the

per-target energy Zimt . Define Z = Z1:T to be the collection of measurement images over time

and Z = Z1:I,1:M
1:T to be the proportion of power from each mixture component for all time and

pixels. The observer is given by O : {X,Λ,Z,Z} and is assumed to be unknown.

The quantisation step is no longer required and the proportion of power from each mixture

component is estimated directly. The variable Zimt is considered as missing data under the EM

algorithm. The assignments K of shots to targets and the precise locations L of each shot in

each pixel that arises from measurement quantisation in the standard H-PMHT no longer apply

under the interpolated Poisson measurement model.

6.3.2 E-Step

The new auxiliary function Q(IP ) assuming an interpolated Poisson measurement model is given

by,

Q(IP )(X,Λ|X′,Λ′) = EZ

[
log
{
p(X,Λ,Z,Z)

}
|X′,Λ′,Z

]
, (6.10)

where X′ and Λ′ denote the previous EM estimates for the target states and measurement

rates, respectively. Simplifying the complete data density p(X,Λ,Z,Z) results in

p(X,Λ,Z,Z) = p(Z|Z,X,Λ)p(Z|X,Λ)p(X)p(Λ)

= p(Z|Z)p(Z|X,Λ)p(X)p(Λ), (6.11)

where X and Λ are assumed to be independent from each other. Note also that the measurement

image Z is independent of the states X and rates Λ. Substituting (6.11) into the auxiliary

function (6.10) and only applying the expectation to terms that are dependent on Z, Q(IP ) can

be expanded as shown,

Q(IP )(X,Λ|X′,Λ′) = EZ

[
log
{
p(Z|Z)p(Z|X,Λ) p(X) p(Λ)

}
|X′,Λ′,Z

]
= EZ

[
log
{
p(Z|X,Λ) p(X) p(Λ)

}
|X′,Λ′,Z

]
. (6.12)
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Note that the p(Z|Z) term can be removed from (6.12) as the variable Z is completely described

by Z such that,

p(zit|Zt) =


1, zit =

M∑
m=0

Zimt ,

0, otherwise,

(6.13)

where Zt denotes the energy from all components m at time t. Next, assume that the measure-

ments Z given X and Λ are independent across time, targets and pixels such that,

p(Z|X,Λ) =

T∏
t=1

M∏
m=1

I∏
i=1

p(Zimt |xmt , λmt ). (6.14)

Substituting (6.14) into the auxiliary function (6.12) results in

Q(IP )(X,Λ|X′,Λ′) = log{p(X)}+ log{p(Λ)}+ EZ

[
log
{
p(Z|X,Λ)

}
|X′,Λ′,Z)

]
= log{p(X)}+ log{p(Λ)}+

∫
log
{
p(Z|X,Λ,Z)

}
p(Z|X′,Λ′,Z)dZ

= log{p(X)}+ log{p(Λ)}

+

∫ T∑
t=1

M∑
m=1

I∑
i=1

log
{
p(Zimt |xmt , λmt )

}
p(Z|X′,Λ′,Z)dZ

= log{p(X)}+ log{p(Λ)}

+

T∑
t=1

M∑
m=1

I∑
i=1

∫
log
{
p(Zimt |xmt , λmt )

}
p(Zimt |xm

′
t , λm

′
t , zit)dZ

im
t .

(6.15)

In the second line of equation (6.15), the expectation over Z converts to an integral as the

measurements are continuous. Note also that in the last line of equation (6.15), the integral

has been shifted to be inside the triple summation. The auxiliary function Q(IP ) can be further

simplified by substituting in (6.7) such that,

log p(Zimt |xmt , λmt ) = −λmt hi (xmt ) + Zimt log{λmt hi (xmt )} − log Γ(Zimt + 1). (6.16)

Therefore, the integral in the last line of equation (6.15) can be expressed as,∫
log p(Zimt |xmt , λmt )p(Zimt |xm

′
t , λm

′
t , zit)dZ

im
t

= −λmt hi (xmt ) + log
{
λmt h

i (xmt )
}∫ zi

t

0
Zimt p(Zimt |xm

′
t , λm

′
t , zit)dZ

im
t − C, (6.17)

where C is a constant with respect to X and Λ.

We can see that the probability term on the rhs of (6.17) is the density of the missing data. This

density can be further simplified by decomposing it into two terms, one consisting of the mth
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target and the other consisting of all remaining targets. First define Z̃imt = zit − Zimt to be the

energy from all components excluding component m. This variable is also Gamma distributed

with rate parameter,

λ̃h =

M∑
s=0

λs
′
t h

i(xs
′
t )− λm′t hi(xm

′
t ). (6.18)

Then, the density on the rhs of (6.17) can be expressed as,

p(Zimt |xm
′

t , λm
′

t , zit) =
p(Zimt , Z̃imt , zit|xm

′
t , λm

′
t )

p(zit|xm
′

t , λm
′

t )

=
p(zit|Zimt , Z̃imt )p(Zimt |xm

′
t , λm

′
t )p(Z̃imt |xm

′
t , λm

′
t )

p(zit|xm
′

t , λm
′

t )

=
p(Zimt |xm

′
t , λm

′
t )p(Z̃imt |xm

′
t , λm

′
t )

p(zit|xm
′

t , λm
′

t )
. (6.19)

On the last line of (6.19), the p(zit|Zimt , Z̃imt ) term disappears due to (6.13).

As zit, Z
im
t and Z̃imt all follow an interpolated Poisson distribution, substituting (6.7) for each

of these variables results in

p(Zimt |xm
′

t , λm
′

t , zit)

=

1

Γ
(
Zimt + 1

) exp
{
−λm′t hi(xm

′
t )
}[

λm
′

t hi(xm
′

t )
]Zim

t × 1

Γ
(
Z̃imt + 1

) exp
{
−λ̃h

}[
λ̃h
]Z̃im

t

1

Γ
(
zit + 1

) exp

{
−

M∑
s=0

λs
′
t h

i(xs
′
t )

}[
M∑
s=0

λs
′
t h

i(xs
′
t )

]zi
t

=
Γ(zit + 1)

Γ(Zimt + 1)Γ(Z̃imt + 1)
×

[
λm
′

t hi(xm
′

t )
]Zim

t
[
λ̃h
]Z̃im

t

[
M∑
s=0

λs
′
t h

i(xs
′
t )

]zi
t

. (6.20)

Substituting (6.20) into the integral on the rhs of (6.17), and replacing all Z̃imt with zit − Zimt ,

we can formulate the integral only in terms of the variable Zimt such that,∫ zi
t

0
Zimt p(Zimt |xm

′
t , λm

′
t , zit)dZ

im
t

=
1[

M∑
s=0

λs
′
t h

i(xs
′
t )

]zi
t

∫ zi
t

0

Zimt Γ(zit + 1)

Γ(Zimt + 1)Γ(zit − Zimt + 1)

[
λm
′

t hi(xm
′

t )
]Zim

t
[
λ̃h
]zi

t−Zim
t
dZimt .

(6.21)
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In Appendix A.2, we show that the integral on the rhs of (6.21) can be decomposed as follows,∫ zi
t

0

Zimt Γ(zit + 1)

Γ(Zimt + 1)Γ(zit − Zimt + 1)

[
λm
′

t hi(xm
′

t )
]Zim

t
[
λ̃h
]zi

t−Zim
t
dZimt

∝
∫ zi

t

0
Zimt IPoiss

(
Zimt ;λm

′
t hi(xm

′
t )
)
× IPoiss

(
zit − Zimt ; λ̃h

)
dZimt . (6.22)

Using characteristic functions, we then show that the left hand side of (6.22) simplifies to,∫ zi
t

0

Zimt Γ(zit + 1)

Γ(Zimt + 1)Γ(zit − Zimt + 1)

[
λm
′

t hi(xm
′

t )
]Zim

t
[
λ̃h
]zi

t−Zim
t
dZimt

= λm
′

t hi(xm
′

t ) zit

[
M∑
s=0

λs
′
t h

i(xs
′
t )

]zi
t−1

, (6.23)

Substituting (6.23) into (6.21) results in∫ zi
t

0
Zimt p(Z|xm′t , λm

′
t , zit)dZ

im
t = µimt z

i
t, (6.24)

where µimt has been previously defined in (5.30):

µimt =
λm
′

t hi
(
xm

′
t

)
m∑
s=0

λs
′
t h

i
(
xs
′
t

) , (6.25)

Note that 0 ≤ µimt ≤ 1 represents the relative proportion of power from target m in pixel i.

Also note that the µimt z
i
t term in (6.21) can be interpreted as the amount of energy in pixel i

from component m and is the mean to the missing data density p(Zimt |xm
′

t , λm
′

t , zit).

Substituting (6.24) into (6.17) results in∫
log p(Zimt |xmt , λmt )p(Zimt |xm

′
t , λm

′
t , zit)dZ

im
t = −λmt hi (xmt ) + µimt z

i
t log λmt + µimt z

i
t log hi (xmt ) .

(6.26)

A final expression for the auxiliary function can be found by substituting (6.26) into (6.12),

and making use of
∑

i h
i (xmt ) ≈ 1:

Q(IP )(X,Λ|X′,Λ′) =
M∑
m=0

[
log p(xm0 ) +

T∑
t=1

log{p(xmt |xmt−1)}+ log {p(λm0 )}

+
T∑
t=1

log{p(λmt |λmt−1)} −
T∑
t=1

λmt +

T∑
t=1

log λmt

I∑
i=1

µimt z
i
t +

T∑
t=1

I∑
i=1

µimt z
i
t log hi (xmt )

]
. (6.27)

Note that we have ignored all terms that are considered constant with respect to X and Λ in

(6.17).
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As in the standard and Poisson H-PMHT algorithms, the auxiliary function can be arranged

into two parts, one for the estimation of X, and the other for the estimation of the mixing terms

Λ,

Q(IP ) =

M∑
m=1

QmX +

T∑
t=1

Qtλ, (6.28)

such that

QmX = log p(xm0 ) +
T∑
t=1

[
log{p(xmt |xmt−1)}+

I∑
i=1

µimt z
i
t log hi (xmt )

]
, (6.29)

Qtλ =

M∑
m=0

[
log {p(λm0 )}+ log{p(λmt |λmt−1)}+ log λmt

I∑
i=1

µimt z
i
t

]
− λt, (6.30)

where the last term in (6.30) is λt =
∑T

t=1 λ
m
t . Expressing the auxiliary function in this manner

allows each target component and measurement rate to be optimised independently in the

M-step of the EM algorithm. Comparing (6.30) with the Poisson H-PMHT auxiliary function

(5.43), we see that Qtλ derived under the interpolated Poisson measurement model is identical

to the measurement rate auxiliary function derived under a Poisson measurement model after

the limit of the measurement quantisation is taken to zero.

Recall that the derivation of the auxiliary function (6.28) is based on (6.24) being true. How-

ever the evaluation of this integral is based on the assumption that the interpolated Poisson

distribution is in fact a probability measure. By Figure 6.1, it is evident that this is not always

the case. We now discuss the ramifications of making these modelling assumptions.

In (6.22), the target energy in each pixel, Zimt is assumed to follow an interpolated Poisson

distribution with rate parameter λm
′

t hi(xm
′

t ). For small values of λm
′

t hi(xm
′

t ), the Riemann

approximation discussed in subsection 6.2 overestimates the normalising constant for the inter-

polated Poisson distribution. This implies that the mean λm
′

t hi(xm
′

t ) is incorrect. As the µimt

term depends on λm
′

t hi(xm
′

t ), this implies that the µimt z
i
t term, which approximates the mean

to the missing density p(Zimt |xm
′

t , λm
′

t , zit), is also underestimated.

For practical applications, small values of λm
′

t hi(xm
′

t ) correspond to small pixel energy levels

observed for component m. This generally occurs in the tails of the target psf and thus the

IP-PMHT algorithm underestimates the tails in the target psf. Overall, this implies that the

IP-PMHT algorithm incorrectly penalises the target states as the the mean energy of each

target is underestimated. Nevertheless, we can assume that this error will be marginal as the

contribution of the tails to the target energy is generally small. In the case when the target

peak SNR is also small, the consequences of underestimating the contribution of the tails to the

target psf can be more significant. However, note that most algorithms will generally struggle

to form tracks on targets with such low levels of SNR.
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In the evaluation the state auxiliary function QmX , we are required to evaluate the integral,

log hi (xmt ) = log

∫
Bi

h (τ |xmt ) dτ. (6.31)

While the evaluation of the logarithm of a function is a non-trivial operation, we can make the

following approximation by employing Jensen’s Inequality:

log

∫
Bi

h (τ |xmt ) dτ ≥
∫
Bi

log h (τ |xmt ) dτ. (6.32)

The rhs of (6.32) is of a form that is more easily evaluated, particularly in a linear Gaussian

scenario when the log h (τ |xmt ) equates to a quadratic. Using Jensen’s Inequality (6.32), a lower

bound on the auxiliary function QmX can be formed such that,

QmX ≥ Q̃mX , (6.33)

where Q̃mX denotes the modified state auxiliary function using Jensen’s Inequality:

Q̃mX = log p(xm0 ) +

T∑
t=1

[
log{p(xmt |xmt−1)}+

I∑
i=1

µimt z
i
t

∫
Bi

log h (τ |xmt )

]
. (6.34)

Under this modification, the maximisation step is performed on a different type of lower bound

than what is considered in the standard H-PMHT auxiliary function. As such, by maximising

this new lower bound, we are no longer performing EM in the usual sense and the convergence

property of the EM method is no longer valid.

We show later in subsection 6.5 that for a linear Gaussian scenario under various amplitude

models, the local maximum of the modified auxiliary function Q̃mX still converges to a sensible

estimate that aligns closely with the EM estimates from the standard H-PMHT and Poisson

H-PMHT. However, it is important to realise that the local maximum of the modified auxiliary

function may occur at a different xmt value from the local maximum of the original auxiliary

function (6.28) formed under EM.

For the maximisation of the measurement rate component, note that the measurement rate

auxiliary function (6.30) is identical to the Poisson H-PMHT auxiliary function (5.43). As

a result, the maximisation procedure described in Chapter 5 can again be used to calculate

smoothed estimates for the mixing proportion terms. See subsection 5.3.5 for further details.

6.4 Kalman Filter Implementation

In this subsection, a KF implementation for the IP-PMHT is presented. Like the original

H-PMHT KF implementation introduced in subsection 4.3.1, an equivalent point measure-

ment and covariance for the case when the measurement function is linear and Gaussian can
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be derived. In order to do so, we can follow the same procedure described in 4.3.1 to show that

the measurement component of the modified auxiliary function (6.34) is equivalent to a single

quadratic such that,

I∑
i=1

µimt z
i
t

∫
Bi

log h (τ |xmt ) dτ = C − 1

2
(Hxmt − z̃

(IP )
t,m )T R̃

(IP )−1

t,m (Hxmt − z̃
(IP )
t,m ), (6.35)

where C is some constant and z̃
(IP )
t,m and R̃

(IP )
t,m are the equivalent synthetic point measurement

and covariance for the IP-PMHT, respectively.

Consider simplifying the left hand side of (6.35):∑
i

µimt z
i
t

∫
Bi

log h (τ |xmt ) dτ

= C − 1

2

I∑
i=1

µimt z
i
t

∫
Bi

(Hxmt − τ)TR−1(Hxmt − τ)dτ

= C − 1

2

I∑
i=1

µimt z
i
t

∫
Bi

(Hxmt )TR−1Hxmt − 2(Hxmt )TR−1τdτ

= C − 1

2

[
I∑
i=1

µimt z
i
t(Hx

m
t )TR−1Hxmt

∫
Bi

dτ − 2
∑
i

µimt z
i
t(Hx

m
t )TR−1

∫
Bi

τdτ

]

= C − 1

2

[
(Hxmt )T R̃

(IP )−1

t,m Hxmt − 2

I∑
i=1

µimt z
i
t(Hx

m
t )TR−1

∫
Bi

τdτ

]
, (6.36)

where the synthetic covariance R̃(IP ) is given by,

R̃
(IP )
t,m =

1∑I
i=1 µ

im
t z

i
t

∫
Bi
dτ

R

=
1∑I

i=1 µ
im
t z

i
t|Bi|

R. (6.37)

Note that all terms in (6.36) that are not dependent on xmt are absorbed into the constant C.

The term |Bi| =
∫
Bi
dτ is defined as the size of pixel i and all terms that are not dependent on

xmt are absorbed into the constant C. The second term on the last line of (6.36) can be further

simplified to give,

2
I∑
i=1

µimt z
i
t(Hx

m
t )TR−1

∫
Bi

τdτ = 2(Hxmt )TR−1

∑I
j=1 µ

jm
t zjt |Bj |∑I

j=1 µ
jm
t zjt |Bj |

I∑
i=1

µimt z
i
t

∫
Bi

τdτ

= 2(Hxmt )T R̃
(IP )−1

t,m

∑I
i=1 µ

im
t z

i
t

∫
Bi
τdτ∑I

j=1 µ
jm
t zjt |Bj |

,

= 2(Hxmt )T R̃
(IP )−1

t,m z̃
(IP )
t,m , (6.38)
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where the synthetic measurement z̃
(IP )
t,m is given by,

z̃
(IP )
t,m =

∑I
i=1 µ

im
t z

i
t

∫
Bi
τdτ∑I

j=1 µ
jm
t zjt |Bj |

. (6.39)

Substituting (6.38) into the measurement component (6.36) results in∑
i

µimt z
i
t

∫
Bi

log h (τ |xmt ) dτ = C − 1

2

[
(Hxmt − z̃

(IP )
t,m )T R̃

(IP )−1

t,m (Hxmt − z̃
(IP )
t,m )

]
, (6.40)

The KF implementation for the IP-PMHT is summarised in Algorithm 9.

6.5 Simulations

This section demonstrates and verifies the performance of the proposed IP-PMHT for several

simulated scenarios featuring different target fluctuation models. The four target amplitude

models described in Subsection 5.5 are again used here, namely the constant amplitude model,

slowly varying amplitude model, Swerling I model, and step function with Gaussian noise ampli-

tude model. As in previous chapters, we only consider a linear Gaussian scenario as described in

subsection 4.4.1. The initialisation procedure and parameters for estimating the mixing propor-

tion λmt such as the forgetting factor η are the same as used in Subsection 5.5. For the following

simulations, the algorithm was run for 50 EM iterations and all results were also averaged over

100 Monte Carlo runs.

Recall that at the end of subsection 6.3.2, the state auxiliary function (6.34) was modified

under Jensen’s Inequality such that the maximisation step is now performed on a different type

of lower bound that what is derived in the standard H-PMHT. As a result, we are no longer

performing EM in the usual sense and the convergence property of the EM method no longer

holds. In this section, we demonstrate that for a number of linear Gaussian scenarios, the new

lower bound defined by (6.34) still converges.

In order to guarantee convergence for the IP-PMHT, the modified state auxiliary function is

required to be non-decreasing at at each maximisation step:

Q̃j+1
X (x̂j+1) ≥ Q̃jX(x̂j), (6.41)

where the superscript index j is the iteration index. Note that the target index m has been

suppressed for notational convenience. In (6.41), the modified auxiliary function at the (j+1)th

iteration evaluated at the maximising state x̂j+1 is required to be greater than the modified

auxiliary function at the jth iteration evaluated at its corresponding maximum x̂j . However,
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Algorithm 9 Interpolated Poisson-PMHT using a KF implementation

1. Initialise the EM algorithm: For each target m = 1 . . . ,M , initialise the algorithm from

a known p(xm0 ).

2. Initialise the measurement rate estimate λm0 using an initial estimate for αm0 and βm0

for each component m.

3. For time scans t = 1, . . . , T ,

(a) Prediction Step: For each target component, compute the

• predicted state estimates xmt|t−1 by applying the dynamics model to the

previous posterior state estimates,

• mixing terms λmt|t−1 by evaluating (5.52) and (5.54).

(b) Initialise the probability that a shot due to a target falls in pixel i, hi(·), using

the predicted state estimate xmt|t−1.

(c) Select the number of iterations IC so it is large enough to guarantee convergence.

(d) For j = 1, . . . , IC ,

• Update Step: For each target component, compute

– the updated per-pixel probability hi(·) using the previous iterations

state estimate xm,j−1
t−1|t−1 if it is available.

– the KF updated state estimates xm,jt|t for the current iteration using

the synthetic measurements z̆
(IP ),j
t,m via (6.39) and synthetic covariance

R̃
(IP ),j
t,m via (6.37).

– mixing terms λm,jt|t by evaluating (5.52) and (5.55).
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Q̃j+1
X and Q̃jX are different functions as they depend on the measurement rates λ, which are

updated at each iteration. Therefore there is no guarantee that (6.41) will be true.

Consider an alternative condition for convergence in which the modified auxiliary function

evaluated at the current maximising state is now required to be greater than the value of the

same auxiliary function evaluated at the previous iteration’s maximising state:

Q̃j+1
X (x̂j+1) ≥ Q̃j+1

X (x̂j). (6.42)

This alternative criteria also implies that the modified auxiliary function is non-decreasing at

each maximisation step. To demonstrate this through simulations, define εQ as follows:

εQ = Q̃j+1
X (x̂j+1)− Q̃j+1

X (x̂j). (6.43)

To evaluate εQ, let Q̃j+1
t,X (x) denote the modified auxiliary function calculated at the (j +

1)th iteration at time t evaluated at state x. Also let z̃j+1
t and R̃j+1

t denote the synthetic

measurement and covariance evaluated at time t for the (j+1)th iteration. For a linear Gaussian

scenario, it has the following form:

Q̃j+1
t,X (x) = −1

2
(x−F x̂t−1)TP−1

t|t−1(x−F x̂t−1)− 1

2
(z̃j+1
t −Hx)T (R̃j+1

t )−1(z̃j+1
t −Hx), (6.44)

where P−1
t|t−1 is the predicted covariance. Ignoring the negative scalar terms in front of each

quadratic term, it can be seen that Q̃j+1
t,X (x) simplifies to the sum of the two quadratic functions,

which is positive. This implies that the Q̃j+1
t,X (x) is always negative and is bounded above by

zero.

Figure 6.2 shows εQ averaged over 100 Monte Carlo runs and 50 maximisation steps. For the

estimation of the measurement rates, a forgetting factor of η = 10 was assumed. We verified dur-

ing the simulation that εQ is always positive for all EM iterations and target amplitude models.

As Q̃j+1
X is bounded above by zero for linear Gaussian scenarios and simulations demonstrate

that the lower bound (6.34) is always non-decreasing at each maximisation step and every time

frame, this implies that for the given scenarios, the IP-PMHT lower bound always converges.

The performance of the IP-PMHT is now compared with the standard H-PMHT and the Poisson

H-PMHT derived in Chapter 5. The root mean square (RMS) state estimation errors and target

peak SNR estimates are computed for each algorithm for each target amplitude model.

Figure 6.3 show the RMS state estimation errors averaged over all Monte Carlo runs for the

standard H-PMHT (solid blue line), Poisson H-PMHT (solid red line) and IP-PMHT (dashed

black line) assuming a forgetting factor of η = 10 for the Poisson-based algorithms. Observe that

the IP-PMHT gives slightly worse RMS performance for all target amplitude models and seems
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0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

ǫ
Q

Time (secs)

(c) Swerling I Model

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ǫ
Q

Time (secs)

(d) Step Function with Gaussian noise Scenario

Figure 6.2: εQ versus time averaged over 100 Monte Carlo and 50 iterations assuming a forgetting

factor of η = 10.
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to diverge at the end of the Swerling I model scenario. This is likely to be attributed to the IP-

PMHT maximising a different lower bound than the standard H-PMHT and Poisson H-PMHT

algorithms. Unsurprisingly, the IP-PMHT SNR estimates are identical to the Poisson H-PMHT

estimates in Figure 6.4, as both algorithms employ the same dynamic estimation procedure

for the mixing terms. This also verifies that the state and SNR estimates from the IP-PMHT

converge to values that align well with the standard and Poisson H-PMHT algorithms.

If we consider the performance of the IP-PMHT SNR estimates for a single run, assuming

a forgetting factor of η = 1, 3 and 10, we see that in Figures 6.5-6.8, the IP-PMHT SNR

estimates again match the Poisson H-PMHT estimates. Like the Poisson H-PMHT, the IP-

PMHT gives similar performance to the standard H-PMHT for scenarios featuring constant or

relatively smooth changes in target amplitude. For scenarios in which the target amplitude has

instantaneous fluctuations, the IP-PMHT outperforms the standard H-PMHT. The IP-PMHT

is less sensitive to noisy fluctuations and is capable of giving more smoothed estimates of the

true target SNR through the forgetting factor term η.

Figure 6.9 shows the track SNR variance versus forgetting factor η. We see that like the Poisson

H-PMHT, the IP-PMHT outperforms the standard H-PMHT in all four amplitude models.

Figure 6.10 on page 163 shows the track SNR variance for different SNR values for the Swerling

I amplitude model. Again, the IP-PMHT performance is identical to the Poisson H-PMHT and

outperforms the standard H-PMHT. In both simulations, the IP-PMHT averages over a larger

time frame to give significantly smaller variance estimates when compared with the standard

H-PMHT.

6.6 Summary

This chapter has presented a new TkBD algorithm called the Interpolated Poisson PMHT (IP-

PMHT) that is based on the application of PMHT data association to continuous valued data.

This new algorithm models the measurement image directly using an interpolated form of the

Poisson distribution. Like the Poisson measurement model discussed in Chapter 5, this new

model also allows for a randomly evolving mean target amplitude estimate.

Although the interpolated version of the Poisson distribution can only be approximated by a

continuous pdf on the non-negative real line for λ > 4, we nevertheless make use of convenient

properties of probability measures to derive a TkBD algorithm that is similar in principle to

the standard H-PMHT but removes the requirement for quantisation and thus the generation

of an artificial histogram. The key contribution of this chapter is the first derivation of a TkBD

algorithm assuming an interpolated Poisson distribution on the energy from an individual target

154



0 10 20 30 40 50 60 70 80 90 100
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time (secs)

R
M

S
 E

rr
or

 (
m

)

 

 

H−PMHT
Poisson H−PMHT
IP−PMHT

(a) Constant Amplitude Target Model

0 10 20 30 40 50 60 70 80 90 100
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (secs)

R
M

S
 E

rr
or

 (
m

)
 

 

H−PMHT
Poisson H−PMHT
IP−PMHT

(b) Slowly Varying Amplitude Model
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(c) Swerling I Model
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(d) Step Function with Gaussian noise Scenario

Figure 6.3: Comparison of RMS error versus time (averaged over 100 Monte Carlo runs) for

the standard H-PMHT, Poisson H-PMHT and IP-PMHT for various target amplitude models

assuming η = 10.
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(a) Constant Amplitude Target Model
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(b) Slowly Varying Amplitude Model
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(c) Swerling I Model

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

Time (secs)

A
ve

ra
ge

 T
ar

ge
t S

N
R

 (
dB

)

 

 

Truth
H−PMHT
Poisson H−PMHT
IP−PMHT

(d) Step Function with Gaussian noise Scenario

Figure 6.4: Comparison of track SNR versus time (averaged over 100 Monte Carlo runs) for

the standard H-PMHT, Poisson H-PMHT and IP-PMHT for various target amplitude models

assuming η = 10.
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(a) η = 1
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(b) η = 3
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(c) η = 10

Figure 6.5: Constant Amplitude scenario: Comparison of the average target SNR for the

standard H-PMHT, Poisson H-PMHT and IP-PMHT for varying forgetting factor η.
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(a) η = 1
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(b) η = 3
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(c) η = 10

Figure 6.6: Slowly Varying Amplitude Scenario: Comparison of the average target SNR

for the standard H-PMHT, Poisson H-PMHT and IP-PMHT for varying forgetting factor η.
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(a) η = 1
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(b) η = 3
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(c) η = 10

Figure 6.7: Swerling Model I Scenario: Comparison of the average target SNR for the

standard H-PMHT, Poisson H-PMHT and IP-PMHT for varying forgetting factor η.
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(a) η = 1
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(b) η = 3
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(c) η = 10

Figure 6.8: Step Function with Gaussian noise Scenario: Comparison of the average target

SNR for the standard H-PMHT, Poisson H-PMHT and IP-PMHT for varying forgetting factor

η. 160
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(a) Constant Amplitude Model
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(b) Slowly Varying Amplitude Model
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(c) Swerling I Model
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(d) Step Function with Gaussian noise Scenario

Figure 6.9: Track SNR variance versus forgetting factor η for the standard H-PMHT, Poisson

H-PMHT and IP-PMHT under various target amplitude models.
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(a) η = 1
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(b) η = 3
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(c) η = 10

Figure 6.10: Comparison of the average track SNR variance for the standard H-PMHT, Poisson

H-PMHT and IP-PMHT for varying forgetting factor η for the Swerling Model I Scenario.
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and the first KF implementation of this algorithm for linear Gaussian scenarios.

Through simulated linear Gaussian simulations, we showed that the state estimation per-

formance of the IP-PMHT is similar in performance to the standard H-PMHT and Poisson

H-PMHT. We also verified that the component mixing terms in the IP-PMHT are identical

to the mixing terms derived under the Poisson H-PMHT after quantisation. Thus, the IP-

PMHT algorithm has the benefits of a smoothed mixing term estimate without requiring an

intermediate quantisation step.

By avoiding measurement quantisation, we are able to partially address some of the limitations

of the H-PMHT, namely its questionable independence assumptions and quantisation issues

that result in inconsistent track performance whenever the image size is changed. However,

it can be argued that these assumptions have been replaced by questionable distributional

assumptions as the derivation of the IP-PMHT depends on the validity of superposition and

pdf approximations.
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Chapter 7

Comparative Study using Trial Data

from an Active Towed Array Sonar

The detection and tracking of targets using an active towed array sonar system is a non-trivial

problem due to the complex nature of the underwater acoustic environment. Performance can

be degraded by high levels of acoustic clutter, fluctuating target returns and a relatively low

sonar data update rate. As a result, conventional point measurement trackers often struggle to

form target tracks or can be overwhelmed by the high false alarm rate. This chapter considers

the application of several TkBD algorithms based on PMHT data association to trial data from

an active towed array sonar system. Through a comparative study, we investigate the benefits

of using TkBD over conventional point measurement tracking for the the active sonar problem.

The key contribution of this chapter is a comparative study analysing the performance of a

conventional point measurement tracker with the standard H-PMHT, the Poisson H-PMHT

and IP-PMHT presented in Chapters 4, 5 and 6, respectively, using trial data from an active

towed array sonar system. The TkBD algorithms are modified for the active sonar problem

by allowing changes in target appearance with received array bearing to be included into the

measurement model. The main contributions of this chapter are summarised in article [137].

The following study assumes that the target dynamics is modelled by a Markov process, however

it is possible to assume an alternate target model such as the HRP discussed in Chapter 3. As

the underwater targets considered in this study are generally assumed to travel without a

predetermined path, the application of HRP target models is not considered here.

The chapter is arranged as follows: Section 7.1 introduces the active sonar tracking problem;

Section 7.2 outlines the tracking problem for both the conventional and TkBD case; Section

7.3 gives a brief review of the Integrated Probabilistic Data Association (IPDA) approach to
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conventional tracking and discusses how the TkBD measurement model can be modified to

incorporate a bearing-dependent point spread function (psf); Section 7.4 outlines the details

of the comparative study; we first verify that the inclusion of a bearing dependent psf in the

standard H-PMHT results in improved tracking; next, the bearing dependent psf is integrated

into the Poisson H-PMHT and IP-PMHT, and their performance is compared with the modified

standard H-PMHT and a conventional point-measurement tracker based on IPDA; Section 7.5

summarises and concludes the chapter.

7.1 Introduction

Traditionally, a sonar system’s detection and tracking capabilities have been considered separate

functions. Conventional active sonar processing systems use beamforming and matched filter

correlation with a replica of the transmitted pulse to generate a sensor image of the reflected

acoustic intensity as a function of range and bearing. Typically, this sensor image is normalised

to remove mean background variations and a fixed threshold is applied to produce detections

that are then provided to the tracker. The role of the tracker is to associate point-measurements

from a common target across time and return estimates of the target’s trajectory. This approach

is often sufficient for detecting and tracking high Signal-to-Noise Ratio (SNR) targets but

becomes more challenging for low SNR targets, as the process of reducing the sensor image

to thresholded detections discards valuable target information. TkBD has been proposed as a

natural solution for tracking low SNR targets as the declaration of a target detection can be

delayed until after a series of frames have been processed. This technique has the potential to

provide significant gains in scenarios with low SNR targets and high clutter [39].

The first applications of TkBD to active sonar were based on dynamic programming techniques,

which use a fixed grid to model the propagation of target states with time [16,46,125]. However,

most of these techniques have been demonstrated with simulated data and the application of

TkBD to at-sea data has been limited [97, 113]. The application of other alternative TkBD

algorithms to active sonar data in the open literature has also been limited. Moreover, previous

applications of TkBD have failed to address issues that are unique to active sonar such as the

low update rate.

The key contribution of the chapter is a study comparing the performance of several TkBD

algorithms based on PMHT data association with a conventional point measurement tracker

based on IPDA [27,94] in two representative acoustic environments using trial data against an

Echo-Repeater (ER) target from an active towed array sonar system. An ER is an acoustic source

that can simulate the returns from a simple point-like target in the ocean environment. The
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TkBD algorithms considered are the standard H-PMHT, the Poisson H-PMHT and IP-PMHT

presented in Chapter 4, 5 and 6, respectively. To model the variation in the target appearance

with sonar receive bearing, the TkBD algorithms are extended to include a bearing-dependent

psf.

7.2 Active Sonar Problem

In the active sonar tracking problem, the main objective is to identify the number of targets

and estimate their trajectories over time using a sequence of noisy measurements. Define the

state vector xmt , which evolves with time t ∈ N, where N is the set of all natural numbers,

m = 1, . . . ,M denotes the target index in the case of a multi-target scenario, and M is the

total number of targets.

In active sonar tracking, the target state is generally modelled in a Cartesian frame. For con-

ventional point measurement tracking, it is sufficient to describe the target state using position

and velocity in two-dimensions. Define xmt and ẋmt to be the target position and velocity in the

x-direction, respectively. Similarly, define ymt and ẏmt to be the respective target position and

velocity in the y-direction. The target state for point measurement tracking is defined as:

xmt =
[
xmt ẋmt ymt ẏmt

]T
. (7.1)

In the TkBD case, it is common to supplement the state vector with the target amplitude,

xmt =
[
xmt ẋmt ymt ẏmt Amt

]T
, (7.2)

where Amt denotes the amplitude for target m at time t. It is assumed that the state vector

contains all relevant information about the system.

Generally, when analysing a dynamic system, two models are required: the target and mea-

surement models. In practice, it is common to assume stochastic models for the system target

dynamics and sensor data.

Target Model: The target model describes the target state evolution with time and can be

expressed in terms of a linear discrete-time stochastic model

xmt = Ft−1x
m
t−1 + vt−1, (7.3)

where Ft−1 is a known matrix describing the linear state transition from xmt−1 to xmt , and vt−1

is an independent identically distributed (iid) system noise sequence representing uncertainties

in the target motion. For the active sonar tracking problem, the target model needs to capture
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the dynamics of an underwater target. It is assumed that a nearly-constant-velocity model is

sufficient.

Measurement Model: The measurement model relates the noisy measurements to the state

xmt . In conventional point measurement sonar tracking, measurements are generally received

in polar coordinates (range and bearing). Let Zt = {zjt } for j ∈ {1, . . . ,mt} denote the set of

point measurements received at time t. Note that since the detection probability of each target

is, in general, less than unity, there is no guarantee that every target will produce a point

measurement at each time. Furthermore, some of these detections may originate from clutter.

Suppose target m is associated with measurement jm at time t. Then,

zjmt = ζt(x
m
t ) +ψt, (7.4)

where ζt(x
m
t ) denotes the measurement function that maps the state into the measurement

space and ψt is an iid measurement noise sequence. Clutter detections are assumed to be

uniformly distributed across the surveillance region and the total number of clutter detections

at each time is assumed to follow a Poisson distribution.

In the TkBD case, the measurement model now relates the images Zt in range and bearing to

the target state xt. Let zit denote the ith pixel in the measurement image at time t, and let

Zt = {zit} for i = 1, . . . , I represent a stacked vector of all the pixels in the image, and I is

the total number of pixels in the measurement image. For ease of presentation, we have used

a stacked vector to represent the image to allow single index referencing. A two dimensional

representation could just as easily have been used. We assume a point-scatterer target, such

that the target contribution to the measurement image can be described purely in terms of the

psf, h(xmt ). The TkBD measurement image is then described as follows,

Zt =
M∑
m=1

Amt h(xmt ) +wt, (7.5)

where wt is an IID noise sequence for the measurement image. Note that the psf is a property

of the sensor and is the same for all targets, but can vary with different sensors.

The recursive Bayesian approach to dynamic state estimation requires the construction of a pos-

terior probability density function (pdf) p(xmt |Zt) of the state based on all available information,

including information gained from noisy measurements up until time t, Zt = {Z1, . . . ,Zt}. The

pdf is assumed to contain all available information of the state and is considered to be a complete

solution to the estimation problem. The recursive Bayesian filter used to update the pdf given

new information consists of two stages: the prediction and the update stage. In the prediction
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stage, the state is propagated forward in time using the target dynamics model p(xt|xt−1). In

the update state, the information contained in the new measurement is used to modify the pdf.

For more details, refer to subsection 2.2.1.

The trial data uses Doppler insensitive waveforms, resulting in a measurement process that only

observes the position component of the target. Thus the measurement model assumes that the

likelihood is independent of the target velocity component.

In the TkBD case, the output of the sensor generally consists of a 2D image and the likelihood

of seeing the sequence of images given the current state of the target. Assuming independent

pixel noise, the likelihood for the image Zt can be factorised as follows,

p(Zt|xmt ) =

I∏
i=1

p(zit|xmt ). (7.6)

Under linear Gaussian assumptions, the optimal finite dimensional solution to the discrete-time

recursive Bayesian state estimation problem is the Kalman Filter (KF). However, as the mea-

surements in active sonar tracking are generally polar (range and bearing), and the target state

is more naturally modelled in a Cartesian frame, both the conventional and TkBD measure-

ment model defined by (7.4) and (7.5), respectively, are non-linear functions of the target state.

In this case, approximations or suboptimal solutions must be considered to accommodate the

non-linear measurement model. In this chapter, we consider a conventional tracking solution

based on IPDA using converted measurements, and several TkBD solutions based on PMHT

data association.

7.3 Tracking Algorithms

In this section we outline the tracking algorithms that will be implemented for the comparative

study. In subsection 7.3.1, we present a conventional point measurement tracker based on IPDA.

We then outline how the TkBD measurement model can be modified to include a bearing

dependent psf.

7.3.1 Conventional Tracking using Integrated Probabilistic Data Association

One of the main difficulties in point-measurement tracking is determining which measurements

arise due to a particular target and which measurements are the result of false alarms or due

to objects that are not of interest. This problem is referred to as data association. Under a

particular data association hypothesis, the target state can be estimated using a KF or non-

linear counterpart. Probabilistic Data Association (PDA) expresses the target state pdf as a
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weighted sum of target state pdfs over data association hypotheses formed for that hypothesis

and provides expressions to determine the probabilities of these hypotheses [27]. The resulting

pdf is a Gaussian mixture, which is then approximated by a single Gaussian. The Integrated

PDA (IPDA) extends the target state-space by defining a binary existence variable Et that

indicates whether or not there is actually a target present and assumes that this variable

evolves according to a Markov chain. The IPDA provides equations for recursively updating

the target states and the probability of target existence based on the PDA approach for data

association [94]. The probability of existence can then be used to automate track management.

The advantages of IPDA are that it is computationally inexpensive and can be implemented

as a modified KF: the target description consists only of a mean vector, a covariance matrix

and a scalar existence probability. However, the algorithm uses a single Gaussian component to

approximate the Gaussian mixture arising from the weighted sum of Gaussian target state pdfs

formed over data association hypotheses. This approximation can be poor, especially when the

mixture has more than one dominant component. IPDA also assumes the existence of at most

one target.

Let Et = 1 and Et = 0 denote the probability of target existence and non-existence, respectively.

The IPDA optimal track update evaluates the joint probability of the target state xt and the

event of target existence Et conditioned on the set of received measurements Zt at time scan t:

p(xt, Et|Zt) = p(xt|Et,Zt)p(Et|Zt). (7.7)

Note that the component index on the target state has been suppressed for notational conve-

nience. In this chapter, the IPDA algorithm is based on an implementation discussed in [94].

The non-linearity of the point measurement model is dealt with by converting the polar mea-

surements to a Cartesian frame and using the converted measurements as inputs into the

KF [13]. Tracks are initiated when the estimated probability of track existence rises above a

certain threshold. Likewise, track termination occurs when the probability of track existence

falls below another threshold. In this chapter, a single target IPDA tracker based on [94] is im-

plemented. However, a multi-target track management logic is imposed based on the assumption

that targets in the image do not overlap or interact with each other. In a multi-target scenario,

this allows an independent IPDA filter to be run for each track. Joint Integrated Probabilistic

Data Association (JIPDA) can be used for scenarios featuring interacting targets but it is more

computational expensive than IPDA [93] and is not considered here.
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7.3.2 Track-Before-Detect using Expectation-Maximisation Data Associa-

tion

For the comparative study, we consider three different TkBD algorithms based on the applica-

tion of EM data association:

• The standard H-PMHT algorithm introduced in Chapter 4

• The Poisson H-PMHT proposed in Chapter 5

• The IP-PMHT proposed in Chapter 6

The TkBD algorithms can be naturally extended to track in a multi-target scenario but still

have linear complexity with the number of targets. In the study, the maximisation step of the

EM procedure for all three algorithms is performed using an Extended Kalman Filter (EKF).

However, the linearisation point for the EKF is modified with each Expectation-Maximisation

(EM) iteration so the result is similar to the Iterated EKF, which is known to provide a more

accurate estimate than the standard EKF [6].

Next, we will describe how the standard TkBD measurement model can be modified to include

a bearing-dependent psf to model the variation in the beampattens for an active towed array

sonar.

Due to left-right ambiguity issues characteristic of linear array systems, when a target is detected

by a towed array, it will appear as two identical targets symmetrically placed on either side

of the towed array in the sensor image. An own-ship manoeuvre is required to identify a real

target from the ambiguous one. Figure 7.1 shows representative beam patterns and the effect

of left-right ambiguity issues for an active towed array sonar system at the following receive

directions:

• Broadside: defined as 90 degrees from front of the ship. The beam pattern consists of a

narrow beam and the two peaks generated by left-right ambiguity are well-separated,

• Near aft of the ship: where the beams are wider and the left-right ambiguous peaks begin

to overlap, and

• Aft of the ship: defined as close to 180 degrees from the front of the ship, where the

left-right beam patterns merge into a single wide peak.

It can be seen that as the receive direction moves from broadside to aft of the ship, the spread

in the beam pattern increases and the ambiguous target in the image merges with the real
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Figure 7.1: Beampattern vs. bearing for transmissions at broadside, near aft and aft of the ship.

target to form a single target smeared across multiple bearing bins in the sensor image. The

half-height beamwidth for the beampattern is approximately 8 degrees at broadside, 50 degrees

(across both peaks) in the near aft direction and 42 degrees at aft.

The variation in the beampattern with receive direction will be modelled by assuming a bearing-

dependent psf. Recall that a sensor’s psf can be used to describe the appearance of the target

in the sensor image. For the sonar problem, the sensor outputs a measurement in range r and

bearing θ space such that,

h(xmt ) = h(r, θ) (7.8)

= hr(r)hθ(θ),

where hr(r) and hθ(θ) are defined as the psfs for range and bearing space respectively, and

assumed to be independent of each other. Both psfs can be approximated using Gaussians. For

an active towed array sonar system, the psf function hr(r) can be assumed to be consistent

across all bearings, however the psf in the bearing space hθ(θ) will be dependent on the receive

direction due to the variation of beam patterns with bearing.

In this study, a bearing-dependent psf using a Gaussian approximation will be assumed. For a

given receive direction, the Gaussian psf can be calculated by setting the half-height width of

the Gaussian pdf to be equal to the half-height beamwidth of the current receive direction. The

corresponding variance for the Gaussian psf can then be easily calculated. Figure 7.2 shows the
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Figure 7.2: Variations in point spread function hθ(θ) in bearing space, for transmissions at

broadside, near aft and aft of the ship.

resulting psfs corresponding to broadside, near aft and aft receive directions. Note that for the

near aft direction, a sum of two Gaussians, one for each of the left-right beams is used to model

the beam pattern.

Tracks are initiated based on a peak detection thresholding process at a given SNR level and the

well known M/N logic is imposed such that if M out of N point detections are associated with

a tentative track, the track is upgraded from tentative to confirmed status [21]. The transition

matrix for the target dynamics is given by a constant velocity model which varies depending

on the time between consecutive transmissions.

7.4 Comparative Study using Sonar Trial Data

This section outlines the details for the comparative study using archived sonar data from a

towed array sonar system. This section is separated into two different studies; in Section 7.4.1 we

verify that the inclusion of a bearing dependent psf in the standard H-PMHT results in improved

tracking; then in Section 7.4.2 the bearing dependent psf is integrated into the Poisson H-PMHT

and IP-PMHT, and their performance is compared with the modified standard H-PMHT and

a conventional point-measurement tracker based on IPDA.

In the second study, both the TkBD and IPDA performance is quantified for a set of SNR
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thresholds. For the IPDA, the SNR threshold will determine the number of detections that are

passed to the tracker. In the case of the TkBD algorithms, the SNR threshold will be used in

a peak detector for track initiation.

The inclusion of a bearing dependent psf into the TkBD measurement model and the comparison

of various TkBD algorithms with the IPDA using trial sonar data are the key contributions of

this chapter.

The data used in this study originates from a sonar trial conducted by the Defence Science

and Technology Organisation (DSTO) from May to August 2003 using a containerised active

towed array demonstration sonar system called CASSTASS. The sonar trial featured a line array

towed behind a moving surface ship at two different locations in the Western Australian eXercise

Area (WAXA). The two datasets feature characteristics that are unique to the sonar detection

and tracking problem in a shallow environment with water depths from 150-250m and for an

intermediate ocean environment with depths from 800-1400m. Transmissions were set to detect

possible targets with a maximum range of 60 km with the majority of transmissions being in

the aft direction. The datasets feature a fluctuating target and persistent clutter detections that

are the result of reflections from bathymetric features along the continental shelf. Both datasets

consist of approximately 20 transmissions with the time duration between transmissions being

approximately 90 seconds.

The target is an ER made to simulate the returns from a simple point-like target in the ocean

environment. During the trial, the ER platform was observed to have an average travelling

speed of 0-4 knots with varying target strength of 9, 19 and 29 dB. The measured SNR for the

two datasets is approximately 25 dB, which is relatively high, and it is expected that both the

IPDA and TkBD will be able to form tracks on the ER. However, variations in performance

are also expected as the ‘target’ SNR did fluctuate with time, with SNR levels as low as 13 dB

being observed.

Both the IPDA and TkBD algorithms perform tracking using global Cartesian coordinates with

an origin fixed at the last recorded own-ship position in each trial. Figure 7.3 shows the physical

positions for the own-ship (blue line) and ER (black solid line) for each dataset. A characteristic

of the ER is that it features a time delayed response. The returns from the ER have a constant

time delayed response for each transmission sent out by the towed array source. As a result,

the ER observed position will appear offset by some constant distance corresponding to the

difference in time between when the ER receives the source’s signal and the time the ER takes

to respond with a simulated return. In Figure 7.3, the observed measurements from the ER

(with offset) are plotted as black dots. The ER observed measurements will be used as input

into the IPDA algorithm.
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Figure 7.3: Own-ship, ER and Observed ER Position for each dataset
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The IPDA algorithm uses point-measurement detections which were generated from an auto-

mated detection scheme featuring clustering. To gain an idea of the sensitivity of conventional

tracking to thresholding, the IPDA algorithm was implemented using three detection thresh-

olding levels at 11, 13 and 15 dB. The expected number of clutter measurements was modelled

using a Poisson distribution with parameter λ = N̂k
Vk

where Vk denotes the area of surveillance

and N̂k is estimated using the average number of point detections which varied with the SNR

thresholding level. The IPDA algorithm initiated tentative tracks using two-point differencing.

When the probability of existence for a track rose above 0.5, tentative tacks were upgraded

to confirmed status. Tracks were terminated when the probability of existence fell below a

threshold of 0.3.

For the TkBD case, the magnitude of the sensor returns in terms of power was collected in

bearing and range cells consisting of 181 beam bins at 2 degree intervals from 0 to 360 degrees

and approximately a few thousand range bins, with range intervals of approximately 60m.

In order to reduce the number of potential false tracks, the measurements images that were fed

to the TkBD algorithms were truncated so that when the left-right ambiguous beams were well

separated, only the correct left or right beams were used. The measurement images were also

truncated to only a subset of ranges that consisted of approximately ±5km from the starting

true target position. For a fair comparison, the IPDA point detections were also limited to only

detections that fell within the limits of the truncated TkBD images.

Figure 7.4 and Figure 7.5 show examples of the truncated TkBD measurement images across

range and bearing space for target SNR values of 24 dB and 13 dB respectively. The true target

position is indicated by the red circle. Clearly, when the target SNR is high, the target return

is easily distinguishable from the background clutter. However when the target SNR drops, it

is more difficult to detect the target from the background clutter. It is also important to realise

that as the resolution of the bearing bins is finer than the beamwidth of the sensor, it is expected

that the target returns will be spread over multiple bearing bins. For track initiation, the TkBD

algorithms applied a peak detection threshold to the sensor image according to a certain SNR

threshold and then used two-point differencing to initiate tentative tracks. In the case when

the current position estimates of several tentative tracks were within 250 m in position, the

highest SNR track was retained and all other tracks were discarded. A measure for the track

quality was derived using target SNR calculated from the mixing proportions estimates. Tracks

were confirmed and terminated using a 3/5 logic rule requiring this track quality measure to

be above a threshold for 3 out of 5 returns. Due to the high volume of data, time-recursive

TkBD filters were used in the analysis rather than processing the sequence as a batch. It was

also found that a maximum of ten EM iterations was sufficient to ensure convergence at each
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time scan.

Multi-target implementations were used to compare TkBD to conventional tracking. In both

algorithms, it was assumed that background noise was uniform and measurement noise followed

a Gaussian distribution.

The tracking outputs of the TkBD and the IPDA algorithms for the two sets of trial data is

now presented. The tracks were compared with truth data provided by GPS logs.

7.4.1 Bearing Dependent Point Spread Function

In this first study, we evaluate the benefits of modifying the standard H-PMHT to include

a bearing dependent psf as discussed in subsection 7.3.2. The algorithms considered in this

subsection are:

• H-PMHT: Standard H-PMHT as presented in Chapter 4,

• H-PMHT-BD: The standard H-PMHT as presented in Chapter 4 modified to include a

bearing dependent psf.

Figure 7.6 shows the the track outputs for both environments assuming a threshold of 11 dB

for track initiation. It is important to realise that although the TkBD algorithms initiate tracks

on thresholded peaks, state estimates are updated using the sensor image data. The true target

position is indicated by the green squares and the true track outputs from the H-PMHT and

H-PMHT-BD are shown as a solid red and as a solid blue line with circle markers, respectively.

In the shallow environment, both the H-PMHT and H-PMHT-BD are able to successfully track

the true target and return no false tracks. However, the H-PMHT-BD estimate cuts the track

short near the end of the scenario. In the intermediate environment, the H-PMHT also starts

a track on the target but its estimate diverges at the end of the scenario. In contrast, the

H-PMHT-BD is able to maintain a good track on the target.

Figure 7.7 shows the corresponding SNR estimates for each track in Figure 7.6. The truth

shown in cyan corresponds to the target strength as selected in the ER settings. Recall that

the ER is able to output varying target strength levels of 9, 19 and 29 dB, however the signal

can be perturbed as it travels through the environment. The perturbed signal as measured by

the towed array sonar is shown in dashed green. We can see that the measured ER SNR can

vary greatly from the original target strength setting. As before, the SNR estimates from the

H-PMHT are shown in red and the H-PMHT-BD in blue.
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Figure 7.4: TkBD measurement image for a target SNR return value of 24 dB.
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Figure 7.5: TkBD measurement image for a target SNR return value of 13 dB.
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Figure 7.6: Estimated target position: H-PMHT vs. the H-PMHT featuring a bearing dependent

psf using SNR thresholding level of 11 dB.
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Figure 7.7: Average track SNR estimates: H-PMHT vs the H-PMHT featuring a bearing de-

pendent psf using SNR thresholding level of 11 dB.
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In the shallow environment, both algorithms gives similar estimates of the ER SNR, with the

H-PMHT-BD giving slightly more smoothed estimates. In the intermediate environment, the

H-PMHT-BD underestimates the measured SNR while the H-PMHT overestimates. However,

the H-PMHT-BD seems to be more responsive to abrupt changes in SNR level and gives slightly

better estimates in the second half of the scenario. Overall, the H-PMHT-BD seems to demon-

strate slightly more robust performance than the H-PMHT.

7.4.2 Conventional Tracking versus Track-Before-Detect

In the second study, we apply the TkBD algorithms discussed in previous chapters of the thesis

to the trial sonar data. The performance of TkBD algorithms is compared with a conven-

tional point measurement tracker based on IPDA. In the previous study, we observed that the

H-PMHT-BD gave improved performance when compared with the standard H-PMHT. We

now integrate the bearing dependent psf into all TkBD algorithms to ensure robust tracking

performance. The algorithms considered in this study are:

• H-PMHT-BD:The standard H-PMHT as presented in Chapter 4 modified to include a

bearing dependent psf.

• P-H-PMHT-BD: The Poisson H-PMHT as presented in Chapter 5 modified to include

a bearing dependent psf.

• IP-PMHT-BD: The Interpolated Poisson H-PMHT as presented in Chapter 6 modified

to include a bearing dependent psf.

• IPDA: The IPDA as discussed in subsection 7.3.1 [94].

The P-H-PMHT-BD and IP-PMHT-BD algorithms assumed a forgetting factor η = 200.

Figures 7.8 - 7.10 show the tracking results for both environments at SNR thresholding levels of

11, 13 and 15 dB, respectively. In these figures, the IPDA algorithm used detections thresholded

at the respective SNR level while the TkBD algorithm used the same SNR level to initiate tracks

using a peak detection thresholding scheme.

The TkBD algorithms were able to track the ER target successfully with zero false and di-

vergent tracks in all environments and thresholding levels. The TkBD tracks also remained

consistent across the different thresholding levels. For the shallow environment, we observed

in the previous study that the H-PMHT-BD algorithms seems to terminate the track early.

In contrast, both the P-H-PMHT-BD and IP-PMHT-BD tracks seem to overshoot the target

endpoint. This is because the TkBD measurement covariance R can now potentially change at
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Figure 7.8: Estimated target position: Various TkBD algorithms vs IPDA using a SNR thresh-

olding level of 11 dB
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Figure 7.9: Estimated target position: Various TkBD algorithms vs IPDA using a SNR thresh-

olding level of 13 dB
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Figure 7.10: Estimated target position: Various TkBD algorithms vs IPDA using a SNR thresh-

olding level of 15 dB
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each time depending on the target estimate at that time, due to the inclusion of the bearing

dependent psf. As each TkBD algorithm can produce a different target estimate at every time

point, the measurement covariance can also potentially differ between each algorithm. This can

either push the target estimates short or long as observed in Figure 7.8 (a).

The IPDA experienced more difficulty tracking at lower thresholding levels. When the SNR

threshold level was set to 11 dB, the IPDA processed, on average, over 100 detections at each

time frame. The IPDA algorithm was unable to form sensible tracks due to the large number

of detections, which served to increase the size of the covariance and hence the validation

gate at each iteration. This, in turn, increased the uncertainty even further as more and more

measurements were associated with each track at each time. We can see that in Figure 7.8,

the IPDA was unable to form a track on the ER target in the shallow dataset and appears to

form one track on the target in the intermediate dataset but it diverges almost instantly after

the track is initiated. The IPDA algorithm also produced a number of spurious false tracks in

both environments that were not related to the ER target, most of which are not shown in the

figures.

Figure 7.9 shows the tracking outputs for a threshold level of 13 dB. The IPDA algorithm

formed a track on the ER target in the shallow dataset and was only able to form a divergent

track on the ER target in the intermediate environment. However at this threshold level, the

number of false tracks has significantly dropped off. The shallow environment featured only

one false IPDA track whereas the intermediate environment produced none. When the SNR

threshold level was raised to 15 dB, Figure 7.10 shows that the IPDA was able to form a track

on the ER target in both datasets with zero false and divergent tracks. However, it should be

noted that the target in both datasets had reasonably high SNR. The likelihood of the IPDA

initiating and maintaining a track on a low SNR target at higher thresholds would be negligible

as no detections would be obtained. Even if the SNR threshold was lowered, tracking low SNR

targets would still be difficult due to the sheer number of point detections.

In the intermediate environment, the IPDA algorithm was not able to successfully detect or track

the target at the lower thresholding levels. However, we observe that at the 13 dB thresholding

level, the IPDA was able to start a track on the target but the large number of spurious

detections at this thresholding level caused the track to diverge. Tables 7.1 and 7.2 show the

average number of measurements at each time frame received by the IPDA at each thresholding

level for the shallow and intermediate dataset, respectively. The tables also collate the number

of false and divergent tracks formed by the IPDA in each case.

Figure 7.11 on page 187 shows the SNR track estimates for the TkBD algorithms assuming a

thresholding level of 15 dB for both the shallow and intermediate environment. The performance
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Average Number of Number of

Threshold number of divergent false

level detections tracks tracks

(dB) per frame

11 115.4 0 8

13 4.4 0 1

15 0.8 0 0

Table 7.1: Number of false and divergent IPDA tracks at different SNR thresholding levels for

the shallow dataset.

Average Number of Number of

Threshold number of divergent false

level detections tracks tracks

(dB) per frame

11 118.5 1 12

13 5.1 1 0

15 0.7 0 0

Table 7.2: Number of false and divergent IPDA tracks at different SNR thresholding levels for

the intermediate dataset.

of the SNR track estimates for the lower thresholding levels were very similar and are not shown.

As expected, the P-H-PMHT-BD and IP-PMHT-BD algorithms give very similar estimates.

Again, both give more smoothed estimates of the track SNR as they assume a dynamics model

on the amplitude with a high smoothing factor. This is particularly beneficial in the intermediate

environment, in which the P-H-PMHT-BD and IP-PMHT-BD generally give better estimates

for the average target SNR.

7.5 Summary

This chapter presents an application of TkBD to trial sonar data from an active towed array

system. The key contribution of this chapter is a study comparing several TkBD algorithms

discussed in previous chapters in this thesis with a conventional IPDA tracker with multi-target

logic using point detections. This chapter also verified that the Poisson H-PMHT and IP-PMHT

proposed in this thesis give similar state estimation performance to the standard H-PMHT, and
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Figure 7.11: Average track SNR estimates: Various TkBD algorithms using a SNR thresholding

level of 15 dB
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give more smoothed estimates of the target SNR.

Another key contribution is a modification to the TkBD algorithms to include bearing depen-

dent psf to model the change in target appearance with receive array direction. This resulted

in improved tracking and less likelihood of track divergence.

It was shown that TkBD can provide significant performance advantages over the conventional

IPDA tracking. The IPDA algorithm was able to form a reliable track only when a high SNR

threshold was applied during the point-measurement extraction stage. At lower thresholds, it

was overwhelmed by the large number of detections and suffered from a high false track rate.

In contrast the TkBD algorithms processed the intensity map data directly without an explicit

SNR threshold (except artificially imposed for track initiation) and was able to detect the target

without forming any false tracks. We can conclude that for active towed array sonar data, TkBD

is a promising alternative to conventional point measurement tracking.
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Chapter 8

Summary

The proliferation of submarines in the Asia-Pacific region has become a growing concern for

the Australian government due to the potential impact on its maritime and naval interests. In

response to this growing threat, the Australian government has focused on enhancing its under-

sea warfare capabilities; one such task involves enhancing its detection and tracking capabilities

using active sonar. This task is challenging due to the highly complex nature of the underwater

environment, which can be characterised by fluctuating low Signal-to-Noise Ratio (SNR) target

returns, high false alarm rate, slow update rates and multi-path effects.

This thesis has considered the problem of detecting and tracking targets using active sonar

in the underwater environment. This chapter summarises the main contributions of the thesis

and discusses areas for future research. We have proposed a number of enhancements to the

target dynamics and measurement models within the Bayesian tracking context for the active

sonar problem: a target model based on Hidden Reciprocal Processes (HRPs) was proposed

to allow for destination aware tracking; multiple enhancements to the measurement model

were introduced for a particular Track-Before-Detect (TkBD) algorithm called the Histogram-

Probabilistic Multi-Hypothesis Tracker (H-PMHT) to allow for a randomly evolving target

amplitude prior with instantaneous fluctuations.

The chapter is arranged as follows: Section 8.1 presents a summary of the thesis contributions;

Section 8.2 discusses the limitations of the thesis and directions for future research.
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8.1 Conclusions

8.1.1 Maximum Likelihood Sequence Estimation for Track-Before-Detect

In Bayesian tracking, the target dynamics model is generally assumed to follow a Markov

process. Some targets however, travel with a pre-known destination and their dynamics can be

described using an acausal model, which includes both past and future information. This thesis

has proposed an alternative target model for tracking based on HRPs, which is able to include

target destination information. A Maximum Likelihood Sequence Estimator (MLSE) for HRPs

was derived using the Markov bridge approach. Through simulations, the resultant estimator

was shown to give improved state estimation performance compared to a Markov process for a

reciprocal target.

8.1.2 Viterbi Implementation for H-PMHT

In conventional target tracking, the measurement model generally approximates the sensor

output, a continuous valued intensity map, with a set of point measurements. However, reducing

the sensor data to a set of point detections results in the loss of information. An alternative to

point measurement tracking is the concept of TkBD, which is based on providing the continuous

valued intensity map directly to the tracker. This thesis has focused on a particular TkBD

algorithm called the H-PMHT algorithm, which is based on Expectation-Maximisation (EM)

data association and has performance that is close to the optimal Bayesian estimator but still

retains linear complexity with the number of targets. The state estimation component of the

EM procedure has been demonstrated in the past with Kalman Filter (KF), Particle Filter

(PF) and Extended Kalman Filter (EKF) implementations. This thesis presented a Viterbi

implementation for the H-PMHT and showed through simulations, that it outperforms the

KF in the linear non-Gaussian case. It also can potentially provide better state estimation

performance for applications with discrete states.

8.1.3 Poisson Measurement Model for H-PMHT

One of the problems with the H-PMHT algorithm is that it assumes that the component mixing

proportions are constant or time-independent. To address this, we proposed an alternative

derivation of the H-PMHT based a Poisson measurement model. The resulting algorithm is

referred to as the Poisson H-PMHT. We showed that the Poisson assumption is consistent with

the multinomial assumption in the standard H-PMHT. Using this approach, we can impose a

dynamics model on the component mixing terms to allow for a randomly evolving prior for the
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target amplitude that allows for instantaneous fluctuations. Through simulations, we show that

the new Poisson mixing terms are less sensitive to noise fluctuations, and are able to give better

target estimates of the true mean SNR for fluctuating target models.

8.1.4 Interpolated Poisson Measurement Model for Track-Before-Detect

The H-PMHT uses quantisation of the measurement image to approximate the sensor intensity

image by a set of synthetically generated point measurements. This approximation can result

in inconsistent performance due to questionable independence assumptions that stem from

using a multinomial measurement model. To address this limitation, this thesis proposed a

new measurement model based on the application of EM data association to continuous valued

data. This approach describes the measurement image directly using an interpolated form of

the Poisson distribution. Although this function is not strictly a probability measure, we can

make use of convenient properties in measure theory to derive a TkBD algorithm that is similar

in principle to the H-PMHT but avoids the issues that arise from quantisation and assumptions

of independence. This new algorithm was named the Interpolated Poisson-PMHT (IP-PMHT).

Like the Poisson measurement model, this new algorithm also allows for a dynamic model to

be imposed on the component mixing terms.

8.1.5 Comparative Study of Track-Before-Detect and Conventional Point

Measurement Tracking using Sonar Trial Data

To quantify the performance of the TkBD algorithms proposed in this thesis in the context

of the active sonar tracking problem, a comparative study analysing their performance with a

conventional point measurement tracker using trial data from a towed array sonar system was

considered. The TkBD algorithms considered in the study included the standard H-PMHT, the

proposed Poisson H-PMHT and the proposed IP-PMHT algorithm. The point measurement

tracker considered was based on an Integrated Probabilistic Data Association (IPDA) tracker.

The TkBD algorithms were modified for the active sonar problem to include a bearing dependent

point spread function to model the changes of target appearance with receive array bearing. The

modified TkBD algorithms returned good tracks for targets with fluctuating amplitudes. Also,

the Poisson H-PMHT and the IP-PMHT algorithms returned smoother target SNR estimates for

scenarios with highly fluctuating target models. In contrast, the performance of the IPDA was

highly dependent on detection thresholding and suffered from false alarms at lower thresholding

levels. We can conclude that TkBD is a promising alternative to point measurement tracking

that can give consistent tracking performance for the active sonar problem.
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8.2 Future Work

8.2.1 Application of Track-Before-Detect to the Active Sonar Problem

Although the thesis demonstrated the performance of the MLSE for a HRP using simulated

data, it did not consider the application of this alternative target model to the active sonar

problem. In future, it would be beneficial to explore the application of HRP-based estimators

to trial sonar data. Generally, maritime platforms such as merchant ships travel with a specific

destination in mind while submarine targets travel in paths with unknown intent. HRPs can

potentially assist in the classification of benign targets and targets of interest. Using a detection

scheme, we can return tracks that diverge from the path assumed by the HRP model to help

identify targets behaving in anomalous manner [49].

The research on state estimation using HRPs in this thesis was also only limited to fixed

grid approximation techniques for a one-dimensional problem with only a single target. Other

potential areas of future research could involve deriving other filters for HRPs, such as the

PF or Kalman based filters, and consider extensions to the multi-target and multi-dimensional

cases.

8.2.2 Extensions to Sonar Trial Data Application

To allow for a simplified implementation, the trackers considered in the comparative study were

only implemented using truncated images from the towed array sonar sensor, centred around

the known target position. Further studies of TkBD performance would benefit from considering

the entire sonar sensor measurement image. With an enlarged image, it is expected that the

number of false tracks will increase as the area of surveillance is expanded. Assuming also that

the resolution of the image remains the same, the TkBD algorithms would also increase in

complexity as a result of iterating over a larger number of image pixels.

Although the CASSTASS data set considered in this thesis featured a fluctuating target, the

observed levels of SNR were relatively high. In future, a comparison of the TkBD performance

with conventional point measurement trackers using a dataset featuring a low SNR target may

bring to light other issues unique to the active sonar problem.

In the underwater tracking problem, target returns can travel in different paths along the

environment. Depending on the environmental parameters, these returns can arrive back at the

sensor at different times. This phenomenon is referred to as multi-path propagation and can

have adverse effects on tracking, particularly in deep water environments. In deep water, signals

can travel very long distances and multi-path returns from a target can appear in multiple
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range bins that are a considerable distance apart. This issue can be potentially resolved by

modifying the TkBD algorithms to include a range-dependent psf. In future, it would be will

beneficial to include this enhancement when tracking in deep water scenarios. However as the

range difference in multi-path propagation is highly dependent on environmental parameters,

modelling multi-path effects is a challenging issue as environmental information is not always

readily available.

8.2.3 Extension of Track-Before-Detect to the Multi-target Active Sonar

Tracking Problem

Finally, we note that the simulations and trial data studies conducted in this thesis were limited

to scenarios featuring only a single target of interest. As the H-PMHT TkBD paradigm is nat-

urally suited to tracking in multi-target scenarios, it would be useful to assess its performance,

and its Poisson variants, for multi-target datasets in the active sonar tracking framework to

gain further insight into the potential benefits or disadvantages of the proposed algorithms.
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Appendix A

Interpolated Poisson Distribution

A.1 Superposition

The function f(z;λ) defined in (6.5) can be be thought of as an interpolated form of the Poisson

distribution for non negative continuous variable Z = z with rate parameter λ:

f(Z = z;λ) = exp(−λ)
λz

Γ(z + 1)
. (A.1)

As shown in Figure 6.1, the function f(z;λ) is approximately a probability density function for

λ > 4 such that, ∫ ∞
0

f(z;λ)dz = 1, (A.2)

Like the Poisson distribution, it can be shown that the interpolated form of the Poisson dis-

tribution also has the important properties of superposition. Define IPoiss(· ; λ) to be the

interpolated Poisson distribution with rate parameter λ, then superposition means that for

z = z1 + z2 with zj ∼ IPoiss(zj ;λj), the combined energy also follows an interpolated Poisson

distribution with z ∼ IPoiss(z;λ1 + λ2).

We now prove that the function f(z;λ) approximately satisfies the superposition property

through characteristic functions. The characteristic function is an alternative way of describing

the behaviour of a random variable. A characteristic function F (t;λ), can be defined for the

random variable Z as following,

F (t;λ) = E
[

exp{jtz}
]

(A.3)

≡
∫ ∞
−∞

exp{jtz}f(z;λ)dz.
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Substituting (A.1) into (A.3) results in

F (t;λ) = exp{−λ}
∫ ∞

0

[
exp{jt}

]z λz

Γ(z + 1)
dz

= exp{−λ} exp
{
λ exp{jt}

}∫ ∞
0

exp
{
− λ exp{jt}

}[λ exp{jt}
]z

Γ(z + 1)
dz

= exp
{
λ exp{jt} − λ

}∫ ∞
0

f
(
z;λ exp{jt}

)
dz

= exp
{
λ
(

exp{jt} − 1
)}
. (A.4)

Note that on the third line of (A.4), it is necessary to assume that λ > 4 in order to make use

of equation (A.2).

Now consider two random variable z1 and z2 that are assumed to follow an interpolated Poisson

distribution (A.1) with rate parameters λ1 and λ2 respectively, where λ1, λ2 > 4. For the

superposition property to be satisfied, we require that the sum z = z1 + z2 to also follow an

interpolated Poisson distribution with rate parameter λ = λ1 +λ2. This can easily shown using

characteristic functions. Using (A.4), characteristic functions for random variables z1 and z2

can defined as following,

F (t;λ1) = exp
{
λ1
(

exp{jt} − 1
)}
, (A.5)

F (t;λ2) = exp
{
λ2
(

exp{jt} − 1
)}
. (A.6)

The characteristic function corresponding to the superposition property is given as following,

F (t;λ1)× F (t;λ2) = exp
{
λ1
(

exp{jt} − 1
)}
× exp

{
λ2
(

exp{jt} − 1
)}

= exp
{

(λ1 + λ2)
(

exp{jt} − 1
)}

= F (t, λ), (A.7)

where F (t, λ) = exp
{
λ
(

exp{jt} − 1
)}

. This implies that the function f(z, λ) also has an

interpolated Poisson distribution. This proves that for λ > 4, an approximate superposition

property holds for the interpolated Poisson distribution.

A.2 Proof of Integral (6.23) in the Derivation of the Interpo-

lated Poisson-PMHT

In chapter 6, the integral (6.24) has the following form:

m(N) =

∫ N

0
x

Γ(N + 1)

Γ(x+ 1)Γ(N − x+ 1)
λx(A− λ)N−xdx. (A.8)
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To solve this integral, define

f̃(x;λ) = xf(x;λ). (A.9)

where f(x;λ) is the interpolated Poisson distribution defined in (A.1). We can then separate

the integral (A.8) into two terms such that,

x
λx

Γ(x+ 1)
= x exp{λ} exp{−λ} λx

Γ(x+ 1)

= exp{λ}f̃(x;λ), (A.10)

(A− λ)N−x

Γ(N − x+ 1)
= exp{A− λ} exp{−(A− λ)} (A− λ)N−x

Γ(N − x+ 1)

= exp{A− λ}f(N − x;A− λ). (A.11)

Substituting (A.10) and (A.11) into (A.8), the integral simplifies to:

m(N) = Γ(N + 1) exp{λ} exp{A− λ}
∫ N

0
f̃(x;λ)f(N − x;A− λ)dx

= Γ(N + 1) exp{A} f̃(x;λ)⊗ f(x;A− λ), (A.12)

where ⊗ denotes the convolution operator. We now consider solving the convolution term in

(A.12). Define h(N) as the convolution term,

h(N) = f̃(x;λ)⊗ f(x;A− λ). (A.13)

The convolution can be solved by forming a corresponding function H(t) using characteristic

functions such that

.H(t) = F̃ (t;λ)× F (t;A− λ). (A.14)

The characteristic function F (t, λ) is given by (A.4). In a similar way, we can calculate the

characteristic function for F̃ (x, λ) as following,

.F̃ (t;λ) ≡
∫ ∞
−∞

exp{jtx}f̃(x;λ)dx,

= exp{−λ}
∫ ∞

0
x
[

exp{jt}
]x λx

Γ(x+ 1)
dx,

= exp{−λ} exp
{
λ exp{jt}

}∫ ∞
0

x exp
{
− λ exp{jt}

}[λ exp{jt}
]x

Γ(x+ 1)
dx,

= exp
{
λ exp{jt} − λ

}∫ ∞
0

xf
(
x;λ exp{jt}

)
dx. (A.15)

The integral on the last line of (A.15) is the expectation of the interpolated Poisson distribution

such that, ∫ ∞
0

xf
(
x;λ exp{jt}

)
dx = λ exp{jt}. (A.16)
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The characteristic function for F̃ (x, λ) simplifies to:

F̃ (t;λ) = λ exp{jt} exp
{
λ
(

exp{jt} − 1
)}
. (A.17)

Substituting (A.4) and (A.17) into (A.14) results in

H(t) = F̃ (t;λ)× F (t;A− λ)

= λ exp{jt} exp
{
λ
(

exp{jt} − 1
)}
. exp

{
(A− λ

)(
exp{jt} − 1

)}
= λ exp{jt} exp

{
A(exp{jt} − 1)

}
=

λ

A
F̃ (t;A). (A.18)

This implies that the convolution term in (A.13) simplifies to,

h(N) =
λ

A
f̃(N ;A)

= λN exp{−A} AN−1

Γ(N + 1)
(A.19)

Finally, substituting (A.19) into (A.12) gives the following solution to the integral,

m(N) = Γ(N + 1) exp{A} h(N)

= Γ(N + 1) exp{A}λN exp{−A}AN−1

Γ(N + 1)

= λNAN−1. (A.20)
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